
Abstract

NIMMELAPELLI, RAJA. FPGA Implementation of a SIP Message Processor. (Un-

der the direction of Dr. Yannis Viniotis.)

Session Initiation Protocol (SIP) is fast emerging as the next generation signaling

protocol. It operates independently of the underlying network transport protocol,

establishing sessions between multiple users irrespective if the media is voice, data

or video. It is projected to eventually replace the existing multiple voice and video

signaling protocols as a single protocol which achieves all. SIP implements a non-

trivial grammar. Parsing this grammar to extract the protocol fields proves to be a

high overhead for the CPU. This paper presents hardware offload architecture; the

SIP Offload Engine (SOE) which essentially extracts the SIP fields and stores them is

a proprietary data structure, for easy access by the CPU. An analysis has been done

which shows a reduction in the CPU overhead by as much as 88%.
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Chapter 1

Introduction and Literature

Review

This chapter serves as an introduction to the main concepts behind the thesis:

the Session Initiation Protocol (SIP) and hardware offloading.

1.1 Importance of SIP

Amongst a host of other compelling reasons, SIP gains importance for two reasons

discussed in following paragraphs.

Sophisticated functions like multimedia and videoconferencing have enjoyed global

appeal. Owing to the potentially large number of users, a robust distributed call

management protocol needed to be developed, which would take care of user location,

call setup, capability negotiation and call termination. To allow for easier scaling of

the core network, the intelligence had to be kept away from the core and embedded

in the end-points. SIP is a signaling protocol which provides this. It also allows

run-time modification of the session parameters.

The other reason for the importance is the rich feature-set it provides for the user.

Although implemented over the IP, it provides familiar Public Switched Telephone

Network (PSTN) like operations: dialing a number, causing a phone to ring, hearing

the ringback tone or a busy tone. It allows a user to leave a voice message, activate his
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answering machine via phone or Internet. It enables personal mobility and provides

the user with a greater degree of freedom. For example, a user could register from

multiple locations and have the phone at all these locations ringing at the same time.

The user could pick up the phone at whichever location he is and start the conversa-

tion, without having to go through the trouble of updating his location whenever he

moves.

1.2 Current Implementations of SIP

This section and its subsections elaborate on the different components that make

up a SIP system.
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1.2.1 Architecture of a SIP system

UAS

Proxy

SIP
Redirect

SIP
Registrar

User Location
Database

SIP/PSTN
Gateway

PSTN
Client Conferencing

Server

Media 
Server

SIP/H.323
Gateway

H.323
Client

1

SIP User Agent Client : UAC
SIP User Agent Server : UAS

2 n

UAC UACUAC

UAS

UAS

UAS

UAS

SIP 

Figure 1.1: Functional Architecture Block Diagram

Figure 1.1 depicts the architecture of a typical SIP system [1]. Components of a

SIP system are called User Agents (UA’s). A UA is either a SIP User Agent Client

(UAC) or a SIP User Agent Server. A SIP UAC is an entity which is a receiver of servi

ces provided by the SIP system. A SIP UAS is an entity which in some way enables

these services. The SIP UAC and UAS are discussed in more detail in sections 1.2.2

and 1.2.3. The User Location Database (ULD) stores the location information of the

UAC’s. This database is queried when a particular UAC is to be located. There are

non-SIP users (PSTN, H.323 clients) which enter the SIP system via gateways.

The components of a SIP system converse using dialogs. The standards track

for SIP, RFC 3261 [2], defines a dialog as “a peer-to-peer SIP relationship between

two UAs that persists for some time”. It represents a context that facilitates the
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sequencing of messages between the UA’s and proper routing of requests between

both of them. A dialog goes through three phases: the creation of the dialog, the

processing of requests within the dialog and the termination of the dialog.

With respect to a dialog, communication between UA’s can occur:

1. Outside a dialog. This communication occurs when two UA’s are in the process

of setting up a dialog.

2. Inside a dialog. This communication occurs when two UA’s have established a

dialog.

1.2.2 SIP User Agent Client (UAC)

A UAC represents an end system which generates requests. These requests are

usually the result of human actions like clicking the mouse button or other similar

external stimulus. The requests are processed by the UAS and a reply is sent back

to the UAC.

The request generation described above starts with the UAC initiating the estab-

lishment of a dialog using the INVITE method. Upon receipt of a success code from

the intended recipient, the dialog is said to be established. The session parameters

can then be negotiated. Data transfer starts once the communicating UAC’s decide

on the multimedia to be used in the session. To tear down the dialog, the BYE

method is used by any one of the UAC’s.

Existing implementations of UAC’s can be classified as hardphones or softphones.

Hardphones are UAC’s implemented in hardware as IP appliances. They resemble the

traditional PSTN telephone handset. A commercial example of this is the Cisco 7900

series unified IP phones [3]. Softphones are UAC’s that are implemented in software.

They typically run on a PC and use the PC hardware for audio/video input/output.

A commercial implementation of a softphone is the Microsoft Messenger 4.7 [4].
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1.2.3 SIP User Agent Server (UAS)

A UAS represents an end system which processes requests sent by the UAC. Based

on the type of request received, the UAS executes procedures to generate a reply. This

reply is then routed back to the UAC.

The UAS receives the requests from the UAC to establish a dialog. For this out-

of-dialog request, there is a pre-defined set of procedures to be executed before the

UAS can process this request and send a reply to establish a dialog. The UAS, in

this order, needs to:

1. Authenticate the request.

2. Inspect the method in the request to see if supported by the UAS.

3. Inspect the header in the request, ignoring any malformed fields.

4. Inspect the content of the request, potentially rejecting the request for various

reasons.

5. If all above inspections have passed, run method-specific procedures to generate

a reply.

Once the success-reply generated by the UAS reaches the UAC, the dialog is said to

be established. The UAS then processes any within-dialog requests like capability

negotiations. Upon receving the BYE request, the dialog is torn down.

There are many forms a UAS can take in a SIP system, depending on the task

it is supposed to perform. The various implementations are listed in section 1.2.4.

Note that this is not a comprehensive list of all UAS implementations, only the major

ones.

1.2.4 Examples of a UAS

In this section, for each implementation of a UAS, the inputs received and the

outputs generated are discussed with respect to their usage in the SIP architecture

discussed in Section 1.2.1.
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1. Registrar

• Functional Diagram

SIP Request

UAC
User Location
Database

Registrar
(UAS)

User−Address
Location Mapping

(REGISTER)

Figure 1.2: Functional location of a Registrar

• Inputs received

The Registrar accepts REGISTER inputs from UAC’s.

• Outputs generated

The Registrar processes the REGISTER request and updates the User

Location Database with the binding information for that UAC.

2. Proxy

• Functional Diagram

SIP Request

(UAS)
Proxy
(UAS)

SIP Response
(Trying, OK)

SIP Request
(INVITE)

SIP Response
(Trying, OK)

DNS
User Location
Database

(REGISTER)

SIP Request

UAC UAC

SIP Response

Proxy

Figure 1.3: Functional location of a Proxy
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• Inputs received

A Proxy receives SIP requests like INVITE which are to be routed to the

destination UAC. It could also receive SIP responses from the destination

which are to be relayed to the originating UAC.

• Outputs generated

The Proxy receives a SIP request (INVITE) at its input from the source

UAC. It replicates this SIP request at the output and sends it to the target

domain Proxy. It also receives SIP response messages(Trying, OK) from

the destination UAC and replicates these at its output to the source UAC.

3. Gateways

Gateways exist to serve a strong business purpose. They act as a bridge between

the new SIP components and existing legacy PSTN and H.323 equipment. With

the help of gateways, end-to-end service can be provided seamlessly over these

different protocols.

• PSTN gateway [5]

– Functional Diagram

PSTN PBX

(signaling)

PSTN Audio
Content

PSTN Gateway

Call Content

PSTN Signaling

SIP Proxy
(UAS)

SIP Request

Figure 1.4: Functional location of a PSTN gateway

– Inputs received

A PSTN gateway receives both signaling and content information.

It receives PSTN signaling/data from the PSTN PBX which needs

to be translated into the SIP domain. Conversely, it also receives SIP

signaling/content which needs to be translated into the PSTN domain.
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– Outputs generated

The gateway outputs SIP signaling/content when it receives PSTN

signaling/content at its input. It outputs PSTN signaling/content

when it receives SIP signaling/content at its input.

• H.323 gateway [6]

– Functional Diagram

H.323 Gateway(signaling)
SIP Proxy

(UAS)
H.323 
Proxy

H.323 Signaling

SIP Request

Figure 1.5: Functional location of an H.323 gateway

– Inputs received

An H.323 gateway receives both signaling and content information.

It receives H.323 signaling/data from the H.323 proxy which needs

to be translated into the SIP domain. Conversely, it also receives SIP

signaling/content which needs to be translated into the H.323 domain.

– Outputs generated

The gateway outputs SIP signaling/content when it receives H.323 sig-

naling/content at its input. It outputs H.323 signaling/content when

it receives SIP signaling/content at its input.

4. Redirect server

• Functional Diagram
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Alternate  user address

(UAS)

SIP Request
(User Contact Address)

UAC
Redirect Server

Figure 1.6: Functional location of a Redirect Server

• Inputs received

The Redirect server receives a SIP request at its input with a user contact

address.

• Outputs generated

The Redirect server outputs a list of alternate addresses that user could

potentially be available at.

5. Media server

• Functional Diagram

Proxy
Server

Media Server
(UAS)

SIP Request
(INVITE)

SIP Response
(OK)

RTSP
’SETUP’ Request

Welcome
Message

RTSP

Figure 1.7: Functional location of a Media Server

• Inputs received

The Media server receives a SIP INVITE request at its input.

• Outputs generated
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The Media server outputs a request to the Real Time Streaming Protocol

(RTSP) server to obtain the welcome message and recording of voicemail.

It sends an OK response to the originating UAC. The UAC then directly

exchanges packets with the RTSP server.

6. Conferencing server [7]

• Functional Diagram

M
ed

ia
 (

1,
2)

(INVITE)
SIP Request
(INVITE)

Conferencing
Server
(UAS)

S
IP

 R
eq

ue
st

(I
N

V
IT

E
)

UAC 1 UAC 2

UAC 3

Media Media 

Media ( 2,3) Media (1,3)

M
ed

ia

SIP Request

Figure 1.8: Functional location of a Conferencing Server

• Inputs received

The Conferencing server receives SIP INVITE requests from multiple UAC’s

wishing to hold a conference. It also receives the conference media content

from all UAC’s part of that conference.

• Outputs generated

The Conference server outputs OK messages to the various UAC’s re-

questing to be a part of the conference. It also mixes the content input

by indivudual UAC’s and sends them to the other UAC’s, as shown in the

Figure 1.8
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1.3 Maximizing performance via hardware offload

1.3.1 Issues with software network processing

Networking software on a general workstation has to cater to a wide range of client

applications. This results in simple and general purpose interfaces presented by the

software to the hardware. The speed of the software interfaces is falling behind the

speed with which the network hardware operates. It is common to now see Gigabit

network cards deployed in general workstations. Even though the CPU clock speed

is scaling, the high rate at which these cards present data to the networking software

limits the communication performance and increases latency. Thus, the network

software is a severe bottleneck for faster packet processing.

A solution which eases this bottleneck is to transfer some of the tasks done by the

networking software onto dedicated hardware, an approach called hardware offloading.

With this approach, there is a definite increase in performance as the hardware would

process data much faster than software. More the tasks that are offloaded, faster

the data processing becomes. Potentially, it is thus possible to match the network

hardware speed and achieve maximum system performance.

Further sections exemplify hardware offloading by citing some industry proven

techniques.

1.3.2 Industry examples: TCP Offload Engine (TOE) and

SAN/iSCSI

This section elaborates on how hardware offloading has resulted in performance

enhancements. The two examples cited are TCP/IP and iSCSI offload.

1. TOE

Over the past few years, the general purpose processor industry has seen tremen-

dous growth in the processor speeds. Starting from 60MHz at the time of intro-

duction, the CPU clock speed has scaled to the current 3GHz [8]. This would

make one think that now TCP/IP processing would also be much faster. This
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however is not completely true. Although the TCP/IP processing speed has

increased, the rate of increase is not parallel to the rate at which the CPU

clock speed has scaled. The limiting factor is now the memory and I/O subsys-

tems. TCP/IP is inherently a memory intensive operation, so the bad effects

of memory latency are more pronounced. This latency results in wasted CPU

idle cycles. So, a faster CPU only results in more idle cycles.

TCP/IP provides certain features which make it so popular for communication

over the Internet. Some of these are reliable delivery, flow control and congestion

control. However, to implement these features, a significant amount of software

is required in the form of timers, counters, units that run algorithms, perform

arithmetic and maintain the connection state. TCP/IP processing involves a

good deal of memory. For example, the TCP connection state information is

close to 256 bytes, so a TCP implementation which could potentially handle

32,000 connections needs 8 MB memory just to store the state information. So,

it is clear that TCP/IP in software incurs a large software overhead and involves

significant amount of memory. Both factors limit the performance of software

TCP/IP.

There have been development efforts which target to increase TCP/IP perfor-

mance via software modifications. For example, in native TCP/IP, the loss of a

single packet results in the retransmission of many packets [9]. An improvement

was to retransmit only the packet which was not received, called the Selective

ACK. This reduces the amount of data transmitted in case of a retransmission.

TCP Reno is another software enhancement, which creates two zones of data

transmission, called Slow Start and Congestion Avoidance. The primary aim

of this scheme is to avoid congestion in the network, thus reducing the proba-

bility of retransmissions without much sacrifice in the transfer rate. Reno also

includes a Fast retransmit and Fast recovery scheme, aimed at early detection

and remedy for lost packets. This is an attempt to enhance performance by

reducing latency. However, the performance benefits from such schemes are

behind the improvement achieved by hardware offloading.
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Since the memory access time is a bottleneck for TCP/IP performance, multi-

threading could be employed for better performance. Here, another thread is

executed while the first one is waiting for data from the memory. Multithread-

ing has two drawbacks. First, it is assumed that multiple threads are ready for

execution at any point of time, which may not be the case for multiple high-

bandwidth connections transferring large amounts of data. Another drawback

is that multithreading requires more cache memory, which does not make it a

cost-effective enhancement [7].

The advantages of TCP hardware offloading are highlighted by Terminator [10],

a TCP offload engine developed by Chelsio Communications, Inc. It was found

that during performance evaluation, for packet sizes of 1KB on a uni-directional

10 Gbps link, the throughput achieved with offload was four times that without

offload.

