
ABSTRACT

SINGHAI, MRUGENDRA. Helios-2: An All-Optical Broadcast LocalArea Network. (Under the direc-

tion of Dr. Mladen Vouk and Dr. George Rouskas.)

This thesis describes the details of a new network architecture called Helios-2. It is based on the

Hiper-l protocol, a reservation protocol designed to coordinate access to the various channels of a single-

hopbroadcast-and-select wavelength-division multiplexing local area network. The Helios-2 network

consists of a number of nodes connected through a passive all-optical star coupler which allows a broad-

cast network. Communication among the nodes in Helios-2 occurs using a scheduled access to the

network medium i.e. optical wavelengths.

For a single-hop broadcast-and-select network to be efficient, the bandwidth allocation among the

nodes must be dynamically managed. Although a number of protocols have been proposed for this

purpose they all suffer from inefficiencies of operating in environments with non-zero processing, tuning

and propogation delays. Helios-2 is designed to overcome these inefficiencies.

This work presents different elements of Helios-2 architecture: its state machines, communication

frame formats and contents, scheduling algorithm and possible hardware architecture. These elements

are optimized for a total hardware based implementation.

The Helios-2 Master State Machine, which controls the operation of a node ina Helios-2 network,

has five major operation modes: Time Measurement, Join, Election, Routine and Scheduling. Master

state machine controls the operation of the receive and transmit auxiliary state machines of each node.

Helios-2 uses the concept of "Virtual Receivers” to achieve non-preemptive scheduling. "Virtual

Receivers” are a set of physical receivers that behave identically in terms of optical tuning. A scheduling

algorithm, which is at the heart of Helios-2 network operation, is optimized for hardware based impl

ementation. Simulation was used to evaluate the behaviors of the scheduling algorithm. It was found

that the scheduling algorithm proposed here produces schedules very close to optimal schedules.

Finally, an example hardware implementation for Helios-2 is outlined. Implementation would have

a FPGA back end and an Optical front. FPGA back end consists of a host interface, Helios-2 state

machines and transceivers that interface with optical front end.

Optical front end is based on a Dense Wave Division Multiplexing Slowly Tunable Transmitter -

Fast Tunable Receiver combination. The front end may have either optical tuning or electronic tuning.

HELIOS-2

AN ALL-OPTICAL BROADCAST LOCAL AREA NETWORK

by

Mrugendra Singhai

A thesis submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Master of Science

Computer Engineering

Raleigh

2002

APPROVED BY:

_______________________ _______________________

_______________________ _______________________

Chair of Advisory Committee Co-chair of Advisory Committee

Biography

Mrugendra Singhai was born and brought up in Indore, India. He received his Bachelors degree in

Electronics and Telecommunication Engineering from the Department of Electronics and Telecommu-

nication Engineering at SGS Institute of Technology and Sciences, Indore, India in 1997. He was with

Bharti Telenet Inc from 1997 to 2000 where he was part of Access Network Design Group. He joined

the Department of Electrical and Computer Engineering at the North Carolina State University, Raleigh,

NC in fall of 2000. He is currently working towards completion of his Master’s degree in Computer

Engineering.

ii

Acknowledgements

I would like to thank Dr. Mladen Vouk for having given me the opportunity for conducting research

under his able guidance. His incredible knowledge is only matched by his incredible patience. I am

thankful to Dr. George Rouskas for serving as Co-chair on my thesis committee and for taking interest

in my work. This thesis would not have been possible without his continual support and advice. I am

also thankful to Dr. Paul Franzon and Dr. Arne Nilsson for serving on my thesis committee.

I would like to thank Mr. Dan Stevenson (Director of Advanced Network Research Divison -

MCNC) who provided me the opportunity to work at MCNC where I conducted most of the research

presented in this thesis. I am thankful to Mr. Mark Cassada (Manager of Hardware Group - ANR,

MCNC), Dr. Ilia Baldine and Dr. Pronita Mehrotra for providing vital inputs to my work.

I thank my parents for their love and incredible support, without which this would not have been

possible.

iii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Single-Hop Broadcast-and-Select WDM Networks . 1

1.2 Helios-2 . 3

1.3 Thesis Organization . 4

2 Helios-2 Network Operation 5

2.1 Helios-2 Modes of Operation . 5

3 Superframe & Frames 8

3.1 Superframe . 8

3.2 Frame Format . 8

3.2.1 Frame Addressing . 10

3.3 DATA Frame . 11

3.4 MDATA Frame . 13

3.5 SYNCARP Frame . 14

3.6 TM Frame . 14

3.7 JOIN Frame . 16

iv

3.8 AVAIL Frames . 16

3.9 OAM Frame . 16

4 Helios-2 Master State Machine 17

4.1 Time Measurement State . 17

4.2 Scheduler Election State . 19

4.3 Join State . 20

4.4 Routine State . 21

4.5 Scheduling State . 23

4.6 TM Wait On Election State . 25

4.7 TM Backoff State . 26

4.8 Join Wait On Election State . 26

4.9 Join Backoff State . 26

4.10 Same Node Sleep State . 27

4.11 Error State . 27

4.11.1 Events that trigger the transition to ERR state 27

4.11.2 Response to Error Conditions . 30

5 Helios-2 Auxiliary State Machines 31

5.1 Time Measurement . 31

5.2 Election . 33

5.2.1 Scheduler Election with Slowly Tunable Transmitters 33

5.2.2 Time Measurement within Scheduler Election 36

5.3 Join . 36

5.3.1 Contacting the master node . 38

5.3.2 Waiting to be included . 39

5.3.3 Backoff Algorithms . 39

5.4 Routine . 40

5.4.1 Receive Hardware . 40

v

5.4.2 Transmit Hardware . 44

5.5 Scheduling . 47

5.5.1 Receive Hardware . 47

5.5.2 Transmit Hardware . 49

6 Helios-2 Scheduling Algorithm 51

6.1 The Helios-2 Scheduling Algorithm . 51

6.2 Performance . 52

7 Conclusion 62

7.1 Hardware Architecture . 62

7.2 FPGA Back End . 62

7.2.1 Host Interface . 62

7.2.2 Helios-2 State Machines . 64

7.2.3 Optics Interface . 64

7.3 Optics Front End . 64

Bibliography 68

vi

List of Figures

1.1 A Helios-2 Network . 2

2.1 Helios-2 Operation . 6

3.1 Helios-2 Superframe. 9

3.2 Structure of a frame in the Helios-2 network. 9

3.3 Data Frame payload. 11

3.4 SCHED payload . 13

3.5 OCC payload . 13

3.6 SYNCARP Frame payload . 15

4.1 Master State Machine:master_controller . 18

5.1 Receive auxiliary state machine for time measurement:>tm< 32

5.2 Transmit auxiliary state machine for time measurement:<tm> 32

5.3 Receiver auxiliary state machine for scheduler election:>elect< 34

5.4 Transmitter auxiliary state machine for scheduler election:<elect> 35

5.5 Receive auxiliary state machine for join:>join< . 37

5.6 Transmit auxiliary state machine for join:<join> . 37

5.7 Receive auxiliary state machine for candidate and slave nodes:>routine< 41

5.8 Transmit auxiliary state machine for candidate and slave nodes:<routine> 45

vii

5.9 Receive auxiliary state machine for the master node:>scheduling< 48

5.10 Transmit auxiliary state machine for the master node:<scheduling> 50

6.1 Performance of Helios-2 scheduler - Uniform(1, 25) Distribution 55

6.2 Performance of Helios-2 scheduler - Uniform(1, 25) Distribution 56

6.3 Performance of Helios-2 scheduler - Uniform(1, 25) Distribution 56

6.4 Performance of Helios-2 scheduler - Uniform(1, 25) Distribution 57

6.5 Performance of Helios-2 scheduler - Uniform(1, 25) Distribution 57

6.6 Performance of Helios-2 scheduler - Uniform(1, 25) Distribution 58

6.7 Performance of Helios-2 scheduler - Uniform(1, 25) Distribution 58

6.8 Performance of Helios-2 scheduler - Uniform(1, 25) Distribution 59

6.9 Performance of Helios-2 scheduler - Uniform(1, 50) Distribution 59

6.10 Performance of Helios-2 scheduler - Uniform(1, 50) Distribution 60

6.11 Performance of Helios-2 scheduler - Bimodal Distribution 60

6.12 Performance of Helios-2 scheduler - Bimodal Distribution 61

7.1 Helios-2 Network . 63

7.2 Helios-2 FPGA Back End . 65

7.3 Helios-2 Optical Front End . 67

viii

List of Tables

2.1 The modes of operation for a Helios-2 node . 6

3.1 Frame types and functions . 9

3.2 Field lengths in Helios-2 frame . 10

3.3 Flags in the Helios-2 frame header . 10

3.4 SCHED payload fields . 12

3.5 SCHED flags . 12

3.6 OCC payload fields . 14

3.7 SYNCARP frame payload fields . 15

3.8 SYNCARP frame flags . 16

3.9 Join frame payload fields . 16

6.1 Example traffic matrix . 52

ix

1 Introduction

1.1 Single-Hop Broadcast-and-Select WDM Networks

Wavelength-division multiplexing (WDM) is an optical communication technique that allows many

nodes to transmit simultaneously on different wavelength channels, thereby achieving network con-

currency and yielding substantially larger throughput than the electro-optical bottleneck. WDM thus

can exploit the huge opto-electronic bandwidth mismatch by requiring that each end-node’s equipment

operate only at electronic rate, but multiple WDM channels from different end-node’s may be multi-

plexed on the same fiber. A key feature of WDM is that the discrete wavelengths form an orthogonal set

of carriers which can be separated, routed, and switched without interfering with each other. This use of

wavelength and its processing in passive network has led to the wide array of research and development

activities in the field of optical networks [1, 2, 3, 4, 5]. A number of experimental prototypes have been

and are currently being developed and deployed, and tested [6, 7].

WDM networks have evolved from Point-to-Point WDM systems and Wavelength Add/Drop Mul-

tiplexer systems (mainly used for WAN and MAN applications) to Fiber and Wavelength Crossconnects

systems (mainly used for LAN applications). Fiber and Wavelength Crossconnect devices fall under the

following three broad categories:

• Passive Star - It is a “broadcast” device. Signal that is inserted on a given wavelength from an

input fiber port will have its power equally divided among all output ports.

• Passive Router - It can separately route each of several wavelength on an input fiber to the same

1

N1

PSC N4N2

N3

Slowly Tunable Transmitter
Fast Tunable Receiver

Figure 1.1: A Helios-2 Network

wavelengths on separate output fibers.

• Active Switch - It is a wavelength-routing switch.

Two general architecture forms [2, 3] that have been most widely used in WDM networks are wavelength-

routed networks and broadcast-and-select networks. A wavelength-routed network consists of one or

more wavelength-selective elements and have the property that the path that the signal takes through the

network is uniquely identified by the wavelength of the signal and the port through which it enters the

network.

A broadcast-and-select WDM optical network is constructed by connecting nodes via two-way fibers

to a passive star. In this type of network architecture, all inputs are combined in a star coupler and

broadcast to all outputs. Topologically, a broadcast-and-select WDM networks are either single-hop or

multi-hop [6, 7]. In a single-hop broadcast-and-select WDM network, the communication between each

pair of nodes is all-optical and no intermediate buffering is required i.e. single-hop broadcast-and-select

WDM networks can be defined as the networks where direct transmission can be achieved from source

to destination pair. Single-hop broadcast-and-select WDM networks can be implemented in various

different ways, depending on whether transmitters, receivers, or both are tunable.

WDM network architecture of interest in this thesis is Single-Hop Broadcast-and-Select WDM Net-

work. All nodes in this network are assumed to be equipped with Slowly Tunable Transmitter and Fast

Tunable Receiver (STT-FTR).

2

1.2 Helios-2

In a single-hop broadcast-and-select WDM network, transmitter of the sending node and receiver of the

destination node must be tuned to the same wavelength for the duration of the packet’s transmission

[6]. Thus, the problem of coordinating access to the various wavelengths of the network arises. This

problem is further complicated by the fact that, at high data rates, propagation delays, processing times,

and transceiver tuning times all become non-negligible.

