
 

ABSTRACT 

D’MELLO, WARREN JOHN. A Study on Selective Ahead-of-Time Compilation for Embedded 

Java. (Under the direction of Dr. Edward F. Gehringer.) 

In recent years, Java has been making tremendous inroads into the world of embedded 

devices and systems. Thus, it is increasingly important to study the performance characteristics of 

the Java Virtual Machines (JVMs), and different optimization strategies that can help boost 

application performance. 

Usually, embedded systems are very constrained in memory and processor speed, and hence 

it is imperative to extract maximum performance without having to incur a high memory cost. 

Just-in-time (JIT) compilers give high performance improvements, but they come at a memory 

cost (code size, data and code cache requirements) which many embedded systems cannot afford. 

A viable alternative is to ahead-of-time (AOT) compile into native code the few hottest – i.e. 

most used, most CPU-intensive, and/or time-critical – methods of the application. This results in 

a performance boost anywhere from around 88 to 98 percent, while increasing the application 

size only marginally. 

This thesis presents our research work in performance and analysis of embedded Java 

systems. Our work has been divided into two phases. During the first phase, we ran a number of 

Java benchmarks on Embedded JVMs. This was mainly to understand the embedded systems, and 

their characteristics and performance aspects that made them differ from their desktop 

counterparts. The second phase involved executing the aforementioned benchmarks without any 

optimization techniques, and then selectively ahead-of-time compiling different methods and 

classes of these Java benchmarks and measuring the resulting performance benefits. We 

performed an in-depth analysis and study on how to go about profiling the Java application, 

selecting the methods that fit the “hot” criteria, AOT-compiling those methods, and subsequently 

measuring the resulting performance gain. 
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Chapter 1: INTRODUCTION 

1.1. Advantages of Java in Embedded Systems 

In recent years, Java has been attracting considerable interest from developers of embedded 

systems and devices. Java being highly object oriented (OO), has all the benefits that OO 

methodologies have to offer over traditional procedural languages. Java supports multi-threading 

inherently, and this results in better responsiveness and real-time behavior. Since Java was 

originally intended for use in networked/distributed environments, its capabilities in those areas 

are strong and easy to use. This proves useful in embedded devices that have the need to connect 

and communicate with other devices. The smaller memory footprint of Java bytecodes, as 

compared to applications compiled into native code, presents an attractive option to developers of 

embedded devices, where memory size and cost is a crucial issue [4]. Moreover, the inherent 

portability characteristics that Java applications possess make them a very viable alternative in 

the embedded world, with its myriad of platform configurations. In addition, because of Java’s in-

built safety features, untrusted code can be allowed to execute on devices such as mobile phones, 

palm pilots, etc., without the worry of anything malicious occurring. However, it must be kept in 

mind that Java applications cannot execute by themselves, and a Java Virtual Machine (JVM) is 

needed to interpret and execute the Java bytecodes.  

 

Embedded-system developers have taken an active interest in Java over the past few years, 

because the language is abstracted from the underlying hardware, making its applications 

portable. With Java, developers can target a particular platform-independent API, and migrate 

their applications to different devices without recompiling them [1], unless the application itself 

uses native code to interface directly with the hardware or device drivers. Moreover, since Java 
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applications can execute from class files containing bytecodes, their memory requirements are far 

smaller than that of applications stored in native code.  

 

1.2. Considerations in choosing embedded Java 

A lot of planning and infrastructure is needed to run Java on an embedded device. The 

suitability of Java depends on the application and device requirements ― for instance, resource, 

integration, and real-time performance requirements [1]. One must also consider the operating 

system running on the embedded device. In the embedded world, operating system and hardware 

configurations go hand in hand. Moreover, the Java Virtual Machine (VM) that is needed to 

execute the Java bytecodes is platform dependent, and not all VMs support the same OS/CPU 

combination. A VM that supports a particular OS/CPU combination may not support the same 

OS on a different CPU, or the same CPU running a different OS. This was one of the biggest 

hurdles that we faced in comparing VMs, since it was very difficult to get more than one VM that 

was configured for a particular OS/CPU combination.  

 

In addition, not all the VMs support the same Java specifications, such as, Connected Limited 

Device Configuration (CLDC), Mobile Information Device Profile (MIDP), Connected Device 

Configuration (CDC), etc. [2], collectively referred to as the Sun Java 2 Micro Edition (J2ME) 

specification. This could be due to the fact that the J2ME specification is relatively new. Since 

embedded devices can be constrained in memory and CPU performance, and have different 

requirements than their desktop peers, it is not practical to have the entire gamut of Sun Java 2 

Standard Edition (J2SE) libraries. Instead, embedded JVMs normally follow one or more of the 

Sun J2ME specifications, which are tailored to fit the requirements of smaller devices. 
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However, few VMs are yet compliant with any particular J2ME specification or even support 

the specification’s libraries. Fortunately, during the past few months, an increasing number of 

vendors are moving toward compliance with the Sun J2ME specifications. Moreover, vendors are 

developing versions of their VMs to encompass a broader range of OS/CPU combinations. 

 

 Finally, one of the biggest questions that embedded system developers face, is the 

performance comparisons of embedded Java applications versus those compiled natively. 

Admittedly, embedded Java does face a performance drawback against native code since the 

application is stored as bytecodes, which have to be interpreted by the Java VM before they can 

be executed. This does slow down the execution performance, but not by as much of a margin as 

generally presumed. One of the reasons is because the VM technology has been continuously 

engineered over the years to optimize and execute the code in the best possible manner. In 

addition, it has been shown that in some cases, a well-written Java program could equal or exceed 

the efficiency of an average quality C/C++ program [8]. Moreover, just-in-time (JIT) compilers 

have been proven to generate extremely efficient and optimized code [3]. In addition, as our 

studies and research will show, ahead-of-time (AOT) compilation is another, relatively new, 

technique that can be used to increase the performance of embedded Java applications. 

 

These considerations make for a number of decisions when designing and developing 

embedded devices. Java hardware manufacturers and software developers have to decide which 

hardware configuration to use, whether to use a software VM, accelerator or Java hardware 

engine, and if a VM, then which vendor’s VM. To make intelligent decisions, they have to 

understand the performance consequences of these different embedded Java solutions for their 

applications. Not enough information is currently available for customers and manufacturers to 

make knowledgeable decisions. Our work aims to shed more light on this area. 
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1.3. Thesis Outline 

In the following chapter, we explain the optimization techniques that are available to 

embedded Java application developers. We then go on to describe the results of our work in the 

execution of existing benchmarks on a few embedded JVMs, and understanding their 

performance shortfalls. We make a short mention about JIT compilers and their performance 

advantages, as compared to when the VM simply interprets the application’s bytecodes. We then 

go on to describe in detail the study that we conducted on AOT compilation. We start by 

discussing how to profile the application in order to find the hot methods and/or classes, and then 

natively compile those sets of methods. Finally, we chart the performance gain and memory size 

increase as we increase the number of the methods that are AOT-compiled. In conclusion, we 

give a few suggestions based on our experience with AOT compiling, and leave a few open 

questions regarding the performance curves that we obtained. 
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Chapter 2: OPTIMIZATION TECHNIQUES 

 

Normally, Java programs are compiled into class files comprising Java bytecodes, which are 

machine independent, so that they are not reliant on the underlying hardware configuration. 

However, this could cause Java to take a performance hit, since these bytecodes have to be 

translated to machine code at run time. To overcome this, numerous Java vendors opt for 

solutions such as just-in-time compilation (JIT) [4, 5], ahead-of-time compilation (AOT) [8, 9, 

11, 12], or even hardware systems that directly execute the bytecodes [6].  

 

The most common technique is an intelligent JIT, wherein the bytecodes are dynamically 

translated/compiled into native code, which is then executed directly. We say here intelligent JIT 

because when JIT technology was still in its infancy, some JIT implementations used to translate 

every method of the Java application [4]. This used to cause quite a big memory overhead for 

storing all the compiled native code in the JIT compiler’s code cache, since the cache was usually 

a primitive queue (most likely FIFO), and methods could get replaced quite often. This was not 

too consequential in desktop/server environments, where memory was not a scarce resource. 