2. iSCSI

The original SCSI protocol was used to communicate between devices connected

to the internal and external computer busses. Internet SCSI [iSCSI] was de-

veloped to enable large file transfers via blocks between any two computers

connected to the Internet. iSCSI is used to enable Storage Area Networking

(SAN).

iSCSI runs over TCP/IP and due to the overhead TCP incurs, is much slower

than its SAN competitor, the Fibre Channel interface. However, the advantage

iSCSI offers is that, unlike Fibre Channel, it uses TCP/IP/Ethernet, which

makes it cheaper to install and maintain. So, in order to boost the performance

and make it acceptable for SAN, the iSCSI and TCP protocols are offloaded

onto hardware.

1.3.3 SIP Offload Engine (SOE)

The importance of SIP has been elaborated on in Section 1.1. In anticipation of its

growth, it would be a good idea to make advancements which would allow for faster
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processing of the protocol. We have seen how hardware offloading boosts processing

speed in TCP and iSCSI. It is proposed to apply the same idea and offload the SIP

protocol onto hardware.

How much of a protocol to offload is a complexity-performance tradeoff. If we

offload more of the protocol, the complexity increases but so does the performance. To

contain the complexity and still achieve significant performance boost, it is proposed

to offload only the SIP message parsing onto hardware. Chapter 3 shows how such a

limited offload can reduce CPU utilization by as much as 90%.

1.4 Thesis organization

The organization of the rest of the thesis is described. Chapter 2 and its subsec-

tions introduce SIP and its message structure, format and header fields. Chapter 3

presents an analysis which describes the potential reduction in CPU utilization via

hardware offload. Chapter 4 presents the architecture of the hardware which would

be doing the offloaded processing. Chapter 5 presents a detailed description of all

the modules involved in the design. Chapter 7 discusses a sample implementation

of the design on a Xilinx FPGA and talks about the design statistics in terms of

gates occupied, memory used and other factors. Chapter 8 completes the thesis by

identifying areas which have scope for further improvements.
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Chapter 2

SIP

This chapter briefly describes the structure of the SIP protocol and explains its

components.

2.1 Introduction

SIP follows a Request/Response type of transaction model. It follows a layered

structure, with the syntax and encoding being the lowermost layer. It follows the

Augmented Backnus Naur Format (ABNF) for encoding [11]. A SIP client would

send a Request message to the server, which would reply with a Response message.

The request/response message formats follow the standard track for Internet Message

Format [12]. It follows the UTF-8 charset [13], which is the same as ASCII for 00-7F.

The exact message types and formats are discussed in further sections.

2.2 SIP Grammar and its complexity

Grammar can be defined as a set of rules by which the protocol can be specified.

It can be thought of as a tool to enable a protocol and ensure a uniform interpretation

of a protocol by all its users.

Parsing can be thought of as the action of examining the lines of a protocol and

extracting different tokens from it. Parsing too follows the same set of rules that
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make up the grammar.

Sections 2.2.1 and 2.2.2 discuss the reasons why SIP grammar could be considered

as significantly complex to parse.

2.2.1 Lexical analysis

In a lexical perspective, the following points contribute to the complexity of SIP

grammar [12].

1. Line length limit

The standard places a limit of 998 characters per line. This places a requirement

on the software parser to be able to buffer so many characters at a stretch. This

buffer comes at a cost for the software. In the SOE, the need for a buffer is

eliminated by directly writing these bytes in memory, i.e no intermediate storage

is required.

2. Random order of Header fields

Header fields are lines composed of a field name, followed by a semicolon (“:”),

followed by a field body, and terminated by CRLF. The parser needs to be able

to track the semicolon and CRLF delimiters. The characters till the semicolon

need to be buffered seperately, as they form the header field name. The char-

acters after the semicolon until the CRLF form the header value and are to be

buffered seperately. The SOE performs the tracking of these delimiters by using

a state machine based approach. This simplifies the seperation of the characters

between delimiters. The header fields could occur in a random fashion, which

make it difficult for the CPU to extract any particular header it is looking for.

3. Folding of header fields

Although the limit for a line is 998 characters, a stream of characters could

still be contained in multiple lines by “folding” the lines. This is a method in

which a contiguous stream of characters is split into multiple lines by inserting

CRLF sequence where we wish to start a newline. By starting this newline with
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a space or tab, we indicate that this is a continuation of the previous stream

of characters. The software parser needs to be able to detect folded lines and

“unfold” them correctly to extract the original character stream. The way the

SOE tackles this issue is by detecting the CRLF-SP/HT sequence and deleting

these occurences. The next stream of characters is seamlessly concatenated

with the previous stream and treated as one stream. Note that no buffering

is required in the SOE to cater to folding lines, which is where the advantage

comes over a software implementation.

2.2.2 Syntactical Analysis

In a syntactical perspective, the following points contribute to the complexity of

SIP grammar [12].

1. Special Characters

Quoted characters and special characters like ’/’ which are usually used as a

delimiter can be used as a part of the message by enclosing it like ”/”.

2. Complex comments specification

A comment is a string of characters enclosed in parantheses. The comments

could be nested within multiple lines via folding. There could be special char-

acters present in the comment.

3. Multiple other specifications

There exist separate specifications for the Date and Time which only add to

the complexity.

4. Multiple field definitions

The headers are classified into multiple categories based on their function. Ex-

amples of these are Origination fields, Destination fields, ID fields, Informational

fields and Trace fields.
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2.3 SIP Messages

The SIP protocol enables end users to communicate with each other via messages.

These are pieces of information which are processed by the client/server. In its basic

form, a message could either be a request sent from a client to a server or a reply

from the server to the client.

2.3.1 SIP message format

A message consists of a start-line, one or more header fields, an empty line indi-

cating the end of the header fields, and an optional message-body [2].This is shown

in Figure 2.1.

message header field 2
..
..
..

CRLF

message − body [optional]

start−line = Request−Line / Status−Line

generic−message = start−line
message header field 1

Figure 2.1: Structure of a SIP message

2.3.2 Types of messages

A SIP message could either be a Request or a Response.

1. SIP Request Message

A request is recognized by the presence of a request-Line as the start-line. The

request-line is of the format:

Request-Line = Method SP Request-URI SP SIP-Version CRLF
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The method is an action associated with a session between end users. The

methods and their function are listed below:

• REGISTER : Used to register contact information with the server.

• INVITE, ACK, CANCEL : Used for setting up sessions.

• BYE : Used to teminate a session.

The Request-URI is the recipient of the SIP message. The SIP Version is cur-

rently SIP/2.0 and is to be included in all messages. The CRLF terminates the

Request-Line.

2. SIP Response Message

A response is recognized by the presence of a status-line as the start-line. The

status-line is of the format:

Status-Line = SIP-Version SP Status-code SP Reason-Phrase CRLF

The Status-Code represents the result of the action taken due to the request.

The result of a request is categorized below:

(a) 100-199 : Request received, process in progress.

(b) 200-299 : The request was received, understood and accepted.

(c) 300-399 : Further action needs to be taken to complete processing of the

request.

(d) 400-499 : The request cannot be processed at the server. Could be due to

bad syntax.

(e) 500-599 : The server failed to process the request. The request could have

been valid.

(f) 600-699 : Global failure. This request cannot be processed by any server.

The Reason-Phrase is an english-like equivalent of the Status-Code. For ex. for

Status-Code 200, the Reason-Phrase is ”OK”.
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Both the Request/Response messages may have multiple message headers. These

headers are discussed further in section 2.4.

2.4 SIP Header Fields

SIP Header fields form a part of the SIP message. Each header conveys some

information for the destination.

2.4.1 Header field format

The format for a SIP message header is shown. Each header field consists of a

name followed by a colon (”:”) and the field value.

field-name : [ field-value ]

Note that the field value could extend over multiple lines as explained in section

2.2.1.

2.4.2 Types of Header Fields

The types of header fields can thought of to be based on the function performed

by that header. Although this list may not be complete, the major header types are

listed.

1. Originator fields : From, Destination, To

2. Routing fields: Via

3. Authentication: Proxy-Authenticate.

2.5 Requirements for parsing SIP messages

A SIP message essentially consists of the SIP Start-Line and multiple message

headers. Based on which part of the SIP message is being parsed, the following

requirements apply.
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• Requirements for SIP Request-Line / Status-Line

1. The Request-Line should follow the format “Request line = Method name

SP Request-URI SP SIP-Version CRLF”.

2. The status-Line should follow the format “Status Line = SIP-version SP

Status-code SP Reason-phrase CRLF”.

3. No CR or LF allowed except at the end of the line.

4. No folding lines in any of the elements of the Request-Line

5. Request-URI must not contain unescaped spaces or control chars.

6. Request URI could also be a telephone URI, i.e a nummeric telephone

number.

7. SIP-version must be SIP/2.0 in uppercase

• Requirements for the Header fields

Following is a list of requirements for parsing the header fields to correctly

extract the header field names and their values.

1. The header is to be parsed in a <field name : field value> fashion.

2. Any number of whitespace allowed on either side of the semicolon in the

above point.

3. Header fields can be extended over multiple lines, as long as each new line

starts with a SP or HT.

4. Support multiple header field rows with the same field name, with the all

field values specified in a comma seperated list.

5. Within a field value, any number of <parameter name=parameter value>

pairs can exist within a header field value.

6. Must allow for abbreviated forms of header names.
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Chapter 3

Processor overhead savings

analysis

This chapter starts by briefly discussing the drawbacks of SIP message parsing in

software. It then introduces the data structure used in the hardware implementation

of the message parsing. An analysis is presented which shows how this proprietary

data structure format allows us to achieve significant processor cycle savings. The in-

tention of the analysis is to breakdown in a quantifiable terms, the difference between

software and hardware processing of a SIP message. A part of the analysis consists

of an imitation of a software implementation of a SIP message parsing module. The

amount of software processing accounted for is considered as bare minimum for a

single-CPU, without considering enhanced CPU features like multi-processor envi-

ronments. The processing required is represented in terms of CPU cycles required.

A similar analysis is done for the hardware approach to arrive at a number for the

CPU cycles required. A comparison of these numbers gives us the CPU cycle savings

between the two approaches.

3.1 Software approach to SIP message parsing

This section elaborates on why the SIP message parsing is considered to be CPU

intensive[1]. We’ve seen the structure of the SIP message in in Chapter 2. The
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software code parsing the SIP message needs to extract all the header field names

and their respective values. This could be a cumbersome task owing to the following

two reasons:

1. Delimiters

The standard allows unrestricted use of delimiters such as spaces and tabs

before, in-between and after the SIP header field names and values. Header

field values could span multiple lines via the delimiter LWS, as explained in

section 3. The software needs to recognize, use and eliminate these delimiters

to make correct sense of the byte-stream.

2. Unrestricted order of field placement

There are certain SIP header fields related to routing (ex. TO,VIA) the CPU

needs to examine before it starts to process the rest of the SIP message. Al-

though the standard recommends the placement of the routing header fields at

the beginning of the SIP message, it does not mandate it. So the CPU should

allow for random placement of the header fields in the SIP message. This forces

the CPU to parse the entire message before it even knows if it should process the

message. In the SOE approach, the hardware would directly pass the routing

headers to the CPU.

Section 3.2 elaborates on the format of the data structure used in the SOE. The

format of this data structure is what allows the CPU savings, discussed in section

3.3.

3.2 Data structure for hardware offload

The data structure used to store the SIP header fields and values is shown in Figure

3.1. This data structure is implemented in a 31-bit memory. A motivation behind

choosing a 32-bit data width is the fact that the TCP/IP header fields are aligned in

32-bit words. Different information is stored at pre-decided memory locations. The
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CPU is aware of these addresses and thus knows where to read header information

from. An explanation of each of the elements of the data structure follows.

Field 50 Offset

     ’000’ REGISTER
     ’001’ INVITE
     ’010’ ACK
     ’011’ CANCEL
     ’100’ BYE
     101’ OPTIONS

’1’ − REQUEST
’0’ − RESPONSE

0

14
15

29
30
31
32

IP Header

TCP Header

TCP/IP Checksum Pass bits
SIP Field Valid Reg 0
SIP Field Valid Reg 1

31 0

Bytes in header val

Offset

31 08917

resvd

Field 1 Offset
REQ/RES Code & Offset33

34

0131

Bytes in header val

Offset

31 30 28

resvd

08917

resvd

IP cheksum result

TCP checksum result

83

84

Method Code:

Figure 3.1: SIP Data Strcuture

1. IP Header

All the IP header bytes received are stored as in in locations 0 through 14.

2. TCP Header

All the TCP header bytes received are stored as in in locations 15 through 29.

3. TCP/IP checksum pass bits

The least-significant 2 bits of address 30 are used to store the result of the

TCP and IP checksum calculations. Bit 0 stores the IP checksum result while

bit 1 stores the TCP checksum calculation result. If the bit is set, it indicates
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a successful checksum match, i.e the calculated and the received checksums

match. If this bit is cleared, it indicates that the checksums mismatch.

4. SIP Field Valid Registers 0,1

These are two 32-bit registers which tell the CPU which SIP headers were found

in the SIP packet. Each header is alloted one bit to indicate its presence in the

SIP packet. If the bit is set, that header was found in the SIP packet. Table

3.1 tells us the bit-header bindings each SIP header.
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Table 3.1: Presence bit allocation for SIP Methods/Headers

Hex
Addr

Bit # SIP Keyword Hex
Addr

Bit # SIP Keyword

31 0 Accept 31 1 Accept-Encoding
31 2 Accept-Language 31 3 Ack
31 4 Alert-Info 31 5 Allow
31 6 Authentication-Info 31 7 Authorization
31 8 Bye 31 9 Cancel
31 10 Call-ID 31 11 Call-Info
31 12 Contact 31 13 Content-Disposition
31 14 Content-Encoding 31 15 Content-Language
31 16 Content-Length 31 17 Content-Type
31 18 CSeq 31 19 Date
31 20 Error-Info 31 21 Expires
31 22 From 31 23 In-Reply-To
31 24 Invite 31 25 Max-Forwards
31 26 Min-Expires 31 27 MIME-Version
31 28 Options 31 29 Organization
31 30 Priority 31 31 Proxy-Authenticate
32 0 Proxy-Authorization 32 1 Proxy-Require
32 2 Register 32 3 Record-Route
32 4 Reply-To 32 5 Require
32 6 Retry-After 32 7 Route
32 8 Server 32 9 Subject
32 10 Supported 32 11 Timestamp
32 12 To 32 13 Unsupported
32 14 User-Agent 32 15 Via
32 16 Warning 32 17 WWW-Authenticate

5. Request/Response Type and Code

Address 33 in the SIP Data Structure holds information regarding the client-to-

server request sent or the server-to-client response. Table 3.2 summarizes the

various bits used and their meaning.
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Table 3.2: Request/Response bits

0xAddress Bits Meaning

33 31 1- SIP Request, 0 - SIP Response
33 30-28 SIP Method. For bits 2-0, values are

“000” - REGISTER, “001” - INVITE,
“010” - ACK, “011” - CANCEL, “100”
- BYE and “101” - OPTIONS

33 17-9 The offset in the data structure where
the bytes start.

