
Abstract

SRIDHARAN, SAVITHA. Fair Queueing Algorithms for QoS Support in Packet

Switched Networks. (Under the direction of Dr. Yannis Viniotis, in association with

Agere Systems.)

The rapid growth of telecommunications has led to a demand for convergence of

voice, video and data integration over traditional data networks. This has strained the

current packet-switched networks which are not very well-suited for voice and video

applications. Quality-of-service-aware, high-speed packet switches are being designed

to alleviate the problems in traditional networks. The key motivation of this thesis

was to analyze scheduling algorithms in order to guarantee Quality of Service for

high-speed packet networks, particularly for voice applications.

A behavioral model of the Agere Network Processor’s scheduler, Sched-650 was

implemented in C. Using this simulator, various options to modify scheduling algo-

rithms and understand their implementation issues were analyzed. The results were

then used to modify Agere’s Java-based simulator. The Active List scheduling al-

gorithm was modified with different scheduling policies to understand its effect on

bandwidth sharing and jitter of different traffic flows. The fairness of a scheduling

algorithm was determined based on the bandwidth allocated to all the competing

flows. Experiments were also conducted to study the impact of varying packet size

and number of flows for the different scheduling algorithms.
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Chapter 1

Introduction

1.1 Motivation

Recent trends in telecommunication, computing and entertainment along with

faster networks have led to a demand for technology convergence. The idea of inte-

grating voice, data and video over a single network, which is easily accessible for a

large number of users is gaining popularity. These integrated networks help simplify

consumer needs as well as reduce maintenance and support costs for their operator

companies. Traditional circuit-switched networks are not suitable for these applica-

tions and have led to the development of Packet Switched Networks or PSN.

Telephone systems and virtually all data communication networks mostly used

circuit-switched networks during the late 1960s. Circuit-switched networks preallocate

transmission bandwidth for an entire call or session, hence guaranteeing capacity

for the user. Though dedicating resources to facilitate a single call ensures quality

of service (QoS), it is a costly proposition, because the resources are not utilized

completely during the duration of the call or session. In the beginning of the 1970s, a

competing approach of dynamic allocation of bandwidth was introduced in building

communication networks, now popularly called as packet switched networks.

Packet Switched Networks (PSN) break the triple-play (voice, video and data)

information to be communicated into smaller blocks, append each block with control

information and a destination address to form packets. These packets are then trans-
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mitted through network nodes until they reach the destination, taking (hopefully)

the most expedient route. The receiver uses the destination address in the packet

to identify its blocks and reassemble the blocks into the original information. Thus

PSNs are able to share network resources, and provide a cost-effective, flexible and

reliable technology. However, it is not always possible to guarantee bandwidth in a

packet switched network. Due to the stochastic nature of packet queuing in network

nodes, delay varies from packet to packet based on the network traffic load. Even

under lightly-loaded network conditions, delays are typically larger than in the circuit

switched networks.

Packet switched networks are good candidates for a converged network. Trans-

mitting voice and constant bit-rate (CBR) traffic on a packet-switched network is

challenging because of the long transmission delay and delay variations associated

with these networks. In order to alleviate these problems, Quality of Service-aware,

high-speed packet switched networks are being designed to reduce end-to-end trans-

mission delays. Analysis and design of scheduling algorithms to guarantee QoS in

high-speed packet networks is the key motivation of this thesis.

1.2 Outline of Thesis

The thesis concentrates on packet scheduling algorithms employed for QoS guar-

antees in multi-service packet networks. In Chapter 2, we discuss the background

work in this area. In Chapter 3, we cover the range of packet networks this thesis

focuses on, followed by defining the metrics to characterize the performance of an al-

gorithm and the suitability of an algorithm for QoS support. In Chapter 4, we briefly

cover GPS, the ideal scheme proposed for the design of a fair packet scheduler, with

emphasis on their support to guarantee QoS for packet traffic. Research conducted

on Earliest Deadline First scheduling is also covered in this section. In Chapter 5,

we present the simulation study of the scheduling algorithms for Constant Bit Rate

traffic on a behavioral C model of Agere’s APP650 scheduler, Sched-650, followed

by the study on their SDE. Chapter 6 concludes with a discussion on the simulation

results and scope for future work.
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Chapter 2

Fair Packet Scheduling

2.1 Introduction

Packet Switching is a method in which data is divided into units called packets

before being transmitted to the destination. The packets can arrive at the destination

through completely different routes. The networks which use this method to transfer

data are known as Packet Switched Networks [1]. The other kind of networks are

circuit-switched networks, where a physical connection is present between the source

and destination when transmitting data.

Packet Switched Networks has proved to be good candidates for network conver-

gence, that is integrating voice, video and data applications. This is because as long

as the packets adhere to the network protocol the underlying data can be of different

types. Many different kinds of networks inter-operate to support many different kinds

of services ranging from real-time voice and video applications like voice-over-IP and

videoconferencing, streaming video, interactive applications like web browsing and

gaming, and background applications like remote access applications, file transfer

and e-mail.

As user demands and bandwidth grow, there is a need to control the available

resources and distribute them among all these users. This, however, is challenging in

packet switched networks, as it is harder to estimate the peak bandwidth utilization.

In traditional circuit switched networks, the participating flows (or users) would
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be aware of their peak bandwidth utilization during the connection setup phase. A

new flow requesting connection may be admitted into the network until the sum of

the maximum bandwidth requirements of the already connected flow is less than the

link capacity under consideration. Consider a node in a network that can support a

total bandwidth, Ctotal. Let us consider the case of a new flow k requesting this node

a bandwidth of Ck at an instant when the node is already supporting n connections,

each utilizing C1, C2,..., Cn. Flow k will be allowed to share the resources of this

node only if,

Ck ≤ Ctotal −
n∑

j=1

Cj (2.1)

Dedicating resources to facilitate a selected number of users is a costly proposi-

tion, because the resources are not utilized completely during the duration of the

connection. In the case of a packet switched network, a technique called dynamic

allocation of resources for flows is used. The common dynamic resource allocation

approaches include statistical multiplexing and packet scheduling algorithms. Statis-

tical multiplexing is one of the most common techniques in network system design

primarily because of simplicity of design and implementation.

In statistical multiplexing, utilization of link capacity is done by allocating the

average bandwidth requirements for each flow instead of the peak bandwidth. This

allows a greater number of flows to simultaneously share a link and increase the effi-

ciency of network resource utilization. In most cases, statistical multiplexers [2] work

efficiently. However, performance degrades when packets are lost due to queue over-

flow, when all competing flows transmit bursty traffic at the same time. Users may

utilize bandwidth greater than their reserved (i.e., average) bandwidth requirements,

resulting in congestion issues. In order to avoid congestion problems, networking

devices must be designed with more sophisticated mechanisms to control the distri-

bution of available bandwidth to different connections. Packet scheduling algorithms

are algorithms used to achieve this.
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2.1.1 Packet Scheduling Algorithms

One of the mechanisms employed to control the resources allocated to packets

from different connections by deciding which packet is to be transmitted next on the

output link is called a packet scheduling algorithm. A packet scheduler forms a small

but a very critical part of network system design. The efficiency and fairness (Refer to

section 3.4) achieved by a scheduling algorithm is dependent on a number of factors

such as number of queues that are serviced by the algorithm, bandwidth required by

each flow, arrival pattern of traffic in each of the flows, length of the queues to hold

these flows and size of packets arriving into the queues.

Packet scheduling algorithms may be implemented in hardware or in software.

The scheduling algorithm must also take into consideration the kind of traffic that

it must handle, ranging from small fixed-size packets like ATM cells carrying real-

time voice to large variable-size packets like Jumbo Ethernet frames carrying best-

effort data. Therefore, the scheduling algorithms must be designed in such a way

that they can satisfy both the strict performance needs of real-time applications like

voice and video, as well as the fair network resource sharing needed for best-effort

traffic. Meeting these multiple restrictions makes design of a scheduling algorithm a

challenging task. These algorithms are further constrained by the underlying packet

switch architectures and buffering mechanisms.

2.1.2 Packet Switch Architectures

Packet switches are designed to serve two main functions:

1. Routing: When a packet arrives at the input port, the packet switch must

take a decision about its next hop towards its destination. Once the decision is

made, the packet is routed to the appropriate output port.

2. Buffering: Output port contentions are resolved by buffering. An arbitrator

decodes when a waiting packet must leave the switch towards its next hop.

The scheduling algorithm, as discussed in Section 2.1.1, is implemented in this

arbitrator to assure that packet switches meet the performance requirements
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of their applications. The performance criteria may vary from application to

application, ranging from the highest possible utilization of the expensive re-

sources, the lowest possible latency, fair allocation of resources to competing

users (QoS guarantees) or combinations of these.

The basic architectural components of a packet switch, keeping these functions in

mind, have been captured in Figure 2.1.

Figure 2.1: Basic Architectural Components of a Packet Switch

1. Forwarding Engine and Policer: The implementation of this component in

switches depends on the function of the switch. The forwarding engine is also

commonly referred to as the classifier. For example, let us consider a Ethernet

Layer 2 Switch. When a packet arrives, its destination MAC address is looked

up in a forwarding table. If the address is found, the packet is sent to an

appropriate output port after updating its next-hop MAC address. The switch

can also be programmed to discard corrupted or non-conforming packets.

Some designs also implement traffic policing in this block, i.e., the output rate

is controlled by marking or dropping those non-conforming packets when the
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traffic rate exceeds the configured maximum output rate (peak). In most cases,

the policing block does not contain buffers and hence avoids delays due to

queuing. However, bursty traffic is propagated through this block, and hence

does not help in smoothening the traffic flow.

2. Input buffers: This may be a single FIFO or multiple FIFOs per input port

in an input-buffered switch. Multiple FIFOs are used to eliminate head-of-line

blocking, discussed a little later in this section. A scheduler may be needed to

arbitrate packets from multiple queues [3].

3. Switch Fabric: This is also commonly referred to as backplane. The common

fabric types include shared memory, bus, crossbar, ring structure and multistage

networks. The packets may be buffered while the packet waits its turn to be

transferred across the backplane.

4. Output buffers and scheduler: Packets may be buffered as they wait for

their turn to be transmitted out of the output port. Schedulers can have sim-

ple algorithms like First-Come, First-Serve or more complex algorithms like

Weighted Round Robin or Weighted Fair Queuing in order to distinguish dif-

ferent priority classes and meet QoS guarantees. This will be covered in greater

detail in Section 2.1.

In general, packet switch architectures may be classified into two main categories

based on whether packets are buffered at the input or output of the switch. Ac-

cordingly, they are called input-buffered or output-buffered switches. Various switch

architectures have been suggested with varying combinations of the components men-

tioned above.
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2.2 Scheduling Output Buffers

2.2.1 Classifying Schedulers

Networking designers and engineers have invented and studied a myriad of packet

scheduling algorithms for years, but the design of an ideal scheduler (exhibiting per-

formance of GPS or close to it) is still an extremely challenging problem. These

multitudes of packet scheduling algorithms, varying in their ease of implementation

and performance, can be characterized into the following categories:

1. Work-Conserving or Non Work-Conserving scheduler : A scheduler is consid-

ered work-conserving if it never leaves the shared output link idle when there is

a packet buffered in the system. First-come First-serve (FCFS), Round Robin

(RR), Weighted Round Robin (WRR) and Weighted Fair Queuing (WFQ)

schedulers are work-conserving in nature.

Kleinrock’s Delay Conservation law for work-conserving schedulers states that

one flow cannot be given preferential treatment (i.e., reduced delay) without

hurting the others. Consider N flows arriving at a scheduler as shown in Fig-

ure 2.2.

Figure 2.2: Kleinrock’s Delay Conservation law for work-conserving schedulers.

According to the law,

N∑
i=1

λidi = C = λtotal · dFIFO (2.2)
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where λi is the average utilization of flow i, di is the average delay of flow i due

to the scheduler, C is a constant independent of the scheduling policy, λtotal is

the total utilization and dFIFO is the average delay of a single first-in first-out

queue with no particular scheduling.

Further,

λn = rnμn (2.3)

where rn is the mean packet rate in packets/sec and μn is the mean per-packet

service rate in seconds/packet. This concludes that some flows can receive lower

delay only at the expense of longer delay from other flows.

On the other hand, a non-work conserving scheduler may remain idle, even when

there are packets buffered in the system. Each packet buffered in the system is

associated with an eligibility time and the scheduler transmits the packet from

the system when the packet is eligible. This kind of scheduler can alternatively

be called a regulator and helps in “smoothing” of packet flows. The output flow

is controlled and makes downstream traffic more predictable.

Table 2.1: Comparison of Work Conserving and Non Work Conserving Schedulers

Work Conserving Non Work Conserving
Link utilization Good Under-utilized

End-to-end delay Low High
Jitter High Less

Complexity Simple Not Efficient 1

2. Sorted Priority or Frame-based scheduler

Sorted priority schedulers maintain a global variable referred to as a virtual time

or a system potential function. Every time a packet arrives into a system or gets

serviced, this variable (also called a timestamp) is updated. The virtual time

function may be computed as the expected packet departure time, packet arrival

time or any other definition based on the type of scheduling algorithm. Packets

are usually sorted in increasing order of their timestamps and are transmitted in

1Not very efficient because implementation in routers may require time synchronization.
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that order. Start-time Fair Queuing (SFQ), Self-clocked Fair Queuing (SCFQ),

Weighted Fair Queuing (WFQ) and Worst-case Fair Weighted Queuing (WF2Q)

are examples of sorted-priority schedulers.