However, when small, memory-constrained, embedded environments were considered, memory 

overhead became crucial. Hence, today, most vendors use more intelligent JIT systems, which 

analyze the application at run time, and decide which compiled methods should be stored in its 

cache memory for future use [5]. The JIT makes these decisions based mainly on the number of 

times the method is called, after which it has to compile the method and save the resulting native 

code in its cache. This number can be specified and tuned in most modern VMs. In addition, 

advanced JIT compilers use runtime profiling and adaptive re-compilation techniques. Moreover, 

most JIT-VM systems allow the developer to specify the minimum and maximum amounts of 

cache memory that the JIT will use to store its compiled code. Some of them even allow the 
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developer to vary the level of optimization, from a fast JIT (less optimization) but slower 

application, to a slower JIT (more optimization) but faster application.  

 

Hence, developers must consider the tradeoffs between memory size and performance. 

Depending on the CPU instruction set, the size of the application code expands as it is compiled 

from bytecodes to machine code. Typically, we have observed that the expansion ranges from 

three to ten times. Thus, more memory is required for the JIT cache as one increases the number 

of methods to save. Moreover, a JIT may not be appropriate for some applications or platforms ― 

for instance, if performance already meets expectations and the developers do not want the 

additional complexity of a JIT compiler in their device. Or, in some cases, developers may not be 

able to afford the additional memory overhead of a JIT compiler that is needed for the JIT code 

itself, as well as the code cache that the JIT uses to store the compiled methods. In this case, they 

may prefer to sacrifice performance instead of the incurring the cost for the additional memory. 

Embedded application developers thus have great flexibility in tuning their applications and 

hardware environments.  

 

Where performance is more critical than memory, developers could opt to ahead-of-time 

(AOT) compile the entire Java application [8, 9]. The application will certainly be larger than 

with Java bytecodes, typically an order of magnitude expansion, as mentioned earlier, but 

performance will be better. However, advanced VMs and their accompanying integrated 

development environments (IDEs) allow developers to AOT-compile specific classes or methods. 

For instance, CPU-intensive or time-critical methods, termed hot methods, may be compiled 

ahead of time, while the rest of the application remain in bytecode. Thus, selective AOT 

compilation allows the size of an application to be traded off against performance. It may allow a 

significant performance boost with only nominal memory expansion. However, finding these hot 
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methods does require quite a detailed performance analysis of the Java application. Fortunately, 

advanced tools are available to aid in this analysis, as we will describe in subsequent chapters. 

  

It must be noted here that AOT compilation is different from compiled Java. In the latter 

case, there is no need for having a VM, and the Java application is compiled into machine code 

and run as an executable. In case of the former, we still have the VM, along with the AOT-

specific shared object files that are needed for relocation support, native support, garbage 

collection, and exception-throwing support. Moreover, since only certain specific methods are 

AOT-compiled, the resulting application is a mix of bytecodes and native code. The VM handles 

the transition between these different types of code formats, and allocates memory and fixes the 

addresses and values such as constant pool entries, static fields, and class addresses, to name a 

few. 

 

In addition to JIT and AOT techniques, developers may use hardware Java processors and 

accelerators to improve performance. Java hardware processors that directly execute the Java 

bytecodes eliminate the need for an interpreter or JIT, hence avoiding the performance hit of 

translating bytecodes into native code [4, 6, 7, 10]. While this seems like an attractive alternative, 

it does curtail the developer’s flexibility, since only Java applications will run on these embedded 

devices, precluding applications written in popular languages like C. Moreover, device drivers 

would have to be written, and hardware accessed, in Java, instead of in C code accessed via the 

Java Native Interface (JNI). In addition, since the Java processor directly executes the bytecodes, 

the translator is not able to optimize machine code as a JIT compiler would. Another option is for 

a Java hardware accelerator, such as a coprocessor, to translate the byte code to native code [6, 

10]. So in this case, while a VM is required, a JIT compiler is not needed. However, coprocessors 

require highly customized applications and platforms, and do not yet support all microprocessor 



 

 8  

families. Moreover, the cost of these hardware solutions is quite exorbitant, and this presents a 

very real obstacle to embedded system manufacturers who have to mass-produce their devices. 

 

In summary, while there are numerous optimization options available to embedded Java 

developers, the final choice rests with the exact needs of the application, as well as the clients and 

customers for whom these embedded devices and applications are being developed. Some 

applications may not need a maximum performance, as long as their real-time deadlines are met. 

Moreover, not many customers may be willing to bear the additional memory cost needed to 

achieve a large performance gain. In contrast, some customers may demand maximum 

performance at any cost. If memory cost is not a problem, then a JIT could be very suitable, but if 

memory cost is a factor, then AOT compilation may be more appropriate. 



 

 9  

Chapter 3: STUDIES ON CURRENT PLATFORMS 

 
During the initial phase of our research work, a number of embedded Java virtual machines 

were benchmarked and analyzed on different operating systems (OS) / hardware configurations. 

3.1. Platform Configurations 

The VMs were analyzed on the following OS/hardware platforms –  

• Microsoft Windows™ NT/x86 

• QNX Neutrino™/Power PC 

• aJile’s JEM2 processor (Java microprocessor ) [6] 

• QNX Neutrino™/x86 

 
The Windows NT environment was included because although it isn’t an embedded 

environment, it is used as the reference platform of choice for evaluating and studying different 

VMs. Though the conclusions derived from the benchmark studies on this platform may not 

reflect all of the characteristics of the VMs in a true embedded environment, they still serve to 

give a general idea of how the VMs perform when compared with each other, and how they 

behave when memory and resources are not that big a factor. As we mentioned earlier, it is quite 

difficult to obtain versions of the VMs from the different vendors that support the same 

OS/hardware configuration. One of the reasons for this is that unlike desktop systems, there are 

many OS/hardware combinations available for embedded systems and there is no standard 

reference platform. Another reason could also be a strategic one, with VM vendors forming 

alliances with OS/hardware vendors. In addition, it could also be that the need never arose for a 

vendor of a particular VM to develop a version for a given OS/hardware platform. Nonetheless, 

as of now, Windows NT/x86 is one of the only platforms supported by most of the VMs. The 
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parameters of the NT/x86 platform used for the benchmarks are – Gateway desktop PC, 

Microsoft Windows NT v. 4, Intel Pentium III 550MHz, and 128MB RAM. 

 

The second platform on which the analysis was performed was a Power PC embedded device 

(RPX Lite™) from Embedded Planet. It has a Motorola Power PC 823(e) processor running at 

66MHz, with 16MB Flash, 16MB RAM, and 128KB NVRAM. The operating system loaded on 

it is QNX Neutrino v. 2.0. This is a true embedded device, but unfortunately, only one VM 

(IBM’s VAME) could be analyzed on this configuration, since no other VM supported this 

OS/CPU combination. 

 

The third platform that has been studied deviates quite a bit from the previous two platforms. 

It consists of a microprocessor that directly executes the Java bytecodes, and therefore an 

interpreter/JIT is no longer needed to execute the Java application. The embedded device used in 

the study was an evaluation board, aJ-PC104 system from aJile, which had a JEM2 direct 

execution Java microprocessor running at a 40MHz, with 1MB SRAM, and 1MB Flash. 

 

The final configuration that was studied only during the second phase, when we conducted 

our AOT analysis, was an advanced embedded board from CP Technology, named Power IA 

Service Gateway. It contained a 233MHz National Semiconductor x86 chip, along with 32MB 

Flash, and 128 MB RAM. The operating system loaded was QNX Neutrino v. 6.1.0. 

 

3.2. Embedded Java VMs 

The Embedded Java VMs/processor that were considered in the study are –  

• aJile JEM chip, aJile Systems 

• Chai 5.1, Hewlett-Packard 
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• PersonalJava 3.1, Sun Microsystems 

• Jeode 1.7, Insignia 

• VisualAge Micro Edition (VAME) 1.3, IBM 

• WebSphere Studio Device Developer (WSDD) 4.0, IBM 

Since we studied the WSDD VM only during the second phase of our research, the results for 

it will be discussed only in the subsequent chapters.  

