
ABSTRACT 
 
 

KARIATH, RIYA RAJU. Performance Comparison of Software Transactional Memory 
Implementations. (Under the direction of Dr. Edward F Gehringer.) 
 
 

Software Transactional Memory (STM), an optimistic concurrency control 

mechanism for controlling accesses to shared memory, is a promising alternative to lock-

based mutual exclusion strategies. A transaction in this context is each piece of code that 

executes indivisibly in a shared memory region. Like database transactions, STM 

transactions preserve linearizability and atomicity properties. 

This thesis project presents performance comparisons based on memory, indirection 

and compute overheads of different STM implementations. More precisely, it compares three 

STM systems – a non-blocking STM due to Fraser (FSTM), a lock-based STM due to 

Ennals, and a lock-based STM (TL2) with global version-clock validation due to Dice et.al. 

A comparison employing diverse classes of STMs helps in a deeper understanding of various 

design choices and potential trade-offs involved. In particular, suitability of an STM is 

analyzed versus another STM in a given scenario.  

The empirical evaluations done as part of this thesis conclude that Ennals’ STM has 

an edge over TL2 and FSTM, as it performs consistently well on low and high contention 

settings. The results also suggest that lock-based STMs use less memory than lock-free 

STMs due to better cache locality.       



PERFORMANCE COMPARISON OF SOFTWARE TRANSACTIONAL  
MEMORY IMPLEMENTATIONS 

 
 
 

by 
RIYA RAJU KARIATH 

 
 

A thesis submitted to the Graduate Faculty of 
North Carolina State University 

in partial fulfillment of the 
requirements for the Degree of 

Master of Science 

 
 

COMPUTER SCIENCE 

 
Raleigh, North Carolina 

2007 

 
 

APPROVED BY: 

  

 
_________________________       _________________________ 

Dr. Xiaosong Ma                                 Dr. Yan Solihin 

 
 

________________________________ 
Dr. Edward F. Gehringer 

Chair of Advisory Committee



DEDICATION 
 

 

 

 

 

 

To my parents, my husband, Balu and my sister …… 

For being there for me always …… 

 
ii



BIOGRAPHY 
 
 

Riya Raju Kariath was born on 5th December 1981 in Mulanthuruthy, India. She received her 

Bachelor of Technology in Computer Science and Engineering degree from Model 

Engineering College, Cochin, India in 2003. She worked as a Software Engineer with iGate 

Global Solutions Ltd, Bangalore, India from August 2003 to April 2005. She joined the 

graduate program at the Computer Science Department in North Carolina State University in 

Fall 2005. She has been working with Dr. Edward F. Gehringer on her master’s thesis since 

May 2006. With the defense of this thesis she is receiving the degree, Master of Science in 

Computer Science from North Carolina State University. 

 
iii



ACKNOWLEDGMENTS 
 
 

I would like to express my sincere gratitude to the following people without whose help and 

support I could not have achieved what I have. 

My mentor and advisor, Dr. Ed Gehringer for his continued guidance and support. I cannot 

thank him enough for the numerous hours he spent reading and helping me perfect my thesis. 

My parents, for their omniscient words of wisdom and incessant optimism.  

My husband, for his encouragement, patience and sense of pride in everything I do.  

My sister, for her reassuring words when I needed them most. 

Prasad Wagle and Balaji Iyengar for their valuable inputs and suggestions on my thesis work. 

Dr. Xiaosong Ma and Dr. Yan Solihin for being on my committee and making time for me. 

Dr. Eric Sills for letting me use the HPC lab machines. 

Dr. Henry Schaffer for letting me run experiments on SunFire V880. 

To God Almighty… 

 

 

 

 

 

 

 

 

 
iv



TABLE OF CONTENTS 
 
LIST OF TABLES................................................................................................................... vi 

LIST OF FIGURES ................................................................................................................ vii 

INTRODUCTION .................................................................................................................... 1 

RELATED WORK ................................................................................................................... 3 

OVERVIEW OF SAMPLE STM SYSTEMS .......................................................................... 7 

3.1. FSTM ............................................................................................................................. 7 

3.2. Ennals’ STM ................................................................................................................ 11 

3.3. TL2............................................................................................................................... 14 

PERFORMANCE METRICS................................................................................................. 17 

4.1. Experimental Setup...................................................................................................... 17 

4.2. Ease of Programming................................................................................................... 18 

4.3. Object-Acquire Semantics ........................................................................................... 21 

4.4. Metadata Organization................................................................................................. 23 

4.5. Transaction Validation................................................................................................. 25 

4.6. Contention Management Strategy................................................................................ 26 

4.7. Lock-Acquire Semantics.............................................................................................. 27 

4.8. Storage Reclamation .................................................................................................... 27 

4.9. Search Overhead .......................................................................................................... 29 

4.10. Execution Time.......................................................................................................... 30 

4.11. Memory Usage........................................................................................................... 36 

CONCLUSION....................................................................................................................... 40 

LIST OF REFERENCES........................................................................................................ 42 

APPENDIX............................................................................................................................. 44 

 
 
 
 
 
 

 
v



LIST OF TABLES 
 
 

Table 4.1. The metrics employed to measure program understandability. ............................. 20 

Table 4.2.  Ease of programming metrics for FSTM, Ennals’ STM, and TL2....................... 21 

Table 4.3. Comparison of encounter-time locking vs. commit-time locking. ........................ 23 

Table A.1. Benchmarks used in Shavit and Touitou’s STM .................................................. 45 

Table A.2. Benchmarks used in Herlihy’s DSTM.................................................................. 45 

Table A.3. Benchmarks used in Fraser’s FSTM..................................................................... 46 

Table A.4. Benchmarks used in Marathe et al’s ASTM......................................................... 46 

Table A.5. Benchmarks used in Herlihy et al.’s DSTM2 ....................................................... 47 

Table A.6. Benchmarks used in Ennals’ STM........................................................................ 47 

Table A.7. Benchmarks used in Dice et.al’s TL2................................................................... 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
vi



 

LIST OF FIGURES 
 

 
Figure 3.1. Basic unit of concurrency of FSTM. ...................................................................... 7 

Figure 3.2. Transaction descriptor structure of an active transaction with an empty read-only 

list. ......................................................................................................................... 8 

Figure 3.3. The basic unit of concurrency of Ennals’ STM.................................................... 11 

Figure 3.4. Memory Layout for Ennals’ STM........................................................................ 12 

Figure 4.1. Execution times for the three STMs measured on Henry8 with a mean data size of 

219 for a red-black tree. ........................................................................................ 31 

Figure 4.2. Execution times for the three STMs measured on Henry8 with a mean data size of 

24 for a red-black tree. ......................................................................................... 32 

Figure 4.3. Execution times for the three STMs measured on Henry8 using 8 processors for a 

red-black tree. ...................................................................................................... 33 

Figure 4.4. Execution times for FSTM and Ennals’ STM measured on Henry2 with a mean 

data size of 24 for a red-black tree. ...................................................................... 34 

Figure 4.5. Execution times for FSTM and Ennals’ STM measured on Henry2 using 64 

processors for a red-black tree. ............................................................................ 35 

Figure 4.6. Virtual memory usage for the three STMs measured on Henry8 with a mean data 

size of 219 for a red-black tree.............................................................................. 36 

Figure 4.7. Virtual memory usage for the three STMs measured on Henry8 with a mean data 

size of 24 for a red-black tree. .............................................................................. 37 

Figure 4.8. Virtual memory usage for the three STMs measured on Henry8 using 8 

processors for a red-black tree. ............................................................................ 38 

Figure A.1. Sample cyclomatic complexity calculation ......................................................... 48 

 
vii



Chapter 1 

INTRODUCTION 

 

In the database community, transactions have long been the natural way of dealing with 

concurrent programming [1]. Transactions do not suffer from deadlocks, priority inversion, 

convoying or lack of fault tolerance. Employing transactions provides a simpler 

programming model and rids the programmer of the need to keep track of locks in the 

program. These benefits have resulted in a renewed interest in transactional programming 

[2,3] in recent times. Transactional Memory (TM) has its roots in applying transactions to 

control accesses to a shared memory region. Transactions, in this context, are any piece of 

code that accesses a shared memory region. These transactions like their database 

counterparts, preserve linearizability and atomicity properties [2]. Transactional memory is 

an optimistic concurrency-control mechanism, analogous to database transactions, for 

controlling accesses to a shared memory region in concurrent programming. 

The original idea of a transactional memory with hardware support was proposed by Herilhy 

et. al [2]. Shavit and Touitou [3] further extended this idea to a software only TM (STM). 

These pioneering works have triggered the development of myriad versions and extensions of 

hardware, software and hybrid TM implementations [4].  

To compare the performance of different STM implementations, various micro-benchmarks 

are used. Nearly all of these micro-benchmarks measure the effectiveness of an STM as CPU 

time per operation per µs by varying contention and scalability parameters. These micro 

benchmarks more precisely are different classes of parallel search structures [5-7] – red-black 

trees, skip lists, or binary search trees. These parallel search structures are especially suited 

for STM performance comparisons as they inherently exploit the level of concurrency of the 

underlying STM implementation. 

 
1



On the flip side, all of these micro-benchmarks focus only on how fast an STM is relative to 

another by measuring the throughput in low- and high-contention settings. In the TL2 paper 

[6] by Dice et.al , the throughput of small and large red-black trees with read-dominated and 

write-dominated workloads for locks and various STM implementations are presented. The 

red-black trees are classified as small (100, 200) and large (1000, 2000) based on their key 

range.  These results are further used to substantiate the claim that “TL2 is ten-fold faster 

than a single lock.” 

