
ABSTRACT 

 

SELVADURAI, SANTTHOSH BABU. Implementing a Metasearch Framework with 
Content-Directed Result Merging. (Under the direction of Dr. Gregory T. Byrd.)  

 
A metasearch engine is a system that provides integrated access to multiple existing 

search engine mechanisms. Once a query is executed on a metasearch engine, the system 

passes the query to its participating component search engines, collects the individual results 

and merges them into a single ranked list. Metasearch engines increase the search coverage 

of the Web, help solve the extendibility issues in searching the internet, and improve the 

retrieval effectiveness, and consequently the relevance, of results.   

Result merging is a key constituent of metasearch engines. When results from several 

search engines are collected, the metasearch system has to merge them into a unified list. The 

effectiveness of the metasearch mechanism and the relevance of the result set are closely 

related to the result merging algorithm used.  

The purpose of this research is to build a flexible, general purpose metasearch 

framework and explore a content-directed result merging approach to rank results. Here the 

content-direction is provided to the framework by the user in the form of documents or text 

artifacts. 

A modular metasearch application programming interface (API) based on java has 

been implemented. The API framework provides interfaces and utilities to develop 

components of a metasearch system like segregators, scheduler, aggregators, and search 

service providers. A prototype metasearch engine has been built based on this framework to 

study the content-directed result merging algorithm. 
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Chapter 1 
 

INTRODUCTION 
 

Search engines are information retrieval mechanisms designed to find information 

stored on computer systems. They help users minimize both time for finding required 

information and the amount of information that must be consulted to solve problems. Most 

popular search engines are used to search the World Wide Web. Other kinds of search 

engines include enterprise search engines, personal search engines and mobile search engines 

[33]. These search mechanisms over the recent past have taken several dimensions like 

personalized search, sponsored search, collaborative search, mobile search and so forth.  

Finding desired information on the web in a timely and cost effective way is a 

problem of widespread interest. But very often users need to consult several disjoint search 

engines to meet their information needs other than regular web search, as the required 

information is scattered in several disjoint databases. Also the gap between the rate of 

information explosion on the web and the speed of search crawlers is constantly increasing 

[34]. A more concerning factor is the wealth of information that the deep web [1] hides from 

the web crawlers. Much of the deep web information has never been publicly indexed [35]. 

Most of these deep web contents are highly relevant to every information need, market and 

domain. Studies report the existence of thousands of special-purpose search engines on the 

web [1] which help us mine the deep web as well. Querying the right set of these individual 

engines to retrieve relevant information can be very time consuming and inefficient [36]. 

The solution to this problem is metasearch engines. A metasearch engine is a system 

that provides unified access to multiple existing search engines. A metasearch engine 
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generally does not maintain its own index of documents; instead it queries several 

participating search engines and aggregates their individual results into a unified result set, 

re-ranked based on the relevance to the query.  

Metasearch engines increase the search coverage, solve the extendibility issues in 

searching eclectic information sources, facilitate the invocation of multiple search engines 

and improve information retrieval effectiveness [2]. Building a metasearch engine involves 

several design and technical challenges, including database or component engine selection, 

query analysis, query scheduling or dispatch, rank aggregation and result merging [18]. 

Clearly, result merging is a key component of the metasearch system. The effectiveness of a 

metasearch system is closely related to the result merging algorithm it employs. Studies have 

shown that simple result merging strategies can outperform most popular web search engines 

[2]. 

In this thesis we develop a general purpose framework in Java to build metasearch 

engines, and use this system to evaluate a new type of result merging approach that deems to 

yield highly relevant results for user queries. The metasearch framework is highly modular 

and flexible. Component search engines can be added or removed on the fly. Any of the 

segregation (query preprocessing), aggregation (result merging), or scheduling modules can 

be dynamically changed at runtime to suit the context of the search. This dynamic nature of 

the framework helps us compare and evaluate the performance of individual search engines 

and different metasearch configurations. Component search engines are normally queried 

using Simple Object Access Protocol (SOAP) [37], Remote Procedure Calls (RPC) [37], 

XML-RPC (eXtensible Markup Language RPC) [37] or AJAX (Asynchronous JavaScript 

and XML) calls. Our metasearch framework primarily uses Apache Lucene [3], a feature 
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rich, open source, high performance, and cross-platform text search engine library to provide 

the necessary underlying infrastructure support.  Testing of the framework modules has been 

done using the JUnit [4] Library.  

We make use of this framework to study a new type of rank aggregation technique 

which we call content-directed result merging algorithm. In this, the user presets the 

perspective of his search by uploading a relevant document or by entering detailed 

description that can help the ranking mechanism to efficiently rank the metasearch result set. 

User feedback has been a key force to improving search result relevance [5], but this 

algorithm takes a radical approach by obtaining explicit user input and using it to arrange the 

results in the most relevant order unlike conventional user feedback based machine learning 

techniques [6].  

A prototype metasearch engine has been implemented based on the framework using 

Google Web Developer kit (GWD). The prototype is highly configurable, and it provides 

user interfaces to add and remove component engines, make simple queries and content-

directed queries by uploading the guide document or entering a descriptive text.  

We evaluate the performance of our content-directed result merging algorithm against 

similar result merging approaches and individual search engines by comparing the relevance 

of the obtained result set. Queries from TREC (Text REtrieval Conference) [18] Web Track 

standards are used for evaluation.  

Outline 

The outline of this thesis is as follows. 

Chapter 2 gives the information retrieval basics and an introduction about metasearch 

engines. The chapter explains the components of a metasearch engine, methods of querying 

3



several search engines, and technical challenges in scheduling, coverage, timeliness and 

relevance of results.  

Chapter 3 introduces rank aggregation and result merging, a key stage in metasearch. 

Different ranking algorithms and result merging strategies are discussed in this chapter. We 

propose a novel approach to ranking the metasearch result set using user-provided content-

direction.  

Chapter 4 explains the architecture of the proposed metasearch framework model.  

The chapter outlines the need for a metasearch framework, design decisions and grounds for 

exploiting content-direction in metasearch ranking. 

Chapter 5 presents the implementation specific details of the framework and the 

metasearch engine prototype that we have built to evaluate the performance of the content-

direction algorithm.  

Chapter 6 discusses in detail the problems in assessing search mechanisms, the 

evaluation strategy used for the framework and the content-direction technique. The chapter 

also provides detailed comparison results on the performance of our algorithm against 

individual search engines. 

* * * 
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Chapter 2 

METASEARCH ENGINES 

This chapter provides a brief overview of Information Retrieval (IR) systems, 

problems of scale and complexity in IR, metasearch engines, and their architectural 

overview.  

2.1 Information Retrieval Systems (IRS) 

2.1.1 Information Systems 

An Information System (IS) is a system of persons, data records and activities that 

process the data and information in a given organization, which may include manual 

processes and automated schemes. Computers have dominated information systems by aiding 

automation of information processing efforts. The four important computer based 

information systems [6] are Management Information Systems (MIS), Database Management 

Systems (DBMS), Question-Answering (QA) systems and Information Retrieval (IR) 

systems. 