For a single-hop broadcast-and-select network to be efficient, the bandwidth allocation among the

contending node must be dynamically managed [8, 9, 10, 11]. Numerous protocols have been proposed

for this purpose and they can be broadly classified into two categories: those employing pretransmission

coordination [8, 9] and those not requiring any pretransmission coordination [10, 11]. These protocols

suffer from inefficiencies of operating in environments with non-zero processing, tuning and propagation

delays. Hiper-l is a reservation protocol designed to overcome these inefficiencies while coordinating ac-

cess to the various channels of a single-hop broadcast-and-select WDM local area network [12]. Hiper-l

was developed as a MAC protocol for Helios (Nodes with Fast Tunable Transmitter - Slow Tunable

Receiver) network [15].

This thesis uses hiper-l as a MAC protocol. This thesis describes the details of the design of the

HiPeR-l protocol as implemented in the Helios-2 (Nodes with Slow Tunable Transmitter - Fast Tunable

Receiver) network (Figure 1.1). Helios-2 differs from all other WDM networks currently under devel-

opment in several respects: it operates within a broadcast-and-select environment, it is collision-free,

has reconfiguration and load balancing capabilities [21, 22, 23], and it is packet-switched instead of

circuit-switched. Helios-2 has also been optimized for a complete hardware implementation.

The Helios-2 network will consist of a number of end nodes, which are connected to a Passive

Star Coupler (PSC), a passive all-optical device that allows us to create a broadcast environment in the

network. Communication between nodes will occur on multiple wavelengths; thus the Helios-2 network

is a type of single-hop WDM network. The number of wavelengths utilized by the HiPeR-l protocol is

assumed to be smaller than the number of nodes in the network.

Communication in a Helios-2 network is collision-free due to the use of a non-preemptive gated

3

scheduling protocol. We use the concept of virtual receivers, a set of physical receivers (termed as

“group”) that behave identically in terms of tuning, in order to achieve a non-preemptive gated schedul-

ing protocol [17, 18, 19, 20]. All nodes in helios-2 network transmit data to a group and receive from

a group. A scheduling node calculates and disseminates the transmit and receive schedules. There are

two types of nodes in a Helios-2 network: candidate nodes, which are eligible to serve as the scheduling

node, and slave nodes, which are not.

Each Helios-2 node will be equipped with an optical NIC to facilitate data and control communi-

cation between the nodes in the network (All communication will be done using either IPv4 or IPv6

protocol). All operations related to Helios-2 would be realized in this optical NIC through a Master

State Machine and some Auxiliary State Machines.

1.3 Thesis Organization

The thesis is organized as follows. In Chapter 2 we describe high level operation of Helios-2. Mas-

ter state machine and different auxiliary state machines used in Helios-2 operation are introduced. In

Chapter 3 we describe the structure of superframe and different frames in Helios-2 network. Defini-

tion of different fields in each frame, length of those fields and their use is discussed too. In Chapter 4

we discuss operation of Helios-2 master state machine. In Chapter 5 we discuss operation of different

auxiliary state machines used in Helios-2. In Chapter 6 we discuss scheduling algorithm for Helios-

2. Performance analysis of this algorithm is also presented. Finally in Chapter 7 we conclude with a

example hardware implementation of Helios-2.

4

2 Helios-2 Network Operation

Helios-2 network architecture is based on the assumption that nodes are equipped with Slowly Tunable

Transmitter and Fast Tunable Receiver optics. All nodes in Helios-2 network are divided into groups

using virtual receiver concept [17, 18]. Receivers of all nodes belonging to a group behave identically

in terms of tuning. This type of network architecture facilitates non-preemptive scheduling [19, 20].

So a node either transmits to a group or receives from a group, as shown in Figure 2.1. All node

communicate their per group traffic requirement to a Master node which in turn computes the transmit

and receive schedules for all the nodes. This schedule is then distributed to all the nodes for their use.

2.1 Helios-2 Modes of Operation

The operation of a node in the Helios-2 network can be divided into five modes, as shown in Table 2.1.

Corresponding to each mode of operation are two auxiliary state machines, the receive and the transmit

auxiliary state machines. Each machine begins and ends in the idle state: they are triggered out of the

idle state by a signal from the master state machine called master_controller, and they usually terminate

by sending a signal back to master_controller and returning to the idle state.

When the network comes up after having been completely powered down, no master node has yet

been designated, no frames are traveling, and no synchronization information is available. The first task

during this initialization phase is the election of a master node; candidate nodes enter Election mode

while slave nodes sleep. The operation of Election Mode assumes that candidate nodes are equipped

with slowly tunable transmitters; otherwise, a network administrator must designate the master node.

5

Laser
Fixed

Laser
Fixed

Receiver
Tunable

Receiver
Tunable

Node 1 − Group 1
Node N − Group 2

Node 1

Node N

G1 G1 G2 G2

G1G1G2G2

Node 1

Node N

G1 G1 G1 G1

G2 G2 G2 G2

PSC

Figure 2.1: Helios-2 Operation

Auxiliary State Machines
Mode Function Transmit Receive

Time a new node measures its propagation <tm> >tm<
Measurement delay to the PSC

Join a new node contacts the master node <join> >join<
with its bandwidth requests

Election a candidate node vies to become the <elect> >elect<
master node

Routine a node transmits and receives <routine> >routine<
according to the schedule

Scheduling same as Routine, plus creates new <scheduling> >scheduling<
schedules

Table 2.1: The modes of operation for a Helios-2 node

6

Once a master node has been elected, it circulates the synchronization & ARP information in SYN-

CARP frames, enabling other nodes to join the network. A node formally joins the Helios-2 network by

proceeding through the Time Measurement and Join modes. In Time Measurement, a node calculates

its psc_offset, the propagation delay to the PSC. All times are measured locally, and the transmissions

are done in relation to the PSC time. Since collisions can occur only at the PSC, each node uses its

psc_offset to ensure that its transmissions reach the PSC at the exact time prescribed by the schedule.

Following Time Measurement a node enters Join Mode. The node first lets the master node know

of its presence via the JOIN frame, so that the current schedule can be expanded to include this new

demand. The joining node must then wait to hear a new schedule that includes its request.

It is possible for a collision to occur when two or more nodes attempt to join a Helios-2 network at

the same time. Two nodes assigned to the same transmit wavelength could experience a collision during

Time Measurement (two nodes belonging to same group may transmit a JOIN frame to the master node

during the same JOIN window). But the collision does not interfere with the normal operation of the

rest of the network; a collision during the transmission of a TM frame (respectively, a JOIN frame) is

isolated to the TM window (respectively, the JOIN window). The protocol includes backoff algorithms

to resolve such contention.

After successfully joining the network, a new node enters Routine Mode, where it remains indef-

initely unless an error condition occurs. During Routine Mode, the receive hardware extracts the data

frames (optionally containing control information) by tuning onto different wavelengths according to re-

ceive schedule. Meanwhile, the transmit hardware transmits data frames (optionally containing control

information) from its group_id queues onto its outgoing wavelength, according to the transmit sched-

ule. These transmissions include sending an OCC payload (within data frame) to the master node, once

per superframe, to communicate its packet queue occupancies; from the OCC payload the master node

can calculate a schedule. Master node communicates the calculated schedule to nodes through SCHED

payload (within data frame). In contrast to the Time Measurement and Join modes, Routine Mode is

collision-free. The psc_offset, first measured during Time Measurement, is also measured periodically

during Routine Mode, in a collision-free manner.

7

3 Superframe & Frames

3.1 Superframe

The time required to complete the transmissions of one full schedule in HiPeR-l is referred to as a super-

frame. A superframe, shown in Figure 3.1, further consists of frames, which are continuous sequences

of octets transmitted by nodes on their respective transmit wavelengths. The complete list of the types

of frames that may be transmitted during a superframe are shown in Table 3.1. In the following section

each frame type is discussed in detail.

3.2 Frame Format

Each frame consists of a header, a variable length payload, and a trailer. Frame structure is illustrated in

Figure 3.2, and each field is described in Table 3.2. The header contains the Frame Type indicator, one

octet of flags, the payload length indicator, and the source and destination addresses. The trailer contains

a timestamp and a CRC32 checksum field. The last column of Table 3.1 shows the possible values that

can be placed in the frame type field of the Helios-2 frame header.

Table 3.2 also shows the length of each field in a Helios-2 frame. The payload length field is allocated

two octets for future expansion, when it will be possible to use packets longer than 600 octets (the current

maximum transfer unit). The flags field contains a number of flags, shown in Table 3.3, that are used by

the nodes to indicate the state of the protocol.

8

G1 G2

G1

N1 & N2 N1 & N2

N3 & N4

Group G1 = N1, N2
Group G2 = N3, N4

Master Node = N1

Lambda 1

Lambda 2

Rx

Rx

Tx

Tx

N1

G1 & G2

G2

N3 & N4

TMSYNCARP DATA (SCHED, OCC), JOIN

Figure 3.1: Helios-2 Superframe.

Frame Function Frame Type

DATA Carries regular data, occ & sched as payload 0x01
OCC transmits queue occupancies to the scheduling node
SCHED transmits schedule to the slave nodes

MDATA Carries multicast data 0x02
TM Measures roundtrip delay to the PSC 0x03
JOIN Transmits joining intent of a node to Master Node 0x04
SYNCARP Carries synchronization information to the nodes & 0x05

carries MAC address to group index mapping (gARP)
OAM Carries error and management information about network 0x06
AVAIL[1,2] Announces the availability of a scheduling server to become 0x07

a scheduling node during scheduler election process

Table 3.1: Frame types and functions

frame_type flags payload_length source_ID destination_ID time stamp crc32payload

Figure 3.2: Structure of a frame in the Helios-2 network.

9

Field Name Description Field Length
(in octets)

frame_type Frame type indicator 1
flags Frame flags 1
payload_length Indicates the length of the frame payload 2
source_ID MAC address of the originator of the frame 16
destination_ID MAC address of the destination of the frame 16
payload contains frame payload variable≤ 1456
time_out Time stamp marking departure time of frame 4
crc32 CRC32 checksum of the entire frame 4
Total 1500

Table 3.2: Field lengths in Helios-2 frame

Flag Name Purpose

more_frames Indicates that more frames of the same type will follow this frame
sched_payload Indicates the presence of sched payload in data frame.
occ_payload Indicates the presence of occ payload in data frame.

Table 3.3: Flags in the Helios-2 frame header

3.2.1 Frame Addressing

The Helios-2 addressing scheme is compatible with both IPv4 and IPv6 address formats to allow direct

mapping of addresses from those protocols into the Helios-2 MAC addresses. IPv6 addresses can be

mapped directly onto the Helios-2 MAC addresses and used as a replacement for MAC addresses. IPv4

addresses will require padding as described in Section 2.5.4 of RFC2373. In short, an IPv4 address will

be represented as eighty 0’s, followed by sixteen 1’s, followed by the IPv4 address of the node interface.

Similarly, multicast addresses can be used as destination MAC addresses for multicast communica-

tions in Helios-2. Helios-2 will utilize the link-local multicast addresses reserved in IPv4 and IPv6. For

the all-nodes multicast group used internally for sending signaling messages, Helios-2 will utilize the

following values:

IPv4: 224.0.0.250

IPv6: ff02:1

10

Data PayloadSCHED/OCC (Optional)

SCHED/OCC PayloadLength

Figure 3.3: Data Frame payload.

3.3 DATA Frame

Payload of the DATA frame contains an IPv4 or IPv6 packet (Figure 3.3). Use of the timestamp field is

optional. DATA frame also optionally carries SCHED & OCC payload embedded within it. A length

field (1 octet) before the SCHED/OCC payload contains the length(in octets) of SCHED/OCC payload.

SCHED is sent to the each group of nodes once every superframe by the Master Node (shown

Figure 3.4). SCHED transmitted for a particular group_idgi will only contain node schedules for those

nodes transmitting on wavelengthgi . Upon receipt of SCHED, each node stores its own schedule until

the time comes to start using the new schedule. Special flags in the header indicate the transition phase

from one schedule to the next.

As shown in Figure 3.4, SCHED payload itself consists of a header, receive schedule of the group

and the individual transmit schedules of the nodes in the group. Table 3.4 describes each field in the

SCHED payload. The flags field of the SCHED payload contains several single-bit flags, which are

described in Table 3.5.