These kinds of comparisons overlook many subtle STM overheads including memory usage 

and memory bandwidth. An STM that is fast but is memory intensive may not be better than 

locks because locks tend to use less memory. This work argues that being faster than another 

with respect to throughput should not be the only criterion by which the merit of an STM is 

determined.  

To make this case, in my thesis project I attempt to present performance comparisons based 

on memory, indirection and compute overheads of three different STM implementations. 

They include a non-blocking (lock-free) STM due to Fraser (FSTM), a lock-based STM due 

to Ennals, and a lock-based STM (TL2) with global version-clock validation due to Dice 

et.al. In particular, to assess the suitability of one STM versus another in a given scenario, we 

need an objective comparison involving non-blocking STMs with lock-based STMs. This 

research is part of a bigger picture that assesses the utility of STMs for improving garbage 

collection in object-oriented languages like JavaTM. 

The thesis is structured as follows. Chapter 2 gives an overview of the past work that has 

been done in STMs. Chapter 3 introduces the concepts and terminology used in this research. 

The performance metrics for comparing the STMs and the experimental framework are 

described in Chapter 4. Chapter 5 concludes this thesis. 

 
2



Chapter 2 

RELATED WORK 

 

Shavit and Touitou [3] proposed the first ever software transactional memory. Their STM 

implementation was non-blocking, did no recursive helping and could be implemented using 

limited hardware support. To measure the throughput on varying numbers of processors, they 

employed four micro-benchmarks that differ in the size of data structure and amount of 

parallelism. They are counting, resource allocation, priority queue and doubly linked queue. 

The authors concluded that the non-blocking STM had the most potential for parallelism 

compared to its predecessors. Their algorithm only works for static transactions—

transactions for which the set of locations accessed is known in advance. This is a significant 

limitation, because, for objects created dynamically, it is not always possible to determine 

statically the set of locations accessed.  

Herlihy et al. [8] addressed this limitation by implementing an obstruction-free STM called 

the DSTM, with support for dynamic transactions. The idea of contention management was 

introduced to overcome the livelock problem [8] common with obstruction-free STMs. 

Choosing the appropriate contention manager is critical to performance. Herlihy et al. have 

provided implementations of aggressive and polite contention managers. Performance of 

DSTM is assessed for three micro-benchmarks: the two contention managers using integer 

set with and without early release, and red-black tree. The basis for comparison is a simple 

linked list synchronized with a single lock. The red-black tree benchmark was found to be 

most competitive among the benchmarks and clocked the best results. There was a marked 

degradation in performance for all the micro-benchmarks when the number of threads 

exceeded the number of processors. 

A lock-free object-based STM (FSTM), was developed by Fraser [5]. This STM employs 

recursive helping—the current transaction helps a higher priority conflicting transaction to 

 
3



finish. This means that the current transaction executes and passes the parameters that the 

conflicting transaction require to complete the operation.  The transaction that is being helped 

might already be helping another conflicting transaction; thus this is “recursive helping.”  

The STM enforces a global total order for acquired transactions to ensure that at least one 

process progresses despite contention. A detailed study of FSTM is presented later in chapter 

3 of the thesis. For benchmarking purposes the effect of varying contention on red-black 

trees is studied. The scalability of the FSTM implementation is studied on a red-black tree 

benchmark as parallelism is increased to up to 90 processors. The red-black tree benchmark 

shows a better performance for FSTM than DSTM [8]. 

To ensure comparable performance on both read-dominated and write-dominated workloads 

Marathe et al. [9] proposed the obstruction-free adaptive software transactional memory 

(ASTM). This basic ASTM design (referred to simply as “ASTM”) is adaptive in the sense 

that it can switch between direct or indirect object referencing to take advantage of read-

dominated and write-dominated workloads, respectively. There are no levels of indirection to 

access the object’s data from the object’s metadata with direct object referencing. A history-

based heuristic is also deployed to further benefit from workload distribution. Two variants – 

eager ASTM and lazy ASTM are presented in [9]. In eager ASTM all objects opened in write 

mode are immediately acquired. The acquiring of writable objects is delayed until commit 

time in Lazy ASTM. IntSet and LFUCache micro-benchmarks are employed to study the 

write-dominated workloads. To study read-dominated workloads RBTree and InsetRelease 

benchmarks are utilized. In all of write-dominated workloads ASTM performance is 

comparable to DSTM [8]. The basic ASTM and its two variants are clear winners with 

respect to DSTM in read-dominated workloads. 

Herlihy et al. [10] recently published a revised implementation of DSTM called DSTM2. The 

best feature of DSTM2 is that it lets the user write his/her own synchronization and recovery 

mechanisms in the form of transactional factories that transform stylized sequential interfaces 

into transactionally synchronized data structures. DSTM2 is the first ever STM intended to 

be used like a transactional memory library with the scope for user customization. The 

 
4



authors have provided sample obstruction-free and shadow-factory implementations of 

DSTM2. The obstruction-free factory algorithm is identical to that of DSTM but additionally 

provides a implementation of the clone() method that creates a shallow copy of the 

transaction object. In the shadow-factory implementation, each field in the object has a 

shadow field that stores the tentative update or the old value. In the obstruction-free version, 

an object is represented in three levels – a start cell that holds reference to the object locator 

(object metadata), the object locator that has references to the status of the last transaction 

that opened the object, the old and new versions of the object. The object’s old state is 

restored when the transaction aborts, and the current state is made durable when the 

transaction commits. List and skip list benchmarks are used to compare the performance of 

the obstruction-free factory and shadow-factory implementations. The list benchmark 

consists of a sorted list on to which numbers are randomly inserted, searched and removed. 

The same operations are carried out on a skip list for the skip-list benchmark. The shadow 

factory has a higher throughput than the obstruction-free factory with both the benchmarks. 

The effect is pronounced when the percentage of updates decreases. This is attributed to the 

overhead of reading an object in the obstruction-free implementation. Two levels of 

indirection are needed to read the data object from the encapsulated transaction object.  

Ennals in [7]  argued that even obstruction freedom is unnecessary work for an STM. For a 

simpler design, he implemented a lock-based STM known as Ennals’ STM.  The object data 

and object metadata are stored next to each other, and no indirection is required to access the 

object data. This design is not non-blocking and lets the transactions lock an object when it is 

opened for writing (encounter-time locking). In the event of a conflict, the current transaction 

waits to acquire a lock on the object (and begin writing) until the conflicting transaction 

finishes with the concurrent object. All locks are released only during commit or at abort 

time. To reduce the frequency of contention, the number of active transactions should be 

strictly less than or equal to the number of available processing cores. An elaborate 

discussion of Ennals’ STM follows later in chapter 3 of this thesis. Red-black trees and skip 

lists are the micro-benchmarks employed to compare Ennals’ STM with FSTM [5] and 

DSTM [8]. Scalability (up to 90 processors) under low contention, and performance under 

 
5



varying contention of the three STMs are evaluated. Ennals’ experiments showed that 

Ennals’ STM is the clear winner in all the cases.  

Following on the lines of Ennals’ STM, Dice et.al [6] designed and implemented TL2, a 

lock-based STM.  Unlike other lock-based STMs, TL2 avoids most periods of unsafe 

executions (and therefore aborts fewer transactions). Unsafe executions result from invalid 

transactions that have seen inconsistent data.  It also fits seamlessly with any systems 

memory lifecycle without the need for special execution environments to sandbox the side-

effects of unsafe executions. Ennals’ STM and FSTM abort invalid transactions and convert 

them into transaction retries. Unlike Ennals’ STM the objects opened for writing with TL2 

are locked only at commit time (commit-time locking) to reduce the window of conflict with 

other transactions. A global version-clock is used for detecting inconsistent transactions that 

have seen dirty data. A detailed discussion on TL2 follows in chapter 3 of this thesis. For 

empirical performance evaluations, the throughput of small and large red-black trees is 

measured with varying proportions of puts and deletes. The key range [100,200] generates a 

small red-black tree, and the key range of [1000,2000] generates a large red-black tree. TL2 

gives a better throughput than Ennals’ STM and FSTM on all four cases [6]. This is 

attributed to the reduced window of contention during commit-time locking. 

A tabular listing of the micro-benchmarks used by all the above STMs is given in the 

Appendix. 

 

 

 

 

 

 
6



Chapter 3 

OVERVIEW OF SAMPLE STM SYSTEMS 

 

The three STMs; FSTM, Ennals’ STM, and TL2 employed for performance comparisons in 

this thesis are described in greater detail in this chapter. All three STMs support transactions 

that are unbounded (no limit on the number of memory locations accessed by the transaction) 

and dynamic (the set of memory locations accessed by the transaction is determined at run 

time).  

3.1. FSTM 

Keir Fraser [5] developed a lock-free object-based dynamic STM as part of his PhD thesis. 

FSTM employs recursive helping and an enforced global total order for transactions to 

ensure that at least one process progresses despite contention.        

Object 
Header Data Block

STM private structure Application structure

 

Figure 3.1. Basic unit of concurrency of FSTM: An object (data block) encapsulated in an 

object header. FSTM has only one level of indirection. 

