
ABSTRACT

SELVADURAI, SANTTHOSH BABU. Implementing a Metasearch Framework with
Content-Directed Result Merging. (Under the direction of Dr. Gregory T. Byrd.)

A metasearch engine is a system that provides integrated access to multiple existing

search engine mechanisms. Once a query is executed on a metasearch engine, the system

passes the query to its participating component search engines, collects the individual results

and merges them into a single ranked list. Metasearch engines increase the search coverage

of the Web, help solve the extendibility issues in searching the internet, and improve the

retrieval effectiveness, and consequently the relevance, of results.

Result merging is a key constituent of metasearch engines. When results from several

search engines are collected, the metasearch system has to merge them into a unified list. The

effectiveness of the metasearch mechanism and the relevance of the result set are closely

related to the result merging algorithm used.

The purpose of this research is to build a flexible, general purpose metasearch

framework and explore a content-directed result merging approach to rank results. Here the

content-direction is provided to the framework by the user in the form of documents or text

artifacts.

A modular metasearch application programming interface (API) based on java has

been implemented. The API framework provides interfaces and utilities to develop

components of a metasearch system like segregators, scheduler, aggregators, and search

service providers. A prototype metasearch engine has been built based on this framework to

study the content-directed result merging algorithm.

Implementing a Metasearch Framework with Content-directed Result Merging

by

Santthosh Babu Selvadurai

A thesis submitted to the Graduate Faculty of
North Carolina State University

In partial fulfillment of the
Requirements for the degree of

Master of Science

Computer Engineering

Raleigh, NC

2007

Approved by:

Dr. Gregory T. Byrd, Chair of Advisory Committee

________________________________ ________________________________

 Dr. Munindar P. Singh Dr. Yan Solihin

ii

DEDICATION

To

Amma and Appa

iii

BIOGRAPHY

Santthosh Babu Selvadurai was born on 31st of December 1981 in Salem, Tamil Nadu, India.

He received his Bachelor of Engineering (B.E) Degree in Electrical and Electronics

Engineering from Coimbatore Institute of Technology, Coimbatore (TN), India in 2003.

After his undergraduate studies he joined Computer Sciences Corporation (CSC) as a

Programmer Analyst where he was working on Enterprise Computing Systems especially

IBM z/OS for about 3 years. Santthosh has been a graduate student at North Carolina State

University, Raleigh, NC since August 2006. During this time he worked under the guidance

of Dr. Gregory T. Byrd in field of grid computing and web services. Santthosh served a 3

month internship term with EMC Corporation at RTP, Raleigh, NC during summer 2007

where he was involved with the implementation of a distributed information infrastructure

for one of their products. He has also been a Teaching Assistant for Computer Systems

Programming (ECE209) course during fall 2007 semester at NC State University.

iv

ACKNOWLEDGMENTS

First, I would like to thank my parents for everything they gave me in life. My mother

Vimala and father Selvadurai have been a constant source of inspiration nurturing my ideas

and supporting my decisions all the way to my graduate studies in spite of several financial

and social difficulties.

I sincerely thank my advisor Dr. Gregory T. Byrd for giving me an opportunity to

work under his guidance. He has been a constant source of inspiration, encouraging me to

achieve more in every walk of my graduate studies. I have learned several incredible things

from him including joyful positive attitude towards work and perfection at doing things. I

thank him for his trust, continuous support and for all of his time. Working under him has

been a very rewarding experience.

I would like to thank Dr. Munindar P. Singh for developing my knowledge on web

services, introducing to me the emerging world of service oriented computing and also for

serving on my thesis committee.

I would like to thank Dr. Yan Solihin for inspiring and fostering my knowledge on

parallel computing architectures, for his constructive comments and for serving on my thesis

committee.

Finally, I thank the almighty for all the grace and support to achieve my goals.

v

TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

INTRODUCTION... 1

METASEARCH ENGINES... 5

2.1 Information Retrieval Systems (IRS).. 5

2.1.1 Information Systems .. 5

2.1.2 Functional approach to IR.. 6

2.2 Search and retrieval.. 8

2.2.1 Searching process... 8

2.2.2 Retrieval models .. 9

2.2.3 Best match searching and relevance feedback model.. 10

2.3 Metasearch Engines .. 11

2.3.1 Motivation and Goals... 11

2.3.2 Component Architecture.. 12

2.3.3 Heterogeneity... 14

RANK AGGREGATION & RESULT MERGING .. 16

3.1 Foundations ... 16

3.2 Merging Algorithms.. 17

3.2.1 Top Document search engine score (TopD) .. 17

3.2.2 Top SRR based search engine score (TopSRR) .. 18

3.2.3 Simple Similarity rank between SRR and query (SRRSim).................................. 19

3.2.4 Compound similarity rank between SRR and Query (SRRSimMF) 19

3.3 Content-direction .. 21

3.3.1 Motivation.. 21

3.3.2 Content-Directed Result merging algorithm (CDRM) .. 22

3.3.3 Use Cases ... 23

ARCHITECTURAL FRAMEWORK .. 25

4.1 Requirements... 25

4.2 Design... 25

4.2.1 Query Segregator ... 27

vi

4.2.2 Query Scheduler... 27

4.2.3 Result Aggregator .. 28

4.2.4 Search Provider.. 28

4.3 Comparison with Component Architecture ... 29

IMPLEMENTATION .. 30

5.1 Implementation Infrastructure.. 30

5.2 Framework .. 32

5.2.1 Configuration ... 34

5.2.2 Artifact ... 36

5.2.3 Artifact Segregation ... 36

5.2.4 Metasearch Scheduling .. 36

5.2.5 Result Aggregation .. 37

5.2.6 Search Provider support... 38

5.2.7 Content-direction support .. 38

5.3 Metasearch Prototype... 39

5.3.1 User Interaction Model .. 39

EVALUATION and RESULTS... 41

6.1 Evaluation Standards ... 41

6.1.1 TREC Tracks ... 41

6.1.2 TREC Web Track .. 42

6.1.3 TSAP Methodology ... 43

6.1.4 Test Bed and Evaluation Strategy.. 44

6.2 Results .. 45

6.2.1 TSAP@N and Retrieval Effectiveness .. 45

6.2.2 Discussion .. 50

CONCLUSION AND FUTURE WORK .. 51

7.1 Conclusion ... 51

7.2 Future work... 52

REFERENCES.. 54

vii

LIST OF FIGURES

Figure 1. Overlap among information system types [6] .. 6

Figure 2. Functional Overview of information retrieval [6] ... 7

Figure 3. Steps to perform an optimal search ... 8

Figure 4. Metasearch Component Architecture .. 13

Figure 5. Metasearch Framework ... 26

Figure 6. Implementation Infrastructure ... 31

Figure 7. Class hierarchy of Metasearch Framework ... 33

Figure 8. Configuration XSD.. 34

Figure 10. User interaction model .. 40

Figure 12. Retrieval Effectiveness using TSAP for different configurations......................... 45

Figure 13. TSAP@5 for Amazon Alexa Web Search with/without Content-direction.......... 46

Figure 14. TSAP@10 for Amazon Alexa Web Search with/without Content-direction........ 46

Figure 15. TSAP@5 for Microsoft Live Search with/without Content-direction 47

Figure 16. TSAP@10 for Microsoft Live Search with/without Content-direction 47

Figure 17. TSAP@5 for Yahoo Search with/without Content-direction................................ 48

Figure 18. TSAP@10 for Yahoo Search with/without Content-direction............................. 48

Figure 19. TSAP@5 for Metasearch with/without Content-direction.................................... 49

Figure 20. TSAP@10 for Metasearch with/without Content-direction.................................. 49

LIST OF TABLES

Table 1. Comparison of Retrieval Effectiveness using TSAP.. 45

viii

Chapter 1

INTRODUCTION

Search engines are information retrieval mechanisms designed to find information

stored on computer systems. They help users minimize both time for finding required

information and the amount of information that must be consulted to solve problems. Most

popular search engines are used to search the World Wide Web. Other kinds of search

engines include enterprise search engines, personal search engines and mobile search engines

[33]. These search mechanisms over the recent past have taken several dimensions like

personalized search, sponsored search, collaborative search, mobile search and so forth.

Finding desired information on the web in a timely and cost effective way is a

problem of widespread interest. But very often users need to consult several disjoint search

engines to meet their information needs other than regular web search, as the required

information is scattered in several disjoint databases. Also the gap between the rate of

information explosion on the web and the speed of search crawlers is constantly increasing

[34]. A more concerning factor is the wealth of information that the deep web [1] hides from

the web crawlers. Much of the deep web information has never been publicly indexed [35].