33 8-0 The number of bytes the REQ/RESP
occupies data structure starting from
the above offset.

6. Method/Header Offset calculation

The bytes received in the Request/Response/Header are stored in the SIP Data

Structure. These bytes can be retreived by using the offset provided. The offset

tells us the start address and number of bytes stored for that method/header.

Using this information and a global start address of 0x86, we can directly access

the value of any method/header.

3.3 Processor savings analysis

The analysis starts by considering the following sample SIP packet.

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE
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The analysis then compares the CPU utilization involved in calculation of TCP/IP

checksums and extraction of the SIP message headers for the following two methods:

• Complete software approach

The software does the TCP/IP checksum calculations and SIP header extrac-

tion.

Table 3.3: Cycles required for an all-software approach

Function Pseudo Code Operator # Cycles Scale

IP Header L1:READ Reg1, 4 bytes READ 5
Checksum XOR Reg2, Reg1 XOR 5
Calculation Loop L1 INCR 5
TCP Header L2:READ Reg1, 4 bytes READ 92.5
Checksum XOR Reg2, Reg1 XOR 92.5
Calculation Loop L2 INCR 92.5
Extract READ Reg1, 4 bytes READ 2
SIP Method COMPARE Reg1,“INVI” COMPARE 48

READ reg2, 4 bytes
COMPARE Reg1, “TEx̂”

Extract SIP L3: READ Reg1, 4 bytes READ 24
Header field COMPARE Reg1,“:” COMPARE 96
name JumpNotEqual L3
Align SIP WRITE Reg1, write address WRITE 24
header field INCR 24
Extract SIP L4: READ Reg1, 4 bytes READ 56
Header field COMPARE Reg1, CRLF COMPARE 192

JumpNotEqual L4
Align SIP WRITE Reg1, write address WRITE 56
header field INCR 56
Read aligned READ Reg1, 4 bytes READ 80
data INCR 80

Total READS 259.5 1
XOR 97.5 1
COMPARE 336 1
INCR 257.5 1
WRITE 80 1

TOTAL CYCLES 1030.5
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• Hardware offload approach

The TCP/IP checksum and SIP header extraction functions are offloaded onto

dedicated hardware. The software does trivial address calculations to obtain

the header field values.

Table 3.4: Cycles required for a hardware-offloaded approach

Function Pseudo Code Operator # Cycles Scale

IP Header READ Reg1, 4 bytes READ 1
Checksum
Calculation
TCP Header READ Reg1, 4 bytes READ 1
Checksum
Calculation
Read READ Reg1, 4 bytes READ 1
SIP Method
Read SIP READ Reg1, 4 bytes READ 2
Header field READ Reg2, 4 bytes COMPARE 8
name COMPARE, Reg1, “1” INCR 2

COMPARE Reg2, “1”,
Read SIP ADD Base address, index READ 54
Header field READ Reg1, 4 bytes INCR 54
value ADD Field address, Reg1 ADD 2

L1: READ Reg1, 4 bytes COMPARE 6
COMPARE Field length,0
JumpNotEqual L1
Total READS 59 1

COMPARE 14 1
INCR 56 1
ADD 2 2

TOTAL CYCLES 133

From the Tables 3.3 and 3.4, it can be seen that the cycles required by the

hardware-offload method (133 cycles) is significantly lower than those required when

using an all-software approach (1030.5 cycles). This translates into a savings of over

88%.
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Chapter 4

Design Architecture

4.1 Introduction

In chapter 3 we saw the potential savings the SOE could achieve. In this section we

take a high level look at the design architecture. The block diagram will be discussed.

Functions and implementation details of individual blocks will also be elaborated on.

The design examines the incoming SIP/TCP/IP stream. The individual SIP,

TCP header and IP header bytes are delineated and sent to dedicated processing

blocks. Once the data is processed, each block writes its share of data to the SIP

data structure. The order of write access to the SIP data structure is the IP block

first, followed by the TCP block and then finally the SIP block. Once the SIP data

structure is completed, it is assumed that a PCI device would read this data and

write it to the system memory, where it would be examined by the CPU.

The packets at the input of the design could be expected to arrive in a non-stop

fashion. To cater to this, a pipelined approach was taken at a block level so that the

flow of packets is not interrupted. Further, no backpressure is exerted on the input

FIFO. The architecture can be classified as cut-through, i.e the incoming packet is

not stored before processing.

The following sections list all the blocks involved in the design. Their functions

and a brief idea of their implementation are given.
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4.2 Block diagram and Explanation

Write

Calculator

TCP Checksum

Calculator

IP Checksum

SIP Byte

Processor

Delineator

Controller

Buffer Write

TCP Header, 
Chksum Result

SIP Structure
Data

Data Flow

Control Flow

Header Values,
Indices SIP Data 
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(Memory)

Address
Data

Read,
Write

Fifo empty
Fifo Read

IP Byte

Valid

TCP Byte

Valid

Write

IP Header, Chksum result

Write

SIP Byte

Valid

Read,Valid

FIFO Data

Figure 4.1: Block Diagram

The above figure shows the block level implementation of the SIP Offload Engine.

We shall discuss the functions and brief implementation in subsequent sections.

4.2.1 Delineator

The following sections list the functions and implementation of the Delineator

block.

• Functions

1. Interfaces to a FIFO on the input side.

2. Examines incoming SIP/TCP/IP byte stream.

3. Classifies the incoming bytes as IP bytes, TCP bytes and SIP bytes
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4. Routes IP, TCP, SIP bytes to the IP, TCP and SIP Processor blocks

5. Identifies the incoming TCP and IP checksum values, passes them to the

respective blocks for checksum verification

• Implementation

TCP Checksum

Interface
Logic

Byte
Number
Logic

IP Checksum
Calculator
Interface
Logic

Logic

Calculator
Interface

TCP Checksum

SIP Processor
Interface
Logic

Input
FIFO

IP Checksum
Calculator
Interface

Processor
Interface

SIP Byte

Calculator
InterfaceFIFO

Figure 4.2: Delineator Implementation Diagram

The delineator reads data from the input FIFO and examines the incoming byte

stream. First the IP bytes will be seen, then the TCP bytes followed by the

SIP bytes. Note that the SIP bytes are also flagged as TCP bytes for TCP

checksum calculation.



33

1. Identifying IP bytes

An indication is received from the FIFO to flag the start of a new packet.

This packet is the SIP/TCP/IP stream that needs to be processed.

IHLVer Type Of Ser Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

Options Padding

4 8 16 3219

Figure 4.3: Format of the IP Header

Figure 4.3 shows the fields present in the IP Header. The first byte in

this new stream marks the first IP header byte (Version & Internet Header

Length). The Internet Header Length tells us how many successive bytes

are going to be IP bytes. For example, if this value is 0101, it signifies

that the next (5*4=20) bytes are IP header bytes. Accordingly, the next

20 bytes are flagged as IP Bytes. These bytes are processed by the IP

Checksum calculator.

2. Identifying TCP Bytes

For the purpose of TCP checksum calculation, all bytes following the IP

bytes till the end of the packet are TCP bytes. The end of packet occurs

when the total length (IP header) number of bytes are counted. Accord-

ingly these bytes are flagged by the delineator, when corresponding with

the TCP Checksum calculator. Note that the pseudo TCP header bytes,

shown in 4.4 are also flagged by the Delineator, as these are to be included

in the TCP checksum calculation. An exception to this is the field “TCP

Length”. This field is the sum of the TCP header octets and the data

octets. The 12 octets of the pseudo header are not included in this sum.
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This value is calculated by the TCP Checksum Calculator.

TCP Length

TCP Pseudo Header

Source Port Destination Port

Sequence  Number

Acknowledgement Number

Offset Rsvd Flags Window

Checksum Urgent Pointer

Options Padding

Data

TCP Header
1 16 3217

IP Source Address

IP Dest Address

Zero PTCL

Figure 4.4: Format of the TCP Header

3. Identifying SIP Bytes

The SIP bytes form the TCP payload portion. The TCP payload starts a

byte after the TCP header ends. The end of the TCP Header is indicated

by the 4-bit Data Offset field in the TCP header. For example, if the Data

Offset field = 1000, then after (8*4 = 32) bytes, the SIP bytes start. The

total number of SIP bytes is determined by the 16-bit Total Length field

in the IP header. The formula is: Number of SIP bytes = Bytes indicated

by Total Length (IP Header bytes + TCP Header bytes) All SIP bytes

are flagged by the Delineator.
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4.2.2 IP Checksum Calculator

The following sections list the functions and implementation of the IP Checksum

Calculator Block.

• Functions

1. Calculate the checksum over the IP header bytes.

2. Compare the calculated checksum with the received checksum.

3. Deliver the IP header bytes and the checksum Pass/Fail result bit to the

Buffer Write Controller

• Implementation

IP Chksum Byte,

checksum
(XOR−Register)

Buffer Write 
Controller
Logic

Controller
Buffer Write 

IP Byte,
Valid from
Delineator

16−bit Accumulator Received Checksum

b

a

a=b

Demux

IP Checksum
Bytes valid

Valid from
Delineator

16−bit Calculated

Figure 4.5: IP Checksum Calculator Implementation Diagram
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The IP checksum calculator maintains a 16 bit XOR register. Every time 16

bits of IP header data are accumulated, they are XORed with the existing 16

bits of the XOR register. Once the last byte of the IP header comes in, the value

in the XOR register is compared with the received checksum. Accordingly, a

checksum Pass/Fail indication is determined. All received IP header bytes and

the checksum result are written into the SIP data structure by the Buffer Write

Controller.

4.2.3 TCP Checksum Calculator

The following sections list the functions and implementation of the TCP Checksum

Calculator Block.

• Functions

1. Calculate the TCP checksum.

2. Compare the calculated checksum with the received checksum.

3. Deliver the TCP header bytes and the checksum Pass/Fail result bit to

the Buffer Write Controller. Note that only the TCP header bytes are

written to the SIP data structure. The TCP payload bytes are used for

the checksum calculations.

• Implementation

The TCP checksum calculator maintains a 16 bit XOR register which functions

in a manner similar to the IP checksum calculator. The received TCP bytes

and the checksum results are written into the SIP data structure by the Buffer

Write Controller.
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TCP Byte,

checksum
(XOR−Register)

Buffer Write 
Controller
Logic

Controller
Buffer Write 

TCP Checksum
Bytes valid

16−bit Accumulator Received Checksum

b

a

a=b

Demux

Valid from
Delineator

16−bit Calculated

Figure 4.6: TCP Checksum Calculator Implementation Diagram

4.2.4 SIP Byte Processor

The following sections list the functions and implementation of the IP Checksum

Calculator Block.

• Importance of the SIP Byte Processor The SIP Byte Processor is primarily

responsible for recognizing valid SIP keywords from the incoming SIP byte

stream. Its importance in the entire design stems from the fact that it generates

most of the fields required in the SIP data structure. A significant percentage

of the CPU overhead savings is effected by this module.

• Functions

1. Creates tokens from the incoming SIP byte stream.
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2. Search for the validity of these tokens as SIP keywords.

3. Indicate the presence of validated keyword in the SIP data structure.

• Implementation

Index counters

Logic

SIP Keyword
Tree Structure

from
Delineator

SIP Byte,
Valid

Buffer Write 
Controller
Interface

Token Extractor

Token Search

Figure 4.7: SIP Byte Processor Implementation Diagram

The SIP Byte Processor is implemented in a pipeline based approach. Details of

this pipeline are discussed in section 4.3. A Finite State Machine is implemented

to extract tokens by separating the whitespaces and tabs from the incoming

byte stream. The tokens are sent to the pattern matching engine to check for

its validity as a SIP keyword. The pattern matching engine is based on the

Aho-Corasick algorithm for exact string matching. A keyword could either be

a message or a header field name. In both cases, the value follows the keyword

in a byte stream. The value of the keyword is isolated from the byte stream by

ignoring all the spaces. This isolated value is sent to the Buffer Write Controller

which would store it in the data structure. A counter is run while the isolated

value is being stored. Once the entire value is stored, the value of the counter

now serves as an index to where in the data structure this keyword value lies.

The CPU software can then easily use this index to access the value.
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4.2.5 Buffer Write Controller

The following sections list the functions and implementation of the IP Checksum

Calculator Block.

• Functions

1. Possesses exclusive write control over the SIP data structure.

2. Accepts for data from the potential write requestors. Writes this data to

the SIP data structure.

• Implementation

Read Logic

Byte Processor

Data from TCP
Checksum
Calculator

Data from IP
Checksum
Calculator

Write Logic

SIP Data
Structure
Memory 2

SIP Data
Structure
Memory 1

Data/Address Bus
Muxing

PCI Arbiter
Device Interface

Address Counters

Mux

Data from SIP

Figure 4.8: Buffer Write Controller Implementation Diagram
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A first come first serve approach is used to accept write requestor data to the

memory. This approach is possible because each of the write requestors issue

their requests at different points of time. First the IP checksum calculator

would post its request, followed by the TCP checksum calculator and finally

the SIP byte processor. The data to be written is multiplexed based on who

the requestor is.

4.3 Design Pipeline Explained

The input can be considered as a continous flow of packets. One way to approach

the design would be to first completely buffer the incoming packet, process it, then

look at the next packet. In this case, there could be a situation where we would

need to exert backpressure on the input and halt the packet flow. This would happen

when a large packet is being processed while multiple small packets are coming in. It

would not be a good idea to exert any backpressure on the input, as this would have

repercussions all the way upstream to the Network Interface Card.

To avoid the scenario mentioned in the above paragraph, we take a pipelined

approach. In this way, there is no need to exert any backpressure and we acheive

better throughput.
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Chapter 5

Design Module Description

In section 4, we had a top-level look at a block-level architecture of the design. We

saw the functions of the blocks and had a brief idea of how each block is implemented.

The current section aims to provide more details. For each block, the pin interfaces

with other bslocks and a detailed implementation description are given. This would

include the FSM, data structures, arithmetic units and specific logic involved.

