
ABSTRACT

HIDEHIRO SEGAWA. Optimum Flap Angles for Roll Control on Wings with
Multiple Trailing-Edge Flaps. (Under the direction of Dr. Ashok Gopalarathnam.)

This research effort explores the use of multiple trailing-edge flaps for efficiently

generating rolling moment on aircraft. Using the concept of basic and additional

lift distributions, the induced drag of the wing is expressed in terms of the flap

angles. The theory of relative extrema is then used to determine the optimum

flaps angles for minimum induced drag with a constraint on the rolling moment.

By setting the mean of the flap angle for operation of the wing within the low-

drag range, profile drag is also minimized. The general methodology can also be

used on tailless aircraft and to study the effect of failure modes such as a stuck

flap. The results show that multiple flaps can be used to generate rolling moments

with lower drag than when ailerons are used. They also provide redundancy that

helps efficiently handle control failures such as stuck flaps. The current research

serves as a starting point for further investigation into the use of multiple flaps

for efficient aircraft control.
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Chapter 1

Introduction

Over the hundred years of aviation history, aircraft performance has improved

dramatically as a result of better understanding of various design issues. These

improvements include airfoil and wing designs, engine performance, flight control

technology, utility of new materials, and so on. This study focuses on one aspect

of improving airfoil and wing aerodynamics, which is an avenue to achieving better

aircraft performance.

1.1 Background

Traditionally, trailing-edge flaps (TE flaps) are used to achieve higher lift for take-

off and landing. In certain applications, however, they are also used for achieving

lower drag. The use of TE flaps for low drag is popular in high-performance

sailplanes. Known as cruise flaps, these devices enable achievement of low drag

over a wide range of flight speeds. Conceived first by Pfenninger3,4 in 1947, a

cruise flap, when used on a natural laminar flow (NLF) airfoil,5–10 enables adjust-

ment of the Cl range of the drag bucket so that laminar flow and the accompanying

low drag can be achieved at off-design Cl values. Since then, many NLF airfoils

have been designed to use cruise flaps.11 The use of multiple TE flaps along the

wing span has also been proposed by several researchers12,13 for drag reduction
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and wing-weight reduction.

Research projects in the NCSU Applied Aerodynamics Group has recently fo-

cused on the use of TE flaps on aircraft wings. These projects have resulted in

(i) automation of single and multiple TE flaps based on surface pressure mea-

surements,14,15 (ii) semi-analytical approaches to the determination of ideal flap

angles on a wing with multiple TE flaps,16 (iii) and the use of multiple TE flaps

to achieve low drag on tailless aircraft while satisfying the necessary pitching mo-

ment constraints.17 The results from these studies show that multiple TE flaps are

an efficient way to adapt a wing for different flight conditions. The current effort

builds on these past projects to explore the use of multiple TE flaps in efficiently

generating rolling moment on an adaptive wing.

The original idea of the adaptive wing came from the bird and insect flights.

These creatures are able to adjust not only the wing aspect ratio and wing loading

but also the spanwise twist on the wing to achieve optimal lift distribution. Fig 1.1

is a sketch drawn by Otto Lilienthal, which shows how the spanwise twist is

distributed on a wing for bird flight.

Figure 1.1: Adaptive wing of bird flight.1
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Theoretically, tuning the spanwise twist on a wing is the most accurate way

of generating the optimal lift distribution because each section of the wing can

deflect for desirable twist angle. However, it is still difficult for engineers to create

such a twistable wing mainly due to structural reasons. Instead, it is possible

to manufacture a wing with the multiple TE flaps which serves nearly the same

function as the twistable wing. A simple sketch of a wing with the multiple TE

flaps is shown in the Fig 1.2. These TE flaps are controllable individually just like

a bird adjusts the spanwise twist on the wing to generate the ideal distribution.

↑
multiple TE flaps

b/20

Figure 1.2: Schematic representation of the multiple trailing-edge flaps (right side
shown).

The adaptive wing can be used not only for producing the optimum lift distri-

bution, but also for aircraft control. Azuma18 studied the flight dynamics of flying

creatures and described the control with the use of adaptive wing. They trim the

body not by having horizontal and vertical tails, but adjusting the spanwise twist

on the wing. Recent research17 proved that this was possible with the multiple

TE flaps if they were placed on a swept flying wing. However, this research was

only for a longitudinal control. The current research work explores the use of

multiple TE flaps for roll control. Traditionally, the rolling moment is generated

by ailerons. The current work explores if multiple TE flaps can generate moment

3



with reduced induced drag. The current work is a first step in exploring the use

of distributed controls (TE flaps) for aircraft control.

In addition, the current work also explores the use of TE flaps for generating

rolling moment on a tailless aircraft, where the TE flaps have to also satisfy a

pitching moment constraint. With continued interest in tailless aircraft such as

the Blended-wing body (BWB) concept (Fig 1.3), it is worthwhile to explore the

efficient use of distributed controls on such configurations. Finally, one of the

benefits of using distributed controls is in the redundancy they provide in case

of failure of one or more components. Towards understanding this capability, the

current study also explores the efficient use of the distributed controls in the event

of a failure of one of the TE flaps.

Figure 1.3: Blended-wing-body (BWB) airplane concept.2

4



1.2 Outline of Thesis

This chapter has described a brief history of how the current research topic has

evolved from the previous studies. Also the motivation for conducting the current

research with the multiple TE flaps has been presented.

Moving forward, Chapter 2 describes the background information and method-

ology utilized in this research. First presented is the background information re-

lating to achievement of minimum induced and profile drag, as well as the concept

of additional and basic lift distributions and their superposition. Next section is

a derivation of the rolling moment equation for the multiple TE flaps, followed by

a brief description of the pitching moment constraint.

In the procedure section, minimization of induced drag without constraints is

first described. Then a single constraint of the rolling moment is described. In

the following section, the double constraints of the roll and pitch is presented.

Finally, for a case of the stuck flap, the equation is solved for the deflection angles

of the controllable flaps.

Results using the methodology are presented in Chapter 3 for several example

geometries. The first case is the single constraint of rolling moment. The lift

distributions are obtained for two types of wing and airfoil for different values of

the desired rolling moment. Then the results are shown for the double constraints

of roll and pitch for swept wings. Lastly, the lift distributions for the stuck flap

case on a straight wing are presented and discussed.

Chapter 4 presents brief conclusion of the research as well as some suggested

follow-on research.
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Chapter 2

Methodology

2.1 Background

In this section, background information is presented on well-known elements of

applied mathematics and aerodynamics that are used in the development of the

current method. Subsection 2.1.1 describes the theory of the relative extrema of

multi-variable functions with and without constraints. Subsection 2.1.2 describes

the derivation of the optimum flap angles for the rolling moment. Subsection 2.1.3

presents a brief review of the concept of basic and additional lift distributions.

Subsection 2.1.4 presents the induced drag of superposed lift distributions based

on Munk’s theorems. Lastly, Subsection 2.1.5 reviews the formulation of pitching

moment due to the multiple TE flaps.

2.1.1 Relative Extrema of Multi-Variable Functions with

and without Constraints

This subsection presents a mathematical technique for solving the minimum value

of a multi-variable function with and without constraints, which is discussed in

more detail in textbooks such as by Bryson and Ho.19 Consider a function, f(xi),

of several variables xi. The necessary condition for an extremum is that the first

6



derivative of the function with respect to every variable be zero, as follows:

∂f

∂xi

= 0 (2.1)

In addition, the sufficient condition for a minimum of f is that the Hessian

matrix, formed by elements ∂2f
∂xi∂xj

be positive definite.

