
`ABSTRACT

GANDLUR, KARTHIK SATYANARAYANA. Implementation of Adaptive

Routing in Public Logistics Networks. (Under the direction of Michael G. Kay.)

A public logistics network is proposed as a means to extend many of the features

associated with public warehouses to the entire supply chain. In addition to providing

traditional warehousing and storage functions for hire, a public logistics network would

make it possible to negotiate with multiple firms on a load-by-load basis in order to

determine the most efficient means of providing the resources needed to complete each

stage of a load’s transit through the network. The report gives an overview of the

supporting technologies that make Public Logistics Network a reality. It is intended to

provide a preliminary outlook at the various issues related to implementation and could

be used for future research as a basis for building the infrastructure required for the new

model. An effort has been made to provide an overview of the Web Services, which will

be a logical extension to the implementation of such a network. In addition to that, this

report will describe the use of Adaptive Routing Protocol using Java Programming for

building a hypothetical Public Logistics Network covering the southeastern United

States. The network consists of 36 nodes representing the public distribution centers and

59 routes, which represents various interstate highways connecting them. The model

helps identify the different scenarios that may occur, including in-transit trade and cost

variations. The scenario representations of the model will be used as a benchmark for

future research and development associated with building an actual negotiating agent

model.

IMPLEMENTATION OF ADAPTIVE ROUTING IN PUBLIC

LOGISTICS NETWORKS

KARTHIK SATYANARAYANA GANDLUR

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

INDUSTRIAL ENGINEERING

Raleigh

2002

APPROVED BY:

________________________________ _________________________________

Robert E. Young Robert Handfield

Michael G. Kay

Chair of Advisory Committee

 ii

To

Amma, Appa & Murali

 iii

BIOGRAPHY

Karthik Satyanarayana Gandlur was born in Bangalore, India in 1977. He

received his Bachelor’s degree in Industrial Engineering from the Bangalore University

in 1999. He joined Indian Institute of Science (IISc) as a Research Assistant. Later he

worked at Maini Precision Products, Bangalore as an Industrial Engineer. He then joined

the graduate program in the Industrial Engineering department at North Carolina State

University in the fall of 2000 and is currently working towards the completion of a M.S

degree in Industrial Engineering.

 iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my graduate advisor, Dr. Michael Kay for

his guidance, support, and for being my mentor. Working with him has been a highly

rewarding experience.

I would like to thank Dr. Robert Young and Dr. Robert Handfield for showing interest in

my research and agreeing to be on my committee.

Special thanks to my friend Balaji Gopinathan, for his patience, guidance and support, in

helping me update my programming skills and using the same in my thesis.

I would like to thank all the members of the WISDEM (Industrial Engineering) group for

their support and encouragement. Thanks to all at PS 209 for putting up with my antics

for last two years and making my stay at North Carolina State University very enjoyable.

Most of all I would like to thank my family their love and support, and for standing by

me when I needed them most. This work is dedicated to my parents for motivating me to

come so far and for teaching me to be successful in life.

 v

Contents

List of Figures………………………………………………………….…………….…vii

List of Tables………………………………………………………………………...…viii

CHAPTER 1: INTRODUCTION…………………………………...………………….1

1.1. Introduction……...……………………………..………….…...…………….…..1

1.2. Public Logistics Network………....………………………….……………….….4

1.3. A Snapshot……………………………………………….…...…………………..6

1.4. Implementation and Coordination of PLN………….….…...………….. .………9

CHAPTER 2: ROUTING PROTOCOLS…………………….………………………13

2.1. Introduction……………………….……………….…………………………...13

2.2. Comparison of Routing Protocols………….. …………………………………15

2.3. Distance-Vector Routing……………………...…….…………..……………...18

CHAPTER 3: AGENTS……...…………………………....…………………………...22

3.1 Introduction…………………...……………………...………………………….22

3.2 Agent Based Negotiation Model…………………...……………………………23

3.3 Agent Development Platforms..…………………...……………...…………..…27

CHAPTER 4: SUPPORTING TECHNOLOGIES..…...……………….……………29

4.1 Web Services……………………………………...…,…………….……………29

4.2 XML……………………………………………...………………………….…..33

4.3 SOAP…………………………………………...…………………………….…35

4.4 UDDI…………………………………………...………………………………..37

 vi

CHAPTER 5: Adaptive Routing Representation in PLN using Java…………...…..39

5.1 Basic Assumptions……………………………………………………………….39

5.2 Model Initialization and Operations……………………………………………..40

5.3 Pseudo-code for Routing Table Propagation………………………………….…42

5.4 UML Representation of the Model………………………………………………44

5.5 Model Scenarios……………………………………………………………….…46

5.6 Model Verification and Validation………………………………………………50

CHAPTER 6: Conclusions and Future Work…………...……………………………51

Appendix A: Java Programs…………………………………………………………..54

Appendix B: Data Input Files………………………………………………………..109

Appendix C: UML Sequence Diagrams……………………………………………..113

REFERENCES………………………………………………………………………...116

 vii

List of Figures

Figure 1.1: Hypothetical public logistics network showing 36 public DCs covering the

southeastern portion of the USA and connected via interstate highways……7

Figure 2.1: Comparison of Routing in Networks………………………………………..16

Figure 2.2: Example of Distance-vector algorithm………………………………………20

Figure 3.1: Agent based negotiations…………………………………………………….25

Figure 4.1: Example of Implementation of Web Services……………………………….31

Figure 4.2: XML structure……………………………………………………………….35

Figure 4.3: SOAP Message Embedded in HTTP Request……………………………….36

Figure 4.4: SOAP Message Embedded in HTTP Response……………………………..36

Figure 5.1. Example of Adaptive Routing……………………………………………….48

 viii

List of Tables

Table 2.1: Comparison of Vehicle Routing, Public Logistics Network and Computer

Networks……………………………………………………………………..16

Table 5.1: Adaptive Routing Scenarios………………………………………………….49

Chapter 1: Introduction

1.1 Introduction

Experts predict the approaching e-business era will require massive changes in

global supply chain operations, the activities in any organization that make and deliver

goods and services to customers. Greatly increased customer expectations, coupled with

enormous opportunities for performance improvement, will compel this redesign [1].

The redesign will employ reengineered processes, optimizing systems, and

channel-linked organizations to produce improvements in order cycle time, total

delivered cost, order fill rates, and on-time performance that are multiple times better

than today. Crafting today's supply chains into the advanced e-chains of the future will

not be easy. It will require a rapid evolution of supply chain competence from functional

focus through enterprise integration to channel collaboration to virtual connectivity.

The trading environments offered by electronic commerce (eCommerce) will be

radically different from the traditional market models in existence today. Users in this

new rapidly changing market will require ever more sophisticated services to assist them.

Buyers will need to identify and purchase the best from the myriad of products and

services available on the Internet; suppliers will want to target potential customers in a

more efficient manner, increasing revenue and reducing costs. Software too needs to keep

up with rapid change and increasing complexity. The eCommerce market will not tolerate

slow response or delayed decision-making. New ways of developing channels for

interactive relationships with customers and building customer communities must be built

[2]. It is this business model which is forcing businesses to take note of software agents.

 2

A software agent is a software entity that can act in an autonomous manner, can

learn, is proactive, and has the ability to interact with other entities, be they human or

software based. Software agents are predicted to play an increasing role in electronic

commerce as they exhibit much of the behavior considered to be desirable or even

essential. Agents endowed with these capabilities can significantly reduce the amount of

human effort required, therefore providing real value [3].

Logistics services for e-commerce have proved to be an area that requires major

improvements if e-commerce is to achieve its full potential. The failure of many e-

businesses, for example in the United States, to fulfill orders during peak demand periods

and the reluctance of some sellers to engage in international e-commerce because of the

complex logistics requirements clearly demonstrate the critical role of e-logistics [4].

 The existing e-logistics problems arise largely from the fact that e-commerce and

the demand for related logistics services have grown at a much faster rate than that at

which suitable logistics services and solutions have been developed. Traders have

responded to the increased demand for logistics services that arises from e-commerce by

adopting a variety of methods. These include handling of order fulfillment by companies

themselves using in-house logistics services, outsourcing fulfillment to third-party

logistics service providers (3PLs), drop shipping, and various combinations of these

methods. Concurrently, considerable efforts have been made to develop software

applications in order to automate logistics functions such as order management, cargo

and equipment tracking, transportation management and planning, customer service

management, and returns management. Technology plays a critical role in providing

systems that can enhance the ability of logistics service providers to satisfy customer

 3

demands. The main weakness of the efforts to develop applications for improving

logistics is the general lack of integration between the various applications used for

different logistics functions. Many of the applications are designed to handle different

types of logistics functions, and this tends to lead to the existence of incompatible

systems being applied to related logistics functions.

 To achieve more efficient e-logistics and e-fulfillment, it is desirable to have a

trading environment in which there is sufficient information about goods as regards their

description and origins, and destinations. Sellers and buyers should be able to monitor

and track goods at every point along the way from the supplier to consumer. All

stakeholders should be able to check on the Internet the availability and status of orders.

All this can be achieved if trade information is simplified automated and fully

harmonized. It also requires sophisticated supply chain management systems for

compiling and enabling global end-to-end monitoring of trade information.

 To accomplish these broad objectives we have to take advantage of the great

potential provided by the Internet technology in order to capture, transfer and monitor

trade information over global networks of supply chains in an open fashion. Also we

have to promote greater integration of software applications for logistics functions,

including the use of such systems as Web Services, XML (extensible Markup Language),

SOAP (Simple Object Access Protocol), and UDDI (Universal Description, Discovery

and Integration).

Yantra, a leading provider of enterprise software for distributed commerce

management, describes in their white paper [5] the impact of the Internet on supply chain

logistics providers. The paper describes the changing attitude of clients of customers and

 4

that real time sharing of information has become the “norm.” Clients expect their

logistics partners to provide them and their customers with accurate order and inventory

status. This expectation places significant strain on logistics providers that often utilize

fulfillment systems not designed to work in a real-time environment. Most logistics

providers lack a single system that provides real-time status of orders and inventory

across their entire fulfillment network. A study published in Logistics Information

Management [6] predicted that the number of private warehouses will decrease in future

and the number of transshipment warehouses will increase. This shows that the idea of

public logistics networks goes along with the recent trends in the logistics industry.

1.2 Public Logistics Networks

A “public logistics network” is proposed as a means to extend many of the

features associated with public warehouses to the intelligent supply chain. In addition to

providing traditional warehousing and storage functions for hire, a public logistics

network would make it possible to negotiate with multiple firms on a load-by-load basis

in order to determine the most efficient means of providing the resources needed to

complete each stage of a load’s transit through the network. Items could continuously

negotiate with the logistics resources of the network using simultaneous auctions in order

to determine the best route and cost and schedule. Similar to the dynamic pricing used to

sell airline seats, a price for each available space on a truck and storage space at a

distribution center (DC) could be negotiated in real time for each individual item [4].

A unique capability of such a network is that a third party can search the network

for any type of item in transit. Once located, negotiations can take place and the item

might be resold to the third party and redirected to a new destination. The potential utility

 5

of this search and negotiate capability depends on the characteristics of items being

transported: it is not likely to be needed to locate low-cost, ubiquitous items like

toothbrushes because they can be expected to be available at every local store; nor is it

needed to locate custom-made, one-of-a-kind products because there are so few of the

items available, of uncertain quality, that the use of traditional private logistics networks

is likely to be the most efficient. A public logistics network is likely to be most suitable

for managing the multitude of commodity-like items (replacement parts, etc.) that fall in

the middle ground between ubiquitousness and uniqueness.

The idea of Public Logistics Network in comparison with private, single owned

monopolies like FedEx and UPS can be summarized very well below [4]:

Currently, it is common for a single logistics firm to handle a load throughout its

transport. Although companies like FedEx and UPS have very sophisticated

proprietary tracking and control infrastructures, the control of the logistics

network is highly centralized. The most notable feature of these private logistics

networks is that a single firm controls the network and much of the technology

used to coordinate the operation of the network is proprietary. As a result, the

principal competitive advantage that a private logistics company has is the barrier

to entry due to the very large scale of operation (national or international)

required in order to be able to underwrite the development of private facilities and

propriety technologies. Nevertheless, a single firm, unless it becomes a monopoly,

is ultimately limited in the scale of its operation, resulting in the use of single-firm

“hub” DCs. With a limited number of large-scale hub DCs, a load can make many

circuitous “hops” before it reaches its destination.

 6

The most salient impact of such a network is likely to be that it would make it

possible to separate the different functions of the network so that a single firm is

not required for coordination. This would enable economies of scale to be realized

in performing each logistics function since each element of the network has

access to potentially all of the network’s demand. The increase in scale might

make it economical to ship in full truckloads throughout the network as opposed

to more costly less-than-truckload shipments. This could be possible because a

single truck could be used to transport all of the demand associated with a lane (or

link) in the network. Many of the long-haul, single-product full-truckload

shipments between private facilities can be replaced by sequences of short-

distance hops between public DCs. Links in the network could be served by

trucks that are owned and operated by different firms, and each transshipment

point (i.e., public DC) in the network could be an independently operated facility.

Due to the increase in scale, it would be economical to have many more DCs.

Public DCs (which would operate like existing private highly automated hub DCs,

but on a smaller scale) could be established in small cities and towns that would

never have such facilities if they were served as part of a proprietary, private

logistics network.

1.3 A Snapshot

This section presents a brief snapshot of the possible scenario to help better

understand the proposed system.

Every manufactured item will have an RFID attached to it. The manufacturer

generates a GUID and an item specific XML code derived from the Document Type

 7

Definition (DTD) [7] relevant to the UNSPSC code of the class of products associated

with the part. The RFID will be programmed with the GUID given to the item. The XML

data will be stored in the PackageIP Server at the manufacturer’s premises. If an order

has been placed for the item, it will be shipped to the customer; otherwise, it will be

stored in the warehouse. PackageIP servers at the warehouse/truck will update inventory

data (update XML files). The item is shipped across the public logistics network to the

customer [8].

−86 −84 −82 −80 −78 −76 −74

30

32

34

36

38

1

2

3

45

6

7

8

9

10

11

12

13

14

1516

17

18
19

20

21

22

23

24

25

26

27
28

29

30

31
32

33

3435

36

Figure 1.1: Hypothetical public logistics network showing 36 public DCs covering the
southeastern portion of the USA and connected via interstate highways [9].

Now let us suppose that a customer, who owns a 1965 Ford Mustang, has a

broken transmission and wants to buy a replacement for the critical component. He shops

around on the Internet and searches for the part by using the UNSPSC number of the part

 8

got from the website. Placing an order with the manufacturer has a lead-time of two

months before he can get the replacement. But he finds a similar part was shipped the

previous day from Jacksonville, FL and is on a truck near Benson, NC heading north on

I-95, to be delivered in Richmond, VA. He also notices from his query that the part is

available for in-transit trade. He starts the negotiation immediately with the part’s agent

running on a computer onboard the truck, by giving his intent to buy and his offer terms.

After an agent-mediated negotiation process, which in case is successful, i.e., both the

buyer and the seller (part) agree on the trade terms, the part is immediately unloaded at

the closest DC and loaded onto to a truck heading towards the destination. All the

necessary information about the part can be stored in the “smart tag” attached to the item.

The information will be stored in a standard XML format that can be queried and

accessed easily by any commonly used browser. When the truck transporting the car on

nears the I-85–I-40 interchange, the item would be unloaded at the interchange’s public

DC (DC 15 in Figure 1.1) and loaded onto the next truck heading to Raleigh along I-40.

Within two hours, the part could be in Raleigh as compared to an earlier wait period of

over two months. At the same time, the customer at Richmond could locate an identical

replacement part and, with the revenue from the sale of the part to the Raleigh customer

minus the cost of the replacement, may be able to realize a net gain.

Currently, without a public logistics network, the customer in Raleigh would most

likely have to either shop around with local dealers or wait till he receives the part from

the manufacturer. Information about any item can be tracked effortlessly using this

system, which facilitates seamless information flow throughout the supply chain. As the

product finds its way to the customer, it reduces overheads from other components and

 9

parties of the supply chain. As all negotiations and settlements are done automatically,

the system will work with better efficiency and flexibility.

Intelligent agents representing each package will negotiate with agents

representing each manufacturer, customer, truck, and distribution center in the logistics

network in order to minimize its individual transport cost. This makes it possible to focus

on the pure transport-related arbitrage opportunities that a public logistics network can

provide. In particular, it will be determined whether, in equilibrium, the logistics network

does operate in a least cost manner and, most importantly, whether the network can re-

optimize through self organization after being subject to a variety of disturbances,

ranging from the simple breakdown of a truck to the logistical challenges associated with

a major natural disaster (e.g., a hurricane) [9].

1.4 Implementation and Coordination of PLN

This research will focus on implementation of software agents, and how they are

helpful in the management of issues that are critical to the coordination of a public

logistics network. Also it further looks at different ways of this can be implement over

the Internet, using the Web Services.

The two specific issues that are critical to the coordination of a public logistics

network are Adaptive Routing and In-transit trade [9].

• Adaptive routing: When a package is to be transported through the network,

intelligent software agents would be spawned and sent ahead to each DC along

the route to the package’s destination. Based on the local price of transport and

storage at each DC, the “best” route for the package is determined. All of the

package agents that are at DCs not along the intended route would remain active

 10

until the package reaches its destination in order to be available to determine

alternative routes for the package in case of any disruption (cost increase) along

its intended route or a significant cost decrease along an alternative route.

• In-transit trade: All of a package’s agents that are located at the DCs along both

its intended and alternative routes are available as trading agents for the possible

resale of the package and its subsequent re-routing to a new destination. Triggered

updates will provide each trading agent with the minimum cost required to

transport the package from its current location to the DC where the trading agent

is located; as a result, the exact, accurate transport cost can be added to the FOB

(free-on-board) price of the package from its origin, making it possible to

instantaneously negotiate using price quotes that represent the delivered price at

the DC where the trading agent is located.

These issues can be managed successfully by use of software agents. An Agent is

a software entity that has a knowledge base, an inference mechanism and an explicit

model of the problem to solve – including a model of other agents with which it must

interact. Agent technologies are well suited for applications having the following special

characteristics: modular, decentralized, changeable, ill structured, and complex. The tasks

of design, simulation, and scheduling and control manifest many of these characteristics,

particularly under the impact of modern manufacturing trends listed above, suggesting

that agents are a natural way to address them.