On the other hand, frame-based schedulers neither maintain any global variable

nor do they require sorting among packets. Instead, time is divided into frames

of fixed or variable length. In a fixed size frame, a frame is divided into slots

for different sessions. Sessions reserve the maximum amount of traffic they are

allowed to transmit during a frame period. As a result, the scheduler can remain

idle if sessions transmit less traffic than their reservations over the duration of

a frame. Hierarchical Round Robin and Stop-and-Go queuing are constant

frame sized frame-based schedulers. In contrast are the variable frame sized

frame based schedulers like Weighted and Deficit Round Robin, in which the

scheduler visits all the non-empty queues in a round-robin order. A new frame

can start early if the traffic from a session is less than its reservation. It can

be clearly seen that the former frame-based schedulers are non work-conserving

while the latter frame-based schedulers are work conserving in nature.

Table 2.2: Comparison of sorted and frame-based schedulers

SP FB
Latency Low High2

Fairness Good Not Fair
Complexity Not very efficient3 Efficient

2.2.2 Shapers and Schedulers

Traffic characteristics and requirements of various flows in networking applications

vary widely. Architectural design of networking devices handling these traffic types

needs to be well analyzed in order to support the spectrum of traffic demands. Packet

2A contending flow with a much higher reserved rate can lead to larger latency for lower reserved
rate flows.

3This is due to the complexity involved in computing the virtual time function, which purely
depends on the choice of the algorithm. Second is the complexity involved in sorting the timestamp
values which is a minimum of O(log n) for a maximum of n sessions sharing an output link.
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processing in network components like switches, routers or network processors is

partitioned into a sequence of processing elements, each processing element having a

specific role to play.

Figure 2.3: Packet Processing Elements in a network device.

Figure 2.3 highlights those processing elements in a network device which play a

critical role in scheduling. In most cases, either a regulator or policer is used with a

scheduler.

• Regulator:

In most cases, a non work-conserving scheduler for traffic shaping is imple-

mented in this block. When the traffic rate exceeds the maximum output rate,

the excess packets are delayed in the regulator by buffering in a queue. The

shaping scheduler gradually transmits the eligible packets to the scheduler block

over time, resulting in a smooth output rate. However, buffering of packets leads

to introducing delay to the traffic flow. Regulation is usually done for outbound

traffic.

• Scheduler:

A work-conserving scheduler, as discussed in section 2.1, is implemented in this

block in most cases. These eligible packets are buffered into one of the queues

based on the priority class or traffic type. The scheduler, then, selects from the

competing eligible packets every time slot, based on the scheduling algorithm

used.
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Sometimes schedulers are implemented hierarchically. Similar traffic types are

first grouped and scheduled by a Level 1 scheduler. Varying traffic types from

Level 1 are then buffered and scheduled again by a Level 2 scheduler. Figure 2.4

shows an example of a hierarchical scheduler [4].

Figure 2.4: An example of a Hierarchical Scheduler

[5] is an example that holds good for those applications which only support

a select set of group rates. All sessions with the same group rate are grouped

together at Level 1 and are then scheduled according to Smallest Eligible Finish

Time policy (SEFF) at Level 2. This grouping architecture reduces the com-

plexity of the scheduler from one that scales with the number of sessions to the

one that scales with the number of distinct rate groups.

2.3 Requirements of a Packet Scheduler

The scheduling algorithm assigns different priorities to packets from different ap-

plications (varying in service classes or rates of operation) and places these different

priority packets in different queues. An arbitrator then makes the choice of the queue

to serve in the order of their priority levels.

A packet scheduler must meet the following fundamental requirements:

1. Bandwidth Utilization
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A scheduling architecture must efficiently utilize the bandwidth, being able to

handle bursty sources. For example, statistical multiplexing of flows can help

in achieving efficient bandwidth resource allocation [6].

2. Isolation of Flows

An application flow must be isolated from the effects of other competing flows

(which could be undesirable misbehaving sessions) by a fair scheduling algo-

rithm. The algorithm must be able to meet the QoS guarantees of a flow when

another flow sharing its output link is misbehaving. This characteristic of a

scheduler can be applied in network security applications to defend against Dis-

tributed Denial of Service (DDoS) attacks, discussed in Section 2.5.

3. End-to-End Delay Guarantees

End-to-end delay in a packet network is usually defined as the time taken for

a packet to be transmitted across a network from source to destination. It

is a function of the network design and scheduler architecture in its nodes.

Maintaining a low end-to-end delay bound for any session is one of the key

requirements of a packet scheduling algorithm. The algorithm must provide end-

to-end delay guarantees for individual sessions. A work-conserving scheduler is

used in most architectures to meet the delay guarantee.

4. Ease of Implementation

A scheduling algorithm must have a simple implementation with minimum time

to make a scheduling decision. This forces a hardware implementation of a

scheduler for high-speed networks. A software implementation may be consid-

ered for packet networks operating at lower speed or handling larger packet size,

but the key point to be kept in mind is the rate at which a scheduling decision

is made must be kept close to the rate of arrival of the packets.

5. Scalability

A scheduling algorithm implementation ideally scales to a large number of flows

in a real-world application and a wide range of traffic rates for these flows. A
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good scheduling algorithm must perform well for large numbers of flows.

O-notation is a measure of scalability that characterizes the complexity of an

algorithm with respect to execution time and implementation size. A scheduling

algorithm of O(1) complexity is considered ideal.

6. Fairness

Fairness of a packet scheduling algorithm, in most cases, is defined in terms of

bandwidth allocation among competing flows. A fair scheduler must be able to

• Provide bandwidth guarantees to backlogged flows in a short time span,

independent of past usage of the output link bandwidth by the flows.

• Allocate the unused output link capacity to the competing flows in pro-

portion to their “weights” (or reserved rates).

Requirements 1 to 5 are applicable to any scheduling algorithm while a packet

scheduling scheme is considered fair if requirement 6 is met. These requirements

will help define the metrics to characterize the performance of an algorithm and its

suitability for QoS support in packet switched networks. The metrics are enumerated

and analyzed in Section 3.4.

2.4 Complexity of a Scheduling Algorithm

In high-speed network environments, schedulers are usually implemented in hard-

ware (network processor or routers) rather than in software. The implementation

complexity of a scheduling discipline must be taken into consideration, in addition to

the algorithmic complexity.

2.4.1 Design Complexity

1. Time complexity

The time-complexity of an algorithm usually depends on the number of active

or eligible flows in the scheduler. The goal of a fair scheduling algorithm must
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be to provide the highest degree of fairness in resource allocation and the least

end-to-end delay keeping the time complexity of an algorithm low.

For example, consider any priority-based scheduling architecture with a maxi-

mum of N flows that shares an output link. It involves the following steps:

• Priority Tag Computation: This may involve computing a virtual time

function, a weight based priority value, etc.

• Insertion into a sorted priority list.

• Selection of highest priority flow or packet: The priority given to a flow

depends on the scheduling algorithm used. For example, in Earliest Dead-

line First scheduling discipline, the highest priority value may be given to

the packet with the earliest deadline.

In general, the worst-case algorithmic complexity for maintaining a sorted pri-

ority queue with N arbitrary entries is O(log(N)). A (lower time-complexity)

sorted priority queue can be realized in a high-speed network by either using an

efficient data structure, an efficient algorithm or by exploiting the parallelism

feasible in a hardware implementation.

2. Regulation before scheduling

Most implementations of a regulator-cum-scheduler architecture involve two sep-

arate priority queue data structure solutions. Moving packets from regulator to

scheduler may become a point of concern in high-speed implementations.

3. GPS-relative delay or Latency

General Processor Sharing (GPS) is the fairest packet scheduling algorithm,

discussed in more detail in Section 4.1.1. However, GPS is not a realistic algo-

rithm. The difference between the time a packet finishes servicing a scheduling

algorithm and it’s virtual finish time under a GPS is called GPS-relative delay

[7]. There is a fundamental trade-off between the computational complexity

of a scheduling algorithm and the end-to-end delay bound. Under slightly re-

strictive but reasonable computational model, the lower bound computational
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complexity of any scheduling algorithm that guarantees O(1) GPS-relative de-

lay bound is ω(log(N)), where ω(f(n)) is the loose lower boundary of function

f(n).

2.4.2 Implementation Complexity

1. Memory Access Cost

Appropriately partitioning memory and access requirements between on-chip

and off-chip memory can directly impact the performance of a network sys-

tem design. On-chip memory is expensive but provides low latency and high

bandwidth. On the other hand, off-chip memory is relatively inexpensive but

increases the power consumption during the activity on off-chip buses and faces

higher bandwidth and latency restrictions. Data dependencies between off-chip

access and storage of priority tags in off-chip memory can degrade the perfor-

mance of the algorithm.

Designing a scheme that exploits the parallelism of on-chip memories (pipelin-

ing) with limited number of off-chip memory references can help in an cost-

effective, high speed implementation.

2. Complexity of basic operations

It is advisable to reduce logic in high-speed hardware implementations and hence

speed up the most basic operations like add, multiply, subtract, divide, compare,

memory read and write. Computation of priority tags or virtual time1 functions

involve these basic operations.

2.5 Applications of a Fair Packet Scheduler

Fair schedulers have found widespread implementation in network processors,

switches and routers, residential and corporate networks. Some applications include:

1. Fair Service Scheduling to Defend Against Distributed Denial of Service (DDoS)

attacks.
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Fairness in scheduling algorithms is essential to protect flows from other mis-

behaving flows triggered by deliberate misuse or malfunctioning software on

routers or end systems. Rate limiting traffic in packet schedulers can be used

to defend against packet flooding and related DoS attacks that allow customers

their share of utilization bandwidth even in the face of attacks.

2. Smoothing techniques in multimedia applications.

Packet Scheduling Algorithms can be deployed for more specific applications, for

example, to easily deploy multimedia applications via the Internet. Scheduling

algorithms can be used as a smoothing technique to smooth bandwidth re-

quirements for media streaming by buffering video data. Kang and Zakhor [2]

propose a class of packet scheduling algorithms based on Earliest Deadline First

for streaming media. Experiments with real-time video proved to outperform

the conventional sequential sending scheme.
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Chapter 3

Understanding QOS in Packet

Switched Networks

In the previous chapter, the study of output queue schedulers and its real-world

applications was discussed in detail. This chapter starts by describing packet-switched

networks and their categories, common service class categories and the need for QoS.

Then, QoS metrics that can be used to estimate the performance of a scheduling al-

gorithm in supporting multiple traffic types (commonly referred to as service classes)

are defined.

3.1 Classifying Packet Networks

Packet networks can be classified in various different ways, based on packet route,

type of packet, size of packet, etc. Here we discuss two main ways of classifying packet

networks, by packet size or by the way information flows from source to destination.

3.1.1 Classification by Packet Size

Packets Switched Networks can be further classified based on whether the packets

used to transmit different traffic types is fixed-length or variable-length. This design

choice has a major effect on QoS performance of a packet switched network.
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A very common example of fixed-size packet network is Asynchronous Transfer

Mode (ATM) which has a packet size of 53 bytes (48 byte data field and 5 byte

header). On the other hand, Ethernet 802.3 packet has a frame structure which can

range from a minimum of 64 bytes to a maximum of 1500 bytes(inclusive of 14 byte

header and 4 byte CRC checksum). Gigabit Ethernet frames support upto 9000 bytes

packets, referred to as Jumbo frames.

In general, packet networks handling large packets (called frames) segment the

packet into smaller cells or packets at the source and transmit them over the network.

These cells or packets are received, reordered and reassembled at the destination,

usually handled by a higher layer protocol. For example, ATM Adaptation Layers

(AAL) are standard higher layer protocols designed to transmit variable length frames

in ATM cells. The applications to be supported play a crucial role in deciding whether

a fixed-length or a variable-length packet network is apt, which in turn affects the

design of queuing and scheduling algorithm that must be deployed to meet the QoS

requirements of the applications. For example, ATM cells would be good choice to

support voice traffic because the packetization delay involved is minimum. Voice is

sampled at the rate of 8 kHz as 8 bit samples. An ATM cell can be completely filled

in 6 milliseconds. For a longer ATM cell, there would be a longer delay in filling up

the cell causing degradation in the quality of a voice call. Difference in behavior and

methodology based on the size of the packets arise with respect to [8]:

1. Routing methods

2. Delay

(a) Packetization

(b) Routing

3. Efficiency in Bandwidth Utilization

4. Overhead

5. Format efficiency
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6. Costs

7. Link efficiency

3.1.2 Classification by Packet Route

Various networking techniques use different ways of sending information from the

source to the destination. There are two main approaches by which packets, along

with the encapsulated information are transmitted through a network from source to

destination,

• Virtual Circuit Networks: A connection is setup between the source and the

destination, following which packets are sent through the connection. The con-

nection is disconnected (tear-down) after the information is transmitted.

• Datagram Networks: No specific path is used for information flow from source

to destination. Packets sent from the source take the most expedient route and

arrive at the destination.

Virtual Circuit Networks are analogous to circuit-switched telephone networks.