 
7

The basic unit of concurrency in the FSTM is an object—which is essentially a contiguous 

block of memory. These objects are encapsulated in opaque object headers for transactional 

purposes (Figure 3.1.). Objects are directly accessible for updates or reads only when the 

object headers are opened as part of a transaction. The transactions and STM objects are 



created in a specialized transactional memory area in the main memory. The current contents 

of an FSTM object are stored within a data block. A transaction open call returns a pointer to 

the data block encapsulated in the object header (the object header is just a pointer to the data 

block). Multiple object headers can be opened as part of a transaction. Each transaction has a 

transaction-descriptor structure to keep track of the object headers opened by it. The 

transaction descriptor has a status field which indicates the current status of the transaction— 

UNDECIDED, READ-CHECKING, COMMITTED or ABORTED. The descriptor 

maintains a link to a read-only list for objects opened exclusively for reading, and a link to a 

read-write list for objects opened for writing. Both lists are composed of object handles. An 

object handle in the read-write list contains a pointer to the concurrent object’s header (object 

ref), a pointer to the concurrent object (old data), a pointer to the shadow copy of the 

concurrent object (new data) and a pointer to the next object handle. The object handles in 

the read-only list have a similar structure except that there is no shadow copy created for the 

concurrent object. Fig 3.2. illustrates such a transaction descriptor.  

 

F

l

 

je
ct

 re
f

 d
at

a

w
 d

at
a

xt
 h

an
dl

e

Object 
Header

Concurrent 
Data Object

Shadow 
Copy

ob ol
d

ne ne

UNDECIDED

read-only list

read-write list

Transaction Descriptor

 

igure 3.2. Transaction descriptor structure of an active transaction with an empty read-only 

ist. 

8



A transaction accesses a concurrent object by executing an open call on the object’s header. 

The open call adds the object to the read-only list of the transaction if the concurrent object is 

opened for reading. If the concurrent object is opened for writing it is added to the read-write 

list. Opening an object does not make the changes made by the transaction visible to other 

transactions. The commit operation does this. Conflicts with respect to other transactions are 

detected only at commit time. Depending on the outcome of conflict detection, the 

transaction either aborts, commits or recursively helps the conflicting transaction. If the 

transaction successfully commits, its effects are made visible to other transactions.  

The commit operation is essentially a multi-word compare-and-swap (CAS) operation. The 

three stages in the commit operation are the acquire phase, decision point and release phase. 

In the acquire phase, the concurrent objects are acquired by the transaction in some global 

total order by replacing the data-block pointer with a pointer to the transaction descriptor. 

During the decision point, the status field of the transaction descriptor is updated to the final 

outcome indicating the success or failure of the transaction. A transaction is successful only 

if it is valid and it successfully updates all the shared memory objects in its read-write list. 

During the release phase, the transaction relinquishes all the objects it has acquired in the 

acquire phase.  

It is unnecessary to acquire the concurrent objects opened for read-only access. An example 

substantiating this claim is the tree-search structure. Any change to the leaf or inner nodes 

necessitates acquiring the root of the tree. This is a potential bottleneck. Hence only 

concurrent objects in the read-write list are acquired in the acquire phase. The acquire phase 

is followed by a read phase. During the read phase, all the concurrent objects in the read-only 

list of the transaction are checked for consistency to see if they have been changed since they 

were last read. If a conflict is detected with a transaction that has just COMMITTED, the 

current transaction has to abort. If a conflict is detected with an UNDECIDED or ABORTED 

transaction, the current transaction traverses the read-write lists of the conflicting transactions 

to ascertain whether the object has been changed. If the object has changed, the current 

transaction aborts. During the read phase, the current transaction does not recursively help 

 
9



the conflicting transaction to complete. Introduction of such a read phase causes transactions 

to see inconsistent intermediate states. This causes non-serializable transactions to be seen, 

whose updates do not appear to be atomic. 

Fraser [5] gives an example of such a scenario. Transaction T1 opens xi for writing and yj for 

reading. Transaction T2 opens yj for writing and xi for reading. According to the FSTM 

implementation, T1 and T2 will pass their respective read phases and commit successfully. 

This violates the correctness of the FSTM implementation because T2 should see the update 

made by T1, and vice versa. To fix this problem a READ-CHECKING state is introduced. 

After a transaction finishes the acquire phase, it atomically switches to a 

READ_CHECKING state. The read phase begins when the transaction transitions out of the 

READ_CHECKING state. During the read phase, the transaction walks through its 

descriptor’s read-only list and checks the consistency of each object in that list. If any object 

in the read-only list of the transaction has changed since the transaction has read it, and this 

conflicts with a transaction in the UNDECIDED state, the current transaction has to abort. 

Note that here a current transaction in the READ-CHECKING state does not help a 

transaction in the UNDECIDED state. So the READ-CHECKING transaction appears to 

occur before the UNDECIDED transaction. This results in a serializable transaction 

schedule. If the current transaction detects a conflict with another transaction currently in 

READ-CHECKING state, depending on the global total order of transactions, the current 

transaction either helps the conflicting transaction or aborts it. The global order of the 

transactions is determined based on the machine address of each transaction’s descriptor (i.e., 

in temporal order). If current transaction precedes the conflicting transaction in the global 

order and both of them are in their respective read phases, then the current transaction can 

abort the conflicting transaction. Otherwise the conflicting transaction is helped by the 

current transaction. Once the transaction reaches its decision point, it atomically commits or 

aborts depending on the decision. The global total ordering of transactions is introduced to 

ensure that there is no cyclical helping of transactions; i.e., where there is a cycle of 

transactions in their respective read phases trying to help other transactions. Since the 

 
10



progress of at least one process is ensured despite contention, the FSTM algorithm is 

consequently lock-free. 

3.2. Ennals’ STM 

Robert Ennals [7]  argued that lock freedom or the more relaxed obstruction freedom should 

be discarded to make STMs faster. According to Ennals, going to great lengths to make an 

STM non-blocking is not worth the effort, as blocking behavior is acceptable and simpler to 

implement. These ideas are incorporated in his lock-based STM referred to as Ennals’ STM. 

 
S T M  p r iv a te  s tru c tu re

 

 

Figure 3.3. The basic unit o

object handle. 

The basic unit of concurren

added to each object to pre

stored in place, and there 

metadata. Non-blocking S

consider the case when a 

context switch). In the me

second transaction waits fo

would be blocking the sec

violates correctness. If the

increases. Consequently En

advantage of the cache lo

 

O b je c t D a ta

O b je c t H a n d le

f concurrency of Ennals’ STM: Object data with an STM specific 

cy in Ennals’ STM is an object (Figure 3.3.). An object handle is 

vent direct accesses to concurrent objects. Here the object data is 

are no levels of indirection to access object data from the object 

TMs cannot have object data stored in place [7] . To see why, 

transaction currently accessing an object is switched out (by a 

antime, another transaction tries to access the same object. If the 

r the first transaction to finish with the object, the first transaction 

ond transaction. If the second transaction overwrites the object it 

 second transaction aborts the first, the probability of livelock 

nals’ STM is a blocking lock-based implementation that can take 

cality of object data and object metadata (which resides in the 

11



handle). Compared to other STMs this would result in a smaller number of cache lines loaded 

per read and write. 

Similarly to FSTM, the transactions and STM objects are created in a designated 

transactional memory area in the main memory. Unlike other STMs, this memory is divided 

in to public and private regions. The public memory contains only objects and is accessible to 

all transactions. Each transaction has its own private memory that only it can access. The 

contents of the transaction’s private memory are freed only when the transaction commits or 

aborts. Bookkeeping information is stored here, in the form of a transaction descriptor with 

pointers to read descriptors and write descriptors. Each transaction maintains separate read 

descriptors and write descriptors for each object opened for reading and writing respectively. 

The transaction’s write descriptor has a last version field that stores the current version of the 

object being written to.  The write descriptor also points to the concurrent object’s handle and 

creates a working copy of the object’s data. The read descriptor records the version of the 

object read and points to the object’s handle. Figure 3.4. presents such a transaction 

descriptor. 

Object Data

Object Handle

Object Data

Object Handle

Write Descriptor

Read Descriptor

Public Memory

Working Copy 
of Data

Object Pointer

Last Version

Object Pointer

Version Seen

Reads

Writes

Transaction Descriptor

Private Memory

 

 

 

 

 

 

Figure 3.4. Memory Layout for Ennals’ STM: Illustrates the transaction descriptor structure 

of a transaction with one object open for writing and another object open for reading. 

 
12



To write to an object, a transaction must obtain an exclusive lock on the object. The 

transaction should also create a working copy of the object’s data to which it can write. To 

obtain an exclusive lock, the transaction should create a new write descriptor, add the 

object’s handle to the write descriptor and make the object’s handle point to the transaction’s 

write descriptor. When the current transaction tries to obtain an exclusive lock, the object’s 

handle could either contain a version number or pointer to the write descriptor of another 

transaction. If the object’s handle contains a version number, then the current transaction 

uses an atomic compare-and-swap operation to replace the version number with a pointer to a 

new write descriptor. The write descriptor has its last version field set to the version number 

in the object’s handle, and its working copy is initialized to the current version of the object 

data. If the object’s handle is a pointer to a write descriptor, the current transaction will wait 

until the owning transaction is finished with the object and the object’s handle is updated to 

the current version number of the object.1 This leads to a blocking implementation were the 

current transaction has to wait until the owning transaction finishes with the concurrent 

object before writing to the object. The implementation presented here is also lock-based. To 

read from an object, the transaction waits until the object’s handle contains a version number 

and then logs the version number in a read descriptor. Unlike commit-time locking, the 

transaction locks the object when it is opened for writing, and the locks are released only at 

commit or abort time. This implies that the transaction uses a revocable two-phase locking 

scheme for writes and optimistic concurrency control for reads. Hence it is unnecessary to 

store the status of a transaction in the descriptor. 