For a case with equality constraints given by gj(xi) = 0, the problem is solved

by modifying the objective function using unknown Lagrange multipliers, λj, as

follows:

H = f(xi) +
K
∑

j=1

λjgj(xi) (2.2)

The relative extremum is found by setting the partial derivatives of H with

respect to xi and λj to be zero, as follows

∂H

∂xi

= 0 (2.3)

∂H

∂λj

= 0 (2.4)

2.1.2 Rolling Moment and Optimum Lift Distribution

The rolling moment is generated due to a different amount of total lift force pro-

duced between right and left sides of the wing. To analyze this moment explicitly,

first of all, the total lift force is derived using an element of the loading, dL.

Then the rolling moment due to the element of lift is calculated. This is shown in

Fig 2.1.

According to the definition in this figure, the rolling moment due to dL is

expressed as shown in Eqn 2.5.
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R (+)

dL

dy
y

y

z

Figure 2.1: Rolling moment due to dL (rear view).

dR = (−dL) · y (2.5)

The total rolling moment of an aircraft is obtained by integrating this element

of rolling moment for a whole span.

R = −
∫ b

2

−
b
2

(

1

2
ρV 2

∞

)

cClydy (2.6)

It is then non-dimensionalized and re-written as Eqn 2.7.

CR = − 1

Srefbref

∫ b
2

−
b
2

cClydy = − 2

Srefbref

∫ b
2

−
b
2

Γ

V∞

ydy (2.7)

This is the equation of the rolling moment coefficient, which is calculated from

the spanwise lift distribution. The equation is reformed further more to apply for

the multiple TE flaps in the Sec. 2.2.

In the remainder of this subsection, the theoretical optimum for spanwise

lift distribution for minimum induced drag with and without a rolling moment
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constraint is presented. For this derivation of the optimum lift distribution, the

standard solution procedure for lifting line theory is used. As described in several

textbooks such as Anderson,20 a coordinate transformation from y to θ is used:

y = − b

2
cos θ (2.8)

The spanwise distribution of bound circulation, Γ(y), is expressed in as a

Fourier series in θ as using N terms as:

Γ(θ) = 2bV∞

N
∑

n=1

An sin(nθ) (2.9)

For this representation, it can be shown that the lift coefficient CL, the induced

drag coefficient CDi
and rolling moment coefficient CR can be written in terms of

the Fourier coefficients as:

CL = A1π
b2

S
(2.10)

CDi
= π(AR)A2

1

[

1 +
N
∑

2

n

(

An

A1

)2]

(2.11)

CR = A2
πb2

4S
(2.12)

It follows, therefore, that for minimum CDi
at a specified CL, all Fourier terms

A2, A3, and higher are zero and the optimum lift distribution is

Γ(θ) = 2bV∞A1 sin θ = 2bV∞

(

CLS

πb2

)

sin θ (2.13)

which results in the well-known elliptical loading:

9



Γ(y) = Γ0

√

1 −
(

2y

b

)2

(2.14)

and the corresponding CDi
is

CDi
=

CL
2

πAR
(2.15)

When the rolling moment coefficient, CR, is also specified, the solution for

minimum CDi
is satisfied by all Fourier terms A3, A4 and higher getting set to

zero. The resulting lift distribution is

Γ(θ) = 2bV∞

[

A1 sin θ + A2 sin(2θ)
]

= 2bV∞

[

CL
S

πb2
sin θ + CR

4S

πb2
sin(2θ)

]

(2.16)

and the corresponding CDi
is

CDi
=

1

πAR

[

CL
2 + 32CR

2
]

(2.17)

2.1.3 Basic and Additional Lift Distributions

As it shown in the previous chapter, several ideas were studied to achieve a desir-

able lift distribution along the wing span. Some use geometric and aerodynamic

twist distributions and flap deflections.

The lift distribution is also affected by angle of attack, spanwise chord distri-

bution (taper), and wing sweep. The net distribution is determined by all of these

factors. Therefore, the distribution needs to be decomposed so that it can be an-

alyzed from different aspects. This is why the concept of basic and additional lift

distributions, discussed in Kuethe and Chow,21 is very useful. As per this concept,

it is found that the net Cl distribution can be expressed as a superposition of basic

10



and additional distributions as follows:

Cl(y) = Clb(y) + Cla(y) (2.18)

b/20

C
la

C
lb

C
l
 = C

la
 + C

lb

Figure 2.2: Basic and additional lift distributions.

The basic distribution is defined at wing CL=0, and it is determined by the

geometric and aerodynamic twist, the flap deflection, and a change of airfoil or

its camber along span.

Clb = Clb,twist + Clb,camber + Clb,flap (2.19)

The additional distribution, on the other hand, is the distribution when there

is no twist or flap deflection on the wing. It is also determined by wing CL, which

is a linear function of angle of attack if attached flow on the wing is assumed.

For this case, the wing CL is set to unity to obtain the Cla,1, then a desired CL is

substituted to calculate the additional distribution, as follows:

Cla = CLCla,1 (2.20)

It is necessary to mention here that both basic and additional distributions

11



are affected by the wing planform which are taper and sweep of the wing. The

concept of this superposition of these distributions is shown in Fig 2.2.

2.1.4 Induced Drag of Superposed Lift Distribution

It is well-known in wing aerodynamics that induced drag can be calculated through

the superposition of the lift distribution. Eqn 2.21 shows how the induced drag

is determined for a planar wing from the bound vorticity distribution, Γ(y), and

the associated Trefftz-plane downwash, w(y).

Dinduced =
ρ

2

∫ b
2

−
b
2

Γ(y)w(y)dy (2.21)

Using a small angle assumption, the Trefftz-plane induced angle of attack can

be written as:

αi(y) =
w

V∞

(y) (2.22)

From Kutta-Joukowski theorem, the lift force is expressed with the circulation,

which is shown in Eqn 2.23 or non-dimensionalized of Eqn 2.24.

L′(y0) = ρV∞Γ(y0) (2.23)

Γ

V∞

(y) =
cCl(y)

2
(2.24)

The induced drag coefficient is expressed and shown as Eqn. 2.25 based on

Eqn 2.22 and Eqn 2.24.

CDi
=

1

S

∫ b
2

−
b
2

cCl(y)αi(y)dy (2.25)
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The lift coefficient is also derived in the following Eqn 2.26 by the Kutta-

Joukowski theorem.

CL =
1

S

∫ b
2

−
b
2

cCl(y)dy =
2

V∞S

∫ b
2

−
b
2

Γ(y)dy (2.26)

Several theories of the induced drag were derived by Max Munk22 and one of

them states that the induced drag can be determined by adding the contributions

from the interaction of the elementary lift distributions and their corresponding

downwash distributions. Consider a wing with N TE flaps. Let the total lift

distribution be expressed as a superposition of the additional lift and N basic lift

distributions corresponding to the N flaps. With this approach, total induced

drag for that system can be written in terms of the contributions as follows:

Di = Daa +
N
∑

i=1

(Dai + Dia) +
N
∑

j=1

N
∑

i=1

Dij (2.27)

Munk’s mutual drag theorem23 aids to simplify such expression by saying that

the drag induced by element 1 on element 2 is equal to the drag induced by element

2 on element 1. Therefore, D12 = D21 and so on for all other elements. Also each

of these induced drag is non-dimensionalized based on the following equations.

Daa

q∞S
=

CL
2

2S

∫ b
2

−
b
2

cCla(y)αia(y)dy = CL
2CDaa

(2.28)

Dai

q∞S
=

CL

2S

∫ b
2

−
b
2

cCla(y)αii(y)dyδi = CLCDai
δi (2.29)

Dij

q∞S
=

1

2S

∫ b
2

−
b
2

cCli(y)αij(y)dyδiδj = CDij
δiδj (2.30)

Finally, the induced drag due to the N multiple TE flaps can be written as

Eqn 2.31.