Asynchronous Transfer Mode (ATM) and X.25 are the most commonly used virtual

circuit networks. Packet transfer between the source and destination nodes usually

involves three stages:

• Initial Setup Phase: A fixed route is established between the end network nodes

connecting all the intermediary nodes which are expected to be involved in this

session. All packets exchanged during this session use this dedicated route only.

An address table, maintained in each network node, is updated with a new entry

for this connection when this route is established. Bandwidth is pre-allocated

for this session at this stage.

• Packet Transfer Phase: When a packet is received at a intermediate network

node, the address table is looked up for the entry corresponding to this packet

and is routed accordingly.
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• Teardown Phase: The route used for the packet transfer is disconnected.

Since bandwidth is pre-allocated and the route is fixed, the packets arrive at the

destination in order with minimum (but variable) delay.

Datagram transmission based packet-switched networks treat each packet as a

separate entity, not associated with any session type. The destination address of the

packet is embedded in it and is used by the intermediate nodes to decide its next hop

address, in order that the packet takes the most expedient route to its destination.

The datagram approach gives the flexibility in choosing a route to the destination, due

to which the system can handle congestion of traffic in the intermediate system. When

an intermediate system becomes busy, overloaded with excessive traffic or breaks

down, an alternate route is taken to reach the destination(as long as a route exists).

However, the delivery of the packet cannot be guaranteed all the time, although this

is very rarely experienced. Usually, additional error and sequence control is be used

to ensure reliability.

Applications which require best effort service can be supported by using the data-

gram approach. Internet is a very commonly used datagram network which used the

IP protocol. Examples of best effort traffic include e-mail traffic, file transfer, remote

access and Internet video that can be buffered and played back.

3.2 Traffic Types in Packet Networks

Network convergence has led to the integration of multiple traffic types (for ex-

ample, triple play) over a single packet network. Each of these traffic types have

varying characteristics and developing a single packet networking technology that en-

sures high performance of all the traffic types is a challenge. If voice, video and data

packet traffic were treated impartially by a network node, it would be impossible to

have a good quality voice call over a packet network. Impartial treatment of pack-

ets is fine for low-bandwidth priority applications like remote access or file transfer

but delay-sensitive and bandwidth-intensive traffic like voice will require timely de-

livery of packets at the destination. Therefore, it is important for network nodes to
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differentiate between the different traffic types and prioritize the traffic flows. Addi-

tionally, traffic prioritization at a network node becomes critical in very high speed

networks. Common network traffic can be very broadly classified into three service

classes, namely:

1. Real Time Traffic: Voice and Streaming video are examples of real time traffic.

Real-time packet traffic is characterized by strict deadlines on the end-to-end

time delay and delay jitter (refer to section 3.4) and a certain level of packet

loss. It is important to use a suitable architecture (like packet encapsulation

and negotiation network protocol) to transmit real-time data to ensure that the

strict delay bound requirements of real-time traffic is met. Real time traffic may

be transmitted either at a constant or at a variable bit rate. Common real-time

applications include Voice-over-IP (VoIP), Videoconferencing and IPTV.

2. Non-Real Time Traffic: Non-real time traffic usually transports variable bit

rate traffic traffic, which, however, attempts to achieve guaranteed bandwidth

or latency. No delay bounds are usually associated with this type of traffic.

Non-real time traffic is usually given less priority than real-time traffic but a

higher priority than best-effort traffic.

3. Best Effort Traffic: Email and FTP traffic are examples of best-effort traffic.

Best effort traffic does not have strict delay and jitter requirements and is usullay

considered the least priority traffic. In most applications, best effort traffic is

sent along with traffic sources with allocates bandwidth. Thus, under situations

of congestion, the best-effort part of a traffic is usually dropped.

3.3 Achieving QoS

Quality of Service (QOS) is the ability of a network or a networking device to pro-

vide better service to selected network traffic type over various networking technolo-

gies, efficiently utilizing the available network resources [9], [10]. A packet network

may support a multitude of applications ranging from delay-sensitive voice traffic to



23

best-effort file transfer data. It is important to be aware of the available network

resources, reserve the necessary resources and meet the requirements demanded by

the various applications.

More formally, traffic engineers refer to Quality of Service as the capacity of a

packet network in meeting a traffic contract. A traffic contract, also referred to as

SLA or Service Level Agreement, is a specification of bandwidth, latency, jitter and

performance guarantee that a network can provide for various traffic types and is

usually mutually agreed to by the competing flows [11], [12], [13].

Why do we need QoS? In the previous section, we looked at the common network

traffic types and their requirements. In addition to the nature of traffic, packets

encounter a number of issues as they traverse through the packet network from the

source to the destination node. Some common issues observed are:

• Throughput

A networking device (for example, a switch or a network processor) may support

multiple applications and may be able to provide the demanded throughput

to all its applications if the resources are pre-allocated. Additionally, faulty

conditions may lead to reduced throughput delivery.

• Delay

When a source divides data into multiple blocks, encapsulates them in packets

and sends it on a packet network, the packets may be delivered out-of-order at

the destination. Additionally, each of these packets may take a different route,

be enqueued in long queues in intermediate nodes and reach the destination

with variable delays. The delay experienced by a packet to reach its destination

is unpredictable.

• Jitter

The variation of delay experienced by packets as they move from source to

destination is defined as delay jitter. This jitter is a serious issue for real-time

applications.
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• Packet Loss

A network node (switch or a router) may drop packets if:

– Packet is corrupted.

– The node is not a right destination.

– Policing schemes are implemented at the node.

– Queues at the node are full because of increased network utilization.

Under any of these circumstances, the destination may request the source to

retransmit the packet, causing additional delays.

A combination of the problems discussed may lead to inefficiency of the operation

of the network system. Special strategies [14] must be deployed to ensure efficient

utilization of network resources. Deploying QoS mechanisms in packet networks helps

to:

• Gain control over network resources

In addition to pre-allocation of available network resources, it is important for

QoS-driven systems to continuously monitor the QoS parameters and dynam-

ically re-allocate resources during run-time to handle sudden variations that

may arise in a network node to ensure that a QoS contract is sustained.

• Differentiate service levels

The traffic flows of multiple applications must be distinguished into multiple ser-

vice levels, so that available network resources can be more carefully distributed

to the competing flows. In short, it is important to prioritize the traffic flows.

• Predictable and efficient use of network resources

Monitoring traffic flows with QoS parameters and controlling network resources

greatly aids in predicting a traffic flow at a future time. QoS schemes involv-

ing congestion control, queue management, traffic shaping or policing ensure

efficient use of network resources.
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• Network convergence

Integrating voice, video and data transmission on the same network is a chal-

lenging task and deploying QoS mechanisms can help in building an efficient

Integrated Service Network.

Peak performance of multiple traffic types can be achieved by deploying Quality of

Service either in a single network device or end-to-end between source and destination

network nodes. Most QoS architectures are implemented to provide the following

functions:

• Prioritize traffic types

Most networking devices have a architecture as shown in Figure 2.1. At the

input, the packet classifier identifies the characteristics of the traffic type em-

bedded in the packet, prioritizes it and sends it to different queues. A higher

priority may be given to higher bandwidth, controlled jitter or reduced latency

or reduced loss flow (as demanded by real-time traffic). An arbitration algo-

rithm services the queues taking the priority of the queue into consideration.

• Control the rate of component traffic flows

Traffic shaping or policing is used to ensure that each traffic flow transmits

packets at the desired rate. Output rate of bursty traffic is controlled by buffer-

ing. In case of heavy network utilization, low priority packets are marked and

dropped at a congested node.

• Avoid network congestion of any traffic flow

Scheduling schemes must ensure that prioritizing traffic does not cause a lower-

priority traffic to fail. Scheduling algorithms must service queues in an order

that will avoid traffic congestion problems for any flow.

• Handle link efficiency

Link efficiency issues are observed in schedulers handling variable packet sizes.

Low speed links are encountered with serialization delays for smaller packets
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in packet networks handling variable-sized packets. For example, a small voice

packet may be queued behind a large data packet. This will cause the voice

packet to be delayed for a long time. Fragmenting larger blocks followed by

interleaving with smaller packets sometimes improves the link efficiency.

However, there are trade-offs inherent in QoS-based networks. As defined earlier,

QoS is the ability of a network to provide better service to selected network traffic

types over various networking technologies, efficiently utilizing the available network

resources. The QoS offered to a flow can be measured in terms of its fairness, quan-

tified by fairness index defined in section 3.4. Fairness is a good measure of quality

of service that has been guaranteed to a flow and efficiency of network utilization. It

can be seen that fairness index is higher for higher priority traffic but low for lower

priority traffic. QoS schemes cannot assure 100 percent fairness for all traffic types.

Designing sophisticated QoS mechanisms increase the cost of a system. Consider

a network processor as an example of a standalone network element handling QoS.

A fair scheduler with complex data structure is more costly to build compared to

a simple FIFO scheduler. The cost of a QoS scheme must be weighed against the

improvement in fairness it can provide to all its traffic flows. Depending on the

segment of the network under consideration, a decision to trade-off between cost and

fairness must be made.

3.4 Metrics for QOS Guarantee

Our study in the previous section shows that a scheduling algorithm should be

able to support a range of packet switched networks. It is important to characterize

these networks based on some performance metrics defined for the scheduler to see if

a particular scheduling algorithm can handle the packet switched network domain.

QoS is not measured for an entire network but for a segment of the network and

for a particular connection under a certain flow condition. Differences in the quality

of a flow are evident when a network is heavily loaded and can be studied by under-

standing these metrics for different network load conditions. In the following sections,
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we will define the performance metrics commonly used to study the performance of

schedulers. Emphasis has been given to understanding jitter and fairness index which

are the key metrics used in this study.

3.4.1 Bandwidth Sharing

Bandwidth Sharing is defined as the maximal data rate that is available for the

flow. Consider the case of bandwidth sharing shown in Figure 3.1 where a scheme

aims at achieving 50, 30, 50 Mbps when the optimal that can be achieved is 50, 10,

10 Mbps.

Figure 3.1: Example of bandwidth sharing.

This is a simpler case of only 3 flows accessing a output link. In real-world appli-

cations, tens of simultaneous applications on a desktop may be remotely accessing the

server facilities. The flow bandwidth share depends on the specific bandwidth sharing

policy used in the network, e.g., max-min sharing, proportional sharing, size-based

bandwidth sharing or minimum delay policy. Deciding the appropriate scheduling

algorithm to be used is a step towards deciding on how the available bandwidth is

shared among the different applications. The fairness that is provided by an algorithm

can be evaluated based on Jain’s fairness index described in Section 3.5.
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3.4.2 Packet Delay

Packet Delay can be defined as the elapsed time for a packet to transit the network

segment or a networking device.

ITU-T defines the QoS Metrics for delay as:

• IP packet transfer delay (IPTD): IP packet transfer delay is defined for all

successful and error packet outcomes. If the packet is fragmented, the value

corresponds to the last fragment.

• Mean IP packet transfer delay : Mean IPTD is the arithmetic average of IPTD

for a population of interest.

On the other hand, IETF provides two definitions of packet delay:

• One-way Delay Metric for IPPM [15]: This is one of the basic quantitative

characteristics of network delay. The metric is defined as the difference between

wire-time of first bit of the Type-P packet at the transmitter and wire-time of

the last bit at the receiver. The metric involves an upper bound of delay and

considers that packet lost and the value of metric undefined if the last bit does

not arrive within that predefined period of time. If the packet is fragmented and

if, for whatever reason, reassembly does not occur, the packet will be deemed

lost. Note that measuring one-way delay requires clock synchronization between

the sender and receiver.

• Round-trip Delay Metric for IPPM [16]: At wire-time T, the first bit of the

Type-P packet from source to destination is sent; after receiving the packet

at destination, a Type-P packet back to source is sent immediately. The last

bit of packet is received at wire-time T+dT, dT being the value of round-trip

delay. An upper bound of delay is given and if the packet does not arrive

inside this interval, it is considered lost and the value of metric is undefined.

As time is measured only at one site, round-trip delay does not require clock

synchronization between source and destination.
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The delay experienced by packet k in a queue can be defined as :

dN
k = |DN

k − AN
k | (3.1)

where, AN
k , DN

k and dN
k denote the arrival time, departure time and queuing delay of

packet k in queue N.

3.4.3 Delay Jitter

Packets sent on a packet switched network are most often delivered irregularly to

the destination due to some of the reasons discussed in Section 3.3. Particularly in the

case of real-time applications, this variation in network transfer delay (at network-

level) or packet departure delay from a network device (at a system level) can cause

degradation of quality of service. Additionally, bursty traffic patterns increase the

delay jitter of a flow.

Two kinds of jitter play a major role in network QoS, delay jitter and rate jitter.

Delay jitter bounds the maximum difference in the total delay of different packets

arriving at a destination, assuming that the packet source is perfectly periodic. Rate

jitter bounds the difference in packet delivery rates at various times. This is measured

as the difference between the minimal and maximal inter-arrival times (inter-arrival

time between packets is the reciprocal of rate) [17]. Both these measures are very

useful for real-time voice and video applications. For the purpose of this study, we

will be focus on delay jitter performance metrics.