Most of these deep web contents are highly relevant to every information need, market and

domain. Studies report the existence of thousands of special-purpose search engines on the

web [1] which help us mine the deep web as well. Querying the right set of these individual

engines to retrieve relevant information can be very time consuming and inefficient [36].

The solution to this problem is metasearch engines. A metasearch engine is a system

that provides unified access to multiple existing search engines. A metasearch engine

1

generally does not maintain its own index of documents; instead it queries several

participating search engines and aggregates their individual results into a unified result set,

re-ranked based on the relevance to the query.

Metasearch engines increase the search coverage, solve the extendibility issues in

searching eclectic information sources, facilitate the invocation of multiple search engines

and improve information retrieval effectiveness [2]. Building a metasearch engine involves

several design and technical challenges, including database or component engine selection,

query analysis, query scheduling or dispatch, rank aggregation and result merging [18].

Clearly, result merging is a key component of the metasearch system. The effectiveness of a

metasearch system is closely related to the result merging algorithm it employs. Studies have

shown that simple result merging strategies can outperform most popular web search engines

[2].

In this thesis we develop a general purpose framework in Java to build metasearch

engines, and use this system to evaluate a new type of result merging approach that deems to

yield highly relevant results for user queries. The metasearch framework is highly modular

and flexible. Component search engines can be added or removed on the fly. Any of the

segregation (query preprocessing), aggregation (result merging), or scheduling modules can

be dynamically changed at runtime to suit the context of the search. This dynamic nature of

the framework helps us compare and evaluate the performance of individual search engines

and different metasearch configurations. Component search engines are normally queried

using Simple Object Access Protocol (SOAP) [37], Remote Procedure Calls (RPC) [37],

XML-RPC (eXtensible Markup Language RPC) [37] or AJAX (Asynchronous JavaScript

and XML) calls. Our metasearch framework primarily uses Apache Lucene [3], a feature

2

rich, open source, high performance, and cross-platform text search engine library to provide

the necessary underlying infrastructure support. Testing of the framework modules has been

done using the JUnit [4] Library.

We make use of this framework to study a new type of rank aggregation technique

which we call content-directed result merging algorithm. In this, the user presets the

perspective of his search by uploading a relevant document or by entering detailed

description that can help the ranking mechanism to efficiently rank the metasearch result set.

User feedback has been a key force to improving search result relevance [5], but this

algorithm takes a radical approach by obtaining explicit user input and using it to arrange the

results in the most relevant order unlike conventional user feedback based machine learning

techniques [6].

A prototype metasearch engine has been implemented based on the framework using

Google Web Developer kit (GWD). The prototype is highly configurable, and it provides

user interfaces to add and remove component engines, make simple queries and content-

directed queries by uploading the guide document or entering a descriptive text.

We evaluate the performance of our content-directed result merging algorithm against

similar result merging approaches and individual search engines by comparing the relevance

of the obtained result set. Queries from TREC (Text REtrieval Conference) [18] Web Track

standards are used for evaluation.

Outline

The outline of this thesis is as follows.

Chapter 2 gives the information retrieval basics and an introduction about metasearch

engines. The chapter explains the components of a metasearch engine, methods of querying

3

several search engines, and technical challenges in scheduling, coverage, timeliness and

relevance of results.

Chapter 3 introduces rank aggregation and result merging, a key stage in metasearch.

Different ranking algorithms and result merging strategies are discussed in this chapter. We

propose a novel approach to ranking the metasearch result set using user-provided content-

direction.

Chapter 4 explains the architecture of the proposed metasearch framework model.

The chapter outlines the need for a metasearch framework, design decisions and grounds for

exploiting content-direction in metasearch ranking.

Chapter 5 presents the implementation specific details of the framework and the

metasearch engine prototype that we have built to evaluate the performance of the content-

direction algorithm.

Chapter 6 discusses in detail the problems in assessing search mechanisms, the

evaluation strategy used for the framework and the content-direction technique. The chapter

also provides detailed comparison results on the performance of our algorithm against

individual search engines.

* * *

4

Chapter 2

METASEARCH ENGINES

This chapter provides a brief overview of Information Retrieval (IR) systems,

problems of scale and complexity in IR, metasearch engines, and their architectural

overview.

2.1 Information Retrieval Systems (IRS)

2.1.1 Information Systems

An Information System (IS) is a system of persons, data records and activities that

process the data and information in a given organization, which may include manual

processes and automated schemes. Computers have dominated information systems by aiding

automation of information processing efforts. The four important computer based

information systems [6] are Management Information Systems (MIS), Database Management

Systems (DBMS), Question-Answering (QA) systems and Information Retrieval (IR)

systems.

 In the context of information systems, information retrieval can be defined as the

process that deals with the representation, storage and access to documents or representatives

of documents (document surrogates). The input information is likely to include natural

language texts, document excerpts and abstracts. The output of an IR system is response to

search requests, with each request containing a set of references. These references are

intended to provide the users with information about items of potential interest. Information

5

retrieval has significant overlap with other information systems. Figure 1 illustrates the

functionality and overlap of each information system with information retrieval systems.

Figure 1. Overlap among information system types [6]

2.1.2 Functional approach to IR

Several different information retrieval systems exist but most of them use a functional

approach to IR. Figure 2 provides an illustration of functional overview of information

retrieval. According to this approach, information retrieval system consists of three

components, a set of information items (DOCS), a set of requests (REQS) and a set of

mapping mechanisms (SIMILAR) [6]. In a retrieval process, the information items are first

converted to a special form using a classification or indexing language (LANG). The

6

indexing language is either pre-specified (controlled) or taken freely from the text of the

information items and information requests (uncontrolled) or sometimes a combination of

them. Whichever type is used, an information item is usually assumed to be representable by

a list of elements from the indexing language.

Figure 2. Functional Overview of information retrieval [6]

The mapping of information items to the indexing language is called the indexing

process. The requests are also converted into a representation consisting of elements from

LANG, referred to as the query negotiation process.

Based on the elements of indexing language, procedures are setup to determine which

information items are to be retrieved in response to a particular query. SIMILAR is the

relation operator and retrieval function that determines the similarity of the various

information items to a given request.

7

2.2 Search and retrieval

2.2.1 Searching process

A search process involves several steps. Figure 3 provides an illustration of how an

informed user searching databases of information items that use controlled index languages

can obtain optimal results [7].

Figure 3. Steps to perform an optimal search

8

One major task in the searching process relates to the coordination of terms (first four

steps in flowchart) in order to formulate the actual search statement. The result of search

depends largely on how adequately the search terms are combined. Boolean search

techniques have been widely used since the beginning of computerized information retrieval

[38].

2.2.2 Retrieval models

 Several information retrieval models have been proposed to study and improve the

retrieval process. The IR models can be broadly classified into three groups; user-centric or

cognitive models, system-centric models, and alternative models [38].

 The cognitive models take a holistic view of information retrieval. Other than the

retrieval mechanisms used in matching queries with stored information, they also take into

account the ways in which the user information needs can be formulated as a query, the

human-computer interactions that take place during the search process, the social and

cognitive environments in which the process takes place and how the information is used by

the user to meet specific information need.

 The system-centric models provide an explicit statement on the workings of the

information search and retrieval mechanism. They are based on logical and mathematical

principles, such as Boolean search, Probabilistic retrieval and Vector processing [6, 7, 38]. In

a Boolean search model, queries are compared with the term set used to represent document

contents. A probabilistic model does this comparison by computing relevance probabilities

for the documents of a collection. The vector processing model represents both the

documents and queries by term sets and compares global similarities between queries and

9

documents. The Best match searching and relevance feedback model (explained in section

2.2.3) also falls under the system-centric category.

 Alternative IR models have also been proposed which do not involve use of

significant statistical analysis or probabilistic calculations. Two of the most popular

alternative information retrieval models are the natural language processing model which

performs syntactic, semantic and pragmatic analysis of the query consuming huge system

resources and the hypertext model which requires a necessary hyperlinked structure of

documents to identify order of relevance.

2.2.3 Best match searching and relevance feedback model

 Best match searching is aimed to produce a ranked output; hence it requires a method

to measure the relative significance of retrieved items, which again requires some method of

weighting search terms. A similarity measure is comprised of two major components: 1) a

term weighting scheme that reflects the importance of a term by allocating numerical values

to each index term in a query or document, and (2) a similarity coefficient which uses these

weights to calculate the similarity between a retrieved item and a query.

 A best match search matches a set of query words against the set of words

corresponding to each item in the database, calculates a measure of similarity between the

query and the item, and then sorts the retrieved items in order of decreasing similarity with

the query [6]. This involves some quantitative measure of similarity between the query and

each of the items in the file, and the ranking is formed on the basis of these similarities.