The structure of the OCC payload is shown in Figure 3.5. Table 3.6 describes the fields of the OCC

payload in detail. Each node in the network informs the scheduling node of its packet queue occupancies

by transmitting an OCC. Using this aggregate information, the scheduling node can produce a new

11

Field Name Description Field Length
(in octets)

flags Current state of the schedule and protocol 1
sched_group_id Group_ID of group for which this schedule 1

schedule is intended
switch_count Countdown to the new schedule 1

(along with active bit)
num_tx_schedules Number of individual node transmit 1

schedules in this frame
node_ID Address of the node for which the 16

following schedule is intended
num_tx_schedchunksNumber of transmit schedchunks in the 1

nodes schedule
group_ID group_ID of the transmit queue for this 1

schedchunk
T_tx_start Offset (in slots, from the start of the 2

superframe) of the first slot in which
the node may transmit on this wavelength

T_tx_last Offset (in slots, from the start of the 2
superframe) of the last slot in which the
node may transmit on this wavelength

num_rx_sched Number of receive schedchunks for the group 1
rcv_lambda Receive wavelength for this schedchunk 1
T_rcv_start Offset (in slots, from the start of the 2

superframe) of the firstslot in which the
group may receive on this wavelength

T_rcv_last Offset (in slots, from the start of the 2
superframe) of the lastslot in which
the group may receive on this wavelength

Table 3.4: SCHED payload fields

Flag name Purpose

active_bit Indicates whether the information in this SCHED
payload is for current (1) or future (0) use

Table 3.5: SCHED flags

12

switch_count num_tx_schedules Node Transmit Schedules num_rx_schedules Group Receive Schedulesflags

rcv_lambda T_rcv_start T_rcv_last rcv_lambda T_rcv_start T_rcv_last

T_tx_lastT_tx_startgroup_ID T_tx_lastT_tx_startgroup_ID

node_ID num_tx_schedchunks schedchunk node_ID num_tx_schedchunks schedchunk

Figure 3.4: SCHED payload

queue_sizequeue_group_id queue_sizequeue_group_id

node_IP group_ID Queue Occupancies

Figure 3.5: OCC payload

schedule that better accommodates node’s current load demands. The scheduling node must always

reserve enough time on its receive schedule for each node in the network to send its OCC information.

3.4 MDATA Frame

The MDATA frame payload contains an IPv4 or IPv6 multicast packet. Use of the timestamp field is

optional.

13

Field Name Description Field Length
(in octets)

node_IP IP address of the source node 16
group_id Group of which this node is part 1
sched_node_ID Scheduling node’s MAC address 16
sched_lambda Scheduling node’s transmit wavelength 1
queue_group_ID Group_id of the queue 1
queue_size Queue size of the group 2

Table 3.6: OCC payload fields

3.5 SYNCARP Frame

The SYNCARP frame is broadcast to all node at the start of superframe. It carries generic synchro-

nization information, MAC address, IP address and group_id for all nodes in the network (shown in

Figure 3.6). SYNCARP frames are transmitted on Master Node’s lambda at the start of each super-

frame . SYNC portion of frame contains timing information of Join slots in superframe corresponding

to different wavelengths while ARP portion of frame contains MAC address, IP address and group_id

mapping for each node in the network. SYNCARP frame also carries tm_bit in the flags field (payload

header) indicating whether a TM slot is attached at the end of superframe.

Each SYNCARP frame consists of the Helios-2 header, the SYNCARP payload, and the trailer.

Table 3.7 describes each field in the SYNCARP frame payload. The flags field of the SYNCARP frame

contains several single-bit flags, which are described in Table 3.8.

3.6 TM Frame

A TM window is a quiet time provided on each wavelength at the end of a schedule in order to allow

nodes to measure their delay to the PSC, called the psc_offset. A node transmits a timestamped TM

frame to itself during the TM window; the difference between the timestamp and the receipt time of the

TM frame is the roundtrip delay to the PSC. The psc_offset is one-half the roundtrip time. A TM frame

consists of the Helios-2 header, an empty payload, and the trailer.

14

flags sf_length time_till_tm sched_node_ID sched_lambda num_T_jo Join Slot Schedule

lambda T_jo T_jolambda

num_entries ARP Entires

node_IPnode_ID group_ID node_IPnode_ID group_ID

Figure 3.6: SYNCARP Frame payload

Field Name Description Field Length
(in octets)

flags Current state of the schedule and protocol 1
sf_length Length of the superframe in slots 2
time_till_tm Time (in slots) from the SYNCARP frame to the TM 2

window (If the flags show the presence of a TM
window in this superframe)

sched_node_ID Scheduling node’s MAC address 16
sched_lambda Scheduling node’s transmit wavelength 1
num_T_jo Number of JOIN slots for which offset is available in 1

this frame
lambda Tx wavelength of the nodes for which the following 1

JOIN offset is meant
T_jo Offset (in slots, from the start of the superframe) of 2

the JOIN window corresponding to the wavelength ID
num_entries Indicates the number of ARP entries in this frame 1
node_ID Contains the MAC address of the node in the mapping 16
node_IP Contains the IP address of the node in the mapping 16
group_ID Contains the group_ID number in the mapping 1

Table 3.7: SYNCARP frame payload fields

15

Flag name Purpose

tm_bit Indicates the presence (1) or absence (0) of a TM window
in this superframe

active_bit Indicates whether the JOIN slots in this SYNCARP are
for current (1) or future (0) use

Table 3.8: SYNCARP frame flags

Field Name Description Field Length
(in octets)

node_IP IP address of the source node 16
tx_lambda Transmit wavelength of node 1

queue_group_ID Group_id of the queue 1
queue_size Queue size of the group 2

Table 3.9: Join frame payload fields

3.7 JOIN Frame

When a new node joins the Helios-2 network, it sends a JOIN frame to the scheduler to indicate its

presence. A new node that is not yet a part of the Helios-2 network transmits a JOIN frame on the

node’s transmit wavelength during the JOIN window in the schedule corresponding to its own transmit

lambda, given by the T_jo field corresponding to the transmit lambda of the SYNCARP frame. Table 3.9

describes each field in the JOIN frame payload.

3.8 AVAIL Frames

A candidate node participating in scheduler election (Section 5.2) uses AVAIL[1,2] frames to indicate it

is available to become the master node in the network. The frames consist of a standard Helios-2 header,

an empty payload, and a trailer. Use of the timestamp field is optional.

3.9 OAM Frame

OAM frames are similar in spirit to OAM ATM cells. They carry additional management information

between the nodes. The format and exact function of this frame type remains presently undefined.

16

4 Helios-2 Master State Machine

The Master State Machine also named master_controller is shown in Figure 4.1. There are six main

states in master_controller, corresponding to the six modes of operation: Time Measurement, Scheduler

Election, Join, Routine, Scheduling, and ERR. In addition, there are five minor states: two are related to

Time Measurement (Wait On Election and TM Backoff), while the other three are related to Join (Wait

On Election, Join Backoff, and Same Node Sleep). Each state is now described in turn.

4.1 Time Measurement State

The master_controller is awaiting a signal from the auxiliary state machine >tm<. A successful signal

is:

• ROUNDTRIP_TIME from >tm<.

Event: >tm< has obtained the needed data (tm_in an tm_out) so that master_controller can cal-

culate the psc_offset.

Transition: Move to the Join state and start >join<.

Unsuccessful signals are:

• NO_TM_WINDOW from >tm<.

Event: None of the SYNCARP frames that >tm< encountered (out of NO_TM_MAX SYNCARP

frames) indicated that a tm window corresponding to the nodes transmit wavelength was

17

[R
CVSGNL(

"N
EW

_S
CHED",

>jo
in<

)
]

SNDSGNL(
"S

TART_R
OUTIN

E",
<r

ou
tin

e>
)

SNDSGNL(
"S

TART_R
OUTIN

E",
>r

ou
tin

e<
)

[! w
ait_tim

er]

w
ait_count−

−
 ; S

N
D

S
G

N
L("S

T
A

R
T

_T
M

", >
tm

<
)

[RCVSGNL("NOT_MASTER", >elect<)]

SNDSGNL("START_TM", >tm<)

tm_count = TM_MAX

get_tm_count = GET_TM_MAX

wait_count = WAIT_MAX

TM BACKOFF

[R
CVSGNL(

"N
O_S

CHED",
>r

ou
tin

e<
)

&& ca
nd

ida
te

]

SNDSGNL(
"S

TART_E
LE

CT",
>e

lec
t<

)

SCHEDULING

tm
_c

ou
nt

 =
 T

M
_M

A
X

ge
t_

tm
_c

ou
nt

 =
 G

E
T

_T
M

_M
A

X

S
N

D
S

G
N

L(
"S

T
A

R
T

 T
M

",
 >

tm
<

)

w
ai

t_
co

un
t =

 W
A

IT
_M

A
X

ERR

[R
C

VS
G

N
L(

"N
O

_S
C

H
ED

",
>s

ch
ed

ul
in

g<
)

]

SN
D

SG
N

L(
"S

TA
R

T_
EL

EC
T"

, <
el

ec
t>

)

SNDSGNL("START_ELECT", >elect<)

&& candidate]

[RCVSGNL("NO_MASTER", >tm<)

[RCVSGNL("NOT_IN_SCHED", >scheduling<)]
SNDSGNL("START_TM", >tm<) ; tm_count = TM_MAX ; get_tm_count = GET_TM_MAX ; wait_count = WAIT_MAX

|| [RCVSGNL("NO_REPLY", >tm<)

&& ! candidate && ! wait_count]
|| [RCVSGNL("NO_MASTER", >tm<)

&& ! get_tm_count]
[RCVSGNL("NO_TM_WINDOW", >tm<)

&& ! tm_count]

go to ERR mode

SAME NODE
SLEEP

[R
C

V
S

G
N

L("S
A

M
E

_ID
", >

join<
) &

&
 sam

e_count]
sam

e_tim
er =

 T
_S

A
M

E

JOIN BACKOFF

[! w
ait_tim

er] w
ait_count−

−

S
N

D
S

G
N

L("S
T

A
R

T
_JO

IN
", >

join<
)

w
ait_tim

er =
 T

_E
LE

C
T

IO
N

_W
A

IT
&

&
 ! candidate &

&
 w

ait_count]
[R

C
V

S
G

N
L("N

O
_S

C
H

E
D

", >
join<

)

ELECTION
JOIN WAIT ON

[! w
ait_tim

er] w
ait_count−

−

S
N

D
S

G
N

L("S
T

A
R

T
_JO

IN
", >

join<
)

M
E

M
(B

A
N

K
_N

E
W

C
A

LC
) =

 M
A

K
E

_S
C

H
E

D
(cur_traffic_m

atrix)

[! recalc_tim
er] || [R

C
V

S
G

N
L("R

E
C

A
LC

_S
C

H
E

D
U

LE
", >

scheduling<
)]

S
T

A
T

U
S

(B
A

N
K

_N
E

W
C

A
LC

, V
A

LID
) ; recalc_tim

er =
 T

_R
E

C
A

LC

[R
C

V
S

G
N

L("M
A

S
T

E
R

", <
elect>

)]

C
O

P
Y

_N
E

W
C

A
LC

_IN
T

O
_C

U
R

F
R

A
M

E
() ; copy m

aster’s sched into B
A

N
K

0

S
T

A
T

U
S

(B
A

N
K

0, V
A

LID
) ; S

N
D

S
G

N
L("S

T
A

R
T

_S
C

H
E

D
U

LIN
G

", >
scheduling<

)

M
A

K
E

_S
C

H
E

D
(cur_traffic_m

atrix) ; C
O

P
Y

_S
C

H
E

D
U

LE
_IN

T
O

_N
E

W
A

LC
()

recalc_tim
er =

 T
_R

E
C

A
LC

 ; S
N

D
S

G
N

L("S
T

A
R

T
_S

C
H

E
D

U
LIN

G
", <

scheduling>
)

"UNEXP_INVALID_BANK" ||[RCVSGNL("BANKS_INVALID" ||
"NO_VALID_SCHED"||"NO_SYNCARP"), >scheduling<)]
goto ERR mode

"U
N

E
X

P
_I

N
V

A
LI

D
_B

A
N

K
"

||
[R

C
V

S
G

N
L(

"B
A

N
K

S
_I

N
V

A
LI

D
"

||
"N

O
_V

A
LI

D
_S

C
H

E
D

"|
|"

N
O

_S
Y

N
C

A
R

P
")

, >
ro

ut
in

e<
)

]
go

to
 E

R
R

 m
od

e

calculate psc_offset
>

elect<
)]

[R
C

V
S

G
N

L("R
O

U
N

D
T

R
IP

_T
IM

E
"

TIME MEASUREMENT

ge
t_

tm
_c

ou
nt

−
−

 ;
S

N
D

S
G

N
L(

"S
T

A
R

T
_T

M
",

 >
tm

<
)