13



CDi
= CL

2CDaa
+ CD11δ1

2 + · · · + CDNN
δN

2

+2CLCDa1δ1 + · · · + 2CLCDaN
δN + 2CD12δ1δ2 + · · · + 2CD1N

δ1δN

+2CD23δ2δ3 + · · · + 2CD2N
δ2δN + · · · + 2CD(N−1)N

δ(N−1)δN

(2.31)

2.1.5 Pitching Moment with Multiple TE Flaps

Recent work by Cusher and Gopalarathnam17 has explored the use multiple TE

flaps on tailless aircraft; where the pitching moment about the center of gravity

(CG) is constrained to be zero for pitch trim. This section presents some important

methods from that research.

Figure 2.3 shows the forces and moments applied to the reference section of

the wing. The moment at CG is affected by a moment occurs at the aerodynamic

center of a wing (neutral point: NP), and another moment due to an aerodynamic

lift force on the wing. This is shown in Eqn 2.32 where (Xac−Xcg)
c̄

is commonly

known as the static margin. It is noted that the value of the Cmacw
will depend

on the wing flap angles.

Cmcg
= Cmacw

− CL
(Xac − Xcg)

c̄
(2.32)

For the longitudinal trim of an airplane, the moment about the center of

gravity (CG) needs to be zero (Cmcg
= 0), so that the equation can be rewritten

as follows:

Cmacw
= CL

(Xac − Xcg)

c̄
(2.33)

Therefore, if the static margin and a desired CL of an aircraft are known, then

the required CMacw
can be calculated by this formula.

A fundamental equation for the pitching moment about the aerodynamic cen-
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Figure 2.3: Forces applied to the reference section representing the relationship
between pitching moments and SM.

ter of an aft-swept wing is shown in Eq. 2.34.

CMacw
=

1

Sc̄

{

∫ b
2

−b
2

Cmac
(y)c(y)2dy +

∫ b
2

−b
2

Clb(y)[Xac,wing − Xac(y)]c(y)dy

}

(2.34)

This equation simply explains that the total pitching moment of a wing at

the aerodynamic center is computed by summing two wing spanwise integrals of

(1) sectional pitching moment effect and (2) basic lift distribution multiplied by

its moment arm based on the wing aerodynamic center. For clarity, part (1) of

Eq. 2.34 is referred to as
(

CMacw

)

sections
, and (2) is referred to as

(

CMacw

)

basic
.

Then the equation is simply rewritten as indicated by Eq. 2.35.

CMac,w
=
(

CMacw

)

sections
+
(

CMacw

)

basic
= CL

(Xac − Xcg)

c̄
(2.35)

Each term
(

CMacw

)

sections
and

(

CMacw

)

basic
can be expanded due to several
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effects based on airfoil and wing properties. They are shown in the following

equations.

(

CMacw

)

sections
=

2

Sc̄







∫

b
2

0 Cmac
(y)c(y)2dy +

(

∫ y1
0 Cmδf1

c(y)2dy

)

δf1 + ... +
(

∫ y
N

y
N−1

CmδfN

c(y)2dy

)

δfN







(2.36)

(

CMacw

)

basic
=

2

Sc̄







































∫

b
2

0 Clb,twist(Xac,w − Xac(y))c(y)dy

+
∫

b
2

0 Clb,camber(Xac,w − Xac(y))c(y)dy

+
(

∫

b
2

0 Clb,δf1
(Xac,w − Xac(y))c(y)dy

)

δf1 + ...

+
(

∫

b
2

0 Clb,δf
N

(Xac,w − Xac(y))c(y)dy

)

δfN







































(2.37)

Previous adaptive wing studies16 have shown that it is convenient to define

the adaptive flap deflections of {δf} be the sum of two parts: (1) the mean flap

angle, δ̄f , which is constant along span,, and (2) the variation about the mean,
{

δ̂f

}

. Therefore, the adaptive flap deflection angle is a summation of these two,

as shown in Eq. 2.38.

{δf} = δ̄f +
{

δ̂f

}

(2.38)

Then the mean flap deflection is computed by the following equation for en-

abling operation of the wing in the low-drag range of the airfoil for low profile

drag.

δ̄f =
CL − CLideal

2 sin θf

(2.39)

where θf is the angular coordinate for the hinge location
xf

c
in radians as

described by Eq. 2.40.
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θf = cos−1
(

1 − 2
xf

c

)

(2.40)

One of the biggest strength in his research was to decompose these two equa-

tions in terms of the mean flap angle and the variation angle. In order to do that,

the terms due to the variation flap in the
(

CMacw

)

sections
needs to be zero, which

is shown as follows:

(

2

Sc̄

∫ y1

0
Cm ˆδf1

c(y)2dy

)

δ̂f1 + ... +

(

2

Sc̄

∫ y
N

y
N−1

Cm
δ̂fN

c(y)2dy

)

δ̂fN
= 0 (2.41)

This is called “weighting factor (WF) equation” which is solved when a calcu-

lation of the TE flap deflection angles is achieved. The details of the WF equation

are provided in the next subsection.

Based on these methods, final forms of the Eqn 2.36 and Eqn 2.37 are shown

as follows.

(

CMacw

)

sections
=

2

Sc̄
{ ∫

b
2

0 Cmac
(y)c(y)2dy +

(

∫

b
2

0 Cmδ̄f
c(y)2dy

)

δ̄f } (2.42)

(

CMacw

)

basic
=

2

Sc̄







(

∫

b
2

0 Clb,δ̂f1
(Xac,w − Xac(y))c(y)dy

)

δ̂f1 + ...+
(

∫

b
2

0 Clb,δ̂f
N

(Xac,w − Xac(y))c(y)dy

)

δ̂fN







(2.43)

2.2 Procedure

The focus of the current problem is to solve for the optimal flap distribution

resulting in minimized drag without and with constraints. There are several cases
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according to the constraints setup, and solution procedures for each case are shown

in the following subsections.

In the first subsection, a solution of the multiple TE flap deflection equation

without constraints is described. Second part presents a calculation with a rolling

moment control, which is a single constraint. Then the computation with multiple

constraint is described. The last section describes the stuck-flap analysis and its

calculation, which is the adaptive flap deflection computation when one of the

flaps is stuck at some deflection angle.

2.2.1 Minimization of Induced Drag without Constraints

According to the requirements of the relative extrema in subsection 2.1.1, the first

partial derivatives of the Eqn 2.31 were computed for variation flap angles, and

set to zero as shown in the Eqn 2.44.























∂CDi

∂δ̂1
= 2CLCDa1 + 2CD11 δ̂1 + 2CD12 δ̂2 + · · · + 2CD1N

δ̂N = 0

...

∂CDi

∂δ̂N
= 2CLCDaN

+ 2CDNN
δ̂N + 2CD1N

δ̂1 + · · · + 2CD(N−1)N
δ̂N−1 = 0























(2.44)

These equations are simplified and rewritten in a matrix form as follows:





















2CD11 2CD12 · · · 2CD1N

2CD21 · · · ...

...
. . .

...

2CDN1
· · · · · · 2CDNN



























































δ̂1

δ̂2

...

δ̂N







































=







































−2CLCDa1

−2CLCDa2

...

−2CLCDaN







































(2.45)

A square matrix with drag coefficients in the left hand side of the equation is

referred to here as the “drag matrix”. It is necessary to mention here that the

drag matrix is a singular matrix. In other words, the Eqn 2.45 cannot be solved
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with the matrix equation as shown. This is why the weighting factor equation is

applied to this to obtain the unique solution of the flap deflections.

The wing CL in the right hand side of the equation is the desired lift coefficient.

A vector with flap deflections is the output of the system which is the adaptive

flap deflections. Since the drag matrix and the right hand side vector can be

computed, the final goal of the flap deflections is obtained after applying the

weighting factor.

The weighting factor equation for the rolling moment constraint is now pre-

sented. Assuming that the flap to chord ratio being constants, the Eqn. 2.46 can

be derived for non-constant chord distributions and different flap spans.

δ̄f = δ̂1 ·
S1

Sref

+ δ̂2 ·
S2

Sref

+ · · · + δ̂N · SN

Sref

=
CL − CLideal

2sinθf

(2.46)

Now this weighting factor equation is applied to the system.





