 In the context of information systems, information retrieval can be defined as the 

process that deals with the representation, storage and access to documents or representatives 

of documents (document surrogates). The input information is likely to include natural 

language texts, document excerpts and abstracts. The output of an IR system is response to 

search requests, with each request containing a set of references. These references are 

intended to provide the users with information about items of potential interest. Information 
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retrieval has significant overlap with other information systems. Figure 1 illustrates the 

functionality and overlap of each information system with information retrieval systems. 

 

 
Figure 1.  Overlap among information system types [6] 

2.1.2 Functional approach to IR 

Several different information retrieval systems exist but most of them use a functional 

approach to IR. Figure 2 provides an illustration of functional overview of information 

retrieval. According to this approach, information retrieval system consists of three 

components, a set of information items (DOCS), a set of requests (REQS) and a set of 

mapping mechanisms (SIMILAR) [6].  In a retrieval process, the information items are first 

converted to a special form using a classification or indexing language (LANG). The 
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indexing language is either pre-specified (controlled) or taken freely from the text of the 

information items and information requests (uncontrolled) or sometimes a combination of 

them. Whichever type is used, an information item is usually assumed to be representable by 

a list of elements from the indexing language. 

 

Figure 2. Functional Overview of information retrieval [6] 
 

The mapping of information items to the indexing language is called the indexing 

process. The requests are also converted into a representation consisting of elements from 

LANG, referred to as the query negotiation process.   

Based on the elements of indexing language, procedures are setup to determine which 

information items are to be retrieved in response to a particular query. SIMILAR is the 

relation operator and retrieval function that determines the similarity of the various 

information items to a given request.   
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2.2 Search and retrieval 

2.2.1 Searching process 

A search process involves several steps. Figure 3 provides an illustration of how an 

informed user searching databases of information items that use controlled index languages 

can obtain optimal results [7]. 

 

Figure 3. Steps to perform an optimal search 
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One major task in the searching process relates to the coordination of terms (first four 

steps in flowchart) in order to formulate the actual search statement. The result of search 

depends largely on how adequately the search terms are combined. Boolean search 

techniques have been widely used since the beginning of computerized information retrieval 

[38].  

2.2.2 Retrieval models 

 Several information retrieval models have been proposed to study and improve the 

retrieval process. The IR models can be broadly classified into three groups; user-centric or 

cognitive models, system-centric models, and alternative models [38].   

 The cognitive models take a holistic view of information retrieval. Other than the 

retrieval mechanisms used in matching queries with stored information, they also take into 

account the ways in which the user information needs can be formulated as a query, the 

human-computer interactions that take place during the search process, the social and 

cognitive environments in which the process takes place and how the information is used by 

the user to meet specific information need.  

 The system-centric models provide an explicit statement on the workings of the 

information search and retrieval mechanism. They are based on logical and mathematical 

principles, such as Boolean search, Probabilistic retrieval and Vector processing [6, 7, 38]. In 

a Boolean search model, queries are compared with the term set used to represent document 

contents.  A probabilistic model does this comparison by computing relevance probabilities 

for the documents of a collection. The vector processing model represents both the 

documents and queries by term sets and compares global similarities between queries and 
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documents. The Best match searching and relevance feedback model (explained in section 

2.2.3) also falls under the system-centric category. 

 Alternative IR models have also been proposed which do not involve use of 

significant statistical analysis or probabilistic calculations. Two of the most popular 

alternative information retrieval models are the natural language processing model which 

performs syntactic, semantic and pragmatic analysis of the query consuming huge system 

resources and the hypertext model which requires a necessary hyperlinked structure of 

documents to identify order of relevance.  

2.2.3 Best match searching and relevance feedback model 

 Best match searching is aimed to produce a ranked output; hence it requires a method 

to measure the relative significance of retrieved items, which again requires some method of 

weighting search terms. A similarity measure is comprised of two major components: 1) a 

term weighting scheme that reflects the importance of a term by allocating numerical values 

to each index term in a query or document, and (2) a similarity coefficient which uses these 

weights to calculate the similarity between a retrieved item and a query.  

 A best match search matches a set of query words against the set of words 

corresponding to each item in the database, calculates a measure of similarity between the 

query and the item, and then sorts the retrieved items in order of decreasing similarity with 

the query [6]. This involves some quantitative measure of similarity between the query and 

each of the items in the file, and the ranking is formed on the basis of these similarities. 

Studies show that weighting schemes that use term frequency, collection frequency and 

vector length normalization tend to produce the best results [8, 9].  
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 The relevance feedback process is a controlled, automatic process for query 

reformulation, where the basic idea consists of choosing important terms attached to certain 

previously retrieved items that have been identified as relevant by the user, and enhancing 

the importance of these terms in the new query formulation [10]. In this case, an initial search 

is carried out to produce a ranked list of outputs, and the user inspects a few top-ranking 

documents to ascertain their relevance to the given query. The user’s relevance data enables 

the system to calculate a new set of weights that should reflect the importance of each query 

term more accurately. Studies have shown the relevance feedback process to be an 

inexpensive and effective way of reformulating queries based on previously retrieved 

relevant and non-relevant documents [10].   

This best match search and relevance feedback model is the most relevant to our work 

as it provides a theoretical foundation for our content-directed result merging algorithm. 

2.3 Metasearch Engines 

2.3.1 Motivation and Goals 

Quiet often, information needs of users are stored in the databases of multiple search 

engines; this applies to the Word Wide Web as well. The rate of information explosion on the 

internet is much higher than the rate at which web search engines index the web. It is 

becoming much harder for individual search engines to keep themselves up to date with the 

expansion of internet [1].  Also, users frequently require their search to cover personal or 

organizational databases along with the world wide web of documents.  
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It is highly inefficient and inconvenient for an ordinary user to manually invoke 

multiple search engines and identify useful documents from the returned result sets. To 

support unified access to multiple search engines, a metasearch engine can be constructed. 

The key motivation behind the construction of a metasearch mechanism is to increase the 

coverage and scope of search, handle the search of voluminous information efficiently, 

provide a single point of access for several search interfaces, and improve the retrieval 

effectiveness. 

In a session, a metasearch engine has to receive a query from the user, invoke 

underlying search engines (also referred as component search engines) with the user query as 

a parameter, retrieve information relevant to the query, unify the individual result sets into a 

single ranked list, and order them according to relevance. Different component search 

engines may accept queries in different formats; the user query may thus need to be 

translated into an appropriate format for each local system. Result sets are likely to be a list 

of document identifiers, such as Uniform Resource Locators (URLs) for web pages or 

documents, with a short description.  

2.3.2 Component Architecture  

Apart from the underlying search engines, a metasearch mechanism has four primary 

software components: a database selector, a document selector, query dispatcher and a result 

merger. Reference software component architecture of a metasearch engine is illustrated in 

Figure 4. The numbers on the edges indicate the sequence of actions for a query to be 

processed.  
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Figure 4. Metasearch Component Architecture 
 

The problem of identifying potentially useful databases to search for a given query is 

known as database selection. Database selector component is responsible for database 

selection for each query, thereby avoiding wasting of resources in searching irrelevant data 
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sources. The role of database selector is more pronounced when there is a long list of 

component engines that need to be queried. Database selection is not an issue when querying 

public databases like the internet search engines or a minimal set of data sources unless there 

are severe performance concerns. 