[R
C

V
S

G
N

L(
"N

O
_T

M
_W

IN
D

O
W

",
 >

tm
<

)
 &

&
 g

et
_t

m
_c

ou
nt

]

[R
C

V
S

G
N

L("N
O

 R
E

P
LY

", >
tm

<
) &

&
 tm

_count]

w
ait_tim

er =
 T

_W
A

IT

[! tm
_backoff_tim

er]

tm
_count−

−
 ; S

N
D

S
G

N
L("S

T
A

R
T

_T
M

", >
tm

<
)

join_count = JOIN_M
AX

wait_count = W
AIT_MAX

same_count = SAME_MAX

calculate psc_offset,

SNDSGNL("START_JOIN", >join<)

[RCVSGNL("ROUNDTRIP_TIME", >tm<]

SCHEDULER
ELECTION

S
N

D
S

G
N

L("S
T

A
R

T
_E

LE
C

T
", >

elect<
)

[R
C

V
S

G
N

L("N
O

_S
C

H
E

D
", >

join<
) &

&
 candidate]

[R
C

V
S

G
N

L("N
O

_S
C

H
E

D
", >

join<
) &

&
 ! candidate &

&
 ! w

ait_count]

ROUTINE

ELECTION
TM WAIT ON

tm
_backoff_tim

er =
 R

A
N

D
(T

_T
M

B
A

C
K

O
F

F
*2^(T

M
_M

A
X

−
tm

_count))

[R
C

V
S

G
N

L(
"B

A
N

K
S

_I
N

V
A

LI
D

"
||

"U
N

E
X

P
_I

N
V

A
LI

D
_B

A
N

K
"

||
"N

O
_V

A
LI

D
_S

C
H

E
D

",
 <

ro
ut

in
e>

)
 ||

 !
C

R
C

]
go

to
 E

R
R

 m
od

e

S
N

D
S

G
N

L(
"S

T
A

R
T

_T
M

",
 >

tm
<

)
 ;

 t
m

_c
ou

nt
 =

 T
M

_M
A

X
 ;

 g
et

_t
m

_c
ou

nt
 =

 G
E

T
_T

M
_M

A
X

 ;
 w

ai
t_

co
un

t =
 W

A
IT

_M
A

X

start

[R
C

V
S

G
N

L(
"N

O
T

_I
N

_S
C

H
E

D
",

 >
ro

ut
in

e<
)

]
||

[R
C

V
S

G
N

L(
"N

O
_S

C
H

E
D

",
 >

ro
ut

in
e<

)
 &

&
 !

ca
nd

id
at

e
]

[R
C

V
S

G
N

L("N
O

_M
A

S
T

E
R

", >
tm

<
) &

&
 ! candidate &

&
 w

ait_count]

"NO_VALID_SCHED"), <scheduling>)]

"UNEXP_INVALID_BANK" ||

[RCVSGNL("BANKS_INVALID" ||

goto ERR mode

[R
C

V
S

G
N

L("N
O

_N
E

W
_S

C
H

E
D

", >
join<

) &
&

 join_count]

join_backoff_tim
er =

S
N

D
S

G
N

L("S
T

A
R

T
_JO

IN
", >

join<
)

[! sam
e_tim

er] sam
e_count−

−

S
N

D
S

G
N

L("S
T

A
R

T
_JO

IN
", >

join<
)

[! join_backoff_tim
er] join_count−

−

R
A

N
D

(T
_B

A
C

K
O

F
F

*2^(JO
IN

_M
A

X
−

join_count))

w
ait_tim

er =
 T

_E
LE

C
T

IO
N

_W
A

IT
&

&
 ! candidate &

&
 w

ait_count]

ELECTION
JOIN WAIT ON

[R
C

V
S

G
N

L("N
O

_S
Y

N
C

A
R

P
", >

join<
)

JOIN

[R
C

V
S

G
N

L("N
O

_S
Y

N
C

A
R

P
", >

join<
) &

&
 ! candidate &

&
 ! w

ait_count]

go to E
R

R
 m

ode

[R
C

V
S

G
N

L("S
A

M
E

_ID
", >

join<
) &

&
 ! sam

e_count] ||

[R
C

V
S

G
N

L("N
O

_N
E

W
_S

C
H

E
D

", >
join<

) &
&

 ! join_count] ||

|| [R
C

V
S

G
N

L("N
O

_A
C

T
IV

E
_S

Y
N

C
A

R
P

", >
join<

)] ||

[R
C

V
S

G
N

L("M
A

X
_C

O
LLIS

IO
N

", >
elect<

)]

Figure 4.1: Master State Machine:master_controller

18

present in the superframe.

Transition: If this failure has occurred less than GET_TM_MAX times, restart >tm< (i.e., self-

transition); else, move to ERR state.

• NO_MASTER from >tm<.

Event: >tm< failed to hear a SYNCARP or DATA with OCC payload within

MAX_MASTER_COUNT.

Transition: If a candidate node, move to Scheduler Election state; else, if this failure has occurred

less than WAIT_MAX times, move to Wait On Election state; else, move to ERR state.

• NO_REPLY from >tm<.

Event: >tm< failed to hear the echo of its tm frame.

Transition: If this failure has occurred less than TM_MAX times, move to TM Backoff state;

else, move to ERR state.

4.2 Scheduler Election State

The master_controller is awaiting a signal from the auxiliary state machine >elect< or <elect>. A suc-

cessful signal is:

• SCHEDULER from <elect>.

Event: <elect> has just transmitted the second AVAIL frame, winning the election.

Transition: Move to the Scheduling state and start >scheduling<.

Unsuccessful signal are:

• NOT_SCHEDULER from >elect<.

Event: >elect< heard something (a SYNCARP or an AVAIL frame) which caused it to lose the

election.

19

Transition: Move to Time Measurement state and start >tm<.

• MAX_COLLISION from >elect<.

Event: >elect< experienced collisions for MAX_COLLISION_COUNT while trying to transmit

AVAIL1.

Transition: Move to ERR state.

4.3 Join State

The master_controller is awaiting a signal from the auxiliary state machine >join<. A successful signal

is:

• NEW_SCHED from >join<.

Event: >join< has received a DATA frame with SCHED payload that contains its own my_node_ID.

Transition: Move to Routine state and start <routine> and >routine<.

Unsuccessful signals are:

• NO_SCHED from >join<.

Event: >join< failed to hear a DATA frame with SCHED payload within T_GET_SCHED.

Transition: If a candidate node, move to Scheduler Election state; else, if this failure has occurred

less than WAIT_MAX times, move to Wait On Election state; else, move to ERR state.

• NO_SYNCARP from >join<.

Event: >join< failed to hear a SYNCARP frame within T_GET_SYNCARP.

Transition: If a candidate node, move to Scheduler Election state; else, if this failure has occurred

less than WAIT_MAX times, move to Wait On Election state; else, move to ERR state.

• NO_NEW_SCHED from >join<.

20

Event: >join< failed to hear a DATA frame with SCHED payload that included scheduling infor-

mation for my_node_ID.

Transition: If this failure has occurred less than JOIN_MAX times, move to Join Backoff state;

else, move to ERR state.

• SAME_ID from >join<.

Event: >join< heard a DATA frame with SCHED payload that included scheduling information

for my_node_ID.

Transition: If this failure has occurred less than SAME_MAX times, move to Same Node Sleep

state; else, move to ERR state.

• NO_ACTIVE_SYNCARP from >join<.

Event: None of the SYNCARP frames that >join< encountered (out of INACTIVE_MAX SYN-

CARP frames) had the active_bit set.

Transition: Move to ERR state.

4.4 Routine State

The master_controller could remain in this state indefinitely, while <routine> transmits according to the

transmit schedule and >routine< receives incoming data and signaling frames according to the receive

schedule. Only an unsuccessful signal (triggered by an error condition in either <routine> or >routine<)

will cause a transition out of the Routine state. Possible unsuccessful signals are:

• BANKS_INVALID from <routine>.

Event: <routine> was just started, but was unable to transmit anything at all, because

TX_BANK0 was invalid.

Transition: Move to ERR state.

21

• UNEXP_INVALID_BANK from <routine>.

Event: <routine> completed transmissions for the current schedule (held in cur_tx_bank) and

discovered that cur_tx_bank had been marked invalid.

Transition: Move to ERR state.

• NO_VALID_SCHED from <routine>.

Event: <routine> was ready to switch from an out-of-date schedule to a new one, but discovered

that the reserve memory bank was marked invalid.

Transition: Move to ERR state.

• BANKS_INVALID from >routine<.

Event: >routine< was just started, but was unable to transmit anything at all, because

RCV_BANK0 was invalid.

Transition: Move to ERR state.

• UNEXP_INVALID_BANK from >routine<.

Event: >routine< completed transmissions for the current schedule (held in cur_rcv_bank) and

discovered that cur_rcv_bank had been marked invalid.

Transition: Move to ERR state.

• NO_VALID_SCHED from >routine<.

Event: >routine< was ready to switch from an out-of-date schedule to a new one, but discovered

that the reserve memory bank was marked invalid.

Transition: Move to ERR state.

• NO_SCHED from >routine<.

Event: >routine< failed to hear a DATA frame with SCHED payload within T_GET_SCHED.

22

Transition: If candidate then enter SCHEDULER ELECTION else enter TIMING MEASURE-

MENT.

• NO_SYNCARP from >routine<.

Event: >routine< failed to hear a SYNCARP frame at the beginning of the superframe.

Transition: Move to ERR state.

• NOT_IN_SCHED from >routine<.

Event: >routine< heard a DATA frame with SCHED payload that failed to include scheduling

information for my_node_ID.

Transition: Start the TIMING MEASUREMENT and proceed through JOIN to rejoin the net-

work.

4.5 Scheduling State

The master_controller could remain in this state indefinitely, while <scheduling> transmits according

to the transmit schedule and >scheduling< receives incoming data and signaling frames according to

receive schedule. Only an unsuccessful signal (triggered by an error condition in either <scheduling> or

>scheduling<) will cause a transition out of the Scheduling state. Possible unsuccessful signals, listed

below, are identical to those listed for Routine State in Section 4.4, except that they come from the state

machines <scheduling> or >scheduling<.

• BANKS_INVALID from <scheduling>.

Event: <scheduling> was just started, but was unable to transmit anything at all, because TX_BANK0

was invalid.

Transition: Move to ERR state.

• UNEXP_INVALID_BANK from <scheduling>.

23

Event: <scheduling> completed transmissions for the current schedule (held in cur_tx_bank) and

discovered that cur_tx_bank had been marked invalid.

Transition: Move to ERR state.

• NO_VALID_SCHED from <scheduling>.

Event: <scheduling> was ready to switch from an out-of-date schedule to a new one, but discov-

ered that the reserve memory bank was marked invalid.

Transition: Move to ERR state.

• BANKS_INVALID from >scheduling<.

Event: >scheduling< was just started, but was unable to transmit anything at all, because RCV_BANK0

was invalid.

Transition: Move to ERR state.

• UNEXP_INVALID_BANK from >scheduling<.

Event: >scheduling< completed transmissions for the current schedule (held in cur_rcv_bank)

and discovered that cur_rcv_bank had been marked invalid.

Transition: Move to ERR state.

• NO_VALID_SCHED from >scheduling<.

Event: >scheduling< was ready to switch from an out-of-date schedule to a new one, but discov-

ered that the reserve memory bank was marked invalid.

Transition: Move to ERR state.

• NO_SCHED from >scheduling<.

Event: >scheduling< failed to hear a DATA frame with SCHED payload within T_GET_SCHED.

24

Transition: If candidate then enter SCHEDULER ELECTION else enter TIMING MEASURE-

MENT.

• NO_SYNCARP from >scheduling<.

Event: >scheduling< failed to hear a SYNCARP frame at the beginning of the superframe.

Transition: Move to ERR state.

• NOT_IN_SCHED from >scheduling<.

Event: >scheduling< heard a DATA frame with SCHED payload that failed to include scheduling

information for my_node_ID.

Transition: Start the TIMING MEASUREMENT and proceed through JOIN to rejoin the net-

work.

• RECALC_SCHED from >scheduling<.

Event: >scheduling< heard a JOIN frame from a node to join the network.

Transition: Move to >scheduling< state after recalculating schedule and putting that schedule in

BANK_NEWCALC (mark this bank VALID).