2CD11 · · · 2CD1N

...
. . .

...

2CDN1
· · · 2CDNN

( S1

Sref
) · · · ( SN

Sref
)











































δ̂1

...

δ̂N























=







































−2CLCDa1

...

−2CLCDaN

δ̄f







































(2.47)

It is convenient to use a Vortex Lattice Method (VLM) or a panel method

for computing the elements of the drag matrix and the RHS. For this research, a

code called AVL (Athena Vortex Lattice)24 is used. Using the AVL, first of all, the

additional case was run and the lift and downwash distributions were obtained.

Then all basic cases with each flap deflections were computed.

Because of the use of AVL, the drag matrix with the drag coefficients as well

as ones in the right hand side can be computed based on Eqn 2.28, Eqn 2.29,

Eqn 2.30.
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2.2.2 Minimization of Induced Drag with Rolling

Moment Constraint

In order to utilize Eqn 2.7 for the adaptive wing with the basic and additional

loading theory, the Eqn 2.18 is applied as shown below.

CR = − 1

Srefbref

{
∫ b

2

−
b
2

cClbydy +
∫ b

2

−
b
2

cCLCla,1ydy} (2.48)

The additional distribution is a lift distribution with zero flap deflections and

zero spanwise twist on the wing. This means that the distribution is symmetric on

both sides of the wing. Therefore, the additional distribution has no contribution

to a production of the rolling moment. Also, this research focuses on the TE flaps

but not any twist or camber change along the span based on Eqn 2.19. Therefore

the Eqn 2.48 is rewritten as follows.

CR = − 1

Srefbref

{
∫ b

2

−
b
2

cClb,flapydy} (2.49)

1 2 ... ... (N−1) N

Figure 2.4: Adaptive flaps (top view).

Throughout this research the multiple TE flaps are numbered as shown in

Figure 2.4 which is numbered for the whole span. According to this setup, the

rolling moment equation (Eqn 2.49) is expressed as:
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CR = − 1

Srefbref

{(
∫ b

2

−
b
2

cClb,δ1ydy)δ1 + · · · + (
∫ b

2

−
b
2

cClb,δN
ydy)δN} (2.50)

According to Eqn 2.38, the flap deflection is decomposed as mean and vari-

ation terms. Also, the mean is constant along span and therefore, it does not

have a contribution in generating the rolling moment. Therefore, the equation is

rewritten as follows.

CR = − 1

Srefbref

{(
∫ b

2

−
b
2

cClb,δ̂1
ydy)δ̂1 + · · · + (

∫ b
2

−
b
2

cClb,δ̂N
ydy)δ̂N} (2.51)

The Eqn 2.51 is a final expression of the rolling moment equation due to the

multiple TE flaps. This equation is then used to as a constraint of the system of

the multiple TE flaps. The mean flap angle, which was explained in the previous

section, is a function of the weighting factor which shows the relative effectiveness

of each flaps.

Using the method of Lagrange multipliers (λ), as explained in Bryson and

Ho,19 the constraint equation, g, is the rolling moment equation of Eqn 2.51.

g(xi) = (CR)desired +
1

Srefbref

{(
∫ b

2

−
b
2

cClb,δ̂1
ydy)δ̂1 + · · · + (

∫ b
2

−
b
2

cClb,δ̂N
ydy)δ̂N} = 0

(2.52)

Finally, this method of Lagrange multipliers for the constraint is applied to

the system matrix of Eqn 2.47.
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



























2CD11 · · · 2CD1N

1
Sb

∫

b
2

−
b
2

cClb,δ̂1
ydy

...
. . .

...
...

2CDN1
· · · 2CDNN

1
Sb

∫

b
2

−
b
2

cClb,δ̂N
ydy

( S1

Sref
) · · · ( SN

Sref
) 0

− 1
Sb

∫

b
2

−
b
2

cClb,δ̂1
ydy · · · − 1

Sb

∫

b
2

−
b
2

cClb,δ̂N
ydy 0



































































δ̂1

...

δ̂N

λ







































=























































−2CLCDa1

...

−2CLCDaN

δ̄f

(CR)desired























































(2.53)

This is the final expression of the matrix equation with constraint. Then each

of the system with and without the constraints (Eqn 2.47, Eqn 2.53) are solved

for various wing configurations. Those results are shown in the next chapter.

2.2.3 Minimization of Induced Drag with Pitch and Roll

Constraints

In this section, the equations for dual constraints on rolling and pitching moment

are presented. The weighting factor equation is adapted from the work of Cusher

and Gopalarathnam.17 Just like the rolling moment constraint, the weighting

factor for pitching moment of Eqn 2.41 is applied to the system.
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(2.54)

This is a system without constraints from pitching moment standpoint. This

system will provide a very similar output with the one by Eqn 2.47.

The system with a single constraint of pitching moment is determined based

on Eqn 2.2 and Eqn 2.43.
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(2.55)

In the equation, ∆x represents the term Xac,w − Xac(y). There are two ways

of computing its output based on cases of reducing the induced drag only and the

one with profile drag. Cusher referred to these as Scheme A and Scheme B.

First of all, the static margin of an aircraft is set as well as a desired wing CL.

Then the wing pitching moment is determined by Eqn 2.33.

For the Scheme A, solve Eqn 2.54 for variation angles. Then the angles are
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substituted into the Eqn 2.43 to obtain (CMacw
)basic. Then the (CMacw

)sections can

be computed by Eqn 2.35. Finally the mean flap angle is found by Eqn 2.42 to

obtain the final flap deflection angles by Eqn 2.38.

For the Scheme B, the CLideal
is determined due to the airfoil selection. From

the obtained mean flap angle, the (CMacw
)sections is computed by the Eqn 2.42.

This enables to calculate (CMacw
)basic by Eqn 2.35. Finally the system of Eqn 2.55

is computed to obtain the total flap deflections of {δf}.

Since the single constraint of rolling moment has been applied to the system

as well as the pitching moment, two constraint of pitch and roll are applied to

the system so that it compute the adaptive flap deflections based on these two

constraints.

The multiple constraints are achieved based on the Eqn 2.2. To able to obtain

output for Scheme A and B of the pitching moment constraint, the rolling moment

equation is applied to both of Eqn 2.54 and Eqn 2.55.
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In which Rn = 1
Sb

∫

b
2

−
b
2

cClb,δ̂n
ydy, and Pn = − 2

Sc̄

∫

b
2

0 Clb,δ̂fn
∆xcdy for equation

simplicity.

25



These two equations are used for each scheme according to the previous sec-

tions of Sec 2.2.2 with the rolling moment requirement from Sec 2.1.2.

2.2.4 Optimum Loading with a Control Failure

The system matrix can also be solved when one of the flaps is stuck at a known

angle due to control failure. For this research only a single constraint of rolling

moment is considered.

First of all, the stuck flap was chosen as the xth which is between 1st and Nth

in the total number of N TE flaps. Noting that
∂CDi

∂δ̂x
is not set to zero, the system

matrix of Eqn 2.47 is modified as follows.

2CD11(δ̂1) + · · · + 2CD1x
(δ̂x) + · · · + 2CD1N

(δ̂N) = −2CLCDa1

...

2CD(x−1)1
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2CD(x+1)1
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(δ̂1) + · · · + Sx
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(δ̂x) + · · · + SN

Sref
(δ̂N) = δ̄f

(2.58)

Since the (δ̂x) is known, all the terms including this are moved to the right

hand side of the equation.
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(2.59)

These equations are now reshaped as the matrix form as follows.
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(2.60)

The size of the LHS matrix is (N)× (N − 1), the output deflection vector size

is (N − 1) × 1, and the RHS vector is (N) × 1. Therefore, the system can be
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solved.