The query dispatcher is responsible for establishing a connection with each selected 

search engine and passing the query to it. The original query may need to be translated to a 

new query before being sent to a component search engine. For example, the query input to 

the metasearch engine may be Boolean or vector space queries, while the component engines 

may be serving heterogeneous information [11] in different types and formats. Query 

dispatcher may also try to adjust the relative weights of query terms in the original query to 

fetch optimal results.  

Result merger combines the results into a single ranked list. This component has the 

most impact on retrieval effectiveness. The relevance ordering of documents is directly 

related to the ranking algorithm used by the result merger. An ideal result merger would rank 

all the returned documents in descending order of their global similarities with the user 

query. We shall discuss several result merging algorithms in the next chapter.  

2.3.3 Heterogeneity 

One of the serious challenges in designing a metasearch engine is the management of 

complexities involved with the heterogeneous environments of component search engines. 

Each component search engine many have its own indexing method, document term 

weighting scheme, query term weighting scheme, similarity function, document database, 

document versions and result presentation schemes.  
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Heterogeneity posts two major challenges with respect to database selection 

algorithms. One is to identify appropriate representatives that permit fast and accurate 

estimation of database usefulness. At the same time the representatives should be small in 

comparison to the size of the database, and should be easy to obtain and maintain. Our work 

does not deal with database selection, so we will not be discussing this in detail.  

The result merging also faces issues due to heterogeneity of the component engine. 

The main problem is that the same document may have different global and local similarities 

with a given query. For example a document listed as highly relevant by a component search 

engine (local similarity) may be categorized as low relevance document when compared with 

results from other search providers (global similarity). Result merging techniques have to 

find ways to estimate the global similarities of documents so that documents returned from 

different component search engines can be properly merged.  

In the next chapter we examine the techniques that have been proposed to deal with 

problems in result merging which is one of the key focuses of our research. 

* * *
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Chapter 3 

 

RANK AGGREGATION & RESULT MERGING 

3.1 Foundations  

Traditional result merging techniques have been focusing on normalization of scores 

[11, 12] to make them more comparable across different search engines and thereby 

uniformly ranking the retrieved results. But these techniques require the component search 

engines to provide the local scores.  

In the context of metasearch engines, a voting-based result fusion called as Borda 

count [13] is more appropriate. In Borda count, each component search engine is considered 

a voter that has a specified number of votes or points, and each returned result is considered a 

candidate. Each voter’s top ranked candidate is assigned n points (where n is the number of 

candidates), the second top ranked candidate is given n-1 points, and so on. For candidates 

that are not ranked by a voter (i.e. the result candidate was not retrieved by corresponding 

search engine), the remaining points of the voter will be evenly divided. The results are then 

ranked in descending order of the total reported. For Borda count to be efficient each voter 

has to return a large number of results (in hundreds) and also the voters need to have 

substantial overlap among the retrieved results. There are also schemes that take search 

engine usefulness into consideration like D-WISE [21]. 

All these require some data to be collected from each component search engine 

before hand. This is not applicable in a metasearch context where a component engine can 
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join the metasearch on the fly. Therefore our research focuses only on result merging 

approaches without collecting any sample data in advance from component search engines. 

The result records returned from today’s search engines are referred to as Search 

Result Records (SRRs). A typical SRR contains the URL, title and summary (snippet) of the 

retrieved document. Some of the earlier works [15, 16] have focused on utilizing the SRRs to 

gauge the relevance of the results, but these works primarily focus on merging news results 

rather than general purpose search results.  

The most effective result merging methods uses a combination of evidences from 

document title, snippet and the search engine usefulness [16]. First, for each SRR the 

similarity between the query and its title and the similarity between the query and its snippet 

are computed; then the two similarities are linearly aggregated to rank the result. In the next 

section we discuss a list of such rank aggregation methods, followed by a brief description of 

our content-directed result merging strategy. 

3.2 Merging Algorithms 

3.2.1 Top Document search engine score (TopD) 

Let Sj represent the usefulness score of search engine j with respect to query Q. The 

TopD method requires the document frequency of every term be collected in advance. Here 

document frequency of term refers to the number of times a particular term appears in the 

document. TopD algorithm uses the similarity between Q and the top ranked document 

returned from search engine j (denoted as d1j) to estimate Sj. This ranking assumes the 

highest ranked document to be the most relevant to the user query based on the search 
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engine’s ranking criteria. The similarity functions used for comparison can be Cosine1 [15] 

or Okapi2 [14]. Once Sj is computed the ranking scores (rsij) can be computed using the 

expression  

 rsij = 1 – (ri – 1) * Smin / (m*Sj) …(1) 

 

Here m is the total number of documents desired, Smin is the smallest search engine 

score among all search engines selected for this query, and ri is the local rank of a document i 

returned from search engine j. 

The technique is not very effective, as the top ranked document needs to be retrieved 

from the local server for the merging process. Also the rank of top ranked results from all 

used search engines will be the same, therefore one needs to compute adjusted ranking scores 

by multiplying the ranking scores computed by Sj. If a document is retrieved by multiple 

search engines, we need to compute its final ranking score by summing up all the adjusted 

ranking scores.  

3.2.2 Top SRR based search engine score (TopSRR) 

TopSRR uses each component search engine’s top n returned Search Result Records 

(SRRs), instead of the top ranked document, to estimate the search engine score Sj with 

respect to the query Q. This is done with the intuition that the SRRs are representative of the 

original documents. Specifically, all the titles of the top n SRRs from search engine j are 

merged together to form a title vector TVj, and all the snippets are also merged into a snippet 

vector SVj. The similarities between query Q and TVj and between Q and SVj are computed 
                                                 
1 Cosine similarity function compares each term weight in the query with the term frequency in the document 
2 Okapi similarity function considers the weighted sum of Okapi weights for terms with the query and document. 
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separately and then aggregated into the score of search engine j. This search engine score is 

computed as 

 Sj = c1 * Similarity (Q, TVj) + (1-c1) * Similarity (Q, SVj) …(2) 

 

Where c1 is a constant and Similarity function can be either Cosine or Okapi. 

3.2.3 Simple Similarity rank between SRR and query (SRRSim) 

The SRRSim ranking scheme directly computes the rank of documents using SRRs, 

instead of first computing the search engine scores and then the individual document ranks. 

The SRRSim uses the fact that the SRR is representative of the corresponding full document; 

thus one can rank SRRs returned from different search engines based on their similarities 

with the query directly, using the right similarity function. 

 The similarity between SRR R and query Q is computed as the weighted sum of 

similarity between the title T of R and Q and the similarity between the snippet S of R and Q. 