Studies show that weighting schemes that use term frequency, collection frequency and

vector length normalization tend to produce the best results [8, 9].

10

 The relevance feedback process is a controlled, automatic process for query

reformulation, where the basic idea consists of choosing important terms attached to certain

previously retrieved items that have been identified as relevant by the user, and enhancing

the importance of these terms in the new query formulation [10]. In this case, an initial search

is carried out to produce a ranked list of outputs, and the user inspects a few top-ranking

documents to ascertain their relevance to the given query. The user’s relevance data enables

the system to calculate a new set of weights that should reflect the importance of each query

term more accurately. Studies have shown the relevance feedback process to be an

inexpensive and effective way of reformulating queries based on previously retrieved

relevant and non-relevant documents [10].

This best match search and relevance feedback model is the most relevant to our work

as it provides a theoretical foundation for our content-directed result merging algorithm.

2.3 Metasearch Engines

2.3.1 Motivation and Goals

Quiet often, information needs of users are stored in the databases of multiple search

engines; this applies to the Word Wide Web as well. The rate of information explosion on the

internet is much higher than the rate at which web search engines index the web. It is

becoming much harder for individual search engines to keep themselves up to date with the

expansion of internet [1]. Also, users frequently require their search to cover personal or

organizational databases along with the world wide web of documents.

11

It is highly inefficient and inconvenient for an ordinary user to manually invoke

multiple search engines and identify useful documents from the returned result sets. To

support unified access to multiple search engines, a metasearch engine can be constructed.

The key motivation behind the construction of a metasearch mechanism is to increase the

coverage and scope of search, handle the search of voluminous information efficiently,

provide a single point of access for several search interfaces, and improve the retrieval

effectiveness.

In a session, a metasearch engine has to receive a query from the user, invoke

underlying search engines (also referred as component search engines) with the user query as

a parameter, retrieve information relevant to the query, unify the individual result sets into a

single ranked list, and order them according to relevance. Different component search

engines may accept queries in different formats; the user query may thus need to be

translated into an appropriate format for each local system. Result sets are likely to be a list

of document identifiers, such as Uniform Resource Locators (URLs) for web pages or

documents, with a short description.

2.3.2 Component Architecture

Apart from the underlying search engines, a metasearch mechanism has four primary

software components: a database selector, a document selector, query dispatcher and a result

merger. Reference software component architecture of a metasearch engine is illustrated in

Figure 4. The numbers on the edges indicate the sequence of actions for a query to be

processed.

12

Figure 4. Metasearch Component Architecture

The problem of identifying potentially useful databases to search for a given query is

known as database selection. Database selector component is responsible for database

selection for each query, thereby avoiding wasting of resources in searching irrelevant data

13

sources. The role of database selector is more pronounced when there is a long list of

component engines that need to be queried. Database selection is not an issue when querying

public databases like the internet search engines or a minimal set of data sources unless there

are severe performance concerns.

The query dispatcher is responsible for establishing a connection with each selected

search engine and passing the query to it. The original query may need to be translated to a

new query before being sent to a component search engine. For example, the query input to

the metasearch engine may be Boolean or vector space queries, while the component engines

may be serving heterogeneous information [11] in different types and formats. Query

dispatcher may also try to adjust the relative weights of query terms in the original query to

fetch optimal results.

Result merger combines the results into a single ranked list. This component has the

most impact on retrieval effectiveness. The relevance ordering of documents is directly

related to the ranking algorithm used by the result merger. An ideal result merger would rank

all the returned documents in descending order of their global similarities with the user

query. We shall discuss several result merging algorithms in the next chapter.

2.3.3 Heterogeneity

One of the serious challenges in designing a metasearch engine is the management of

complexities involved with the heterogeneous environments of component search engines.

Each component search engine many have its own indexing method, document term

weighting scheme, query term weighting scheme, similarity function, document database,

document versions and result presentation schemes.

14

Heterogeneity posts two major challenges with respect to database selection

algorithms. One is to identify appropriate representatives that permit fast and accurate

estimation of database usefulness. At the same time the representatives should be small in

comparison to the size of the database, and should be easy to obtain and maintain. Our work

does not deal with database selection, so we will not be discussing this in detail.

The result merging also faces issues due to heterogeneity of the component engine.

The main problem is that the same document may have different global and local similarities

with a given query. For example a document listed as highly relevant by a component search

engine (local similarity) may be categorized as low relevance document when compared with

results from other search providers (global similarity). Result merging techniques have to

find ways to estimate the global similarities of documents so that documents returned from

different component search engines can be properly merged.

In the next chapter we examine the techniques that have been proposed to deal with

problems in result merging which is one of the key focuses of our research.

* * *

15

Chapter 3

RANK AGGREGATION & RESULT MERGING

3.1 Foundations

Traditional result merging techniques have been focusing on normalization of scores

[11, 12] to make them more comparable across different search engines and thereby

uniformly ranking the retrieved results. But these techniques require the component search

engines to provide the local scores.

In the context of metasearch engines, a voting-based result fusion called as Borda

count [13] is more appropriate. In Borda count, each component search engine is considered

a voter that has a specified number of votes or points, and each returned result is considered a

candidate. Each voter’s top ranked candidate is assigned n points (where n is the number of

candidates), the second top ranked candidate is given n-1 points, and so on. For candidates

that are not ranked by a voter (i.e. the result candidate was not retrieved by corresponding

search engine), the remaining points of the voter will be evenly divided. The results are then

ranked in descending order of the total reported. For Borda count to be efficient each voter

has to return a large number of results (in hundreds) and also the voters need to have

substantial overlap among the retrieved results. There are also schemes that take search

engine usefulness into consideration like D-WISE [21].

All these require some data to be collected from each component search engine

before hand. This is not applicable in a metasearch context where a component engine can

16

join the metasearch on the fly. Therefore our research focuses only on result merging

approaches without collecting any sample data in advance from component search engines.

The result records returned from today’s search engines are referred to as Search

Result Records (SRRs). A typical SRR contains the URL, title and summary (snippet) of the

retrieved document. Some of the earlier works [15, 16] have focused on utilizing the SRRs to

gauge the relevance of the results, but these works primarily focus on merging news results

rather than general purpose search results.

The most effective result merging methods uses a combination of evidences from

document title, snippet and the search engine usefulness [16]. First, for each SRR the

similarity between the query and its title and the similarity between the query and its snippet

are computed; then the two similarities are linearly aggregated to rank the result. In the next

section we discuss a list of such rank aggregation methods, followed by a brief description of

our content-directed result merging strategy.

3.2 Merging Algorithms

3.2.1 Top Document search engine score (TopD)

Let Sj represent the usefulness score of search engine j with respect to query Q. The

TopD method requires the document frequency of every term be collected in advance. Here

document frequency of term refers to the number of times a particular term appears in the

document. TopD algorithm uses the similarity between Q and the top ranked document

returned from search engine j (denoted as d1j) to estimate Sj. This ranking assumes the

highest ranked document to be the most relevant to the user query based on the search

17

engine’s ranking criteria. The similarity functions used for comparison can be Cosine1 [15]

or Okapi2 [14]. Once Sj is computed the ranking scores (rsij) can be computed using the

expression

 rsij = 1 – (ri – 1) * Smin / (m*Sj) …(1)

Here m is the total number of documents desired, Smin is the smallest search engine

score among all search engines selected for this query, and ri is the local rank of a document i

returned from search engine j.

The technique is not very effective, as the top ranked document needs to be retrieved

from the local server for the merging process. Also the rank of top ranked results from all

used search engines will be the same, therefore one needs to compute adjusted ranking scores

by multiplying the ranking scores computed by Sj. If a document is retrieved by multiple

search engines, we need to compute its final ranking score by summing up all the adjusted

ranking scores.

3.2.2 Top SRR based search engine score (TopSRR)

TopSRR uses each component search engine’s top n returned Search Result Records

(SRRs), instead of the top ranked document, to estimate the search engine score Sj with

respect to the query Q. This is done with the intuition that the SRRs are representative of the

original documents. Specifically, all the titles of the top n SRRs from search engine j are

merged together to form a title vector TVj, and all the snippets are also merged into a snippet

vector SVj. The similarities between query Q and TVj and between Q and SVj are computed

1 Cosine similarity function compares each term weight in the query with the term frequency in the document
2 Okapi similarity function considers the weighted sum of Okapi weights for terms with the query and document.

18

separately and then aggregated into the score of search engine j. This search engine score is

computed as

 Sj = c1 * Similarity (Q, TVj) + (1-c1) * Similarity (Q, SVj) …(2)

Where c1 is a constant and Similarity function can be either Cosine or Okapi.