For a case with a rolling moment control, the constraint equation is simply

added to this newly organized matrix as follows. In the equation Rn represents

the term 1
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(2.61)

Therefore, all the elements of the drag matrix are known as well as the elements

of the right hand side vector. This system can then be solved for the controllable

TE flap deflection angles.

If the number of stuck flaps are more than two, then the system matrix can

also be solved following the same steps with two known TE deflection angles. For

this research, again, only the one stuck flap case was analyzed.
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Chapter 3

Results

In this chapter, results for different test cases are presented and discussed. To

obtain the results, a few example wings are used, with dimensions and airfoil

selections shown in the Section 3.1.

Section 3.2 shows the results with a single constraint of rolling moment. Sec-

tion 3.3 shows the results for two constraints of rolling and pitching moments.

Section 3.4 shows some results for a single constraint of the rolling moment with

a stuck flap as an example of control failure.

3.1 Test Cases

Three kinds of wing shapes are used as examples for this research. The first

wing is a straight-tapered wing with the taper-ratio (λ) of 0.7, shown in Fig. 3.1.

This wing was used for a case of single constraint of rolling moment. The next

two wings are the swept-tapered-wing with the sweep (Λc/4) of 20 degrees and 35

degrees with the same taper-ratio, shown in Fig. 3.2. These two wings were used

for both single and multiple constraint cases.

Using these two wings, a hypothetical tailless aircraft was used as an sample

platform with characteristics displayed in Table 3.1. These characteristics were

determined based on the tailless aircraft analysis by Cusher and Gopalarathnam.17
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Table 3.1: Assumed parameter values for example tailless aircraft.

Static Parameters Value
Gross weight (W) 14,200 N

(3,200 lbf)
Mean aerodynamic chord (c̄) 1.01 m

(3.31 ft)
Reference area (S) 12.0 m2

(130 ft2)
Wing aspect ratio (AR) 12
Static margin (SM) 10 % c̄

Number of half-span TE flaps (N) 5
Flap-to-chord ratio (all flaps) 0.2

Variable Parameters Value
1
4

chord sweep angle (Λc/4) 20 deg
35 deg

Airfoil section NLF0824 (CAMBERED)
(Cm0 = −0.0802)
Reflex055 (REFLEXED)
(Cm0 = 0.055)

For each wing shape, two different airfoils were used which were the same

airfoils used in Ref. 17. The first airfoil is a cambered NLF airfoil which has a zero

lift pitching moment coefficient (Cm0) of −0.0802, and is labeled CAMBERED.

This airfoil has a well defined low drag range. The second airfoil is a reflexed

airfoil which was designed to have a positive Cm0 value of 0.055, and is named

REFLEXED. Figures 3.3 and 3.4 display the properties of these airfoils as

analyzed by XFOIL25 calculated at a Re
√

Cl of three million, as well as their

corresponding geometries.

Based on these wing and airfoil selections, there are four example cases for

a single constraint and four cases for multiple constraints case. Example Case

#1 − 1 is the CAMBERED airfoil for a straight-tapered wing. Example Case

#1 − 2 is the CAMBERED airfoil at Λc/4 = 35 deg of wing sweep. Example

Case #1 − 3 is the REFLEXED airfoil for a straight-tapered wing. Example
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Figure 3.1: Example planform for unswept tapered wing with 5 TE flaps per half
span.
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Figure 3.2: Wing planform for swept tapered wing with 5 TE flaps per half span:
(a) Λc/4 of 20 degrees and (b) Λc/4 of 35 degrees.

Case #1 − 4 is the REFLEXED airfoil with Λc/4 = 35 deg of sweep. For each

of these cases, the desired rolling moment coefficient values were set to CR=0.02

and CR=0.04 respectively. These desired values of CR were determined as the

rolling-moment coefficients for a generic transport aircraft with 5 deg and 10 deg

aileron deflections.

For the multiple constraint case, two examples are studied. Example Case

#2 − 1 is the CAMBERED airfoil at Λc/4 = 35 deg. Example Case #2 − 2

is the REFLEXED airfoil at Λc/4 = 20 deg. Each case were applied for both

SchemeA and SchemeB which is shown in Cusher17 with the two rolling moment

coefficient values. For the supplemental analysis of a stuck flap in Sec. 3.4, only

the straight-tapered wing with CAMBERED airfoil is studied. However, two

flaps were chosen as the stuck flaps and each case of data was taken with zero

and 10 degrees of the flap deflections. The two flaps were, one at the left wing
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Figure 3.3: CAMBERED airfoil: (a) Geometry and Cp distribution and (b) drag
polar at Re

√
Cl of three million.
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Figure 3.4: REFLEXED airfoil: (a) Geometry and Cp distribution and (b) drag
polar at Re

√
Cl of three million.
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tip, which is called Flap.1, and another located next to the wing root on the

right hand side of the wing, which is named Flap.6. For each case the two rolling

moment coefficient values were applied.

3.2 Rolling Moment Constraint

3.2.1 Example Case #1 − 1

The first case is the CAMBERED airfoil used on the straight-tapered wing plan-

form with no sweep angle shown in Fig. 3.1. The Cl distribution and drag polar

for each flap are shown in the Fig. 3.5. The desired rolling moment coefficient,

CRdesired
, is 0.02. Three Cl distributions for the different wing CL values of 0.2,

0.5, 0.8 are shown in the figure. For each distribution the total induced drag,

rolling moment coefficients, and mean flap deflection angles are shown on the left

in the plot. The distribution shown as a dash-dot line is the elliptical distribu-

tion. This distribution has no rolling moment because it is symmetric about the

wing root. The Cl distribution with a solid line is the optimum distribution which

was described in Sec. 2.1.2. The distribution with circle markers is the adapted

distribution achieved by using the multiple TE flap deflections. For each flapped

portion of the wing, the drag polar for that flap angle is plotted, to check if that

portion of the wing is operating within the drag bucket of the airfoil.

It is clear that the adapted distribution is very close to the optimum serves to

verify the theory of induced drag minimization with the rolling moment constraint.

The flap angles are listed in Fig. 3.5 for each CL. It is seen the flap angles are

all moderate and not high enough for flow separation to be a concern. It is also

seen that each portion of the wing is operating within the corresponding low-drag

range, resulting in minimum profile drag in addition to minimum induced drag.

Figure 3.6 shows a similar plot for CRdesired
=0.04.
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Figure 3.5: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 for Example Case #1 − 1.
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Figure 3.6: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 for Example Case #1 − 1.

34



Comparing the Fig. 3.5 and Fig. 3.6 it is found that a larger value of CRdesired

causes more induced drag due to a greater deviation from the elliptical lift dis-

tribution. However, the theory is based on the minimization of the induced drag

with the rolling moment control, so the amount of the drag increased is kept to a

minimum.

3.2.2 Example Case #1 − 2

The next case discussed is the CAMBERED airfoil used on the swept wing of

Λc/4 = 35 deg. The following plots in Fig. 3.7 Fig. 3.8 are the Cl distributions with

the drag polars for each corresponding flap each CRdesired
=0.02 and CRdesired

=0.04.
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Figure 3.7: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 for Example Case #1 − 2.

As it can be seen in those plots, the distributions for each rolling moment

values are similar to the the Example Case #1− 1. The maximum deflection was

δf=-15.0 deg at the CL = 0.8 with CRdesired
=0.04. This is due to a shape of the

wing. In other words, the straight-tapered wing achieves the optimum distribution
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Figure 3.8: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 for Example Case #1 − 2.

easily because the wing shape is much close to the elliptical wing than swept wing.

However, this amount of deflection is acceptable and the adaptive distributions

were successfully obtained.

3.2.3 Example Case #1 − 3

For this case the same wing geometry with the Example Case#1 − 1 of straight-

tapered wing was used but different airfoil which is the REFLEXED airfoil. The

following plots of Fig. 3.9 Fig. 3.10 are the Cl distributions with the drag polars

for this case.