 

3.3. Existing Java Benchmarks 

We considered three benchmarks for our studies, namely –  

• Embedded Caffeine Mark 2.0™ 

• SciMark 2.0™ 

• SPECjvm98™ 

 

Embedded Caffeine Mark 3.0 from Pendragon Software (http://www.pendragon-

software.com/pendragon/cm3/) is very widely used for benchmarking and comparing Java VMs. 

It contains numerous tests such as Sieve of Eratosthenes, for finding prime numbers, sorting and 

sequence generation, decision-making instructions, recursive function calls, and floating-point 

tests that simulate 3D rotation of objects around a point. The scores are based on CaffeineMark’s 

own scale. 

 

The SciMark 2.0 test from the National Institute of Standards and Technology (NIST) is a 

mathematically intensive test that tests the VMs’ performance in a number of mathematical 

algorithms such as Fast Fourier Transform, Jacobi Successive Over-Relaxation, Monte Carlo 

integration, sparse-matrix multiply, and dense LU-matrix factorization. The SciMark scores are in 
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mflops (million of floating point operations per second). More information about this test can be 

found at http://math.nist.gov/scimark2/about.html 

 

SPECjvm 98 was the final benchmark used during the first phase of our analysis. Developed 

by SPEC, it is recognized industry-wide as the most demanding Java VM benchmark. It contains 

eight benchmark programs that conduct array-indexing tests, method calls, Lempel-Ziv 

compression, Java Expert Shell System, multiple database functions, Java code compiling, 

operations on audio files, ray-tracing, and a Java parser generator. However, this benchmark, 

being large as well as very intensive and demanding, is not suitable for running on embedded 

devices, and hence was not used in the second phase. It served mainly as a performance 

comparison between the different Java VMs. Detailed information about this benchmark can be 

found at http://www.spec.org/osg/jvm98/jvm98/doc/benchmarks/index.html 

 

A summary of the benchmark results is displayed in the following figures and tables. Figures 

1 through 6 display the benchmarking results for the different VMs on the Windows NT/x86 

platforms. It can be clearly observed that using a JIT yields about a ten-fold increase in the 

performance of the VM.  

   
Figure 1: CaffeineMark 3.0, Win NT/x86: No JIT Figure 2: CaffeineMark 3.0, Win NT/x86: With JIT 

 

 



 

 13  

Unfortunately, at the time of the comparisons, Sun’s PersonalJava did not have any JIT 

support, nor were we able to obtain a copy of the JIT version of HP’s Chai (TurboChai). Hence, 

we could not perform any JIT analysis on those JVMs.  

   
Figure 3: SciMark 2.0, Win NT/x86: No JIT Figure 4: SciMark 2.0, Win NT/x86: With JIT 

 

 
For certain applications such as some of the SPEC benchmarks1, the default stack size was 

not sufficient to run the benchmark, and had to be increased manually via the command line.  

   
Figure 5: SpecJVM 98, Win NT/x86: No JIT Figure 6: SpecJVM98, Win NT/x86: With JIT 

 

 
In addition, while the IBM VM does very well in the SPEC and CaffeineMark benchmarks 

(Figures 1, 2, 5, and 6), which are more generalized benchmarks, Insignia’s Jeode seems to do 

slightly better in the mathematically focused SciMark benchmark, only with the JIT compiler 

switched on, as can be seen in Figure 4. While it is debatable whether in-depth mathematical 

                                                           
1 These results do not follow the official SPEC run rules, and hence should not be treated as official SPEC 
results, or compared with a SPECjvm98 metric. 
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operations are typical of embedded applications, the benchmarks do indicate the strengths and 

weaknesses of different VMs. 

Table 1 shows results from the benchmarks that were conducted on an embedded device, 

namely, the RPX Lite from Embedded Planet.  

Table 1: Neutrino/Power PC VM performance results 

 
Neutrino/Power PC 

Embedded CaffeineMark 3.0 (Higher figures indicate a better score) 
VM Default Initial Heap Size Stack Size Overall Score 

Without JIT 
IBM VisualAge ME 256K + 1M 2 * 4K = 8K 47 

    
SciMark 2.0 (Higher figures indicate a better score) 

VM Default Initial Heap Size Stack Size Overall Score 
Without JIT 

IBM VisualAge ME 256K + 1M 2 * 4K = 8K 0.015 
 

Since the IBM VM was the only VM available that runs on a Neutrino/Power PC platform, a 

proper comparison against other VMs could not be performed. However, these figures clearly 

show the differences between the desktop and embedded worlds. In the desktop environment, 

resources such as memory and CPU speed are plentiful, and the VMs can execute very quickly. 

However, in the embedded world, the VMs can be faced with such constrained environments and 

resources, that there is a clear difference in the execution speeds of the benchmarks. Two points 

should be noted here. One, the IBM VAME 1.3 version did not have JIT support for the 

Neutrino/Power PC platform, and hence there are no results for the benchmarks with the JIT 

turned on in this platform. The latest version, 1.5 (WSDD 4.0), does however have JIT support 

for this platform, and those results are displayed in the subsequent chapters. Secondly, as 

mentioned earlier, we were not able to execute the SPEC benchmark on this Neutrino platform. It 

is primarily a desktop/server benchmark, and the Neutrino/Power PC embedded environment had 

some difficulty meeting the benchmark’s memory and execution requirements. 
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In Table 2, we observe the results of running two of the benchmarks, namely CaffeineMark 

and SciMark on the aJile JEM2 processor. In this case, though we cannot make a direct 

comparison between these results and those of the software VM that was used in the 

Neutrino/Power PC embedded environment, we do get an estimate of how the Java 

microprocessor stacks up against the software VMs. 

Table 2: aJile JEM2 Java microprocessor performance results 

 
aJile 

Embedded CaffeineMark 3.0 (Higher figures indicate a better score) 
VM Default Initial Heap Size Stack Size Overall Score 

Without JIT (JIT not applicable) 
aJile N/A N/A 143 

    
SciMark 2.0 (Higher figures indicate a better score) 

VM Default Initial Heap Size Stack Size Overall Score 
Without JIT (JIT not applicable) 

aJile N/A N/A 0.226 
 

However, we must keep in mind the costs of choosing a hardware Java solution over a 

software VM (see Chapter 2.) To reinforce this point, we must mention here that we had to 

customize one of the benchmarks a bit in order to enable it to run on the aJile Java processor 

evaluation board. No change was made in the benchmarking processes themselves, but in the way 

the benchmark application handled the parsing of the command-line parameters. Moreover, the 

benchmarks had to run under the supervision of one of the software environments that 

accompanied the board. This environment presumably handled memory allocation and thread 

creation for the Java processor, and displayed the standard input/output on a console screen. 

 

To summarize, we conducted a performance analysis of different embedded Java virtual 

machines (JVMs) on different platforms. This enabled us to gain an understanding about 

embedded Java VMs, and their execution in embedded environments. We were able to study the 

performance shortfalls of Java on embedded systems, as compared to their desktop counterparts, 

and thus identified the need for optimizing the embedded application. 
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Chapter 4: INTRODUCTION TO AHEAD-OF-TIME COMPILATION 

4.1. Need for Optimization 

The nature of embedded devices presents some imperatives that must be met. The footprint 

must be kept small because memory resources, such as RAM and ROM, cost money. Many 

devices respond to outside stimuli and need to react quickly, or within a fixed deadline; therefore, 

performance has to remain high. Behavior must be robust and predictable, as users will not put up 

with anything less. A number of applications have to be flexible and dynamically upgradable, 

ideally over the net. The very nature of the emerging connected world is what is pulling Java into 

embedded devices [10], because, as mentioned earlier, Java is well suited for use in networked 

and distributed environments. 