4.6 TM Wait On Election State

The master_controller arrives at this state from the Time Measurement state because no SYNCARP or

DATA with OCC payload were heard on any wavelength and the node is a slave (i.e., cannot participate

in scheduler election). The master_controller remains here for a time T_ELECTION_WAIT. There is

only one opportunity to exit TM Wait On Election state:

Event: The wait_timer expires.

Transition: Move to the Time Measurement state.

25

4.7 TM Backoff State

The master_controller arrives at this state from the Time Measurement state, because it did not hear

the echo of its TM transmission, possibly due to a collision. The master_controller remains here for a

random amount of time (exponential backoff). There is only one opportunity to exit TM Backoff state:

Event: The tm_backoff_timer expires.

Transition: Move to the Time Measurement state.

4.8 Join Wait On Election State

The master_controller arrives at this state from the Join state because no schedules or no syncarp are

heard and the node is a slave (i.e., cannot participate in scheduler election). The master_controller re-

mains here for a time T_ELECTION_WAIT. There is only one opportunity to exit Join Wait On Election

state:

Event: The wait_timer expires.

Transition: Move to the Join state.

4.9 Join Backoff State

The master_controller arrives at this state from the Join state, because it did not hear a DATA frame with

SCHED payload containing scheduling information for my_node_ID. The master_controller remains

here for a random amount of time (exponential backoff). There is only one opportunity to exit Join

Backoff state:

Event: The join_backoff_timer expires.

Transition: Move to the Join state.

26

4.10 Same Node Sleep State

The master_controller arrives at this state from the Join state, because before the node could join

the network, a DATA frame with SCHED payload was heard containing scheduling information for

my_node_ID, possibly meaning that another node in the network possesses the same node ID. The mas-

ter_controller remains here for a time T_SAME. There is only one opportunity to exit Same Node Sleep

state:

Event: The same_timer expires.

Transition: Move to the Join state.

4.11 Error State

4.11.1 Events that trigger the transition to ERR state

A node enters ERR state from another state in the master state machine. Several events can cause the

transition into ERR state.

From Master State Time Measurement:

1. The signal “NO_TM_WINDOW” was received from >tm< and get_tm_count == 0. Master_controller

has repeatedly attempted to perform time measurement, and it has failed GET_TM_MAX times.

Each of these failures was caused by no TM window appearing out of NO_TM_MAX super-

frames.

2. The signal “NO_MASTER” was received from >tm< and the node is not a scheduling server and

wait_count == 0. Whereas a scheduling server immediately moves to Scheduler Election upon

receiving the “NO_MASTER” signal, a slave instead transitions to the Wait On Election state for

a time T_WAIT – allowing the servers time to elect a scheduler – before re-attempting >tm<. A

slave allows a total of WAIT_MAX failures of this type before entering to ERR mode.

27

3. The signal “NO_REPLY” was received from >tm< and tm_count == 0. Master_controller has

repeatedly attempted to perform time measurement, and it has failed TM_MAX times with the

“NO_REPLY” error. This error results from the node having failed to receive its own transmission

of the TM frame, possibly because either the transmitter or the receiver is broken. Much less

likely, it is possible that a collision occurred TM_MAX times during the TM window, even though

exponential backoff was used in between attempts at >tm<.

From Master State Join:

1. The signal “NO_ACTIVE_SYNCARP” was received from >join<. The >join< state machine has

received INACTIVE_MAX SYNCARP frames with {syncarp.active_bit} not set. This error is

likely the result of a malfunction at the master node.

2. The signal “NO_NEW_SCHED” was received from >join<, and join_count == 0. The node has

received OLD_SCHED_MAX schedules that failed to contain my_node_ID. This error may have

resulted from a collision in the JOIN-OCC frame, meaning that the master node never received

the joining node’s request to be included in the schedule. After waiting an exponential back-

off, master_controller re-attempts >join<. Master_controller allows JOIN_MAX failures of type

“NO_NEW_SCHED” before moving to ERR mode.

3. The signal “NO_SCHED” was received from >join< and the node is not a scheduling server and

wait_count == 0. Whereas a scheduling server immediately moves to Scheduler Election upon

receiving the “NO_SCHED” signal, a slave instead transitions to the Wait On Election state for a

time T_WAIT – allowing the servers time to elect a scheduler – before re-attempting >join<. A

slave allows a total of WAIT_MAX failures of this type before entering to ERR mode.

4. The signal “NO_SYNCARP” was received from >join< and the node is not a scheduling server

and wait_count == 0. Whereas a scheduling server immediately moves to Scheduler Election

upon receiving the “NO_SYNCARP” signal, a slave instead transitions to the Wait On Election

state for a time T_WAIT – allowing the servers time to elect a scheduler – before re-attempting

>join<. A slave allows a total of WAIT_MAX failures of this type before entering to ERR mode.

28

5. The signal “SAME_ID” was received from >join< and same_count == 0. A node allows T_SAME

failures of this type before entering ERR mode.

From Master State Routine Non-Scheduler:

1. CRC failure

2. The signal “BANKS_INVALID” was received from <routine>. At the start of <routine>, TX_BANK0

should hold a valid schedule, placed there by >join<. Therefore, if <routine> finds TX_BANK0

invalid, it moves to ERR mode.

3. The signal “UNEXP_INVALID_BANK” was received from <routine>. When the transmitting

hardware reaches the end of the schedule in cur_tx_bank, it checks the status of cur_tx_bank.

If the status is unexpectedly invalid, then >routine< has encountered an error condition and has

marked cur_tx_bank invalid in order to silence the transmitter. The node then moves to ERR

mode.

4. The signal “BANKS_INVALID” was received from >routine<. At the start of >routine<, RCV_BANK0

should hold a valid schedule, placed there by >join<. Therefore, if >routine< finds RCV_BANK0

invalid, it moves to ERR mode.

5. The signal “UNEXP_INVALID_BANK” was received from >routine<. When the transmitting

hardware reaches the end of the schedule in cur_rcv_bank, it checks the status of cur_rcv_bank.

If the status is unexpectedly invalid, then >routine< has encountered an error condition and has

marked cur_rcv_bank invalid in order to stop transmission. The node then moves to ERR mode.

From Master State Routine Scheduler:

1. CRC failure

2. The signal “BANKS_INVALID” was received from <scheduler>. At the start of <scheduler>,

BANK0 should hold a valid schedule, placed there during schedule calculation. Therefore, if

<scheduler> finds BANK0 invalid, it moves to ERR mode.

29

3. The signal “UNEXP_INVALID_BANK” was received from <scheduler>. When the transmitting

hardware reaches the end of the schedule in cur_bank, it checks the status of cur_bank. If the status

is unexpectedly invalid, then >scheduler< has encountered an error condition and has marked

cur_bank invalid in order to silence the transmitter. The node then moves to ERR mode.

4. The signal “BANKS_INVALID” was received from >scheduler<. At the start of >scheduler<,

RCV_BANK0 should hold a valid schedule, placed there during schedule calculation. Therefore,

if >scheduler< finds RCV_BANK0 invalid, it moves to ERR mode.

5. The signal “UNEXP_INVALID_BANK” was received from >scheduler<. When the transmitting

hardware reaches the end of the schedule in cur_rcv_bank, it checks the status of cur_rcv_bank.

If the status is unexpectedly invalid, then >scheduler< has encountered an error condition and has

marked cur_rcv_bank invalid in order to stop transmission. The node then moves to ERR mode.

4.11.2 Response to Error Conditions

In case of error conditions, Master State Machine would present the error data to the state machine which

is responsible for communicating status information to the Host. Host would process the error data and

take appropriate action.

30

5 Helios-2 Auxiliary State Machines

5.1 Time Measurement

When a new node wishes to join a functioning Helios-2 network, it must first synchronize its system

time with that of the network through a process called Time Measurement. Next, the node must execute

the Join process, which lets the master node know of its presence so that the current schedule can be

expanded to include the new node’s traffic demands. Figure 5.1 and Figure 5.2show the receive and

transmit auxiliary state machines for time measurement, respectively.

To synchronize its system time, a node must calculate its psc_offset, the time needed for a trans-

mission to reach the PSC. The TM frame is the mechanism for achieving this goal. The master node

from time to time (at least every TM_FREQUENCY superframes) will place a TM window at the end

of a superframe on all wavelengths. The master node will then announce the presence of a TM window

by setting a bit in the SYNCARP frame, {syncarp.tm_bit}. Further, the SYNCARP frame includes the

duration of time until the TM window will appear({syncarp.time_till_tm}).

A software signal to >tm< begins the Time Measurement process. The nodes listens for either a

SYNCARP frame or DATA(OCC) frame to know about the current Master Node transmit lambda. Node

then tunes to this Master Node transmit lambda. The node further listens until it hears a SYNCARP

frame with the {syncarp.tm_bit} set, indicating that a TM frame is attached to the end of this superframe.

It then sets the tm_timer for the amount {syncarp.time_till_tm}, waits for the timer to expire, and then

transmits a timestamped TM frame on its receive wavelength. When the node hears its own transmission

of the TM frame, it copies the frame’s timestamp and the current time into the variables tm_out and

31

WAITING FOR
TM ECHO

[! tm_timer]

echo_timer = T_ECHO
SNDSGNL("SEND_TM", <tm>)

IDLE

TM WINDOW
WAITING FOR

[! no_tm_count]

SNDSGNL("NO_TM_WINDOW", sw)

LISTEN FOR
TM WINDOW

[RCV({syncarp}) && ! {syncarp.tm_bit}]

no_tm_count−−

get_syncarp_timer = T_GET_SYNCARP

tm
_t

im
er

 =
 {

sy
nc

ar
p.

tim
e_

til
l_

tm
}

[R
C

V
({

sy
nc

ar
p}

)
&

&
 {

sy
nc

ar
p.

tm
_b

it}
]

sc
he

d_
la

m
bd

a
=

 d
at

a.
oc

c.
sc

he
d_

la
m

bd
a

get_syncarp_timer = T_GET_SYNCARP

no_tm_count−−

[RCV({syncarp}) && ! {syncarp.tm_bit}]

[!get_mlambda_timer]

TUNE(RCVR, LAMBDA0++)

get_mlambda_timer = T_GET_MLAMBDA

no_master−−

sched_lambda = data.occ.sched_lambda

[RCV({syncarp}) && {syncarp.tm_bit}]

tm_timer = r_syncarp − psc_offset + syncarp.time_till_tm

sched_lambda = data.occ.sched_lambda

TUNE(RCVR, sched_lambda)

[RCV({data}) && {data.occ_bit}]

[! echo_tim
er]

S
N

D
S

G
N

L("N
O

_R
E

P
LY

", m
sm

)

[RCVSGNL("START_TM", msm)]

TUNE(RCVR, LAMBDA0)

get_syncarp_timer = T_GET_SYNCARP

no_tm_count = NO_TM_MAX

no_master = MAX_MASTER_COUNT

get_mlambda_timer = T_GET_MLAMBDA

[! no_master]

SNDSGNL("NO_MASTER", msm)

SYNCARP/DATA(OCC)
LISTEN

TUNE(RCVR, tx_lambda)

[R
C

V
({tm

}) &
&

 {tm
.C

R
C

} &
&

{tm
.source_ID

} =
=

 m
y_node_ID

]

tm
_out =

 {tm
.tim

estam
p}

tm
_in =

 cur_tim
e

S
N

D
S

G
N

L("R
O

U
N

D
T

R
IP

_T
IM

E
", m

sm
)

Figure 5.1: Receive auxiliary state machine for time measurement:>tm<

IDLE

[RCVSGNL("SEND_TM", >tm<)]

SND({tm})

Figure 5.2: Transmit auxiliary state machine for time measurement:<tm>

32

tm_in, respectively, and signals the signaling_controller, which divides the difference of these two values

by two to yield the psc_offset.

5.2 Election

Whenever a candidate node fails to detect the presence of a master node, i.e. no SYNCARP/ DATA(OCC)

frames are heard, then the candidate node enters Election Mode. This situation can occur when the

network comes up after having been completely powered down, or when an operational master node

suddenly fails.

Slave nodes, in the meantime, are capable neither of serving as a master node nor of participating in

the election of one. Therefore, whenever a slave node fails to detect the presence of a master node, it

enters a sleep state for a short time. Upon emerging, it listens for SYNCARP/ DATA(OCC) frames that

indicate the presence of a master node, and if none is heard, it sleeps again. A slave node may re-enter

the sleep state a fixed number of times before giving up (and moving to Error Mode).