During commit time the transaction checks whether it is valid and reaches a decision on 

whether it should commit or abort. It is during commit time that the transaction makes its 

changes visible to other transactions. A transaction deems itself valid if all the objects it has 

read from are consistent—i. e., they have not been modified after the current transaction read 

them. The consistency of reads can be checked by verifying the version numbers in the read 

                                                 

 
1 The current version number of an object is held in the object handle. 

 
13



descriptor and the object’s handle the descriptor points to. A transaction commits if it is 

valid, and makes its writes visible by copying across its working copy of the data to the 

written object’s data. The transaction also sets the object’s handle to a new version number. 

The transaction aborts if it is invalid (because it has seen inconsistent data). As an 

optimization, the runtime periodically checks for invalid transactions and aborts them. 

Otherwise, an infinite loop could result when a transaction is unable to commit due to having 

seen inconsistent data. In the event of a deadlock, one transaction will abort, releasing all its 

locks and reverting all its updates. 

Ennals also places a restriction on the number of transactions that can be run at a given time. 

The number of transactions should not exceed the number of available cores. Consider the 

case where N transactions are running on N cores. If a new transaction needs to be started, it 

has to wait until a core is free. In this way the number of transactions executing can be 

minimized and all the available cores can be utilized fully. If the number of transactions 

exceeds the number of cores, a blocking behavior results, as is common in a lock-based 

setting. Hence this cannot occur in STMs that claim to be obstruction-free or non-blocking. 

This optimization argues that having fewer transactions will reduce the frequency of conflict 

between them. This in turn will provide a performance boost. 

3.3. TL2 

A closed TM system is one where memory that is used transactionally cannot be used non-

transactionally and vice versa.  Ennals’ STM [7]  and FSTM [5] are closed transactional 

memory systems. Non-blocking STMs, like FSTM, require a special transactional memory 

area separate from the non-transactional memory. A lock-based STM, like Ennals’ STM, 

requires specialized malloc() and free() operations for the transactional memory. In 

both FSTM and Ennals’ STM, inconsistent states and invalid transactions are contained in 

specialized managed runtime environments. These special requirements make it difficult to 

do “mechanical” code transformation from sequential or lock-based code into concurrent 

code. TL2 [6], the STM by Dice, Shalev and Shavit, attempts to address this problem by 

 
14



employing commit-time locking (locks are acquired only when attempting to commit) and a 

global version-clock based validation scheme. 

TL2 is a lock-based STM that employs commit-time locking. The TL2 algorithm requires a 

global version-clock.  This global version-clock is incremented once by each transaction that 

writes to memory and read by all transactions. In TL2, a special versioned write-lock is 

associated with every transacted memory location. The versioned-write lock, put simply, is a 

single word spin-lock. The lock is acquired and released using atomic CAS (Compare & 

Swap) operations. One bit of the single-word spin-lock is used to indicate whether the lock is 

set or not, and the rest of the bits hold a version number. This version number is read from 

the global version-clock and incremented on each successful lock-release. A collection of 

versioned write-locks is allocated for data structures such as linked lists. As per the TL2 

algorithm, only read-write transactions need to collect read-sets and write-sets; read-only 

transactions do not. Each read-write transaction thread has a private read-set and write-set. 

These are implemented as linked lists. Each read-set entry contains the address of the lock 

that covers the variable being read. Each write-set entry contains the address of the variable, 

the value to be written to the variable, and the address of its associated lock. 

To perform a write operation to the shared memory, the transaction should load the current 

value of the global version-clock and store it in a thread-local variable called the read-version 

number (rv). Then the transaction code can begin executing speculatively in its private 

memory. A read-set of all the addresses read and a write-set of all the addresses to be written 

is maintained locally. To enable aborting or retrying of a transaction a logging functionality 

is implemented. This is accomplished by augmenting the loads with instructions that record 

the read address, and replacing stores with code recording the address and value to be 

written. The transactional load first checks the local write-set to see if the value is locally 

changed. If so, the updated value is loaded. A load instruction has to check whether the 

location’s versioned write-lock is free at the time of the load. The load instruction checks to 

be sure that the lock bit is clear, and that the version number of the lock is ≤ rv. If the lock’s 

version number is greater than rv, it suggests that the location was modified after rv was read 

 
15



by the current thread. In such a case the current thread has to abort because its read of the 

location should have occurred before the location was modified by another thread.  

After the speculative execution, the transaction attempts to acquire all the locks it requires. 

Acquiring a lock involves setting the write-lock bit of the location. Failure to acquire the 

locks forces the transaction to abort. Once all the locks are acquired, the global version-clock 

is incremented. The incremented global version-clock value is recorded in a local write-

version number variable wv. The read-set is validated next. It is valid if the write-lock 

associated with each location in the read-set is ≤ rv.  Also, for the transaction to see a 

consistent state,  the lock bits of all the locations in the read-set must be in the cleared state.  

If the validation fails, the transaction aborts. In the special case when wv = rv + 1, it is not 

required to validate the read-set, as only the current transaction would have modified the 

locations in the read-set.  To commit the transaction, the new values for all the locations in 

the write-set are updated in the shared memory. The locks on these locations are released by 

setting the version value to wv and clearing the write-lock bit. 

Read-only transactions need not even keep a local read-set. A read-only transaction samples 

the global version-clock and stores its value in a local read-version variable (rv) like a write 

transaction. The read-only transaction then proceeds with the speculative execution. If any of 

the locations read has the write-lock bit set or the lock’s version field is > rv, the current 

read-only transaction aborts. If the transaction succeeds in reading all the locations it 

requires, it commits. 

To prevent the global version-clock from being a contention bottleneck, the authors suggest 

augmenting the version number with the thread ID of the thread that last modified it. In this 

scenario, the thread increments the global version-clock only if it was the last one that 

modified it. In the other cases, it updates its thread ID but leaves the version-number field 

unchanged.  

 
16



Chapter 4 

PERFORMANCE METRICS 

 

One goal of this thesis is to identify metrics that can effectively compare different 

transactional memory implementations. All existing STM implementations provide 

experimental results showing how fast their STM runs with respect to others by varying 

resource contention and scalability parameters. Execution speed, however, is just one 

dimension, one metric.  The execution speed of an STM is typically measured in time taken 

for a CPU operation per µs for a processor in a multiprocessor/multicore setting. A typical 

case in point is TL2 [6] by Dice et.al. A red-black tree micro-benchmark is employed to 

substantiate the claim that “TL2 is ten-fold faster than a single lock.”  Although comparing 

STMs based on execution speed helps in assessing the usability of an STM, parameters such 

as memory usage and ease of programming are equally relevant. One of the major 

motivations behind transactional memory research is the difficulty in lock programming. It is 

essential for STMs to be easily programmable to achieve better user acceptance. This chapter 

introduces performance metrics employed for qualitatively and quantitatively comparing 

various software transactional memory implementations.  

4.1. Experimental Setup 

To compare the performance of the three STMs – FSTM, Ennals’ STM and TL2 — tests 

were conducted on a number of test beds. A graphical representation of the test results is 

given later in this chapter. This section discusses the two experimental setups: IBM Blade 

Center Linux Cluster (Henry2) and Sun V880 NC BioGrid Node (Henry8). Both test beds are 

part of the high performance and grid computing initiative at North Carolina State University 

[11].  

 

 
17



¾ IBM Blade Center Linux Cluster (Henry2) 

The Henry2 cluster consists of more than 175 dual Xeon compute nodes with 2.8–3.2 GHz 

Intel Xeon processors (nominally 5.6–6.4 GFlops per processor), 4GB per node distributed 

memory, 36GB or 40GB of disk space per node plus shared storage (> 7TB total), and dual 

gigabit Ethernet interconnects. Henry2 runs GNU/Linux with a Linux 2.6.9-42.Elsmp kernel. 

¾ Sun V880 NC BioGrid Node (Henry8) 

Henry8 is a Sun FireTM V880 shared-memory multiprocessor with 8 UltraSPARC-IIi® 

processors operating at 750MHz. It has 1 TB disk space and a gigabit Ethernet network 

connection. Henry8, which is in the North Carolina State University “realm,” is part of the 

NC BioGrid. Henry8 runs SolarisTM 8. 

All the performance experiments were conducted using a red-black tree micro-benchmark. 

Red-black trees are inherently non-blocking data structures, which makes them especially 

suited for lock-free programming [5]. The red-black tree micro-benchmark is a lock-free 

implementation of a red-black tree with early release. With early release, the transaction 

releases an object after writing it, despite pending updates on other objects by the transaction. 

A single sentinel node replaces all the NULL child pointers in the red-black tree 

implementation. (The sentinel node is essentially a node with a special key value other than 

NULL). This eliminates the need to keep track of multiple NULL child pointers. Although 

the sentinel node is a probable performance bottleneck, this problem can be avoided by 

releasing it early prior to committing.   

4.2. Ease of Programming 

The recent advances in technology have been focused on delivering multiple processing 

cores per chip (CMP – Chip Multi-Threading) rather than improving the performance for a 

single thread. With the advent of such technologies, programmers are forced to write 

programs that effectively exploit parallelism. A typical way to write parallel programs is by 

 
18



using locks. Coarse-grained locking offers limited parallelism, whereas fine-grained lock 

programs are notoriously hard to write. The idea of transactional memory stems from this 

dilemma. From a user perspective, transactional memory is easier to program than locks and 

provide fine-grained parallelism [5].  