It is found that the behavior of the drag polar is somewhat different with the

CAMBERED airfoils in the Example Cases of #1 − 1 and #1 − 2. As already

shown in the previous cases, the CAMBERED airfoil has a well-defined drag

bucket. The REFLEXED airfoil, however, has smaller drag bucket and the up-

per edge of the bucket is not very well-defined compared with the CAMBERED
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Figure 3.9: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 for Example Case #1 − 3.
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Figure 3.10: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 for Example Case #1 − 3.
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airfoil. Even though the drag bucket is smaller both CRdesired
=0.02 and CRdesired

=0.04

cases resulted in the Cl distributions being inside the bucket. It is also found that

the values of total induced drag are exact the same with the Example Case #1−1

with CAMBERED airfoil.

3.2.4 Example Case #1 − 4

The last case discussed is the REFLEXED airfoil used on the swept wing of

Λc/4 = 35 deg. Figures 3.11 and 3.12 are the Cl distributions for the CRdesired
=0.02

and CRdesired
=0.04 cases.
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Figure 3.11: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 for Example Case #1 − 4.

Comparing these two cases with the Example Case #1 − 2, it is also found

that the total induced drag for each cases are the same, which is expected because

the airfoil shape does not affect the induced drag of a wing.

38



−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

      

δ
f
=2.8

0 0.012

                        

      

δ
f
=7.5

0 0.012

                        

      

δ
f
=10.3

0 0.012

                        

      

δ
f
=10.1

0 0.012

                        

      

δ
f
=10.1

0 0.012

                        

      

δ
f
=6.6

0 0.012

                        

      

δ
f
=1.7

0 0.012

                        

      

δ
f
=−2.0

0 0.012

                        

      

δ
f
=−6.8

0 0.012

                        

      

δ
f
=−8.5

0 0.012

                        

      

C
L
=0.8

C
Di

=0.0180

C
R
=0.0397

δ
f
=3.6

C
l

C
d

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

      

δ
f
=−0.2

0 0.012

                        

      

δ
f
=5.4

0 0.012

                        

      

δ
f
=6.6

0 0.012

                        

      

δ
f
=5.8

0 0.012

                        

      

δ
f
=5.7

0 0.012

                        

      

δ
f
=2.2

0 0.012

                        

      

δ
f
=−2.6

0 0.012

                        

      

δ
f
=−5.6

0 0.012

                        

      

δ
f
=−9.0

0 0.012

                        

      

δ
f
=−11.5

0 0.012

                        

      

C
L
=0.5

C
Di

=0.0078

C
R
=0.0399

δ
f
=0.0

C
l

C
d

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

      

−6.0

δ
f
=−3.2

0 0.012

                        

      

−4.8

δ
f
=3.2

0 0.012

                        

      

−3.6

δ
f
=3.0

0 0.012

                        

      

−2.4

δ
f
=1.5

0 0.012

                        

      

−1.2

δ
f
=1.3

0 0.012

                        

      

0.0

δ
f
=−2.3

0 0.012

                        

      

1.2

δ
f
=−6.9

0 0.012

                        

      

2.4

δ
f
=−9.3

0 0.012

                        

      

3.6

δ
f
=−11.2

0 0.012

                        

      

4.8

δ
f
=−14.6

0 0.012

                        

      

6.0

C
L
=0.2

C
Di

=0.0026

C
R
=0.0401

δ
f
=−3.6

C
l

C
d

y(m)

Figure 3.12: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 for Example Case #1 − 4.

3.2.5 Comparison of the Induced Drag

The Example Cases #1 − 1 through #1 − 4 are compared with a sample wing

with ailerons. This analysis clearly shows how the theory of minimization of the

induced drag was succeed.

The sample unswept wing for a comparison with the Example Cases #1 − 1

and #1 − 3 are shown in the Fig. 3.13. The sample swept wing for a comparison

with the Example Cases #1−2 and #1−4 are shown in the Fig. 3.14. As shown in

the planform, the two TE flaps are located at the wing tip are set as the ailerons.

The same deflections are applied for both ailerons to obtain the desirable rolling

moment. Then the total induced drag at the rolling moment are recorded from

the AVL. Figure 3.15 through 3.18 shows the total induced drag of the wing

which was compared with each corresponding example case for a range of rolling

moment values.
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Left Aileron Right Aileron

Figure 3.13: Planform of a tapered wing with ailerons.

Λ
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=35°

Left Aileron Right Aileron

Figure 3.14: Planform of a swept wing with ailerons (Λc/4 = 35).
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Figure 3.15: Comparison of induced drag for the unswept tapered wing with
CAMBERED airfoil.
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Figure 3.16: Comparison of induced drag for the unswept tapered wing with
REFLEXED airfoil.
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Figure 3.17: Comparison of induced drag for the swept wing with CAMBERED

airfoil.
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Figure 3.18: Comparison of induced drag for the swept wing with REFLEXED

airfoil.

These figures clearly show that the increment in the induced drag is much less

for the wing with multiple TE flaps than for the wing with ailerons for all cases.

Therefore, it can be concluded that the induced drag can be minimized with the

desired rolling moment values using the multiple TE flaps.

3.3 Multiple Constraints of Roll and Pitch

3.3.1 Example Case #2 − 1

In this section, several cases with the dual constraints of rolling and pitching

moments are analyzed. The first case discussed is the CAMBERED airfoil used

on the swept wing with Λc/4 = 35 deg.

Figures 3.19 and 3.20 are the Cl distributions with drag polars for CRdesired
of

0.02 and 0.04 for SchemeA, in which there is no pitching moment constraint in

determining the flaps for minimizing induced drag, and trim is achieved using the

mean flap.
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Figure 3.19: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 for Example Case #2 − 1, SchemeA.
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Figure 3.20: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 for Example Case #2 − 1, SchemeA.
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As seen from Figures 3.19 and 3.20, at the higher CL, the Cl distributions

are not inside the drag bucket. This is because the mean flap is set for trim and

not for minimizing profile drag. The desired pitching moment of the wing (CMac
)

were achieved for both cases. The moment was determined by the static margin

of the tailless aircraft.

Fig. 3.21 and Fig. 3.22 are the plots for the SchemeB for the three values of

the desired rolling moment.
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Figure 3.21: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 for Example Case #2 − 1, SchemeB.

The major difference is that the Cl distributions for SchemeB are inside the

low drag range. This implies that the profile drag for the SchemeB is less than

the one for SchemeA. This is expected phenomena because in the SchemeB the

pitching-moment constraint is used in the minimization of induced drag and there

is no effect of pitch trim in the determination of the mean flap, which is set for

minimizing profile drag via drag-bucket control.

Comparison of the total induced drag between the two schemes for a range
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Figure 3.22: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 for Example Case #2 − 1, SchemeB.

of rolling moment is shown in Fig. 3.23. This plot shows that the induced drag

values for SchemeA and SchemeB are almost the same at small CL of 0.2, but

the the difference becomes clear at the higher CL. This is true at any values of

the desired rolling moment.

3.3.2 Example Case #2 − 2

The second example case is the REFLEXED airfoil used on the swept wing

with Λc/4 = 20 deg. The reason why the REFLEXED airfoil was chosen for this

wing because the smaller sweep angle makes it difficult to achieve the pitching

moment. If the sweep angle is larger, then the moment arm for the pitching

moment (distance from NP to each a.c. of the flap) also becomes larger. This

is why the wing with Λc/4 = 35 deg achieved the desired pitching moment with

the CAMBERED airfoil. This case of wing, however, it is hard to produce the

desired positive pitching moment. Therefore, the REFLEXED airfoil was used
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Figure 3.23: Comparison of induced drag from SchemeA and SchemeB.

so that the airfoil itself can produce the positive pitching moment to help achieve

the desired moment on the wing.

Figures 3.24 and 3.25 are the Cl distributions with the drag polars for SchemeA

at each desired rolling moment.