5.1 Module Delineator (delin)

This section and its subsection present a detailed description of the Delineator

module. Section 5.1.1 presents the pin interfaces with blocks it interacts with. Section

5.1.2 describes its implementation in detail.

5.1.1 Pin Interface

This section describes the pin interfaces with the other blocks.

Table 5.1: Interface with the system

No. Pin Name Dirn. Width Description

1 reset IN 1 The async system reset.
2 clk IN 1 The system clock.
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Table 5.2: Interface with Packet FIFO

No. Pin Name Dirn. Width Description

1 fifo empty IN 1 Indicates the presence of data
in the FIFO

2 fifo data IN 9 Data read from the FIFO. In-
terpreted as 8 bit data byte and
a 1 bit indication.

3 delin fifo read OUT 1 An indication that the delin-
eator has accepted the FIFO
byte.

Table 5.3: Interface with IP Checksum Calculator

No. Pin Name Dirn. Width Description

1 delin startofpkt OUT 1 An indication to reset the
checksum registers.

2 delin ipbyte valid OUT 1 An indication that the current
byte is valid. The IP checksum
calculator processes the byte
only if this signal is set.

3 delin ip byte OUT 8 The byte to be processed.
4 delin ipchksm msbyte OUT 1 An indication that the current

byte is the IP checksum MS
byte. The IP checksum calcu-
lator needs these bytes to verify
the checksum

4 delin ipchksm lsbyte OUT 1 An indication that the current
byte is the IP checksum LS
byte.

6 delin last ipbyte OUT 1 An indication that the current
byte is the last valid IP byte.
When asserted, the IP check-
sum calculator matches the re-
ceived and calculated check-
sums.
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Table 5.4: Interface with TCP Checksum Calculator

No. Pin Name Dirn. Width Description

1 delin startofpkt OUT 1 An indication to reset the
checksum registers.

2 delin tcpbyte valid OUT 1 An indication that the current
byte is valid. The TCP check-
sum calculator processes the
byte only if this signal is set.

3 delin tcp hdrbyte OUT 1 An indication that the current
byte is a TCP Header byte.
Only these are sent to the
Buffer Write Controller to be
written in the SIP Data Struc-
ture.

4 delin tcp byte OUT 8 The byte to be processed.
5 delin protocol byte OUT 1 An indication that the current

byte is the IP protocol byte.
This indication is used in the
TCP checksumming process, as
a zero pad is required before
the protocol field (Fig. 4.4).

6 delin tcpchksm msbyte OUT 1 An indication that the current
byte is the TCP checksum MS
byte. The TCP checksum cal-
culator needs these bytes to
verify the checksum.

7 delin tcpchksm lsbyte OUT 1 An indication that the current
byte is the TCP checksum LS
byte.

8 delin last tcpbyte OUT 1 An indication that the current
byte is the last valid TCP byte.
When asserted, the TCP check-
sum calculator performs the
last XOR operation with the
calculated TCP length. It then
matches the received and calcu-
lated checksums.
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Table 5.5: Interface with SIP Byte Processor

No. Pin Name Dirn. Width Description

1 delin sipbyte valid OUT 1 An indication that the current
byte is valid. The SIP Byte
processor processes the byte
only if this signal is set.

2 delin sipbyte OUT 8 The byte to be processed.

5.1.2 Architecture

We will start this section by discussing the interface timing between the Delineator

and the input FIFO. We will then proceed to elaborate on the hardware implemen-

tation of the blocks in the logic schematic shown in 4.2.

• Input FIFO Interface Timing

04A

fifo_empty

fifo_data[8:0]

delin_fifo_read

internal_byte_valid_r

fifobyte_r[7:0]

startofpkt_r

1AA 0BB 0FD 0DA 0A8 04A 0DD

1AA 0BB 0FD 0DA 0A8

Figure 5.1: Interface waveform for Input FIFO
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Figure 5.1 shows the behavior between the Delineator and the input FIFO.

When fifo empty is sampled low, the data is read into an internal register.

Upon each data unit registered by the Delineator, delin fifo read is asserted for

a clock. Note that for the fifo data to be valid, fifo empty should be low and

delin fifo read should be high. Apart from the data byte, the fifo data delivers

a bit indicating the start of a new packet. so the 9-bit fifo data is registered

as separate information, i.e fifobyte r[7:0] and startofpkt r. Both these registers

are validated by internal byte valid r.

• Generation of Internal registers

Q

D Q

D Q

D

fifobyte_r[7:0]

fifo_empty

delin_fifo_read

internal_bytevalid_r

fifo_data[8] startofpkt_r

fifo_data[7:0]

Figure 5.2: Generation of Internal Registers

Figure 5.2 shows the separation of the Input FIFO data into individual registers.
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• Generation of Input FIFO Interface

delin_fifo_readQfifo_empty D

Figure 5.3: Generation of Input FIFO Interface

• Timing Waveform for internal counters and output interfaces

20

delin_tcpbyte[7:0]
delin_sipbyte[7:0]

delin_ipbyte[7:0]

14 BB 01 FF AC D5 E2 14 98 3Afifobyte_r[7:0]

internal_bytevalid_r

startofpkt_r

bytenumber_r[15:0]

numof_iphdr_bytes_r[15:0]

pktlength_r[15:0]

delin_ipbyte_valid

delin_tcpbyte_valid

numof_tcphdr_bytes_r[5:0]

1 2 3 4 21 22 23 32 41 42

20

14 BB 01 FF AC D5 E2 14 98

01xx 01FF

delin_sipbyte_valid

Figure 5.4: Internal counters and interface timing

The timing waveform shown in 5.4 shows the behavior of the output interfaces.
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• Generation of the internal byte counter

The byte counter bytenumber r is a 16-bit counter. It is cleared when a new

packet arrives in the input FIFO, flagged by startofpkt r. It is then incremented

once for each byte read from the FIFO. Based on the value of this counter, fields

of interest are extracted from the TCP and IP headers. A list of the fields and

the reason why they are extracted is are given in table 5.6.

Table 5.6: Table of TCP/IP header fields extracted

Byte No. Header, Name Bits Description
1 IP, IHL 4 Used to calculate the number of

IP header bytes in the packet.
3,4 IP, Total Length 16 Used to determine the total

length of the Packet.
11,12 IP, Checksum 16 The received IP checksum. This

is stored and compared to the
calculated checksum.

13 TCP, Data Offset 4 The length of the TCP Header,
tells us when the SIP bytes start
in the incoming stream.

17,18 TCP, Checksum 16 The received TCP checksum.
This is stored and compared to
the calculated checksum.

16’d2

D Q

CE

1

0+ ’1’

startofpkt_r

internal_bytevalid_r

bytenumber_r[15:0]

Figure 5.5: Generation of the byte counter
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• Generation of the total length, TCP & IP header byte registers

Depending on the value of bytenumber r, multiple required fields are locally

registered.

16’d4

D Q

CEa=b

b

a

fifodata_r[7:0] pktlength_r[15:8]

bytenumber_r[15:0]

16’d3

D Q

CEa=b

b

a

fifodata_r[7:0]

bytenumber_r[15:0]

pktlength_r[7:0]

Figure 5.6: Generation of the packet length register

Similarly, the number of TCP and IP header bytes in the current packet are

locally registered. It is interesting to note that the location of the TCP header

bytes depends on the number of IP header bytes present. These values are

later on examined to determine the timing of the output interfaces to the next

modules in the design.

(Left Shift by 2) − ’1’ D Q

CE

numof_iphdr_bytes_r[5:0]

startofpkt_r

fifodata_r[7:4]

Figure 5.7: Generation of total IP header bytes register
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bytenumber_r[15:0]

D Q

CE

a=b

b

a
numof_iphdr_bytes_r[5:0] 
+ 6’d12

fifodata_r[7:4]
Left Shift by 2

numof_tcphdr_bytes_r[5:0]

Figure 5.8: Generation of total TCP header bytes register

• Driving the IP Checksum Calculator Interface

The following hardware diagrams elaborate on how the IP Checksum Calculator

interface is driven, based on the local registers and counters. The hardware

behind each output pin of the module, on that interface, is shown.

set

a=b

b

a

D Q

D Q

fifobyte_r[7:0] delin_ipbyte[7:0]

startofpkt_r

delin_ipbyte_valid

numof_iphdr_bytes_r[5:0]

bytenumber_r[15:0] + ’1’

sync sync
clear

Figure 5.9: Driving the IP Checksum Calculator Interface - 1
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delin_startofpkt

D Q

D Q

a=b
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a
numof_iphdr_bytes_r[5:0]

bytenumber_r[15:0]
delin_last_ipbyte

startofpkt_r

Figure 5.10: Driving the IP Checksum Calculator Interface - 2
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Figure 5.11: Driving the IP Checksum Calculator Interface - 3
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• Driving the TCP Checksum Calculator Interface

The following hardware diagrams elaborate on how the TP Checksum Calcula-

tor interface is driven, based on the local registers and counters. Thes hardware

behind each output pin of the module, on that interface, is shown.

numof_iphdr_bytes_r[5:0]

D Q

sync
set

sync
clear

a

b

a=b

D Q
delin_tcpbyte[7:0]fifobyte_r[7:0]

a=b

b

a

delin−tcpbyte−valid

pktlength_r[15:0]

bytenumber_r[15:0] + ’1’bytenumber_r[15:0] + ’1’

Figure 5.12: Driving the TCP Checksum Calculator Interface - 1
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b
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Figure 5.13: Driving the TCP Checksum Calculator Interface - 2
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Figure 5.14: Driving the TCP Checksum Calculator Interface - 3

• Driving the SIP Byte Processor Interface

Figure 5.15 shows the hardware behind the SIP byte processor Interface.
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Figure 5.15: Driving the SIP Byte Processor Interface



53

5.2 Module IP Checksum Calculator (ipchksum)

This section presents a detailed description. Section 5.2.1 presents the pin inter-

faces with connected blocks. Section 5.2.2 describes its implementation in detail.

5.2.1 Pin Interface

This section describes the pin interfaces with the other blocks.

Table 5.7: Interface with the system

No. Pin Name Dirn. Width Description

1 reset IN 1 The async system reset.
2 clk IN 1 The system clock.

Table 5.8: Interface with the Delineator

No. Pin Name Dirn. Width Description

1 delin startofpkt IN 1 An indication to reset the
checksum registers.

2 delin ipbyte valid IN 1 An indication that the current
byte is valid. The IP checksum
calculator processes the byte
only if this signal is set.

3 delin ip byte IN 8 The byte to be processed.
4 delin ipchksm msbyte IN 1 An indication that the current

byte is the IP checksum MS
byte. The IP checksum calcu-
lator needs these bytes to verify
the checksum

4 delin ipchksm lsbyte IN 1 Flags the checksum LS byte.
6 delin last ipbyte IN 1 Indicates last valid IP byte. If

asserted, the IP checksum cal-
culator matches the received
and calculated checksums.
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Table 5.9: Interface with the Buffer Write Controller

No. Pin Name Dirn. Width Description

1 ipchksum write OUT 1 An indication that the cur-
rent byte is a valid IP header
byte. the Buffer Write Con-
troller samples this valid and
transfers this byte to the SIP
data structure.

2 ipchksum byte OUT 8 The byte to be writtn to the
SIP data structure.

3 ipchksum result valid OUT 1 This signal is asserted once the
comparison between the calcu-
lated checksum and received
checksum is made. It is valid
for one clock cycle.

4 ipchksum result bit OUT 1 This bit is looked at when
ipchksum result valid is as-
serted. If high, it indicates that
the received checksum matches
with the calculated checksum.
If low, it indicates a mismatch
in the two checksums.

5.2.2 Architecture

We will start this section by the timing diagram between the Delineator input

interface and their effect on registers internal to the IP Checksum Calculator. This

is followed by the Buffer Write Controller timing diagram. We will then proceed to

elaborate on the hardware implementation of the blocks in the logic schematic shown

in 4.5.

• Timing waveform for interface with Delineator.

Figure 5.16 shows the timing relation between the IP Checksum Calculator and

the Delineator. The 16-bit register ipbyte accum r is an accumulator which

stores the incoming byte-wide data as 16-bit data, to match the datawidth
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of the IP Header checksum. The incoming byte is either stored in the MS

byte or the LS byte of ipbyte accum r, depending on the value of byte select r.

After every second valid byte is received, i.e 16-bits have beel accumulated, an

XOR operation is performed between ipbyte accum r and a 16-bit XOR register,

ip checksum r. An exception to this continous XOR operation is when the input

byte is a checksum byte. In this case, 0x00 is latched into ipbyte accum r.

This is to be in accordance with the IP header checksum calculation method,

which zeroes out the original checksum bytes when calculating the checksum

over the rest of the IP header. A checksum byte at the input is signaled by

either delin ipchksm msbyte or delin ipchksm lsbyte being asserted. After all

the IP bytes are processed, a write strobe is passed to indicate the result of the

checksum verification.
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14BB
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01FF
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14BB
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ipchksum_result_bit
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ip_checksum_r[15:0]
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delin_ipbyte[7:0]

byte_select_r

14xx 14BB 01BB 01FF ACFF ACFC D5FC D5E2

0000 14BB 0A55 1B38 AC51

ACxx

Figure 5.16: Timing relation with Delineator Interface
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• Timing waveform for Buffer Write Controller Interface

Figure 5.17 shows the timing details of the Buffer Write Controller interface.

Each byte that comes in from the Delineator has to be passed over to the Buffer

Write Controller.

ipchksum_byte[7:0]

14 BB 01 FF D5 E2 BB AD 2C 98

14 BB 01 FF D5 E2 BB AD 2C 98

3A

delin_startofpkt

delin_ipbyte_valid

delin_ipbyte[7:0]

ipchksum_write

Figure 5.17: Timing relation with Buffer Write Controller Interface

• Generation of byte select r

This is a flag which helps is directing bytes from the incoming stream into a

16-bit buffer. This buffer is further used for checksum calculations.

D Q

CE

1

0

delin_ipbyte_valid

’1’

delin_startofpkt

byte_select_r

Figure 5.18: Generation of the IP byte select mux flag
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• Generation of ipbyte accum r[15:0]

This is a 16-bit accumulator which is used to store the IP bytes in pairs for

checksum calculations.

ipbyte_accum_r[15:0]
D Q

delin_ipchksm_msbyte = ’1’ OR
delin_ipchksm_lsbyte = ’1’

0

1

delin_ipbyte[7:0] &
ipbyte_accum_r[7:0]

delin_ipbyte[7:0] &
ipbyte_accum_r[7:0]

ipbyte_accum_r[15:8] &
delin_ipbyte[7:0]

1

0

1

0byte_select_r

delin_startofpkt

0000

Figure 5.19: Generation of the IP byte accumulator

• Generation of ip checksum r[15:0]

This is a 16-bit register which holds the result of the continous XOR operation.