 

A typical Java system usually includes the application, Java class libraries, the Java Virtual 

Machine (JVM), and often, a set of native applications or libraries. The challenge in embedded 

systems is to find the size, cost, and/or performance tradeoff between these elements. While 

speed, size, and predictability are interrelated, one major performance issue is the nature of Java 

as an interpreted language [10]. Although Java in interesting in its own right, one factor for its 

popularity stems from its “write once, run anywhere” ideal. Java's mobility is achieved by 

compiling its object classes into a distribution format called a class file. A class file contains 

information about the Java class, including bytecodes, an architecturally neutral representation of 

the instructions associated with the class’ methods. A class file can execute on any 

computer/device supporting the Java Virtual Machine. Java's code portability, therefore, depends 

on both architecture-neutral class files, and the implicit assumption that the JVM is supported on 

every client machine [9]. 
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Most JVM implementations execute bytecodes via interpretation, or just-in-time (JIT) 

compilation, which compiles the bytecodes into machine code at run-time. Thus, Java's 

portability comes at the price of interpreting or JIT-compiling the bytecodes every time the 

program is executed. These systems incur modest to severe performance penalties, as compared 

to more traditional systems that compile source code directly to machine code only once. For 

example, a compiled C program runs 1.5 - 2.2 times faster than the equivalent JIT-compiled Java 

program and 2.6 - 4.2 times faster than an interpreted Java program [9]. 

 

Now, a number of embedded applications are real-time and cannot afford to have their 

deadlines missed. They do not need to have super-fast performance, as long as their deadlines are 

met. Alternatively, there are some applications that just need to be extremely fast. In both cases, 

increasing the device’s resource capabilities, such as CPU speed and/or memory size, may not be 

a viable option. It must be understood that most often, these embedded devices are mass-

produced; even a small increase in cost per device could result into a huge expense. This is where 

we feel that our study in selective ahead-of-time compilation could prove extremely beneficial.  

 

4.2. Related Work 

Ahead-of-time compilation is a relatively new technique that is being applied to embedded 

Java applications. Most of the previous studies and articles [9, 10] have discussed AOT compiling 

the entire Java application. These studies mainly apply to the desktop environment, and are 

definitely not feasible in the embedded world where the constrained memory cannot support the 

size of the entire natively compiled Java application. In our research work, we do not natively 

compile the entire application, but only those methods and/or classes that fit the hot criteria. We 

do this by first profiling (sample-based) the Java application, finding these hot methods/classes, 

natively compiling them, and then measuring the performance benefit. 
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We have come across a few studies that are related to our work. The first one – Matthew 

Arnold et al [11], confirms our view that sample-based profiling is accurate enough for the 

methods that matter. It is not as invasive as time-based profiling which perturbs the code. 

However, this study mainly considered optimizing the code of the hot methods, and not natively 

compiling them as we have suggested in our research. Moreover, their study is mainly related to 

desktop environments and not embedded systems per se.  

 

The second study, conducted by Aldo Eisma [12], is very much related to our work on ahead-

of-time compilation for embedded Java systems. However, his paper talks about using an 

automated tool to find the hot methods, and natively compile them according to set criteria of 

desired performance gain. Our research is centered mainly on manually profiling the Java 

application, studying the profile output to obtain the hot methods, and then natively compiling 

those methods according to the desired level of performance gain and memory usage. We feel 

that our work will enable the embedded developer to have a tighter control over which methods 

are AOT-compiled, allowing him to fine-tune it according to his criteria. The developer will have 

more visibility into the tradeoffs between performance gain and memory cost, and this will assist 

him in deciding a suitable ratio of memory cost and performance. 
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Chapter 5: PROFILING THE JAVA APPLICATION 

 

The first step in selectively ahead-of-time compiling a Java application is to profile it; that is, 

analyze the application’s performance and find the methods where it is spending most of its time. 

This enables us to find out which methods are the most used, and/or which are most CPU-

intensive (these are the criteria for being “hot”). There are quite a few tools available to profile 

Java applications, but the one we used was the IBM SmartLinker™ Profiler. This tool is provided 

along with the IBM WebSphere™ Studio Device Developer (WSDD) 4.0 IDE.  

 

Once the application is imported into the IDE, then one can profile it either locally – on the 

development machine – or remotely, on the target device. If the developer opts for the latter, then 

certain hooks – lines of code, must be inserted in the application, at the appropriate areas that 

need to be profiled. We chose the former option, since theoretically, the methods that are hot in 

the development environment, should be the same in the embedded device. This was later verified 

by our findings; since we obtained similar performance curves across all the three platforms that 

we ran our tests on. 

 

Once it has been decided to profile the application locally, the next step is to specify a 

number of different options to the SmartLinker. One of the first options is the type of output 

format that the Profiler will generate. There are two types of formats, Extensible Markup 

Language (XML), and Comma Separated Values (CSV). The former is suitable for interfacing 

with other tools. For example, it is used by the SmartLinker tool in the feedback-directed AOT 

compilation [12], to automatically select the methods that are to be AOT-compiled, in order to 

achieve the desired performance gain. The latter is useful for importing the data into spreadsheets 

for manual analysis. We used it in this way and thus determined the hot methods. Though we did 



 

 20  

do a bit of research on the automatic feedback-directed AOT compilation, we found that it did not 

give us the granularity and level of control that we had with manual AOT compilation. Moreover, 

we observed that performance was not congruent with what it should have been. Therefore, we 

feel that a manual analysis, though a little more painstaking, provides slightly better results, with 

a finer control over memory usage and performance gain. This allows for better analysis of the 

tradeoffs between memory and performance. Finally, the automatic feedback-directed AOT 

compilation is specific to only one tool, namely, the IBM SmartLinker™ Profiler. Our research is 

more generalized and can be implemented using other tool sets. All that is needed is a profiler, to 

analyze the Java application; a compiler, which can AOT-compile the specified methods and/or 

classes; and a runtime VM, which can support a mixed format of methods – bytecodes and AOT-

compiled. 

 

The next option that is available is whether to profile the application using a sample-based 

technique or instrumented profiling. As we mentioned earlier, it has been shown that a sample-

based profiling is sufficient for finding the hot methods [11]. The sampling method is efficient, 

although it is fairly coarse-grained, and considering the processor speed, the sampled profile is 

likely to contain some imprecision. This is especially true for short-running applications. 

However, the time-based profiling is also imprecise, since, as is mentioned in the study by Arnold 

et al., the instrumentation introduces overhead, increases code size, and disrupts the instruction 

cache. They showed that the sample-based profiling is no worse than time-based, and at times, 

even better. Therefore, it is possible that the hot methods obtained by the sample-based profile are 

more accurate than those obtained by the time-based profile. Due to all these reasons, we elected 

to use sample-based profiling in our research, and this proved to be sufficient and accurate 

enough, as our forthcoming results will demonstrate. It must be noted that in either case, the 

profiling tool is invasive, and the application’s performance, be it a benchmark score or time 

duration for execution, is going to be worse than when the profiler is not used.  
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The SmartLinker Profiler provides an option to specify either to profile from the start, or only 

certain areas of the application. In the latter case, the developer will have to insert certain lines of 

code – hooks, as we mentioned earlier, before and after the areas to be profiled. This is especially 

good if the developer suspects certain problematic areas in the application, and needs to see how 

long those areas take to execute. In our case, we profile the entire application, from the start until 

the end, in order to obtain all the hot methods. This gives us an exact idea as to which methods 

are the most CPU intensive, and which methods are called the most number of times (most used). 

  

Finally, once all the options have been set, the application is executed, with the SmartLinker 

Profiler taking samples at regular intervals. The duration of the intervals depends on the operating 

system that is being used. Windows NT™ has a minimum granularity of 10 milliseconds (ms), 

while real-time operating systems like QNX Neutrino™ have a much finer granularity,2 and the 

tool can profile as low as 1 ms on these systems. For the two applications that we considered in 

our analysis, 10 ms seemed to suffice. One reason was that the profile output was nearly the same 

across multiple profile runs. The second reason that confirmed our view was that the time-based 

profiling output was similar to that of the sample-based profiling for the top ten percent of the hot 

methods. Once the application has completed executing, the Profiler will generate the output 

profile file (CSV file in our case). This output contains a number of columns – Class Name, 

Method Name, Method Signature, Interpreted Count, Interpreted CPU, to name a few. The 

Interpreted Count column indicates how many times the method was interpreted, that is, how 

many times during each sampling of the application, the method was found to be executing. The 

Interpreted CPU column indicates the total time, in microseconds (µs), that the method took to 

execute, across all the counts. We import this CSV file into a spreadsheet, and then sort the data 

on these two keys, Interpreted CPU and Interpreted Count respectively, in descending order. The 

                                                           
2 Real-time operating systems like QNX Neutrino have clock timers in the range of micro- to nanoseconds, 
depending on the hardware system. 
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top methods then obtained are the hottest methods. A partial sample of the sorted output is 

displayed in Table 3.  