3.2.3 Simple Similarity rank between SRR and query (SRRSim)

The SRRSim ranking scheme directly computes the rank of documents using SRRs,

instead of first computing the search engine scores and then the individual document ranks.

The SRRSim uses the fact that the SRR is representative of the corresponding full document;

thus one can rank SRRs returned from different search engines based on their similarities

with the query directly, using the right similarity function.

 The similarity between SRR R and query Q is computed as the weighted sum of

similarity between the title T of R and Q and the similarity between the snippet S of R and Q.

 Sim(R,Q) = c2 * Similarity(Q,T) + (1- c2) * Similarity(Q,S) …(3)

If a document is retrieved from multiple search engines with different SRRs, then the

similarity between the query and each such SRR will be computed and the largest one will be

used as the final similarity of this document with the query for result merging.

3.2.4 Compound similarity rank between SRR and Query (SRRSimMF)

All the previous ranking algorithms propose metasearch engines to use only the

similarity functions to determine the relevance of documents against the given query. They

19

do not take the proximity, frequency and ordering of terms into consideration. The impact of

order and proximity of information in the result ranking is important and obvious. To better

rank SRRs, this algorithm takes several features with respect to the query terms, like the

number of distinct query terms appearing in the title and the snippet (NDT), the total number

of occurrences query terms in the title (TNT) and the snippet (TNS), the location of the

occurred query terms (TLoc), ordering and adjacency information (ADJ), and the window

size containing the distinct occurred query terms (WS). To quantify the matches based on the

different features identified above the SRRSimMF algorithm aggregates the scores into

numeric values based on the following expressions

 Similarity = TNDT * (c3 * Sim(T,Q) + (1-c3) * Sim(S,Q)) / QLEN …(4)

TNDT is the total number of distinct query terms appeared in title and snippet

QLEN is the length of the query

Optimal value of c3 is 0.2 computed using a genetic algorithm [19], intuitively this means

that lesser significance is given to the similarity between title and query and more

significance is placed on the similarity between the query and the description.

 Sim(T,Q) = STNDT + (W1 * SADJ + W2 * SWS + W3 * STNT) / QLEN …(5)

 Sim(S,Q) = SSNDT + (W1 * SADJ + W2 * SWS + W3 * STNS) / QLEN …(6)

 STNDT = No. of Distinct Query Terms (NDT) that match TITLE / QLEN …(7)

 SSNDT = No. of Distinct Query Terms (NDT) that match SNIPPET / QLEN …(8)

 STNT = Count of matching terms in Title (TDT) / Title Length (TITLEN) …(9)

 STNS = Count of matching terms in Snippet (TDS) / Snippet Length (SLEN) …(10)

20

 SWS =(Title/Snippet length – Window Size) / (Title/Snippet length) …(11)

 SADJ is set to 1 if the ordering is same in query and title/snippet otherwise the value is 0

 W1, W2 and W3 are weights for each of the terms

Previous study [18] has shown that the window size and adjacency information offer little to

the similarity calculation and they are computationally expensive, hence they can be safely

ignored without much loss of similarity mapping. Equations (5) and (6) become

 Sim(T,Q) = STNDT + (STNT / QLEN) …(12)

 Sim(S,Q) = SSNDT + (STNS / QLEN) …(13)

Equations (11) and (12) are the ones used in actual implementations.

3.3 Content-direction

3.3.1 Motivation

All general purpose search engines have a ceiling on the query length for

performance reasons, which limits the effectiveness of the similarity functions and the

relevance of retrieved results. Most times there isn’t enough information to judge the

relevance between the query and the retrieved results. The best match searching and

relevance feedback model discussed in section 2.2.3 show the importance of query

reformulation for effective retrieval of matching results. Reformulation is an automatic,

controlled process which chooses important terms attached to certain previously retrieved

items that have been identified as relevant by the user (referred as guide artifacts) and

enhances the importance of these terms in the new query [9]. Studies have shown the

21

relevance feedback model to be very effective, but query reformulation has a significant

computation and complexity overheads. Instead of query reformulation, we suggest the use

of a guide artifact for similarity analyses in conjunction with the query and SRR to rank the

results.

3.3.2 Content-Directed Result merging algorithm (CDRM)

In this algorithm, the user specifies a guide artifact, typically a document relevant to

the field or domain or namespace in which the user is performing the search. When the

results are retrieved from several component search engines, a similarity analysis of the

SRRs is done as in SRRSimMF, including both the query and the guide document. The guide

document supplements the relevance information that is missing in the limited query terms

for making informed decisions. A guide document can have thousands of distinct terms, and

its size is only limited by the performance. Like the query, the guide document is compared

with result titles and snippets individually, and the scores are aggregated to compute the rank.

For CDRM the similarity function is computed as

Similarity = [TNDT * (c3 * Sim(T,Q) + (1-c3) * Sim(S,Q)) / QLEN] +

[TNDTGuide * (c3 * Sim(G,T) + (1-c3) * Sim(G,S) / (TITLEN + SLEN)] …(14)

Here,

TNDTGuide is the total number of distinct query terms appeared in guide document

 Sim(G,T) = SGTNDT + (SGTNT / TITLEN) …(15)

 Sim(G,S) = SGSNDT + (SGTNS / SLEN) …(16)

 SGTNDT = No. of Distinct Title Terms (NDT) that match GUIDE / TITLEN …(17)

22

 SGSNDT = No. of Distinct Snippet Terms (NDT) that match GUIDE / SLEN …(18)

 SGTNT = Count of matching guide terms in title (TDT) / TITLEN …(19)

 SGTNS = Count of matching guide terms in snippet (TDS) / SLEN …(20)

As in the SRRSimMF we ignore the location and adjacency information. Even with a

reasonably-sized guide document, computing location and adjacency features can be

expensive, and these tend to have little effect on the relevance ranking for a little set of

results [18]. These information features are more relevant when there is a huge volume of

results to be ranked, which is typically not the case with a general purpose metasearch

engine.

3.3.3 Use Cases

To better understand the effectiveness of CDRM in retrieving relevant results, let us

look at some use cases.

1. When a computer engineer working on the architecture of memory buses tries to use a

general purpose search engine to search the query term ‘bus’, he indeed refers to memory bus

or the ones used in computer to perform data transfer. A general purpose retrieval mechanism

would retrieve documents pertaining to vehicle buses, which are totally irrelevant to the

context of memory buses. Using a CDRM, the engineer will be able to present the namespace

of the search as computing in the form of a relevant document, and all the results to his

queries will be compared with the guide for relevance before being ranked for presentation.

23

2. When a manufacturer queries a web search engine for ‘black belt’, he is likely to be

flooded with documents that relate to the one worn around the waist to support clothing or a

level of proficiency with martial arts, whereas his actual intention is to retrieve documents

pertaining to Six Sigma. By providing a relevant Six Sigma document as guide, the

manufacturer will be able to narrow his search to the namespace of his choice using CDRM

and retrieve better matching results.

* * *

24

Chapter 4

ARCHITECTURAL FRAMEWORK

This chapter provides details on the architectural framework proposed for building

metasearch engines with support for dynamic configuring of component search engines and

content-directed result merging.

4.1 Requirements

A framework that supports building of metasearch engines that can handle eclectic

information sources and still maintain integrity has to be highly modular; provisions for

database selection, query reformulation, workload management, scheduling, result merging,

re-ranking and dynamic reconfiguration should be present. Extending the framework to

support new communication protocols should be easy. Facilities to support addition or

removal of components and dynamic switching of component parameters should be

available. Framework should provide architectural support for feedback techniques like

content-directed result merging and be flexible enough to extend support for unstructured

information sources like multimedia. The architecture should lend itself well to realizing the

metasearch engines in a parallel or clustered environment. The framework should have an

integrated exception handling mechanism and a unified logging scheme.

4.2 Design

With the aforesaid requirements in mind, we propose a simple to use, flexible

metasearch framework, consisting of four components: segregator, scheduler, aggregator,

25

and search providers. The configuration of the metasearch engine is maintained in an XML

document. Making use of a standard representation scheme like XSD (XML Schema

Document) to specify the configuration keeps the complexity levels under control yet

provides a powerful way of extending the features of the framework.

 The input to the engine or the query will be a data artifact, which can take several

forms including documents, data streams, literals, etc. The output of the engine is an XML

document that can be rendered as a data mash up presented over a user interface (UI) of

choice. Figure 5 illustrates the metasearch processing using a block diagram

Figure 5. Metasearch Framework

26

4.2.1 Query Segregator

First the data artifact flows into the segregator component which takes the data

artifact from the user as input and optionally divides it into manageable pieces based on size

and nature of content. A more feature rich segregator may go beyond simple tokenization and

will provide support for syntactic parsing, named entity detection, classification,

summarization and translation. Segregator implementations will leverage the functions of

existing open source search frameworks to build sensible sub-queries for the scheduler

component. For example when it comes to text content in the artifacts, we can use Apache

Lucene [3] to extract well-formed queries out of the textual content. If no query

preprocessing or reformulation is intended, then we can use a segregator stub to just forward

the query to the scheduler, which is the next component.