Several definitions for delay jitter have been defined, of which two are discussed

here [18]. The first measure is called 2-point PDV (Packet Delay Variation), as defined

by ITU-T SG13 in Rec.I.380 [19]. The 2-point packet delay variation (vk) for an IP

packet k between the source SRC and the destination DST is the difference between

the absolute IP packet transfer delay(xk) of the packet and a defined reference IP

packet transfer delay d1,2, between those same measurement points.

vk = xk − d1,2 (3.2)

The reference IP packet transfer delay, d1,2, between the source and the destination

is the absolute IP packet transfer delay experienced by the first packet between those
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two measurement points[18]. Alternatively, the first packet delay can be replaced

with average delay of the population of packets.

The second measure, called 1-point CDV (Cell Delay Variation), was defined by

IETF [20], particularly for ATM environments. According to this definition, the vari-

ation of delay is derived from the arrival time of cells, measured against an expected

arrival time. Supposing a stream of cells transmitted with constant period T, the

1-point CDV of the cell k is the difference yk between the actual arrival time ak and

a reference time ck. The reference time (expected arrival time) is defined as follows:

c0 = 0 (3.3)

a0 = 0 (3.4)

If ck ≥ ak, (3.5)

then ck+1 = ck + T (3.6)

else ck+1 = ak + T (3.7)

Based on the 1-point CDV, the delay jitter of a packet k in a queue [20] can be

defined as the difference of queuing delay of this packet and the preceding packet in

that queue, i.e.,

jk = |dk − dk−1| (3.8)

where dk is the queuing delay of packet number k. Additionally, we define the aggre-

gate jitter experienced by all packets that have been served by a queue N at a point

in time τ as the sum of the jitter of each packet served by queue N from time 0 to τ ,

i.e.

javg(τ) =
τ∑

t=0

|dN
k − dN

k−1| (3.9)

=
τ∑

t=0

|(DN
k − DN

k−1) − (AN
k − AN

k−1)| (3.10)

(3.11)

where AN
k , DN

k and dN
k denote arrival time, departure time and queuing delay of

packet k in queue N respectively as shown in Figure 3.2.
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There has been a lot of research focusing on estimating the maximum delay jitter

bound Jmax for different types of packets [21] and for variable packet sizes. Verma,

Zhang and Ferrari [22] discuss the feasibility of bounding the delay jitter in real-time

channels and control of delay jitter in real-time communication in packet switched

networks. Figure 3.2 gives an idea of the bounds on delay distribution curve [23].

Figure 3.2: Understanding Delay and Delay Jitter.

3.4.4 Packet Loss

Packet loss is the term given to losing information packets for a flow. Packet loss

may happen in a flow due to:

• High input rate leading to queue overflow.

• Corruption of packets.

• Re-ordering within the flow.

Packet loss directly affects the reliability of the connection. Excess packet loss results

in a less reliable connection.

For the IP networks, the ITU-T Recommendation I.380 [19] defines three related

QoS Metrics, namely:
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• IP packet loss ratio (IPLR): IP packet loss ratio is a ratio of total lost IP packet

outcomes to total transmitted IP packet in population of interest.

IPLR =
Nlost

Ntransmitted

(3.12)

The applications can react on packet loss in three different ways [24].

1. Fragile: An application is unreliable if the packet loss exceeds certain

threshold.

2. Tolerant : Multiple packet loss threshold levels are defined. The application

can tolerate packet loss upto a particular level, but the higher the packet

loss, the application is less reliable.

3. Performance: The application can tolerate even very high packet loss ratio

but its performance can be very low in high packet loss ratio.

Figure 3.3: Loss graph

• IP packet error ratio (IPER): IP packet error ratio is the ratio of total errored

IP packet outcomes to the total of successful IP packet transfer outcomes plus

errored IP packet outcomes in a population of interest. This metric is usually

defined in terms of Bit Error Rate (BER) or Frame Error Rate (FER).

IPER =
Nerroneous

Nerroneous + Nsuccessful

(3.13)
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• Type-P One-way Packet Loss (IETF) [25]: IETF defines a packet loss metric

for IPPM, Type-P One-way Packet Loss. The packet is considered lost if it fails

to arrive to its destination in a reasonable period of time. This time threshold

is a parameter of the metric. Corrupted packets are counted as lost. The

measurement methodology relies on the one-way delay.

An example of an scheduling algorithm that takes packet loss into consideration is

DWCS or Dynamic Window-Constrained Scheduling. DWCS was originally designed

to be network packet scheduler limiting the number of late or lost packets over a

window-size of packets in loss-tolerant and/or delay-constrained heterogeneous traffic

streams [26].

Service classes, discussed earlier in this chapter, represent a set of traffic types that

demand specific packet delay, loss and jitter characteristics from the network on a

per-hop basis. Networking applications with similar characteristics and performance

requirements fall into the same service class and similar metric bounds.

We considered the quantitative metrics so far. Some of the other qualitative QoS

parameters that may be considered for metrics are Cost, Compliance, and Security

[27].

3.5 Fairness Index

In the previous few sections, we defined the performance metrics that can be used

for the purpose of studying the behavior of various scheduling algorithms. However,

our main objective is to provide fairness to all the flows in the system. Hence, it is

important to measure the algorithm’s fairness to individual flows and define a fairness

index for the entire system. Depending on the application under consideration, an

algorithm can be considered fair depending on any of the performance metric defined

so far. For the purpose of this study, we will focus on the bandwidth sharing or

throughput fairness characteristics of the scheduling algorithm.
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3.5.1 Jain’s Fairness Index

ATM Forum Traffic Management Specification version 4.0 [28] defines a fairness

index, called Jain’s fairness index, to evaluate the fairness of the distribution of the

available bandwidth among the individual flow. Consider a scheduling algorithm

allocating its output bandwidth to N flows. If xi is the observed throughput in the

i − th flow (where 0 ≤ i ≤ N) and ri is the expected throughput or fair share for

connection i (i.e., ri can be defined as an equal share of the bottleneck link capacity

ri = Capacity of Output Link/N), then Jain’s fairness index [29] is defined as:

F
(

x0

r0
, · · · , xN

rN

)
=

(∑(
i=0 N − 1)xi

ri

)2

n
∑(

i=0 N − 1)(xi

ri
)2

(3.14)

Jain’s fairness index produces a normalized number between 0 and 1, where 0

indicates the greatest unfairness and 1 indicates the greatest fairness. Lets consider

Jain’s fairness index for the example shown in Figure 3.1. The scheme gives 50, 30,

50 Mbps, when the optimal is 50, 10, 10 Mbps. Let the measured throughput be t1,

t2,..., tn. Use any criterion (e.g., max-min optimality) to find the fair throughput p1,

p2,..., pn [30].

Normalized Throughput: xi =
ti
pi

Fairness Index =
(
∑

(xi))
2

n
∑

x2
i

Example: 50/50, 30/10, 50/10 = 1, 3, 5

Fairness Index =
(1 + 3 + 5)2

3(12 + 32 + 52)

=
92

3(1 + 9 + 25)
= 0.81

Several fairness index definitions have been proposed by researchers [31], [32];

some examples include Gini index, Variance, Coefficient of Variation. However, Jain’s

fairness index is good measure of fairness because of the following characteristics:
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• Scalability : It can be applied to any number of flows. Fairness index like co-

variance is not defined for small n. Performs really well for large number of

flows.

• Scale independent : Jain’s index is independent of the scale. Additionally, Jain’s

Fairness Index is a generic metric that can be applied to any resource.

• Bounded : Jain’s Fairness index always lies between 0 and 1 or 0 and 100.

Variance, standard deviation, and relative distance are not bounded.

• User perception: Jain’s index has an easier user perception. Higher value of

this index implies more fairness. Other indices like variance do not have this,

as higher variance means less fairness

• Continuous : The index is always a continuous function unlike indices like min-

max.
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Chapter 4

Packet Scheduling Algorithms

Various scheduling algorithms and methods have been studied extensively in the

literature. In this chapter, we summarize a few of them, that we have simulated for

this research. In the first section, we start with an example of an ideal scheduling

algorithm, the Generalized Processor Sharing algorithm, before describing other al-

gorithms [33], [34], [35]. We then discuss Weighted Jitter EDF, a modification to the

Earliest Deadline First (EDF) algorithm.

4.1 Background Work

4.1.1 Generalized Processor Sharing (GPS)

Generalized Processor Sharing or GPS is an idealized fluid flow scheduling model

deploying uniform network resource sharing to achieve QoS guarantees such as fair

bandwidth allocation and end-to-end delay bounds in communication networks. GPS

is a work-conserving scheduler in which all the participating connections are simulta-

neously provided with their fair service share.

Consider a GPS scheduler serving N flows with an output link rate of R. Assume

that each flow i is continuously backlogged in a time interval (τ1,τ2] during which the

traffic served by the server; let’s denote the amount of service received by flow i in

this time interval as Si(τ1, τ2) [36]. Let w1, w2, w3, · · ·wN be the weights associated
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with each of the flows. A GPS scheduler is one for which,

Si(τ1, τ2)

Sj(τ1, τ2)
≥ wi

wj
(4.1)

for each backlogged flow i, j in the interval τ1 to τ2.

Summing over all flows j we get,

Si(τ1, τ2)
∑
j

wj ≥ (τ2 − τ1)Rwi (4.2)

Hence, flow i is guaranteed a minimum fair share rate gi equal to

gi =
wi∑
j wj

R (4.3)

In other words, the service that a flow receives in a GPS system is no worse that an

equivalent dedicated link with a capacity of gi (as shown in Eq.4.3).

Parekh and Gallager [37] show a clear example of how the flexibility of GPS

multiplexing can be used effectively to control packet delay when combined with

appropriate rate enforcement.

GPS is considered an ideal scheduling algorithm due to some of its unique prop-

erties.

• Property 1 : Let us define ri to be the average rate of flow i. Then, as long

as ri ≥ gi, the flow can be guaranteed a throughput of ρi independent of the

demands of the other flows. In addition to this throughput guarantee, backlog

in flow i will always be cleared at a rate greater than gi.

• Property 2 : The delay of an arriving flow i bit can be bounded as a function

of the flow i queue length, independent of the queues and arrivals of the other

flows.

• Property 3 : By varying the wi’s, we have the flexibility of treating the flows in

a variety of different ways. For example, when all wi’s are equal (say equal to

1), the system reduces to uniform processor sharing.

ri =
R

N
(4.4)
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As long as the combined average rate of the sessions is less than R, any assign-

ment of positive wi’s yields a stable system. For example, a high-bandwidth

delay-insensitive flow i can be assigned gi much less than its average rate, thus

allowing for better treatment of the other flows.

• Property 4 : Most importantly, it is possible to make worst-case network queuing

delay guarantees when the sources are constrained by leaky buckets.Thus, GPS

is particularly attractive for flows sending real-time traffic such as voice and

video.

Although GPS has these attractive properties, it is not implementable due to two

main reasons. GPS works under the assumption that the scheduler can serve multiple

flows simultaneously and that the traffic is infinitely divisible according to Eq. 4.3.

Secondly, GPS is an idealized scheme which does not transmit packets as entities; it

rather treats them as infinitesimal quantities. Both these assumptions do not hold

in practice, since only one flow can be served by a scheduler at a given time, and an

entire packet has to be served before serving another packet. However, GPS serves

as a good scheme to compare and evaluate other scheduling disciplines.

4.2 Weighted Jitter Deadline Scheduling

In this section, we discuss a simple scheduling algorithm called Weighted Jitter

Earliest Deadline First Scheduling or WJ-EDF, a modification of Earliest Deadline

First scheduling policy [38], designed with a focus to reduce the delay jitter expe-

rienced by packets in output buffer schedulers [39]. A work-conserving scheduler is

the most appropriate for an output buffer scheduler as it significantly decreases the

average end-to-end delay experienced by packets and helps in the fair distribution of

available bandwidth between competing flows.

Lets us consider a simple WJ-EDF Scheduler serving m queues as shown in Figure

4.1. Packets arriving from flows with different rates are sent to different queues, i.e.,

packets from flows with the highest supported input rate go into Q1 while the flows

with the lowest supported input rates goes into queue Qm. In order to give different
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Figure 4.1: Simple WJ-EDF scheduler

priorities to the m queues, different weights are assigned to the m queues, namely

w1, w2, w3, · · · , wm. The weights are chosen in such a way that the queue which is the

least delay and jitter-tolerance must be given the highest weight value.

It is important to timestamp packets in any deadline-based scheduling policy.

Integer timestamping is one possibility which is used in the implementation of this

algorithm, discussed in section 5.2. The advantage of using integer timestamps as op-

posed to floating-point timestamps is that integer timestamps have simpler hardware

implementations. Aggregate jitter used in this algorithm is implemented according to

the definition in section 3.4. The applicability of WJ-EDF has been studied for two

categories of output buffer schedulers [39], namely Simple WJ-EDF Schedulers and

Shaped WJ-EDF Schedulers.

4.2.1 Category 1 : Simple WJ-EDF

Figure 4.1 shows a structure of an output buffer-scheduler module where this

algorithm can be applied. This algorithm is applied at two parts of the module,

• at point A, when packets enter the output buffers

• at point B, when the scheduler decides which is the next packet that must be

transmitted on the output link.
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On arrival of a packet or a cell k at entry point A in queue i, packets are times-

tamped with an entry time sk
i . The deadline fk

i of packet k in the queue i is calculated

as

fk
i = sk

i + dk
i (4.5)

where dk
i is the delay bound allowable for packet k.