Election Mode, as it is described below, assumes that candidate nodes are equipped with slowly

tunable transmitters. If candidate nodes are only equipped with fixed transmitters, then a network ad-

ministrator must designate the master node.

5.2.1 Scheduler Election with Slowly Tunable Transmitters

Scheduler Election is illustrated in the receive and transmit auxiliary state machines >elect< and <elect>.

A software signal to >elect< begins Scheduler Election, moving the state machine from IDLE to SILENT

CONTENDER state. The node tunes both its transmitter and receiver toλ0, listens for a SYNCARP/AVA

IL1/AVAIL2 frame, which would indicate the presence of a master node or another candidate node being

in ANNOUNCED CONTENDER state; in either case, the node drops out of Scheduler Election and

becomes a non-scheduling node. If none is heard within a time T1, the node moves to ANNOUNCED

CONTENDER. As such, the node must wait to see SYNCARP frames generated by the newly elected

master node and then join the network by proceeding through Time Measurement and Join modes.

If neither a SYNCARP nor an AVAIL is heard within a time T1, the node transmits an AVAIL1

33

SILENT CONTENDER

backoff_timer = T3
[RCV(/COLLISION/)]

[RCV(/COLLISION/)]
silent_timer = T1
collision_counter−−;

BACKOFF

T3 ~ k*Equilikely(0,C)

[!collision_counter]

SNDSGNL("MAX_COLLISION", msm)

TUNE(LASER, LAMBDA0)
TUNE(RCVR, LAMBDA0)
[RCVSGNL("START_ELECT", msm)]

collision_counter = MAX_COLLISION_COUNT
silent_timer = T1

[RCV({avail1}) && {avail.ID} == my_node_ID]
tm_out = {avail.timestamp}
tm_in = cur_time
SNDSGNL("ROUNDTRIP_TIME", msm)

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

[! announced_timer]

ANNOUNCED CONTENDER

[!
 s

ile
nt

_t
im

er
]

S
N

D
S

G
N

L(
"S

E
N

D
_A

V
A

IL
1"

, <
el

ec
t>

)
av

ai
l_

ec
ho

_t
im

er
 =

 2
*N

D

SNDSGNL("SEND_AVAIL1", <elect>)

avail_echo_timer = 2*ND

[!
avail_echo_tim

er]

RCV({avail1}) || RCV({avail2})]

TUNE(LASER, tx_lambda)

TUNE(LASER, tx
_lambda)

[R
C

V
(

{a
va

il1
}

)
||

R
C

V
(

{a
va

il2
}

)
]

T
U

N
E

(L
A

S
E

R
, t

x_
la

m
bd

a)

SNDSGNL("SEND_AVAIL2", <elect>)

[! backoff_timer]

[RCV({syncarp}) ||

an
no

un
ce

d_
tim

er
 =

 T
2

announced_timer = T2

IDLE

[(
RCV({

av
ail

1}
)

&& {a
va

il.n
od

e_
ID

} >
 m

y_
no

de
_ID

) |
| R

CV({
av

ail
2}

)
||

TUNE(L
ASER, tx

_la
mbd

a)

RCV({S
YNCARP})]

SNDSGNL("NOT_MASTER", msm)

SNDSGNL("N
O_REPLY", m

sm)

turn off avail_echo_timer

SNDSGNL(
"N

OT_M
ASTER",

msm
)

SNDSGNL("MASTER", msm)

S
N

D
S

G
N

L(
"N

O
T

_M
A

S
T

E
R

, m
sm

)

Figure 5.3: Receiver auxiliary state machine for scheduler election:>elect<

34

IDLE

[RCVSGNL("SEND_AVAIL2", >elect<)]

[RCVSGNL("SEND_AVAIL1", >elect<)]
SND({avail1})

SND({avail2})

Figure 5.4: Transmitter auxiliary state machine for scheduler election:<elect>

frame onλ0 and, after hearing its own transmission, becomes an ANNOUNCED-CONTENDER. Now

it listens onλ0 for a time T2; so long as the node hears no AVAIL with a higher-valued MAC address

({avail.node_ID}) during the interval T2, it will win the election and become the master node.

However, while in the ANNOUNCED-CONTENDER state, the node could hear an AVAIL with a

higher-valued MAC address. In this case, the node will take itself out of the election and become a non-

scheduling node; the other node with the higher MAC address has precedence in the scheduler election

process.

If, on the other hand, our node detects a collision while in the ANNOUNCED-CONTENDER state,

it enters the BACKOFF state for a random amount of time (T3). Other nodes involved in the collision

will also enter the BACKOFF state, each choosing a different T3. The node whose T3 expires first will

try again to transmit AVAIL1. (If there’s a tie, a collision occurs and the involved nodes return to the

BACKOFF state.) Any successfully transmitted AVAIL will cause the nodes waiting in BACKOFF to

become non-scheduling nodes.

To prevent two or more nodes from mistakenly believing they have emerged victorious from Sched-

uler Election, the time durations T1 and T2 must obey a particular relationship. Recall that ND is

defined to be the longest one-way propagation time between any two nodes. Then we have the following

relationship:

2∗ND < T2 < T1

(First Inequality) If more than one node is an ANNOUNCED-CONTENDER, then this inequality en-

35

sures that the node with the highest-valued MAC address will win. (in particular, it ensures

that all nodes with lower-valued MAC addresses will wait long enough in state ANNOUNCED-

CONTENDER to hear the AVAIL from the node with highest address.)

(Second Inequality) Suppose node B is busy retuning its receiver toλ0, transitioning from IDLE to

SILENT-CONTENDER, and that the retuning is completed just after node A’s AVAIL1 has passed

by. Then this inequality will ensure that node B will hear node A’s AVAIL2 before node B becomes

an ANNOUNCED-CONTENDER itself.

5.2.2 Time Measurement within Scheduler Election

When a node reaches the SILENT-CONTENDER state, both its transmitter and receiver are tuned to

λ0. When a node then transmits AVAIL1, it becomes an ANNOUNCED-CONTENDER and sets the

announced_timer for T2. Since the node should hear the echo of its own AVAIL1 transmission (provided

its receiver is functional), it takes advantage of this opportunity to execute Time Measurement, that is, to

calculate its psc_offset. The longest amount of time a node would have to wait to hear the echo is ND.

But the announced_timer requires that the node remain in the ANNOUNCED-CONTENDER state for

a time T2 before becoming the master node. Therefore, the avail_echo_timer should be set for a time

longer than ND but less than T2. Since the inequality 2∗ ND < T2 must hold (Section 5.2.1), then we

could set the avail_echo_timer for 2∗ND.

If the AVAIL echo is heard, the avail_echo_timer is turned off. Otherwise, the avail_echo_timer will

expire before the announced_timer expires, causing the node to abort Scheduler Election and then move

into the ERR Mode. Bundling Time Measurement with Scheduler Election produces a master node that

knows its psc_offset and has a functioning transmitter and receiver.

5.3 Join

For a new node, the Join process can be broken into two parts: letting the master node know of its

presence, and waiting for the master node to include it in the schedule.

36

get_sched_timer = T_GET_SCHED ; old_sched_count−−

my_node_ID not in {sched.node_transmit_schedule} && old_sched_count]

[RCV({data}) && data.sched_bit && ! {sched.more_frames} && sched.sched_group_id = tx_lambda &&

get_sched_timer = T_GET_SCHED

[RCVSGNL("START_OLD_SCHED_COUNT", <join>)]

old_sched_count = OLD_SCHED_MAX

arp += {arp.table}

[RCV({syncarp}) && tx_lambda in syncarp.lambda]

sf_length(BANK0) = {sync.sf_length}; r_ss = cur_time;

psc_sf_start_next = r_ss − psc_offset + sf_length(BANK0)

SNDSGNL("JOIN_START_TIME",<join>)

psc_sf_start = r_ss − psc_offset + sf_length(BANK0)

master_node_ID = {sync.master_node_ID};

[RCV({syncarp}) && tx_lambda in syncarp.lambda && syncarp.active_bit]

cur_sched_lambda = {syncarp.cur_sched_lambda} ; sf_length(BANK0) = {syncarp.sf_length}

T_jo = {syncarp.tx_lambda.T_jo} ; r_ss = cur_time; arp += {arp.table}

get_syncarp_timer = T_GET_SYNCARP ; inactive_count−−

[RCV({syncarp}) && !syncarp.active_bit]

get_syncarp_timer = T_GET_SYNCARP ; inactive_count = INACTIVE_MAX
[RCVSGNL("START_JOIN", msm)]; TUNE(RCVR, cur_sched_lambda)

[RCV({data}) && data.sched_bit && sched.sched_group_id = tx_lambda &&

[my_node_id in sched.node_transmit_schedules && sched.active_bit]

SNDSGNL("SAME_ID", msm)

[! get_sched_timer]
SNDSGNL("NO_SCHED", msm)

[! old_sched_count]
SNDSGNL("NO_NEW_SCHED", msm)

[RCV({data}) && data.sched_bit && sched.sched_group_id = tx_lambda &&

[my_node_id in sched.node_transmit_schedules]

MEM(TX_BANK0) = {sched.node_transmit_schedules(my_node_ID)};

STATUS(TX_BANK0, VALID)

num_tx_schedchunks(TX_BANK0) = {sched.num_tx_schedchunks(my_node_ID)}

STATUS(RCV_BANK0, VALID)

MEM(RCV_BANK0) = {sched.group_receive_schedule};

num_rcv_schedchunks(RCV_BANK0) = {sched.num_rcv_schedchunks}

SNDSGNL("NEW_SCHED", msm)

IDLE

WAITING FOR
NEW SCHED

JOIN LISTEN

[! inactive_count] ; SNDSGNL("NO_ACTIVE_SYNCARP", msm)

[! get_syncarp_timer] ; SNDSGNL("NO_SYNCARP", msm)

Figure 5.5: Receive auxiliary state machine for join:>join<

JOIN WINDOW
WAIT ONIDLE

[cur_time >= xmit_join]

SND({join})

SNDSGNL("START_OLD_SCHED_COUNT", >join<)]

xmit_join = psc_sf_start + T_jo − psc_offset
[RCVSGNL("JOIN_START_TIME", >join<)]

Figure 5.6: Transmit auxiliary state machine for join:<join>

37

5.3.1 Contacting the master node

The new node must learn when the JOIN window will occur, so that it can transmit a JOIN frame to the

master node. It listens on Master Node transmit wavelength until it receives a SYNCARP frame with

the syncarp.active_bit set. (This measure ensures that the schedule included in the SYNCARP frame

contains active join windows.) From SYNCARP, it extracts the following data fields and stores them in

its corresponding local variables:

{syncarp.sf_length} : the length in slots of the superframe. (gets copied into sf_length(BANK0))

{syncarp.tx_lambda.T_jo} : the offset time (relative to the start of the superframe) of the JOIN window

corresponding to nodes transmit wavelength on the master node’s receive schedule. (gets copied

into T_jo)

Additionally, the node stores the time from its local clock that the SYNCARP frame arrived (the "receive

timestamp") in the local variable r_syncarp. From these values, the node can calculate the time (from its

local clock) that the start of the superframe occurred at the PSC:

psc_sf_start = r_syncarp−psc_offset+sf_length(BANK0)

The node can now calculate the time (from its local clock) that it must transmit a JOIN frame in

order to hit the JOIN window:

xmit_join_occ = psc_sf_start+T_jo−psc_offset

The node must include a checksum in the JOIN frame so that the master node can determine whether

it has received the correct information, since it is possible for a collision to occur when two or more nodes

attempt to send a JOIN frame at the same time.

38

5.3.2 Waiting to be included

Although the new node can directly detect a collision in the JOIN window but once the JOIN frame

has been sent, the sure way for the new node to learn that it has successfully been included in the

network is to receive a new schedule (via the DATA frame with SCHED payload) which includes its

own MAC address (my_node_ID). This new schedule will indicate the windows in which the new node

may transmit on his wavelength and windows in which it can receive on different wavelengths.

To handle the case of a collision, the new node sets a counter (old_sched_count) to the value

OLD_SCHED_MAX after it transmits a JOIN frame. While waiting to hear a new schedule contain-

ing its own MAC address, the node decrements old_sched_count each time it hears a data frame with

SCHED payload destined for its group but lacks its MAC address. If the counter should reach zero,

the new node notifies the signaling_controller and exits the Join process. The signaling_controller may

either retry the Join process or, after repeated failures, simply give up (i.e. enter ERR mode).