CE

XOR

D Q

sync
clear

delin_ipbyte_valid OR
delin_ipbyte_valid_r

1

0

ip_checksum_r[15:0]
byte_select_r

ipbyte_accum_r[15:0]

delin_startofpkt

Figure 5.20: Generation of the IP checksum register
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• Generation of recvd ip chksum r[15:0]

This is a 16-bit register, used to latch the two checksum bytes from the incoming

IP byte stream. This value is used for comparison with the calculated checksum.

recvd_ip_chksum_r[7:0]

D Q

CE

D Q

CE

delin_ipbyte[7:0]

delin_ipchksm_msbyte

delin_ipchksm_lsbyte

delin_ipbyte[7:0]

recvd_ip_chksum_r[15:8]

Figure 5.21: Generation of the received IP checksum register

• Generation of the Buffer Write Controller Interface

Figures 5.22 and 5.23 shows the hardware behind the generation of the Buffer

Write Controller Interface.

ipchksum_result_bit

D Q D Q D Q

D Qa=b

b

a

delin_last_ipbyte ipchksum_result_valid

ip_checksum_r[15:0]

recvd_ip_chksum_r[15:0]

Figure 5.22: Generation of the IP Buffer Write Controller Interface - 1
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ipchksum_byte[7:0]

D Q

D Q

delin_ipbyte_valid ipchksum_write

delin_ipbyte[7:0]

Figure 5.23: Generation of the IP Buffer Write Controller Interface - 2
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5.3 Module TCP Checksum Calculator (tcpchksm)

This section and its subsection present a detailed description of the TCP Check-

sum Calculator module. Section 5.3.1 presents the pin interfaces with blocks it inter-

acts with. Section 5.3.2 describes its implementation in detail.

5.3.1 Pin Interface

This section describes the pin interfaces with the other blocks.

Table 5.10: Interface with the system

No. Pin Name Dirn. Width Description

1 reset IN 1 The async system reset.
2 clk IN 1 The system clock.
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Table 5.11: Interface with the Buffer Write Controller

No. Pin Name Dirn. Width Description

1 tcpchksm write OUT 1 An indication that the current
byte is a valid TCP byte. The
Buffer Write Controller trans-
fers this byte to the SIP data
structure.

2 tcpchksm byte OUT 8 The byte to be written.
3 tcpchksm result valid OUT 1 This signal is asserted once the

comparison between the cal-
culated checksum and received
checksum is made.

4 tcpchksm result bit OUT 1 This bit is looked at when
ipchksum result valid is as-
serted. If high, it indicates
that the received checksum
matches with the calculated
checksum, else a mismatch.

5 tcpchksm last tcphdr byteOUT 1 An indication that the current
byte is the last TCP header
byte. This byte is used by
the Buffer Write Controller to
increment internal memory in-
dices.
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Table 5.12: Interface with Delineator

No. Pin Name Dirn. Width Description

1 delin startofpkt IN 1 An indication to reset the
checksum registers.

2 delin tcpbyte valid IN 1 An indication that the current
byte is valid. The TCP check-
sum calculator processes the
byte only if this signal is set.

3 delin tcp hdrbyte IN 1 An indication that the current
byte is a TCP Header byte.
Only these are sent to the
Buffer Write Controller to be
written in the SIP Data Struc-
ture.

4 delin last tcphdr byte IN 1 An indication that the current
byte is the last TCP header
byte. This byte is passed on to
the Buffer Write Controller.

5 delin tcp byte IN 8 The byte to be processed.
6 delin protocol byte IN 1 an indication that the current

byte is the IP protocol byte.
This indication is used in the
TCP checksumming process, as
a zero pad is required before
the protocol field (Fig. 4.4).

7 delin tcpchksm msbyte IN 1 An indication that the current
byte is the TCP checksum MS
byte. The TCP checksum cal-
culator needs these bytes to
verify the checksum.

8 delin tcpchksm lsbyte IN 1 An indication that the current
byte is the TCP checksum LS
byte.

9 delin last tcpbyte OUT 1 An indication that the current
byte is the last valid TCP byte.
When asserted, the TCP check-
sum calculator performs the
last XOR operation with the
calculated TCP length. It then
matches the received and calcu-
lated checksums.
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5.3.2 Architecture

This section begins with a timing diagram between the Delineator input interface

and its effect on registers internal to the TCP Checksum Calculators. This is followed

by the Buffer Write Controller timing diagram. We then proceed to elaborate on the

hardware implementation of the blocks in the logic schematic shown in 4.6.

• Timing waveform for interface with Delineator.

Figure 5.24 shows the timing relation between the TCP Checksum Calculator

and the Delineator. The 16-bit register ipbyte accum r is an accumulator which

stores the incoming byte-wide data as 16-bit data, to match the datawidth of

the TCP Header checksum. The incoming byte is either stored in the MS byte

or the LS byte of tcpbyte accum r, depending on the value of byte select r. After

every second valid byte is received, i.e 16-bits have beel accumulated, an XOR

operation is performed between tcpbyte accum r and a 16-bit XOR register,

tcp checksum r. An exception to this continous XOR operation is when the

input byte is a checksum byte. In this case, 0x00 is latched into tcpbyte accum r.

This is to be in accordance with the TCP header checksum calculation method,

which zeroes out the original checksum bytes when calculating the checksum

over the rest of the TCP header. A checksum byte at the input is signaled by

either delin tcpchksm msbyte or delin tcpchksm lsbyte being asserted. Another

exception is when the signal delin protocol byte is asserted. When sampled

active, the value in delin tcp byte is pre-padded with zeroes and directly latched

into tcpbyte accum r. After all the TCP bytes are processed, a write strobe is

passed to indicate the result of the checksum verification.
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tcpchksum_result_bit

14 BB 01 FF AC FC D5 E2 BB AD 2C 98 3A

ACFC
XOR
0A55

14BB
XOR
0000

01FF
XOR
14BB
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XOR
1B38
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byte_select_r

14xx 14BB 01BB 01FF ACFF ACFC D5FC D5E2

0000 14BB 0A55 1B38 AC51

ACxx AC51

delin_tcpbyte_valid

delin_tcpbyte[7:0]

delin_last_tcpbyte

tcpbyte_accum_r[15:0]

tcp_checksum_r[15:0]

recvd_tcp_chksum_r[15:0]

tcpchksum_result_valid

Figure 5.24: Timing relation with Delineator Interface

• Timing waveform for Buffer Write Controller Interface

Figure 5.25 shows the timing interface. Each byte that comes in from the

Delineator has to be passed over to the Buffer Write Controller.

tcpchksm_byte[7:0]

14 BB 01 FF D5 E2 BB AD 2C 98

14 BB 01 FF D5 E2 BB AD 2C 98

3A

delin_startofpkt

delin_tcp_hdrbyte

delin_tcpbyte[7:0]

tcpchksm_write

Figure 5.25: Timing relation with Buffer Write Controller Interface
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• Generation of byte select r

This flag helps in muxing bytes from the incoming stream to a 16-bit buffer

used for checksum calculations. However, when the signal delin protocol byte is

asserted, this flag is not toggled to avoid misaligning the next byte. Instead,

this byte is padded with zeroes and XOR’ed with the XOR register.

Q

CE

1

0

delin_protocol_byte

D

’1’

delin_startofpkt

byte_select_r

delin_tcpbyte_valid

Figure 5.26: Generation of the TCP byte select mux flag

• Generation of tcpbyte accum r[15:0]

This is a 16-bit accumulator which is used to store the TCP bytes in pairs for

checksum calculations.

delin_tcpbyte[7:0] &

0

1

D Q

1

0byte_select_r

delin_startofpkt

0000
1

0

delin_protocol_byte

1

0
tcpbyte_accum_r[15:0]

{8’h00, delin_tcpbyte_r[7:0]} 

delin_tcpchksm_msbyte = ’1’ OR
delin_tcpchksm_lsbyte = ’1’

tcpbyte_accum_r[7:0]

delin_tcpbyte[7:0]

tcpbyte_accum_r[15:8] &

delin_tcpbyte[7:0] &
tcpbyte_accum_r[7:0]

Figure 5.27: Generation of the TCP byte accumulator



66

• Generation of tcp checksum r[15:0]

This is a 16-bit register which holds the result of the continous XOR operation.

tcpbyte_accum_r[15:0]

XOR

D Q

sync
clear

1

0

byte_select_r

delin_startofpkt

CE

tcp_checksum_r[15:0]

delin_tcpbyte_valid OR
delin_tcpbyte_valid_r OR
delin_protocol_byte_r

Figure 5.28: Generation of the TCP checksum register

• Generation of recvd tcp chksum r[15:0]

This is a 16-bit register, used to latch the two checksum bytes from the incom-

ing TCP byte stream. This value is used for comparison with the calculated

checksum.

delin_tcpchksm_msbyte

D Q

CE

D Q

CE

delin_tcpbyte[7:0]

delin_tcpchksm_lsbyte

recvd_tcp_chksum_r[7:0]

recvd_tcp_chksum_r[15:8]delin_tcpbyte[7:0]

Figure 5.29: Generation of the received TCP checksum register
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• Generation of the Buffer Write Controller Interface

Figures 5.30 and 5.31 shows the hardware behind the generation of the Buffer

Write Controller Interface.

tcpchksm_result_bit

D Q D Q D Q

D Qa=b

b

a

delin_last_tcpbyte tcpchksm_result_valid

tcp_checksum_r[15:0]

recvd_tcp_chksum_r[15:0]

Figure 5.30: Generation of the TCP Buffer Write Controller Interface - 1

delin_tcp_hdrbyte D Q

D Qdelin_tcpbyte[7:0]

tcpchksm_write

tcpchksm_byte[7:0]

Figure 5.31: Generation of the TCP Buffer Write Controller Interface - 2
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5.4 Module SIP Byte Processor (sipproc)

This section and its subsection present a detailed description of the SIP Byte

Processor module. Section 5.4.1 presents the pin interfaces with blocks it interacts

with. Section 5.4.2 describes its implementation in detail.

5.4.1 Pin Interface

This section describes the pin interfaces with the other blocks.

Table 5.13: Interface with the system

No. Pin Name Dirn. Width Description

1 reset IN 1 The async system reset.
2 clk IN 1 The system clock.

Table 5.14: Interface with Delineator

No. Pin Name Dirn. Width Description

1 delin sipbyte valid IN 1 An indication that the current
byte is valid. The SIP Byte
processor processes the byte
only if this signal is set.

2 delin sipbyte IN 8 The byte to be processed.
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Table 5.15: Interface with Buffer Write Controller

No. Pin Name Dirn. Width Description

1 sipproc fldval write OUT 1 An indication for the Buffer
Write Controller to write the
current byte into the SIP Data
Structure. This byte is part of
a field value. This write indica-
tion is one clock pulse wide.

2 sipproc fldval byte OUT 8 The field value byte to be writ-
ten to the SIP Data Structure.

3 sipproc hdr done OUT 1 An indication that the SIP
Byte processor has finished
processing a header name,value
pair. This indication is used to
determine the offset from which
the next header value will be
stored.

4 sipproc match found OUT 1 An indication that the SIP
Byte processor has found a
match. Looking at this indi-
cation, the Buffer Write Con-
troller calculates the offset
pointer for that field name and
stores it in the SIP Data Struc-
ture.

5 sipproc match id OUT 5 The unique match ID identify-
ing which field name was cor-
rectly matched. The Buffer
Write Controller uses this ID
as a memory index to the SIP
Data Strcuture, to store the
pointer offset. It also sets the
corresponding bit in the 44-bit
Field name found register.

6 sipproc match bytes OUT 9 The number of bytes in the field
value. This value is used by the
Buffer Write Controller to cal-
culate the pointer offset for the
next field value.
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5.4.2 Architecture

This section begins with a flowchart , shown in Figure 5.32 depicting the way the

logic proceeds in the design. This is followed by the state machine diagram , shown in

Figure 5.35 and its transition table. The interface timing with the Delineator block

and the way internal registers behave is shown in Figure 5.36. This is followed by

implementation details of the internal registers. the generation of the output Buffer

Write Controlller interface is discussed.

• Logic Flowchart. The overall flowchart for the module is shown in Figure 5.32.

Each block in the flowchart can be thought of as a task to perform.

Yes

data structure
Write to SIP

START

extract field name

extract field valuesearch for field name

both done ?
No

Figure 5.32: Flowchart for the SIP Byte Processor

• Modified Aho-Corasick search algorithm.
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Figure 5.33: SIP keyword search structure
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The Aho-Corasick search algorithm is used for exact pattern matching. First, a

keyword search structure is constructed by examining all the possible keywords,

as shown in Figure 5.33. The current state is maintained based on each character

received. If characters are received in a valid sequence, then the state keeps

changing until a valid pattern is reached. If an out-of-sequence character is

received, then a failure condition exists.

The approach used in the SIP byte processor is a modified version to speed up

the searching. Instead of searching one character at a time, a string consisting

of four characters is searched for at a time. Considering the maximum string

length of 19 characters for the keyword “Proxy-Authentication”, this would

take a maximum of 5 searches cycles. Keywords occupy from 1 upto 5 strings,

leading to a search time of 1-5 cycles. The search method is shown in Figure

5.34. At the end of the each clock cycle, a code is generated as the result of

the search. This code is the input for the second search cycle and so on. This

continues till a match is found. Note that a mismatch could occur at any cycle

of searching.

search string 5

D Q D Q D Q D Q

match found
mismatch
next stage code

match found
mismatch
next stage code

match found
mismatch
next stage code

match found
mismatch
next stage code

match found
mismatch
next stage code

search string 1

search string 2 search string 3 search string 4

Figure 5.34: SIP keyword search flow
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• State Machine Diagram

Figure 5.35 shows the state machine for the SIP byte processor. The next

state is evaluated for each byte that comes in. As soon as a valid byte appears

on the Delineator interface, it’s ASCII value is examined and a set of flags

are generated, shown in Table 5.16. Based on these values, the next state is

decoded. Based on the current state, various counters and interfaces are driven,

as will be explained in further sections.

text

semicolon AND !extracting_req_resp

htab
sp OR 

htab
sp OR 

htab
sp OR 

idle

get_field_name

delete_sp_ht

store_field_value

got_cr

got_lf

text
text

text

cr

lf

cr

lf

cr

got_eomsg_cr

(sp OR htab) AND extracting_req_resp

Figure 5.35: State Machine Diagram

• Timing Waveform for Interface with Delineator.