According to [40], [41], and [42], EDF is known to be an optimal scheduling algo-

rithm at a switch. Optimality is defined in terms of the schedulable region associated

with the scheduling policy [41]. Consider m connections with traffic envelopes Ri(t),

(i = 1, 2, . . . , m), sharing an output link of rate C. Suppose that each of the m con-

nections has an upper bound, di, on the scheduling delay that packets from that

connection can tolerate; these bounds define a vector d
′
= (d1, d2, · · · , dm). Then the

scheduling region of a scheduling discipline φ is defined as the set of all vectors d
′
that

are schedulable under φ. It has been proven in [43], [44] that EDF has the largest

schedulable region of all scheduling disciplines under the condition

m∑
i=1

Ri(t − di) ≤ Ct (4.6)

where traffic is assumed to be fluid and Ri(t) = 0, ∀t < 0.

In this algorithm, we will define dk
i = f(lki , Ri, wi) where Ri is the input rate for

flow i with packet k of length lki . More specifically,

dk
i =

⌈
lki

Ri · wi

⌉
(4.7)

Using the input rate considers the peak requirement on the flow and sets a tighter

bound on the delay.

Algorithm on arrival of a new packet k in flow i

1. Timestamp the newly arrived packet with an entry time sk
i

2. Compute the deadline fk
i of packet k in queue i

fk
i = sk

i + �( lki
Ri · wi

)�

3. Enqueue the packet k in queue i
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At point B, the scheduler algorithm checks all the backlogged queues and looks for

the head-of-line packet which has the earliest deadline (i.e., lowest timestamp) and

starts transmitting packets in order of increasing deadline. Every queue maintains a

log of the aggregate jitter, ji experienced by the packets it transmitted. Hence, every

queue has an estimate of the service that has provided to it. When a bias condition

occurs, i.e., when two queues Qr and Qs have the same deadline, the priority is given

to the queue with a highest aggregated jitter value , based on the “greedy-choice”

property, i.e., the decision point in the algorithm is based on what seems best at the

moment.

WJ-EDF Algorithm to select the next packet to be scheduled

1. Extract the deadline of all backlogged queues

2. Sequentially check all the backlogged queues whose head-of-line

packet has the smallest deadline

3. If two flows i and j have the same deadline, select the flow

with greater value ofji.

4. Complete scanning all the backlogged queues.

5. Retrieve the head-of-line packet from the high priority queue

obtained in Step 1-4 and transmit.

This algorithm works most appropriately for small packets or when large packets are

fragmented into smaller blocks as the delay bound considered in Eq.4.7 does not take

into consideration the time taken to enqueue or dequeue a large packet. Ideally, it

would be appropriate to timestamp a large packet when its boundary just enters point

A and delay bound must completely take into account the time that will be taken by

a big packet to leave the queue. However, with a small packet, the enqueue-dequeue

time is small and can be considered negligible.

4.2.2 Category 2: Shaped WJ-EDF

Figure 4.2 shows the structure of the shaper-scheduler combination discussed in

Section 2.2.2, seen in many packet switch architectures. In this category of schedulers,

the packets arriving into the system first enter the shaper. Once the packets become
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Figure 4.2: Shaped WJ-EDF scheduler structure.

eligible for transmission, the packets are sent to the scheduler. All packets waiting to

become eligible for transmission wait in the shaper, which is like a waiting room, which

in most implementations, is a non-work conserving scheduler. Once the packets are

eligible, they are transferred to the output buffers to be scheduled to the output link.

Definition of eligibility of a packet to leave the regulator or shaper to be transmitted

on the output link varies is based on the implementation of the shaper being delay-

jitter or rate-jitter based.

Combining shaping and scheduling changes the arrival pattern of the packets en-

tering the scheduler. Understanding the arrival patterns of packets into the scheduler

based on the traffic type supported can help optimizing the algorithm further. Adding

a shaper to the scheduler does not degrade the behavior of the combined module, it

only decreases the jitter and the delay experienced by the outgoing packets. There

may be multiple variations in the implementation of the eligibility criteria of packets.

For example, consider the example of a system receiving IP-AAL5-ATM packets. The

shaper may send ATM cells that are eligible to the scheduler.The total jitter during

the transmission of an IP packet is hence a function of the jitter experienced by the

cells carrying this IP packet. Another variation of implementation of eligibility crite-

ria, is the scenario where a large IP packets is fragmented into smaller fragments to aid

efficient scheduling. Eligible fragments are then sent to the scheduler. Modifications

can be made to the algorithm to accommodate such fragmentation.

If the fragment size, pk, of packet k is known, then the number of equal-sized
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fragments K” in packet k is computed as

K” = � lik
pk

� (4.8)

The algorithm on arrival of a fragment of a packet k can be modified to the

following:

WJ-EDF Algorithm on arrival of a new packet k in flow i

1. Timestamp the newly arrived packet with an entry time sk
i

2. Compute the deadline fk
i of packet k in queue i

fk
i = sk

i + �( pk
i

Ri · wi

)�

3. Enqueue the packet k in queue i

The aggregate jitter experienced in transmission of packet k is defined as as

ji
k =

K”∑
n=1

ji
n (4.9)

Bias conditions may occur when two flows have the same deadline. Under such

bias conditions, the flow with the higher value of aggregate jitter is selected in order

to help the higher jitter flow to reduce its jitter.

WJ-EDF has a delay bound close to or better than EDF. The better delay bounds

are obtained by appropriately scaling the weights w1, w2,...,wm.

WJ-EDF incorporates the best attributes of Weighted Fair Queuing and Earliest

Deadline First scheduling schemes. It is a simple algorithm which is applicable both to

fixed and variable sized packets. It is extremely accurate for the case of small packets.

WJ-EDF shows an O(V ) complexity, where V is the the number of backlogged queues.

An algorithm that exhibits lower time complexity can be devised by using a better

data-structure instead of a simple priority list, as discussed in section 2.4.
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Chapter 5

Simulation Study

In this chapter, we discuss the implementation of packet scheduling schemes and

the simulation study that was performed on Agere’s APP650 network processor. We

start our discussion with a brief overview of the APP650 architecture, followed by a

description of the simulation environments, the experiments we performed to compare

the scheduling algorithms and the results of the simulations.

5.1 Architecture Overview

Advanced Payload Plus, APP650, is Agere’s third generation network processor

and the simulations for this study were performed on its architecture . APP650

is a pipelined, multi-threaded processor that simultaneously analyzes and classifies

multiple packets at the same time, monitors data traffic and schedules output data

traffic, all at wire speed, operating at a clock rate of 266MHz. It includes sophisti-

cated scheduling and shaping capabilities to support both packet or cell-based traffic.

APP650 has integrated 10/100/1000 Ethernet MACs and provides flexible interface

options including GMII/SMII (with integrated Gigabit Ethernet, 10/100 MACs),

PMA (Gigabit Ethernet), SPI-3 and UTOPIA.

Figure 5.1 gives a high level system view of APP650’s architecture. The major

components of the APP650 architecture include the following:

• Data Path Input Interface: Consists of two 32-bit buses that can be configured
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Figure 5.1: APP650 Architecture: Block Diagram.

to receive data from different sources and in different combinations. Incoming

data traffic is sent to the Classifier.

• Classifier : A programmable, high-speed, on-chip data classification engine that

simultaneously analyzes and classifies multiple incoming data packets before

sending them to the traffic manager for modifications and transmission.

• State Engine: This compute engine works with the classifier and the traffic

manager, seamlessly integrating the components with the host interface. It also

supports high-speed, packet or cell-based traffic policing, thereby enabling the

use of multiple policing algorithms for different protocols.

• Traffic Manager : Receives input from the classifier and performs traffic man-

agement operations, i.e., schedules and shapes the traffic, generates packets for

network operations when necessary, and transmits the data to the network.

• Data Path Output Interface: Transmits data received from the traffic manager

to the Stream Editor (SED), a compute engine that makes necessary modifica-

tions to the packets. Data is sent from the SED to a downstream device on a

32-bit configurable data output interface and a 32-bit configurable coprocessor
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interface.

• Host Interface: Provides interface to a host processor. The host processor is

used exclusively for slow-path processing; it is not used for pattern recognition,

classification, queuing or traffic management operations.

In this simulation study, we will focus on the shaper-cum-scheduler in APP650’s

traffic manager. The Sched-650 acts as a scheduler and shaper in APP650 enabling

multiple combinations of scheduled and rate-limiting traffic management and shaping.

In each timeslot, Sched-650 needs to decide which user (or flow) can send out a packet,

so as to guarantee bandwidth of the flows and reduce the burstiness of the output

traffic. Figure 5.2 gives a top level block diagram view of Sched-650.

Figure 5.2: Sched-650 Architecture: Block Diagram.

The Sched-650 has three major blocks, as shown in Figure 5.2:

• Traffic Shaper : This block is like a waiting room. A queue with packets is sent

to the shaper when it is not eligible to be served and is guaranteed to leave the

shaper when it becomes eligible. It is a non work-conserving scheduler, used to
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control the delay time of the queues to make sure that the queues do not get

too much service. It is also used to control the service intervals of the queues

to reduce the burstiness of the output traffic. Packets from the traffic shaper

are sent to the corresponding programmable sequence scheduler.

• Programmable Sequence Scheduler : This scheduler consists of multiple active

lists and rate controllers.

1. Active Lists : When an active list receives eligible queues from the traffic

shaper, it appends the list of queues to the tail of the active list. In each

timeslot, the arbitrator selects at most one non-empty active list based on

a scheduling algorithm, which is focused on as a part of this study. The

head-of-line queue from the selected active list is sent to the rate controller.

Each queue of packets is associated to one rate controller. The scheduler

checks the rate controller identity of the selected queue and sends the queue

to the corresponding scheduler list.

2. Rate Controllers: Each rate controller can serve multiple queues and has

a rate set for it by the user. The configured rate controls the output rate

of each rate controller. Every timeslot, another arbitration logic selects

the head-of-line queue from the backlogged lists and sends it to the traffic

policer.

• Traffic Policer : This block consists of multiple policing instances. After a queue

is sent out from the rate controller, the queue can transmit one data block. The

queue is sent to the traffic policer to ensure that the queue meets the reserved

rate but does not violate the peak rate.

5.2 Simulation Environment

Experiments for understanding the behavior of the different scheduling policies

were based on two models of Sched-650, discussed in this section.
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5.2.1 Setup 1: Behavioral C model

A behavioral C model of Sched-650 was used to study the performance of the

different scheduling algorithms. The simulator reads the queue parameters from the

testcase data file every timeslot and feeds the queues to Sched-650. The simulator

assumes that the queues fed to Sched-650 are always backlogged. It is important to

make this assumption because all jitter and throughput analysis are studied only on

backlogged queues. The results of the simulation of the various scheduler algorithms

are stored in the result file. Figure 5.3 shows a top level block diagram of the C

model.

Figure 5.3: Behavioral C Model: Block Diagram

The major blocks of the C model are:

• Testcase Data File: This input data file contains input parameters for Sched-

650. The structure of the input parameters are as shown in Figure 5.4.

Figure 5.4: Testcase Data File format.

The timer module reads the next element from the input file, when all the

previous queues whose parameters have been read from the input file have been

built by the queue builder and sent to Sched-650.
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• Timer Module: The timer module maintains a 64-bit counter which increments

every time unit. Every time unit, the module checks if all the queues that have

been read from the input file have been fed to the Sched-650 and if all the

queues have already been fed, reads the next set of queues from the input file.

The timer module also controls the transfer of eligible queues from the traffic

shaper to the PSS and the transmission of packets from the PSS.

• Queue Builder : The queue builder builds queues and feeds the queues to Sched-

650 at the time unit mentioned by the input parameter. The parameters of the

queue are shown in Figure 5.4. Depending on whether a queue needs to be

shaped or not, the queue is sent to the traffic shaper or to an active list in the

PSS.

• Sched-650 : The three blocks of Sched-650 discussed in Section 5.1, namely the

traffic shaper, the programmable sequence scheduler and the traffic policer have

been implemented in this block. The Sched-650 receives its queues from the

queue builder module and, based on whether shaping is enabled or disabled,

sends the queue to the traffic shaper or to an active list in the programmable

sequence scheduler. Every time a queue enters or leaves the PSS, an entry or

exit timestamp is sent to the the result file with the queue ID and the activelist

ID.

• Result File: This data file captures the timestamp values dumped by the Sched-

650 block. In addition to the entry and exit timestamp of a queue into the active

list, the queue ID and the activelist ID are also sent to the result file. These

values can be used to study the arrival pattern of the traffic into each active

list, the jitter experienced by the queues, the scheduler behavior and hence the

departure pattern of the queues from the active list.

The behavioral C model was developed to understand the functionalities of each

block of Sched-650 and to identify early issues that may occur in implementation of

different scheduling policies. However, only a small testcase scenario can be studied

using this behavioral C model. In order to study the effect of the various scheduling
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Figure 5.5: Result File: Jitter Measurements.

algorithms on a real sample of traffic flows, a more realistic model of Sched-650 was

required. Agere’s SDE was used as a more realistic setup for the simulation study.