It is beneficial to analyze the programming effort and complexity associated with different 

transactional memory systems. An STM that is easier to program and understand has an edge 

over another that is difficult to program. Quantifying the readability and understandability of 

programs has long been a challenge for software engineering practitioners. Börstler et.al [12] 

have proposed a comprehensive set of metrics for measuring the understandability of sample 

code. These understandability metrics give a good indication of ease of programming. Even 

though these metrics have been proposed for an object-oriented language like JavaTM, most 

of them are applicable to non-object-oriented languages as well. The three STMs used for 

performance comparison in this thesis are coded in C. Table 4.1. lists some of the metrics 

that can be used to measure program understandability.  

Cyclomatic Complexity (CC) provides a quantitative measure of the logical complexity of 

the program [13]. This metric counts the number of independent paths in the basis set of a 

program and provides an upper bound on the number of tests that must be conducted to 

ensure that all statements in the program have been executed at least once. The LoC (Lines of 

Code) metric is computed by counting only the number of source code lines excluding 

comment lines and blank lines. A Code Counter tool [14] is used for this purpose. The 

cyclomatic complexity is calculated from a flow graph (a graph that depicts the logical 

control flow in a program, with each graph node representing a structured program construct) 

using the formula, CC = P + 1, where P is the number of predicate nodes contained in the 

flow graph. A sample CC calculation is shown in Figure A.1. A high value for WMC 

(Weighted Method Count) indicates poor program understandability.  

 

 
 

19



Table 4.1. The metrics employed to measure program understandability. 

Acronym Description 

LoC Total lines of code. 

CCmax(m) Maximum cyclomatic complexity of methods (m). 

CC / LoC 

Average CC per LoC. Here CC is the sum of the cyclomatic 

complexities of all the methods. 

LoC / m 

Average LoC per method. Here m is the total number of 

methods in the program. 

m / c 

Average number of methods per class. In a non object-

oriented language like C, the number of classes (c) is 1.  

WMC 

Weighted Method Count. The product of the three previous 

measures. 

 

Each of the three STMs, FSTM, Ennals’ STM, & TL2 have shipped the sample C 

implementation of a red-black tree benchmark with the STM source code. This program 

serves as a benchmark and as an example program for prospective STM users. The values for 

the metrics in Table 4.1. for the red-black tree benchmark of the three STMs are shown in 

Table 4.2. 

 
20



Table 4.2.  Ease of programming metrics for FSTM, Ennals’ STM, and TL2. 

Measure FSTM Ennals’ STM TL2 

LoC 409 409 510 

CCmax(m) 18 18 16 

CC / LoC 0.132 0.132 0.303 

LoC / m 51.125 51.125 18.888 

m / c 8 8 27 

WMC 54 54 155 

 

FSTM and Ennals’ STM post the same values for all the metrics. This is because Ennals has 

used the same red-black tree benchmark code written by Fraser [7] . From the results, TL2 

has the highest WMC value and hence poor ease of programming.  

4.3. Object-Acquire Semantics 

This comparison criterion analyzes when a concurrent object is acquired for modification by 

a read-write transaction in an STM system. 

In the lock-free FSTM, the object is acquired at commit time rather than at encounter time 

when the object is opened. This results in the transaction being visible to the concurrent 

system only at commit time. This approach of delaying object acquire until commit time is 

termed lazy acquire. Acquiring the object at encounter time is the eager-acquire strategy 

[15]. With eager acquire the conflicts with other transactions are detected early, and hence 

such conflicts can be resolved early. By contrast, lazy acquire has a small window of 

contention with other transactions. If the conflicting transaction were to be aborted anyway, 

due to late conflict detection, lazy acquire lets the current transaction run till completion. 

This can save the effort of aborting the current transaction first and retrying it later with eager 

acquire. From the empirical experiments conducted by the authors of FSTM [5], the lazy-

 
21



acquire strategy exhibits better performance over eager-acquire strategy. Comparing STMs 

using lazy and eager-acquire approaches is beyond the scope of this thesis because TL2 and 

Ennals’ STM are lock-based. As explained in section 3.1, the acquire object operation is a 

multi-word CAS operation. 

In TL2 and Ennals’ STM, an object is acquired by locking it. Hence these are lock-based 

STMs. Ennals’ STM employs encounter-time locking where the object is locked when it is 

opened for writing. The strategy used by TL2 is commit-time locking where the locking of 

the object is deferred until commit time. With encounter-time locking conflicts can be 

detected early. The current transaction or the conflicting transaction can abort depending on 

which one is of lower priority. It is very unlikely for a transaction to know, during encounter 

time, the entire set of objects it needs to access. In such a scenario, a transaction may have 

acquired all but one object and be forced to abort. With encounter-time locking the window 

of contention is longer than with commit-time locking. With commit-time locking the locks 

are acquired only after a speculative execution of the transaction. At this point the transaction 

knows the entire set of locations it needs to lock. Having a smaller window of contention 

implies a smaller number of transaction aborts and a smaller amount of sandboxing ill effects 

of invalid transactions. In this case the transaction needs to keep track of all the objects it 

needs to modify. This step is not required in encounter-time locking, as locks are acquired 

when the objects are encountered. Table 4.3 compares the two locking schemes. 

 

 

 

 

 

 
22



Table 4.3. Comparison of encounter-time locking vs. commit-time locking. 

Encounter-time locking Commit-time locking 

The objects are acquired when opened for 

writing 

The objects are acquired only during 

transaction commit 

No speculative execution necessary Speculative execution needed to determine all 

the objects that need to be acquired at commit 

time. 

Locks held for a longer time Locks held for a shorter time 

Larger window of contention Smaller window of contention 

 

Consider transaction A, which needs to write to N objects for successful completion. 

Transaction B needs to access M objects, of which one object is also used by A (let that 

object be x). Transaction B has a higher priority than transaction A. Consider an encounter-

time locking scenario. Transaction A starts and begins acquiring locks on objects. In the 

meantime, transaction B starts and acquires a lock on object x. Even after acquiring locks on 

the required N–1 objects, transaction A would still have to abort, since transaction B is of 

higher priority. On the other hand, with commit-time locking, transaction B would have time 

to finish its execution and release its lock on object x before transaction A even attempts to 

acquire a lock on object x. This scenario clearly favors commit-time locking although this 

scenario does not happen very frequently. 

The execution speedup obtained with commit-time locking [6] is at the expense of using 

more memory to store per-transaction information. This approach could be advantageous as 

long as the transaction sizes are small. 

4.4. Metadata Organization 

The storage location of concurrent object metadata is an important design decision for an 

STM implementation. This determines whether the commit operation is lightweight or not. 
 

23



In FSTM, the object metadata (object header) and the data block is placed inside the 

transaction descriptor of the transaction that owns the object (per transaction metadata). This 

is the case for read-write as well as read-only transactions. Such a scenario is illustrated in 

Figure 3.2. While opening an object for reading or writing there is a level of indirection from 

the object header to the data block to access the object data (Figure 3.1). This indirection will 

adversely affect the execution time of transactions—especially read-only transactions—if the 

object header and data block cannot be loaded in the same cache line. This results in multiple 

cache lines being loaded for a single object load. During commit time, both the object header 

and the data block of all the acquired objects need to be modified. The commit operation in 

FSTM is a multi-word CAS operation. If the transaction has acquired N objects for 

modification, 2N+1 CAS operations are required for a successful transaction commit – N for 

updating object headers, N for updating the data blocks with their new values and 1 for 

changing the status of the transaction from ACTIVE to COMMITTED. 

In Ennals’ STM object metadata (object header) and object data are stored next to each other. 

Hence when the object is opened for reading or writing, no level of indirection is required to 

access the object data from the metadata (Figure 3.3). The object metadata and data is loaded 

in the same cache line. Ennals’ STM also employs per-transaction metadata storage. The 

transaction acquires an object by obtaining an exclusive lock on the object when it is opened 

for reading or writing. For each acquired object, the transaction stores the object data and a 

pointer to the object header. During commit time, the object data should be updated with the 

new value and the object header should be updated with the new version number to indicate 

the release of the lock. For a transaction that has acquired N objects, the commit operation 

will take 2N+1 CAS operations to complete — N for modifying object data, N for modifying 

object header and 1 for changing the transaction state to COMMITTED. 

In TL2, as in Ennals’ STM, the metadata is stored next to the object data. Hence both the 

object data and metadata are loaded in the same cache line. For conflict detection the TL2 

algorithm uses a global version-clock. To write to a concurrent object, the transaction 

acquires an exclusive lock on the object during commit time. For a successful commit 

 
24



operation, the transaction should increment the global version-clock value, update the object 

data with the new value, release the lock by updating the write-version number of the object 

and clear the lock bit. For a transaction that has acquired N objects, the commit operation 

takes 2N+1 CAS operations – N for updating the object data with the new value, N for 

updating the write-version number of the object and 1 for incrementing the global version 

clock. 

Thus, all the three STMs use the same number of CAS operations for committing, if the 

number of acquired objects are the same.  

4.5. Transaction Validation 

This section discusses the strategy employed by STMs to detect invalid transactions. Invalid 

transactions are transactions that have seen inconsistent data and hence should be aborted. 

Invalid transactions are also referred to as zombie transactions (“zombies”). 

In FSTM, every transaction validates during commit time to check whether the values it read 

have been modified by any other transaction. If any value read by the current transaction was 

modified another transaction, the current transaction has to abort since it is reading stale data. 

Here, checking for validity of a transaction is deferred until commit time. This results in 

longer-running zombie transactions that may abort other valid transactions, ultimately 

leading to a livelock. When the zombie transaction is detected it is aborted by the STM 

system without user intervention. 