Figure 5.36 shows the timing relation with the Delineator interface. It can be

seen how the status flags are generated based on the ASCII value, the byte is

then encoded and stored in a search string. While the string is being searched,
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the field value is sent to the Buffer Write Controller to be written in the SIP

Data Structure. Once the search is complete, the match ID and the byte offset

are also conveyed for update.

fieldname_r[94:0]

.........

.........

.........0        1           2                        24bytes_infldval_r[8:0]

get_field
name

I         N        ........         T           E           SP        SP         S           I           .             0           CR       LF         V           i             a              delin_sip_byte[7:0]

text_byte_r

sp_byte_r

lf_byte_r

I         N        ........         T           E                      encoded_char_r[4:0]

sipproc_state_r

cr_byte_r

Ixxx        INxx         ......         INVITx  INVITE

1         2         .......         5           6bytes_infldname_r[4:0] 0

xxxxx

idle                  get_field_name                                       delete_sp_ht       store_field_value                     got_CRgot_LF  

sipproc_match_found

sipproc_match_bytes[9:0]

sipproc_match_id[4:0] 22

24

22match_id_r[4:0] SEARCH TIME

search_string_1_r

Figure 5.36: Timing waveform for Delineator interface
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• ASCII table for SIP characters.

Table 5.16 shows the ASCII value of SIP characters and the flags associated

with them.

Table 5.16: Delimiter Table

No. Flag Name ASCII Val. Description

1 text byte r 0x41 - 0x5A Text bytes A-Z.
2 text byte r 0x61 - 0x7A Text bytes a-z.
3 text byte r 0x2D The minus/dash ‘-’. this byte

has to be considered as text be-
cause it could also be a valid
part of a field name/value. Ex.
Call-ID.

4 sp byte r 0x20 A space byte, used to delimit
tokens or fold lines for longer
field values.

5 ht byte r 0x09 A horizontal tab byte, also used
to delimit tokens or fold lines
for longer field values.

6 cr byte r 0x0D A carriage return byte. Used in
conjunction with the Line feed
indication to signify the end
of a ¡field name : field value¿
pair.

7 lf byte r 0x0A A line feed byte. Used
in conjunction with the car-
riage return indication to sig-
nify the end of a field name :
field value¿ pair.

8 semicolon byte r 0x3B A semicolon byte. Used to de-
limit the field value from the
field name.
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• Generation of the byte status flags.

This logis is a part of the token extractor block shown in figure 4.7. Multiple

flags are generated, which affect the state machine transitions. These flags are

generated by examining the ASCII value of the byte and accordingly classifying

the byte as shown in Table 5.16.

D Q

a=b

b

a

D Q

0x3b

0x0d
0x0a

0x20
0x09

semicolon_byte_r
lf_byte_r
cr_byte_r

sp_byte_r
ht_byte_r

delin_sipbyte_valid

delin_sipbyte[7:0]

delin_sipbyte_valid

text_byte_r

− 5’d20
delin_sipbyte[7:0]

a=b

b

a

(a <= 0x4 AND a >= 0x5a) 
ORa  == 0x0d

Figure 5.37: Generation of the byte status flags
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• Generation of the processor current state proc state r

Based on the current state, the next state is decoded and registered into proc state r.

The next state is decided based on the status of the byte flags.

proc_state_r[6:0]D Q
decode logic
next state 

text_byte_r
sp_byte_r
cr_byte_r
lf_byte_r
semicolon_byte_r

Figure 5.38: Generation of the processor current state

• Encoding the SIP byte.

The bytes identified to be a part of a SIP search string are collected in a buffer

and are checked against the SIP keywords for a match. The Aho-Corasick pat-

tern matching algorithm [14] is used to check for SIP keywords. The algorithm

performs a comparison as a part of its functionality. To consume lesser hard-

ware, the 8-bit SIP byte is encoded in a 5-bit character. This is possible because

not all 256 combinations of the SIP byte are valid SIP characters. For example,

‘&’ or ‘*’ are never a part of a SIP keyword. After examintaion of the list of SIP

keywords in [2], it is noticed that the keywords are made up of the alphabets

(A-Z, a-z) and the dash (‘-’) sign. After converting lower case alphabet ASCII

to uppercase ASCII, we would need 27 unique characters (5 bits) to identify

any SIP character.

To understand the encoding, let us take an example. If we were to match the

SIP keyword “INVITE” using byte-wide characters, it would require a (6*8=48)

bit comparator. If we searched with the encoded characters, it would result in a

(6*5=30) bit comparator. Reducing the width of the comparison also allows for



78

faster search results. The encoded value is acheived using the simple flowchart

shown in Figure 5.39.

scale A−Z to 6’h00 − 6’h19

byte = 0x2d

<= 0x7A
byte >= 0x61 AND

?

encoded_byte = byte − 0x41

encoded_byte = byte − 0x20

STOP

No

check for ’dash’

change to uppercase

check for lowercase a−z

START

 ?
Yes

No encoded_byte = 0x1A

Yes

Figure 5.39: Flowchart for encoding the SIP byte

Table 5.17: Table for encoded character values

Alphabet Encoded value Alphabet Encoded value

a 5’h00 n 5’h0d
b 5’h01 o 5’h0e
c 5’h02 p 5’h0f
d 5’h03 q 5’h10
e 5’h04 r 5’h11
f 5’h05 s 5’h12
g 5’h06 t 5’h13
h 5’h07 u 5’h14
i 5’h08 v 5’h15
j 5’h09 w 5’h16
k 5’h0a x 5’h17
l 5’h0b y 5’h18
m 5’h0c z 5’h19
- 5’h1a
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• Generation of the search string.

The string to be searched is stored in a buffer fieldname r[113:0]. This buffer

is sized to store the longest SIP keyword i.e Proxy-Authorization. The width

required to store it would be (19*5) = 95 bits, since this keyword has 19 charac-

ters. We need an index to store each encoded character. To index 19 characters,

we implemented the index as a 5-bit counter bytes in fldname r[4:0].

18

0

1

0

1

D Q
proc_state_r =
get_field_name

D Q

CE

proc_state_r =
get_field_name

encoded_char_r[5:0]

bytes_in_fldname_r[3:0]

fieldname_r[113:0]

proc_state_r = idle

+ ’1’

bytes_in_fldname_r[3:0]

0
1
2

Figure 5.40: Generation of the search string

• Generation of the search string flags.

A set of five flags are generated once the SIP search string is extracted. Each flag

signifies which cycle of the search operation is currently taking place. When each

flag is asserted, a corresponding code is generated, which is used for matching

in the next search cycle. The behavior of these flags is shown in Figure 5.41.
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Figure 5.41: Timing for the search operation
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The generation of the search flags is shown in Figure 5.42

Q

D Q

D Q
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search_string_1_r

get_field_name
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search_string_3_r

search_string_4_r

D

Figure 5.42: Generation of the search string flags

• Generation of the string codes.

At each search cycle, a 5-bit code is generated which acts as an input to the

next search cycle. The value of this code depends on the value of the current

search string. This code acts like a unique link to the next string. Tables 5.18

through 5.22 show the codes to be generated at each search cycle.
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Table 5.18: Output codes for String1

String1 Bytes Match Match ID String1 Code

acce X No X 5’b00000
aler X No X 5’b00001
allo X No X 5’b00010
auth X No X 5’b00011
bye 3 Yes 7 X
canc X No X 5’b00100
call X No X 5’b00101
cont X No X 5’b00110
cseq 4 Yes 17 X
date 4 Yes 18 X
erro X No X 5’b00111
expi X No X 5’b01000
from 4 Yes 21 X
in-r X No X 5’b01001
invi X No X 5’b01010
max- X No X 5’b01011
min- X No X 5’b01100
mime X No X 5’b01101
opti X No X 5’b01110
orga X No X 5’b01111
prio X No X 5’b10000
prox X No X 5’b10001
regi X No X 5’b10010
reco X No X 5’b10011
repl X No X 5’b10100
requ X No X 5’b10101
retr X No X 5’b10110
rout X No X 5’b10111
serv X No X 5’b11000
subj X No X 5’b11001
supp X No X 5’b11010
time X No X 5’b11011
to 2 Yes 43 X

unsu X No X 5’b11100
user X No X 5’b11101
via 3 Yes 46 X

www- X No X 5’b11110
warn X No X 5’b11111
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Table 5.19: Output codes for String2

String1 Code String2 Bytes Match Match ID String2 Code

5’b00000 pt 6 Yes 0 X
5’b00000 pt-e X No X 5’b00000
5’b00000 pt-l X No X 5’b00001
5’b00001 t-in X No X 5’b00010
5’b00010 w 5 Yes 4 X
5’b00011 enti X No X 5’b00011
5’b00011 oriz X No X 5’b00100
5’b00100 el 6 Yes 8 X
5’b00101 -id 7 Yes 9 X
5’b00101 -inf X No X 5’b00101
5’b00110 act 7 Yes 11 X
5’b00110 ent- X No X 5’b00110
5’b00111 r-in X No X 5’b00111
5’b01000 res 3 Yes 20 X
5’b01001 eply X No X 5’b01000
5’b01010 te 6 Yes 23 X
5’b01011 forw X No X 5’b01001
5’b01100 expi X No X 5’b01010
5’b01101 -ver X No X 5’b01011
5’b01110 ons 3 Yes 27 X
5’b01111 niza X No X 5’b01100
5’b10000 rity 8 Yes 29 X
5’b10001 y-au X No X 5’b01101
5’b10001 y-re X No X 5’b01110
5’b10010 ster 8 Yes 33 X
5’b10011 rd-r X No X 5’b01111
5’b10100 y-to 8 Yes 35 X
5’b10101 ire 7 Yes 36 X
5’b10110 y-af X no X 5’b10000
5’b10111 e 5 Yes 38 X
5’b11000 er 6 Yes 39 X
5’b11001 ect 7 Yes 40 X
5’b11010 orte X No X 5’b10001
5’b11011 stam X No X 5’b10010
5’b11100 ppor X No X 5’b10011
5’b11101 -age X No X 5’b10100
5’b11110 auth X No X 5’b10101
5’b11111 ing 7 Yes 48 X



84

Table 5.20: Output codes for String3

String2 Code String3 Bytes Match Match ID String3 Code

5’b00000 ncod X No X 4’b0000
5’b00001 angu X No X 4’b0001
5’b00010 fo 10 Yes 3 X
5’b00011 cati X No X 4’b0010
5’b00100 atio X No X 4’b0011
5’b00101 o 9 Yes 10 X
5’b00110 disp X No X 4’b0100
5’b00110 enco X No X 4’b0101
5’b00110 lang X No X 4’b0110
5’b00110 leng X No X 4’b0111
5’b00110 type 12 Yes 16 X
5’b00111 fo 10 Yes 19 X
5’b01000 -to 11 Yes 22 X
5’b01001 ards 12 Yes 24 X
5’b01010 res 11 Yes 25 X
5’b01011 sion 12 Yes 26 X
5’b01100 tion 12 Yes 28 X
5’b01101 then X No X 4’b1000
5’b01101 thor X No X 4’b1001
5’b01110 quir X No X 4’b1010
5’b01111 oute 12 Yes 34 X
5’b10000 ter 11 Yes 37 X
5’b10001 d 9 Yes 41 X
5’b10010 p 9 Yes 42 X
5’b10011 ted 11 Yes 44 X
5’b10100 nt 10 Yes 45 X
5’b10101 enti X No X 4’b1011
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Table 5.21: Output codes for String4

String3 Code String4 Bytes Match Match ID String4 Code

4’b0000 ing 15 Yes 1 X
4’b0001 age 15 Yes 2 X
4’b0010 on-i X No X 2’b00
4’b0011 n 13 Yes 6 X
4’b0100 osit X No X 2’b01
4’b0101 ding 16 Yes 13 X
4’b0110 uage 16 Yes 14 X
4’b0111 th 14 Yes 15 X
4’b1000 tica X No X 2’b10
4’b1001 izat X No X 2’b11
4’b1010 e 13 Yes 32 X
4’b1011 cate 16 Yes 47 X

Table 5.22: Output codes for String5

String4 Code String5 Bytes Match Match ID

2’b00 nfo 19 Yes 5
2’b01 ion 19 Yes 12
2’b10 te 18 Yes 30
2’b11 ion 19 Yes 31
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• Generation of the Buffer Write Controller Interface

The generation of the Buffer Write Controller Interface is shown in figure 5.43.

This interface is asserted when the field value bytes and the match index are to

be written to the SIP Data Structure.

sipproc_fldval_write

D Q D Q

D Q

D Q

a=b

b

a

delin_sipbyte[7:0] sipproc_fldval_byte[7:0]

sipproc_state_r

store_field_value

Figure 5.43: Generation of the Buffer Write Controller Interface
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5.5 Module Buffer Write Controller (bufwrctr)

This section and its subsection present a detailed description of the Buffer Write

controller Module. Section 5.5.1 presents the pin interfaces with blocks it interacts

with. Section 5.5.2 describes its implementation in detail.

5.5.1 Pin Interface

This section describes the pin interfaces with the other blocks.

Table 5.23: Interface with the system

No. Pin Name Dirn. Width Description

1 reset IN 1 The async system reset.
2 clk IN 1 The system clock.

Table 5.24: Interface with the IP Checksum Calculator

No. Pin Name Dirn. Width Description

1 ipchksum write IN 1 Upon sampled active, the
Buffer Write Controller trans-
fers this byte to the SIP data
structure.

2 ipchksum byte IN 8 The byte to be writtn to the
SIP data structure.

3 ipchksum result valid IN 1 This signal is asserted once the
comparison between the calcu-
lated checksum and received
checksum is made. It is valid
for one clock cycle.

4 ipchksum result bit IN 1 If high, it indicates that the re-
ceived checksum matches with
the calculated checksum, else a
mismatch. This result is stored
in the SIP Data Structure.
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Table 5.25: Interface with the TCP Checksum Calculator

No. Pin Name Dirn. Width Description

1 tcpchksm write IN 1 An indication that the current
byte is a valid TCP byte. The
Buffer Write Controller sam-
ples this valid and transfers this
byte to the SIP data structure.

2 tcpchksm byte IN 8 The byte to be writtn to the
SIP data structure.

3 tcpchksm result valid IN 1 This signal is asserted once the
comparison between the calcu-
lated checksum and received
checksum is made. Note that
the TCP checksum is calcu-
lated over the TCP header, the
pseudoheader and the payload.
This signal is asserted for one
clock cycle.