 Agents are pro-active objects, and share the benefits of modularity that have led to

the widespread adoption of object-oriented methods, and are thus best suited to

applications that fall into natural modules. They monitor their own environment and take

 11

action, as it deems appropriate. This characteristic of agents makes them particularly

suited for applications that can be decomposed into stand alone processes, each capable

of doing useful things without continuous direction by some other process. Public

logistics network involves items distributed over a wide geographic region, and

decentralized control via an agent-based architecture is an ideal fit to such an

organizational strategy.

 Modularity and independence combine to make agents especially valuable when a

problem is likely to change frequently. This type of complex dynamic behavior is a

perfect fit to our model, where items are routed dynamically over the supply network.

Transportation and storage prices vary with time and availability. Items are to be re-

routed to different customers when demand arises. Space, cost, and time are to be

continuously negotiated for as the item makes its way through the distribution network.

For these reasons, the use of intelligent agent systems would be the best approach to

tackle this complex system.

 Web Services act as a nice complement to the use of these agents over the

network. Web services, in the general meaning of the term, are services offered via the

Web. In a typical Web services scenario, a business application sends a request to a

service at a given URL using the SOAP protocol over HTTP. The service receives the

request, processes it, and returns a response. Since all these services make use of software

programs and protocols, software agents can be built using the object-oriented

programming languages, which are compliant with these standards and further the use of

them over the Internet.

 12

 Web services depend on the ability of enterprises using different computing

platforms to communicate with each other. This requirement makes the Java platform,

which makes code portable, the natural choice for developing Web services. This choice

is even more attractive as the new Java APIs for XML become available, making it easier

and easier to use XML from the Java programming language.

 13

CHAPTER 2: ROUTING

2.1 Introduction

Routing is the process of finding a path from a source to every destination in the

network. It allows the users in the remotest part of the world to get information and

services provided by computers anywhere in the world [10].

Routing is a term usually associated with the main process used by Internet hosts

to deliver packets. Internet uses a hop-by-hop routing model, which means that each host

or router that handles a packet examines the Destination Address in the IP header,

computes the next hop that will bring the packet one step closer to its destination, and

delivers the packet to the next hop, where the process is repeated. To make this work, two

things are needed. First, routing tables match destination addresses with next hops.

Second, routing protocols determine the contents of these tables.

This is similar to the various routing strategies that are associated with the

movement of Automated Guided Vehicles (AGV). The aim of routing AGVs is to find an

optimal and feasible route for every single AGV. The routing decision includes three

aspects. Firstly, it should detect whether there exists a route, which could lead the vehicle

from its origin to the destination. Secondly, the route selected for an AGV must be

feasible. Thirdly, the route must be optimal. This is very similar to what we are trying to

achieve over the public logistics network. The package in a PLN can be related to an

AGV and the movement of the package in the network is similar to the routing strategy

employed for an AGV.

The evaluation of alternative routes and the actual routing of an AGV based on

this evaluation can be either static or dynamic. When routing is static, the path taken by

 14

an AGV between any two given nodes is always the same—that is, the route does not

vary over time as a function of the current congestion in the system. The most natural

solution is always to select the path with the shortest travel distance. When routing is

dynamic, different paths can be taken by an AGV at different times when moving

between two given nodes. Taking into consideration the current status of the system, the

vehicle router selects a path for the AGV at the time that the vehicle is dispatched and if

there is a communications link between the router and the vehicle, then the router

modifies the vehicle’s path during travel [11].

We can compare this scenario with the routing strategy used by a package moving

in a public logistics network, with constant and variable route costs. If the costs do not

change, for any of the routes during the period the package leaves the origin and reaches

the destination, the routing can be considered to be static. But if the route costs keep

changing over time as a function, and the objective of the package is to move between the

origin and the destination with least transportation cost, the route taken by it constantly

keeps changing from its intended journey path.

Routing is accomplished by means of routing protocols that establish mutually

consistent routing tables in every router in the network. A routing table contains at least

two columns: the first is the address a destination endpoint or a destination network, and

the second is the address of the network element that is the next hop in the “best path” to

this destination. When a package arrives at a router, the router consults the routing table

to decide the next hop for the packet. Any routing protocol must communicate global

topological information to each routing element to allow it to make the local routing

decisions. Yet global information, by its very nature, is hard to collect, subject to frequent

 15

change and voluminous. A routing protocol asynchronously updates routing tables at

every router.

2.2 Comparison of Routing Protocols

The various choices that we have in using the different types of protocols can be

classified based on the type of control we desire to have, nature of hop, and state of the

system. In centralized routing, a central processor collects information about the status of

each link and processes this information to compute a routing table for every node. It then

distributes these tables to all the routers. In distributed routing, routers cooperate using a

distributed routing protocol to create mutually consistent routing tables. Centralized

routing is reasonable when the network is centrally administered and the network is not

too large. However it suffers from the same problems as a centralized name server:

creating a single point of failure, and the concentration of routing traffic to a single point.

A package agent can carry the entire route (that is, the addresses of every router

on the path from the source to destination), or the agent can carry just the destination

address, and each router along the path can choose the next hop. These alternatives

represent extremes in the degree to which a source can influence the path of a packet. A

source route allows a sender to specify a package’s path precisely, but requires the source

to be aware of the entire network topology. If a link or a router along the path goes down,

a source-routed package will not reach the destination. Also if the path is long, the

information contained by the agent can be fairly large.

 16

Figure 2.1: Comparison of Routing in Networks

 The routing protocol in a public logistics network can shown to share some

characteristics of the routing which occurs in vehicle routing (AGV) and computer

networks, but also have some major differences. It is an intermediate between the vehicle

routing and the way routing occurs in a computer network.

 Some of similarities and the differences can be listed, as shown in the table below.

Table 2.1: Comparison of VR, PLN and CN

Vehicle Routing Public Logistics Networks Computer Networks

Network structure is
assumed to be 100%
reliable and accurate.

Network structure is
assumed to be 100%
reliable and accurate.

Networks may or may not
be 100% reliable and
accurate.

Centralized routing, where a
central processor, which
computes all the routing
tables, collects all the
information.

Distributed routing, routers
cooperate by using a
protocol which creates
mutually consistent routing
tables.

Distributed routing, routers
cooperate by using a
protocol which creates
mutually consistent routing
tables.

Usually state independent,
where the route taken is not
dependent on the current
network state, but can also
have dynamic routing.

State dependent, where
dynamic routing occurs and
the choice of a route depend
on the current network
state.

Both state dependent and
state independent depending
on the type of protocol
used.

Network is small, usually
confined to shop floor of a
manufacturing facility.

Network is large, e.g. South
eastern portion of USA as
shown in Figure 1.1

Network can be of any size
and scalable.

Usually a single central
processor controls all the
AGVs.

Usually one router is
associated with one package
or a small number of
packages.

Every router handles
millions of packets that are
routed through it.

Vehicle Routing
(AGV)

Computer
Networks

Public Logistics
Network

 17

Comparing the routings above, we notice that routing in public logistics networks

shares characteristics of both vehicle routing and routing in computer networks, but also

is different from both. We can say following are the characteristics that would be ideal

for a routing protocol to be implemented in a public logistics network.

• Entire network topology is assumed to be reliable, robust and known to all

the entities in the network. This assumption is based on the fact that a

logistics network does not dynamically change over short intervals of time

and DCs are not subject to frequent shut downs or change in location.

• Every node (DC) knows the address of all its neighbors and also the cost

of reaching there.

• It follows a distributed routing and is hop-by-hop, where each DC may act

as a router. Here the package knows the destination address and each

router (DC) along the path will choose the next hop.

• It follows a multiple path and state-dependent way of computing the

optimal path. This means that it is sensitive to the dynamic changes in the

route costs and can still find a path to the destination even if a few routes

along its journey are shut down or have an exhorbitantly high cost of

transportation.

Based on the assumptions and the desired characteristics for a public logistics

network, distance vector algorithm (also known as Bellman-Ford Algorithm) was found

to be the most suitable. It allows a router (DC) to find routing information, that is, the

next hop to reach every destination in the network by the shortest path, by exchanging

routing information with only its neighbors (neighboring DCs). Roughly speaking, in a

 18

distance-vector algorithm, a node tells its neighbors its distance to every other node in the

network. Thus it is distributed and is suitable for large inter-networks controlled by

multiple administrative entities. It follows a multiple path and state-dependent way of

computing the optimal path.

2.3 Distance-vector Routing

In distance-vector routing we assume that each router knows the identity of every

other router in the network but not necessarily the shortest path to it. Each router

maintains a distance-vector, that is, a list of (destination, cost) tuples, one tuple per

destination, where cost is the current estimate for the sum of the link costs on the shortest

path to that destination. Each router initializes the cost to reach all non-neighbor nodes to

a value higher than the expected cost of any route in the network, commonly referred as

infinity [10].

A router periodically sends a copy of its distance vector to all its neighbors. When

a router receives a distance vector from a neighbor, it determines whether its cost to reach

any destination would decrease if it routed packets to that destination through that

neighbor. It can easily do so by comparing its current cost reach a destination with the

sum of the cost to reach its neighbor and its neighbor’s cost to reach that destination. If

the nodes asynchronously update their distance vectors, the routing tables will eventually

converge. The intuition behind the proof is that each router knows the true cost to its

neighbors. This information is spread one hop with the first exchange of distance vectors,

and one hop further on each subsequent exchange. With continued exchange of distance

vectors, the cost of every link is eventually known throughout the network. The distance

vector algorithm is also known as the Bellman-Ford algorithm after its creators.

 19

The interval between exchanges of the distance vectors represents a trade-off

between sensitivity to link finding the best path and the overhead in exchanging and

processing routing information. The longer the update interval, the longer it takes for a

router to detect a failed peer. Thus, choosing a good update interval is nontrivial.

RIP (Routing Information Protocol) suggests that vectors be exchanged once

every 30 seconds, and if a router does not hear from its neighbor for six consecutive

intervals, the neighbor is assumed to be down. Thus, a node can be down for three

minutes before anyone notices. This information will then take its time to be propagated

throughout the network. However, if the routing protocol triggered updates, convergence

after a failure can be made much more rapidly. Thus, a good compromise may be to use a

slow update interval (around 30 seconds) in the common case, but to trigger rapid

distribution of distance vectors in the case of link or router failure.

The Figure 2.1 below represents the Distance-Vector algorithm at node A. Node

A receives a distance vector from its neighbor B. It uses this information to find that it

can reach nodes C and D at a lower cost. It therefore updates its own distance vector and

chooses B as its next hop to nodes C and D.

In the Figure 2.1, if router A has an initial distance vector of ({A, 0}, {B, 1}, {C,

4}, {D, ∞}), we see that the arrival of a distance vector from B results in updating its

costs to C and D. If a neighbor’s distance vector results in a decrease in a cost to a

destination, that neighbor is chosen to be next hop to get to that destination, for example,

the distance vector from B reduced A’s cost to D. Therefore, B is the next hop for packets

destined for D. A router is expected to advertise its distance vector to all its neighbors

every time it changes.

 20

Figure 2.2: Example of Distance-Vector Algorithm

 We can show that even if nodes asynchronously update their distance vectors, the

routing tables will eventually converge. The intuition behind the proof is that each router

knows the true cost to its neighbors. This information is spread one hop with the first

{Next
Hop

B B

} MIN

0 1 4 ∞ } Current cost from A

0 1 2 2 New cost =
new DV for A

Initial
A B C D

A 0 1 4 ∞
B 1 0 1 1
C 4 1 0 2
D ∞ 1 2 0

Computation at A when
AB = 1 DV from B arrives

} Cost to go to B
+

1 0 1 1 } Cost to destn from B

=
2 1 2 2 } Cost to destn via B

A

C

B

D

1 1

24

1

 21

exchange of distance vectors, and one hop further on each subsequent exchange. With the

continued exchange of distance vectors, the cost of every link is eventually known

throughout the network.

 22

CHAPTER 3: AGENTS

3.1 Introduction

An agent is a system/computer program that can perform a task with a certain

amount of “intelligence” due to some specialized skill (learning systems) or knowledge

(knowledge bases). Consistent with the requirements of a particular problem, each agent

might possess such intelligence to a greater or lesser degree [12].

An Agent can also be described as a software entity that has a knowledge base, an

inference mechanism, and an explicit model of the problem to solve, including a model of

other agents with which it must interact [13].

The modern manufacturing environment has taken a huge leap in the past two

decades. The most important trends can be classified into increased product complexity,

supply networks, and increased product variety over time.

Agent technologies are well suited for applications having the following special

characteristics: modular, decentralized, changeable, ill structured, and complex. The tasks

of design, simulation, and scheduling and control manifest many of these characteristics,

particularly under the impact of modern manufacturing trends mentioned above,

suggesting that agents are a natural way to address them.

Agents are well suited for use in applications that involve distributed computation

or communication between components. Agent technology is well suited for use in

applications that reason about the messages or objects received over a network. This

explains why agent-based approaches are so popular in applications that utilize the

 23

Internet. Multi-agent systems are also suited for applications that require distributed,

concurrent processing capabilities.

An Agent can be autonomous. It monitors its own environment and takes action,

as it deems appropriate. This characteristic of agents makes them particularly suited for

applications that can be decomposed into stand alone processes, each capable of doing

useful things without continuous direction by some other process. Public logistics

networks are an expression of decentralized approach, and agent-based architectures are

an ideal fit to such an organizational strategy.

Transportation and storage prices vary with time and availability. Items are to be

re-routed to different customers when demand arises. Space, cost, and time are to be

continuously negotiated for as the item makes its way through the distribution network.

For these reasons, the use of intelligent agent systems would be the best approach to

tackle this complex system.

3.2 Agent Based Negotiation Model

Intelligent agents representing each entity in the logistics network will negotiate

with a common objective of transporting items from the manufacturer to the customer

with minimum transportation cost. Trucks, distribution centers, and the factory constitute

the set of resources in the logistics network. Other players in the network include the

manufacturers, customers and the packages. The manufacturer can be represented by a

single entity (the manufacturer agent will coordinate internally with the factory agent for

resources required, production plans, forecasts, etc.). The model will consist of the

following agents:

 24

1. Package (P)

2. Manufacturer/Supplier (S)

3. Customer (C)

4. Truck (T)

5. Distribution Center (D)

The package agent will be the central control agent having multi-party negotiating

capabilities. The distribution center agents will negotiate with transportation agents for

obtaining the cheapest price for space in a truck. Keeping the transportation agents away

from the mainstream item negotiation helps to keep the model simple and will reduce the

load on package agents. Every agent will have an objective, to maximize the profit of its

owner, potentially leading towards the maximization of profit for the whole supply chain.

The distribution center agent D is a shopbot-like agent, whose functions are very

similar to that of any shop. It acts as a shopbot agent as it searches for the best deal

available among the trucking agents. It becomes a pricebot agent as it puts up quotes for

storage spaces, which changes dynamically over time. The factors determining the price

of storage are (a) price quoted by competing DCs, (b) availability of storage over time,

(c) demand for storage space, (d) cost of transportation as negotiated with the truck

agents, and (e) other operational costs. The trucking agent T is a price-bot agent. It quotes

the price for transporting items, which changes over time. Factors similar to those

affecting the cost of storage at the DCs affect the price quoted by the truck agents. A brief

snapshot of interactions between the various agents is shown in the Figure 3.1

Package agents carry information about its configuration, transportation data,

price, owner, etc. These agents work for the current owner of the package associated with

it. The main goal of the agent is to minimize the cost of ownership of the package. The

 25

ownership of the package changes as it flows through the supply chain. It depends on the

terms of sale adopted by the trading parties (FOB/CIF). More information regarding the

terms of sale can be found in the “Glossary of Shipping Terms” [14]. Therefore, the

owner agent O can either be the manufacturer F or a customer C.

Figure 3.1: Agent based negotiations

Negotiations start when a customer initiates a search for a particular item. The

search returns results that contain possible candidates for negotiation. The customer

selects the packages of his choice and creates agents C1, C2… Cn, where n packages are

selected for negotiation.

When package agent Pi receives a request for negotiation, it performs the

following steps:

Customer Agent (C) Owner Agent (O)

Truck Agent (T) DC Agent (D)

Package
(P)

Purchase request/
Negotiation for best price

Permission/Parameters for
negotiation

Negotiation for space at DC

Negotiation for truck space

 26

1. Obtain permission for negotiation from the owner agent Oj. This is extremely

important since the owner might not be willing to negotiate due to policy

restrictions.

2. Obtain parameters for negotiation such as price range, shipping policy, time for

shipping etc.

3. Pi searches for distribution centers that it could use to ship itself to the new

customer in order to obtain the best price for transportation/storage.

4. The package selects the least cost path using distance-vector algorithm and

calculates the cost incurred in re-routing itself to the new customer. With this as

the base, it negotiates with Ci for the best price that it can get.

5. The customer agent Ci receives quotes from all the packages and negotiates with

them for the best deal.

The customer receives a comprehensive report of all the negotiations that took

place and is given the option of selecting the best deal. The report could also be used as

an input to a decision support system, which could analyze and select the best option.

As the package moves along the public logistics network, it is constantly engaged

in negotiations with the resources to obtain the least cost path to the customer. According

to the above model, only the package agent has multi-party negotiation capabilities. All

the other agents negotiate only with the package agent. This structure provides the model

with a better integration and security, and minimizes complexity.

Agent descriptions provide an ability to specify both static and dynamic

characteristics of various supply chain entities. Each agent is specialized according to its

 27

intended role in the supply chain (e.g., manufacturer agents, transportation agents,

supplier agents, distribution center agents, retailer agents, and end-customer agents).

3.3 Agent Development Platforms

Agent development platforms are an integrated tool suite for constructing

intelligent software agent. It includes tools for managing the agent-based software

development process, analyzing the domain of agent operations, designing and

developing networks of communicating agents, defining behaviors of individual agents,

and debugging and testing agent software.

There are various agent development platforms that are presently being used, with

most of them still in the process of being evolved with newer protocols and technologies.

The tools are categorized as either commercially available products or academic and

research projects. They include some of the popular platform like SWARM [15], which

use Objective C and Java and is a multi agent simulation. One of the primary criteria

which differentiates most of these development platforms, is the language used in there

construction. Java is the most widely language used, in agent development as it works

across different platforms and is also compliant with the use of new technologies like

XML which is very essential for a software agent. Considering these factors, and after a

brief evaluation of the various packages that are being developed, ZEUS [16], an agent

development tool by British Telecom, was found to be most suitable for agent

development in logistics network.