 Sim(R,Q) = c2 * Similarity(Q,T) + (1- c2) * Similarity(Q,S) …(3) 

 
If a document is retrieved from multiple search engines with different SRRs, then the 

similarity between the query and each such SRR will be computed and the largest one will be 

used as the final similarity of this document with the query for result merging. 

3.2.4 Compound similarity rank between SRR and Query (SRRSimMF) 

All the previous ranking algorithms propose metasearch engines to use only the 

similarity functions to determine the relevance of documents against the given query. They 
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do not take the proximity, frequency and ordering of terms into consideration. The impact of 

order and proximity of information in the result ranking is important and obvious. To better 

rank SRRs, this algorithm takes several features with respect to the query terms, like the 

number of distinct query terms appearing in the title and the snippet (NDT), the total number 

of occurrences query terms in the title (TNT) and the snippet (TNS), the location of the 

occurred query terms (TLoc), ordering and adjacency information (ADJ), and the window 

size containing the distinct occurred query terms (WS). To quantify the matches based on the 

different features identified above the SRRSimMF algorithm aggregates the scores into 

numeric values based on the following expressions 

 Similarity = TNDT * ( c3 * Sim(T,Q) + (1-c3) * Sim(S,Q)) / QLEN …(4) 

 
TNDT is the total number of distinct query terms appeared in title and snippet 

QLEN is the length of the query 

 
Optimal value of c3 is 0.2 computed using a genetic algorithm [19], intuitively this means 

that lesser significance is given to the similarity between title and query and more 

significance is placed on the similarity between the query and the description.  

 Sim(T,Q) = STNDT + (W1 * SADJ + W2 * SWS + W3 * STNT) / QLEN …(5) 

 Sim(S,Q) = SSNDT + (W1 * SADJ + W2 * SWS + W3 * STNS) / QLEN …(6) 

 STNDT = No. of Distinct Query Terms (NDT) that match TITLE / QLEN …(7) 

 SSNDT = No. of Distinct Query Terms (NDT) that match SNIPPET / QLEN …(8) 

 STNT = Count of matching terms in Title (TDT) / Title Length (TITLEN) …(9) 

 STNS = Count of matching terms in Snippet (TDS) / Snippet Length (SLEN) …(10) 
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 SWS =(Title/Snippet length – Window Size) / (Title/Snippet length)  …(11) 

 SADJ is set to 1 if the ordering is same in query and title/snippet otherwise the value is 0  

 W1, W2  and W3 are weights for each of the terms  

 

Previous study [18] has shown that the window size and adjacency information offer little to 

the similarity calculation and they are computationally expensive, hence they can be safely 

ignored without much loss of similarity mapping. Equations (5) and (6) become 

 Sim(T,Q) = STNDT +  (STNT / QLEN) …(12) 

 Sim(S,Q) = SSNDT + (STNS / QLEN) …(13) 

 
Equations (11) and (12) are the ones used in actual implementations.  

3.3 Content-direction 

3.3.1 Motivation 

All general purpose search engines have a ceiling on the query length for 

performance reasons, which limits the effectiveness of the similarity functions and the 

relevance of retrieved results. Most times there isn’t enough information to judge the 

relevance between the query and the retrieved results. The best match searching and 

relevance feedback model discussed in section 2.2.3 show the importance of query 

reformulation for effective retrieval of matching results. Reformulation is an automatic, 

controlled process which chooses important terms attached to certain previously retrieved 

items that have been identified as relevant by the user (referred as guide artifacts) and 

enhances the importance of these terms in the new query [9]. Studies have shown the 
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relevance feedback model to be very effective, but query reformulation has a significant 

computation and complexity overheads. Instead of query reformulation, we suggest the use 

of a guide artifact for similarity analyses in conjunction with the query and SRR to rank the 

results.  

3.3.2 Content-Directed Result merging algorithm (CDRM) 

In this algorithm, the user specifies a guide artifact, typically a document relevant to 

the field or domain or namespace in which the user is performing the search. When the 

results are retrieved from several component search engines, a similarity analysis of the 

SRRs is done as in SRRSimMF, including both the query and the guide document. The guide 

document supplements the relevance information that is missing in the limited query terms 

for making informed decisions. A guide document can have thousands of distinct terms, and 

its size is only limited by the performance. Like the query, the guide document is compared 

with result titles and snippets individually, and the scores are aggregated to compute the rank. 

For CDRM the similarity function is computed as 

 
Similarity = [TNDT * ( c3 * Sim(T,Q) + (1-c3) * Sim(S,Q)) / QLEN] + 

[TNDTGuide * ( c3 * Sim(G,T) + (1-c3) * Sim(G,S) / (TITLEN + SLEN)] …(14) 

Here,  
 
TNDTGuide is the total number of distinct query terms appeared in guide document  

 Sim(G,T) = SGTNDT +  (SGTNT / TITLEN) …(15) 

 Sim(G,S) = SGSNDT + (SGTNS / SLEN) …(16) 

 SGTNDT = No. of Distinct Title Terms (NDT) that match GUIDE / TITLEN …(17) 
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 SGSNDT = No. of Distinct Snippet Terms (NDT) that match GUIDE / SLEN …(18) 

 SGTNT = Count of matching guide terms in title (TDT) / TITLEN …(19) 

 SGTNS = Count of matching guide terms in snippet (TDS) / SLEN …(20) 

 

As in the SRRSimMF we ignore the location and adjacency information. Even with a 

reasonably-sized guide document, computing location and adjacency features can be 

expensive, and these tend to have little effect on the relevance ranking for a little set of 

results [18]. These information features are more relevant when there is a huge volume of 

results to be ranked, which is typically not the case with a general purpose metasearch 

engine. 

3.3.3 Use Cases 

To better understand the effectiveness of CDRM in retrieving relevant results, let us 

look at some use cases. 

1. When a computer engineer working on the architecture of memory buses tries to use a 

general purpose search engine to search the query term ‘bus’, he indeed refers to memory bus 

or the ones used in computer to perform data transfer. A general purpose retrieval mechanism 

would retrieve documents pertaining to vehicle buses, which are totally irrelevant to the 

context of memory buses. Using a CDRM, the engineer will be able to present the namespace 

of the search as computing in the form of a relevant document, and all the results to his 

queries will be compared with the guide for relevance before being ranked for presentation. 
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2. When a manufacturer queries a web search engine for ‘black belt’, he is likely to be 

flooded with documents that relate to the one worn around the waist to support clothing or a 

level of proficiency with martial arts, whereas his actual intention is to retrieve documents 

pertaining to Six Sigma. By providing a relevant Six Sigma document as guide, the 

manufacturer will be able to narrow his search to the namespace of his choice using CDRM 

and retrieve better matching results. 

* * * 
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Chapter 4 

ARCHITECTURAL FRAMEWORK 

This chapter provides details on the architectural framework proposed for building 

metasearch engines with support for dynamic configuring of component search engines and 

content-directed result merging. 