5.2.2 Setup 2: Agere’s SDE

Agere’s SDE or Software Development Environment is a software-based environ-

ment with a Java-based graphical user interface which enables development, simu-

lation, performance analysis and optimization of data-plane functionalities on the

network processor well before the devices are available. The SDE includes device

configuration capabilities, compilers, a debugger, a cycle-accurate simulator, a traffic

generator and analyzer with metrics window within a single framework. Figure 5.6

shows the configuration panels available in SDE’s GUI.

Figure 5.6: Agere SDE’s Java-based GUI.

For the purpose of this simulation study, modifications were made to the scheduler

code in the traffic management section of the SDE. The modifications are enumerated
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below:

1. Integer timestamping : A 64-bit integer timestamp was maintained to monitor

the timing behavior of the queues in Sched-650. Maintaining an integer times-

tamp as a multiple of TU (TU represents a time unit, calculated as a function

of core clock speed) simplifies the analysis of the simulation results. Handling

floating point timestamp values can result in increased chances of error.

A 64-bit timestamp was chosen to maintain timing values as maintaining a

smaller-sized timestamp would result in overflow (or wrapping) issues during

extended simulation study periods, particularly in high packet rates. Using

a 64-bit timestamp, however, increases the memory overhead and may face

bandwidth constraints in hardware implementations.

2. Jitter measurements : In order to study the queuing delay and jitter experienced

by the packets or queues in the active list, it is important to timestamp the

queues at two instants:

• Entry : Every time a new packet or a queue enters the active list, ready to

transmit a block of data.

• Exit : Every time a queue is chosen by the scheduling algorithm to leave

the active list, depending on the algorithm used.

Modifications were made to the SDE to timestamp the queues at the entry and

the exit of the active list. The timestamp values are written to a result file

exactly in the same format as was done in the behavioral C model, as shown in

Figure 5.4.

3. Scheduler Algorithms: This implementation is the core part of this research.

Modifications were made to the SDE to support multiple PSS scheduling al-

gorithms based on a selection. Depending on the scheduling policy selected,

the PSS works with the corresponding arbitration logic. Jitter and fairness

measures were studied for multiple algorithms discussed in Section 3.3.
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5.3 Metrics and Simulation Variables

In this section, we will define the metrics used in studying the performance of

Sched-650 for various scheduling policies followed by a description of all the param-

eters or simulation variables used in our simulation study.

• Performance Metrics: A number of QoS performance metrics were defined in

section 3.4. In our simulation study, fairness index and jitter will be the key

metrics that we will monitor to characterize a scheduling algorithm. Let us

briefly recall the definitions of these metrics (discussed in detail in section 3.4).

1. Jain’s Fairness Index for fairness:

Defined by ATM Forum Traffic Management Specification version 4.0, this

fairness index is used to evaluate the fairness of the distribution of the

available bandwidth among the individual flow. Jain’s fairness index for

N flows is defined as:

F
(

x0

r0
, · · · , xN

rN

)
=

(∑N
i=0

xi

ri

)2

n
∑N

i=0(
xi

ri
)2

(5.1)

where xi is the observed throughput in flow i and ri is the expected

throughput or fair share for flow i.

Jain’s fairness index produces a normalized number between 0 and 1, where

0 indicates the greatest unfairness and 1 indicates the greatest fairness.

2. 1 Point CDV for jitter:

Defined by IETF, particularly for ATM environments, 1-Point Cell Delay

Variation is derived from the arrival time of cells, measured against an ex-

pected arrival time. Supposing a stream of cells transmitted with constant

period T , the 1-point CDV of the cell k is the difference yk between the ac-

tual arrival time ak and a reference time ck. The reference time (expected

arrival time) is defined as follows:
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c0 = 0 (5.2)

a0 = 0 (5.3)

If ck ≥ ak, (5.4)

then ck+1 = ck + T (5.5)

else ck+1 = ak + T (5.6)

3. 2-Point PDV for jitter:

Defined by ITU-T SG13 in Rec. I.380, 2-point Packet Delay Variation (vk)

for an IP packet k between the source SRC and the destination DST is

the difference between the absolute IP packet transfer delay (xk) of the

packet and a defined reference IP packet transfer delay d1,2, between the

same measurement points.

vk = xk − d1,2 (5.7)

The reference IP packet transfer delay, d1,2, between the source and the

destination is the absolute IP packet transfer delay experienced by the

first packet between the two measurement points. Alternatively, the first

packet delay can be replaced with an average delay of the population of

packets as a nominal delay davg, which is tabulated in Table 5.1 for our

experiments.

• Simulation Variables: In this simulation study, we will vary the simulation

parameters 1 to 4 mentioned below. The values of the simulation variables used

for the simulation study are listed below :

1. Scheduling Algorithms: The algorithms that we will study as a part of

this work include First-Come First-Serve, Round Robin, Maximum Queue

Length First, Maximum Waiting-time first, Priority Queuing, Earliest

Deadline First and Weighted Jitter Earliest Deadline First. The choice
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of algorithm were made to compare the performance of deadline based

algorithms with other easily implementable algorithms. The first five al-

gorithms listed above can be easily implemented on hardware.

2. Packet sizes: IPv4 packets over ATM-AAL5 was considered for this study

as an example of cell-based traffic. In addition, IPv4 over ATM-AAL5 is

a good choice to test shaped WJ-EDF scheduling. IPv4 payload sizes of

20, 64, 148 and 1000 bytes are considered in this study as an example of

small and large sized packets.

3. Number of Traffic flows: Single-input, two-input and four-input traffic

flows are used in this simulation study. Only small number of traffic flows

were first considered to understand and compare the behavior of deadline

based algorithms with other algorithms.

4. Packet Rates : All the experiments are performed with the scheduler op-

erating at OC-3. The packet input rates for traffic chosen for this study

include OC-1 (51.84 Mbps), OC-3 (155.52 Mbps) and OC-24 (1.244Gbps).

These packet rates represent some of the commonly used packet rates in

real-time aaplications.

5. Traffic Types: As a part of this research, we will only focus on Constant

Bit Rate Traffic. Constant bit rate traffic is a good representation of voice

traffic.

5.4 Observations and Performance Analysis

In this section, we will analyze the observations of our experiments on the simu-

lation setups. The various scheduling algorithms were implemented on both setups.

Similar results were observed in the behavior of both the setups for the different

scheduling algorithms. Here is an example of the similarity of behavior seen in both

setups. A testcase with two input traffic flows, one with an input rate of OC-3 and

another with an input rate of OC-24 was generated by a traffic generator and fed to

the APP650 with a priority queuing scheduler operating at OC-3 in setup 2. The
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pattern of queue arrivals into the traffic shaper and PSS was studied on setup 2. A

testcase data file was built for setup 1 based on this observations. It was observed that

the timing behavior of the packets departing from the output of Sched-650 observed

was similar on both setup 1 and setup 2, as shown in Figure 5.7.

Figure 5.7: Behavior of packets from two traffic flows at the output of Sched-650.

However, only a small set of test patterns of queues could be studied on setup 1.

To a have a more realistic idea of the results, most of the analysis was made with

the results observed on setup 2. We will analyze these observations in the following

sections.

5.4.1 Fairness Index Analysis

The fairness of a scheduling algorithm is defined as discussed in section 3.4.5. Ex-

periments were performed to observe the impact of the different scheduling policies

on the fairness of a scheduler to traffic flows. In addition to this, the effect of the

behavior of packet size and number of flows on fairness was studied. For all the exper-

iments in this section, tests were repeated multiple times, following which 95 percent

confidence intervals [45] on the average value of the output metric were computed

and have been included in the tables (Refer Appendix A).
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Impact of the number of flows

Before studying the effect of a scheduling algorithm, the behavior of the scheduler

was studied for multiple input flows. In this experiment, we consider three testcase

scenarios of one, two and four input flows, all flows serviced by a single scheduler

operating at OC-3 speed, with priority queuing. Each input flow generates a constant

bit rate traffic stream, with varying input rates. The traffic flows carry IPv4 packets

over ATM-AAL5 with a IPv4 payload size of 20 bytes because this can be contained

in a single ATM cell, to undeestand the simples scenario.

• Scenario A: Single Traffic Flow

When single traffic flow is input to the scheduler, there is no issue of bandwidth

sharing or competition. The only parameter that affects the throughput of the

scheduler is the input rate of the traffic flow. Flows with input rates greater that

the scheduler rate receive a throughput ρ less than 1. This is clearly observed

in Figure 5.8 which shows the throughput of a scheduler operating at OC-3 for

various input rates. Table A.1 shows the service guaranteed to the single input

traffic flows of different input rates. Hence, by providing differ input rate traffic

to the scheduler, / we can study the maximum service that can be guaranteed

by a OC-3 scheduler.

Figure 5.8: Single flow: Output rate of a scheduler operating at OC-3 for various
input rates.

On the other hand, when multiple traffic flows are input to a scheduler (i.e.,

more than one traffic flow), the traffic generator simultaneously generates pack-

ets to each of the traffic flows at the specified input rates. In our experiments
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to study the impact of the number of flows on fairness, we will consider two

scenarios of multiple flows, scenario B of two simultaneous traffic flows and a

second scenario C of four simultaneous traffic flows.

• Scenario B: Two Traffic Flows

Incoming packets from traffic flow 1 are recognized by their IP destination

address and input rates and are sent to to their corresponding active lists. The

performance of the scheduler was studied in multiple experiments performed by

varying the input rates of the two traffic flows. The service that the scheduler

provides to each of the input traffic flows is shown in Figure 5.9 and Table A.2.

Figure 5.9: Two traffic flows: Output rate of a scheduler operating at OC-3, for
various input rates.

It can be observed from Figure 5.9 that the scheduler tries to maximize the fair

distribution of bandwidth between the two competing traffic flows. When the

combined bandwidth requested by both the competing flows is less than the

operating rate of the scheduler, the throughput of both the flows ρ1 and ρ2 is

close to 1. In all other cases, the throughput of either of the flows is affected.

A fair scheduling algorithm will distribute bandwidth to its competing flows

according to its input rates. It can be observed from the case of OC-3/OC-24

input pair that the scheduler bandwidth is not fairly shared. This is also evident

in Jain’s Fairness Index tabulated in Table A.2.

• Scenario C: Four Traffic Flows
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Incoming packets from the four flows are sent from active lists 1 to 4 respectively.

As the number of traffic flows sharing a scheduler increases, the fairness that

a scheduler provides to the competing flows becomes clearly evident as seen

in Table A.3. The throughput achieved by the individual flows decreases as

multiple flows load the scheduler.

Figure 5.10: Four traffic flows: Output rate of a scheduler operating at OC-3, for
various input rates.

It can be clearly seen in Figure 5.10 that priority queuing performs unfairly

when one of the competing flows has a much higher input rate or bandwidth

requirement compared to the other flows. We will be comparing the fairness of

different scheduling algorithms later in this section.

Impact of the packet size

Experiments were conducted by fixing the number of flows and the scheduling

policy and varying the IPv4 payload size. It was observed that there was negligible

change of the fairness of the scheduler with change in the packet size. This was

repeated for test cases with single and two input flows as can be seen in Table A.4

and Table A.5 respectively . Hence, from these observations, we can conclude that

the impact of packet size is negligible on the fairness of an algorithm, when other

parameters are kept constant.
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Impact of the scheduling algorithm

Scenarios B and C, discussed earlier in this section, were repeated to study the

behavior of different scheduling schemes in the programmable sequence scheduler

of the Sched-650. For a clearer understanding of the effect of scheduling algorithms,

experiments were conducted for the case of OC-3/OC-24 input rate pair which showed

most unfairness in priority queuing. Table A.6 and Figure 5.11 show the results of

experiments of scenario B, while Table A.7 and Figure 5.12 show the results of scenario

C for case 5. The weights assigned to the different flows for the case of WJ-EDF are

w1 = 4, w2 = 3, w3 = 2 and w4 = 1, where wi is the weight assigned to active list i.

Figure 5.11: Two input traffic flows: Comparison of scheduling algorithms.

As can be seen in Table A.6, the fairness index is similar and the difference in the

performance of the scheduler for the different scheduling policies is not very evident.

However, the difference in the throughput of flows and the fairness index of the various

scheduling scheme becomes evident in the case of scenario C. As the number of flows

increases, the fairness of the scheduler gets affected.

It can be seen from Table A.7 that deadline-based scheduling policies, namely

EDF and WJ-EDF provide better throughput to their flows and better fairness in

comparison to the performance of other scheduling schemes. EDF and WJ-EDF

define the deadlines of their packets based on the size of the packets and the input

rate of the traffic. WJ-EDF, in particular, can scale the delay bounds that are set for
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Figure 5.12: Four input traffic flows: Comparison of scheduling algorithms.

its packets by scaling them with appropriate weights.

First-Come First-Serve (FCFS) scheduling algorithm shows the poorest perfor-

mance in terms of fairness and throughput. Round Robin scheduler performs better

that a FCFS scheduler. It can also be observed from Table A.7 that maximum waiting

time and maximum queue length first schedulers perform better than a round-robin

scheduler. This is because round robin scheduling is not done based on the the basis

of any priority measure and hence is observed to be a relatively unfair scheduling

scheme.

5.4.2 Jitter Analysis

1-Point CDV and 2-Point PDV were calculated for the incoming packets of various

sizes and incoming rates, in accordance to the definition in Section 3.4.3. The inter-

arrival pattern was studied for each of these cases and the values of T and davg have

been tabulated in Tables 5.1 and 5.2 respectively. The values in the bracket indicate

the inter-arrival times of cells of the same packet.