Zeus is a “collaborative” agent building environment and component library

written in Java. Each ZEUS agent consists of a definition layer, an organizational layer

and a co-ordination layer. The definition layer represents the agent's reasoning and

 28

learning abilities, its goals, resources, skills, beliefs, preferences, etc. The organization

layer describes the agent's relationships with other agents. The co-ordination layer

describes the co-ordination and negotiation techniques the agent possesses.

Communication protocols are built on top of the co-ordination layer and implement inter-

agent communication. Beneath the definition layer is the API.

The main advantages of using ZEUS were use of Java as the development

language, which was very essential to make it platform independent. Also it had a very

good Graphic User Interface and automatic code generation mechanism. It provided with

a good documentation of different case studies including a negotiation based model in a

market scenario.

But the main disadvantage of using ZEUS was its incompatibility with the

implementation of the adaptive routing protocol. The use of the distance vector algorithm

required extensive coding, and most of the features offered by ZEUS became irrelevant.

Any change in building an agent, other than the way it was done in the case studies,

required a lot of coding, making the utility of ZEUS more as a GUI tool.

 29

CHAPTER 4: SUPPORTING TECHNOLOGIES

4.1 Web Services

Web services, in the general meaning of the term, are services offered via the

Web. In a typical Web services scenario, a business application sends a request to a

service at a given URL using the SOAP protocol over HTTP. The service receives the

request, processes it, and returns a response. The core of Web services uses standards like

XML, SOAP, UDDI, and WSDL. An often-cited example of a Web service is that of a

stock quote service, in which the request asks for the current price of a specified stock,

and the response gives the stock price. This is one of the simplest forms of a Web service

in that the request is filled almost immediately, with the request and response being parts

of the same method call [17].

Another example could be a service that maps out an efficient route for the

delivery of goods. In this case, a business sends a request containing the delivery

destinations, which the service processes to determine the most cost-effective delivery

route. The time it takes to return the response depends on the complexity of the routing,

so the response will probably be sent as an operation that is separate from the request.

Web services and consumers of Web services are typically businesses, making

Web service messages predominantly a business-to-business (B2B) transactions. An

enterprise can be the provider of Web services and also the consumer of other Web

services. For example, a wholesale distributor of spices could be in the consumer role

when it uses a Web service to check on the availability of vanilla beans and in the

 30

provider role when it supplies prospective customers with different vendors' prices for

vanilla beans.

Web services depend on the ability of parties to communicate with each other

even if they are using different information systems. XML (Extensible Markup

Language), a markup language that makes data portable, is a key technology in

addressing this need. Enterprises have discovered the benefits of using XML for the

integration of data both internally for sharing legacy data among departments and

externally for sharing data with other enterprises. As a result, XML is increasingly being

used for enterprise integration applications, both in tightly coupled and loosely coupled

systems. Because of this data integration ability, XML has become the underpinning for

Web-related computing.

Web services also depend on the ability of enterprises using different computing

platforms to communicate with each other. This requirement makes the Java platform,

which makes code portable, the natural choice for developing Web services. This choice

is even more attractive as the new Java APIs for XML become available, making it easier

and easier to use XML from the Java programming language [18].

In addition to data portability and code portability, Web services need to be

scalable, secure, and efficient, especially as they grow. The Java Platform is specifically

designed to fill just such needs. It facilitates the really hard part of developing Web

services, which is programming the infrastructure. This infrastructure includes features

such as security, distributed transaction management, and connection pool management,

 31

all of which are essential for industrial strength Web services. And because components

are reusable, development time is substantially reduced.

Because XML and the Java platform work so well together, they have come to

play a central role in Web services. In fact, the advantages offered by the Java APIs for

XML and the J2EE platform make them the ideal combination for deploying Web

services.

Figure 4.1: Example of Implementation of Web Services

In the following example, we can show how the web services can be implemented

in a Public Logistics Network through a system of buying and selling agents

(representing Distribution Centers, consumers, and packages) that engage in multi-

CONSUMER

DISTRIBUTION
CENTER 1

DISTRIBUTION
CENTER 2

PACKAGE 1

DISTRIBUTION
CENTER 3

PACKAGE 4

PACKAGE 5

 32

parameter negotiation and run on wireless mobile devices. Agents representing well-

informed consumers and participating suppliers interact one to one on equal footing to

seek agreement on the terms of a consumer purchase. Here DC’s can act both as a

supplier as well as a customer, depending on whether it is interacting with a consumer

who actually requires the product or with the package, which is in a nearby DC or route.

Although net-based product information helps consumers make educated buying

decisions from their homes and offices, consumers lack the resources to perform

comparison-shopping activities at the point of purchase. This is further compounded by

how critical the component is for them and how quickly they can get the product. The

consumer’s personal digital assistant (PDA) can serve this immediate need, finding web-

based product reviews and alternative offerings. In this setting, the consumer may direct

the PDA to begin a negotiation with the nearest DC’s (and others including actual

suppliers) or simply add the product to a "want list" to enable ongoing negotiations and a

later purchase.

At any time, the consumer may add items, noting preferences such as warranty

terms, merchant reputation, availability, time limit for the purchase, and preferred price.

As shown in the Figure 4.1 above, we can consider that packages nearby meet the

requirements of the customer, and are at nearby DC’s or on a nearby route on its intended

journey. The DC will engage nearby DC’s or the package agents in a silent exchange

seeking the items on the "want list" and opening negotiations on the terms of the sale,

alerting its owner if a deal is reached.

 33

Behind the scenes, the selling agents (either the DC’s depending on their role or

the packages’) negotiate sales terms, considering such factors as availability, probability

of an immediate sale, and the age and shelf-life of goods on hand, following guidelines

set by the merchant. Through the negotiation process leading up to a successful or lost

sale, the merchant gains valuable information about customers’ purchasing decisions.

Questions such as recurrence of sale of a particular product, the price a customer is

willing to pay even if required urgently or why a sale didn’t occur can be answered using

information obtained or inferred during the agent negotiation. We can anticipate that

merchants will learn and respond to localized consumer preferences through the analysis

of aggregate data acquired through long-term negotiations with large numbers of

customers and potential customers.

The ability of a DC’s to engage a package in a negotiation depends upon the

supplier’s willingness to incorporate the necessary network and software infrastructure

into a package to make such an exchange possible. In this research I do not attempt to

solve this limitation, but hypothesize that as this level of consumer-DC-package

interaction becomes possible, consumers will value these capabilities equally with

traditional values such as reputation, price, and variety. Consumer behavior will lead

merchants to participate in information exchange and negotiation, as customer demand

has previously led them to adopt fax machines, e-mail, and web sites.

4.2 Extensible Markup Language (XML)

Extensible markup language (XML) has attracted considerable attention from

enterprises interested in employing dynamic information exchange over the Internet

between trading partners. XML is a more advanced language than the Hypertext markup

 34

language (HTML), which is currently used to exchange data on the Internet. XML allows

for the use of special tags before a message that would allow a browser to identify the

message. Through the use of those tags, the search agent could immediately recognize the

identity of the product and its characteristics [19].

Java technology and XML are a natural match for the creation of applications that

exploit the web of information where different classes of clients, from a traditional phone

to the latest smart refrigerator, consume and generate information that is exchanged

between different servers that run on varied system platforms. The following information

should be available in the XML tag [8]:

• Item Specific Information

Item specific negotiation code

Manufacturer & Model

Physical Description

Other relevant Information

• Instance Specific Information

Globally Unique Serial Number

Location

Price

Current Owner

Parameter showing the willingness to
negotiate

Other relevant information

For smooth transfer of information between different types of computer systems,

it is essential to set a standard format the tags should conform to.

The tree diagram shown in Figure 4.2 below represents the XML structure.

 35

Figure 4.4: XML structure [8]

4.3 Simple Object Access Protocol (SOAP)

SOAP [20] is a protocol for exchange of information in a decentralized,

distributed environment. It is an XML based protocol that consists of three parts: an

envelope that defines a framework for describing what is in a message and how to

process it, a set of encoding rules for expressing instances of application-defined data

types, and a convention for representing remote procedure calls and responses. SOAP can

potentially be used in combination with a variety of other protocols; but usually SOAP is

used in combination with HTTP and HTTP Extension Framework.

In the example below, a customer sends a PriceQuote SOAP request to a DC

service. The request takes a string parameter, ticker symbol, and returns a float in the

SOAP response. The SOAP Envelope element is the top element of the XML document

representing the SOAP message. XML namespaces are used to disambiguate SOAP

 36

identifiers from application specific identifiers. The Figure 4.3 also illustrates the HTTP

bindings [20] .

Figure 4.3: SOAP Message Embedded in HTTP Request

Figure 4.4 is the response message containing the HTTP message with the SOAP

message as the payload.

Figure 4.4: SOAP Message Embedded in HTTP Response

POST /TransportPriceQuote HTTP/1.1
Host: www.DC1server.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:GetTransportPrice xmlns:m="Some-URI">
 <name>FORD MUSTANG CAR</name>
 </m:GetTransportPrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <SOAP-ENV:Body>
 <m:GetTransportPriceResponse xmlns:m="Some-URI">
 <Price>120</Price>
 </m:GetTransportPriceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

 37

4.4 Universal Description, Discovery and Integration (UDDI)

UDDI is a Web-based distributed directory that enables business to list them on

the Internet and discover each other, similar to a traditional phone book's yellow and

white pages. UDDI uses the XML Schema Language to formally describe its data

structures. Web services based on UDDI are an evolution in e-business applications that

will help reach these goals and take B2B to the next level. UDDI is a specification for

distributed Web-based information registries of Web services. UDDI is also a publicly

accessible set of implementations of the specification that allow businesses to register

information about the Web services they offer so that other businesses can find them.

Web services are the next step in the evolution of the World Wide Web (WWW) and

allow programmable elements to be placed on Web sites where others can access

distributed behaviors [21].

UDDI registries are used to promote and discover these distributed Web services.

The core component of the UDDI project is the UDDI business registration, an XML file

used to describe a business entity and its Web services. Conceptually, the information

provided in a UDDI business registration consists of three components: “white pages”

including address, contact, and known identifiers; “yellow pages” including industrial

categorizations based on standard taxonomies; and “green pages” the technical

information about services that are exposed by the business. Green pages include

references to specifications for Web services, as well as support for pointers to various

file and URL based discovery mechanisms if required.

UDDI-based registries will help businesses, in our case the Distribution Centers to

take advantage of Web services:

 38

• Distribution Centers will have a means to describe their services and business

processes in a global, open environment on the Internet thus extending their reach.

• Potential trading partners (DC and consumer or DC and packages) will quickly

and dynamically discover and interact with each other on the Internet via their

preferred applications thus reducing time to market.

 39

CHAPTER 5: Adaptive Routing Representation in PLN using Java

5.1 Basic Assumptions

1. This is being done for a Public Logistics Network (PLN). The network has 36

nodes and 59 routes. Each node represents a Distribution Center (DC). The intent

of this model is to find the best route from any given origin to a destination, using

the Distance Vector Routing algorithm.

2. The costs between all the nodes are known. Each DC is aware of the identity of

every other DC, and is also aware of the cost of the routes to its immediate

neighbors. After several iterations of propagations, each DC is aware of the (best)

cost to every other DC in the network, and the next (neighboring) DC it has to

take to reach the destination DC.

3. The packages are transported by trucks, which ply between two DCs. And at

every DC the package has to be unloaded and loaded on to a new truck, going

along the intended route. As a result, passing through a DC has an associated cost.

4. When a package is introduced to the network, it has a designated origin and a

designated destination. It may also have a designated intermediate hop. It is also

assumed that the package in transit is available for In-transit trade.

5. Upon introduction of the package, it sends out Package Agents representing itself

to all DCs in the network. These package agents contain the package’s

description, and the cost required for the package to travel from its Home DC (the

current DC where the package is present) to the DC of the package agent.

 40

6. As the package travels through the network, it records the DCs it has passed

through, and the sunk route cost so far, and is aware of the next DC on its

intended path.

7. The cost of the route may change randomly. This change in cost is propagated by

the relevant DCs (the DCs at either ends of the route). This may lead to a change

in the intended route of a package. When the package is in transit between DCs,

any change in cost does not affect the intended route. It is only when the package

reaches a DC, it re-evaluates the intended route for its validity as the best route.

5.2 Model Initialization and Operations

 The basic initializations that take place once the Java programs are executed are

the Route initialization and the DC initialization. It basically means that data from the

AllRoutes.txt (Appendix B.1) and AllDCs.txt (Appendix B.2) are read by the system and

initialized for further execution.

In Route Initialization, it loads all routes information in the network. Route

information for a route consists of the two end DCs of the route, and the initial cost

between them. The cost of a route is same in either direction, i.e., for example cost from

DC 7 to DC 24 is the same as cost from DC 24 to DC 7.

In DC Initialization, all DCs are created. Each DC knows the identity of every

other DC in the network. Each DC is aware who its neighbors are, and the cost to each of

these neighbors. At the creation of each DC, a routing table is created for each DC, which

consists of the path and cost to every other DC in the network. At the time of

initialization, the cost and path to non-neighboring DCs are not known. In such cases, the

 41

cost is considered infinity (a cost greater than the sum of the longest path in the network),

and the path as unknown.

Once the initializations occur, the next step in the sequence of events is the

Package Creation. It is manual, done by the supplier when the item is created and its

information is released into the network. A package in this model contains the following

information: Package Id, Content Id, Origin, and Destination.

When created, a package registers itself at the origin. The DC where a package is

registered is called its “home” base. It them spawns package agents and registers these

agents in all the neighbors of the current Home (initially the Origin) DC. It also maintains

three types of cost information: sunk cost, cost from current home to destination, and cost

from origin to destination. Sunk cost is the transportation cost already incurred by the

package to reach its current location in the network. Cost from current home to

destination, is the cost that the package is supposed to incur to travel from its current

home to the desired destination at that instance of time. This may or may not change,

depending on the route costs of its intended journey. Cost from origin to destination is the

sum cost of the “sunk cost” and “cost from home to destination”.

Package Agent, is an agent of that particular package for which it holds the

reference. It also holds the information as to the cost required to divert the package to the

DC, where it is residing. A package hops from its current home DC to a neighbor of the

current home DC, if that neighbor is in the best path to the destination of the package.

This information is supplied by the routing table present in the current home DC. As the

hop occurs, the package changes its home DC from the previous DC to current DC. It

also moves its agents along with it. The cost of the route between the first and the next

 42

DC is considered as sunk cost of the package. Also when a hop occurs, it records the

journey it has undertaken so far.

As the package moves from current DC to the next DC, it un-registers all agents

in the neighbors of the current DC, and registers agents for itself in all the neighbors of

the next DC. The agents now hold updated cost of the package, if it has to come to the

DC where the agent resides. This takes into account the sunk cost incurred by the

package in its journey so far. When an In-transit trade occurs, the destination of the

package is changed, with the new destination being the new destination DC. The next hop

is now recalculated for the new destination.

When the route cost of any route in the network is changed, it is propagated

throughout the network. All packages are asked to recalculate their expected cost to their

destinations, and are also asked to update their journey information, if necessary. Each

DC has a routing manager created for it. This routing manager runs in a separate thread

created specifically for each DC. Its responsibility is to propagate the routing table of that

DC to each of its neighbors, every time a change in cost occurs.

5.3 Pseudo-code for Routing Table Propagation.

A variation of Distance Vector algorithm called Path Vector Algorithm is used in

this model. Every DC in the network has a routing table associated with it. The routing

table consists of a Vector. Each element in the Vector consists of the following:

1. The Id of the destination DC.

2. The path vector to that DC. The path vector consists the following information:

Destination DC Id, the cost to the destination DC and the Ids of all DCs in the

route to the destination DC.

 43

Initialization of Routing Table has the following steps associated with it:

1. Each DC is initialized with a routing table, which consists the identity of all DCs

in the network.

2. In the initial routing table, only the costs to neighbors are known. The routes to

the neighbors are also known. It is the direct route to the neighbor.

3. The costs to all other DCs are initialized as INFINITY. This is the network’s

infinity, which is a unit greater than the cost of the longest route in the network.

The longest route possible in the network includes all the routes present in the

network. The routes to all non-neighbor DCs are empty at initialization.

4. Each DC has its own Routing Manager, which manages routing for that DC in a

concurrent thread of its own.

Routing table propagation has the following steps associated with it:

1. A DC receives the following information from a neighbor – Id of the neighboring

DC and neighbor’s routing table

2. The cost to the neighboring DC is queried from home DC’s routing table.

3. For a given destination DC, the cost to that destination is queried from home

DC’s routing table.

4. The cost to and from the neighbor to the same destination DC (as present in the

neighbor’s routing table) is added.

5. If a DC is not in the neighbor’s route to the destination DC, and if the cost in step

4 is less than the cost in step 3, the routing table of this DC is updated as

explained below.

 44

Routing table updation has the following steps:

1. The current cost to a destination from this DC is replaced with the new cost.

2. The current route to the destination is discarded. A new route is formed, starting

from the route from this DC to its neighbor (this may not be the direct route, if an

intermediate DC offers a lower route than the direct route), and then the

neighbor’s route to the destination DC (which resulted in the lower cost).

5.4 UML Representation of the Model

The Unified Modeling Language (UML) is the industry-standard language for

specifying, visualizing, constructing, and documenting the artifacts of software systems.

It simplifies the complex process of software design, making a "blueprint" for

construction [22].

I have used the UML from the Rational Rose Enterprise Edition to design the

Sequence Diagrams for this particular model. Sequence diagrams show in detail the

messages dispatched between participating objects along with their time ordering. The

objects displayed are known from the software architecture of the model. Each column

represents an object. The object names are given at the head of each column. The vertical

dotted lines below the object names are time lines for each object. The time is increasing

from top to down. Horizontal lines with single sided arrows are asynchronous messages.

Rectangles at the end of message arrows show that the receiving object processes the

message [23].

There are four sequence diagrams described below, which shows how the Java

model works for Package Creation, Package Hop, Destination Change and Cost Change.

 45

Sequence flow when a package is created:

1. When a new package is created and introduced into the system by the

PackageCreatorPanel, the Package factory is notified about it.

2. Package properties are then recorded, based on which the journey is initialized.

This depends on the origin and the destination of the package in the network.

3. Package agents are first created, which propagate in the network, to find the best

route to reach the desired destination, and they register in all the neighbors of the

Home DC.