4.1 Requirements 

A framework that supports building of metasearch engines that can handle eclectic 

information sources and still maintain integrity has to be highly modular; provisions for 

database selection, query reformulation, workload management, scheduling, result merging, 

re-ranking and dynamic reconfiguration should be present. Extending the framework to 

support new communication protocols should be easy. Facilities to support addition or 

removal of components and dynamic switching of component parameters should be 

available. Framework should provide architectural support for feedback techniques like 

content-directed result merging and be flexible enough to extend support for unstructured 

information sources like multimedia. The architecture should lend itself well to realizing the 

metasearch engines in a parallel or clustered environment. The framework should have an 

integrated exception handling mechanism and a unified logging scheme. 

4.2 Design 

With the aforesaid requirements in mind, we propose a simple to use, flexible 

metasearch framework, consisting of four components: segregator, scheduler, aggregator, 
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and search providers. The configuration of the metasearch engine is maintained in an XML 

document. Making use of a standard representation scheme like XSD (XML Schema 

Document) to specify the configuration keeps the complexity levels under control yet 

provides a powerful way of extending the features of the framework. 

 The input to the engine or the query will be a data artifact, which can take several 

forms including documents, data streams, literals, etc. The output of the engine is an XML 

document that can be rendered as a data mash up presented over a user interface (UI) of 

choice. Figure 5 illustrates the metasearch processing using a block diagram 

 

Figure 5. Metasearch Framework 
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4.2.1 Query Segregator 

First the data artifact flows into the segregator component which takes the data 

artifact from the user as input and optionally divides it into manageable pieces based on size 

and nature of content. A more feature rich segregator may go beyond simple tokenization and 

will provide support for syntactic parsing, named entity detection, classification, 

summarization and translation. Segregator implementations will leverage the functions of 

existing open source search frameworks to build sensible sub-queries for the scheduler 

component. For example when it comes to text content in the artifacts, we can use Apache 

Lucene [3] to extract well-formed queries out of the textual content. If no query 

preprocessing or reformulation is intended, then we can use a segregator stub to just forward 

the query to the scheduler, which is the next component.  

4.2.2 Query Scheduler 

The second component of the metasearch processing is the scheduler. Scheduler is 

essentially a query manager which takes preprocessed input artifact from the segregator and 

schedules the search on several configured data sources in parallel. Scheduler is highly 

configurable by the users as they can choose the repositories they would like to search by 

including or excluding them from the configuration document and specify variety of options 

for each search provider. An advanced scheduler can go beyond simple literal scheduling and 

provide support for media content as well; in such a case, scheduler has to be aware of the 

search providers that support the required media formats. The results from the individual 

search providers are gathered and forwarded to the aggregator for post processing, which is 

essentially rank aggregation and result merging. The input artifact is also forwarded in its 
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original form to facilitate re-ranking. Because turnaround time of search providers can vary 

significantly, synchronizing the dynamic search provider threads can be the most challenging 

aspect of the scheduler design. In order to meet the performance goals, the scheduler may use 

an underlying GRID or cluster to schedule search tasks over a distributed infrastructure.  

4.2.3 Result Aggregator 

Aggregator takes care of collating the results into a consolidated result set. Other 

responsibilities of aggregator may include elimination of irrelevant contents and duplicates 

(filtering), and reformatting the contents. In addition, aggregator is the component where 

optional re-ranking of results can be performed using a feedback technique like click-through 

data or content guidance; in such a case, aggregator acts as the inference engine by 

categorizing the content and establishing relationships between the source and the search 

results from different parts of the content. Several advanced features have to be incrementally 

added to the aggregator to refine the result set. The aggregator also takes care of packaging 

and formatting the source and extracted result set into a standard output format, like XML, 

that can be easily cast by web or application user interfaces. 

4.2.4 Search Provider 

Search providers are components which accept a set of query artifacts and return local 

search results in a standard format. Providers can take the form of extensions to database 

driver implementations, which help retrieving structured information from databases, or 

adapters to search indexes built over a set of unstructured documents by applications based 

on Lucene, or drivers to a content repository like Apache Jackrabbit [32] or even web 
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services that provide definitions or search facilities over public databases [27]. The 

framework delegates the communication and protocol management to the data source 

adapters there by providing easy interfaces to extend the framework for diverse information 

sources.  

4.3 Comparison with Component Architecture 

In comparison with the general metasearch component architecture (discussed in 

section 2.3), we can observe that the database selector and document selector roles are 

fulfilled by the parameters in the framework configuration file. This helps reduce the 

complexity of designing complex database and document selector modules and keeps the 

implementation simple. The query dispatcher role is taken over by the scheduler component 

and result merger role by the aggregator. The segregator serves to support the framework 

configuration in document selection and query preprocessing. The service providers are the 

interfaces to the search engine repositories.  

In the next chapter we will explain the reference implementation based on this 

architecture and a prototype metasearch engine that we have built using the reference 

implementation. 

* * * 
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Chapter 5 

IMPLEMENTATION 

This chapter deals with the implementation details pertaining to the metasearch 

framework. We first discuss the infrastructure used, and then get into the details of the 

component implementations and content-directed result merging, and finally, describe a 

metasearch prototype based on the reference implementation. 

5.1 Implementation Infrastructure 

The framework and all involved components have been developed using Java 

programming language in Eclipse environment. The object oriented features of Java helps to 

keep the framework flexible and easy to extend. Eclipse [24] plug-in architecture provides an 

integrated development environment for Java and necessary library support for the 

development. Figure 6 provides a brief overview of the infrastructure implementation. 

 Quiet often component search engines are made available to the user community in 

the form of web services. Search service providers issue Web Service Description Language 

documents (WSDL) that details the types and functions available through the service. We 

have used Apache Axis2 [25], which is a robust web services engine, to provide the 

necessary infrastructure support for creating service clients to access component search 

services.  
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Figure 6. Implementation Infrastructure 
 

Apart from web services, we also make extensive use of Java’s networking libraries for 

service provider communications.  

We also make extensive use of XML documents inside the framework. Most of the 

document exchanges with service providers render XML documents. Also the configuration 

and result schema documents are in XML format. To facilitate the development and upkeep 

the maintainability of the framework we have used the Java and XML Binding (JAXB) 

reference implementation [26] to bind XML schema documents into classes and objects. This 

helps us focus on the algorithms rather than the exchange formats and schema standards.  

Apache Lucene [3] provides the necessary indexing and text search support for our 

framework. Lucene is a high-performance, cross-platform, full featured text search engine 
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library. We use its functionality to remove redundant and unnecessary terms and literals from 

the query, and especially in content-direction.  

 For unit testing we have used the JUnit [28] framework. Through the support 

provided by this framework we have developed individual test cases for most of the 

components and have developed some test suites that test the entire system. Performance 

evaluations are done using the JUnit tests.  

Java documentation (javadoc) utility is used to generate API (Application 

Programming Interface) documentation for the framework. Google Web Developer Toolkit 

(GWT) [29] is used to generate AJAX user interface for the prototype. Portable Document 

Format (PDF) support is provided by the PDFBox [31] library. Reporting infrastructure is 

provided by the JExcelAPI [30]. 

Apache Log4J is used for logging in the application and Subversion is used for 

version control.  