If, on the other hand, the new node hears a new schedule containing its own MAC address, then

it copies the necessary timing information from the SCHED payload into the corresponding local vari-

able locations, and signals the signaling_controller that it has successfully joined the network (via the

"NEW_SCHED" signal).

5.3.3 Backoff Algorithms

If a new node exits the TM receive auxiliary state machine >tm< with the signal "NO_REPLY" to

signaling_controller, signaling_controller may execute an exponential backoff algorithm. (A total of

TM_MAX failures of this kind are allowed before giving up on Time Measurement and moving to ERR

Mode.) The tm_backoff_timer is assigned the valueRAND(1..T_TMBACKOFF ∗2TM_MAX−tm_count). Each

time the node picks a random uniformly-distributed number whose bounds are growing larger.

If a new node exits >tm< with the signal "NO_TM_WINDOW" to signaling_controller, then sig-

naling_controller decrements the counter get_tm_count and immediately restarts Time Measurement,

without backing off. A total of GET_TM_MAX failures of this kind are allowed before moving to the

ERR Mode. (A backoff algorithm could be added to the handling of this type of failure.)

If a joining node exits >join< with the signal "NO_NEW_SCHED" to signaling_controller, then

39

signaling_controller may execute an exponential backoff algorithm. (A total of JOIN_MAX failures of

this kind are allowed before moving to ERR Mode.) The join_backoff_timer is assigned the value of

RAND(T_BACKOFF∗2JOIN_MAX−join_count).

5.4 Routine

We now describe the operation of the receive and transmit hardware of a nonscheduling node, i.e. candi-

date and slave nodes. A new node enters Routine Mode once it has successfully joined the network; that

is, during >join< it received a data frame with SCHED payload that included its own MAC address in

the schedule, and it then exited >join< with the message "NEW_SCHED" to signaling_controller. The

main functions of the receive hardware >routine< are to forward incoming data frames to the signal-

ing_controller and to extract the schedule from the data frame with SCHED payload, according to the

current receive schedule. The transmit hardware <routine> meanwhile transmits control frames and data

frames from its wavelength queues onto the appropriate outgoing wavelengths, according to the current

transmit schedule.

5.4.1 Receive Hardware

The state machine <routine> shown in Figure 5.7 can only begin after the Join process has succeeded.

The final task in the Join process was to place the current schedule information into the memory bank

RCV_BANK0; therefore >routine< begins by setting cur_rcv_bank to RCV_BANK0. After confirming

RCV_BANK0’s status to be VALID, >routine< is ready to receive the first superframe. Cur_rcv_schedule

now points to the schedule contained in cur_rcv_bank (Note that the status of cur_rcv_bank has already

been confirmed VALID).

At the start of any superframe, <routine> :

1. Sets psc_sf_start to psc_sf_start_next and rcv_lambda to cur_sched_lambda. Recall that psc_sf_start

represents the time (according the node’s local clock) that the superframe began at the PSC. The

value of psc_sf_start_next could have been set in one of two ways: either >join< set the value (true

only for the first superframe after the node joins the network), or >routine< set the value (true for

40

COUNTDOWN

SWITCH
SCHEDULE

VALID
SCHEDULE

END OF
SCHEDULE

IDLE
STARTING

START
WAITING FOR

T_RCV_START
WAITING FOR

rcv_start = psc_sf_start + cur_rcv_schedule(cur_rcv_schedchunk).T_rcv_start + psc_offset
rcv_last = psc_sf_start + cur_rcv_schedule(cur_rcv_schedchunk).T_rcv_last_slot + psc_offset

rcv_lambda = cur_rcv_schedule(cur_rcv_schedchunk).rcv_lambda
[cur_rcv_schedchunk < num_rcv_schedchunk(cur_rcv_bank)] ;

SCHEDCHUNK
END OF

LISTEN

ROUTINE

[c
ur_tim

e > rc
v_

last
]

cu
r_sc

hedch
unk+

+

[RCV({syncarp}) && ! {syncarp.more_frames}]
arp += {arp.table}
psc_sf_start_next = r_ss − psc_offset + sf_length(cur_bank)

rcv_start = psc_sf_start + cur_rcv_schedule(0).T_rcv_start + psc_offset
rcv_last = psc_sf_start + cur_rcv_schedule(0).T_rcv_last_slot + psc_offset

rcv_lambda = cur_rcv_schedule(0).rcv_lambda
cur_rcv_schedchunk = 0 ;

[RCV({syncarp}) && {syncarp.more_frames}]
arp += {arp.table}

[RCV({tm}) && {tm.CRC} && {tm.source_ID} == my_node_ID]
tm_out = {tm.timestamp} ; tm_in = cur_time

MEM(! cur_tx_bank) = {sched.node_transmit_schedule(my_node_ID)}
MEM(! cur_rcv_bank) = {sched.group_receive_schedule}

STATUS(! cur_tx_bank, VALID) ;STATUS(! cur_rcv_bank, VALID) ;

num_rcv_schedchunks(! cur_rcv_bank) = {sched.num_rx_scheds}

num_tx_schedchunks(! cur_tx_bank) = {sched.num_tx_schedchunks(my_node_ID)}

status_flags |= CNTDWNswitch_count = {sched.switch_count} ;

sched_seen = 0;

[cur_time >= psc_sf_start]

[S
T

A
T

U
S

(C
U

R
_R

C
V

_B
A

N
K

)
=

=
 V

A
LI

D
]

cu
r_

rc
v_

ba
nk

 =
 R

C
V

_B
A

N
K

0

cu
r_

rc
v_

sc
he

du
le

 =
 M

E
M

(c
ur

_r
cv

_b
an

k)

[STATUS(! cur_rcv_bank) == VALID]

cur_rcv_bank = ! cur_rcv_bank

cur_rcv_schedule = MEM(cur_rcv_bank)STATUS(cur_rcv_bank = INVALID)

BANK
VALID

[switch_count > 0]
switch_count−−

psc_sf_start = psc_sf_start_next
rcv_lambda = cur_sched_lambda

[sched_seen == 0]

SNDSGNL("NO_SCHED", msm)

SNDSGNL("BANKS_INVALID", msm)
[STATUS(CUR_RCV_BANK) == INVALID]

[STATUS(cur_rcv_bank) == INVALID]

SNDSGNL("UNEXP_INVALID_BANK", msm)

SNDSGNL("NO_VALID_SCHED", msm)

[STATUS(! cur_rcv_bank) == INVALID]

[!
R

C
V

(
{s

yn
ca

rp
}

)
]

S
N

D
S

G
N

L(
"N

O
_S

Y
N

C
A

R
P

",
 m

sm
)

FWD({data}, msm)

&& my_node_ID not in {sched.schedule}]

STATUS(cur_tx_bank, INVALID) ; STATUS(!cur_tx_bank, INVALID)
SNDSGNL("NOT_IN_SCHED", msm)

STATUS(cur_rcv_bank, INVALID) ; STATUS(!cur_rcv_bank, INVALID)

[RCV({data}) && data.sched_bit &&
! {sched.more_frames} && ! seen_self

sched_seen = 1;FWD({data}, msm)

[cur_time > rcv_start]

[cur_schedchunk == num_schedchunks(cur_bank)]

RCV SYNCARP

[R
C

V
({data})]

[status_flags & CNTDWN == CNTDWN]

(({sched.active_bit}) || (! {sched.active_bit} && STATUS(! cur_tx_bank) == VALID)

&& STATUS(!cur_rcv_bank) == VALID)]

[RCV({data}) && data.sched_bit &&
my_node_ID in {sched.schedule} &&
(! {sched.more_frames} || {sched.more_frames}) &&

sched_seen = 1 ;

&& (! {sched.more_frames} || {sched.more_frames})

&& STATUS(! cur_rcv_bank) == INVALID && STATUS(! cur_tx_bank) == INVALID }]

[RCV({data}) && data.sched_bit &&
my_node_ID in {sched.schedule} && ! {sched.active_bit}

[STATUS(cur_rcv_bank) == VALID && sched_seen==1]

[! switch_count]

[status_flags & CNTDWN == 0]

[RCVSGNL("START_ROUTINE", msm]

F
W

D
({data}, m

sm
)

FWD({data}, msm)

Figure 5.7: Receive auxiliary state machine for candidate and slave nodes:>routine<
41

all other superframes).

2. Waits till cur_time > psc_sf_start and then receives the SYNCARP frame on the Master Node

transmit lambda. If no SYNCARP is received then the state machine returns to IDLE state. Else

from SYNCARP frame copy the contents of arp into local arp table along with other synchroniza-

tion information.

3. Sets the index cur_rcv_schedchunk to zero. This index will be incremented after the node com-

pletes its receiving for each successive group; the node then can recognize that it is done with the

current superframe when cur_rcv_schedchunk reaches the value

num_rcv_schedchunks(cur_rcv_bank)−1.

Once these tasks have been completed, >routine< is ready to begin receiving according to the informa-

tion contained in the current receive schedchunk.

At the start of any schedchunk, >routine< :

1. sets rcv_lambda to point to the queue for cur_rcv_schedule(cur_rcv_schedchunk).rcv_lambda

2. calculates two time references that govern its receive on any lambda: (a) rcv_start, the time it may

begin receiving from group_id, and (b) rcv_last, the last instant at which it may start receiving

from group_id.

Just prior to receive on each lambda, the node checks to make sure that the current time has not ex-

ceeded rcv_last. When rcv_last has passed, receive on this lambda must cease; the end of the cur-

rent schedchunk has arrived. The index cur_rcv_schedchunk is incremented and then tested against

num_rcv_schedchunks(cur_rcv_bank) to determine whether the end of the schedule has arrived. If not,

>routine< proceeds to the next schedchunk.

But if >routine< has reached the end of the schedule, it next checks whether a countdown has started

(counting down the superframes until the time to switch from the current to the reserve memory bank).

If the countdown has not yet begun, then >routine< simply starts over at the beginning of the cur-

rent schedule in cur_rcv_bank. If the countdown has begun, then >routine< must determine whether

it should switch now to the reserve memory bank. This task is accomplished by considering the value

42

of switch_count, which gives the number of remaining superframes for which the old schedule should

still be used. If switch_count is positive, >routine< decrements switch_count and starts over at the

beginning of the old schedule (in cur_rcv_bank). If switch_count has reached zero, then >routine<

marks cur_rcv_bank INVALID and switches to the reserve memory bank, by setting cur_rcv_bank to

!cur_rcv_bank.

A node might receive different frames while listening on a wavelength. We now describe each in

turn.

• Receipt of a DATA frame.

Event: A DATA frame was received on the listening wavelength.

Transition: Forward the frame to the frame handling layer and return to the Routine Listen state.

• Receipt of a TM frame.

Event: A TM frame was received on the listening wavelength.

Transition: If the TM frame was transmitted by self then perform the psc_offset calculation.

• Receipt of a SCHED payload which contains my_node_ID.

– {sched.active_bit} was set.

Event: The active bit in the newly-arrived SCHED payload was set, indicating that no count-

down has begun to switch to a new schedule.

Transition: Reset get_sched_timer and move to Routine Listen state.

– {sched.active_bit} wasnot set and the status of !cur_bank is VALID.

Event: Countdown has begun to switch to a new schedule, and the new schedule has already

been copied into the reserve memory bank (!cur_bank).

Transition: Reset get_sched_timer and move to the Routine Listen state.

– {sched.active_bit} was not set and the status of !cur_bank is INVALID.

43

Event: Countdown has begun to switch to a new schedule, but the new schedule has not yet

been copied into the reserve memory bank (!cur_bank).

Transition: Copy the new scheduling information into !cur_bank, save important timing

information, and move to the In Schedule state.

• Receipt of a SCHED which does not contain my_node_ID.

Event: A SCHED payload was received that unexpectedly fails to contain scheduling information

for this node.

Transition: Mark the status of both memory banks (the current and the reserve bank) INVALID,

send signal NOT_IN_SCHED to signaling_controller, and move to the Idle state.

5.4.2 Transmit Hardware

The state machine <routine> shown in Figure 5.8 can only begin after the Join process has succeeded.

The final task in the Join process was to place the current schedule information into the memory bank

TX_BANK0; therefore <routine> begins by setting cur_tx_bank to TX_BANK0. After confirming

TX_BANK0’s status to be VALID, <routine> is ready to begin the first superframe. Cur_tx_schedule

now points to the schedule contained in cur_tx_bank (Note that the status of cur_tx_bank has already

been confirmed VALID).