4.2.2 Query Scheduler

The second component of the metasearch processing is the scheduler. Scheduler is

essentially a query manager which takes preprocessed input artifact from the segregator and

schedules the search on several configured data sources in parallel. Scheduler is highly

configurable by the users as they can choose the repositories they would like to search by

including or excluding them from the configuration document and specify variety of options

for each search provider. An advanced scheduler can go beyond simple literal scheduling and

provide support for media content as well; in such a case, scheduler has to be aware of the

search providers that support the required media formats. The results from the individual

search providers are gathered and forwarded to the aggregator for post processing, which is

essentially rank aggregation and result merging. The input artifact is also forwarded in its

27

original form to facilitate re-ranking. Because turnaround time of search providers can vary

significantly, synchronizing the dynamic search provider threads can be the most challenging

aspect of the scheduler design. In order to meet the performance goals, the scheduler may use

an underlying GRID or cluster to schedule search tasks over a distributed infrastructure.

4.2.3 Result Aggregator

Aggregator takes care of collating the results into a consolidated result set. Other

responsibilities of aggregator may include elimination of irrelevant contents and duplicates

(filtering), and reformatting the contents. In addition, aggregator is the component where

optional re-ranking of results can be performed using a feedback technique like click-through

data or content guidance; in such a case, aggregator acts as the inference engine by

categorizing the content and establishing relationships between the source and the search

results from different parts of the content. Several advanced features have to be incrementally

added to the aggregator to refine the result set. The aggregator also takes care of packaging

and formatting the source and extracted result set into a standard output format, like XML,

that can be easily cast by web or application user interfaces.

4.2.4 Search Provider

Search providers are components which accept a set of query artifacts and return local

search results in a standard format. Providers can take the form of extensions to database

driver implementations, which help retrieving structured information from databases, or

adapters to search indexes built over a set of unstructured documents by applications based

on Lucene, or drivers to a content repository like Apache Jackrabbit [32] or even web

28

services that provide definitions or search facilities over public databases [27]. The

framework delegates the communication and protocol management to the data source

adapters there by providing easy interfaces to extend the framework for diverse information

sources.

4.3 Comparison with Component Architecture

In comparison with the general metasearch component architecture (discussed in

section 2.3), we can observe that the database selector and document selector roles are

fulfilled by the parameters in the framework configuration file. This helps reduce the

complexity of designing complex database and document selector modules and keeps the

implementation simple. The query dispatcher role is taken over by the scheduler component

and result merger role by the aggregator. The segregator serves to support the framework

configuration in document selection and query preprocessing. The service providers are the

interfaces to the search engine repositories.

In the next chapter we will explain the reference implementation based on this

architecture and a prototype metasearch engine that we have built using the reference

implementation.

* * *

29

Chapter 5

IMPLEMENTATION

This chapter deals with the implementation details pertaining to the metasearch

framework. We first discuss the infrastructure used, and then get into the details of the

component implementations and content-directed result merging, and finally, describe a

metasearch prototype based on the reference implementation.

5.1 Implementation Infrastructure

The framework and all involved components have been developed using Java

programming language in Eclipse environment. The object oriented features of Java helps to

keep the framework flexible and easy to extend. Eclipse [24] plug-in architecture provides an

integrated development environment for Java and necessary library support for the

development. Figure 6 provides a brief overview of the infrastructure implementation.

 Quiet often component search engines are made available to the user community in

the form of web services. Search service providers issue Web Service Description Language

documents (WSDL) that details the types and functions available through the service. We

have used Apache Axis2 [25], which is a robust web services engine, to provide the

necessary infrastructure support for creating service clients to access component search

services.

30

Figure 6. Implementation Infrastructure

Apart from web services, we also make extensive use of Java’s networking libraries for

service provider communications.

We also make extensive use of XML documents inside the framework. Most of the

document exchanges with service providers render XML documents. Also the configuration

and result schema documents are in XML format. To facilitate the development and upkeep

the maintainability of the framework we have used the Java and XML Binding (JAXB)

reference implementation [26] to bind XML schema documents into classes and objects. This

helps us focus on the algorithms rather than the exchange formats and schema standards.

Apache Lucene [3] provides the necessary indexing and text search support for our

framework. Lucene is a high-performance, cross-platform, full featured text search engine

31

32

library. We use its functionality to remove redundant and unnecessary terms and literals from

the query, and especially in content-direction.

 For unit testing we have used the JUnit [28] framework. Through the support

provided by this framework we have developed individual test cases for most of the

components and have developed some test suites that test the entire system. Performance

evaluations are done using the JUnit tests.

Java documentation (javadoc) utility is used to generate API (Application

Programming Interface) documentation for the framework. Google Web Developer Toolkit

(GWT) [29] is used to generate AJAX user interface for the prototype. Portable Document

Format (PDF) support is provided by the PDFBox [31] library. Reporting infrastructure is

provided by the JExcelAPI [30].

Apache Log4J is used for logging in the application and Subversion is used for

version control.

5.2 Framework

 A metasearch operation can be initiated by creating an object to the DREFramework

class, setting a valid configuration to the framework object in the form of input XML

configuration document or DREConfiguration object and invoking the processArtifact()

method. The configuration is automatically validated while it is being set. Framework

exceptions are internationalized and exception handlers are placed in the

edu.ncsu.dre.exception package. File and type comparison utilities are placed in the

edu.ncsu.dre.utils package. Figure 7 illustrates the entire class hierarchy of the

metasearch framework.

Figure 7. Class hierarchy of Metasearch Framework

33

5.2.1 Configuration

The configuration sets the framework components used for the metasearch operation;

configuration can be either loaded from an XML document that follows the schema

configuration.xsd (shown in Figure 8) or by creating an object to DREConfiguration

class. A static binding of the XML schema objects is done using JAXB; this allows runtime

modifications to the configuration. Users can use their own segregator, aggregator, scheduler,

Figure 8. Configuration XSD

34

and their own list of service providers by modifying the configuration document. Arguments

to the framework and individual components can be set using the parameters and option hash

tables respectively. Arguments are represented as (key, value) pairs are directly available to

the framework and its components once the configuration is loaded. Figure 9 shows a sample

configuration for the SRRSimCG with content guidance document.

XML and Object

<?xml version="1.0" encoding="UTF-8"?>
<EngineConfiguration>
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="configuration.xsd">
 <Segregator>
 <Handler>edu.ncsu.dre.impl.engine.DummySegregator</Handler>
 <Option key="Comment" value="This is the LexicalSegregator"/>
 </Segregator>

 <ResearchScheduler>
 <Handler>edu.ncsu.dre.impl.engine.StandAloneScheduler</Handler>
 <Option key="Comment" value="This is the StandAloneScheduler"/>
 </ResearchScheduler>

 <Aggregator>
 <Handler>edu.ncsu.dre.impl.engine.SRRSimCGAggregator</Handler>
 <Option key="Comment" value="This is the SRRSimCGAggregator"/>
 </Aggregator>

 <ServiceProvider>
 <Handler>edu.ncsu.dre.impl.engine.LiveSearchProvider</Handler>
 <Option key="ID" value="Livesearch"/>
 <Option key="AppID" value="7E8E2A6CDEEE7248E0EBF23EDD20303F86364CCE"/>
 <Option key="Culture" value="en-US"/>
 <Option key="SafeSearch" value="Off"/>
 <Option key="Source" value="web"/>
 </ServiceProvider>

 <ServiceProvider>
 <Handler>edu.ncsu.dre.impl.engine.YahooSearchProvider</Handler>
 <Option key="AppID"
value="eCBIC3LV34EN3FHl35AMrMhA7JoOi4jfPPy1VQrSNr51qWbeO43DkDDLSqG0jmVg"/>
 <Option key="ID" value="Yahoo"/>
 </ServiceProvider>

 <ServiceProvider>
 <Handler>edu.ncsu.dre.impl.engine.AlexaSearchProvider</Handler>
 <Option key="ID" value="Alexa"/>
 </ServiceProvider>

 <Parameter key="Comment" value="SimpleStandAlone DRE Framework."/>
 <Parameter key="ContentGuide" value="mem-sched.pdf"/>
</EngineConfiguration>

Figure 9. Sample Framework Configuration

35

5.2.2 Artifact

Artifact interface (edu.ncsu.dre.data.Artifact) provides an outline for the data

and structure of the query that will be run on the metasearch. An abstraction is made here so

that the framework can be easily extended to support multi media content. Normal text

queries can directly cast their contents into artifact using the TextArtifact

(edu.ncsu.dre.data.impl.TextArtifact) class.