5.2 Framework 

 A metasearch operation can be initiated by creating an object to the DREFramework 

class, setting a valid configuration to the framework object in the form of input XML 

configuration document or DREConfiguration object and invoking the processArtifact() 

method. The configuration is automatically validated while it is being set. Framework 

exceptions are internationalized and exception handlers are placed in the 

edu.ncsu.dre.exception package. File and type comparison utilities are placed in the 

edu.ncsu.dre.utils package. Figure 7 illustrates the entire class hierarchy of the 

metasearch framework. 



 
Figure 7. Class hierarchy of Metasearch Framework
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5.2.1 Configuration 

The configuration sets the framework components used for the metasearch operation; 

configuration can be either loaded from an XML document that follows the schema 

configuration.xsd (shown in Figure 8) or by creating an object to DREConfiguration 

class. A static binding of the XML schema objects is done using JAXB; this allows runtime 

modifications to the configuration. Users can use their own segregator, aggregator, scheduler,   

 

 

Figure 8. Configuration XSD 
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and their own list of service providers by modifying the configuration document. Arguments 

to the framework and individual components can be set using the parameters and option hash 

tables respectively. Arguments are represented as (key, value) pairs are directly available to 

the framework and its components once the configuration is loaded. Figure 9 shows a sample 

configuration for the SRRSimCG with content guidance document.  

 

 

 
XML and Object 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

<?xml version="1.0" encoding="UTF-8"?> 
<EngineConfiguration>  
  xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"  
  xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"  
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  xsi:noNamespaceSchemaLocation="configuration.xsd">   
  <Segregator> 
   <Handler>edu.ncsu.dre.impl.engine.DummySegregator</Handler> 
   <Option key="Comment" value="This is the LexicalSegregator"/> 
  </Segregator> 
 
  <ResearchScheduler> 
   <Handler>edu.ncsu.dre.impl.engine.StandAloneScheduler</Handler> 
   <Option key="Comment" value="This is the StandAloneScheduler"/> 
  </ResearchScheduler> 
 
  <Aggregator> 
   <Handler>edu.ncsu.dre.impl.engine.SRRSimCGAggregator</Handler> 
   <Option key="Comment" value="This is the SRRSimCGAggregator"/> 
  </Aggregator>  
 
  <ServiceProvider> 
   <Handler>edu.ncsu.dre.impl.engine.LiveSearchProvider</Handler> 
   <Option key="ID" value="Livesearch"/> 
   <Option key="AppID"     value="7E8E2A6CDEEE7248E0EBF23EDD20303F86364CCE"/> 
   <Option key="Culture" value="en-US"/> 
   <Option key="SafeSearch" value="Off"/> 
   <Option key="Source" value="web"/>   
  </ServiceProvider>   
 
  <ServiceProvider> 
   <Handler>edu.ncsu.dre.impl.engine.YahooSearchProvider</Handler> 
   <Option key="AppID" 
value="eCBIC3LV34EN3FHl35AMrMhA7JoOi4jfPPy1VQrSNr51qWbeO43DkDDLSqG0jmVg"/>    
   <Option key="ID" value="Yahoo"/> 
  </ServiceProvider>    
 
  <ServiceProvider>   
   <Handler>edu.ncsu.dre.impl.engine.AlexaSearchProvider</Handler>      
   <Option key="ID" value="Alexa"/> 
  </ServiceProvider>   
 
  <Parameter key="Comment" value="SimpleStandAlone DRE Framework."/> 
  <Parameter key="ContentGuide" value="mem-sched.pdf"/> 
</EngineConfiguration> 

Figure 9. Sample Framework Configuration 
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5.2.2 Artifact 

Artifact interface (edu.ncsu.dre.data.Artifact) provides an outline for the data 

and structure of the query that will be run on the metasearch. An abstraction is made here so 

that the framework can be easily extended to support multi media content. Normal text 

queries can directly cast their contents into artifact using the TextArtifact 

(edu.ncsu.dre.data.impl.TextArtifact) class.  

5.2.3 Artifact Segregation 

Segregator (edu.ncsu.dre.engine.Segregator) is the common interface for all 

components that perform preprocessing on the artifact before it is scheduled for search in the 

scheduler. Preprocessing can take a variety of forms like modifying the order of query terms, 

adding operators, splitting the task into sub queries etc. The processed artifact and its subsets 

if any are placed in a Collection (frequently a list structure) and passed to the scheduler for 

scheduling.  We have included two segregator implementations with the framework namely 

DummySegregator (edu.ncsu.dre.engine.impl.DummySegregator) and 

LexicalSegregator (edu.ncsu.dre.engine.impl.LexicalSegregator).  

DummySegregator does no preprocessing but just forwards the query to the scheduler. 

LexicalSegregator lexically analyses the query using Apache Lucene and segregates the 

query terms for efficient search.  

5.2.4 Metasearch Scheduling 

The scheduler interface (edu.ncsu.dre.engine.ResearchScheduler) provides the 

structure for implementing a metasearch scheduler. The scheduleResearch() method 
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accepts a list of query artifacts and a list of component search providers. A typical scheduler 

implementation is expected to instantiate each of the component search providers as threads 

and passes the query artifacts to them one after another. The threads are polled one after 

another for completion, once completed the results are accumulated in a hash map data 

structure and returned to the aggregator for result merging and re-ranking, each artifact or  a 

sub set of it is mapped with a list of SRR elements. The framework includes a standalone 

scheduler (edu.ncsu.dre.engine.impl.StandaloneScheduler) that implements the 

aforesaid functionality. More complex and distributed schedulers can be designed extending 

the standalone scheduler which is left for future work. 

5.2.5 Result Aggregation 

Result Aggregator (edu.ncsu.dre.engine.Aggregator)  acts as the common stub 

to all aggregator components. They take the hash map containing the individual artifacts and 

corresponding results to perform merging operations on them and render the resulting 

aggregated ranked list as an XML stream. Aggregator implementation is where we embed the 

result merging algorithm that determines the efficiency of the metasearch scheme used.  

Framework is packaged with four of this; each providing a different functionality. 

SimpleXMLAggregator (edu.ncsu.dre.engine.impl.SimpleXMLAggregator) 

renders the merged result as a standard XML document, simple result merging is used. 

SimpleHTMLAggregator (edu.ncsu.dre.engine.impl.SimpleHTMLAggregator) 

renders the merged result as an XHTML document, which can be directly presented on a 

browser interface. Simple result merging is used here. 
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SRRSimMFAggregator (edu.ncsu.dre.engine.impl.SRRSimMFAggregator) 

renders the merged result as an XML document; the merging strategy used here is 

SRRSimMF which has been previously discussed. 

SRRSimCGAggregator (edu.ncsu.dre.engine.impl.SRRSimCGAggregator) 

renders the merged result as an XML document; the merging strategy used here is 

SRRSimCG. Here the content guidance (CG) is provided as option to the framework and the 

aggregator uses this CG to rank the results. 