The transaction checks if it is valid prior to committing in Ennals’ STM. This is done by 

validating that no value it read has been written to by any other transaction. The author of 

Ennals’ STM recognized the problem with long-running zombie transactions. In addition to 

validating transactions at commit time, the STM system periodically checks for invalid 

transactions. In the current implementation of Ennals’ STM takes only fixed integer values 

for validity-check intervals. The programmer who has access to the Ennals’ STM source 

code can set these intervals. Having an interval that is small is an overkill as it might increase 

 
25



the execution time of the STM. Again, letting the zombie transaction run longer might result 

in starvation of a transaction. Starvation occurs when the transaction has read all the 

locations it needs to read, has read some inconsistent data, and cannot write to any location 

because it has read inconsistent data.  

In TL2, the validity of the values read by the transaction (read set) is checked each time the 

transaction opens an object for reading or writing. In addition to this, the validity of the 

values read by the transaction is checked during commit time. This combination of validity 

checking at open-time and commit-time helps detect zombie transactions early. TL2 employs 

commit-time locking. Due to validating the transaction’s read set before the commit phase 

starts, the transaction can be aborted if it is invalid, before it even starts acquiring any locks. 

This eliminates the need to release all the locks owned by the transaction during its abort. At 

the same time validating the transaction for each object open and commit can increase the 

transaction execution time. Due to the small window of contention during commit time, this 

might not have a pronounced effect on the execution time. 

4.6. Contention Management Strategy 

Contention management strategy refers to the policy employed to resolve conflicts between 

transactions over the concurrent object. 

FSTM is a lock-free STM. Recursive helping is the contention management strategy used by 

FSTM. If the current transaction detects a conflict with a COMMITTED transaction, it has to 

abort. If it detects a conflict with an UNDECIDED or ABORTED transaction it traverses the 

read-write list of the conflicting transaction to determine the current version of the object. If 

the conflicting transaction’s object version differs from the current transaction, either the 

current transaction aborts or recursively helps the conflicting transaction. If the conflicting 

transaction precedes the current transaction in the global order of transactions (section 3.1), 

the current transaction recursively helps the conflicting transaction. If the current transaction 

precedes the conflicting transaction, the conflicting transaction is aborted by the current 

transaction. For example, if an operation in transaction A is obstructed by another operation 
 

26



in transaction B and transaction B precedes transaction A in the global order of transactions, 

A will help B complete its work. This implemented by recursively reentering the operation 

and passing the invocation parameters specified by B’s operation. B’s operation in this 

scenario is responsible for making available sufficient information to let the conflicting 

processes determine its invocation parameters. When the recursive call is completed, the 

obstruction is removed and A’s operation can continue its progress. According to the FSTM 

algorithm the conflicts are detected only at commit time. 

Ennals’ STM is a lock-based STM. Here the conflicts occur when trying to acquire locks 

when some other transaction has locked the object. The current transaction spins for a fixed 

number of times or till the owner lets go of the lock. In the event of a deadlock, the 

transaction with the lowest priority aborts. Determining transaction priorities was explained 

in section 3.2. If the transaction fails after the fixed number of attempts, it either aborts itself 

or the conflicting transaction depending on the transaction priorities. The objects are acquired 

at encounter time, and hence conflict detection does not wait till commit time. 

TL2 employs the same conflict detection strategy as Ennals’ except that it tries to acquire 

locks only during commit time. Deferring the conflict detection to commit time reduces the 

window of contention. Empirical evaluations in section 4.10 show the effects of contention 

management strategies on the STM’s throughput. 

4.7. Lock-Acquire Semantics 

This STM comparison criterion is exclusive to lock-based STMs like TL2 and Ennals’ STM. 

A comparison of the encounter-time locking scheme used by Ennals’ STM and commit-time 

locking strategy used by TL2 is given in section 4.3. 

4.8. Storage Reclamation 

All three STMs – FSTM, Ennals’ STM and TL2 – compared here are implemented in C. 

These implementations do not make any unreasonable assumptions about the underlying 

 
27



hardware like the availability of specialized CAS instructions [5-7]. In STM systems, 

transaction aborts require some degree of automatic storage reclamation. For example, 

assume that transaction A, which owns object x, is explicitly aborted by transaction B. Before 

transaction B acquires object x it has to make sure that transaction A has aborted and 

relinquished object x. In languages like C, which permit explicit storage management, either 

STMs can provide specialized garbage-collection schemes or leave the job of freeing 

memory to the programmer. 

FSTM and Ennals’ STM use the same specialized garbage-collection technique implemented 

by Fraser [5]. FSTM has a very high rate of heap allocations and garbage creation due to 

allocating a new version of the object each time it is updated. This necessitates a customized 

garbage-collection scheme. Each FSTM transaction descriptor is an aggregate of embedded 

object handles that are sequentially allocated. The embedded objects are allocated 

sequentially within the aggregate and are not used or reclaimed except as part of the 

aggregate. A reference-counting scheme is used to garbage-collect the FSTM transaction 

descriptor. The FSTM descriptor contains a reference count that indicates how many 

processes hold a reference to it. Each process that operates on the descriptor increments the 

reference count once. A process is responsible for all decrementing all the shared reference 

counts introduced as part of the operation. Even though reference counting introduces the 

overhead of incrementing and decrementing reference counts, the descriptor can be reused as 

soon as the last reference to it is removed. Since the descriptors are ephemeral, it is highly 

unlikely that many processes will ever access them. Hence there is never a need for a large 

number of reference-count manipulations. The reference-counting scheme is integrated with 

the FSTM source code. 

For all the other FSTM objects like object headers and data blocks, an epoch-based 

reclamation scheme is used. There is a separate garbage-collection module in FSTM that 

does this. In this scheme, each object, when not referenced from the shared heap, is explicitly 

added to the garbage list. Once an object becomes garbage, no new shared references can be 

created to it. The author introduces a global epoch count to determine when no stale 

 
28



references exist to an object. Each process, when it accesses shared memory, observes the 

current epoch. Whenever a process starts a shared-memory operation, it additionally checks 

the process list to see if all the processes currently executing in the shared memory region 

have observed the current epoch. In that case, the process frees the contents of the garbage 

list that was created two epochs back and increments the epoch count. At a given time, only 

three garbage lists need to be maintained – for the current epoch (e), the epoch (e–1) and the 

epoch (e–2). 

For its per-object implementation, TL2 relies on the programmer to free the memory. It does 

not use any special garbage-collection schemes [6]. The authors admit that the act of 

acquiring a lock cannot be guaranteed to take place when the object is alive. They also 

suggest repeatedly validating the entire transaction before updating each location in the 

write-set to address the problem of inaccessible locked objects. 

4.9. Search Overhead  

This STM comparison criterion explores the search overhead incurred in locating the current 

version of the concurrent object when a conflict is detected between two transactions over 

that object. 

In FSTM, if the current transaction detects a conflict with an ABORTED or UNDECIDED 

transaction, the current transaction has to traverse the read-write list of the conflicting 

transaction to detect the current version of the object. If the conflict is detected with a 

COMMITTED transaction, the current transaction has to abort. The time spent on searching 

the read-write list can impact performance depending on the size of the list. Read-write lists 

are implemented as linked lists in FSTM. 

In Ennals’ STM and TL2 this search overhead is absent. When a conflict is detected with an 

active transaction, the current transaction waits for a random interval and tries again. The 

current transaction tries for a fixed number of times or till the owner relinquishes the lock to 

acquire the lock. If it fails, it either aborts itself or the conflicting transaction depending on 

 
29



the transaction priorities. If the conflict is detected with a committed transaction, the current 

transaction aborts.  

4.10. Execution Time 

The execution time (throughput) is measured as CPU time per µsecond for each successful 

read/write operation on the red-black tree benchmark. The ratio of reads to writes is set to 3:1 

for all the experiments conducted. Tests were conducted on the Henry2 (section 4.1.) cluster 

for FSTM and Ennals’ STM. The TL2 STM is currently implemented to run only on the 

SolarisTM platform. The execution times of all the three STMs – TL2, FSTM and Ennals’ 

STM – were measured on Henry8 (section 4.1). Experiments were conducted for low-

contention, high-contention and varying-contention scenarios. The mean data set size of the 

red-black tree for the low-contention setting is 524288(219) and for the high-contention 

setting, it is 16 (24). For the varying-contention setting the mean data set size was varied from 

16 (24) to 524288 (219). The graphs of the empirical evaluation and analysis of the results is 

presented in this section. 

 
30



 
Throughput  - Low Contention

 

 

 

Figure 4.1

of 219 for a

Figure 4.1

black tree

execution 

implies les

the locks 

contention

the global

contending

explains 

 

0

50

100

150

200

250

300

1 3 5 7 9

Processors

C
PU

 ti
m

e 
pe

r o
pe

ra
tio

n 
pe

r
m

ic
ro

se
co

nd FSTM
Ennals' STM
TL2

. Execution times for the three STMs measured on Henry8 with a mean data size 

 red-black tree. 

 shows the throughput of the three STMs under low contention for a large red-

 using 1 to 8 processors on Henry8. FSTM and Ennals’ STM clock similar 

times, whereas TL2 exhibits a very poor throughput. For FSTM, less contention 

s recursive helping, which results in a faster execution time. With Ennals’ STM 

are acquired early, there is no speculative execution involved, and there is less 

. This results in better throughput. For TL2, there is an overhead of maintaining 

 version-clock and performing speculative execution. Chances of more threads 

 for locks are increased as all of them try to acquire locks at commit time. This 

the poor performance of TL2 relative to FSTM and Ennals’ STM.