Since this is SchemeA some of the Cl distributions are not inside the drag

bucket. For example, at CL = 0.2, all the flaps did not result in the minimum

profile drag. This is again because the SchemeA was the minimization of the

induced drag only. However, the desired pitching moment at the N.P. was ob-

tained, just like the Example Case #2 − 1. Therefore, the tailless aircraft with

this adaptive flap deflections can be trimmed.

For SchemeB, the following plots in the Figures 3.26 and 3.27 show the Cl

distributions with drag polars for the two desired rolling moment values.

It is found that all the Cl distributions are obtained inside the low drag range.

At CL = 0.2, flaps located near the root required large amount of negative deflec-

tions. This is because the airfoil needs to generate the desirable pitching moment

as well as enable operation of the section inside the drag bucket. Total induced
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Figure 3.24: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 for Example Case #2 − 2, SchemeA.
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Figure 3.25: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 for Example Case #2 − 2, SchemeA.
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Figure 3.26: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 for Example Case #2 − 2, SchemeB.
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Figure 3.27: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 for Example Case #2 − 2, SchemeB.
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drag of this wing for both schemes are analyzed for a range of rolling moment in

the Fig. 3.28.
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Figure 3.28: Comparison of induced drag from SchemeA and SchemeB.

As it can be seen in the plot, there are significant differences in the induced

drag between the two schemes at CL = 0.2. This is already found from the

Figures 3.26 and 3.27 that the Cl distributions at this wing CL is way off from

the optimum distributions. This is only at the low wing CL. Once the wing CL

increases, the amount of the induced drag from the two schemes are closer.

3.3.3 Comparison of the Induced Drag

The Example Cases #2 − 1 and #2 − 2 are compared with a sample wing with

ailerons. This analysis clearly shows how the theory of minimization of the induced

drag is successful.

The sample wing for a comparison with the Example Cases #2−1 is shown in

the Fig. 3.14. It is the same sweep angle of Λc/4 = 35 deg with the CAMBERED

airfoil. As shown in the planform, the two TE flaps located at the wing tip are

set as the ailerons. The same deflections are applied for both ailerons to obtain
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the desirable rolling moment. Then the total induced drag is obtained from the

AVL. Figure 3.29 shows the total induced drag of the wing which was compared

with the Example Case #2 − 1 for a range of rolling moment.
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Figure 3.29: Comparison of induced drag from SchemeA and SchemeB and a
wing with ailerons.

The Figure 3.29 clearly shows how the total induced drag is reduced when

using multiple TE flaps. The rate of increment is obviously larger on the wing

with ailerons. At CL = 0.2 the induced drag for both SchemeA and SchemeB are

approximately the half of the value on the sample wing. This results showed that

the minimization of the total induced drag with the rolling and pitching moment

constraints are successfully achieved for the Example Case #2 − 1.

The sample wing for a comparison with the Example Cases #2 − 2 is shown

in the Figure 3.30. It is the same sweep angle of Λc/4 = 20 deg with the

REFLEXED airfoil. The aileron sizing is the same with the previous sample

wing. The comparison of the total induced drag is shown in the Figure 3.31.

The Figure 3.31 shows that the induced drag is higher on SchemeB than

the sample wing with ailerons at CL = 0.2. However, when the CL increases, the

SchemeB achieves less induced drag than the aileron case. The SchemeA achieves
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Λ
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Left Aileron Right Aileron

Figure 3.30: Planform of a swept wing with ailerons (Λc/4 = 20).
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Figure 3.31: Comparison of induced drag from SchemeA and SchemeB and a
wing with ailerons.
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the lowest induced drag because it is not under the consideration of minimization

of profile drag.

3.4 Adapted Distribution Due to a Stuck Flap

The results for control failure leading to a stuck flap are shown in this section.

The Figures 3.32, 3.33, and 3.34 are the Cl distributions with different desired

rolling moment when the Flap1 (a flap on the left wing tip) is stuck at zero degree

of deflection.
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Figure 3.32: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.00 when Flap1 is stuck with zero deflection.

The results clearly show that the adaptive flaps are still able to obtain the

desired rolling moment when the Flap1 is stuck with zero deflection. Obviously

this is because the stuck deflection of zero is very close to the actual adaptive

deflection. This is why the Cl distribution at this flap location is inside the drag

bucket.

52



−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

           

δ
f
=0.0

0 0.012

                        

           

δ
f
=6.3

0 0.012

                        

           

δ
f
=7.2

0 0.012

                        

           

δ
f
=6.7

0 0.012

                        

           

δ
f
=5.3

0 0.012

                        

           

δ
f
=4.5

0 0.012

                        

           

δ
f
=4.2

0 0.012

                        

           

δ
f
=3.1

0 0.012

                        

           

δ
f
=0.9

0 0.012

                        

           

δ
f
=−4.9

0 0.012

                        

           

C
L
=0.8

C
Di

=0.0173

C
R
=0.0197

δ
f
=3.6

C
l

C
d

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

           

δ
f
=0.0

0 0.012

                        

           

δ
f
=2.3

0 0.012

                        

           

δ
f
=2.7

0 0.012

                        

           

δ
f
=2.1

0 0.012

                        

           

δ
f
=1.1

0 0.012

                        

           

δ
f
=0.3

0 0.012

                        

           

δ
f
=−0.3

0 0.012

                        

           

δ
f
=−1.3

0 0.012

                        

           

δ
f
=−2.9

0 0.012

                        

           

δ
f
=−5.1

0 0.012

                        

           

C
L
=0.5

C
Di

=0.0069

C
R
=0.0198

δ
f
=0.0

C
l

C
d

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

           

−6.0

δ
f
=0.0

0 0.012

                        

           

−4.8

δ
f
=−1.6

0 0.012

                        

           

−3.6

δ
f
=−1.8

0 0.012

                        

           

−2.4

δ
f
=−2.5

0 0.012

                        

           

−1.2

δ
f
=−3.1

0 0.012

                        

           

0.0

δ
f
=−3.9

0 0.012

                        

           

1.2

δ
f
=−4.9

0 0.012

                        

           

2.4

δ
f
=−5.8

0 0.012

                        

           

3.6

δ
f
=−6.7

0 0.012

                        

           

4.8

δ
f
=−5.4

0 0.012

                        

           

6.0

C
L
=0.2

C
Di

=0.0015

C
R
=0.0199

δ
f
=−3.6

C
l

C
d

y(m)

Figure 3.33: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 when Flap1 is stuck with zero deflection.
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Figure 3.34: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 when Flap1 is stuck with zero deflection.
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The next following plots in Figures 3.35, 3.36, and 3.37 are cases when the

Flap1 was stuck with 10 degrees of deflection.
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Figure 3.35: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.00 when Flap1 is stuck at δf=10 deg.

As it can be seen in the plots, it was hard to obtain the drag polar at the stuck

flap of Flap1 since the flap deflection was too large. Because of this there would

be a large amount of profile drag due to the separation. However, the desired

rolling moment was also achieved with the reduced induced drag. This implies

that the adaptive flaps are still able to achieve the desired rolling moment when

the stuck flap has a large deflection angle.

Figures 3.38, 3.39, and 3.40 are the Cl distributions when the Flap6 (a flap

on right hand side next to the root) was stuck with zero deflection.

Since the deflection is zero, drag polars for the stuck flap were easily obtained.