Table 3: Sample sorted Profiler output (CSV format) for the CaffeineMark benchmark 

 
Class Name Method Name Method Signature Interpreted 

Count 
Interpreted 
CPU (µs) 

FloatAtom execute ()I 4031 4045817 
LoopAtom execute ()I 3922 3965702 
LogicAtom execute ()I 3845 3915630 
SieveAtom execute ()I 3551 3555112 
StringAtom execute ()I 2005 1912750 
MethodAtom notInlineableSeries (I)I 1690 1602304 
MethodAtom execute ()I 1471 1592289 
Java/lang/StringBuffer append (Ljava/lang/String;)Ljava/lang/

StringBuffer; 
1207 1261814 

MethodAtom arithmeticSeries ()I 813 781123 
 

As can be observed, the FloatAtom.execute()I method is the hottest method, followed by 

the LoopAtom.execute()I, and so on. Note that the complete method signature is comprised 

of the Class name, method name, and parameter/return value types (displayed under the Method 

Signature column of the table above).  

 

Therefore, by profiling the application and then sorting the resulting profile output, we were 

able to obtain the most used and/or most CPU intensive methods. Having obtained these hot 

methods, the next step is to ahead-of-time compile these methods. The subsequent chapter 

describes in detail the steps involved in ahead-of-time compiling these methods, and then 

observing the resulting change in performance and memory size.  
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Chapter 6: SELECTIVE AHEAD OF TIME COMPILATION 

6.1. SmartLinker Options 

Once the profile output has been obtained and sorted, the next step is to natively-compile the 

top few methods, i.e., the hot methods. We used the IBM SmartLinker tool to natively-compile 

the methods. In a typical embedded application build scenario, the embedded targets cannot 

easily be used to build the application. The applications are built on development workstations, 

using cross-compilers, which compile the application on one platform for execution on another 

platform. The SmartLinker tool, which accompanies the WebSphere Studio Device Developer 

(WSDD) 4.0 IDE, can currently compile for different operating systems (OS), but only across the 

same CPU family.3 For instance, it is possible to generate code for a Neutrino/x86 platform on the 

Windows NT/x86 platform itself. However, in order to compile code for the Neutrino/PPC 

embedded platform, one would need a PPC platform that has larger memory resources and CPU 

speed, such as Neutrino or AIX desktops.  

 

Hence, one of the AOT-compile options in the SmartLinker tool is the specification of the 

hardware and OS platform for which to generate the code – for example, “ia32- windows” for 

Windows/x86, “ia32- neutrino” for QNX Neutrino/PPC, “ppc-aix” for AIX/PPC, and “ppc-

neutrino” for Neutrino/PPC, to name a few. In our research, we used the Windows NT/x86 

desktop to build for the x86 environments (Windows NT desktop and Power IA embedded 

board), and an AIX/PPC platform for the PPC board. 

 

It should be mentioned here that the WSDD IDE has an option to specify how the Java 

application should be stored on the embedded device. The standard way is of course, loading the 

                                                           
3 The new WSDD 5.0 version is reputed to have full cross-compiler support, i.e. across hardware platforms. 
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JVM and its accompanying shared objects, the class libraries, and the files (classes, shared 

objects, etc.) of the Java application, into the embedded device’s ROM. The other option is to 

combine all these elements into one big file, called a “jxe”, which has the application’s class files, 

and if opted, the required classes from the class libraries. In that case, all that that has to be loaded 

onto the device is the jxe file, and the JVM with its associated files.  

 

There are quite a few advantages to deploying the Java application as a jxe file:   

 Footprint reduction: Reduces the size of the deployed code by pre-linking and optionally 

eliminating unused classes and methods 

 Execute in place (XIP): Pre-linking enables code to be run in place in ROM/Flash RAM 

 Accelerated application startup 

 Segmentation: JXE files can be segmented to support devices with limited segment sizes 

 Ahead-of-Time (AOT) compilation 

 Method Inlining 

These are just some of the benefits of jxe files, as taken from the WSDD product documentation 

[13]. Moreover, as noted above, building the application into a jxe file allows the developer to 

AOT-compile methods and/or classes into native code. It is not permissible to natively compile 

methods/classes and still deploy the application as class files. The rules laid down for Java 

compliance specify that machine code cannot be interspersed with bytecodes in the Java class 

files. Note that when using AOT-compiled methods in a jxe file, the file is only valid for its target 

platform. If an application is required for multiple platforms, then individual jxe files will have to 

be built for each platform. 

 

For our research, we opted to include the Java class library in the jxe file, as that would give 

us a correct picture of the total size of the application. Moreover, it would also enable us to AOT-

compile methods and/or classes from the class library, and not confine us to only the application’s 
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classes. If the application under study is going to reside on the target device along with other Java 

applications, then it is advisable not to include the class libraries in the jxe file. This is because 

those applications may most likely be accessing and sharing the class library. If, however, there is 

going to be only one Java application in the target device, then the class libraries can also be 

included in the analysis. This will permit the optimization (AOT compilation) of the hot methods 

in the class library, and enable the removal of non-referenced classes from the library, thus saving 

on storage-space requirements on the target device. 

  

A few more options can be specified during this build phase. For one, we can strip the 

bytecodes of those methods that are AOT-compiled, leaving only the machine instructions. 

Keeping the bytecodes is only useful during the debug phase, and is no longer needed after that. 

In addition, a few optimization options can be specified, such as making leaf classes and methods 

final, making un-instantiated classes abstract, etc. 

  

 Finally, once all this is done, the last step is to specify the method(s) to be AOT-compiled. In 

our analysis, we started gradually, from compiling the topmost hot method, to compiling the last 

method that has an Interpreted Count and/or an Interpreted CPU value in the profile output, and 

finally, to compiling all the methods. Though the last option is almost never done practically, due 

to the large size of the resulting natively compiled application, we did this only so that we could 

thoroughly study all the cases. Moreover, we could use this value to compare it to that which the 

just-in-time (JIT) compiler generates. 

 

6.2. Benchmarks and Platforms used for AOT compilation analysis 

We considered two widely known and freely available benchmarks for our research purposes. 

The first one is Embedded CaffeineMark 3.0, and the second was SciMark 2.0. As we mentioned 
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earlier, the SPECjvm98 benchmark is not suitable for embedded systems, and hence we did not 

consider it for our selective AOT compilation analysis. Both, the CaffeineMark and SciMark 

applications, needed the Connected Device Configuration (CDC) Java specification in order to 

execute, and that was what we included while building the jxe files.  

 

For our analysis, we have considered benchmarks as the embedded applications because they 

display a benchmark score, thus giving us a tangible performance figure. However, practically, 

embedded applications have no benchmark score as such, and the only performance criterion is 

either execution within a specific time duration, or execution such that application deadlines are 

met. For applications that have a definite start and finish, and for which execution within a time-

duration is more important, system-time displays can be inserted at the start and end of the 

application. For continuous running applications, or real-time applications, system-time displays 

can be inserted before and after critical methods and/or sections of the application code, to 

observe whether they meet their deadlines or not. 

 

The platforms that we used for our AOT analysis were – Embedded Planet’s RPXLite (QNX 

Neutrino/PPC), CP Technology’s Power IA Service Gateway (QNX Neutrino/x86), and Windows 

NT/x86. The details of the platforms are mentioned in Section 3.1, Chapter 3. To build the jxe 

files with the AOT-compiled methods, we used the Windows NT/x86 platform for the two x86 

environments, and an AIX/PPC platform to build for the Power IA device.  