5.2.3 Artifact Segregation

Segregator (edu.ncsu.dre.engine.Segregator) is the common interface for all

components that perform preprocessing on the artifact before it is scheduled for search in the

scheduler. Preprocessing can take a variety of forms like modifying the order of query terms,

adding operators, splitting the task into sub queries etc. The processed artifact and its subsets

if any are placed in a Collection (frequently a list structure) and passed to the scheduler for

scheduling. We have included two segregator implementations with the framework namely

DummySegregator (edu.ncsu.dre.engine.impl.DummySegregator) and

LexicalSegregator (edu.ncsu.dre.engine.impl.LexicalSegregator).

DummySegregator does no preprocessing but just forwards the query to the scheduler.

LexicalSegregator lexically analyses the query using Apache Lucene and segregates the

query terms for efficient search.

5.2.4 Metasearch Scheduling

The scheduler interface (edu.ncsu.dre.engine.ResearchScheduler) provides the

structure for implementing a metasearch scheduler. The scheduleResearch() method

36

accepts a list of query artifacts and a list of component search providers. A typical scheduler

implementation is expected to instantiate each of the component search providers as threads

and passes the query artifacts to them one after another. The threads are polled one after

another for completion, once completed the results are accumulated in a hash map data

structure and returned to the aggregator for result merging and re-ranking, each artifact or a

sub set of it is mapped with a list of SRR elements. The framework includes a standalone

scheduler (edu.ncsu.dre.engine.impl.StandaloneScheduler) that implements the

aforesaid functionality. More complex and distributed schedulers can be designed extending

the standalone scheduler which is left for future work.

5.2.5 Result Aggregation

Result Aggregator (edu.ncsu.dre.engine.Aggregator) acts as the common stub

to all aggregator components. They take the hash map containing the individual artifacts and

corresponding results to perform merging operations on them and render the resulting

aggregated ranked list as an XML stream. Aggregator implementation is where we embed the

result merging algorithm that determines the efficiency of the metasearch scheme used.

Framework is packaged with four of this; each providing a different functionality.

SimpleXMLAggregator (edu.ncsu.dre.engine.impl.SimpleXMLAggregator)

renders the merged result as a standard XML document, simple result merging is used.

SimpleHTMLAggregator (edu.ncsu.dre.engine.impl.SimpleHTMLAggregator)

renders the merged result as an XHTML document, which can be directly presented on a

browser interface. Simple result merging is used here.

37

SRRSimMFAggregator (edu.ncsu.dre.engine.impl.SRRSimMFAggregator)

renders the merged result as an XML document; the merging strategy used here is

SRRSimMF which has been previously discussed.

SRRSimCGAggregator (edu.ncsu.dre.engine.impl.SRRSimCGAggregator)

renders the merged result as an XML document; the merging strategy used here is

SRRSimCG. Here the content guidance (CG) is provided as option to the framework and the

aggregator uses this CG to rank the results.

5.2.6 Search Provider support

 The service provider interface (edu.ncsu.dre.engine.ServiceProvider) extends

the Java thread interface and provides the necessary ground work for constructing a search

service provider class. Threaded implementations of this interface are expected to return a

hash map, containing the artifacts as keys and the corresponding results as values, when

invoked with the function gatherInformation(). We have implemented three search

providers in our framework: Alexa Search Provider

(edu.ncsu.dre.engine.impl.AlexaSearchProvider), Microsoft Live Search Provider

(edu.ncsu.dre.engine.impl.LiveSearchProvider), and Yahoo Search Provider

(edu.ncsu.dre.engine.impl.YahooSearchProvider). They retrieve the results from

Amazon’s Alexa web cache, Live search and Yahoo repositories respectively.

5.2.7 Content-direction support

Content-direction support is built into the framework. When user provides a

parameter as Content Guide to the engine configuration, it is available to all the components

38

across the framework. An aggregator implementation that uses the content guidance builds a

list of literals and terms using Apache Lucene library to build several lists, each containing

matching terms from the query, content guide and SRR’s. The lists aid in computing distinct

match counts, match counts, and simple counts of literals and terms between the query, guide

and results that are being compared. Using these computed values we can directly calculate

the similarity function and rank of SRR using the expressions given in section 3.3.2.

5.3 Metasearch Prototype

Based on this metasearch framework, we have built a prototype metasearch engine

using the Google Web Developer Toolkit. The toolkit provides the servlet container

environment, server and client stubs and the necessary AJAX interface development

framework. The end user has a web form, through which he can set the content guidance

document as a PDF or paste guidance text (the content guidance step is optional). When

queries are input through the form, the merged results are rendered as an HTML document

and presented on the browser interface.

5.3.1 User Interaction Model

 Users have two ways of using the prototype. They can use the simple search feature

to query the component search engines without content-direction or they can set the content-

direction prior to a search and then perform a query which will order the results guided by

the content-direction document. The available user interaction methods are illustrated in the

Figure 10

39

Figure 10. User interaction model

 We have used this prototype and reference implementation to evaluate the

performance of content guidance in effectively ranking the search results. The next chapter

details the evaluation strategies used and the results obtained.

40

Chapter 6

EVALUATION and RESULTS

 This chapter provides a brief outline on the evaluation standards available to gauge

the effectiveness of information retrieval systems, specifically metasearch engines. Based on

these standards we evaluate the effectiveness of our metasearch engine with content-directed

result merging.

6.1 Evaluation Standards

The Text REtrieval Conference (TREC) organized by National Institute of Standards

and Technology (NIST) sets standards to measure the retrieval effectiveness of an IR system

[19].

6.1.1 TREC Tracks

Each TREC workshop consists of a set of tracks or areas of focus in which particular

retrieval tasks are defined. The tracks act as incubators for new research ideas in information

retrieval. They define the information retrieval problem and provide the necessary

infrastructure and framework (test collections, evaluation methodology etc) to support the

retrieval research on its task. Each track is supported by a user community linked by a

mailing list. The community provides recommendations to TREC program committee and

researches on improvements to the tracks that will be run in a given year of TREC.

41

There are specific TREC tracks for each kind of problem in an IR context. Below are

few TREC tracks with their descriptions that give us a broad idea of the track evaluation

framework and the IR problems they attempt to solve.

a) Blog Track [2007] – Aims to explore information seeking behavior in blogosphere

b) Enterprise Track [2007] - Track to study enterprise search, satisfying a user who is

searching the data of an organization to complete some task.

c) Genomics Track [2007] – Study retrieval functions with respect to genomics data

d) Legal Track [2007] – Effective retrieval of digital documents collection

e) SPAM Track [2007] – Standard evaluation of current and proposed SPAM filtering

approaches and retrieval tasks.

f) Terabyte Track [2006] – Investigates the scalability issues with IR test collection based

evaluation to significantly larger document collections than those used in TREC.

g) HARD Track [2005] – High Accuracy Retrieval from Documents by leveraging additional

information about the searcher and/or the search context.

h) Robust Retrieval Track [2005] – Focus is on individual topic effectiveness rather than

average effectiveness.

i) Web Track [2002, 2004] – Features search tasks on a document set that is a snapshot of the

World Wide Web.

6.1.2 TREC Web Track

Among the aforesaid tracks the Web Track is the one that is most relevant to our

metasearch result merging evaluation. The 2002 TREC Web Track provides a set of queries

or topics and a huge repository of documents containing a crawl of the Internet done in early

42

2000. Each web topic consists of four parts: an index number, a title, a description and a

narrative. The track defines 50 topics indexed from 551 to 600. An example Web Track topic

is shown in Figure 11

<webtrack>
 <topic>
 <num> Number: 551 </num>
 <title> intellectual property</title>
 <desc> Description: Find documents related to laws or regulations that
protect intellectual property </desc>
 <narr> Narrative: Relevant documents describe legislation or federal
regulations that protect authors or composers from copyright infringment ,
or from piracy of their creative work. These regulations may also be related
to fair use or to encryption.</narr>
 </topic>
</webtrack>

Figure 11. Sample Web Track

6.1.3 TSAP Methodology

We cannot be using the general purpose web track directly to evaluate our result

merging algorithm -- the web track is based on fixed repository of documents whereas we are

using general purpose search engines that index the latest documents of the Internet as

component service providers. Instead we will use the web track topics to query our

metasearch. Only title part is used as a query for metasearch. As titles are short, they are

representative of Internet queries submitted by real users. The average length of the titles of

these fifty topics is 3.06. The narrative describes what documents should be considered

relevant to the corresponding query topic. The information in the narrative is used as the

standard criteria for us to judge the relevancy of the collected result documents.