It can be observed from the above tables that arrivals of the packets are seen at

much closer intervals as the input rate of the incoming packets increases. Additionally,

the packets arrive into the active lists from the shaper and hence, do not follow the

same timing pattern of CBR packets as sent by the traffic generator. However, even

packets arriving from the shaper are seen to follow a similar behavior as CBR packets
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Table 5.1: T for different arrival rates and packet sizes (IETF).

Payload Size OC-1 OC-3 OC-24
20 96 64 32
64 192 (96) 128(64) 64(32)

148 384(96) 256(64) 128(32)
980 2016(96) 1344(64) 672(32)

Table 5.2: davg for different arrival rates and packet sizes (ITU-T).

Payload Size OC-1 OC-3 OC-24
20 96 63.352 31.82
64 190(12) 128(64.136) 63.26(31.6)

148 380(32) 254(64.198) 130.4(30.73)
980 2012(32) 1312(64.248) 670.6(31.3)

from the traffic generator but with a different inter-arrival gap.

The packet inter-arrival patterns are measured in terms on TU or time units which

are calculated in terms of the core clock speed of 266.67 MHz.

Impact of the number of flows

Jitter measurements were also made when experiments were performed for scenario

A, B and C in section 5.4.1. In addition to the study of the effect of the number of

flows on the jitter for payload sizes of 20 bytes, we will study the same for payload

sizes of 64, 148 and 1k bytes. Studying the jitter values for a range of packet sizes

for increasing number of flows gives a better estimate of the performance of different

scheduling algorithms. Tables A.11 to A.14 and Figures 5.13 to 5.20 show the 1-Point

CDV and 2-Point PDV for different packet sizes.

• Scenario A: Single Traffic Flow

It can be observed from tables that 1-Point CDV and 2-point PDV are negligi-

ble, particularly in the case of single traffic flow, even for small packets. This

is because the input rate of the traffic is equal to the rate of operation of the

scheduler. Hence, very minimal jitter is experienced in single flow operations.
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Figure 5.13: Comparison of 1-Point CDV with number of flows for Packet Size = 1
Cell

Figure 5.14: Comparison of 2-Point PDV with number of flows for Packet Size = 1
Cell

However, the jitter experienced by a flow with input rate greater than the sched-

uler operating rate increases the jitter experienced by the packets. Irrespective

of the scheduling policy used, the jitter experienced in the case of single flow

is negligible. 1-Point CDV and 2-Point PDV have shown a similar behavioral

pattern for all packet sizes.

• Scenario B and C: Multiple Traffic Flows

The jitter increases as the number of flows competing for the scheduler band-

width increases. This can be observed in all cases as seen in figures. The

differences in the jitter behavior of different scheduling algorithms become ev-

ident in the case of two traffic flow inputs, particularly when the sum of the

input rates exceed the scheduler rate. In scheduling algorithms like priority

queuing, the jitter experienced by a higher priority flow is much lesser than a

lower priority flow. We will compare the jitter experienced by packets when

configured in different scheduling schemes later in this section.
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Figure 5.15: Comparison of 1-Point CDV with number of flows for Packet Size = 2
Cells

Figure 5.16: Comparison of 2-Point PDV with number of flows for Packet Size = 2
Cells

Impact of the packet size

Figure 5.21 and Figure 5.22 show the jitter behavior of single flow traffic for

different packet sizes with input rate of traffic being OC-24.

Negligible or close-to-zero jitter was seen in the case of single flows with input rate

less than OC-24. Details of 1-Point CDV and 2 Point PDV for single flow for different

packet sizes is shown in Tables A.11 to A.14. The jitter increases as the packet size

increases. This is because as the packet size increases, the average jitter experienced

depends on the jitter experienced by each the component blocks and hence, increases

the aggregate jitter experienced by the packet.

Similar behavior is noticed in the case of multiple flows as shown in Figures 5.21

to 5.24.
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Figure 5.17: Comparison of 1-Point CDV with number of flows for Packet Size = 3
Cells

Figure 5.18: Comparison of 2-Point PDV with number of flows for Packet Size = 3
Cells

Impact of the scheduling algorithm

As can be seen in Figures 5.13- 5.24, the scheduling algorithms have a significant

impact on the jitter experienced by the packets serviced by them. This difference is

particularly evident in the case of multiple flows. The average jitter of all the flows was

considered. The worst case jitter was experienced when the maximum waiting time

scheduler was configured. The best case jitter was seen in the case of EDF algorithm,

followed by WJ-EDF. This further proves that a deadline-based scheduling scheme

reduces the jitter experienced. In the case of WJ-EDF, lowest jitter is seen in the

traffic flow which has the highest priority.
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Figure 5.19: Comparison of 1-Point CDV with number of flows for for Packet Size =
8 Cells

Figure 5.20: Comparison of 2-Point PDV with number of flows for Packet Size = 8
Cells.

5.5 Weighted-Jitter EDF

In this section, we will analyze the observations of experiments performed with

the PSS scheduler of Sched-650 configured for Weighted-Jitter EDF and operating

at a rate of 155.52 Mbps.

Weighted-Jitter EDF is a version of EDF scheduling, in which the weights assigned

to the different active lists help in setting tighter delay bounds or deadlines to queues

or packets serviced by a active list. Weights w1, w2,...,wm can be linear or exponential

depending on the following decisions :

• Range of input rates of flows a queue must service.

• Packet sizes of the flows that a queue may service.

Figure 5.25 (Table A.8) and Figure 5.26 (Table A.9) shows a representation of the

deadlines enforced by an EDF algorithm to packets in flows with different packet sizes
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Figure 5.21: Comparison of 1-Point CDV with packet size for Single Flow.

Figure 5.22: Comparison of 2-Point PDV with packet size for Single Flow.

and different input rates respectively. In addition, we can also observe in the case

of WJ-EDF that scaling the delay bound by a weight factor helps in setting tighter

deadlines for departure of packets. In this example, the weight w1 or scaling factor

used is 4.

In these graphs, the active list under consideration is assigned a weight of 4. The

graphs clearly show that

• The weighted jitter EDF helps in setting tighter deadlines for packet departures;

and,

• The priority given to a lower bit rate traffic can be raised by scaling the active
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Figure 5.23: Comparison of 1-Point CDV with packet size for four Flows.

Figure 5.24: Comparison of 2-Point PDV with packet size for four Flows.

list it is directed to, if desired.

Sometimes, two or more competing flows may have the same deadline. In such a

scenario, the aggregate jitter experienced by packets serviced by the different active

list is compared and the active list with the highest jitter so far is given preference

to help that reduce its jitter.

The programmable sequence scheduler in Sched-650 was probed for single and

four input traffic flows scenario for different scheduling algorithms, as shown in Table

A.11 in page 84 to Table A.14 in page 85. It can be clearly seen that the jitter

experienced by the flows is much lesser for both the EDF and the WJ-EDF scheduler.
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Figure 5.25: Deadlines to packet departures under EDF and WJ-EDF for different
packet sizes.

Figure 5.26: Deadlines to packet departures under EDF and WJ-EDF for different
input rates.

In conclusion, the WJ-EDF tries to be fair to all its competing flows, in addition to

balancing the jitter experienced by its flows.
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Chapter 6

Conclusion and Future Work

The research work presented in this thesis targeted two main objectives. The

first one is to devise a scheduling scheme for the programmable sequence scheduler of

Sched-650 which performs efficiently in terms of the the jitter and bandwidth shared

by the flows serviced by the scheduler. Towards this goal, we defined a version of

Earliest Deadline First scheduling scheme called Weighted Jitter Earliest Deadline

First or WJ-EDF. Our second goal was to study the behavior of the WJ-EDF for

constant bit rate traffic and compare its performance with other commonly used

scheduling algorithms. In this chapter, we summarize the findings of our research

and conclude the research. Future work that can be continued from this research is

also discussed in this chapter.

6.1 Findings and Conclusion

Two simulation setups, a behavioral C model and Agere’s SDE were used in un-

derstanding the behavior of scheduling algorithms. Since the timing behavior of the

algorithms was observed to be similar on both the setups and only a small testcase

could be studied on the behavioral C model, most of the experiments were performed

on Agere’s SDE. The bandwidth sharing property and the jitter experienced by pack-

ets serviced by different scheduling algorithms were studied.

Fairness of a scheduling algorithm was studied by varying the number of flows
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and packet sizes. It was observed that the throughput guaranteed by the scheduler

to its flows was reduced as the number of flows increased but the fairness depends on

the scheduling algorithm used. Deadline-based scheduling schemes, namely EDF and

WJ-EDF were seen to provide the highest fairness followed by priority queuing. First-

Come First-Serve (FCFS) scheduling showed the poorest performance in fairness.

Jitter experienced by the different flows was studied in the same set of experiments.

The scheduling algorithms has a significant impact on the jitter experienced by the

packets serviced by them. This difference is particularly evident in the case of multiple

flows. The average jitter of all the flows was considered. The worst case jitter was

experienced when the maximum waiting time scheduler was configured. The best

case jitter was seen in the case of EDF algorithm, followed by WJ-EDF. In the case

of WJ-EDF, lowest jitter is seen in the traffic flow which has the highest priority.

6.2 Future Plans

The performance of Weighted-Jitter Earliest Deadline First scheduling was ana-

lyzed for Constant Bit Rate Traffic as a part of this thesis and compared with the

performance of other common scheduling schemes. Constant bit rate traffic is a good

representation of voice traffic. In addition to voice, it is also important to study

the performance of WJ-EDF for other applications such as video and data. Future

work can concentrate on analysis of WJ-EDF for other traffic types like real-time

and non-real time variable bit rate traffic and best-effort traffic types on the network

processor.

Deadline-based scheduling schemes performs better in terms of jitter experienced

by the packets as seen in this simulation study on setup 2. However, some of the

assumptions made for this study such as implementation of a 64-bit timestamp and

maintenance of aggregate jitter without wrapping need further analysis for imple-

mentation on hardware. Additionally, implementing WJ-EDF on an FPGA model of

APP650 will provide us with a more realistic idea of the performance of WJ-EDF on

the ASIC.
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Appendix A

Tables

Table A.1: Single Traffic Flow fed to OC-3 Scheduler (Sample Size n=10)

Input Output Throughput Fairness 95% Confidence Error in
Rate Rate(Mbps) Index Interval mean %

64 kbps 0.064 1 1 0.0008 1.3063
OC-1 51.668 0.9967 0.9967 2.8576 5.5307
OC-3 155.122 0.9974 0.9974 0.0343 0.0221
OC-24 156.671 0.1259 0.1259 0.0672 0.0429
OC-48 156.221 0.0628 0.0628 0.0325 0.0208
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Table A.2: Two Traffic Flows fed to OC-3 Scheduler (Sample Size n=10)

Flow 1 Flow 2
Input Output 95% CI Error in Input Output 95% CI Error in
Rate Rate(Mbps) mean % Rate Rate(Mbps) mean %
OC-1 49.743 0.0356 0.0716 OC-1 48.122 0.2345 0.4873
OC-1 51.644 0.6245 1.2091 OC-3 99.928 2.4392 2.4410
OC-3 77.991 0.0125 0.0160 OC-3 77.992 0.0021 0.0027
OC-3 78.133 0.0023 0.0030 OC-24 78.217 0.0345 0.0441
OC-24 79.973 0.0724 0.0905 OC-24 79.788 0.0327 0.0410

Input Output Throughput of Throughput of Fairness
Rates Rate(Mbps) Flow 1 Flow 2 Index

OC-1,OC-1 49.743, 48.122 0.9595 0.9283 0.9997
OC-1,OC-3 51.644, 99.928 0.9962 0.6425 0.9555
OC-3,OC-3 77.991, 77.992 0.5015 0.5015 1.0000
OC-3,OC-24 78.133, 78.217 0.5024 0.0629 0.6232
OC-24,OC-24 79.973, 79.788 0.0643 0.0641 1.0000

Flow 1 Flow 2
Input Output 95% CI Error in Input Output 95% CI Error in
Rate Rate(Mbps) mean % Rate Rate(Mbps) mean %
OC-1 51.832 0.2345 0.4524 OC-1 51.773 0.0961 0.1856
OC-3 54.022 0.0342 0.0633 OC-1 52.282 0.0264 0.0505
OC-24 54.11 0.0074 0.0137 OC-24 52.305 0.0475 0.0908
OC-3 52.335 0.0892 0.1705 OC-3 52.544 0.0116 0.0221
OC-24 54.176 0.0784 0.1446 OC-3 52.406 0.0567 0.1082
OC-24 52.402 0.5623 1.0731 OC-24 53.423 0.0124 0.0232

Flow 3 Flow 4
Input Output 95% CI Error in Input Output 95% CI Error in
Rate Rate(Mbps) mean % Rate Rate(Mbps) mean %
OC-1 51.832 0.0836 0.1612 OC-1 51.832 0.0034 0.0066
OC-1 54.022 0.0786 0.1454 OC-1 54.022 0.0039 0.0073
OC-1 54.11 0.0347 0.0641 OC-1 54.11 0.0789 0.1459
OC-3 52.335 0.0287 0.0548 OC-3 52.335 0.0458 0.0876
OC-3 54.176 0.0819 0.1511 OC-3 54.176 0.2579 0.4760
OC-24 52.402 0.6169 1.1772 OC-24 52.402 0.7845 1.4971
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Table A.3: Four Traffic Flows fed to OC-3 Scheduler (Sample Size n=10)