4. Package registers at the Home DC and its agents at all its neighbors.

5. Based on the current costs in the network, the best route for the intended journey

and next hop is also calculated.

Sequence Flow when Package hops to the next DC:

1. The PackagePanel class calls the hop () method of the selectedPackage object of

the Package class.

2. In the next step, the current DC un-registers itself as the current Home of the

package and also the package agents from its neighboring DC’s.

3. The next DC where the package is presently located registers itself as the ‘Home’

DC and propagates the package agent to all its neighbors.

4. Meanwhile the Hop event is recorded and process for evaluating the best route

along its intended journey is started.

Sequence flow when there is a change in destination:

1. Object packagePanel of the class PackagePanel calls destinationChanged method

of the object selectedPackage of the Package class.

 46

2. The selectedPackage object calls the destinationChanged method of the journey

object.

Sequence flow when cost change occurs in the network:

1. Any change in cost in the network is read by the RoutePanel class and notified to

the Route factory.

2. The new cost for the selected route is taken into consideration and concerned DCs

and Package are notified about the change.

3. It triggers a re-initialization of the route costs if there is a package moving along

the route. This may or may not result in change in journey of the package

depending on the amount of change in cost.

4. If the cost change is large enough to result in change in route, the journey of the

affected packages are changed.

5. The new journey and cost are re-calculated.

5.5 Model Scenarios

The various scenarios that the model handles are:

1. Route initialization, for a package, given the origin and the destination using

Adaptive Routing Algorithm

2. Cost change, for a route, which may or may not result in route change for a

package journey in the network.

3. In-transit trade, which may or may not lead to change in destination and

subsequent transportation cost.

 47

Figure 5.1 shows an example of adaptive routing and in-transit trade for a single

package being transported from DC 4 (Jacksonville, FL) to DC 30 (Richmond, VA). The

current “Home Agent” for the package is located at DC 24. The Home Agent coordinates

the interactions between all of a package’s other agents, routes the package, and, in the

case of the possible resale of the package, forwards final offers to the current owner of

the package (possibility an agent at a factory in Jacksonville, FL) and, if accepted,

arranges for the re-routing of the package to its new destination.

In Figure 5.1, the package itself is onboard a truck traveling north along I-95

heading to DC 24. The package’s transport cost from DC 4 to DC 24 has already been

paid via micro payments and is a sunk cost. The relevant cost for routing purposes is the

future cost of transporting the package from DC 24 to its destination; this cost is currently

$0.58, assuming the package will travel via DCs 24, 23, 17, and 30. Once the package

leaves DC 24, its Home Agent moves (as a mobile agent) to the next hop, DC 23.

The package agents at DCs 25, 20, 18, and 22 are available to determine

alternative routes if necessary. The cost reaching the destination (DC 30) via these agents

is greater than along the intended route. Each agent at each DC has a “via cost,” the cost

reaching the destination via the DC. Table shows the effects of four possible disruption

scenarios: Scenarios 1–3 correspond to decreases in the transport costs from DC 20

(Charlotte, NC) to DC 18 (Greensboro, NC), possibly due to an oversupply of trucks

headed to Charlotte; decreases of $0.05, $0.12, and $0.22 are shown in the table. Scenario

4 corresponds to an increase of $1.00 in the transport cost from DC 23 to DC 17, possibly

due to an accident along I-95 that will require trucks to be re-routed via non-interstate

roads.

 48

-84 -83 -82 -81 -80 -79 -78 -77

30

31

32

33

34

35

36

37

0 58
58

 DC 24

15 43
58

47 18
65

58 0
58

54 25
79

38 20
5831 48

79

15 53
68

DC 17

DC 30

DC 20

DC 27

DC 25

DC 18 DC 22

 DC 23

 DC 4

Home
to DC

DC to
Dest.

Cost from Home
to Destination

via DC

DC 7
23

¢

15
¢15¢

10¢

16
¢

23¢
7¢

9¢

20
¢18

¢
Transport

Costs at DC

Current Home

Destination

Potential New Destination
after Trade

26

Package
In-Transit

95

40

85

(Richmond, VA)

Origin
(Jacksonville, FL)

(Dandridge, TN)

85
95

Figure 5.1. Example of Adaptive routing [9]

Scenarios 3 and 4 result in changes that are significant enough to trigger the re-

routing of the package; Scenarios 1 and 2 terminate without re-routing. What is most

important from an implementation point of view is that the disruptions are only

propagated locally. The DC at the source of the disruption propagates its new via cost to

all of its neighbors. Each neighbor DC needs to continue to propagate the change to its

neighbors only if it would result in a change to its predecessor or successor.

 49

Table 5.1 Adaptive Routing Scenarios [9]

 Scenario DC 24 23 17 25 20 18 22 30

Via Cost (¢) 58 58 58 68 79 79 65 58
Pred. DC – 24 23 24 25 20 17 17

0
:

Current

Succ. DC 23 17 30 23 18 22 30 –

Via Cost (¢) – – – – 74 74 – –
Pred. DC – – – – – – – –

1
:

23¢ → 18¢ = ↓5¢
along arc (20,18)
⇒ No change Succ. DC – – – – – – – –

Via Cost (¢) – – – 67 67 67 – –
Pred. DC – – – – – – – –

2
:

23¢ → 11¢ = ↓12¢
along arc (20,18)
⇒ No change Succ. DC – – – 20 – – – –

Via Cost (¢) 57 – – 57 57 57 57 57
Pred. DC – – – – – – 18 22

3
:

23¢ → 1¢ = ↓22¢
along arc (20,18)
⇒ Re-route Succ. DC 25 – – 20 – – – –

Via Cost (¢) 79 89 90 79 79 79 79 79
Pred. DC – – 22 – – – 18 22

4
:

23¢ → $1.23 = ↑$1.00
along arc (23,17)
⇒ Re-route Succ. DC 25 25 – 20 – – – –

Any change along the intended route will reach the Home Agent, at which point

the agent can be re-routed if necessary. As can be seen in the table, only a significant

change will result in significant communications between the DCs; most minor changes

will be terminated locally. Since hundreds of millions of agents could be active at any

time coordinating tens of millions of packages, reducing communications requirements is

an important feature for any routing protocol.

With respect to in-transit trade, any of the DC agents in Figure are available as

trading agents. For example, if a customer at DC 27 (Dandridge, TN) is interested in

purchasing the package, it can spawn search agents. These agents would first reach the

package’s agents at DCs 25, 20, and 18. The cost of re-routing the package from its

current location at DC 24 to these DCs is immediately known to be $0.15, $0.31, and

$0.54, and can be used as part of the delivered price in the resale negotiations.

 50

5.6 Model Verification and Validation

Model verification is the process of determining that the model operates as

intended. This was performed for this particular system, by changing the data in the input

data files. The route costs were all set to zero as well as infinity and system behavior was

verified. All the costs were initially set to zero, and the journey obtained. When a cost

was added to one of the routes in this path and the system was re-initialized, this route

was avoided as that represented a higher cost. Similarly, when all the costs were set to

infinity and route costs were added one by one, these routes always formed part of the

intended journey, as they represented a lower total cost.

Model validation is the process of determining whether a simulation model is an

accurate representation of the real system, for the particular objectives of the study. The

results obtained for a smaller network with 8 DCs and 20 routes were found to be true

when done manually.

 51

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

This report describes the idea of Public Logistics Network and provides an outline

of the technology that could be used to support such a system. In addition to providing

traditional warehousing and storage functions for hire, a public logistics network would

make it possible to negotiate with multiple firms on a load-by-load basis in order to

determine the most efficient means of providing the resources needed to complete each

stage of a load’s transit through the network.

The report gives an overview of the supporting technologies that make Public

Logistics Network a reality. This research gives an overview of the various entities that

make up the Public Logistics Network and proposes a model that will use the suitable

routing protocols and latest technologies to provide the necessary visibility and flexibility

to the system.

The Java model gives us a good insight of the various scenarios that are possible

in a Public Logistics Network, including the in-transit trade and cost variations. After

looking at various routing protocol requirements and different choices available, it

implements the Distance Vector Algorithm. The main advantage of using this is that it

makes use of distributed routing protocol. This lowers the overheads required and lesser

memory for routing tables. This means huge savings in the band-with required over the

Internet and faster computation.

 52

The following conclusions can be drawn from the Java model:

• Use of Distance Vector Algorithm is the most optimum way of calculating the

best path over the network. It is fast, requires less memory and is scalable very

easily over large network topologies.

• Public Logistics Network handles in-transit trade and cost variations very

effectively. This demonstrates that the operations that are presently handled by

large monopolies can be achieved through many smaller players (DCs) with the

same efficiency and reliability, with the use of new technologies like Web

Services.

• Use of Software Agents and agent concepts, provide an ability to specify both

static and dynamic characteristics of various supply chain entities. Their

knowledge base, inference mechanism and an explicit model of the problem to

solve ability enable us to perform specific tasks in the supply chain of which this

logistics network is a part.

• In this era of the Internet, Web Services play an important role in our day-to-day

life. Web Services can be implemented effectively over the entire network, to

provide variety of services including mapping out an efficient route for the

delivery of the goods, enable in-transit trade and use of latest technologies.

Use of latest technologies like XML, Java, SOAP and UDDI gives the ability of

entities in the supply chain in general and public logistics network specifically, to

communicate with each other even if they are using different information systems and

across various platforms.

 53

The present Java model has to be extended also to include economic analysis and

detailed modeling of agent-based negotiations. The development of the search/track

program would be the next big step forward. It would involve the design of PackageIP

servers as well as the design of agent-based negotiation protocols, in addition to building

the agents. Complementing this work, development of XML tags, SOAP and UDDI

should also proceed along the guidelines provided in this report.

 54

APPENDIX A

Java Program 1: DC.java

import java.util.Vector;
import java.util.Hashtable;
import java.util.Enumeration;

/**
 * This class represents a Distribution Center.
 * The DC uses a variation of Distance-Vector algorithm called Path Vector
 * algorithm to build its routing tables.
 * Each DC is aware of the identity of every other DC in the network. It knows who its
 * neighbors are, and the cost to each of its neighbor.
 * For any change in cost, it re-builds its routing table, and signals
 * each of its neighbors to build their routing tables. Likewise, a
 * neighboring DC can also signal this DC to re-build the routing table
 * with its updated routing table / route cost.
 * The DC also accepts registrations of Packages who have this DC as their home DC.
 * and, also for PackageAgents from neighboring DCs.
 */
 public class DC {
 // Private member variables.
 /**
 * To identify this DC uniquely
 */
 private String id;
 /**
 * The routing table for this DC.
 * Contains the cost to every DC in the network, and also the
 * path to each DC (which has this lowest cost).
 */
 private RoutingTable routingTable;
 /**
 * Holds all Package Agents currently registered at this DC.
 */
 private Vector packageAgents;
 /**
 * Holds all Packages, for which this DC is their current home.
 */
 private Vector homePackages;

 // Constructor
 /**
 * Create a DC.
 * The only constructor for the DC class. Initializes this DC's routing table.
 *
 * @param id the Id for this DC
 * @param costToNeighbours a hashtable containing all neighbouring DC Ids as
 * keys, and the costs to each of them as the values.
 *
 */
 public DC (String id, Hashtable costToNeighbours) {
 Log.log("DC constructor for " + id + " with cost to neighbours as " +
costToNeighbours.toString(),

 55

 Log.FULL);
 setId(id);
 initializeRoutingTable(costToNeighbours);
 packageAgents = new Vector();
 homePackages = new Vector();
 } // end of constructor

 /**
 * Initialize the routing table of this DC.
 *
 * @param costToNeighbours a hashtable containing all neighbouring DC Ids as
 * keys, and the costs to each of them as the values.
 *
 */
 private void initializeRoutingTable(Hashtable costToNeighbours) {
 Log.log("DC::initializeRoutingTable for id " + id, Log.FULL);
 routingTable = new RoutingTable(this.getId(), costToNeighbours);
 }

 // Accessors
 /**
 * Returns the unique identifier for this DC.
 *
 * @returns String the unique identifier
 */
 public String getId() {
 return id;
 }

 /**
 * Returns a hash table containing the cost to each of its neighbours.
 *
 * @returns Hashtable a hashtable containing all neighbouring DC Ids as
 * keys, and the costs to each of them as the values.
 *
 */
 public Hashtable getCostToNeighbours() {
 return routingTable.getCostToNeighbours();
 }

 /**
 * Returns a Vector of all the packages which have this DC in the home.
 *
 * @returns Vector of all the packages which have this DC in the home.
 */
 public Vector getHomePackages() {
 return homePackages;
 }

 /**
 * Returns a Vector of all the package agents which are currently registered
 * in this DC.
 *
 * @returns Vector of all the package agents which are currently registered
 * in this DC.
 *

 56

 */
 public Vector getPackageAgents() {
 return packageAgents;
 }

 // Routing table related methods
 /**
 * Reinitialize the routing table of this DC. (A passthrough method to this
 * DC's routing table).
 * Used to reinitalize the state of this routing table, whenever there is a cost
 * change in the network's routes.
 *
 * @param newCostToNeighbours a hashtable containing all neighbouring DC Ids as
 * keys, and the (new, if updated) costs to each of them as the values.
 *
 */
 public void reinitialize(Hashtable newCostToNeighbours) {
 routingTable.reinitialize(newCostToNeighbours);
 }

 /**
 * Gets the cost to all the DCs, from this DC. (A passthrough method to this
 * DC's routing table).
 *
 * @returns Hashtable containg all the DC Ids as keys, and the cost to each one
 * of them as the values.
 *
 */
 public Hashtable getCostToAllDCs() {
 return routingTable.getCostToAllDCs();
 }

 /**
 * Gets the next hop to all the DCs from this DC.
 *
 * @returns Hashtable containg all the DC Ids as keys, and the Id of the next
 * DCs, which have to hopped to, in order to reach the DC
specified
 * as the key, as the values
 *
 * @deprecated
 *
 */
 public Hashtable getNextHopToAllDCs() {
 return routingTable.getNextHopToAllDCs();
 }

 /**
 * Returns the next hop to be taken towards the target DC.
 * (A passthrough method to this DC's routing table).Assumes that the
 * routing table is valid and current.
 *
 * @param dcId the Id of the DC which is the target of this journey.
 * @returns String the next DC's Id, which is the next hop to the
 * target DC.
 *

 57

 */
 public String getNextHopToDC(String dcId) {
 return routingTable.getNextHopToDC(dcId);
 }

 /**
 * Returns the cost to the target DC. (A passthrough method to this
 * DC's routing table).Assumes that the routing table is valid and current.
 *
 * @param dcId the Id of the DC to which the cost is required.
 * @returns Double the current best cost to the DC specified.
 *
 */
 public Double getCostToDC(String dcId) {
 return routingTable.getCostToDC(dcId);
 }

 /**
 * Propogate the Path Vector for this DC to all its neighbours.
 *
 */
 public void propogatePV(boolean force) {
 Log.log("DC::propogatePV for id " + id, Log.FULL);
 Vector neighbours = DCFactory.getInstance().getNeighboursForDC(this.id);
 for (int i = 0; i < neighbours.size(); i++) {
 DC dc =
DCFactory.getInstance().getDCForDCId((String)neighbours.elementAt(i));
 if (dc != null) {
 dc.updatePV(this, routingTable.getPathVectorsTable(), force);
 }
 }
 } // end of method propogateDV

 // Update DV info
 public void updatePV(DC neighbour, Hashtable neighboursPVT, boolean force) {
 Log.log("DC::updatePV for id " + id + " from neighbour " + neighbour.getId(),
Log.FULL);
 routingTable.updatePathVector(neighbour.getId(), neighboursPVT, force);

 // Whenever propogation occurs, let the Factory know, so that
 // it can print the DV Matrix
 DCFactory.getInstance().showDVMatrix("After propogation from "
 + neighbour.getId() + " to
neighbour " + this.id);
 } // end of method updateDV

 // Package : become and unbecome home
 public void becomeHomeForPackage(Package aPackage) {
 Log.log("At " + id + ", becoming home for package " + aPackage.getPackageId(),
Log.MIN);
 homePackages.add(aPackage);

 StringBuffer txtN = new StringBuffer();
 Vector neighbours = DCFactory.getInstance().getNeighboursForDC(this.id);
 for (int i = 0; i < neighbours.size(); i++) {

 58

 DC aDC =
DCFactory.getInstance().getDCForDCId((String)neighbours.elementAt(i));
 txtN.append(aDC.getId() + ", ");
 PackageAgent agent = new PackageAgent(aPackage.getPackageId(),

 aPackage,

 this);
 aDC.registerPackageAgent(agent);
 }
 Log.log("From " + id + ", registering package agents for package " +
aPackage.getPackageId()
 + " at neighbours " + txtN.substring(0, txtN.length() - 2) + ".",
Log.MIN);
 }
 public void unbecomeHomeForPackage(Package aPackage) {
 Log.log("At " + id + ", unbecoming home for package " + aPackage.getPackageId(),
Log.MIN);
 homePackages.remove(aPackage);

 StringBuffer txtN = new StringBuffer();
 Vector neighbours = DCFactory.getInstance().getNeighboursForDC(this.id);
 for (int i = 0; i < neighbours.size(); i++) {
 DC aDC =
DCFactory.getInstance().getDCForDCId((String)neighbours.elementAt(i));
 txtN.append(aDC.getId() + ", ");
 aDC.unregisterPackageAgentWithId(aPackage.getPackageId());
 }
 Log.log("From " + id + ", unregistering package agents for package " +
aPackage.getPackageId()
 + " at neighbours " + txtN.substring(0, txtN.length() - 2) + ".",
Log.MIN);
 }

 // PackageAgent : register and unregister
 public void registerPackageAgent(PackageAgent packageAgent) {
 Log.log("At " + id + ", registering package agent for " + packageAgent.getAgentId(),
Log.FULL);
 packageAgents.add(packageAgent);
 }
 public void unregisterPackageAgentWithId(String packageId) {
 Log.log("At " + id + ", unregistering package agent for " + packageId, Log.FULL);
 for (int i = 0; i < packageAgents.size(); i++) {
 PackageAgent agent = (PackageAgent)packageAgents.elementAt(i);
 if (agent.getThePackage().getPackageId().equalsIgnoreCase(packageId)) {
 packageAgents.remove(agent);
 return;
 }
 }
 }

 // Override Object.equals
 public boolean equals(Object o) {
 if (! (o instanceof DC)) {
 return false;
 }