4 tcpchksm result bit IN 1 This bit is looked at when
ipchksum result valid is as-
serted. If high, it indicates that
the received checksum matches
with the calculated checksum.
If low, it indicates a mismatch
in the two checksums. This
result is stored in the SIP Data
Structure and later accessed
by the CPU.

5 tcpchksm last tcphdr byteIN 1 An indication that the current
byte is the last TCP header
byte. This byte is used by
the Buffer Write Controller to
increment internal memory in-
dices.
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Table 5.26: Interface with the SIP Byte Processor

No. Pin Name Dirn. Width Description

1 sipproc fldval write IN 1 An indication for the Buffer
Write Controller to write the
current byte into the SIP Data
Structure. This byte is part of
a field value. This write indica-
tion is one clock pulse wide.

2 sipproc fldval byte IN 8 The field value byte to be writ-
ten to the SIP Data Structure.

3 sipproc hdr done IN 1 An indication that the SIP
Byte processor has finished
processing a header name,value
pair. This indication is used to
determine the offset from which
the next header value will be
stored.

4 sipproc match found IN 1 An indication that the SIP
Byte processor has found a
match. Looking at this indi-
cation, the Buffer Write Con-
troller calculates the offset
pointer for that field name and
stores it in the SIP Data Struc-
ture.

5 sipproc match id IN 5 The unique match ID identify-
ing which field name was cor-
rectly matched. The Buffer
Write Controller uses this ID
as a memory index to the SIP
Data Strcuture, to store the
pointer offset. It also sets the
corresponding bit in the 44-bit
Field name found register.

6 sipproc match bytes IN 9 The number of bytes in the field
value. This value is used by the
Buffer Write Controller to cal-
culate the pointer offset for the
next field value.
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Table 5.27: Interface with Memory 0

No. Pin Name Dirn. Width Description

1 bufwrctr mem0 wr en OUT 1 The write enable for Memory 0.
2 bufwrctr mem0 wr data OUT 32 The data to be written to Mem-

ory 0. Data would be written
by the Buffer Write Controller
only. The external requestor
would never write data.

3 bufwrctr mem0 address OUT 9 The address to perform the
read/write operation from on
Memory 0.

4 mem0 rd data IN 32 The 32-bit data read from
Memory 0. Note that only the
external requestor would wish
to read data.

Table 5.28: Interface with Memory 1

No. Pin Name Dirn. Width Description

1 bufwrctr mem1 wr en OUT 1 The write enable for Memory 1.
2 bufwrctr mem1 wr data OUT 32 The data to be written to Mem-

ory 1. Data would be written
by the Buffer Write Controller
only. The external requestor
would never write data.

3 bufwrctr mem1 address OUT 9 The address to perform the
read/write operation from on
Memory 1.

4 mem1 rd data IN 32 The 32-bit data read from
Memory 1. Note that only the
external requestor would wish
to read data.
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Table 5.29: Interface with the external read requestor

No. Pin Name Dirn. Width Description

1 bufwrctr structure readyOUT 1 an indication to the external
requestor that the SIP Data
Structure is ready to be read
out.

2 external rd enable IN 1 The external read request.
3 external rd address IN 9 The address to perform the

read operation from.
4 bufwrctr rd data OUT 32 The 32-bit data read from

Memory 0/1.
5 bufwrctr data valid OUT 1 The validator for the read data.

5.5.2 Architecture

We will start this section by discussing the address partitioning of the SIP Data

Structure. We will then proceed to elaborate on the interface timing between the

Buffer Write Controller and the SIP Data Structure. This would be followed by the

hardware implementation of the blocks in the logic schematic shown in 4.8.

• SIP Data Structure Address Partitioning

Data bytes received from the IP Checksum calculator, TCP checksum calculator

and SIP processor are written in designated spaces in the SIP Data structure,

as shown in Figure 5.44. For the TCP and IP header bytes, the space allocated

is sufficient to store the maximum number of bytes that could be expected.
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Field 50 Offset

     ’000’ REGISTER
     ’001’ INVITE
     ’010’ ACK
     ’011’ CANCEL
     ’100’ BYE
     101’ OPTIONS

’1’ − REQUEST
’0’ − RESPONSE

0

14
15

29
30
31
32

IP Header

TCP Header

TCP/IP Checksum Pass bits
SIP Field Valid Reg 0
SIP Field Valid Reg 1

31 0

Bytes in header val

Offset

31 08917

resvd

Field 1 Offset
REQ/RES Code & Offset33

34

0131

Bytes in header val

Offset

31 30 28

resvd

08917

resvd

IP cheksum result

TCP checksum result

83

84

Method Code:

Figure 5.44: Address space partitioning for the SIP Data Structure

• Timing Interface with SIP Data Structure

The timing diagram in Figure 5.45 depicts the manner in which the input bytes

are accumulated to form a 32-bit word and written to memory.
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index_r[1:0] 00 01 10 11 00 01 10 11 00 01
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aabbccdd eeff1245

0 1

Figure 5.45: Timing Interface with the SIP Data Structure

• Schematic for the Read/Write Interfaces

There are two SIP data structures, Memory-0 and Memory-1, operating in a

ping-pong manner. While one structure is being written to, the other one

is being read out. Once the current packet is completely processed, i.e the

SIP fields are extracted and stored, a memory switch occurs, flagged by the

toggling of mem select r. Once this toggle occurs, the memory which was just

written into is now read out, while the other memory is now written into. This

implementation is shown in Figure 5.46.
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Memory 1

0

1

1

0

Memory 0

D Q

D Q

RD/WR
Port

RD/WR
Port

mem_wr_r
mem_wrdata_r[31:0]
mem_wraddress_r[8:0]

external_rd_address
external_rd_enable

mem_select_r

Figure 5.46: Memory Schematic

• Generation of mem select r This is a flag which has to toggle every time a packet

has been processed. We can use the signal tcpchksm result valid to effect this

toggle, as it occurs at the end of every packet.

D Q

CE

mem_select_r

tcpchksm_result_valid

Figure 5.47: Generation of the memory select flag

• Generation of the Read/Write Interfaces.

The Buffer Write Controller writes to Memory 0/1 based on various stimuli
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from the IP Checksum Calculator, TCP Checksum Calculator and SIP Byte

Processor. Based on the source of the stimulus, it generates a write address

and write data. It relies on the fact these stimuli occur at unique moments and

in a fixed sequence. Table 5.30 shows the sequence of the write stimulus and

the address, data being generated upon that stimulus. Additional action to be

taken upon receipt of that stimulus is also noted.

Table 5.30: Table of sequence of write stimulus

Stimulus Actions Address Data

ipchksum write Increment word index, incre-
ment mem index (4 writes)

0 + mem
index

accum r

ipchksum result valid clear mem index, clear word
index, store result in chk-
sum result r

Dont
write

X

tcpchksm write increment word index, incre-
ment mem index (4 writes)

15 +
mem
index

accum r

tcpchksm last tcphdr
byte

Clear mem index, clear word
index, clear siphdr memoffst

Don’t
write

X

sipproc fldval write increment word index, incre-
ment mem index (4 writes)

79 +
mem
index

accum r

sipproc hdr done update sip fieldreg 0/1, siphdr
memoffst = mem index

35 +
sipproc
matchid

{siphdr
mem-
offst,sipproc
match
bytes}

tcpchksm result valid clear mem index, clear word in-
dex, toggle mem select

30, 31,
32

chksum
result,
sip field-
reg0, sip
fieldreg1
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Chapter 6

Software Simulation and

Verification

This chapter starts with the description of the test enviroment developed, the

components that make the testbench and the the verification strategy.

6.1 Test Environment Description

• Block Diagram

Figure 6.1 shows the architectural block diagram of the testbench.

dump
pkt 

FIFO
I/F

File 
read

Read 
Memory

Compare and  
Verify

dump
pkt 

DUT ReaderEthereal

memdump.out

SIP

SIP Messages

sip_packet.hex

Packet
Gen

Figure 6.1: Timing relation with Delineator Interface
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• Inputs

A black-box approach is taken to verify the Device-Under-Test (DUT). We use

a softphone called Express Talk v. 1.04 [15] to initiate SIP calls. A popular

network protocol analyzer, Ethereal [16] is used to capture the outgoing SIP

messages and dump it to a hex file sip packet.hex. The contents of this packets

are input to the DUT byte-by-byte.

• Outputs

The DUT processes the SIP byte stream and populates the SIP Data Structure.

After this, it asserts a “done” indication to the external world, indicating that

the structure is ready to be read out. The testbench reads the structure and

outputs a text file memdump.out. The contents of this outfile are formatted

and can be examine for correctness of the DUT operation by comparing it with

the contents of sip packet.hex

• Components

The main components of the testbench are briefly described below:

1. Packet Generator

The Packet Generator loads all the bytes in the input file sip packet.hex

into a buffer. It emulates a FIFO interface to input these bytes to the

DUT.

2. Reader

The Reader reads out all locations of the SIP Data Structure, formats the

data to increase readability and writes to the file memdump.out.

6.2 Testbench Architecture

This section describes the components of the testbench in more detail.
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6.2.1 Module Packet Generator (pktgen)

• Pin Interface

Table 6.1: Interface with the system

No. Pin Name Dirn. Width Description

1 reset IN 1 The async system reset.
2 clk IN 1 The system clock.

Table 6.2: Interface with the DUT

No. Pin Name Dirn. Width Description

1 fifo empty OUT 1 Indicates to the DUT the pres-
ence of data in the FIFO

2 fifo data OUT 9 The data delivered to the DUT.
3 delin fifo read IN 1 An indication that the DUT

has accepted the FIFO data.

• Architecture

sip_packet.hex

D Q

CE

D Q

D Q

+1

0
1

14
15

Buffer
Next 16 bytes

fifo_data

fifo_empty
Empty 

Logic

DUT FIFO Read

Byte 0 Byte 15−−−−−

byte_index

readmemh 

Figure 6.2: Architectural Block Diagram - Packet Generator Module
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The Packet Generator reads in all the data from the input file and stores it in

a buffer. The buffer width is equal to the number of bytes Ethereal outputs in

one line, which in our test enviroment is 16 bytes.

The pin fifo empty is then de-asserted to make data available to the DUT. When

it samples the DUT’s delin fifo read as asserted, the byte pointed by an index

counter byte index r is output on fifo data[8:0]. The index is then incremented

to point to the next byte in one 16-byte buffer location. Once all 16 bytes are

comsumed by the DUT, the next location(16-bytes) is read out and another 16

bytes are ready to be delivered. This happens transparently to the DUT, giving

an effect of a continous byte-stream. The start of packet indication, represented

by the most significant bit of fifo data[8:0], is set each time the very first byte

of a SIP message is delivered to the DUT.

6.2.2 Module Reader (reader)

• Pin Interface

Table 6.3: Interface with the system

No. Pin Name Dirn. Width Description

1 reset IN 1 The async system reset.
2 clk IN 1 The system clock.
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Table 6.4: Interface with the DUT

No. Pin Name Dirn. Width Description

1 bufwrctr structure readyIN 1 An indication from the DUT
that the SIP Data Structure is
ready to be read out.

2 external rd enable OUT 1 The read request.
3 external rd address OUT 9 The address to perform the

read operation from.
4 bufwrctr rd data OUT 32 The 32-bit data read from the

SIP Data Structure.
5 bufwrctr data valid OUT 1 The validator for the read data.

• Architecture

memdump.out

D Q

D Q

read enable

read address

structure readyDUT

dataDUTFormatting

Logic

Address 

Logic

Figure 6.3: Architectural Block Diagram - Reader Module
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The reader has to wait for the DUT structure ready indication before it can

start to read the SIP Data Structure. Once this handshake is asserted, it starts

reading every location, formats the data received based on the address and

writes it to the file memdump.out. This file is examined against the original

input file to verify DUT functionality. The contents of this file are written out

on an address based field-wise manner, and not as a series of hex bytes. This

increases readability and minimizes the time needed to examine the file.

6.3 Verification Test Plan

This section describes the verification plan. The goal is to test the DUT using a

set of input script files. Each version of the input file sip packet.hex represents a test

case/script.

The DUT can be divided into a set of features. Typically, one input script would

test some/all of these features, depending on the contents of the input file. These

features, in no particular order, can be listed as:

1. Extraction of TCP/IP header/datagram length fields

2. Delineation of bytes into IP/TCP/SIP bytes

3. IP checksum calculation

4. TCP checksum calculation

5. Writing TCP/IP header bytes in SIP Data Structure

6. Request/Response Identification

7. Pattern matching for message header field names

8. Writing SIP header field values in SIP Data Structure

9. Populating the SIP Field Valid Registers

10. Memory offset calculation for extraction of header field values
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6.3.1 Feature Tests

Feature tests are those which test some/all features of the DUT. The scripts

presented to the DUT test all the features listed. These tests are run with one SIP

message contained in one script.

Table 6.5: Table for feature tests

No. Script Name Features covered from list

1 sip packet1.hex 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

6.4 Test Results Summary

Table 6.6 summarizes the tests run on a PASS/FAIL basis.

Table 6.6: Test result summary table

No. Category Script Name Result/Comments

1 Feature tests sip packet1.hex PASS
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Chapter 7

FPGA Implementation

This chapter tells us the FPGA device used and its utilization summary.

7.1 Choosing the Device

The resource utilization before implementation was estimated at 1100 slices with

a 57 I/O pin requirement . Based on this the Virtex device Xilinx xcv100 containing

1200 slices with 98 I/O pins was chosen for implementation.

7.2 Device Utilization Summary

Table 7.1 summarizes the device resource utilization for the xcv100. Please refer to

the appendix for detailed reports on the synthesis, map, implementation and timing.

Table 7.1: Device Utilization Summary

Resource Occupied Out of Percentage

Slices 916 1,200 76%
Pads (IOB’s) 57 98 58%
Block RAM’s 8 10 80%
FF’s 694 2,400 28%
4 input LUT’s 1,493 2,400 62%
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Additional design details:

1. Clock Period: 15.899ns

2. Maximum operating frequency: 62.8 MHz

3. Total equivalent gate count for design: 146,394

4. Total data throughput supported: 502.4 Mbps
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Chapter 8

Future Work and Conclusion

This chapter describes the future scope of the work presented in terms of feature

additions and optimizations to the existing design.

8.1 Architecture Optimizations

8.2 FPGA Implementation Optimizations

The FPGA optimizations can be categorized into area and timing optimizations.

These are discussed in the following sections.