Number Input
1 OC-1/OC-1/OC-1/OC-1
2 OC-3/OC-1/ OC-1/OC-1
3 OC-24/OC-1/OC-1/OC-1
4 OC-3/OC-3/OC-3/OC-3
5 OC-24 /OC-3/OC-3/OC-3
6 OC-24/OC-24/OC-24/OC-24

Input Flow Output Rate Flow Throughput Fairness
Number 1 2 3 4 1 2 3 4 Index

1 51.832 51.773 38.956 38.961 0.9998 0.9987 0.7515 0.7516 0.9804
2 54.022 52.282 39.209 39.264 0.3474 1.0085 0.7563 0.7574 0.9016
3 54.11 52.305 39.266 39.475 0.0435 0.0420 0.7574 0.7615 0.5561
4 52.335 52.544 39.41 39.116 0.3365 0.3379 0.2534 0.2515 0.9798
5 54.176 52.406 39.347 39.567 0.0435 0.337 0.2530 0.2544 0.8072
6 52.402 53.423 39.11 39.124 0.0421 0.0429 0.0314 0.0315 0.978

Table A.4: Comparison of Scheduling Algorithms for traffic flow feeding the OC-3
Scheduler (Sample Size n=10)

Output rate Fairness
OC-3 (20 bytes) 155.122 0.9974
OC-3 (64 bytes) 155.0953 0.9973
OC-3 (148 bytes) 155.142 0.9976
OC-3 (980 bytes) 155.332 0.9988



80

Table A.5: Comparison of Scheduling Algorithms for two traffic flows feeding the
OC-3 Scheduler (Sample Size n=10)

Flow Output Rate Throughput Fairness
1 2 1 2 1 2 Index

OC-3 (20 bytes) OC-3 (20 bytes) 77.991 77.992 0.5015 0.5015 0.9999
OC-3 (20 bytes) OC-3 (64 bytes) 77.889 77.865 0.5008 0.5007 0.9999
OC-3 (20 bytes) OC-3 (148 bytes) 78.001 77.8452 0.5015 0.5005 0.9999
OC-3 (64 bytes) OC-3 (64 bytes) 77.8239 77.8336 0.5004 0.5005 0.9999
OC-3 (64 bytes) OC-3 (148 bytes) 77.9837 78.1224 0.5014 0.5023 0.9999
OC-3 (20 bytes) OC-24 (20 bytes) 78.133 78.217 0.5024 0.0629 0.6232
OC-3 (20 bytes) OC-24 (64 bytes) 77.934 78.332 0.5011 0.063 0.6237
OC-3 (20 bytes) OC-24 (148 bytes) 78.3342 78.3145 0.5037 0.063 0.6231
OC-3 (64 bytes) OC-24 (64 bytes) 78.4043 78.1245 0.5041 0.0628 0.6227
OC-3 (64 bytes) OC-24 (148 bytes) 78.2315 78.7236 0.5030 0.0633 0.6238

Table A.6: Comparison of Scheduling Algorithms for two traffic flows feeding the
OC-3 Scheduler (Sample Size n=10)

Algorithm Output Rate Throughput Fairness
1 2 1 2 Index

Earliest Deadline First 77.879 77.809 0.5008 0.5003 0.9999997
Weighted Jitter Earliest Deadline First 77.892 77.747 0.5008 0.4999 0.9999991

Round Robin 77.658 77.295 0.4993 0.4970 0.9999945
First Come First Serve 77.321 76.896 0.4972 0.4944 0.9999924

Maximum Waiting Time 77.341 77.571 0.4973 0.4989 0.9999977
Maximum Length 77.442 77.337 0.498 0.4973 0.9999995
Priority Queuing 77.823 77.695 0.5004 0.4996 0.9999993

Algorithm Flow 1 Flow 2
95% CI Error in mean % 95% CI Error in mean %

EDF 0.0312 0.0423 0.0729 0.0901
Weighted Jitter EDF 0.0348 0.0447 0.0723 0.0930

Round Robin 0.0566 0.0728 0.0872 0.1129
First Come First Serve 0.0236 0.0305 0.1261 0.1640

Maximum Waiting Time 0.0679 0.0878 0.1342 0.1730
Maximum Length 0.0495 0.0639 0.0357 0.0461
Priority Queuing 0.0295 0.0378 0.8782 1.1303
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Table A.7: Comparison of Scheduling Algorithms for four traffic flows feeding the
OC-3 Scheduler (Sample Size n=10)

Number Algorithm Name
1 EDF
2 Weighted Jitter EDF
3 Round Robin
4 First Come First Serve
5 Maximum Waiting Time
6 Maximum Length
7 Priority Queuing

Number Output Rate Throughput Fairness
1 2 3 4 1 2 3 4 Index

1 50.452 49.623 42.05 41.873 0.3244 0.3191 0.2704 0.2692 0.9923
2 51.662 50.329 40.35 40.227 0.3322 0.3236 0.2595 0.2587 0.9863
3 48.859 48.547 31.428 32.006 0.3142 0.3122 0.2021 0.2058 0.9573
4 47.214 47.924 29.561 28.349 0.3036 0.3082 0.1901 0.1823 0.9404
5 47.231 46.749 34.567 32.006 0.3037 0.3006 0.2223 0.2058 0.9712
6 48.267 48.539 38.569 36.564 0.3104 0.3121 0.2480 0.2351 0.9841
7 49.847 49.821 40.546 39.361 0.3124 0.3145 0.2734 0.2388 0.9834

Number Flow 1 Flow 2 Flow 3 Flow 4
95% CI Error in 95% CI Error in 95% CI Error in 95% CI Error in

mean % mean % mean % mean %
1 0.0348 0.0689 0.0484 0.0975 0.832 1.9786 0.0484 0.1155
2 0.0566 0.1095 0.0786 0.1561 0.022 0.0545 0.0479 0.119
3 0.2357 0.4824 0.0035 0.0071 0.011 0.0350 0.0635 0.1983
4 0.0679 0.1438 0.0529 0.1103 0.0335 0.1133 0.0529 0.1865
5 0.0495 0.1047 0.0088 0.0188 0.1176 0.3402 0.0788 0.2462
6 0.0295 0.0610 0.6169 1.2709 0.1402 0.3635 0.0617 0.1687
7 0.0554 0.1059 0.0517 0.0983 0.3423 0.8686 0.0517 0.1320
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Table A.8: Deadlines applied to packets of different sizes

Input OC-3 pattern PACKET DEADLINE
64 BYTE EDF 128 BYTE EDF 128 BYTE WJ-EDF

64 64 138 83
128 128 202 130
192 192 266 194
256 256 330 258
320 320 394 322
384 384 458 386
448 448 522 450
512 512 586 514
576 576 650 578
640 640 714 642
704 704 778 706
768 768 842 770
832 832 906 834
896 896 970 898
960 960 1034 962
1024 1024 1098 1026
1088 1088 1162 1090
1152 1152 1226 1154
1216 1216 1290 1218
1280 1280 1354 1282
1344 1344 1418 1346
1408 1408 1482 1410
1472 1472 1546 1474
1536 1536 1610 1538
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Table A.9: Deadlines applied to packets arriving at different input rates

Input OC-3 pattern PACKET DEADLINE
OC-3 EDF OC-1 EDF OC-1 WJ-EDF

32 32 46 39
64 64 78 71
96 96 110 103
128 128 142 135
160 160 174 167
192 192 206 199
224 224 238 231
256 256 270 263
288 288 302 295
320 320 334 327
352 352 366 359
384 384 398 391
416 416 430 423
448 448 462 455
480 480 494 487
512 512 526 519
544 544 558 551
576 576 590 583
608 608 622 615
640 640 654 647
672 672 686 679
704 704 718 711
736 736 750 743
768 768 782 775

Table A.10: Algorithm Legend

1 Earliest Deadline First
2 Weighted Jitter Earliest Deadline First
3 Round Robin
4 First Come First Serve
5 Maximum Waiting Time
6 Maximum Length
7 Priority Queuing
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Table A.11: 1-Point CDV for Single Input Flow

Algorithm 1-Point CDV CI % Error 1-Point CDV CI % Error
20 bytes 64 bytes

1 0.4836 0.0001 0.0265 14.6046 0.0927 0.6350
2 0.4786 0.0035 0.7292 14.5678 0.0472 0.3242
3 0.6347 0.0974 15.3510 26.2317 1.1028 4.2042
4 0.5287 0.0053 1.008 21.7893 0.9467 4.3448
5 0.7879 0.0195 2.4687 29.8128 0.8426 2.8264
6 0.6169 0.0162 2.6277 27.9235 0.2342 0.8388
7 0.5165 0.0245 4.7433 20.0560 1.3078 6.5207

148 bytes 1k bytes
1 52.5678 0.0239 0.0455 67.3479 0.0427 0.0634
2 53.4179 0.0867 0.1624 68.5656 0.025 0.0364
3 63.5189 0.9765 1.5373 76.2357 0.0554 0.0726
4 61.2390 0.0845 0.1380 75.6789 0.0437 0.0577
5 67.2394 0.6723 0.9999 80.4946 0.0593 0.0736
6 65.2349 0.5679 0.8705 78.2946 0.1872 0.2392
7 57.1943 0.9456 1.6533 71.4554 0.0632 0.0884

Table A.12: 2-Point PDV for Single Input Flow

Algorithm 2-Point PDV CI % Error 2-Point PDV CI % Error
20 bytes 64 bytes

1 0.9235 0.0073 0.7887 18.3429 0.0044 0.0239
2 0.9729 0.0047 0.4852 18.3945 0.0051 0.0276
3 1.6535 0.0066 0.3980 22.7893 0.9534 4.1835
4 1.6723 0.0045 0.2701 22.4582 0.0834 0.3714
5 2.0729 0.0327 1.578 26.2579 0.0235 0.0893
6 1.8338 0.0078 0.4278 28.2845 0.2451 0.8666
7 1.0173 0.0045 0.4444 20.0560 0.6732 3.3566

148 bytes 1k bytes
1 40.2857 0.0894 0.222 77.2134 0.0872 0.113
2 41.5672 0.0734 0.1766 78.6723 0.0159 0.0202
3 44.2903 0.0645 0.1456 85.8724 0.0942 0.1097
4 45.3956 0.0673 0.1483 88.3261 0.0946 0.1071
5 48.2315 0.0926 0.1921 81.3421 0.0066 0.0081
6 50.2346 0.0068 0.0135 88.2357 0.2185 0.2476
7 43.193 0.0783 0.1813 76.1678 0.0905 0.1188
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Table A.13: Average 1-Point CDV for Four Input Flows

Algorithm 1-Point CDV CI % Error 1-Point CDV CI % Error
20 bytes 64 bytes

1 40.4836 0.0092 0.0228 52.4531 0.008 0.0152
2 41.7652 0.0082 0.0197 51.8568 0.0124 0.0239
3 44.8349 0.0042 0.0094 59.7801 1.8596 3.1107
4 47.4379 0.0091 0.0191 58.9321 0.9834 1.6687
5 51.5623 0.0035 0.0068 68.6789 0.7812 1.1375
6 49.6169 0.0979 0.1972 63.6239 0.0218 0.0342
7 42.6878 0.0894 0.2095 55.1372 0.8903 1.6148

148 bytes 1k bytes
1 56.837 0.0973 0.1712 99.3479 0.0189 0.0190
2 58.2346 0.0689 0.1183 93.5856 0.0838 0.0895
3 63.7236 0.8045 1.2625 134.2357 0.047 0.035
4 61.6789 0.0663 0.1076 130.6789 0.484 0.3704
5 74.7623 0.0589 0.0788 152.4946 0.044 0.0288
6 68.4523 0.0671 0.0980 138.2946 0.9084 0.6568
7 62.3227 0.8745 1.4032 120.1070 0.3481 0.2898

Table A.14: Average 2-Point PDV for Four Input Flows

Algorithm 2-Point PDV CI % Error 2-Point PDV CI % Error
20 bytes 64 bytes

1 40.9235 0.0042 0.0103 52.3429 0.0097 0.0185
2 42.9728 0.0032 0.0075 51.3945 0.1259 0.245
3 45.6535 0.0027 0.0060 58.7893 1.0678 1.8163
4 48.6723 0.0081 0.0167 57.4582 0.7891 1.3733
5 52.0729 0.001 0.0019 66.2579 0.2312 0.3489
6 50.8338 0.0562 0.1106 62.2845 0.0872 0.1401
7 43.2037 0.0846 0.1957 55.6068 0.6341 1.1403

148 bytes 1k bytes
1 56.2857 0.0812 0.1443 98.2134 0.6832 0.6956
2 59.5672 0.0229 0.0385 94.6723 0.979 1.0341
3 64.2903 0.0076 0.0118 135.8724 0.0391 0.0288
4 62.3956 0.0832 0.1333 131.3261 0.0456 0.0347
5 73.2315 1.854 2.5317 153.342age1 0.0843 0.055
6 69.2346 0.387 0.559 139.2357 0.9306 0.6684
7 63.193 0.9678 1.5315 121.8608 0.9325 0.7652