 59

 if (((DC)o).getId().equalsIgnoreCase(id)) {
 return true;
 }
 return false;
 }

 // Override Object method toString
 public String toString() {
 return id;
 }

 } // end class DC

 60

Java Program 2: DCFactory.java

import java.util.*;
import java.io.*;

/**
 * This class is a DC Factory, used to create and
 * initialize DCs
 */

public class DCFactory {
 public static String NEIGHBOURS_FILE_NAME = "E:\\Thesis\\Stable\\AllNeighbours.txt";
 // Static members
 private static DCFactory theInstance;

 // Private members
 private Vector allTheDCs;
 private Vector allDCIds;
 private Vector neighboursData;

 // constructor
 private DCFactory() {
 Log.log("DCFactory constructor.", Log.FULL);

 theInstance = this;
 allTheDCs = new Vector();
 allDCIds = new Vector();
 neighboursData = new Vector();
 initialize();
 } // end constructor

 // Initializer for DC Factory
 private void initialize() {
 Log.log("DCFactory::initialize()", Log.FULL);
 initializeAllDCIds();
 initializeNeighboursData();
 createAllDCs();

 Log.log("DCFactory::initialize Complete.", Log.FULL);
 } // end initialize

 public static void createInstance() {
 if (theInstance == null) {
 Log.log("DCFactory : theInstance is null.. so creating and initializing it anew.",
Log.FULL);
 new DCFactory();
 }
 }

 // Get the Factory Instance.
 public static DCFactory getInstance() {
 createInstance();
 return theInstance;
 } // end getInstance

 // Override Object.finalize

 61

 protected void finalize() throws Throwable {
 Log.log("DCFactory::finalize. Setting theInstance to null", Log.FULL);
 theInstance = null;
 }

 private boolean initializeAllDCIds() {

 /*
 allDCIds.add("DC17");
 allDCIds.add("DC18");
 allDCIds.add("DC20");
 allDCIds.add("DC22");
 allDCIds.add("DC23");
 allDCIds.add("DC24");
 allDCIds.add("DC25");
 allDCIds.add("DC30");
 */

 String dcs = "DC";
 for (int i = 1; i < 37; i++) {
 Log.log("Adding " + dcs + i + " to the DC list.", Log.FULL);
 allDCIds.add(dcs + i);
 }

 allDCIds.trimToSize();
 return true;
 }

 private boolean isValidDCId(String aDCId) {
 if (allDCIds.size() > 0) {
 return allDCIds.contains(aDCId);
 } else {
 Log.log("No DC list loaded.", Log.FULL);
 return false;
 }
 }

 private boolean initializeNeighboursData() {
 try {
 File inpFile = new File(NEIGHBOURS_FILE_NAME);
 LineNumberReader lir = new LineNumberReader(new FileReader(inpFile));
 while(lir.ready()) {
 String line = lir.readLine();
 StringTokenizer st = new StringTokenizer(line, "|");
 DCNeighbours dcn = new DCNeighbours();
 dcn.setThisDCId(st.nextToken());
 Vector neighbours = new Vector(5);
 while (st.hasMoreTokens()) {
 neighbours.add(st.nextToken());
 }
 dcn.setNeighbours(neighbours);
 Log.log("Adding neighbours data " + dcn.toString(), Log.FULL);
 neighboursData.add(dcn);
 }
 lir.close();
 } catch (IOException ioe) {

 62

 Log.log("IO Error", Log.MIN);
 ioe.printStackTrace();
 System.exit(-1);
 }
 return true;
 }

 public Vector getNeighboursForDC(String aDCId) {
 for (int i=0; i < neighboursData.size(); i++) {
 if
(((DCNeighbours)neighboursData.elementAt(i)).getThisDCId().equalsIgnoreCase(aDCId)) {
 return ((DCNeighbours)neighboursData.elementAt(i)).getNeighbours();
 }
 }
 return null;
 }

 // public Getters
 public Vector getAllDCIds() {
 return (Vector)allDCIds.clone();
 }

 public Vector getAllTheDCs() {
 return (Vector)allTheDCs.clone();
 }

 public DC getDCForDCId(String dcId) {
 if (allTheDCs.size() == 0) {
 Log.log("DC::getDCForDCId - allTheDCs is empty.", Log.FULL);
 return null;
 }
 for (int i = 0; i < allTheDCs.size(); i++) {
 if (((DC)allTheDCs.elementAt(i)).getId().equalsIgnoreCase(dcId)) {
 return (DC)allTheDCs.elementAt(i);
 }
 }
 return null;
 } // end of method getDCForDCId

 // Create a single DC object here
 private DC createDC(String dcId) {
 Log.log("DCFactory::createDC for " + dcId, Log.FULL);
 if (isValidDCId(dcId)) {
 Hashtable costToNeighbours = getDirectCostToNeighbours(dcId);
 return new DC(dcId, costToNeighbours);
 }
 return null;
 } // end of method createDC

 /**
 * Direct cost to neighbours.. i.e., without an intermediate hop..
 */
 private Hashtable getDirectCostToNeighbours(String dcId) {
 Hashtable costToNeighbours = new Hashtable();
 Vector neighbours = getNeighboursForDC(dcId);
 Log.log("\tFor DC " + dcId, Log.FULL);

 63

 if (neighbours != null) {
 for (int i = 0; i < neighbours.size(); i++) {
 Log.log("\tGetting route between " + dcId + " and " +
(String)neighbours.elementAt(i),
 Log.FULL);
 Route r = RouteFactory.getInstance().getRouteBetween(dcId,
 (String)neighbours.elementAt(i));
 if (r != null) {
 Log.log("\tAdding costToNeighbours, " + r.toString(),
Log.FULL);
 costToNeighbours.put(r.getTheOtherDCId(dcId), new
Double(r.getCost()));
 }
 }
 }
 return costToNeighbours;
 }

 // Create all DCs here
 public Vector createAllDCs() {
 Log.log("DCFactory::createAllDCs.", Log.FULL);
 for (int i = 0; i < allDCIds.size(); i++) {
 allTheDCs.add(createDC((String)allDCIds.elementAt(i)));
 }
 Log.log("Initialized all " + allTheDCs.size() + " DCs.", Log.MIN);
 allTheDCs.trimToSize();
 return allTheDCs;
 }

 public void routeCostChanged() {
 for (int i = 0; i < allTheDCs.size(); i++) {
 DC aDC = (DC)allTheDCs.elementAt(i);
 aDC.reinitialize(getDirectCostToNeighbours(aDC.getId()));
 }
 }

 // Display the DV matrix upon request
 public void showDVMatrix(String message) {
 if (Log.getLogLevel() != Log.DEBUG) return;
 // Moved method implementation and helper methods to
 // helper class to reduce clutter here.
 DCMatrixDisplayer.showDVMatrix(message);
 //DCMatrixDisplayer.close();
 } // end of method showDVMatrix

} // end of class DCFactory

/**
 * This class is a helper class used to display the
 * DV Matricies
 */
class DCMatrixDisplayer {
 // Private members

 64

 private static FileWriter matrixOp;
 private static final int FIELD_LEN = 8;

 public static void showDVMatrix(String message) {
 try {
 if (matrixOp == null) {
 matrixOp = new FileWriter("matrix.out", true);
 }

 matrixOp.write(message + "\n");
 matrixOp.flush();

 Vector allDCIds = DCFactory.getInstance().getAllDCIds();

 // Print matrix header
 StringBuffer header = new StringBuffer();
 header.append(pad("") + "|");
 for (int k = 0; k < allDCIds.size(); k++) {
 header.append(pad((String)allDCIds.elementAt(k)) + "|");
 }
 matrixOp.write(header.toString() + "\n");

 for (int i = 0; i < allDCIds.size(); i++) {
 String dcId = (String)allDCIds.elementAt(i);
 DC dc = DCFactory.getInstance().getDCForDCId(dcId);

 if (dc == null) {
 Log.log("DC was null for id " + dcId, Log.FULL);
 } else {
 Hashtable dv = dc.getCostToAllDCs();

 StringBuffer line = new StringBuffer();
 line.append(pad(dcId) + "|");

 for (int j = 0; j < allDCIds.size(); j++) {
 String aDCId = (String)allDCIds.elementAt(j);
 Double cost = (Double)dv.get(aDCId);
 if (cost == RoutingTable.INFINITY) {
 line.append(pad("--") + "|");
 } else {
 line.append(pad(cost.toString()) + "|");
 }
 }
 matrixOp.write(line.toString() + "\n");
 matrixOp.flush();
 }
 }

 matrixOp.write("\n\n");
 matrixOp.flush();

 } catch (IOException ioe) {
 Log.log ("IO Error occurred when message was " + message, Log.MIN);
 ioe.printStackTrace();
 }
 } // end of method showDVMatrix

 65

 private static String pad(String contents) {
 contents = contents.trim();
 int contLen = contents.length();

 if (contLen >= FIELD_LEN) {
 // no wrap. just return.
 return contents;
 }
 int padding = FIELD_LEN - contLen;
 StringBuffer field = new StringBuffer(" " + contents);
 for (int i = 1; i < padding; i++)
 field.append(" ");

 return (field.toString());
 } // end of method align

 public static void close() {
 Log.log("Close of DCMatrixDisplayer activated.", Log.FULL);
 try {
 if (matrixOp != null) {
 matrixOp.close();
 matrixOp = null;
 }
 } catch (IOException ioe) {
 Log.log("Error in close", Log.MIN);
 ioe.printStackTrace();
 }
 }
} // end of class DCMatrixDisplayer

 66

Java Program 3: DCNeighbours.java

import java.util.Vector;

/**
 * This class encapsulates a collection of DC and its
 * neighbours
 */
public class DCNeighbours {
 private String thisDCId;
 private Vector neighbours;

 public void setThisDCId(String aDCId) {
 this.thisDCId = aDCId;
 }
 public String getThisDCId() {
 return thisDCId;
 }
 public void setNeighbours(Vector neighbours) {
 this.neighbours = neighbours;
 }
 public Vector getNeighbours() {
 return neighbours;
 }
 public String toString() {
 StringBuffer rsb = new StringBuffer();
 rsb.append(thisDCId);
 rsb.append(" has neighbours ");
 for (int i = 0; i < neighbours.size(); i++) {
 String nDC = (String)neighbours.elementAt(i);
 rsb.append(nDC + ", ");
 }
 return rsb.toString();
 }
} // end of class DC Neighbours

 67

Java Program 4: DCPanel.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;
import java.util.Hashtable;
import java.util.Enumeration;

/**
 * This class represents an UI to manage monitor all DCs
 */
public class DCPanel extends JPanel implements ActionListener {
 // static members
 private static Color DC_SELECTED = Color.cyan;
 private static Color DC_UNSELECTED = Color.lightGray;

 // Private member variables
 private Vector dcButtons;
 private JTextArea neighboursText;
 private JTextArea packagesText;
 private JTextArea packageAgentsText;

 // Constructor
 public DCPanel() {
 addDCButtons();
 addNeighboursData();
 addPackagesData();
 addPackageAgentsData();
 }

 private void addDCButtons() {
 // Assuming 36 DCs are present..
 JPanel dcButtonsPanel = new JPanel();
 dcButtonsPanel.setLayout(new GridLayout(3, 12, 5, 5));
 dcButtons = new Vector();

 Vector allDCIds = DCFactory.getInstance().getAllDCIds();
 for (int i = 0; i < allDCIds.size(); i++) {
 JButton dcButton = new JButton((String)allDCIds.elementAt(i));
 dcButton.setBackground(DC_UNSELECTED);
 dcButton.addActionListener(this);
 dcButtons.add(dcButton);
 dcButtonsPanel.add(dcButton);
 }

 dcButtonsPanel.setBorder(BorderFactory.createTitledBorder("All the DCs in the
system"));
 add(dcButtonsPanel);
 }

 private void addNeighboursData() {
 neighboursText = new JTextArea(8, 30);
 neighboursText.setLineWrap(true);
 neighboursText.setWrapStyleWord(true);
 JScrollPane sPane = new JScrollPane(neighboursText);

 68

 sPane.setBorder(BorderFactory.createTitledBorder("Direct cost to neighbours for
selected DC"));
 add(sPane);
 }

 private void addPackagesData() {
 packagesText = new JTextArea(10, 70);
 JScrollPane sPane = new JScrollPane(packagesText);
 sPane.setBorder(BorderFactory.createTitledBorder("Packages with selected DC as
home"));
 add(sPane);
 }

 private void addPackageAgentsData() {
 packageAgentsText = new JTextArea(10, 70);
 JScrollPane sPane = new JScrollPane(packageAgentsText);
 sPane.setBorder(BorderFactory.createTitledBorder("Package Agents present in selected
DC"));
 add(sPane);
 }

 // Action Listener
 public void actionPerformed(ActionEvent ae) {
 JButton source = (JButton)ae.getSource();

 for (int i = 0; i < dcButtons.size(); i++) {
 ((JButton)dcButtons.elementAt(i)).setBackground(DC_UNSELECTED);
 }
 source.setBackground(DC_SELECTED);

 DC aDC = DCFactory.getInstance().getDCForDCId(source.getText());

 if (aDC != null) {
 updateNeighboursData(aDC.getId(),

 DCFactory.getInstance().getNeighboursForDC(aDC.getId()));
 updatePackagesData(aDC.getHomePackages());
 updatePackageAgentsData(aDC.getPackageAgents());
 }
 }

 private void updateNeighboursData(String selectedDCId, Vector neighbours) {
 StringBuffer txt = new StringBuffer();
 for (int i = 0; i < neighbours.size(); i++) {
 String dcId = (String)neighbours.elementAt(i);
 txt.append("To " + dcId);
 txt.append(", cost is ");
 txt.append(RouteFactory.getInstance().getRouteBetween(selectedDCId,
dcId).getCost());
 txt.append("\n");
 }
 neighboursText.setText(txt.toString());
 }

 private void updatePackagesData(Vector homePackages) {
 StringBuffer txt = new StringBuffer();

 69

 for (int i = 0; i < homePackages.size(); i++) {
 Package pkg = (Package)homePackages.elementAt(i);
 txt.append("Package id - " + pkg.getPackageId());
 txt.append(": ");
 txt.append("Package Contents - " + pkg.getContentId());
 txt.append("(");
 txt.append(pkg.getContentDesc());
 txt.append("), ");
 txt.append("[Origin - " + pkg.getOriginDCId());
 txt.append(", Dest - " + pkg.getDestinationDCId());
 txt.append("] ");
 txt.append("Sunk Transport Cost = ");
 txt.append(pkg.getSunkTransportCost());
 txt.append("\n");
 }
 packagesText.setText(txt.toString());
 }

 private void updatePackageAgentsData(Vector agents) {
 StringBuffer txt = new StringBuffer();
 for (int i = 0; i < agents.size(); i++) {
 PackageAgent agent = (PackageAgent)agents.elementAt(i);
 txt.append("Agent Id - " + agent.getAgentId());
 txt.append(": ");
 txt.append("Package Contents - " + agent.getThePackage().getContentId());
 txt.append("(");
 txt.append(agent.getThePackage().getContentDesc());
 txt.append("), ");
 txt.append("Current Home of Package - " +
agent.getThePackage().getCurrentHomeDCId());
 txt.append(". Total Transport cost to this DC = ");
 txt.append(agent.getTotalPackageTransportCostToThisDC());
 txt.append("\n");
 }
 packageAgentsText.setText(txt.toString());
 }

}

 70

Java Program 5: Journey.java

import java.util.*;

/**
 * This class encapsulates the journey of a Package.
 * The journey has two components.. the past and the future.
 * The past is the journey so far, upto the current home.
 * The future is the journey, which will be taken from the current
 * home to the current destination, assuming that the
 * routing tables of the DCs do not change.
 * If the routing tables are changed, the future journey also changes.
 */
public class Journey {
 private Vector journeySoFar;
 private Vector theRoadAhead;
 private boolean destinationReached;

 public Journey() {
 this.journeySoFar = new Vector();
 this.theRoadAhead = new Vector();
 this.destinationReached = false;
 }

 public void initialize(String originDCId, String destDCId) {
 Log.log("Creating journey for " + originDCId + " to " + destDCId, Log.FULL);

 DC originDC = DCFactory.getInstance().getDCForDCId(originDCId);

 Log.log("Origin DC - " + originDC.getId(), Log.FULL);

 String nextDCId = originDC.getNextHopToDC(destDCId);

 Log.log("Next DC Id - " + nextDCId, Log.FULL);

 journeySoFar.add(originDCId);
 findTheRoadAhead(nextDCId, destDCId);
 }

 public boolean isDestinationReached() {
 return destinationReached;
 }

 private void findTheRoadAhead(String nextDCId, String destDCId) {
 theRoadAhead.removeAllElements();
 Log.log("\tFrom " + nextDCId + " to " + destDCId, Log.FULL);
 while ((! nextDCId.equalsIgnoreCase(destDCId)) &&
 (! nextDCId.equals(""))) {
 Log.log("\tAdding to the road ahead - " + nextDCId, Log.FULL);
 theRoadAhead.add(nextDCId);
 DC nextDC = DCFactory.getInstance().getDCForDCId(nextDCId);
 nextDCId = nextDC.getNextHopToDC(destDCId);
 }
 theRoadAhead.add(destDCId);
 }

 71

 // Getters
 public List getJourneySoFar() {
 journeySoFar.trimToSize();
 return Collections.unmodifiableList(journeySoFar);
 }

 public List getTheRoadAhead() {
 theRoadAhead.trimToSize();
 return Collections.unmodifiableList(theRoadAhead);
 }

 public void recordHop() {
 String theJustHoppedToDCId = (String)theRoadAhead.elementAt(0);
 String destinationDCId = (String)theRoadAhead.elementAt(theRoadAhead.size() - 1);
 journeySoFar.add(theJustHoppedToDCId);
 if (theRoadAhead.size() == 1) {
 // This means the only DC in the road ahead is the destination DC.
 // Remove it, and get out..
 theRoadAhead.removeElementAt(0);
 destinationReached = true;
 return;
 }
 DC theJustHoppedToDC =
DCFactory.getInstance().getDCForDCId(theJustHoppedToDCId);
 String nextDCId = theJustHoppedToDC.getNextHopToDC(destinationDCId);
 findTheRoadAhead(nextDCId, destinationDCId);
 }

 public void costChanged() {
 // Only the road ahead is affected.. the journey so far is unchangeable.
 String currentHomeDCId = (String)journeySoFar.elementAt(journeySoFar.size() - 1);
 String destDCId = (String)theRoadAhead.elementAt(theRoadAhead.size() - 1);
 DC currentHomeDC = DCFactory.getInstance().getDCForDCId(currentHomeDCId);
 String newNextDCId = currentHomeDC.getNextHopToDC(destDCId);
 findTheRoadAhead(newNextDCId, destDCId);
 }

 public void destinationChanged(String newDestDCId) {
 String currentHomeDCId = (String)journeySoFar.elementAt(journeySoFar.size() - 1);
 DC currentHomeDC = DCFactory.getInstance().getDCForDCId(currentHomeDCId);
 String newNextDCId = currentHomeDC.getNextHopToDC(newDestDCId);
 findTheRoadAhead(newNextDCId, newDestDCId);
 }
}