As it is difficult to know all the relevant documents to a query in a search engine, the

recall and precision metrics used for evaluating IR systems cannot be used for evaluating

internet search or metasearch engines. A well known alternative to performing this type of

43

evaluation on search engines is the TREC-style average precision (TSAP) [20]. As like

previous studies [18] that propose newer result merging algorithms we use TSAP at cutoff N,

denoted as TSAP@N to evaluate the effectiveness of each result merging algorithm.

Here,

Where ri = 1/i if the i-th ranked result is relevant and ri=0 if the i-th result is not relevant. The

TSAP@N metric considers both the number of relevant documents in the top N results and

the ranks of each of the relevant documents and yields a larger value when the results are

more relevant.

6.1.4 Test Bed and Evaluation Strategy

We use our prototype based on the reference implementation as our test bed. Three

component search engines are used in the test bed namely the Microsoft Live Search [21],

Yahoo Search [22] and Amazon’s Alexa Web Search [23]. We run the queries from 2002

Web track using scripts for four different configurations. In the first configuration we run

queries on component search engines in the normal context and compute TSAP@N3 for each

of them. In the second configuration we run queries on each of the component search engines

with web track narration as the content-direction for each query and compute TSAP@N.

In the third configuration we run all component search engines together in a

metasearch context with SRRSimMF (i.e. SRRSimCG without content-direction) result

merging strategy and compute TSAP@N. Finally we run web track topic queries in the

metasearch context with query narration as the content-direction for each query and compute

3 N = 5 or N = 10

44

TSAP@N. We compare TSAP@N for all these configurations to measure the relevance

improvements.

6.2 Results

6.2.1 TSAP@N and Retrieval Effectiveness

Table 6.1 lists the TSAP@N for each of the component search engines and the composite

metasearch engine, with and with out content-direction. Figure 12 illustrates Table 1 as a bar

chart representation.

Table 1. Comparison of Retrieval Effectiveness using TSAP
 Alexa Live Yahoo MetaSearch

TSAP@10 0.18867619 0.232587302 0.249544 0.241180952
TSAP@10 WithCG 0.214880159 0.253565079 0.268646 0.272753968
TSAP@5 0.286533333 0.363866667 0.393 0.3806
TSAP@5 WithCG 0.347533334 0.414466667 0.437333 0.429733334

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Alexa Live Yahoo MetaSearch

TSAP@10 TSAP@10 WithCG TSAP@5 TSAP@5 WithCG

Figure 12. Retrieval Effectiveness using TSAP for different configurations

45

Figures 13 and 14 illustrate TSAP@5 and TSAP@10 respectively for Amazon’s Alexa web

search service with and without Content-direction. Relevance scores of Alexa have been

found to be the least among the compared engines. Content direction improves Alexa’s

relevance of results for the top five SRR’s by 21% and top 10 SRR’s by 14%.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 11 21 31 41

TSAP@5 Ideal TSAP@5-With CG

Figure 13. TSAP@5 for Amazon Alexa Web Search with/without Content-direction

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 11 21 31 41

TSAP@10 Ideal TSAP@10-With CG

Figure 14. TSAP@10 for Amazon Alexa Web Search with/without Content-direction

46

Figures 15 and 16 illustrate TSAP@5 and TSAP@10 respectively for Microsoft Live search

with and without Content-direction. Content direction improves Live search’s relevance of

results for the top five SRR’s by 9% and top 10 SRR’s by 14%. There are certain data points

that illustrate poor performance of content-direction than the relevance of results without it.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 11 21 31 41

TSAP@5 Ideal TSAP@5-With CG

Figure 15. TSAP@5 for Microsoft Live Search with/without Content-direction

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 11 21 31 41

TSAP@10 Ideal TSAP@10-With CG

Figure 16. TSAP@10 for Microsoft Live Search with/without Content-direction

47

Figures 17 and 18 illustrate the TSAP@5 and TSAP@10 respectively for Yahoo search with

and without Content-direction. Yahoo provides the best relevance results; harmful effects of

content-direction are more prominent here but overall content-direction to provide better

relevance of results. Relevance gain of first 5 SRR’s is 7.5% and for all 10 SRR’s is 11%.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 11 21 31 41

TSAP@5 Ideal TSAP@5-With CG

Figure 17. TSAP@5 for Yahoo Search with/without Content-direction

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 11 21 31 41

TSAP@10 Ideal TSAP@10-With CG

Figure 18. TSAP@10 for Yahoo Search with/without Content-direction

48

Figures 19 and 20 illustrate the TSAP@5 and TSAP@10 respectively for Metasearch with

and without Content-direction. Results are comparable to the best performing component

engine (here Yahoo). Both TSAP@5 and TSAP@10 gain 13% improvement in relevance of

results.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 11 21 31 41

TSAP@5 Ideal TSAP@5-With CG

Figure 19. TSAP@5 for Metasearch with/without Content-direction

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 11 21 31 41

TSAP@10 Ideal TSAP@10-With CG

Figure 20. TSAP@10 for Metasearch with/without Content-direction

49

6.2.2 Discussion

 From the results, we observe that the content-direction boosts the relevance of results

uniformly for individual search engines as well as metasearch engines. The improvement is

more prominent where the search engine suffers from poor relevance ordering (Alexa). The

mechanism is particularly helpful for metasearch engines to improve the relevance ordering

where more results are available for ordering. The selection of most relevant results for

metasearch from a pool of SRR’s with content-direction provides a performance comparable

to the best performing search engine.

The content-direction effect is not always positive; there are certain queries in which

the content-direction degrades the relevance of results. On closer observation, these queries

had content-direction narrations specifying the results which needed to be excluded from the

results. As we are not doing a semantic or logical analysis of the content-direction input the

system has interpreted these directions erroneously and hence the aberration. Semantic

analysis of content-direction prior to use in relevance ordering is left to future work.

 In this chapter we presented the evaluation strategy, experimental setup, results that

discuss the impact of content-direction on relevance ordering. We conclude in the next

chapter with a discussion of future work.

50

Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

 Metasearch engines are distinguished from conventional search mechanisms, by their

focus on information retrieval from eclectic sources. In this thesis we have investigated the

implementation of metasearch engines, important challenges in result merging, and a new

content-directed method for providing highly relevant search results.

 We have designed a modular framework based on service-oriented architecture to

build metasearch engines. The framework supports dynamic addition and removal of

participant search providers. A reference implementation of the framework has been done in

Java, to demonstrate flexibility of the architecture. Individual components like segregator,

scheduler and aggregator can be seamlessly reconfigured to produce highly customized

search systems without significant effort. A prototype metasearch engine has been developed

to demonstrate the flexibility of the framework with three commercial search service

providers as component search engines.

This thesis proposed content-directed result merging algorithm for rank aggregation

in metasearch engines. We have described how user queries, augmented by additional

information can be leveraged to provide highly relevant search results. We believe that ideas

of content-direction are interesting in the context of information retrieval systems. Content-

direction provides additional feedback to the system, enabling the system to make informed

decisions while ranking the results based on relevance and providing an opportunity for

51

filtering the irrelevant ones. Content-direction provides an easier and faster way of narrowing

down search results of interest in a particular domain without repeating the search with

several complex queries. The success of content-direction in result merging and rank

aggregation has been demonstrated using the metasearch prototype.

Next generation search technologies are increasingly focusing on the personalization

of search, to handle the explosive growth of information in all walks of human knowledge.

This thesis has focused on improving information retrieval through metasearch engines that

provide relevant results using user provided content-direction.

7.2 Future work

 The metasearch framework can be a good choice for testing new approaches in

providing highly relevant search results. The framework itself can be augmented and

extended in several ways. New segregation algorithms that take structured queries for

processing can be formulated. Similarly, advanced aggregation algorithms that learn from

implicit feedback can be devised to provide highly relevant search results apart from content-

direction. New component search schedulers can benefit by utilizing an available grid or

clustering infrastructure to efficiently use the network resources. The metasearch framework

is also an excellent platform to compare relative performances among a set of search engines.

 Several improvements can be done to the content-direction methodology as well. The

system still does not support content that negatively impacts the queries. With rapid

information explosion, quick filtering of the unrelated results based on the content-directed

similarity function can be one of the future directions of interest. There can also be

52

extensions of content-direction usage, along with other implicit feedback mechanisms to

personalize search engines for every user.

53

REFERENCES

[1] Michael K. Bergman, 2001, The Deep Web Surfacing Hidden Value,
http://www.press.umich.edu/jep/07-01/bergman.html

[2] W. Meng, C. Yu, and K. Liu. Building Efficient and Effective Metasearch Engines. ACM
Computing Surveys, 2002.