31



 
Throughput - High Contention

0

2

4

6

8

10

12

1 3 5 7 9

Processors

C
PU

 ti
m

e 
pe

r o
pe

ra
tio

n 
pe

r 
m

ic
ro

 s
ec

on
d

FSTM
Ennals' STM
TL2

 

 

 

 

 

Figure 4.2. Execution times for the three STMs measured on Henry8 with a mean data size 

of 24 for a red-black tree. 

Figure 4.2 shows the throughput of the three STMs under high contention for a small red-

black tree using 1 to 8 processors on Henry8. TL2 clocks substantially better execution times 

than FSTM and Ennals’ STM. Ennals’ STM performs slightly better than FSTM. Due to high 

contention, FSTM resorts to more recursive helping to resolve conflicts. This increases the 

execution time. For Ennals’ STM the window of contention is more due to encounter-time 

locking. A larger window of contention leads to more conflicts and hence more aborts and 

retries. In the high-contention setting, the commit-time locking strategy of TL2 is a winner as 

the window of contention is small. 

 
32



 
Throughput - Varying Contention

 

 

 

 

 

 

Figure 4.

red-black 

Figure 4.3

size from 

figure it 

deteriorat

consistent

4.1 and Fi

 

 

 

 

 

0

50

100

150

200

250

300

4 8 12 16 20

log2(mean dataset size)

C
PU

 ti
m

e 
pe

r o
pe

ra
tio

n 
pe

r m
ic

ro
 

se
co

nd
FSTM
Ennals' STM
TL2

3. Execution times for the three STMs measured on Henry8 using 8 processors for a 

tree. 

 shows the throughput of the three STMs under varying contention (mean dataset 

24 to 219) for the red-black tree benchmark using 8 processors on Henry8. From the 

can be inferred that TL2 performs better under high contention. Its throughput 

es as the amount of contention diminishes. Ennals’ STM and FSTM perform 

ly on high and low-contention settings. Figure 4.3 underlines the findings of Figure 

gure 4.2. 

33



 

 
Throughput - Low Contention

 

 

 

 

 

Figure 

data size

Figure 4

red-blac

benchm

affected

line for 

depende

till the o

effects e

FSTM s

system l

 

 

 

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140

Processors

cp
u 

tim
e 

pe
r o

pe
ra

tio
n 

pe
r 

m
ic

ro
 s

ec
on

d

FSTM

Ennals' STM

 

4.4. Execution times for FSTM and Ennals’ STM measured on Henry2 with a mean 

 of 24 for a red-black tree. 

.4 shows the throughput of FSTM and Ennals’ STM under low contention for a large 

k tree using 1 to 130 processors on the Henry2 cluster. The red-black tree micro-

ark employed here is a lock-free implementation. FSTM, being lock free, is not 

 by the locking and cache-coherence protocols of a cluster. This explains the no-spike 

FSTM. Ennals’ STM, being lock-based, on the other hand is affected by the timing 

ncies on acquiring locks. Ennals’ STM backs off (exponential or random) and spins 

bject is available in the event of contention. The timing dependence of the contention 

xplains the wavy graph, which is similar to the ones for spin-locks on clusters [16]. 

hows consistency and has better throughput when running on a loosely coupled 

ike a cluster. 

34



 

 
Throughput - Varying Contention

 

 

 

 

 

Figure 4.

processor

Figure 4.5

dataset si

Henry2 c

better thro

for the va

by the und

time dela

on objects

The exact

From the 

for loosel

with a sh

better thro

 

0
100
200
300
400
500
600
700
800
900

4 8 12 16 20

log2(mean dataset size)

cp
u 

tim
e 

pe
r o

pe
ar

io
n 

pe
r 

m
ic

ro
 s

ec
on

d

FSTM
Ennals' STM

5. Execution times for FSTM and Ennals’ STM measured on Henry2 using 64 

s for a red-black tree. 

 shows the throughput of Ennals’ STM and FSTM under varying contention (mean 

ze from 24 to 219) for the red-black tree benchmark using 64 processors on the 

luster. In a cluster-like system, numbers of processors that are powers to 2 yield 

ughput than the ones that are not. For this reason number of processors is set to 64 

rying-contention benchmark. As expected, FSTM, being lock free, is less affected 

erlying cluster architecture. In Ennals’ STM, the peaks and valleys are the result of 

ys to acquire locks [16]. High contention results in more waits for exclusive locks 

. This explains the peaks being higher as the contention increases for Ennals’ STM. 

 nature of the wavy graph is cluster environment dependent. 

results presented in this section it can be seen that lock-free STM are more suitable 

y coupled systems like clusters than lock-based ones. The results also show that 

ared-memory multiprocessor system like Sun Fire V880, lock-based STMs have 

ughput.  

35



4.11. Memory Usage 

The performance criterion of memory usage measures the amount of virtual memory used for 

one successful run of the red-black tree benchmark. The high-memory watermark2 quantifies 

the amount of virtual memory used for each run of the red-black tree micro-benchmark. This 

value is obtained using a processor-statistics reporting utility (prstat for Henry8). The 

virtual-memory usage statistics are collected every second, and the maximum value is used 

as the high-memory watermark. The ratio of reads to writes is set to 3:1 for all the 

experiments conducted. The execution times of all the three STMs – TL2, FSTM and Ennals’ 

STM – were measured on Henry8 (section 4.1.). As in section 4.10, experiments were 

conducted for low-contention, high-contention and varying-contention scenarios. The graphs 

of the empirical evaluation and analysis of the results is presented in this section. 

 
Virtual Memory Usage - Low Contention

 

 

 

 

 

Figure 4.6. V

size of 219 for

 

                      

 
2 High memory 
0
10
20
30
40
50
60
70
80

1 3 5 7 9

Processors

Vi
rtu

al
 m

em
or

y 
(M

b)

FSTM
Ennals' STM
TL2

irtual memory usage for the three STMs measured on Henry8 with a mean data 

 a red-black tree. 

36

                           

watermark refers to the maximum amount of memory used. 



Figure 4.6 shows the amount of virtual memory used by each of the three STMs under low 

contention for a large red-black tree using 1 to 8 processors on Henry8. The lock-based 

STMs – TL2 and Ennals’ STM – have better cache locality due to no indirection being 

required to access object data from the object header. FSTM, being lock free, requires at least 

one level of indirection to access object data from the object header. These pointers result in 

a larger memory usage compared to the other two. In the red-black tree benchmark, each 

thread creates red-black tree objects equal to the floor of the maximum key range divided by 

the number of threads. This means that in situations where the number of objects is not 

evenly divisible by the number of threads slightly fewer objects will be created. In all the 

experimental runs the number of processors equals number of threads and each thread is 

bound to a different processor. The additional number of tree objects created for evenly 

divisible number of processors explains the spikes in the FSTM line.  The effect is observed 

when the data set sizes are large. TL2 and Ennals’ STM report comparable memory usage 

due to their lock-based nature. The effect due to additional objects being created for even 

number of processors is not substantial in lock-based STMs. This is attributed to the smaller 

object sizes as a result of there being zero levels of indirection. 

 

Virtual Memory Usage - High Contention

0
2
4
6
8

10
12
14
16
18
20

1 3 5 7 9

Processors

Vi
rtu

al
 m

em
or

y 
(M

b)

FSTM
Ennals' STM
TL2

 

 

 

 

 

Figure 4.7. Virtual memory usage for the three STMs measured on Henry8 with a mean data 

size of 24 for a red-black tree. 

 
37



Figure 4.7 shows the amount of virtual memory used by each of the three STMs under high 

contention for a large red-black tree using 1 to 8 processors on Henry8. As before, TL2 and 

Ennals’ STM, being lock based, report a similar memory-usage pattern. FSTM, being lock 

based, requires maintaining more per thread information. When the data set size is small, the 

memory required to maintain per thread information is relevant. The nearly linear curve for 

FSTM is explained by the almost constant amount of extra memory used when creating a 

new thread and binding it to a processor. The per-thread information maintained by lock-

based STMs is much smaller compared to the lock-free FSTM. This results in an almost 

constant memory usage when data-set sizes are small. TL2 uses a global version-clock and 

maintains data to synchronize it. This causes TL2 to use more memory than Ennals’ STM. 

 

 

 

 

 

Figure 4.8

processors

Figure 4.8

varying co

8 processo

used also 

STM – us

due to slig

the special

 

Virtual Memory Usage - Varying Contention
0
10
20
30
40
50
60

4 6 8 10 12 14 16 18 20

log2(mean dataset size)

Vi
rtu

al
 m

em
or

y 
(M

b)

FSTM
Ennals' STM
TL2

 

. Virtual memory usage for the three STMs measured on Henry8 using 8 

 for a red-black tree. 

 shows the amount of virtual memory used by each of the three STMs under 

ntention (mean dataset size from 24 to 219) for the red-black tree benchmark using 

rs on Henry8. As the mean data-set size increases, the amount of virtual memory 

increases. Due to better cache locality the lock-based STMs – TL2 and Ennals’ 

e less memory than the lock-free FSTM. The spikes in the FSTM curve could be 

htly more aborts and retries involved. The garbage list structures maintained for 

ized garbage collection scheme of FSTM also use more memory. 

38



The empirical evaluations presented in this section conclude that lock-based STMs use less 

memory than lock-free STMs due to better cache locality. 