 72

Java Program 6: Log.java

import java.util.Observable;
import java.util.Observer;
import java.io.IOException;

/**
 * Logging support for the application.
 */
public class Log extends Observable {
 // Public static members
 public static final int MIN = 1;
 public static final int FULL = 4;
 public static final int DEBUG = 5;

 // Private static members
 private static Log thisInstance;
 private static StringBuffer messageCache = new StringBuffer();
 private static int messageNumber = 0;

 // Private members
 private int logLevel;

 public static void setLogLevel(int logLevel) {
 checkInstance();
 thisInstance.logLevel = logLevel;
 }

 public static int getLogLevel() {
 checkInstance();
 return thisInstance.logLevel;
 }

 public static void log(String message, int messageLevel) {
 if ((messageLevel != MIN) && (messageLevel != FULL)) {
 messageLevel = MIN;
 }

 if (getLogLevel() == DEBUG) {
 try {
 System.out.println(message);
 while (System.in.read() == 1);
 } catch (IOException ioe) {
 System.err.println(ioe.getMessage());
 System.err.println("Exiting with error");
 System.exit(-1);
 }
 }

 if ((messageLevel == MIN) || (getLogLevel() == FULL)) {
 checkInstance();
 messageCache.append((++messageNumber) + " : " + message + "\n");

 thisInstance.setChanged();

 73

 notifyChanges();
 }

 }

 private static void checkInstance() {
 if (thisInstance == null) {
 thisInstance = new Log();
 thisInstance.messageNumber = 0;
 thisInstance.logLevel = MIN;

 }
 }

 public static void notifyChanges() {
 if (thisInstance.countObservers() > 0) {
 thisInstance.notifyObservers(messageCache);
 messageCache.delete(0, messageCache.length());
 }
 }

 public static void registerObserver(Observer observer) {
 checkInstance();
 thisInstance.addObserver(observer);
 notifyChanges();
 }

 public static void unregisterObserver(Observer observer) {
 checkInstance();
 thisInstance.deleteObserver(observer);
 }

} // end of class Log

 74

Java Program 7: LogPanel.java
import javax.swing.*;

import java.awt.*;

import java.awt.event.*;
import java.util.Observer;
import java.util.Observable;

/**
 * All events logger panel
 */
public class LogPanel extends JPanel
 implements Observer {
 // Private members
 private JTextArea logArea;

 // Constructor
 public LogPanel() {
 addComponents();
 registerWithObservableLog();
 }

 private void addComponents() {
 logArea = new JTextArea(40, 90);
 JScrollPane sPane = new JScrollPane(logArea);
 sPane.setBorder(BorderFactory.createTitledBorder("Log Messages"));
 add(sPane);
 }

 private void registerWithObservableLog() {
 Log.registerObserver(this);
 }

 // Observer method implementation.
 public void update(Observable o, Object arg) {
 logArea.append(((StringBuffer)arg).toString());
 }

}

 75

Java Program 8: MasterUI.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;

/**
 * This is the master control UI of this application
 *
 */
public class MasterUI {
 // Private member variables
 private JFrame masterFrame;
 private JTabbedPane tabs;
 private JPanel dcPanel;
 private JPanel routePanel;
 private JPanel packagePanel;
 private JPanel packageCreatorPanel;
 private JPanel logPanel;

 // Constructor
 /**
 * Constructor of the class
 * Creates a main frame, and adds other tabs to this frame. Each
 * of the tab monitors, or manages each aspect of the application.
 *
 * @param plWait an intializing message dialog
 */
 public MasterUI(JDialog plWait) {
 masterFrame = new JFrame("Karthik S Gandlur : Graduate Thesis : Public Logistics
Network : Master Contoller UI");

 masterFrame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
 masterFrame.addWindowListener(new WindowAdapter() {
 public void windowClosed(WindowEvent we) {
 System.exit(0);
 }});
 masterFrame.setBounds(5, 5, 1100, 800);

 addTabs();

 masterFrame.setResizable(false);
 masterFrame.setVisible(true);

 plWait.dispose();
 }

 /**
 * Add all the tabs of the application UI.
 */
 private void addTabs() {
 tabs = new JTabbedPane(JTabbedPane.TOP);

 dcPanel = new DCPanel();
 tabs.addTab("DC Monitor", dcPanel);

 76

 routePanel = new RoutePanel();
 tabs.addTab("Route Manager", routePanel);

 packagePanel = new PackagePanel();
 tabs.addTab("Package Manager", packagePanel);

 packageCreatorPanel = new PackageCreatorPanel();
 tabs.addTab("Package Creator", packageCreatorPanel);

 logPanel = new LogPanel();
 tabs.addTab("Log Monitor", logPanel);

 masterFrame.getContentPane().add(tabs);
 }

 /**
 * Point of entry to the application.
 * Usage :
 * <PRE>
 * java MasterUI
 * </PRE>
 *
 */
 public static void main(String args[]) {
 if (args.length > 0) {
 if (args[0].equalsIgnoreCase("FULL")) {
 Log.setLogLevel(Log.FULL);
 } else if (args[0].equalsIgnoreCase("DEBUG")) {
 Log.setLogLevel(Log.DEBUG);
 } else {
 Log.setLogLevel(Log.MIN);
 }
 } else {
 Log.setLogLevel(Log.MIN);
 }

 JDialog plWait = pleaseWait(null, "Initializing System. Please wait..");
 plWait.show();

 // Create Instances of all factories, in this order
 RouteFactory.createInstance();
 DCFactory.createInstance();
 PackageFactory.createInstance();

 // Start all routing managers.. one each for a DC
 Vector allDCs = DCFactory.getInstance().getAllTheDCs();
 for (int i = 0; i < allDCs.size(); i++) {
 new Thread(new RoutingManager((DC)allDCs.elementAt(i))).start();
 }

 new MasterUI(plWait);
 }

 private static JDialog pleaseWait(Component parent, String message) {

 77

 JOptionPane wait = new JOptionPane(message,
JOptionPane.INFORMATION_MESSAGE);
 JDialog dialog = wait.createDialog(parent, message);
 dialog.setModal(false);
 return dialog;
 }

}

 78

Java Program 9: Package.java

import java.util.Properties;
import java.util.Vector;

/**
 * This class represents a package in the system.
 * It is created with an id, and details about its
 * contents. At the time of creation, it is designated
 * with an origin, and a destination.
 *
 */
public class Package {
 // static Strings which are required in a
 // properties object used to construct a package.
 public static String PACKAGE_ID = "package.id";
 public static String PACKAGE_CONTENT_ID = "package.content.id";
 public static String PACKAGE_CONTENT_DESC = "package.content.desc";
 public static String PACKAGE_ORIGIN_DC_ID = "package.origin.dc.id";
 public static String PACKAGE_DESTINATION_DC_ID = "package.destination.dc.id";

 // Private member variables
 private String packageId;
 private String contentId;
 private String contentDesc;
 private String originDCId;
 private String destinationDCId;
 private String currentHomeDCId;
 private double sunkTransportCost;
 private Journey journey;

 // Constructor
 public Package(Properties packageProperties) {
 if (! isPropertiesRightForPackageCreation(packageProperties)) {
 throw new IllegalArgumentException ("Properties supplied are not valid for
Package creation.");
 }
 packageId = packageProperties.getProperty(PACKAGE_ID);
 contentId = packageProperties.getProperty(PACKAGE_CONTENT_ID);
 contentDesc = packageProperties.getProperty(PACKAGE_CONTENT_DESC);
 originDCId = packageProperties.getProperty(PACKAGE_ORIGIN_DC_ID);
 destinationDCId =
packageProperties.getProperty(PACKAGE_DESTINATION_DC_ID);

 // just when created, current home dc id is the same as the origin.
 currentHomeDCId = originDCId;

 sunkTransportCost = 0.0;

 Log.log("Creating package, with id " + packageId + ", [O - " + originDCId +
 ", D - " + destinationDCId + "].",
 Log.MIN);

 initializeJourney();

 createAndDistributePackageAgents();

 79

 }

 // helper method to determine if a particular Property object has
 // all the required properties for the valid creation of a Package.
 public static boolean isPropertiesRightForPackageCreation(Properties properties) {
 if (properties.getProperty(PACKAGE_ID).length() == 0) {
 Log.log("PACKAGE_ID is null", Log.MIN);
 return false;
 }
 if (properties.getProperty(PACKAGE_CONTENT_ID).length() == 0) {
 Log.log("PACKAGE_CONTENT_ID is null", Log.MIN);
 return false;
 }
 if (properties.getProperty(PACKAGE_ORIGIN_DC_ID).length() == 0) {
 Log.log("PACKAGE_ORIGIN_DC_ID is null", Log.MIN);
 return false;
 }
 if (properties.getProperty(PACKAGE_DESTINATION_DC_ID).length() == 0) {
 Log.log("PACKAGE_DESTINATION_DC_ID is null", Log.MIN);
 return false;
 }
 return true;
 }

 private void initializeJourney() {
 journey = new Journey();
 Log.log("Creating journey for Package " + packageId, Log.FULL);
 journey.initialize(originDCId, destinationDCId);
 }

 private void createAndDistributePackageAgents() {

 DC homeDC = DCFactory.getInstance().getDCForDCId(currentHomeDCId);
 homeDC.becomeHomeForPackage(this);
 }

 /**
 * One hop towards destination.
 */
 public void hop() {
 double costToNextDC;
 DC nextDC;

 if (currentHomeDCId.equalsIgnoreCase(destinationDCId)) {
 // If already at home in the destination DC, dont hop anywhere else.
 return;
 }

 DC homeDC = DCFactory.getInstance().getDCForDCId(currentHomeDCId);
 String nextDCId = homeDC.getNextHopToDC(destinationDCId);

 if (nextDCId == "") {
 // This means that the package is in a DC from which the
 // next hop will lead to the destination DC itself.
 costToNextDC = (homeDC.getCostToDC(destinationDCId)).doubleValue();
 nextDC = DCFactory.getInstance().getDCForDCId(destinationDCId);

 80

 currentHomeDCId = destinationDCId;
 } else {
 costToNextDC = (homeDC.getCostToDC(nextDCId)).doubleValue();
 nextDC = DCFactory.getInstance().getDCForDCId(nextDCId);
 currentHomeDCId = nextDCId;
 }

 Log.log("Hopping package " + packageId + ", from " + homeDC.getId() +
 " to " + nextDC.getId() + ".", Log.MIN);

 homeDC.unbecomeHomeForPackage(this);
 nextDC.becomeHomeForPackage(this);
 sunkTransportCost += costToNextDC;

 journey.recordHop();

 if (journey.isDestinationReached()) {
 Log.log("Destination Reached for package " + packageId + ".", Log.MIN);
 }

 }

 public double getTotalJourneyCostToDestination() {
 if (currentHomeDCId.equalsIgnoreCase(destinationDCId)) {
 return sunkTransportCost;
 }
 DC homeDC = DCFactory.getInstance().getDCForDCId(currentHomeDCId);
 return sunkTransportCost +
 (homeDC.getCostToDC(destinationDCId)).doubleValue();
 }

 /**
 * Changes the destination., called usually from the UI
 */
 public void destinationChanged(String newDestDCId) {
 Log.log("For package " + packageId + ", changing destination from " +
 destinationDCId + " to " + newDestDCId + ".", Log.MIN);
 this.destinationDCId = newDestDCId;
 journey.destinationChanged(newDestDCId);
 }

 // Getters
 public String getPackageId() {
 return packageId;
 }

 public String getContentId() {
 return contentId;
 }

 public String getContentDesc() {
 return contentDesc;
 }

 public String getOriginDCId() {
 return originDCId;

 81

 }

 public String getDestinationDCId() {
 return destinationDCId;
 }

 public String getCurrentHomeDCId() {
 return currentHomeDCId;
 }

 public double getSunkTransportCost() {
 return sunkTransportCost;
 }
 public Journey getJourney() {
 return journey;
 }

 // Override Object method
 // used to represent this package in the UI
 public String toString() {
 return packageId;
 }

 // Override Object.equals
 public boolean equals(Object o) {
 if (! (o instanceof Package)) {
 return false;
 }
 if (((Package)o).getPackageId().equalsIgnoreCase(packageId)) {
 return true;
 }
 return false;
 } // end of equals
}

 82

Java Program 10: PackageAgent.java

/**
 * This class represents a PackageAgent.
 * An agent for a Package object.
 */
public class PackageAgent {
 // Private members
 private String agentId;
 private Package thePackage;
 private DC agentHomeDC;

 // Constructor
 public PackageAgent(String agentId, Package thePackage, DC agentHomeDC) {
 this.agentId = agentId;
 this.thePackage = thePackage;
 this.agentHomeDC = agentHomeDC;
 }

 // getters
 public String getAgentId() {
 return agentId;
 }
 public Package getThePackage() {
 return thePackage;
 }
 public DC getAgentHomeDC() {
 return agentHomeDC;
 }

 public double getTotalPackageTransportCostToThisDC() {
 double sunkTransportCost = thePackage.getSunkTransportCost();
 DC packageHomeDC = DCFactory.getInstance().

 getDCForDCId(thePackage.getCurrentHomeDCId());
 double packageHomeToAgentHomeTransportCost = (packageHomeDC.

 getCostToDC(agentHomeDC.getId())).doubleValue();

 return sunkTransportCost + packageHomeToAgentHomeTransportCost;
 }

 // Override Object.equals
 public boolean equals(Object o) {
 if (! (o instanceof PackageAgent)) {
 return false;
 }
 if (((PackageAgent)o).getThePackage().
 getContentId().equalsIgnoreCase(thePackage.getContentId()))
{
 return true;
 }
 return false;
 } // end of equals
} // end of class PackageAgent

 83

Java Program 11: PackageCreatorPanel.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Properties;

/**
 * This class presents an UI to create Packages
 */
public class PackageCreatorPanel extends JPanel {
 // Private fields
 private JTextField txtPackageId;
 private JTextField txtContentId;
 private JTextField txtContentDesc;
 private JComboBox cmbOriginDCId;
 private JComboBox cmbDestDCId;

 private JButton cmdCreatePackage;
 private JButton cmdClearFields;

 // Constructor
 public PackageCreatorPanel() {
 addComponents();
 }

 private void addComponents() {
 JPanel compPanel = new JPanel();
 compPanel.setLayout(new GridLayout(6, 2));

 compPanel.add(new JLabel("Package Id : "));
 txtPackageId = new JTextField(10);
 compPanel.add(txtPackageId);

 compPanel.add(new JLabel("Content Id : "));
 txtContentId = new JTextField(10);
 compPanel.add(txtContentId);

 compPanel.add(new JLabel("Content Desc : "));
 txtContentDesc = new JTextField(40);
 compPanel.add(txtContentDesc);

 compPanel.add(new JLabel("Origin DC Id : "));
 cmbOriginDCId = new JComboBox(DCFactory.getInstance().getAllDCIds());
 compPanel.add(cmbOriginDCId);

 compPanel.add(new JLabel("Destination DC Id : "));
 cmbDestDCId = new JComboBox(DCFactory.getInstance().getAllDCIds());
 compPanel.add(cmbDestDCId);

 cmdCreatePackage = new JButton("Create Package");
 cmdCreatePackage.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae) {
 if (checkFieldsValidity()) {
 createPackage();

 84

 }
 }
 });
 compPanel.add(cmdCreatePackage);

 cmdClearFields = new JButton("Clear all fields");
 cmdClearFields.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent ae) {
 clearAllFields();
 }
 });
 compPanel.add(cmdClearFields);

 compPanel.setBorder(BorderFactory.createTitledBorder("Creation of Packages"));
 add(compPanel);
 }

 private boolean checkFieldsValidity() {
 if (txtPackageId.getText().length() == 0) {
 showErrorMessage("Package Id cannot be empty.");
 return false;
 }

 if (txtContentId.getText().length() == 0) {
 showErrorMessage("Content Id cannot be empty.");
 return false;
 }

 if (((String)cmbOriginDCId.getSelectedItem()).equalsIgnoreCase(
 (String)cmbDestDCId.getSelectedItem())) {
 showErrorMessage("Origin DC Id, and the Destination DC Id cannot be the
same.");
 return false;
 }

 return true;
 }

 private void createPackage() {
 Properties props = new Properties();
 props.setProperty(Package.PACKAGE_ID, txtPackageId.getText());
 props.setProperty(Package.PACKAGE_CONTENT_ID, txtContentId.getText());
 props.setProperty(Package.PACKAGE_CONTENT_DESC, txtContentDesc.getText());
 props.setProperty(Package.PACKAGE_ORIGIN_DC_ID,
(String)cmbOriginDCId.getSelectedItem());
 props.setProperty(Package.PACKAGE_DESTINATION_DC_ID,
(String)cmbDestDCId.getSelectedItem());

 try {
 PackageFactory.getInstance().createPackage(props);
 JOptionPane.showMessageDialog(this,

 "Package created successfully.",

 "Package Creator : Success Message",

 85

 JOptionPane.INFORMATION_MESSAGE);
 } catch (Exception e) {
 showErrorMessage("Error in creating Package : " + e.getMessage());
 }
 }

 private void clearAllFields() {
 txtPackageId.setText("");
 txtContentId.setText("");
 txtContentDesc.setText("");
 cmbOriginDCId.setSelectedIndex(0);
 cmbDestDCId.setSelectedIndex(0);
 }
 private void showErrorMessage(String errorMessage) {
 JOptionPane.showMessageDialog(this, errorMessage,
 "Package Creator : Error
message",
 JOptionPane.ERROR_MESSAGE);
 }