 

6.3. Selective AOT compilation analysis 

Referring again to Table 3, on page 22, we start with the topmost methods listed in the profile 

output. In the SmartLinker, the method to be AOT-compiled is specified in an options file within 

a –precompileMethod “MethodPattern” option tag. For example, to specify the 
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topmost hot method listed in Table 3, we would use: –precompileMethod 

“FloatAtom.execute()I”, in the SmartLinker options file. Note that what follows the –

precompileMethod tag is actually a method pattern, therefore, we could use 

“*.execute()I” to specify methods, from all classes that contain an execute method, 

having no parameters, and which return an integer. This is the reason why we specify the method 

signature at the end of the method name; else, all the methods with the same name in the 

particular class will be precompiled. Since full method signatures are unique, we can be assured 

that the correct method is being precompiled.  

 

Once we have built the jxe with the specified method ahead-of-time compiled, we execute it 

on the particular platform and observe the performance change. We repeat this for all subsequent 

hot methods in the profile output, noting down the memory size of the jxe file, the number of 

methods that are AOT-compiled, and the corresponding change in performance. The following 

discussion is centered on the analysis of the CaffeineMark benchmark that we performed on the 

CP Technology Power IA Neutrino/x86 embedded board. However, we will also display the 

graphs and analysis that we performed on the other two platforms, namely, the Neutrino/PPC and 

Windows NT/x86 environments, for the CaffeineMark and SciMark benchmarks. They will serve 

to prove the validity of our results and conclusions.  

 

In Figure 7, we observe a complete view of the rise in memory size of the application as we 

increase the number of methods that are AOT-compiled, including when we AOT-compile all the 

methods of the application, in this case, 3955 methods. We can now appreciate the substantial 

jump in memory size when the entire application is AOT-compiled. From an initial size of 794 

KB, the application ends up with a size of nearly 4 MB when all its methods are AOT-compiled. 
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This is why we mentioned that AOT compiling all the methods of the application is almost never 

done practically. 

 

 
Figure 7: Complete graph of Memory size vs. number of methods AOT’ed - CaffeineMark 3.0 on Neutrino/x86 

 

Figure 8 illustrates a partial graph of the rise in memory size vs. the number of methods 

AOT-compiled. For the sake of clarity, this graph illustrates data up to the point where we AOT-

compile 50 methods of the CaffeineMark application. 

 
Figure 8: Partial graph of Memory size vs. number of methods AOT’ed - CaffeineMark 3.0 on Neutrino/x86 
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As we can observe, the memory size of the application increases as we increase the number 

of methods that are AOT-compiled. This was expected, and serves to prove our earlier 

assumption that the size of the Java application is smaller when the application is in bytecode 

format, than when it is natively compiled. However, in this case, the top 2 to 3 percent of the hot 

methods – 11 methods – are quite few in number as compared to the total number of methods in 

the application. Therefore, there is only a marginal increase in the total memory size of the 

application – of the order of ten to twenty kilobytes, when these methods are AOT-compiled. 

This is a crucial point that should be kept in mind, and we will come back to this in the next few 

paragraphs.  

 

In  Figure 9, we have an analysis of the change in performance as we increase the number of 

methods that are AOT-compiled. Again, for the sake of clarity, we have displayed only a partial 

graph, up to the point where we AOT-compile 50 methods. 

 
Figure 9: Partial graph of Performance vs. number of methods AOT’ed - CaffeineMark 3.0 on Neutrino/x86 

 

As can be clearly observed, there is a drastic rise in performance as we AOT-compile the top 

5 to 10 hottest methods. This confirms the statement we made earlier in Chapter 2, regarding the 

application’s performance increasing substantially by natively compiling just a few of its hot 
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methods. As we go on increasing the number of methods AOT-compiled, the performance keeps 

on increasing until it reaches a saturation point, where the performance curve remains steady and 

increases very marginally. In our case, for the figure above, this happens when we AOT-compile 

11 methods onwards. We reiterate here that this saturation point is not the same for every 

application, and may vary depending on the application type. 

 

Figure 10 is a complete graph of performance change vs. number of methods AOT-compiled. 

For all practical purposes, assuming that AOT compiling all the methods of the application 

results in optimal, or close to optimal performance, we then obtain 983 as the optimal score of the 

CaffeineMark benchmark on this platform.  

 
Figure 10: Complete graph of Performance vs. number of methods AOT’ed - CaffeineMark 3.0 on Neutrino/x86 

 

Hence, as we can observe in the figure above, we are able to achieve around 92% of the 

optimal performance, just by AOT compiling the top 11 of the hot methods. We managed to 

achieve 98.77% of the optimal performance by natively compiling around 160 methods (out of a 

total of 3955 methods). The corresponding cost in memory size will be discussed shortly.  
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Finally, in Figure 11, we observe the crux of our results – change in performance as 

compared to the corresponding increase in the memory size of the application. We reiterate here 

the issues and difficulties that are faced in embedded environments. Embedded systems, unlike 

their desktop counterparts, do not have the luxury of large memory space. Memory size is spoken 

about in terms of kilobytes, rather than megabytes and gigabytes. Even a small increase in 

memory could result in large monetary costs, considering that these embedded systems are mass-

produced.  

 

 
Figure 11: AOT analysis of Performance vs. Memory size - CaffeineMark 3.0 on Neutrino/x86 

 

From the figure above, we observe the steep rise in performance as we increase the number of 

methods that are AOT-compiled. We were able to achieve 92% of the optimal performance at an 

expense of about only 12 kilobytes, which worked out to an approximate increase of 2 percent in 

the application’s memory size. This is a significant rise in performance, but the question that 

remains to be asked is whether the embedded developer can afford that additional 12 KB? As we 

said earlier, memory cost is usually crucial in the embedded world and even an increase as low as 

a few tens of kilobytes may be unacceptable.  
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It may so happen that the manufacturer of the embedded system may be entirely satisfied 

with a performance score of 200. In that case, no further analysis would have to be conducted and 

the application can be loaded onto the device without any changes or modifications. Similarly, for 

real-time applications, it may be that all the deadlines are met and there is no need for any further 

optimization. 

 

However, if an increase in performance is imperative, then conducting an analysis like that 

which we have outlined could be very useful. In Figure 12, we observe a zoomed-in view of the 

change in performance as compared to the corresponding change in memory size. Embedded 

system manufacturers may want a certain performance gain per kilobyte increase in memory size. 

If they are able to achieve the performance gains within their tolerance for increase in memory 

costs, then they might AOT-compile the additional methods. However, if the increased memory 

costs are too high, they may prefer to sacrifice performance rather than incur these costs. 

 
Figure 12: Partial graph of Performance vs. Memory size - CaffeineMark 3.0 on Neutrino/x86 

 

Referring to Figure 12, we consider four data points as examples. The numbers adjacent to 

the data points, i.e., 1, 5, 7, and 11, are the number of methods that are AOT-compiled at those 

points. In the figure, x1 and x2 reflect change in memory size (bytes), while y1 and y2 reflect 
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change in performance (CaffeineMark score). Calculating their respective values, we get x1 = 

5792 bytes, y1 = 277 CaffeineMark points, x2 = 3232 bytes, and y2 = 61 CaffeineMark points.  

 

For x1 and y1, the ratio of performance change to memory increase is 0.0478. For x2 and y2, 

it is 0.0189. Clearly, for those developers that are interested in increasing performance, the 

0.0478 ratio is well worth the investment. That is, a performance gain of 277 is obtained at a cost 

of only 5792 bytes increase in memory. However, one might ask whether the 0.0189 ratio 

(performance gain of 61) warrants the expenditure on the additional 3232 bytes. There is no 

definite answer as to whether the 0.0189 ratio is worth the expense or not. At first glance, it 

seems that we should AOT-compile 11 methods since that gives the maximum performance 

benefit, and beyond that, the curve begins to level out. However, as we mentioned, the embedded 

environment is different from that of the desktop, and what may seem to be the right decision 

may not be the appropriate one. For example, it may so happen that the system manufacturer is 

content with the performance benefit of AOT-compiling 7 methods, and may not want to bear the 

additional memory cost of AOT compiling 11 methods. As we spoke about earlier, the developer 

may have a certain tolerance limit for the rise in memory cost as the performance increases. The 

memory cost for the performance gain in AOT compiling 7 methods may be within the 

acceptable limit, but it may not be the case for AOT compiling 11 methods. 