At the CL = 0.5, the zero deflection seemed the appropriate adaptive flap de-

flection. Even for cases with CL = 0.2 and CL = 0.8, the stuck flap did not

affect much to the contribution of generating optimum distribution. Therefore,

54



−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

           

δ
f
=10.0

0 0.012

                        

           

δ
f
=2.6

0 0.012

                        

           

δ
f
=4.7

0 0.012

                        

           

δ
f
=4.7

0 0.012

                        

           

δ
f
=4.0

0 0.012

                        

           

δ
f
=3.8

0 0.012

                        

           

δ
f
=4.1

0 0.012

                        

           

δ
f
=3.6

0 0.012

                        

           

δ
f
=1.8

0 0.012

                        

           

δ
f
=−3.8

0 0.012

                        

           

C
L
=0.8

C
Di

=0.0181

C
R
=0.0197

δ
f
=3.6

C
l

C
d

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

           

δ
f
=10.0

0 0.012

                        

           

δ
f
=−1.4

0 0.012

                        

           

δ
f
=0.1

0 0.012

                        

           

δ
f
=0.1

0 0.012

                        

           

δ
f
=−0.3

0 0.012

                        

           

δ
f
=−0.4

0 0.012

                        

           

δ
f
=−0.5

0 0.012

                        

           

δ
f
=−0.9

0 0.012

                        

           

δ
f
=−2.0

0 0.012

                        

           

δ
f
=−4.1

0 0.012

                        

           

C
L
=0.5

C
Di

=0.0082

C
R
=0.0198

δ
f
=0.0

C
l

C
d

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

           

−6.0

δ
f
=10.0

0 0.012

                        

           

−4.8

δ
f
=−5.3

0 0.012

                        

           

−3.6

δ
f
=−4.4

0 0.012

                        

           

−2.4

δ
f
=−4.5

0 0.012

                        

           

−1.2

δ
f
=−4.5

0 0.012

                        

           

0.0

δ
f
=−4.6

0 0.012

                        

           

1.2

δ
f
=−5.0

0 0.012

                        

           

2.4

δ
f
=−5.3

0 0.012

                        

           

3.6

δ
f
=−5.8

0 0.012

                        

           

4.8

δ
f
=−4.3

0 0.012

                        

           

6.0

C
L
=0.2

C
Di

=0.0032

C
R
=0.0198

δ
f
=−3.6

C
l

C
d

y(m)

Figure 3.36: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 when Flap1 is stuck at δf=10 deg.
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Figure 3.37: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 when Flap1 is stuck at δf=10 deg.
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Figure 3.38: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.00 when Flap6 is stuck with zero deflection.
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Figure 3.39: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 when Flap6 is stuck with zero deflection.
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Figure 3.40: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 when Flap6 is stuck with zero deflection.

the adaptive flaps achieved the desired rolling moment with reduced induced drag

when the Flap6 were stuck with zero deflection.

The next plots of Figures 3.41, 3.42, and 3.43 are the cases of the stuck flap

with 10 degrees of deflection.

For this case also, it is difficult to obtain the drag polar for the stuck flap,

because the flap deflection is too large. However, the desired rolling moment was

obtained.

From these results shown in this section, it can be concluded that the adaptive

flaps are able to achieve its desirable rolling moment even though one of the flaps

is stuck at some deflection angle. If the deflection angle of the stuck flap were

large, then the wing would not be able to generate an attached flow around the

stuck flap. However, the rest of the controllable flaps can adjust to achieve the

rolling moment control.

This section only showed the single constraint of rolling moment, but the
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Figure 3.41: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.00 when Flap6 is stuck at δf=10 deg.

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

           

δ
f
=−0.1

0 0.012

                        

           

δ
f
=5.5

0 0.012

                        

           

δ
f
=6.6

0 0.012

                        

           

δ
f
=6.2

0 0.012

                        

           

δ
f
=4.4

0 0.012

                        

           

δ
f
=10.0

0 0.012

                        

           

δ
f
=3.1

0 0.012

                        

           

δ
f
=2.3

0 0.012

                        

           

δ
f
=−0.1

0 0.012

                        

           

δ
f
=−5.5

0 0.012

                        

           

C
L
=0.8

C
Di

=0.0176

C
R
=0.0197

δ
f
=3.6

C
l

C
d

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

           

δ
f
=−0.5

0 0.012

                        

           

δ
f
=1.2

0 0.012

                        

           

δ
f
=1.7

0 0.012

                        

           

δ
f
=1.3

0 0.012

                        

           

δ
f
=−0.5

0 0.012

                        

           

δ
f
=10.0

0 0.012

                        

           

δ
f
=−2.2

0 0.012

                        

           

δ
f
=−2.7

0 0.012

                        

           

δ
f
=−4.7

0 0.012

                        

           

δ
f
=−6.3

0 0.012

                        

           

C
L
=0.5

C
Di

=0.0081

C
R
=0.0198

δ
f
=0.0

C
l

C
d

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

Elliptical

Optimum

Adapted

b/2−b/2

                        

           

−6.0

δ
f
=−1.0

0 0.012

                        

           

−4.8

δ
f
=−3.1

0 0.012

                        

           

−3.6

δ
f
=−3.2

0 0.012

                        

           

−2.4

δ
f
=−3.6

0 0.012

                        

           

−1.2

δ
f
=−5.3

0 0.012

                        

           

0.0

δ
f
=10.0

0 0.012

                        

           

1.2

δ
f
=−7.6

0 0.012

                        

           

2.4

δ
f
=−7.7

0 0.012

                        

           

3.6

δ
f
=−9.2

0 0.012

                        

           

4.8

δ
f
=−7.0

0 0.012

                        

           

6.0

C
L
=0.2

C
Di

=0.0040

C
R
=0.0199

δ
f
=−3.6

C
l

C
d

y(m)

Figure 3.42: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.02 when Flap6 is stuck at δf=10 deg.
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Figure 3.43: Spanwise Cl distributions with flap-section drag polars and optimal
Cl distributions with CRdesired

=0.04 when Flap6 is stuck at δf=10 deg.

theory also can be applied for two constraints of the roll and the pitching moment.

In other words, the tailless aircraft with the multiple TE flaps would also be able

to satisfy the constraints in the event of a control failure. More than that, this

theory can be extended for a case with multiple flaps were stuck. Obviously it is

expected that if the number of stuck flaps increased then it would be difficult for

a wing to achieve the desirable moment control. However, if only a small number

of flaps have control failures, then the remaining flaps will be able to provide the

required redundancy.
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Chapter 4

Concluding Remarks

Building on recent research efforts in the use of multiple trailing-edge flaps on air-

craft wings, the current research explores the use of these flaps for efficiently gen-

erating rolling moments. By decomposing the spanwise loading using the concept

of basic and additional lift distributions and by using the theory of relative ex-

trema, a methodology was developed for determining the optimum flap angles for

minimizing drag at a specified lift coefficient while generating the desired rolling

moment. The system matrices needed for the solutions can be pre-computed and

stored. The computations involve solutions of simple matrix equations, which can

be easily accomplished even on a flight computer. The methodology has also been

applied to roll control on a tailless aircraft, in which the rolling moment has been

applied as a second constraint in addition to the pitching-moment constraint. The

results show that generating rolling moments using the optimum flap angles often

results in significantly less induced drag than when using ailerons.

For most aircraft and most missions, the fraction of the flight time during

which rolling moments are required is very small. For this reason, the reduc-

tion in drag achieved when generating a rolling moment with multiple TE flaps

is unlikely to result in significant improvements in performance or fuel burn of

transport aircraft. The current work may, however, provide strategies for notice-

able performance improvement on sailplanes and other aircraft for which turning
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flight and rolling into and out of turns is a considerable fraction of the flight du-

ration. The current work also serves as a stepping stone to studying the benefits

of distributed effectors for efficient aircraft control. Furthermore, the redundancy

provided by the multiple flaps may prove beneficial in the event of control failures.

As an exploration of such benefits, the current methodology was used to study

the situation in which one or more flaps are stuck at some angle due to failure.

The results provide confidence that the controllable flaps are able to compensate

for the stuck flaps. This exploratory work suggests that the topic is worth further

investigation in a follow-on research effort. Additionally, it is possible that the

use of multiple flaps may provide the capability to generate rolling moment with

minimum adverse yaw, leading to improvements in airplane handling. It is, there-

fore, recommended that the current study be extended to explore the adverse yaw

minimization with multiple flaps.
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