}

 86

Java Program 12: PackageFactory.java

import java.util.Properties;
import java.util.Vector;

/**
 * This class is a package creating factory.
 * This will probably be used by an GUI to create
 * packages.
 */
public class PackageFactory {
 // Facotry instance
 private static PackageFactory theInstance;

 // Member variables
 private Vector allPackages;

 // Constructor
 private PackageFactory() {
 theInstance = this;
 allPackages = new Vector();
 }

 // Factory methods
 public static void createInstance() {
 if (theInstance == null) {
 Log.log("PackageFactory: theInstance is null.. so creating it anew.",
Log.FULL);
 new PackageFactory();
 }
 }

 // Get the Factory Instance.
 public static PackageFactory getInstance() {
 createInstance();
 return theInstance;
 } // end getInstance

 // Override Object.finalize
 protected void finalize() throws Throwable {
 Log.log("PackageFactory::finalize. Setting theInstance to null", Log.FULL);
 theInstance = null;
 }

 public Package createPackage(Properties properties) {
 Package aPackage = new Package(properties);
 allPackages.add(aPackage);
 return aPackage;
 }

 public Vector getAllPackages() {
 return allPackages;
 }

 public Package getPackageForPackageId(String packageId) {

 87

 for (int i = 0; i < allPackages.size(); i++) {
 if (((Package)allPackages.elementAt(i)).getPackageId().equals(packageId)) {
 return (Package)allPackages.elementAt(i);
 }
 }
 return null;
 }

 public void routeCostChanged() {
 for (int i = 0; i < allPackages.size(); i++) {
 Package aPackage = (Package)allPackages.elementAt(i);
 aPackage.getJourney().costChanged();
 }
 }
}

 88

Java Program 13: PackagePanel.java

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

/**
 * This is an UI to monitor packages in the system.
 */
public class PackagePanel extends JPanel {
 // Private members
 private JList packagesList;
 private JTextField txtPackageId;
 private JTextField txtContentId;
 private JTextField txtContentDesc;
 private JTextField txtOriginDCId;
 private JTextField txtCurrentHomeDCId;
 private JTextField txtSunkTransportCost;
 private JTextField txtCostFromHomeToDest;
 private JTextField txtTotalJourneyCost;
 private JComboBox cmbDestDCId;
 private JButton cmdRefreshPackagesList;
 private JButton cmdChangeDestination;
 private JButton cmdHop;

 private JTextArea test;

 // Constructor
 public PackagePanel() {
 addComponents();
 }

 private void addComponents() {
 JPanel listPanel = new JPanel(new BorderLayout(10, 10));

 packagesList = new JList();
 packagesList.setPrototypeCellValue("XX-XX-XX-XX-XX-XXXXXX");
 packagesList.setVisibleRowCount(15);
 packagesList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 packagesList.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent me) {
 packageSelected();
 }});
 JScrollPane sPane = new JScrollPane(packagesList);
 listPanel.add(sPane, BorderLayout.CENTER);

 cmdRefreshPackagesList = new JButton("Refresh Packages List");
 cmdRefreshPackagesList.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 refreshPackagesList();
 }});
 listPanel.add(cmdRefreshPackagesList, BorderLayout.SOUTH);

 listPanel.setBorder(BorderFactory.createTitledBorder("All Packages"));

 89

 add(listPanel);

 JPanel detailsPanel = new JPanel(new GridLayout(10, 2, 5, 5));

 detailsPanel.add(new JLabel("Package Id : "));
 txtPackageId = new JTextField(10);
 txtPackageId.setEditable(false);
 detailsPanel.add(txtPackageId);

 detailsPanel.add(new JLabel("Content Id : "));
 txtContentId = new JTextField(10);
 txtContentId.setEditable(false);
 detailsPanel.add(txtContentId);

 detailsPanel.add(new JLabel("Content Desc : "));
 txtContentDesc = new JTextField(40);
 txtContentDesc.setEditable(false);
 detailsPanel.add(txtContentDesc);

 detailsPanel.add(new JLabel("Origin DC : "));
 txtOriginDCId = new JTextField(4);
 txtOriginDCId.setEditable(false);
 detailsPanel.add(txtOriginDCId);

 detailsPanel.add(new JLabel("Current Home DC : "));
 txtCurrentHomeDCId = new JTextField(4);
 txtCurrentHomeDCId.setEditable(false);
 detailsPanel.add(txtCurrentHomeDCId);

 detailsPanel.add(new JLabel("Sunk Cost : "));
 txtSunkTransportCost = new JTextField(8);
 txtSunkTransportCost.setEditable(false);
 detailsPanel.add(txtSunkTransportCost);

 detailsPanel.add(new JLabel("Cost From Home To Dest : "));
 txtCostFromHomeToDest = new JTextField(8);
 txtCostFromHomeToDest.setEditable(false);
 detailsPanel.add(txtCostFromHomeToDest);

 detailsPanel.add(new JLabel("Total Journey Cost : "));
 txtTotalJourneyCost = new JTextField(8);
 txtTotalJourneyCost.setEditable(false);
 detailsPanel.add(txtTotalJourneyCost);

 detailsPanel.add(new JLabel("Destination DC : "));
 cmbDestDCId = new JComboBox();
 initializeDestDCCombo(null, null);
 detailsPanel.add(cmbDestDCId);

 90

 cmdChangeDestination = new JButton("Change Destination");
 cmdChangeDestination.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 destinationChanged();
 }});
 detailsPanel.add(cmdChangeDestination);

 cmdHop = new JButton("Hop");
 cmdHop.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 hop();
 }});
 detailsPanel.add(cmdHop);

 detailsPanel.setBorder(BorderFactory.createTitledBorder("Details of selected Package"));
 add(detailsPanel);

 test = new JTextArea(10, 70);
 JScrollPane sPane1 = new JScrollPane(test);
 sPane1.setBorder(BorderFactory.createTitledBorder("Depiction of selected package's
journey."));
 add(sPane1);
 }

 private void initializeDestDCCombo(String homeDCId, String destDCId) {
 cmbDestDCId.removeAllItems();
 Vector allDCIds = DCFactory.getInstance().getAllDCIds();
 if (homeDCId != null) {
 if (! homeDCId.equalsIgnoreCase(destDCId)) {
 allDCIds.remove(homeDCId);
 }
 }
 for (int i = 0; i < allDCIds.size(); i++) {
 cmbDestDCId.addItem(allDCIds.elementAt(i));
 }
 if (destDCId != null) {
 cmbDestDCId.setSelectedItem(destDCId);
 }
 }

 private void packageSelected() {
 if (packagesList.getSelectedIndex() < 0) {
 clearAllFields();
 return;
 }
 Package aPackage = (Package)packagesList.getSelectedValue();
 txtPackageId.setText(aPackage.getPackageId());
 txtContentId.setText(aPackage.getContentId());
 txtContentDesc.setText(aPackage.getContentDesc());
 txtOriginDCId.setText(aPackage.getOriginDCId());
 txtCurrentHomeDCId.setText(aPackage.getCurrentHomeDCId());
 txtSunkTransportCost.setText(Double.toString(aPackage.getSunkTransportCost()));
 double homeToDestCost = aPackage.getTotalJourneyCostToDestination() -

 aPackage.getSunkTransportCost();

 91

 txtCostFromHomeToDest.setText(Double.toString(homeToDestCost));

 txtTotalJourneyCost.setText(Double.toString(aPackage.getTotalJourneyCostToDestination()));
 initializeDestDCCombo(aPackage.getCurrentHomeDCId(),
aPackage.getDestinationDCId()) ;
 depictJourney();
 }

 private void depictJourney() {
 test.setText("");
 if (packagesList.getSelectedIndex() < 0) {
 return;
 }
 Package aPackage = (Package)packagesList.getSelectedValue();
 Journey journey = aPackage.getJourney();
 ListIterator soFarIt = journey.getJourneySoFar().listIterator();;
 ListIterator roadAheadIt = journey.getTheRoadAhead().listIterator();

 test.append("So Far = ");

 while(soFarIt.hasNext()) {
 String dc = (String)soFarIt.next();
 test.append(dc + " -> ");
 }
 test.replaceRange("", test.getText().length() - 3, test.getText().length());

 test.append("\nRoad Ahead = ");
 while(roadAheadIt.hasNext()) {
 String dc = (String)roadAheadIt.next();
 test.append(dc + " -> ");
 }
 test.replaceRange("", test.getText().length() - 3, test.getText().length());
 }

 private void destinationChanged() {
 Package aPackage = (Package)packagesList.getSelectedValue();
 aPackage.destinationChanged((String)cmbDestDCId.getSelectedItem());
 packageSelected();
 }

 private void hop() {
 if (packagesList.getSelectedIndex() < 0) {
 JOptionPane.showMessageDialog(this,
 "Please select a package
before hopping it.",
 "Please Select",

 JOptionPane.INFORMATION_MESSAGE);
 return;
 }
 if
(txtCurrentHomeDCId.getText().equalsIgnoreCase((String)cmbDestDCId.getSelectedItem())) {
 JOptionPane.showMessageDialog(this,
 "This package has already
reached the Desination.",

 92

 "Destination Already
Reached",

 JOptionPane.INFORMATION_MESSAGE);
 }
 ((Package)packagesList.getSelectedValue()).hop();
 packageSelected();
 }

 private void clearAllFields() {
 txtPackageId.setText("");
 txtContentId.setText("");
 txtContentDesc.setText("");
 txtOriginDCId.setText("");
 txtCurrentHomeDCId.setText("");
 txtSunkTransportCost.setText("");
 txtCostFromHomeToDest.setText("");
 txtTotalJourneyCost.setText("");
 initializeDestDCCombo(null, null);
 test.setText("");
 }

 private void refreshPackagesList() {
 Vector allPackages = PackageFactory.getInstance().getAllPackages();
 packagesList.setListData(allPackages);
 packagesList.setSelectedIndex(-1);
 clearAllFields();
 packageSelected();
 }
}

 93

Java Program 14: PathVector.java

import java.util.*;

public class PathVector {
 private String ownerDCId;
 private String destDCId;
 private Double cost;
 private Vector route;

 // Ctor
 public PathVector(String ownerDCId,
 String destDCId,
 Double cost,
 Vector route) {
 this.ownerDCId = ownerDCId;
 this.destDCId = destDCId;
 this.cost = cost;
 this.route = route;
 }
 public String getOwnerDCId() {
 return ownerDCId;
 }
 public String getDestDCId() {
 return destDCId;
 }
 public Double getCost() {
 return cost;
 }
 public void setCost(Double cost) {
 this.cost = cost;
 }
 public Vector getRoute() {
 route.trimToSize();
 return route;
 }
 public void setRoute(Vector route) {
 this.route = route;
 }
 public String toString() {
 return ("[O - " + ownerDCId +
 ", D - " + destDCId +
 ", C - " + cost +
 ". R - " + route.toString());
 }
}

 94

Java Program 15: Route.java

/**
 * This class encapsulates a valid Route of the system
 */
public class Route implements Cloneable {
 private String aDCId;
 private String anotherDCId;
 private double cost;

 public void setADCId(String aDCId) {
 this.aDCId = aDCId;
 }
 public String getADCId() {
 return aDCId;
 }
 public void setAnotherDCId(String anotherDCId) {
 this.anotherDCId = anotherDCId;
 }
 public String getAnotherDCId() {
 return anotherDCId;
 }
 public void setCost(double cost) {
 this.cost = cost;
 }
 public double getCost() {
 return cost;
 }
 /**
 * Returns the DC id of another end of the route.
 * given one end of the route
 */
 public String getTheOtherDCId(String dcId) {
 if (dcId.equalsIgnoreCase(aDCId)) {
 return anotherDCId;
 }
 if (dcId.equalsIgnoreCase(anotherDCId)) {
 return aDCId;
 }
 return null;
 }
 // Override Object method toStirng
 public String toString() {
 return aDCId + "->" + anotherDCId + "(" + cost + ")";
 }
} // end of class Route

 95

Java Program 16: RouteFactory.java

import java.io.*;
import java.util.*;

/**
 * This class is a Route Factory, used to create
 * and initialize Routes. Also acts as a registry of
 * Routes
 */
public class RouteFactory {
 public static String ROUTE_FILE_NAME="E:\\Thesis\\Stable\\AllRoutes.txt";

 // private static members
 private static RouteFactory thisInstance;

 // private members
 private Vector allRoutes;

 // Constructor
 private RouteFactory() {
 allRoutes = new Vector();
 initialize();
 thisInstance = this;
 }

 private void initialize() {
 initializeAllRoutes();
 }

 public static void createInstance() {
 if (thisInstance == null) {
 Log.log("RouteFactory's factory instance is null. So creating new instance.",
Log.FULL);
 new RouteFactory();
 }
 }

 // Override Object.finalize
 protected void finalize() throws Throwable {
 Log.log("RouteFactory::finalize. Setting theInstance to null", Log.FULL);
 thisInstance = null;
 }

 // Get the Factory Instance.
 public static RouteFactory getInstance() {
 createInstance();
 return thisInstance;
 } // end getInstance

 public int getNumberOfRoutes() {
 return allRoutes.size();
 }

 private boolean initializeAllRoutes() {
 try {

 96

 File inpFile = new File(ROUTE_FILE_NAME);
 LineNumberReader lir = new LineNumberReader(new FileReader(inpFile));
 while(lir.ready()) {
 String line = lir.readLine();
 StringTokenizer st = new StringTokenizer(line, "|");
 Route r = new Route();
 r.setADCId(st.nextToken());
 r.setAnotherDCId(st.nextToken());
 r.setCost(Float.parseFloat(st.nextToken()));
 if (! doesRouteAlreadyExist(r)) {
 Log.log(lir.getLineNumber() + " : Adding route from " +
r.getADCId() +
 " to " + r.getAnotherDCId() + " with cost " +
r.getCost() + ".", Log.FULL);
 allRoutes.add(r);
 }
 }
 lir.close();
 } catch (IOException ioe) {
 Log.log("IO Error", Log.MIN);
 ioe.printStackTrace();
 System.exit(-1);
 }
 Log.log("Initialized " + allRoutes.size() + " routes.", Log.MIN);
 allRoutes.trimToSize();
 return true;
 }

 private boolean doesRouteAlreadyExist(Route r) {
 Route existingRoute = getRouteBetween(r.getADCId(), r.getAnotherDCId());
 if (existingRoute != null) {
 return true;
 } else {
 return false;
 }
 }

 public Route getRouteBetween(String dc1Id, String dc2Id) {
 for (int i = 0; i < allRoutes.size(); i++) {
 Route r = (Route)allRoutes.elementAt(i);
 if (r.getADCId().equalsIgnoreCase(dc1Id) &&
 r.getAnotherDCId().equalsIgnoreCase(dc2Id)) {
 return r;
 }
 if (r.getAnotherDCId().equalsIgnoreCase(dc1Id) &&
 r.getADCId().equalsIgnoreCase(dc2Id)) {
 return r;
 }
 }
 return null;
 }

 public void costChanged(Route aRoute, double newCost) {
 Log.log("Changing route cost from " + aRoute.getADCId() +
 " to " + aRoute.getAnotherDCId() + " from " + aRoute.getCost() + " to
" + newCost + ".", Log.MIN);

 97

 boolean costIncreased = false;
 if (aRoute.getCost() < newCost) {
 costIncreased = true;
 }
 aRoute.setCost(newCost);

 DCFactory.getInstance().routeCostChanged();

 // Wait for some time before asking the Packages to
 // recalculate their journey.. to allow for the
 // propogation to take place..
 try {
 Thread.sleep(10 * 1000);
 } catch (Exception e) {}

 PackageFactory.getInstance().routeCostChanged();
 }

}

 98

Java Program 17: RoutePanel.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

/**
 * This class presents an UI to monitor / manipulate Routes,
 * and their costs.
 */
public class RoutePanel extends JPanel {
 // Private members
 private JComboBox cmbOriginDC;
 private JList lstDestDC;
 private JTextField txtCost;
 private JButton cmdChangeCost;
 private Route selectedRoute;

 private JTextField rDep;

 public RoutePanel() {
 selectedRoute = null;
 addComponents();
 originDCSelected();
 }

 private void addComponents() {
 Vector allDCIds = DCFactory.getInstance().getAllDCIds();
 cmbOriginDC = new JComboBox(allDCIds);
 cmbOriginDC.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 originDCSelected();
 }});
 cmbOriginDC.setBorder(BorderFactory.createTitledBorder("Start"));
 add(cmbOriginDC);

 lstDestDC = new JList();
 lstDestDC.setPrototypeCellValue("DC23 ");
 lstDestDC.setVisibleRowCount(10);
 lstDestDC.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 lstDestDC.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent me) {
 destDCSelected();
 }});
 JScrollPane sPane = new JScrollPane(lstDestDC);
 sPane.setBorder(BorderFactory.createTitledBorder("End"));
 add(sPane);

 rDep = new JTextField(20);
 rDep.setEditable(false);
 add(rDep);

 add(new JLabel("Cost between selected start and end DCs : "));
 txtCost = new JTextField(8);
 add(txtCost);

 99

 cmdChangeCost = new JButton("Change Cost");
 cmdChangeCost.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 costChanged();
 }});
 add(cmdChangeCost);
 }

 private void originDCSelected() {
 Vector neighbours = DCFactory.getInstance().getNeighboursForDC(
 (String)cmbOriginDC.getSelectedItem());
 lstDestDC.setListData(neighbours);
 }

 private void destDCSelected() {
 rDep.setText("");
 txtCost.setText("");
 selectedRoute = null;
 selectedRoute =
RouteFactory.getInstance().getRouteBetween((String)cmbOriginDC.getSelectedItem(),
 (String)lstDestDC.getSelectedValue());
 if (selectedRoute != null) {
 txtCost.setText(String.valueOf(selectedRoute.getCost()));
 rDep.setText(selectedRoute.toString());
 }
 }

 private void costChanged() {
 double cost;
 try {
 cost = Double.parseDouble(txtCost.getText());
 } catch (NumberFormatException nfe) {
 JOptionPane.showMessageDialog(this,
 "Cost is
not a valid number.",
 "Data
error.",

 JOptionPane.ERROR_MESSAGE);
 return;
 }
 JDialog plWait = pleaseWait(this, "Updating Cost. Please wait..");
 plWait.show();
 RouteFactory.getInstance().costChanged(selectedRoute, cost);
 destDCSelected();
 plWait.dispose();
 JOptionPane.showMessageDialog(this,
 "Cost changed.",
 "Cost Change.",