 

In this way, embedded developers can plot a graph of application performance versus 

memory size increase. Using this, they can calculate the slope of the graph at various data points 

– AOT compilation points, as we have shown in Figure 12. Finally, they can decide as to which 

points are appropriate for their performance and memory size criteria. There is no clear-cut 

answer as to how many methods should be precompiled for a particular application. It all depends 

on the needs and requirements of the embedded system developer. Taking another look at Figure 

12, some developers may decide that the performance benefit of AOT compiling 7 methods is 
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satisfactory. Others may prefer paying the extra cost of 3232 bytes and AOT compiling 11 

methods in order to achieve even better performance. On the other hand, as we mentioned right at 

the beginning, some developers may be satisfied with the initial performance of the application, 

and may opt not to AOT-compile any method. 

 

We reiterate here that the point in the curve, up to which the methods should be AOT-

compiled, will vary, depending on a few factors. One is the tolerance for the rise in memory size 

that the developer is willing to incur. The developer may be faced with a fixed upper bound of 

available memory space for the application. The application has to fit within this memory space, 

no matter what the performance may be. The other tolerance limit is the one we spoke about 

earlier; unless the ratio of performance change to memory increase is above a certain value, only 

then may the cost be acceptable. Otherwise, performance may have to be sacrificed. Another 

factor is the curve depicting the ratio of performance change to memory increase. In some cases, 

as we will show for the SciMark application, the curve increases steeply very early on, and then 

begins to flatten out. In some cases, the curve may increase less sharply and take a little longer 

before it begins to saturate. Finally, there are cases, as shown for the CaffeineMark application in 

Figure 12, which lie somewhere in between. It all depends on the characteristics of the 

application, and the requirements of the developer/embedded system manufacturer. 

 

Now referring back to Figure 11 on page 31, we observe that the performance curve begins to 

level off after some time. After a certain point (11 methods in our case), there is only a marginal 

increase in performance as more methods are AOT-compiled. In most cases, developers may not 

proceed beyond this point, since there is only a slight benefit to be gained. However, it could so 

happen that the embedded system has a certain amount of memory available, and the developers 

may prefer to use all the available memory to extract every bit of performance. In that case, 

developers can AOT-compile the warm methods, that is, the methods that are not as hot as the top 
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methods listed in the sorted profile output. The exact classification between hot and warm 

methods varies by application. In our case, we selected the warm methods to be those that had an 

Interpreted CPU time less than 10014 ms, and/or an Interpreted Count less than 20. From the two 

applications that we executed on the three platforms mentioned earlier, we were able to increase 

the performance from 92%, to 98-99% of the optimal, by AOT-compiling the warm methods.  

 

However, since the sample-based profiling is not completely exhaustive, there may be quite a 

few methods that do not fall into either the hot, or the warm category. In that case, what we 

suggest is that the developer should profile the application using the time-based technique, and 

then use that output to fine-tune the performance curve. The developers must decide, however, 

whether it is really worth the effort. The time-based profiling is very exhaustive and generates an 

extremely large amount of data. Manually analyzing the profile output can be very cumbersome. 

Moreover, since the time-based profiling uses VM instrumentation to gather the data, its 

invasiveness should also be taken into account. Nevertheless, these disadvantages aside, the time-

based profiler has a higher detail-level than the sample-based one, and its output can be used to 

fine-tune the performance curve and obtain a performance extremely close to optimal. 

 

One more option that can be considered is to AOT-compile all the methods. Due to the 

inordinate memory size of the resulting application file, this option is not practical for embedded 

systems. However, it is an option when maximum application performance has a higher 

precedence than memory size and cost, and as can be observed from Figure 10 on page 30, AOT- 

compiling all the methods does yield the optimal performance. Nevertheless, if the developer is 

willing to conduct the analysis on the application as we have outlined, then it is possible to 

achieve close to optimal performance without having to incur the large memory cost. 
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In Figure 13, we observe the AOT analysis for the SciMark benchmark on the Power IA 

device. The graph shows the change in performance versus the increase in memory size as more 

methods are AOT-compiled. As we can observe, the graph is similar to that of the CaffeineMark 

benchmark (Figure 11, page 31). This serves to prove that our analysis and conclusions on AOT- 

compilation are also applicable to this application. However, this application does have a steeper 

rise in performance as the topmost hot methods are AOT-compiled. This again goes to prove our 

earlier statement that the characteristics of different applications vary; some applications may 

display a sharper rise in performance, while others may display a more gradual rise. In this case, 

we were able to improve performance from 24% to 93% of the optimal, at the cost of only an 

additional 4.4 kilobytes of memory. We had to AOT-compile only the top four of the hottest 

methods. We were able to achieve 99% of the optimal performance by AOT-compiling around 

140 methods, at a cost of a little over 100 Kb. 

 
Figure 13: AOT analysis of Performance vs. Memory size - SciMark 2.0 on Neutrino/x86 

 

For a complete look at the graphs of the SciMark application for memory size increase versus 

number of methods AOT-compiled, and change in performance versus the number of methods 

AOT-compiled, please refer to the Appendix. We must mention that we encountered a few 

problems while trying to AOT-compile all the methods of the SciMark application on this 
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Neutrino/x86 platform, because the version of the WSDD tool that we were using generated an 

error during the AOT-compilation phase. Hence, we were unable to obtain a performance result 

for that data point. 

 

In Figure 14, we observe the performance characteristics of the CaffeineMark application on 

the RPX Lite device (QNX Neutrino on PPC). The CaffeineMark’s characteristics on this 

platform and the Power IA device are very similar, and this confirms our view that the 

performance change, as more methods are AOT compiled, is not platform dependent. However, 

the analysis of the increase in memory size is platform specific, since as we mentioned earlier, the 

expansion from bytecodes to machine code depends on the CPU instruction set. On an average, 

we observed that the size of the application compiled for the PPC platform was about a few 

kilobytes to a few tens of kilobytes larger than that compiled for the x86 platform. 

 
Figure 14: AOT analysis of Performance vs. Memory size - CaffeineMark 3.0 on Neutrino/PPC 

Unfortunately, we were unable to study the SciMark application on the RPX Lite device. The 

device did not have any hardware floating-point support, and the Neutrino OS used an emulator 

to perform float operations. The 4.0 version of the WSDD tool did not have the capability to 

AOT-compile “float” methods for an emulator. Since the SciMark application performed many 
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float calculations, it was not possible to AOT-compile its methods for this device. This was the 

same reason as to why we could not AOT-compile all the methods of the CaffeineMark 

application on this PPC platform, since it also had quite a few methods that performed floating-

point operations. 

 

The following two figures (Figure 15 and Figure 16) display the change in performance 

versus memory size increase for the CaffeineMark and SciMark applications on the Windows 

NT/x86 platform. We used this as a reference platform for our analysis; the study of the two 

applications on this platform served to confirm our earlier conclusions and results.  

 

 
Figure 15: AOT analysis of Performance vs. Memory size - SciMark 2.0 on Win NT/x86 

 

As we can observe, the graphs for the applications on this platform are very similar to those 

of the applications on the other platforms. The remaining graphs for these applications, on the 

three platforms, are displayed in the Appendix. 
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Figure 16: AOT analysis of Performance vs. Memory size - CaffeineMark 3.0 on Win NT/x86 

 

In the above figure, we observe that there is a sharp rise in performance in the circled area of 

the graph, while at the same time, the corresponding increase in memory size is small. A possible 

reason for this could be that the profiler tool, being sample-based, missed a particular hot method 

and this method showed up in the circled area, where the performance jumped a bit. This is 

another reason as to why it is advisable to graph the performance change versus number of 

methods AOT-compiled. That way, if jumps such as these occur, then further detailed analysis 

can be performed on those areas, and once the hot method has been identified, it can be AOT-

compiled during the initial stages.  