[3] Apache Lucene, 2006, http://lucene.apache.org/

[4] JUnit.org Resource for Test Driven Development, 2007, http://www.junit.org/

[5] T. Joachims, F. Radlinski, Search Engines that Learn from Implicit Feedback, IEEE
Computer, Vol. 40, No. 8, August, 2007.

[6] Gerald Salton, Michael J. McGill, Introduction to Modern Information Retrieval,
McGraw-Hill Book Company 1983.

[7] Cleverdon, C. Optimizing Convenient Online Access to Bibliographic Databases In: P.
Willet (ed.), Document retrieval systems, London, Taylor Graham, 1988 32-41.

[8] Al-Hawamdeh, S. and Willet, P., Comparison of Index Term Weighting Schemes for the
Ranking of Paragraphs in Full-text Documents, International journal of information and
library research, 1, 1989, 116-30

[9] Salton, G. and Buckley, C., Term-weighting Approaches in Automatic Test Retrieval,
Information processing and management, 24(5), 1988, 513-23.

[10] Salton, G. and Buckley, C., Improving Retrieval Performance by Relevance Feedback,
Journal for American Society for Information Science, 41(4), 1990, 288-97.

[11] D. Dreilinger, A. Howe. Experiences with Selecting Search Engines Using Metasearch.
ACM TOIS, 15(3), July 1997, pp.195-222.

[12] E. Selberg, and O. Etzioni. The MetaCrawler Architecture for Resource Aggregation on
the Web. IEEE Expert, 1997.

[13] J. Aslam, M. Montague. Models for Metasearch. ACM SIGIR Conference, 2001, pp.276-
284.

[14] B. Yuwono, D. Lee. Server Ranking for Distributed Text Resource Systems on the
Internet. International Conference on Database System For Advanced Applications, 1997,
pp.391-400.

54

http://www.press.umich.edu/jep/07-01/bergman.html
http://lucene.apache.org/
http://www.junit.org/

[15] E. Glover and S. Lawrence. Selective Retrieval Metasearch Engine. US Patent
Application Publication (US 2002/0165860 A1), November 2002.

[16] E. Selberg, and O. Etzioni. The MetaCrawler Architecture for Resource Aggregation on
the Web. IEEE Expert, 1997.

[17] S. Robertson, S. Walker, M. Beaulieu. Okapi at trec-7: Automatic Ad hoc, Filtering,
and Interactive Track. 7th Text REtrieval Conference, 1999, pp.253-264.

[18] Yiyao Lu, Weiyi Meng, Liangcai Shu, Clement Yu, and King-Lup Liu. Evaluation of
Result Merging Strategies for Metasearch Engines . 6th International Conference on Web
Information Systems Engineering (WISE05)., pp.53-66, New York City, November 2005.

[19] TREC Tracks, http://trec.nist.gov/tracks.html

[20] S. Lawrence, and C. Lee Giles, Inquirus, the NECi Meta Search Engine. Seventh
International World Wide Web Conference, 1998.

[21] Microsoft Live Search API 1.1, Microsoft Live Developer Center,
http://msdn2.microsoft.com/en-us/library/bb251794.aspx

[22] Yahoo Search API, Yahoo! Developer Network, http://developer.yahoo.com/search/

[23] Alexa Web Search, Amazon Web Services, Amazon.com,
http://www.amazon.com/gp/browse.html?node=269962011

[24] Eclipse http://www.eclipse.org/

[25] Axi2 http://ws.apache.org/axis2/

[26] JAXB Reference Implementation, Sun Glass Fish Project, https://jaxb.dev.java.net/

[27] SearchSystems.net, http://www.searchsystems.net

[28] JUnit, Resources for Test Driven Development, http://www.junit.org/

[29] Google Web Developer Toolkit (GWT) http://code.google.com/p/google-web-toolkit/

[30] Java Excel API, http://jexcelapi.sourceforge.net/

[31] PDF Box, http://www.pdfbox.org/

[32] Apache Jackrabbit, http://jackrabbit.apache.org/

[33] Naren Ramakrishnan, Search: The New Incarnations, IEEE Computer, August 2007.

55

http://trec.nist.gov/tracks.html
http://msdn2.microsoft.com/en-us/library/bb251794.aspx
http://developer.yahoo.com/search/
http://www.amazon.com/gp/browse.html?node=269962011
http://www.eclipse.org/
http://ws.apache.org/axis2/
https://jaxb.dev.java.net/
http://www.searchsystems.net/
http://www.junit.org/
http://code.google.com/p/google-web-toolkit/
http://jexcelapi.sourceforge.net/
http://www.pdfbox.org/
http://jackrabbit.apache.org/

[34] A. Gulli and A. Signorini. Web is more than 11.5 billion pages. WWW 2005.

[35] Marcus P. Zillman, Deep Web Research 2007 Report, LLRX.com, 2007.

[36] H. He, W. Meng, C. Yu, Z. Wu, Automatic Extraction of Web Search Interfaces for
Interface Schema Integration, Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, 2004.

[37] Inderjeet Singh, et al., Designing Web Services with J2EE 1.4 Platform : JAX-RPC,
SOAP, and XML technologies, Addison-Wesley, 2004.

[38] G.G. Chowdhury, Introduction to Modern Information Retrieval, Facet publishing, 2004

56

	1_abstract.pdf
	2_dedication.pdf
	INTRODUCTION
	METASEARCH ENGINES
	2.1 Information Retrieval Systems (IRS)
	2.1.1 Information Systems
	
	2.1.2 Functional approach to IR

	2.2 Search and retrieval
	2.2.1 Searching process
	2.2.2 Retrieval models
	2.2.3 Best match searching and relevance feedback model

	2.3 Metasearch Engines
	2.3.1 Motivation and Goals
	2.3.2 Component Architecture
	2.3.3 Heterogeneity

	RANK AGGREGATION & RESULT MERGING
	3.1 Foundations
	3.2 Merging Algorithms
	3.2.1 Top Document search engine score (TopD)
	3.2.2 Top SRR based search engine score (TopSRR)
	3.2.3 Simple Similarity rank between SRR and query (SRRSim)
	The SRRSim ranking scheme directly computes the rank of documents using SRRs, instead of first computing the search engine scores and then the individual document ranks. The SRRSim uses the fact that the SRR is representative of the corresponding full document; thus one can rank SRRs returned from different search engines based on their similarities with the query directly, using the right similarity function.
	 The similarity between SRR R and query Q is computed as the weighted sum of similarity between the title T of R and Q and the similarity between the snippet S of R and Q.
	3.2.4 Compound similarity rank between SRR and Query (SRRSimMF)

	All the previous ranking algorithms propose metasearch engines to use only the similarity functions to determine the relevance of documents against the given query. They do not take the proximity, frequency and ordering of terms into consideration. The impact of order and proximity of information in the result ranking is important and obvious. To better rank SRRs, this algorithm takes several features with respect to the query terms, like the number of distinct query terms appearing in the title and the snippet (NDT), the total number of occurrences query terms in the title (TNT) and the snippet (TNS), the location of the occurred query terms (TLoc), ordering and adjacency information (ADJ), and the window size containing the distinct occurred query terms (WS). To quantify the matches based on the different features identified above the SRRSimMF algorithm aggregates the scores into numeric values based on the following expressions
	3.3 Content-direction
	3.3.1 Motivation
	3.3.2 Content-Directed Result merging algorithm (CDRM)
	3.3.3 Use Cases

	ARCHITECTURAL FRAMEWORK
	4.1 Requirements
	4.2 Design
	4.2.1 Query Segregator
	4.2.2 Query Scheduler
	4.2.3 Result Aggregator
	4.2.4 Search Provider

	4.3 Comparison with Component Architecture

	IMPLEMENTATION
	5.1 Implementation Infrastructure
	5.2 Framework
	
	5.2.1 Configuration
	 5.2.2 Artifact
	5.2.3 Artifact Segregation
	5.2.4 Metasearch Scheduling
	5.2.5 Result Aggregation
	5.2.6 Search Provider support
	5.2.7 Content-direction support

	5.3 Metasearch Prototype
	5.3.1 User Interaction Model

	EVALUATION and RESULTS
	6.1 Evaluation Standards
	6.1.1 TREC Tracks
	6.1.2 TREC Web Track
	6.1.3 TSAP Methodology
	6.1.4 Test Bed and Evaluation Strategy

	6.2 Results
	6.2.1 TSAP@N and Retrieval Effectiveness
	6.2.2 Discussion

	CONCLUSION AND FUTURE WORK
	7.1 Conclusion
	7.2 Future work