 JOptionPane.INFORMATION_MESSAGE);
 }

 private JDialog pleaseWait(Component parent, String message) {

 100

 JOptionPane wait = new JOptionPane(message,
JOptionPane.INFORMATION_MESSAGE);
 JDialog dialog = wait.createDialog(parent, message);
 dialog.setModal(false);
 return dialog;
 }
}

 101

Java Program 18: RoutingManager.java

package edu.ncsu.ie.gt.ksg;

import java.util.Vector;
/**
 * Runs in a separate thread and propogates the
 * routing table of all DCs.
 *
 * Can be made to speed up its schedule, if desired.
 * This feature is used when a cost is changed.
 *
 */
public class RoutingManager implements Runnable {
 // private static members
 /**
 * normal interval in seconds between successive
 * propogations of routing tables.
 * suggested value = 30
 */
 private static int NORMAL_INTERVAL = 10;
 /**
 * speed interval in seconds between successive
 * propogations of routing tables.
 * suggested value = 0
 */
 private static int SPEED_INTERVAL = 0;
 /**
 * to count propogations.. used for debugging
 */
 private static int PROP_COUNT = 0;
 /**
 * the number of propogations needed initially to
 * stabilize the routing tables.
 * It is 2 * E, where E is the number of edges (routes)
 *
 */
 private static int INIT_PROP = 2 * RouteFactory.getInstance().getNumberOfRoutes();
 /**
 * if true, normal interval is used between successive
 * propogations, else speed interval is used.
 */
 private boolean normalRun = true;
 /**
 * whether to force cost increases or not.
 */
 private boolean force;

 //private members
 private DC dc;

 // Ctor
 public RoutingManager(DC dc) {
 this.dc = dc;
 this.force = false;

 102

 // start with a speed run, till initial propogation is done,
 // and then continue with normal propogation
 setNormalRun(false);
 }

 public void costChanged(boolean force) {
 setNormalRun(false);
 setForce(force);
 }

 private synchronized void setNormalRun(boolean normal) {
 normalRun = normal;
 }

 private synchronized boolean isNormalRun() {
 return normalRun;
 }

 private synchronized void setForce(boolean force) {
 this.force = force;
 }

 private synchronized boolean isForce() {
 return force;
 }

 private synchronized void incrementPropCount() {
 PROP_COUNT++;
 }

 private synchronized int getPropCount() {
 return PROP_COUNT;
 }

 private int getInitialPropogationCount() {
 return INIT_PROP;
 }

 public void run() {
 while(true) {
 Log.log("Propogating Path Vector for " + dc.getId() + ".", Log.FULL);
 try {
 dc.propogatePV(isForce());
 incrementPropCount();
 if (isNormalRun()) {
 Thread.sleep(NORMAL_INTERVAL * 1000);
 } else {
 Thread.sleep(SPEED_INTERVAL * 1000);
 if (getPropCount() >= getInitialPropogationCount()) {
 // If initial propogation is done, then stop speed run
 // and do normal run
 setNormalRun(true);
 }
 }
 } catch (Exception e) {

 103

 System.err.println("Exception e : " + e.getMessage());
 System.err.println("Exiting with error");
 System.exit(-1);
 }
 }
 }
}

 104

Java Program 19: RoutingMonitor.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class RoutingMonitor extends JPanel implements Runnable {
 public void run() {
 }
}

 105

Java Program 20: RoutingTable.java

import java.util.*;

public class RoutingTable {
 // static members
 public static final Double INFINITY = new Double(2000);
 public static final Double ZERO = new Double(0);

 // private members
 private String ownerDCId;
 private Hashtable pathVectorsTable;

 // Ctor
 public RoutingTable(String ownerDCId, Hashtable costToNeighbours) {
 Log.log("Routing table ctor : " + ownerDCId + " - " + costToNeighbours.toString(),
Log.FULL);
 this.ownerDCId = ownerDCId;
 this.pathVectorsTable = new Hashtable();

 initializePathVectorsTable(costToNeighbours);

 }

 private void initializePathVectorsTable(Hashtable costToNeighbours) {
 Vector allDCIds = DCFactory.getInstance().getAllDCIds();
 for (int i=0; i < allDCIds.size(); i++) {
 String aDCId = (String)allDCIds.elementAt(i);
 Double cost = INFINITY;
 Vector route = new Vector();

 if (costToNeighbours.containsKey(aDCId)) {
 cost = (Double)costToNeighbours.get(aDCId);
 route.add(aDCId);
 }
 if (aDCId.equalsIgnoreCase(ownerDCId)) {
 cost = ZERO;
 }
 PathVector pv = new PathVector(ownerDCId, aDCId, cost, route);
 Log.log("INIT :For owner " + ownerDCId + ", putting pvt for dest " + aDCId +
" as", Log.FULL);
 Log.log(pv.toString(), Log.FULL);
 pathVectorsTable.put(aDCId, pv);

 }
 }

 private void reinitializePathVectorsTable(Hashtable newCostToNeighbours) {
 initializePathVectorsTable(newCostToNeighbours);
 }

 public Hashtable getPathVectorsTable() {
 return pathVectorsTable;
 }

 public PathVector getPathVectorForDestination(String destDCId) {

 106

 return (PathVector)pathVectorsTable.get(destDCId);
 }

 public void updatePathVector(String fromDCId, Hashtable newPVT, boolean force) {
 Double costToNeighbour = getCostToNeighbouringDC(fromDCId);
 Enumeration destDCIds = newPVT.keys();
 while (destDCIds.hasMoreElements()) {
 String destDCId = (String)destDCIds.nextElement();
 if (destDCId.equalsIgnoreCase(ownerDCId)) {
 // for this the cost would have been already set either by
 // initialiazation
 continue;
 }
 PathVector neighbourPV = (PathVector)newPVT.get(destDCId);
 PathVector thisPV = getPathVectorForDestination(destDCId);
 double newCost = neighbourPV.getCost().doubleValue() +
costToNeighbour.doubleValue();
 Log.log("PROP :For owner " + ownerDCId + ", from neighbour " + fromDCId
+
 ", putting pvt for dest " + destDCId + " as",
Log.FULL);
 if (! isThisDCInNeighboursRouteToDestination(ownerDCId, neighbourPV)) {
 Log.log("OC - " + thisPV.getCost().doubleValue() + ", NC - " +
 newCost + ", force - " + force, Log.FULL);
 if (newCost < thisPV.getCost().doubleValue()) {

 Log.log("\tFor dest DC " + destDCId, Log.FULL);
 Log.log("\t..changing cost from " +
 thisPV.getCost().doubleValue() + "
to " + newCost, Log.FULL);

 thisPV.setCost(new Double(newCost));
 Vector routeToNeighbour =
((PathVector)pathVectorsTable.get(fromDCId)).getRoute();
 Vector neighboursRoute = neighbourPV.getRoute();
 Vector newRoute = new Vector();
 newRoute.addAll(routeToNeighbour);
 newRoute.addAll(neighboursRoute);

 Log.log("\t..changing route from " +
thisPV.getRoute().toString() +
 " to " + newRoute.toString(), Log.FULL);

 thisPV.setRoute(newRoute);
 }
 }
 Log.log(thisPV.toString(), Log.FULL);
 pathVectorsTable.put(destDCId, thisPV);
 }
 }

 public Double getCostToDC(String dcId) {
 PathVector pv = (PathVector)pathVectorsTable.get(dcId);
 return pv.getCost();
 }

 107

 public Hashtable getCostToNeighbours() {
 Vector neighbours = DCFactory.getInstance().getNeighboursForDC(ownerDCId);
 Hashtable costToNeighbours = new Hashtable();
 for (int i = 0; i < neighbours.size(); i++) {
 String neighboursDCId = (String)neighbours.elementAt(i);
 costToNeighbours.put(neighboursDCId,
getCostToNeighbouringDC(neighboursDCId));
 }
 return costToNeighbours;
 }

 public Double getCostToNeighbouringDC(String neighbourDCId) {
 // Later .. throw an exception if neighbourDCId is not really a neighbour
 return getCostToDC(neighbourDCId);
 }

 //public void setCostToNeighbouringDC(String neighbourDCId, Double newCost) {
 // // Later .. throw an exception if neighbourDCId is not really a neighbour
 // PathVector pv = (PathVector)pathVectorsTable.get(neighbourDCId);
 // pv.setCost(newCost);
 // pathVectorsTable.put(neighbourDCId, pv);
 //}

 public void reinitialize(Hashtable newCostToNeighbours) {
 reinitializePathVectorsTable(newCostToNeighbours);
 }

 private boolean isThisDCInNeighboursRouteToDestination(String ownerDCId,

 PathVector neighboursPV) {
 Vector tRoute = neighboursPV.getRoute();
 Log.log("In neighbour " + neighboursPV.getOwnerDCId() + "'s route to dest, owner DC
"
 + ownerDCId + " is " +
 ((tRoute.contains(ownerDCId))?" present.":" not present"),
 Log.FULL);
 return tRoute.contains(ownerDCId);
 }

 /**
 * Used mainly for reporting purposes in this Version
 */
 public Hashtable getCostToAllDCs() {
 Hashtable rTable = new Hashtable();
 Enumeration dcs = pathVectorsTable.keys();
 while(dcs.hasMoreElements()) {
 String dc = (String)dcs.nextElement();
 rTable.put(dc, getCostToDC(dc));
 }
 return rTable;
 }

 /**
 * For journey determination..
 */

 108

 public String getNextHopToDC(String destDCId) {
 PathVector pv = (PathVector)pathVectorsTable.get(destDCId);
 Vector route = pv.getRoute();
 if (route.size() > 0) {
 // The first element is the next hop of the route.
 Log.log("At DC " + ownerDCId + ", getting next hop to DC " +
 destDCId + " as .. " + (String)route.elementAt(0), Log.FULL);
 return (String)route.elementAt(0);
 } else {
 Log.log("At DC " + ownerDCId + ", next hop to DC " + destDCId + " is not yet
defined.", Log.FULL);
 return "";
 }
 }

 // Backward compatibility - Warning ! dont use this method
 public Hashtable getNextHopToAllDCs() {
 return new Hashtable();
 }
}

 109

APPENDIX B

INPUT DATA FILE 1: AllRoutes.txt

DC1|DC2|1
DC1|DC6|2
DC1|DC10|3
DC2|DC1|1
DC2|DC9|4
DC2|DC11|5
DC2|DC29|6
DC3|DC4|7
DC4|DC3|7
DC4|DC5|8
DC4|DC7|9
DC5|DC4|8
DC5|DC6|10
DC5|DC8|11
DC6|DC1|2
DC6|DC5|10
DC7|DC4|9
DC7|DC8|12
DC7|DC24|13
DC7|DC25|14
DC8|DC5|11
DC8|DC7|12
DC8|DC9|15
DC8|DC10|16
DC9|DC2|4
DC9|DC8|15
DC9|DC10|17
DC9|DC11|18
DC9|DC25|19
DC9|DC26|20
DC10|DC1|3
DC10|DC8|16
DC10|DC9|17
DC11|DC2|5
DC11|DC9|18
DC11|DC28|21
DC11|DC29|22
DC12|DC13|23
DC12|DC14|24
DC12|DC28|25
DC12|DC36|26
DC13|DC12|23

 110

DC13|DC14|27
DC14|DC12|24
DC14|DC13|27
DC14|DC29|28
DC15|DC16|29
DC15|DC31|30
DC16|DC15|29
DC16|DC31|31
DC17|DC22|32
DC17|DC23|33
DC17|DC30|34
DC18|DC19|35
DC18|DC20|36
DC18|DC22|37
DC18|DC35|38
DC19|DC18|35
DC19|DC20|39
DC19|DC21|40
DC19|DC35|41
DC20|DC18|36
DC20|DC19|39
DC20|DC25|42
DC20|DC26|43
DC21|DC19|40
DC21|DC26|44
DC21|DC27|45
DC22|DC17|32
DC22|DC18|37
DC22|DC30|46
DC23|DC17|33
DC23|DC24|47
DC23|DC25|48
DC24|DC7|13
DC24|DC23|47
DC24|DC25|49
DC25|DC7|47
DC25|DC9|19
DC25|DC20|42
DC25|DC23|48
DC25|DC24|49
DC25|DC26|50
DC26|DC9|20
DC26|DC20|43
DC26|DC21|44
DC26|DC25|50
DC27|DC21|45

 111

DC27|DC28|51
DC27|DC35|52
DC28|DC11|21
DC28|DC12|25
DC28|DC27|51
DC28|DC29|53
DC29|DC2|6
DC29|DC11|22
DC29|DC14|28
DC29|DC28|53
DC30|DC17|34
DC30|DC22|46
DC30|DC31|54
DC30|DC33|55
DC30|DC34|56
DC31|DC15|30
DC31|DC16|31
DC31|DC30|54
DC31|DC32|57
DC32|DC31|57
DC32|DC33|58
DC33|DC30|55
DC33|DC32|58
DC33|DC35|59
DC33|DC36|60
DC34|DC30|56
DC35|DC18|38
DC35|DC19|41
DC35|DC27|52
DC35|DC33|59
DC35|DC36|61
DC36|DC12|26
DC36|DC33|60
DC36|DC35|61

 112

INPUT DATA FILE 2: AllNeighbours.txt

DC1|DC2|DC6|DC10|
DC2|DC1|DC9|DC11|DC29|
DC3|DC4|
DC4|DC3|DC5|DC7|
DC5|DC4|DC6|DC8|
DC6|DC1|DC5|
DC7|DC4|DC8|DC24|DC25|
DC8|DC5|DC7|DC9|DC10|
DC9|DC2|DC8|DC10|DC11|DC25|DC26|
DC10|DC1|DC8|DC9|
DC11|DC2|DC9|DC28|DC29|
DC12|DC13|DC14|DC28|DC36|
DC13|DC12|DC14|
DC14|DC12|DC13|DC29|
DC15|DC16|DC31|
DC16|DC15|DC31|
DC17|DC22|DC23|DC30|
DC18|DC19|DC20|DC22|DC35|
DC19|DC18|DC20|DC21|DC35|
DC20|DC18|DC19|DC25|DC26|
DC21|DC19|DC26|DC27|
DC22|DC17|DC18|DC30|
DC23|DC17|DC24|DC25|
DC24|DC7|DC23|DC25|
DC25|DC7|DC9|DC20|DC23|DC24|DC26|
DC26|DC9|DC20|DC21|DC25|
DC27|DC21|DC28|DC35|
DC28|DC11|DC12|DC27|DC29|
DC29|DC2|DC11|DC14|DC28|
DC30|DC17|DC22|DC31|DC33|DC34|
DC31|DC15|DC16|DC30|DC32|
DC32|DC31|DC33|
DC33|DC30|DC32|DC35|DC36|
DC34|DC30|
DC35|DC18|DC19|DC27|DC33|DC36|
DC36|DC12|DC33|DC35|

 113

APPENDIX C:

C.1 Package Creation – UML Sequence Diagram

 114

Appendix C.2: Package Hop – UML Sequence Diagram

Appendix C.3: Destination Change – UML Sequence Diagram

 115

Appendix C.4: Route Cost Change – UML Sequence Diagram

 116

REFERENCES:

[1] Dawe, R.L., “The evolving role of the total service provider in the e-business

era”. (http://www.clm1.org/research/2001/EBusinessCS.pdf)

[2] Steward S., Callaghan J., and Rea T.: ‘The eCommerce revolution’, BT

Technology, 17, No 3, pp 124 - 132 (July 1999).

[3] Owen, M.J., and Nunez-Suarez, J.: ‘Agent based solutions for eCommerce’,

British Telecommunications Eng J, 17, No 4, pp 237—244 (1999)

[4] Kay, M.G., Parlikad, A.N., “Material Flow Analysis of Public Logistics

Networks,” Proc. International Material Handling Research Colloquium, Portland,

ME, June 1-5, 2002.

[5] “The Impact of technology on outsourced logistics” White paper, Yantra

Corporation.

[6] Hammant, J., “Information Technology Trends in Logistics,” Logistics

Information Management, Vol 8, No 6, 1996, pp 32–37.

[7] DTD Tutorial (http://www.w3schools.com/dtd/)

[8] Parlikad, A.N., “Performance Analysis of Intelligent Supply Chain Networks,”

Master’s Thesis, Dept. of Industrial Engineering, North Carolina State University,

Raleigh, NC, 2002.

[9] Kay, Michael G., “Requirements for package routing in public logistics

networks,” Tech. Report, Department of Industrial Engineering, North Carolina

State University, Raleigh, NC, 2002.

[10] Keshav, S., An Engineering Approach to Computer Networking, Addison Wesley

Professional, 1997 (ISBN 0-201-63442-2), Chapter 11: Routing

[11] Kay, M.G., Wilson, J.R., and Seifert, R.W., “Evaluation of AGV Routing

Strategies Using Hierarchical Simulation,” (ncsu.edu/pub/eos/pub/jwils

IJPRV25PS)

[12] Bradshaw, J., “Introduction to Software Agents,” Software Agents, AAAI

Press/The MIT Press, 1997.

 117

[13] Grossner C., Preece, A., Radhakrishan, T., and Newborn, M., (1995) “Sharing

Data in multi-agent systems”. (http://www.cs.concordia.ca/~staffcs/cliff/ dai/dai-

list.html.)

[14] Glossary of Shipping Terms

(http://www.marad.dot.gov/publications/glossary/T.html).

[15] Swarm Development Group, www.swarm.org

[16] BT Intelligent Agent Research (http://www.labs.bt.com/projects/agents/zeus/).

[17] Java Technology & Web Services

 (http://java.sun.com/webservices/)

[18] Jim Youll, Joan Morris, Raffi Krikorian, and Pattie Maes, “MIT Media Lab”

Impulse: Location-based Agent Assistance (agents.www.media.mit.edu/groups/

agents/projects/impulse/)

[19] XML Tutorial (http://www.w3schools.com/xml/)

[20] Simple Object Access Protocol (SOAP) 1.1

 (http://www.w3.org/TR/SOAP/#_Toc478383486)

[21] Web Services and UDDI (http://www-3.ibm.com/services/uddi/)

[22] UML Resource Center (http://www.rational.com/uml/index.jsp)

[23] Torsten Heverhagen, Rudolf Tracht, “Negotiation Scenarios between

Autonomous Robot Cells in Manufacturing Automation: A Case Study”

(http://www.rational.com/media/products/rose/ssd.pdf)