5.2.6 Search Provider support 
 
 The service provider interface (edu.ncsu.dre.engine.ServiceProvider) extends 

the Java thread interface and provides the necessary ground work for constructing a search 

service provider class. Threaded implementations of this interface are expected to return a 

hash map, containing the artifacts as keys and the corresponding results as values, when 

invoked with the function gatherInformation(). We have implemented three search 

providers in our framework: Alexa Search Provider 

(edu.ncsu.dre.engine.impl.AlexaSearchProvider), Microsoft Live Search Provider 

(edu.ncsu.dre.engine.impl.LiveSearchProvider), and Yahoo Search Provider 

(edu.ncsu.dre.engine.impl.YahooSearchProvider). They retrieve the results from 

Amazon’s Alexa web cache, Live search and Yahoo repositories respectively.  

5.2.7 Content-direction support 
 

Content-direction support is built into the framework. When user provides a 

parameter as Content Guide to the engine configuration, it is available to all the components 
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across the framework. An aggregator implementation that uses the content guidance builds a 

list of literals and terms using Apache Lucene library to build several lists, each containing 

matching terms from the query, content guide and SRR’s. The lists aid in computing distinct 

match counts, match counts, and simple counts of literals and terms between the query, guide 

and results that are being compared. Using these computed values we can directly calculate 

the similarity function and rank of SRR using the expressions given in section 3.3.2. 

5.3 Metasearch Prototype 
 

Based on this metasearch framework, we have built a prototype metasearch engine 

using the Google Web Developer Toolkit. The toolkit provides the servlet container 

environment, server and client stubs and the necessary AJAX interface development 

framework. The end user has a web form, through which he can set the content guidance 

document as a PDF or paste guidance text (the content guidance step is optional). When 

queries are input through the form, the merged results are rendered as an HTML document 

and presented on the browser interface. 

5.3.1 User Interaction Model 
 
 Users have two ways of using the prototype. They can use the simple search feature 

to query the component search engines without content-direction or they can set the content-

direction prior to a search and then perform a query which will order the results guided by 

the content-direction document. The available user interaction methods are illustrated in the 

Figure 10 
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Figure 10. User interaction model 
 
 
 We have used this prototype and reference implementation to evaluate the 

performance of content guidance in effectively ranking the search results. The next chapter 

details the evaluation strategies used and the results obtained. 

 
***
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Chapter 6 

EVALUATION and RESULTS 

 This chapter provides a brief outline on the evaluation standards available to gauge 

the effectiveness of information retrieval systems, specifically metasearch engines. Based on 

these standards we evaluate the effectiveness of our metasearch engine with content-directed 

result merging. 

6.1 Evaluation Standards 

The Text REtrieval Conference (TREC) organized by National Institute of Standards 

and Technology (NIST) sets standards to measure the retrieval effectiveness of an IR system 

[19].  

6.1.1 TREC Tracks 

Each TREC workshop consists of a set of tracks or areas of focus in which particular 

retrieval tasks are defined. The tracks act as incubators for new research ideas in information 

retrieval. They define the information retrieval problem and provide the necessary 

infrastructure and framework (test collections, evaluation methodology etc) to support the 

retrieval research on its task. Each track is supported by a user community linked by a 

mailing list. The community provides recommendations to TREC program committee and 

researches on improvements to the tracks that will be run in a given year of TREC. 
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There are specific TREC tracks for each kind of problem in an IR context. Below are 

few TREC tracks with their descriptions that give us a broad idea of the track evaluation 

framework and the IR problems they attempt to solve.  

a) Blog Track [2007] – Aims to explore information seeking behavior in blogosphere 

b) Enterprise Track [2007] - Track to study enterprise search, satisfying a user who is 

searching the data of an organization to complete some task.  

c) Genomics Track [2007] – Study retrieval functions with respect to genomics data 

d) Legal Track [2007] – Effective retrieval of digital documents collection 

e) SPAM Track [2007] – Standard evaluation of current and proposed SPAM filtering 

approaches and retrieval tasks. 

f) Terabyte Track [2006] – Investigates the scalability issues with IR test collection based 

evaluation to significantly larger document collections than those used in TREC. 

g) HARD Track [2005] – High Accuracy Retrieval from Documents by leveraging additional 

information about the searcher and/or the search context. 

h) Robust Retrieval Track [2005] – Focus is on individual topic effectiveness rather than 

average effectiveness.  

i) Web Track [2002, 2004] – Features search tasks on a document set that is a snapshot of the 

World Wide Web.  

6.1.2 TREC Web Track 

Among the aforesaid tracks the Web Track is the one that is most relevant to our 

metasearch result merging evaluation. The 2002 TREC Web Track provides a set of queries 

or topics and a huge repository of documents containing a crawl of the Internet done in early 
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2000. Each web topic consists of four parts: an index number, a title, a description and a 

narrative. The track defines 50 topics indexed from 551 to 600. An example Web Track topic 

is shown in Figure 11 

 

 

 
 
 
 
 
 

<webtrack> 
 <topic> 
  <num> Number: 551 </num> 
  <title> intellectual property</title> 
  <desc> Description: Find documents related to laws or regulations that 
protect intellectual property </desc> 
  <narr> Narrative: Relevant documents describe legislation or federal 
regulations that protect authors or composers from copyright infringment , 
or from piracy of their creative work. These regulations may also be related 
to fair use or to encryption.</narr> 
 </topic> 
</webtrack> 

Figure 11. Sample Web Track

6.1.3 TSAP Methodology 

We cannot be using the general purpose web track directly to evaluate our result 

merging algorithm -- the web track is based on fixed repository of documents whereas we are 

using general purpose search engines that index the latest documents of the Internet as 

component service providers. Instead we will use the web track topics to query our 

metasearch. Only title part is used as a query for metasearch. As titles are short, they are 

representative of Internet queries submitted by real users. The average length of the titles of 

these fifty topics is 3.06. The narrative describes what documents should be considered 

relevant to the corresponding query topic.  The information in the narrative is used as the 

standard criteria for us to judge the relevancy of the collected result documents.  

As it is difficult to know all the relevant documents to a query in a search engine, the 

recall and precision metrics used for evaluating IR systems cannot be used for evaluating 

internet search or metasearch engines. A well known alternative to performing this type of 
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evaluation on search engines is the TREC-style average precision (TSAP) [20]. As like 

previous studies [18] that propose newer result merging algorithms we use TSAP at cutoff N, 

denoted as TSAP@N to evaluate the effectiveness of each result merging algorithm.  

Here,     

Where ri = 1/i if the i-th ranked result is relevant and ri=0 if the i-th result is not relevant. The 

TSAP@N metric considers both the number of relevant documents in the top N results and 

the ranks of each of the relevant documents and yields a larger value when the results are 

more relevant.  

6.1.4 Test Bed and Evaluation Strategy 

We use our prototype based on the reference implementation as our test bed. Three 

component search engines are used in the test bed namely the Microsoft Live Search [21], 

Yahoo Search [22] and Amazon’s Alexa Web Search [23]. We run the queries from 2002 

Web track using scripts for four different configurations. In the first configuration we run 

queries on component search engines in the normal context and compute TSAP@N3 for each 

of them. In the second configuration we run queries on each of the component search engines 

with web track narration as the content-direction for each query and compute TSAP@N.  