 

 

 

 

 

 

 

 

 

 

 

 

 
39



Chapter 5 

CONCLUSION 

 

Software Transactional Memory (STM) is a promising alternative to lock-based mutual 

exclusion strategies. This thesis presents performance comparisons based on memory, 

indirection and compute overheads of three different STM implementations – a non-blocking 

STM due to Fraser (FSTM), a lock-based STM due to Ennals, and a lock-based STM (TL2) 

with global version-clock validation due to Dice et.al. A red-black tree micro-benchmark is 

employed for all the quantitative comparisons in this thesis. The empirical evaluations done 

as part of this thesis suggest that: 

9 Ennals’ STM has an edge over TL2 and FSTM, as it performs consistently well on 

low and high contention settings. Ennals’ STM being lock-based, does not resort to 

expensive strategies like recursive helping (FSTM) to resolve conflicts. In low-

contention settings, the encounter-time locking strategy of Ennals’ STM is a winner 

over the commit-time locking strategy of TL2. 

9 Lock-based STMs have better cache locality than lock-free STMs because they use 

less memory.  

9 Lock-free STMs are more suited for loosely coupled systems like clusters than lock-

based ones as lock-based STMs are affected by timing dependencies to acquire locks. 

(See figure 4.4.) 

9 Choice of contention management strategies significantly affects STM throughput 

and memory usage. (See section 4.6.) 

From this it can be concluded that it is hard to build a general-purpose STM that performs 

consistently well with varying contention and architecture. The environment where the STM 

 
40



is to be deployed and the constraints imposed by it have to be analyzed critically during the 

STM design phase.  

This thesis has begun the process of comparing STM implementations based on performance. 

This is because performance is important and in fact, it is the motivation for creating STMs 

in the first place. The evaluation of performance is an important task. We hope that this work 

will set the stage for more detailed performance comparisons to come. 

 

 
41



LIST OF REFERENCES 

 

[1] H. Garcia-Molina, J. D. Ullman and J. Widom, Database Systems: The Complete Book. 
Prentice Hall, 2002.  

[2] M. Herlihy, J. Eliot and B. Moss, "Transactional Memory: Architectural Support For 
Lock-free Data Structures,"  Proceedings of the 20th Annual International Symposium on 
Computer Architecture, pp. 289-300, 1993.  

[3] N. Shavit and D. Touitou, "Software transactional memory,"  Distributed Computing, vol. 
10, pp. 99-116, 1997.  

[4] R. Rajwar and M. Hill, "Transactional Memory Online",  http://www.cs.wisc.edu/trans-
memory.  

[5] K. Fraser, "Practical Lock-Freedom." , PhD Thesis, University of Cambridge Computer 
Laboratory, 2004.  

[6] D. Dice, O. Shalev and N. Shavit, "Transactional locking II," Proceedings of the 14th 
ACM Symposium on Principles of Distributed Computing. pp. 204-213.  

[7] R. Ennals, "Software transactional memory should not be obstruction-free," Technical 
Report Nr. IRC-TR-06-052. Intel Research Cambridge Tech Report., 2006.  

[8] M. Herlihy, V. Luchangco, M. Moir and W. N. Scherer III, "Software transactional 
memory for dynamic-sized data structures,"  Proceedings of the Twenty-Second Annual 
Symposium on Principles of Distributed Computing, pp. 92-101, 2003.  

[9] V. J. Marathe, W. N. Scherer III and M. L. Scott, "Adaptive Software Transactional 
Memory,"  Proceedings of the Nineteenth International Symposium on Distributed 
Computing, pp. 354-368, 2005.  

[10] M. Herlihy, V. Luchangco and M. Moir, "A flexible framework for implementing 
software transactional memory,"  Proceedings of the 21st Annual ACM SIGPLAN 
Conference on Object-Oriented Programming Languages, Systems, and Applications, pp. 
253-262, 2006.  

[11] "High Performance and Grid Computing (N C State)”, http://hpc.ncsu.edu/.  

[12] J. Börstler, M. E. Caspersen and M. Nordström, "Beauty and the beast toward a 
measurement framework for example program quality," submitted to OOPSLA Educators’ 
Symposium, 2007. 

 
42

http://www.cs.wisc.edu/trans-memory
http://www.cs.wisc.edu/trans-memory
http://hpc.ncsu.edu/


[13] R. S. Pressman, Software Engineering: A Practitioner's Approach. McGraw-Hill, 2005. 

[14] "Code Counter 1.32”, http://www.geronesoft.com/. 

[15] V. J. Marathe and M. L. Scott, "A Qualitative Survey of Modern Software Transactional 
Memory Systems", Technical Report Nr. TR 839, University of Rochester Computer Science 
Dept., 2004. 

[16] D. E. Culler and J. P. Singh, Parallel Computer Architecture. Morgan Kaufmann 
Publishers San Francisco, 1999, pp. 341 ff. 

 
43

http://www.geronesoft.com/


 

 

 

 

 

 

 

 

APPENDIX 

 

 

 

 

 

 

 

 

 

 
44



Table A.1. Benchmarks used in Shavit and Touitou’s STM 

Counting 
A single shared counter is incremented by multiple 

processes a fixed number of times. 

Resource Allocation 

A set of processes shares a common pool of resources. A 

process tries to acquire a fixed-size subset of the resources 

from time to time. 

Priority Queue 

Multiple processes enqueue random values and dequeue 

the greatest value from a sequential heap implementation 

of a fixed-size priority queue. The number of enqueue and 

dequeue operations are pre-determined. 

Doubly-Linked Queue 

A fixed-size queue implementation as a doubly linked list 

in an array. Items are enqueued at the tail and dequeued at 

the head. Each of a set of processes performs a fixed 

number of enqueues and dequeues. 

 

Table A.2. Benchmarks used in Herlihy’s DSTM 

Simple Locking A simple linked list synchronized with a single lock. 

IntSetSimple A simple transactional integer set. 

IntSetRelease 
A simple transactional integer set implemented with early   

release. 

RBTree 

A non-blocking red-black tree implementation where nodes 

are opened in read mode and upgraded to write mode as 

required. 

 

 

 
45



Table A.3. Benchmarks used in Fraser’s FSTM 

Skip List 
A lock-free implementation of the skip list data structure 

with sentinel nodes for minimal and maximal key values. 

Red Black Tree 

A lock-free red-black tree implementation where nodes are 

opened in read mode and upgraded to write mode as 

required. A sentinel node replaces all the NULL child 

pointers. 

 

Table A.4. Benchmarks used in Marathe et al’s ASTM 

IntSet 
A sorted list of integers ranging between 0 and 255 for 

increased contention. 

LFUCache 

A priority queue heap to simulation of the cache replacement 

in an HTTP web proxy the least-frequently used (LFU) 

algorithm. 

IntSetRelease 

 A highly concurrent IntSet variant in which transactions 

open objects in read mode and release them, early, while 

moving down the list. 

RBTree A concurrent red-black tree implementation. 

RandomGraphList 

 A random undirected graph represented as a sorted linked 

list in which each node points to a separate sorted neighbor 

list. 

 
46



Table A.5. Benchmarks used in Herlihy et al.’s DSTM2 

List 
A simple sorted linked list implementation with provision for 

random inserts, removals and searches. 

Skip List 
 A skip list data structure implementation with provision for 

random inserts, removals and searches. 

 

Table A.6. Benchmarks used in Ennals’ STM 

Skip List 
An implementation of the skip list data structure with 

sentinel nodes for minimal and maximal key values. 

Red Black Tree 

 A red-black tree implementation where nodes are opened in 

read mode and upgraded to write mode as required. A 

sentinel node replaces all the NULL child pointers. 

 

 

Table A.7. Benchmarks used in Dice et.al’s TL2 

Red Black Tree 
A concurrent version of the java.util.TreeMap sequential red-

black tree implementation. 

 
47



FSTM/Ennals’ STM – rb_stm.c 

 

 

 

 

 

 

 

 

 

 

 

Figur

 

 

  

 

 

static void left_rotate(ptst_t *ptst, stm_tx *tx, 
stm_blk *xb, node_t *x)
{
    stm_blk *yb, *pb;
    node_t *y, *p;

    yb = x->r;
    pb = x->p;

    y = write_stm_blk(ptst, tx, yb);
    p = write_stm_blk(ptst, tx, pb);

    if ( (x->r = y->l) != NULLB )
    {
        node_t *xr = write_stm_blk(ptst, tx, x->r);
        xr->p = xb;
    }

    x->p = yb;
    y->l = xb;
    y->p = pb;
    if ( xb == p->l ) 
      p->l = yb; 
    else 
      p->r = yb;
}

1

2

3

4

5
6

7

8

Code Listing 1. – procedure for the left 
rotation transform of a red-black tree

1

2

3

4

5

67

8

Flow Graph of Code Listing 1.  - predicate 
nodes shown shaded

Cyclomatic Complexity (CC) = P + 1
                                                   = 2 + 1 = 3

e A.1. Sample cyclomatic complexity calculation 

48


	3.1. FSTM
	3.2. Ennals’ STM
	3.3. TL2
	4.1. Experimental Setup
	4.2. Ease of Programming
	LoC
	CC / LoC
	LoC / m
	WMC
	Measure
	LoC
	CC / LoC
	LoC / m
	WMC
	4.3. Object-Acquire Semantics
	4.4. Metadata Organization
	4.5. Transaction Validation
	4.6. Contention Management Strategy
	4.7. Lock-Acquire Semantics
	4.8. Storage Reclamation
	4.9. Search Overhead
	4.10. Execution Time
	4.11. Memory Usage