 

To summarize, for one of the applications that we considered, we were able to achieve 92% 

of the optimal performance by ahead-of-time compiling just 11 methods, at an expense of about 

only 12 kilobytes. This worked out to an approximate increase of 2 percent in the application's 

memory size. Moreover, we succeeded in achieving 98.77% of the optimal performance by AOT 

compiling 160 methods. This was at an expense of an additional 100 kilobytes – an increase of 

about 12 percent of the application's original memory size. By comparison, when we AOT-
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compiled all the methods of the application, we incurred a cost of about 3 additional megabytes, 

that is, an increase of over 400 percent in the application's memory footprint. Hence, we have 

shown that it is possible to achieve close to optimal performance for embedded Java applications 

by ahead-of-time compiling just a few of its methods. Typically, the performance of the 

application increases as more methods are AOT-compiled, but so does the memory size of the 

application. Therefore, the number of these “hot” methods that should be AOT-compiled depends 

on the memory requirements and constraints, imposed by the embedded-system manufacturer. 



 

 41  

Chapter 7: SUMMARY AND CONCLUSION 

 

In this thesis, we have studied the methods and techniques of selectively ahead-of-time 

compiling methods of different Java applications. We first started out by conducting a 

performance analysis of different embedded Java virtual machines (JVMs) on different platforms, 

and included the study of a Java hardware microprocessor. This enabled us to gain an 

understanding about embedded Java VMs and their execution in embedded environments. We 

were able to study the performance shortfalls of Java on embedded systems, as compared to their 

desktop counterparts, and thus identified the need for optimizing the embedded application. 

 

We outlined a few optimization techniques that are available for embedded Java systems, and 

conducted a cursory study on just-in-time (JIT) and ahead-of-time (AOT) compilation techniques. 

However, since there already were a number of studies conducted on JIT compilers, we decided 

to analyze the latter in detail. In addition, AOT compilation is a relatively new technology, and 

there has been limited research conducted in this area.  

 

For our research, we studied two different applications, namely, the CaffeineMark and 

SciMark benchmarks. We studied these applications on two different embedded devices, as well 

as on our reference desktop platform. We started by sample-based profiling these Java 

applications; this would help us to analyze the application’s performance and find out the 

methods where it was spending most of its time. We then sorted the profile output based on the 

most used and the most CPU-intensive methods. This helped us obtain the hottest methods of the 

application. The next step was to selectively ahead-of-time compile those methods, and then 

observe the resulting change in performance.  
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As we proceeded to ahead-of-time (AOT) compile methods starting from the topmost hottest 

method to all the methods, we noted down the resulting performance change and the 

corresponding increase in memory size of the application. We then charted graphs of memory 

size increase versus the number of methods that are AOT-compiled, performance change versus 

number of methods AOT-compiled, and finally, performance change versus increase in memory 

size.  

 

We had an opportunity to observe the significant jump in the application's memory size when 

all its methods were AOT-compiled. As mentioned earlier, the memory size of the application 

does increase, as more methods are AOT-compiled. However, the top 2 to 3 percent of the hot 

methods are so few in number as compared to the total number of methods, that the increase in 

memory size is quite small, as compared to the application’s total memory size. In addition, there 

was a drastic rise in performance as the top few hottest methods were AOT-compiled. For one of 

the applications that we considered, we were able to achieve 92% of the optimal performance at 

the expense of only about a 12-kilobyte increase in memory. We then went on to show that after a 

certain point, the performance curve begins to level out and any further increase in the number of 

methods that are AOT-compiled does not yield a significant increase in performance.  

 

Finally, we discussed in detail the memory size considerations while setting out to increase 

performance. We reiterated that embedded systems are different from their desktop counterparts, 

and memory increases as low as a few kilobytes could be unacceptable. It could so happen that 

the system manufacturer is satisfied with the initial performance (or, the application meets its 

real-time deadlines), and there is no need for any further performance increase. However, if an 

increase in performance in mandated, then it would be very beneficial to conduct an analysis such 

as the one we have outlined. 
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After charting a graph of performance change versus memory size increase, its slope should 

be calculated at various points. Accordingly, the performance gain per kilobyte increase in 

memory can be obtained. This can then be compared to the tolerance limits set by the system 

manufacturer. If they are able to achieve the performance gains within their tolerance for increase 

in memory costs, then they might AOT-compile the additional methods, else they may prefer to 

sacrifice performance. Moreover, some applications may be constrained by a fixed memory limit 

laid down by the manufacturer. This upper bound on the memory available to the application may 

dictate just how many methods can be AOT-compiled.  

 

In any case, the number of methods that should be AOT-compiled need not be the figure that 

gives us optimal, or close to optimal, performance. It all depends on the requirements and 

specifications of the embedded system manufacturer, and the characteristics of the application. 

Some applications may have their performance saturation point early on, giving rise to a steep 

curve, as more methods are AOT-compiled. On the other hand, some applications may take a bit 

longer before they reach close to optimal performance, and this could result in a curve that 

increases a bit more gradually.  

 

In conclusion, we have shown that it is possible to achieve close to optimal performance for 

embedded Java applications by ahead-of-time compiling just a few of its methods. These hot 

methods can be obtained by profiling the application and analyzing where it is spending most of 

its time. The number of these hot methods that should be AOT-compiled depends on the 

requirements and constraints of the embedded system manufacturer. 
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Future Research work 

The technology of ahead-of-time compilation is still in its infancy, and a lot of future research 

remains to be explored. Detailed analysis and comparisons of the benefits of time-based versus 

sample-based profiling in selecting the methods to be AOT-compiled could prove very useful. 

Java virtual machines from different vendors could be included in the AOT compilation study, 

along with a broader range of embedded applications. Finally, it would be interesting to find out 

as to why, at times, there is a slight drop in performance when more methods are AOT-compiled 

(refer Figure 10 on page 30). One possible explanation could be due to the resource constraints 

that are faced in embedded environments. Inspite of additional methods being AOT-compiled, 

performance of an application could get degraded slightly because of the additional overhead of 

having a bigger sized application. For example, additional garbage collection (GC) runs may be 

needed due to the application’s bigger size, cache misses may occur more frequently, and all this 

could have an affect on the application’s overall performance. This is just a possible explanation, 

and it remains to be seen whether it is valid or not. 
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APPENDIX 

 

 
Figure 17: Complete graph of Memory size vs. number of methods AOT’ed - CaffeineMark 3.0 on Neutrino/PPC 

 
 
 
 
 
 

 
Figure 18: Partial graph of Memory size vs. number of methods AOT’ed - CaffeineMark 3.0 on Neutrino/PPC 
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Figure 19: Complete graph of Performance vs. number of methods AOT’ed - CaffeineMark 3.0 on Neutrino/PPC 

 
 
 
 
 
 

 
Figure 20: Partial graph of Performance vs. number of methods AOT’ed - CaffeineMark 3.0 on Neutrino/PPC 
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Figure 21: Complete graph of Memory size vs. number of methods AOT’ed - SciMark 2.0 on Neutrino/x86 

 
 
 
 
 
 

 
Figure 22: Partial graph of Memory size vs. number of methods AOT’ed - SciMark 2.0 on Neutrino/x86 
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Figure 23: Complete graph of Performance vs. number of methods AOT’ed - SciMark 2.0 on Neutrino/x86 

 
 
 
 
 
 

 
Figure 24: Partial graph of Performance vs. number of methods AOT’ed - SciMark 2.0 on Neutrino/x86 
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Figure 25: Complete graph of Memory size vs. number of methods AOT’ed - CaffeineMark 3.0 on Win NT/x86 

 
 
 
 
 
 

 
Figure 26: Partial graph of Memory size vs. number of methods AOT’ed - CaffeineMark 3.0 on Win NT/x86 
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Figure 27: Complete graph of Performance vs. number of methods AOT’ed - CaffeineMark 3.0 on Win NT/x86 

 
 
 
 
 
 

 
Figure 28: Complete graph of Performance vs. number of methods AOT’ed - CaffeineMark 3.0 on Win NT/x86 
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Figure 29: Complete graph of Memory size vs. number of methods AOT’ed - SciMark 2.0 on Win NT/x86 

 
 
 
 
 
 

 
 

Figure 30: Partial graph of Memory size vs. number of methods AOT’ed - SciMark 2.0 on Win NT/x86 
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Figure 31: Complete graph of Performance vs. number of methods AOT’ed - SciMark 2.0 on Win NT/x86 

 
 
 
 
 
 

 
Figure 32: Partial graph of Performance vs. number of methods AOT’ed - SciMark 2.0 on Win NT/x86 

 
 
 