8.2.1 Area Optimizations

The Xilinx FPGA provides the user with many primitives which could be used

to reduce the area. The building block of an FPGA is the Configurable Logic Block

(CLB) [17]. Each CLB is made up of 4 Look-Up Tables (LUT’s) and 4 D-FF storage

elements. The LUT is a 16x1 RAM whose essential function is to implement a 4-input

function. Optimizations can be done when the LUT is used as a register array or as

a shift register, explained below.

• LUT as a register array.
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Suppose we need a 16-bit register array. If we directly code it as a 16-bit register

array, we would be occupying 4 CLB’s, given 4 D-FF’s per CLB. Now we can

instantiate an LUT as a register array, in which case we use only LUT. This

results in using only 0.25 of a CLB.

• LUT as a shift register.

In a pipleined design, it is often required to register data multiple times to

account for the pipeline latency. This would involve a certain number of D-

FF’s, depending on the datawidth and the number of cycles we need to register

it for. The LUT could be used as a shift register with programmable delay from

1 - 16 clocks. For example, if we need to register a 4-bit data for 10 clocks, we

would need 40 D-FF, which would utilize 10 CLB’s. If we use the LUT as a

shift register, we would need only 4 LUT’s (1 CLB).

8.2.2 Timing Optimizations

Timing optimizations can be done using methods like pipelining and parallelism.

Specific to FPGA architecture, we can use the FPGA Floorplanner to place commu-

nicating modules close to each other. This reduces the routing delay, which results

in a better timing.

8.3 Feature Additions

This section discusses the features that could be added to the existing design.

These are listed below.

1. Within a header field value, we could also extract the <parameter name =

parameter value> pair.

2. We could implement a set of rules for the message. For example, the ’TO’ field

MUST be present in an INVITE message.
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3. We could support the abbreviated form of header field names. For ex. the

standard allows the use of the character ’t’ in place of ’TO’.

4. We could support occurence of the same header name multiple times within the

same message.

For Example, consider the following fragment of a SIP message:

Route: sip:alice@atlanta.com

Subject: Lunch

Route: sip:bob@biloxi.com

Route: sip:carol@chicago.com

The above message fragment has multiple “Route” specifications. They could

be processed and stored with an indication in the data structure that multiple

header field values exist for the “Route” header.

5. Error Recovery. We could implement recovery strategies from erroneous condi-

tions like incomplete packets.

8.4 Verification

The current test environment could be modified to support enhanced test capa-

bilities like :

• Use assertion based verification. The current test strategy allows the entire SIP

message to be processed and then verifies correctness by examining the content

of the SIP data structure. Instead, if assertions could be used in the code itself,

we could catch any bugs earlier in the testing phase.

• Regression mode. In this test mode, SIP messages could be randomly generated

and sent to the SIP processor
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• Create error conditions. Various error conditions could be created via the SIP

message to verify the DUT functionality. For example, an error could be intro-

duced in the TCP/IP checksum to test if the SIP processor correctly flags this

error.

8.5 Conclusion

It can be concluded that it is possible to offload SIP message processing onto

hardware. The functional verification proves the correctness of the design.
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Appendix A

Sample Input File

This appendix list the input file invite.hex which was used to test the design. In

each line, to the left are the bytes that are input to the design, to the right are their

ASCII characters.

00000c07ac000016ce0091f408004500 //..............E.

030501a400008011c1a79807cc0cc325 //................

4d6313ce13c402f116f4494e56495445 //Mc........INVITE

207369703a72616a6140697074656c2e //sip:raja@iptel.

6f7267205349502f322e300d0a566961 //orgSIP/2.0..Via

3a205349502f322e302f554450203135 //:SIP/2.0/UDP15

322e372e3230342e31323a353037303b //2.7.204.12:5070;

72706f72743b6272616e63683d7a3968 //rport;branch=z9h

4734624b30333734340d0a546f3a203c //G4bK03744..To:¡

7369703a72616a6140697074656c2e6f //sip:raja@iptel.o

72673e0d0a46726f6d3a202222203c73 //rg¿..From:””¡s

69703a403135322e372e3230342e3132 //ip:@152.7.204.12

3a353037303e3b7461673d343637310d //:5070¿;tag=4671.

0a43616c6c2d49443a20313134363433 //.Call-ID:114643

303436322d333734342d4c454e4f564f //0462-3744-LENOVO

2d3243343846433334403135322e372e //-2C48FC34@152.7.
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3230342e31320d0a435365713a203334 //204.12..CSeq:34

3420494e564954450d0a4d61782d466f //4INVITE..Max-Fo

7277617264733a2032300d0a55736572 //rwards:20..User

2d4167656e743a204578707265737320 //-Agent:Express

54616c6b20312e30340d0a436f6e7461 //Talk1.04..Conta

63743a203c7369703a403135322e372e //ct:¡sip:@152.7.

3230342e31323a353037303e0d0a416c //204.12:5070¿..Al

6c6f773a20494e564954452c2041434b //low:INVITE,ACK

2c2043414e43454c2c204f5054494f4e //,CANCEL,OPTION

532c204259452c20494e464f2c205245 //S,BYE,INFO,RE

4645522c204e4f544946590d0a537570 //FER,NOTIFY..Sup

706f727465643a207265706c61636573 //ported:replaces

0d0a436f6e74656e742d547970653a20 //..Content-Type:

6170706c69636174696f6e2f7364700d //application/sdp.

0a436f6e74656e742d4c656e6774683a //.Content-Length:

203238310d0a0d0a763d300d0a6f3d2d //281....v=0..o=-

20383133303731323939203831333037 //81307129981307

3132303120494e20495034203135322e //1201INIP4152.

372e3230342e31320d0a733d45787072 //7.204.12..s=Expr

6573732054616c6b0d0a633d494e2049 //essTalk..c=INI

6d61703a302050434d552f383030300d //map:0PCMU/8000.

0a613d7274706d61703a382050434d41 //.a=rtpmap:8PCMA

2f383030300d0a613d7274706d61703a ///8000..a=rtpmap:

332047534d2f383030300d0a613d7274 //3GSM/8000..a=rt

706d61703a313320434e2f383030300d //pmap:13CN/8000.

0a613d7274706d61703a313031207465 //.a=rtpmap:101te

6c6570686f6e652d6576656e742f3830 //lephone-event/80

30300d0a613d666d74703a3130312030 //00..a=fmtp:1010

2d31360d0a613d73656e64726563760d //-16..a=sendrecv.

0a0d0a ...
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Appendix B

Sample Output File

Shown below is an extract from the output file memdump.out. Only certain rele-

vant parts of the original file are shown to limit its length. Here we can clearly see

how the SIP data structure looks like once the message has been processed.

IP HEADER BYTES

————————————————————————-

IP Header @ Address: 0 ; Bytes: 45 00 03 05

IP Header @ Address: 1 ; Bytes: 01 a4 00 00

IP Header @ Address: 2 ; Bytes: 80 11 c1 a7

IP Header @ Address: 3 ; Bytes: 98 07 cc 0c

IP Header @ Address: 4 ; Bytes: c3 25 4d 63

UDP HEADER BYTES

————————————————————————-

TCP Header @ Address: 15 ; Bytes: 13 ce 13 c4

TCP Header @ Address: 16 ; Bytes: 02 f1 16 f4

CHECKSUM RESULTS

————————————————————————-

IP checksum address @ : 30 ; Bit 0; RESULT = PASS

IP checksum @ address : 30 ; Bit 1; RESULT = PASS
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HEADER FIELDS IN MESSAGE

————————————————————————-

Field 5 Extracted : Allow

Field 10 Extracted : Call-ID

Field 12 Extracted : Contact

Field 16 Extracted : Content-Length

Field 17 Extracted : Content-Type

Field 18 Extracted : CSeq

Field 22 Extracted : From

Field 24 Extracted : Invite

Field 25 Extracted : Max-Forwards

Field 10 Extracted : Supported

Field 12 Extracted : To

Field 14 Extracted : User-Agent

STARTLINE

————————————————————————-

Startline is a Request Line

INVITE Method extracted

Read from address 84 ; Number of bytes to read: 26

FIELD OFFSETS

————————————————————————-

Field 5 : Read from address 146 ; Number of bytes to read: 54

Field 10 : Read from address 120 ; Number of bytes to read: 44

Field 12 : Read from address 139 ; Number of bytes to read: 24

Field 16 : Read from address 165 ; Number of bytes to read: 3
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Field 17 : Read from address 162 ; Number of bytes to read: 15

Field 18 : Read from address 131 ; Number of bytes to read: 10

Field 22 : Read from address 111 ; Number of bytes to read: 36

Field 25 : Read from address 133 ; Number of bytes to read: 2

Field 42 : Read from address 159 ; Number of bytes to read: 8

Field 44 : Read from address 105 ; Number of bytes to read: 20

Field 46 : Read from address 134 ; Number of bytes to read: 17

Field 47 : Read from address 91 ; Number of bytes to read: 55

SIP HEADER BYTES

————————————————————————-

SIP Header Bytes @ Address: 84 ; Bytes: s i p :

SIP Header Bytes @ Address: 85 ; Bytes: r a j a

SIP Header Bytes @ Address: 86 ; Bytes: @ i p t

SIP Header Bytes @ Address: 87 ; Bytes: e l . o

SIP Header Bytes @ Address: 88 ; Bytes: r g S

SIP Header Bytes @ Address: 89 ; Bytes: I P / 2

SIP Header Bytes @ Address: 90 ; Bytes: . 0 / 2

SIP Header Bytes @ Address: 91 ; Bytes: S I P /

SIP Header Bytes @ Address: 92 ; Bytes: 2 . 0 /

SIP Header Bytes @ Address: 93 ; Bytes: U D P

SIP Header Bytes @ Address: 94 ; Bytes: 1 5 2 .

SIP Header Bytes @ Address: 95 ; Bytes: 7 . 2 0

SIP Header Bytes @ Address: 96 ; Bytes: 4 . 1 2

SIP Header Bytes @ Address: 97 ; Bytes: : 5 0 7

SIP Header Bytes @ Address: 98 ; Bytes: 0 ; r p

SIP Header Bytes @ Address: 99 ; Bytes: o r t ;

SIP Header Bytes @ Address:100 ; Bytes: b r a n

SIP Header Bytes @ Address:101 ; Bytes: c h = z

SIP Header Bytes @ Address:102 ; Bytes: 9 h G 4
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SIP Header Bytes @ Address:103 ; Bytes: b K 0 3

SIP Header Bytes @ Address:104 ; Bytes: 7 4 4 3

SIP Header Bytes @ Address:105 ; Bytes: ¡ s i p

SIP Header Bytes @ Address:106 ; Bytes: : r a j

SIP Header Bytes @ Address:107 ; Bytes: a @ i p

SIP Header Bytes @ Address:108 ; Bytes: t e l .

SIP Header Bytes @ Address:109 ; Bytes: o r g ¿

SIP Header Bytes @ Address:110 ; Bytes: ” ” ¡

SIP Header Bytes @ Address:111 ; Bytes: s i p :

SIP Header Bytes @ Address:112 ; Bytes: @ 1 5 2

SIP Header Bytes @ Address:113 ; Bytes: . 7 . 2

SIP Header Bytes @ Address:114 ; Bytes: 0 4 . 1

SIP Header Bytes @ Address:115 ; Bytes: 2 : 5 0

SIP Header Bytes @ Address:116 ; Bytes: 7 0 ¿ ;

SIP Header Bytes @ Address:117 ; Bytes: t a g =

SIP Header Bytes @ Address:118 ; Bytes: 4 6 7 1

SIP Header Bytes @ Address:119 ; Bytes: 1 1 4 6

SIP Header Bytes @ Address:120 ; Bytes: 4 3 0 4

SIP Header Bytes @ Address:121 ; Bytes: 6 2 - 3

SIP Header Bytes @ Address:122 ; Bytes: 7 4 4 -

SIP Header Bytes @ Address:123 ; Bytes: L E N O

SIP Header Bytes @ Address:124 ; Bytes: V O - 2

SIP Header Bytes @ Address:125 ; Bytes: C 4 8 F

SIP Header Bytes @ Address:126 ; Bytes: C 3 4 @

SIP Header Bytes @ Address:127 ; Bytes: 1 5 2 .

SIP Header Bytes @ Address:128 ; Bytes: 7 . 2 0

SIP Header Bytes @ Address:129 ; Bytes: 4 . 1 2

SIP Header Bytes @ Address:130 ; Bytes: 3 4 4

SIP Header Bytes @ Address:131 ; Bytes: I N V I

SIP Header Bytes @ Address:132 ; Bytes: T E V I

SIP Header Bytes @ Address:133 ; Bytes: 2 0 V I
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SIP Header Bytes @ Address:134 ; Bytes: E x p r

SIP Header Bytes @ Address:135 ; Bytes: e s s

SIP Header Bytes @ Address:136 ; Bytes: T a l k

SIP Header Bytes @ Address:137 ; Bytes: 1 . 0

SIP Header Bytes @ Address:138 ; Bytes: 4 1 . 0

SIP Header Bytes @ Address:139 ; Bytes: ¡ s i p

SIP Header Bytes @ Address:140 ; Bytes: : @ 1 5

SIP Header Bytes @ Address:141 ; Bytes: 2 . 7 .

SIP Header Bytes @ Address:142 ; Bytes: 2 0 4 .

SIP Header Bytes @ Address:143 ; Bytes: 1 2 : 5

SIP Header Bytes @ Address:144 ; Bytes: 0 7 0 ¿

SIP Header Bytes @ Address:145 ; Bytes: I N V I

SIP Header Bytes @ Address:146 ; Bytes: T E ,

SIP Header Bytes @ Address:147 ; Bytes: A C K ,

SIP Header Bytes @ Address:148 ; Bytes: C A N

SIP Header Bytes @ Address:149 ; Bytes: C E L ,

SIP Header Bytes @ Address:150 ; Bytes: O P T

SIP Header Bytes @ Address:151 ; Bytes: I O N S

SIP Header Bytes @ Address:152 ; Bytes: , B Y

SIP Header Bytes @ Address:153 ; Bytes: E , I

SIP Header Bytes @ Address:154 ; Bytes: N F O ,

SIP Header Bytes @ Address:155 ; Bytes: R E F

SIP Header Bytes @ Address:156 ; Bytes: E R ,

SIP Header Bytes @ Address:157 ; Bytes: N O T I

SIP Header Bytes @ Address:158 ; Bytes: F Y T I

SIP Header Bytes @ Address:159 ; Bytes: r e p l

SIP Header Bytes @ Address:160 ; Bytes: a c e s

SIP Header Bytes @ Address:161 ; Bytes: a p p l

SIP Header Bytes @ Address:162 ; Bytes: i c a t