In the third configuration we run all component search engines together in a 

metasearch context with SRRSimMF (i.e. SRRSimCG without content-direction) result 

merging strategy and compute TSAP@N. Finally we run web track topic queries in the 

metasearch context with query narration as the content-direction for each query and compute 
                                                 
3 N = 5 or N = 10 
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TSAP@N. We compare TSAP@N for all these configurations to measure the relevance 

improvements.  

6.2 Results 

6.2.1 TSAP@N and Retrieval Effectiveness 

Table 6.1 lists the TSAP@N for each of the component search engines and the composite 

metasearch engine, with and with out content-direction. Figure 12 illustrates Table 1 as a bar 

chart representation.  

Table 1. Comparison of Retrieval Effectiveness using TSAP 
  Alexa Live Yahoo MetaSearch 

TSAP@10 0.18867619 0.232587302 0.249544 0.241180952
TSAP@10 WithCG 0.214880159 0.253565079 0.268646 0.272753968
TSAP@5 0.286533333 0.363866667 0.393 0.3806
TSAP@5 WithCG 0.347533334 0.414466667 0.437333 0.429733334

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Alexa Live Yahoo MetaSearch

TSAP@10 TSAP@10 WithCG TSAP@5 TSAP@5 WithCG
 

Figure 12. Retrieval Effectiveness using TSAP for different configurations 
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Figures 13 and 14 illustrate TSAP@5 and TSAP@10 respectively for Amazon’s Alexa web 

search service with and without Content-direction. Relevance scores of Alexa have been 

found to be the least among the compared engines. Content direction improves Alexa’s 

relevance of results for the top five SRR’s by 21% and top 10 SRR’s by 14%.  
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Figure 13. TSAP@5 for Amazon Alexa Web Search with/without Content-direction 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 11 21 31 41

TSAP@10 Ideal TSAP@10-With CG

 
Figure 14. TSAP@10 for Amazon Alexa Web Search with/without Content-direction 
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Figures 15 and 16 illustrate TSAP@5 and TSAP@10 respectively for Microsoft Live search 

with and without Content-direction. Content direction improves Live search’s relevance of 

results for the top five SRR’s by 9% and top 10 SRR’s by 14%. There are certain data points 

that illustrate poor performance of content-direction than the relevance of results without it.  
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Figure 15. TSAP@5 for Microsoft Live Search with/without Content-direction 
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Figure 16. TSAP@10 for Microsoft Live Search with/without Content-direction 
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Figures 17 and 18 illustrate the TSAP@5 and TSAP@10 respectively for Yahoo search with 

and without Content-direction. Yahoo provides the best relevance results; harmful effects of 

content-direction are more prominent here but overall content-direction to provide better 

relevance of results. Relevance gain of first 5 SRR’s is 7.5% and for all 10 SRR’s is 11%. 
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Figure 17. TSAP@5 for Yahoo Search with/without Content-direction 
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Figure 18.  TSAP@10 for Yahoo Search with/without Content-direction 
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Figures 19 and 20 illustrate the TSAP@5 and TSAP@10 respectively for Metasearch with 

and without Content-direction. Results are comparable to the best performing component 

engine (here Yahoo). Both TSAP@5 and TSAP@10 gain 13% improvement in relevance of 

results. 
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Figure 19. TSAP@5 for Metasearch with/without Content-direction 
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Figure 20. TSAP@10 for Metasearch with/without Content-direction 
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6.2.2 Discussion 
 
 From the results, we observe that the content-direction boosts the relevance of results 

uniformly for individual search engines as well as metasearch engines. The improvement is 

more prominent where the search engine suffers from poor relevance ordering (Alexa). The 

mechanism is particularly helpful for metasearch engines to improve the relevance ordering 

where more results are available for ordering. The selection of most relevant results for 

metasearch from a pool of SRR’s with content-direction provides a performance comparable 

to the best performing search engine. 

The content-direction effect is not always positive; there are certain queries in which 

the content-direction degrades the relevance of results. On closer observation, these queries 

had content-direction narrations specifying the results which needed to be excluded from the 

results. As we are not doing a semantic or logical analysis of the content-direction input the 

system has interpreted these directions erroneously and hence the aberration. Semantic 

analysis of content-direction prior to use in relevance ordering is left to future work.  

 
 In this chapter we presented the evaluation strategy, experimental setup, results that 

discuss the impact of content-direction on relevance ordering. We conclude in the next 

chapter with a discussion of future work. 

*** 
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Chapter 7 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

 Metasearch engines are distinguished from conventional search mechanisms, by their 

focus on information retrieval from eclectic sources. In this thesis we have investigated the 

implementation of metasearch engines, important challenges in result merging, and a new 

content-directed method for providing highly relevant search results.  

 We have designed a modular framework based on service-oriented architecture to 

build metasearch engines. The framework supports dynamic addition and removal of 

participant search providers. A reference implementation of the framework has been done in 

Java, to demonstrate flexibility of the architecture. Individual components like segregator, 

scheduler and aggregator can be seamlessly reconfigured to produce highly customized 

search systems without significant effort. A prototype metasearch engine has been developed 

to demonstrate the flexibility of the framework with three commercial search service 

providers as component search engines.  

This thesis proposed content-directed result merging algorithm for rank aggregation 

in metasearch engines. We have described how user queries, augmented by additional 

information can be leveraged to provide highly relevant search results. We believe that ideas 

of content-direction are interesting in the context of information retrieval systems. Content-

direction provides additional feedback to the system, enabling the system to make informed 

decisions while ranking the results based on relevance and providing an opportunity for 
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filtering the irrelevant ones. Content-direction provides an easier and faster way of narrowing 

down search results of interest in a particular domain without repeating the search with 

several complex queries. The success of content-direction in result merging and rank 

aggregation has been demonstrated using the metasearch prototype.  

Next generation search technologies are increasingly focusing on the personalization 

of search, to handle the explosive growth of information in all walks of human knowledge. 

This thesis has focused on improving information retrieval through metasearch engines that 

provide relevant results using user provided content-direction.  

7.2 Future work 

  The metasearch framework can be a good choice for testing new approaches in 

providing highly relevant search results. The framework itself can be augmented and 

extended in several ways. New segregation algorithms that take structured queries for 

processing can be formulated. Similarly, advanced aggregation algorithms that learn from 

implicit feedback can be devised to provide highly relevant search results apart from content-

direction. New component search schedulers can benefit by utilizing an available grid or 

clustering infrastructure to efficiently use the network resources. The metasearch framework 

is also an excellent platform to compare relative performances among a set of search engines.  

 Several improvements can be done to the content-direction methodology as well. The 

system still does not support content that negatively impacts the queries. With rapid 

information explosion, quick filtering of the unrelated results based on the content-directed 

similarity function can be one of the future directions of interest. There can also be 

52



extensions of content-direction usage, along with other implicit feedback mechanisms to 

personalize search engines for every user.  

*** 
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