At the start of any superframe, <routine> :

1. sets the index cur_schedchunk to zero. This index will be incremented after the node completes

its transmissions for each successive group; the node then can recognize that it is done with the

current superframe when cur_schedchunk reaches the value num_tx_sched_chunks(cur_tx_bank)-

1.

2. sets psc_sf_start to psc_sf_start_next. Recall that psc_sf_start represents the time (according the

node’s local clock) that the superframe began at the PSC. The value of psc_sf_start_next could

have been set in one of two ways: either >join< set the value (true only for the first superframe after

the node joins the network), or >routine< set the value (true for all other superframes). In addition

44

COUNTDOWN

SWITCH
SCHEDULE

IDLESTARTING

END OF
SCHEDULE

VALID
SCHEDULE

TRANSMIT
TM

[S
T

A
T

U
S

(T
X

_B
A

N
K

0)
 =

=
 V

A
LI

D
]

cu
r_

tx
_s

ch
ed

ul
e

=
 M

E
M

(c
ur

_t
x_

ba
nk

)
cu

r_
tx

_b
an

k
=

 T
X

_B
A

N
K

0

[switch_count > 0]
switch_count−−

[STATUS(! cur_tx_bank) == VALID]

STATUS(cur_tx_bank, INVALID)

cur_tx_bank = ! cur_tx_bank

cur_tx_schedule = MEM(cur_tx_bank)

cur_time >= psc_sf_start + sf_length − psc_offset]
[STATUS(cur_tx_bank) == VALID &&

ps
c_

sf
_s

ta
rt

 =
 p

sc
_s

f_
st

ar
t_

ne
xt

xm
it_

st
ar

t =
 p

sc
_s

f_
st

ar
t +

 c
ur

_t
x_

sc
he

du
le

(0
).

T
_t

x_
st

ar
t −

 p
sc

_o
ffs

et

xm
it_

la
st

 =
 p

sc
_s

f_
st

ar
t +

 c
ur

_t
x_

sc
he

du
le

(0
).

T
_t

x_
la

st
 −

 p
sc

_o
ffs

et

cu
r_

tx
_s

ch
ed

ch
un

k
=

 0
 ;

cu
r_

tx
_q

ue
ue

 =
 c

ur
_t

x_
sc

he
du

le
(0

).
gr

ou
p_

id

T_TX_START

WAITING FOR

TRANSMIT
OCC

SND({tm})
[tx_lambda = cur_tx_schedule(cur_tx_schedchunk).group_id] TRANSMIT

SND(HOL(cur_tx_queue))
[cur_time <= xmit_last && ! EMPTY(cur_tx_queue)]

[cur_tx_schedchunk < num_tx_schedchunks(cur_tx_bank)]
cur_tx_queue = cur_tx_schedule(cur_tx_schedchunk).group_id
xmit_start = psc_sf_start + cur_tx_schedule(cur_tx_schedchunk).T_tx_start − psc_offset
xmit_last = psc_sf_start + cur_tx_schedule(cur_tx_schedchunk).T_tx_last − psc_offset

SCHEDCHUNK
END OF

cur_tx_schedchunk++

[cur_time > xmit_last]

cur_tx_schedule(cur_tx_schedchunk).group_id == cur_sched_lambda
SND({data.occ})

SNDSGNL("UNEXP_INVALID_BANK", msm)

[STATUS(cur_tx_bank) == INVALID]

[STATUS(! cur_tx_bank) == INVALID]

SNDSGNL("NO_VALID_SCHED", msm)

[STATUS(CUR_TX_BANK0) == INVALID]

SNDSGNL("BANKS_INVALID", msm)

BANK
VALID

[! switch_count]

[status_flags & CNTDWN == CNTDWN]

[status_flags & CNTDWN == 0]

[c
ur

_t
im

e
>

=
 x

m
it_

st
ar

t]

[tx_lambda ! = cur_tx_schedule(cur_tx_schedchunk).group_id]

cur_tx_schedule(cur_tx_schedchunk).group_id != cur_sched_lambda

[cur_time <= xmit_last && EMPTY(cur_tx_queue)]

[cur_tx_schedchunk == num_tx_schedchunks(cur_tx_bank)]

[RCVSGNL("START_ROUTINE", msm]

Figure 5.8: Transmit auxiliary state machine for candidate and slave nodes:<routine>

45

to the psc_offset, two other quantities are needed to calculate the start time of the superframe at

the PSC, these quantities are:

• sf_length(cur_bank) : the length of the superframe in slots. The node copies the value from

{syncarp.sf_length} (a field in the SYNCARP frame) into the local variable sf_length(cur_bank)

associated with the current schedule bank, cur_bank.

• r_syncarp : the receive timestamp of the SYNCARP frame at the node (according to the

node’s clock). The node copies the current time from its own clock into the local variable

r_syncarp at the instant the SYNCARP frame arrives.

Using these two quantities and the psc_offset, the beginning of the next superframe at the PSC,

called psc_sf_start_next, is:

psc_sf_start_next = r_syncarp−psc_offset+sf_length

Once these tasks have been completed, <routine> is ready to begin transmissions according to the infor-

mation contained in the current schedchunk.

At the start of any schedchunk, <routine> :

1. sets cur_tx_queue to point to the queue for cur_tx_schedule(cur_tx_schedchunk)- .group_id.

2. calculates two time references that govern its transmissions: (a) xmit_start, the time it may begin

transmitting to group_id, and (b) xmit_last, the last instant at which it may start the transmission

of a frame for group_id.

At this point <routine> needs only to wait until xmit_start arrives in order to begin transmitting; the first

frame it transmits depends on the value of tx_lambda (Transmit wavelength of the node):

1. If tx_lambda = cur_sched_lambda (the transmit wavelength of the master node and so the group_id

of the master node), then the first frame <routine> transmits must be an {DATA(OCC)} frame, to

inform the master node of its queue occupancies.

46

2. Otherwise, if tx_lambda = group_id (the node’s own group), then the first frame <routine> trans-

mits must be a {TM} frame, to carry out "Routine Time Measurement".

3. Otherwise, <routine> may transmit DATA frames from cur_tx_queue.

Recall that DATA frames may be of variable length, with none exceeding L_max. The node trans-

mits DATA frames from cur_tx_queue back to back, without waiting for the beginning of a new slot.

Just prior to transmitting each frame, the node checks to make sure that the current time has not ex-

ceeded xmit_last. When xmit_last has passed, transmissions for this group must cease; the end of the

current schedchunk has arrived. The index cur_tx_schedchunk is incremented and then tested against

num_tx_schedchunks(cur_tx_bank) to determine whether the end of the schedule has arrived. If not,

<routine> proceeds to the next schedchunk.

But if <routine> has reached the end of the schedule, it next checks whether a countdown has started

(counting down the superframes until the time to switch from the current to the reserve memory bank). If

the countdown has not yet begun, then <routine> simply starts over at the beginning of the current sched-

ule in cur_tx_bank. If the countdown has begun, then <routine> must determine whether it should switch

now to the reserve memory bank. This task is accomplished by considering the value of switch_count,

which gives the number of remaining superframes for which the old schedule should still be used. If

switch_count is positive, <routine> decrements switch_count and starts over at the beginning of the

old schedule (in cur_tx_bank). If switch_count has reached zero, then <routine> marks cur_tx_bank

INVALID and switches to the reserve memory bank, by setting cur_tx_bank to !cur_tx_bank.

5.5 Scheduling

5.5.1 Receive Hardware

The receive state machine >scheduling<, shown in Figure 5.9, retains all the functionality of >routine<,

but possesses two extra transitions to aid in the collection of information needed to compute the schedule.

Each of the additional transitions is a self-transition from the Routine Listen state:

• Receipt of an data frame with OCC payload.

47

COUNTDOWN

SWITCH
SCHEDULE

VALID
SCHEDULE

END OF
SCHEDULE

BANK
VALID

IDLE
STARTING

START
WAITING FOR

ps
c_

sf
_s

ta
rt

 =
 p

sc
_s

f_
st

ar
t_

ne
xt

rc
v_

la
m

bd
a

=
 c

ur
_s

ch
ed

_l
am

bd
a

T_RCV_START
WAITING FOR

rcv_start = psc_sf_start + cur_rcv_schedule(cur_rcv_schedchunk).T_rcv_start + psc_offset
rcv_last = psc_sf_start + cur_rcv_schedule(cur_rcv_schedchunk).T_rcv_last_slot + psc_offset

rcv_lambda = cur_rcv_schedule(cur_rcv_schedchunk).rcv_lambda
[cur_rcv_schedchunk < num_rcv_schedchunk(cur_rcv_bank)] ;

SCHEDCHUNK
END OF

LISTEN

ROUTINE

[c
ur_tim

e > rc
v_

last
]

cu
r_sc

hedch
unk+

+

[RCV({tm}) && {tm.CRC} && {tm.source_ID} == my_node_ID]
tm_out = {tm.timestamp} ; tm_in = cur_time

[switch_count > 0]
switch_count−−

[STATUS(! cur_rcv_bank) == VALID]

cur_rcv_bank = ! cur_rcv_bank

cur_rcv_schedule = MEM(cur_rcv_bank)
STATUS(cur_rcv_bank = INVALID)

cu
r_

rc
v_

ba
nk

 =
 R

C
V

_B
A

N
K

0

cu
r_

rc
v_

sc
he

du
le

 =
 M

E
M

(c
ur

_r
cv

_b
an

k)

[S
T

A
T

U
S

(R
C

V
_B

A
N

K
0)

 =
=

 V
A

LI
D

]

[RCV({syncarp}) && {syncarp.more_frames}]
arp += {arp.table}

arp += {arp.table}
[RCV({syncarp}) && ! {syncarp.more_frames}]

rcv_start = psc_sf_start + cur_rcv_schedule(0).T_rcv_start + psc_offset
rcv_last = psc_sf_start + cur_rcv_schedule(0).T_rcv_last_slot + psc_offset

rcv_lambda = cur_rcv_schedule(0).rcv_lambda
cur_rcv_schedchunk = 0 ;
psc_sf_start_next = r_ss − psc_offset +sf_length(cur_bank)

MEM(! cur_tx_bank) = {sched.node_transmit_schedule(my_node_ID)}
MEM(! cur_rcv_bank) = {sched.group_receive_schedule}

STATUS(! cur_tx_bank, VALID) ;STATUS(! cur_rcv_bank, VALID) ;

num_rcv_schedchunks(! cur_rcv_bank) = {sched.num_rx_scheds}

num_tx_schedchunks(! cur_tx_bank) = {sched.num_tx_schedchunks(my_node_ID)}

status_flags |= CNTDWNswitch_count = {sched.switch_count} ;

FWD({data}, sw)sched_seen = 1;

[STATUS(cur_rcv_bank) == VALID && sched_seen== 1]

[sched_seen == 0]

SNDSGNL("NO_SCHED", msm)

[STATUS(cur_rcv_bank) == INVALID]

SNDSGNL("UNEXP_INVALID_BANK", msm)

SNDSGNL("NO_VALID_SCHED", msm)

[STATUS(! cur_rcv_bank) == INVALID]

SNDSGNL("BANKS_INVALID", msm)
[STATUS(CUR_RCV_BANK0) == INVALID]

[!
R

C
V

(
{s

yn
ca

rp
}

)
]

S
N

D
S

G
N

L(
"N

O
_S

Y
N

C
A

R
P

",
 m

sm
)

S
N

D
S

G
N

L("R
E

C
A

LC
_S

C
H

E
D

U
LE

", m
sm

)
[R

C
V

({join})]

STATUS(cur_tx_bank, INVALID) ; STATUS(!cur_tx_bank, INVALID)
SNDSGNL("NOT_IN_SCHED", msm)

STATUS(cur_rcv_bank, INVALID) ; STATUS(!cur_rcv_bank, INVALID)

[RCV({data}) && data.sched_bit &&
! {sched.more_frames} && ! seen_self
&& my_node_ID not in {sched.schedule}]

&& (! {sched.more_frames} || {sched.more_frames})
(({ss.active_bit}) || (! {ss.active_bit} && STATUS(! cur_tx_bank) == VALID)

[RCV({data}) && data.sched_bit && my_node_ID in {sched.schedule} &&

&& STATUS(!cur_rcv_bank) == VALID)]
sched_seen = 1;FWD({data}, msm)

[status_flags & CNTDWN == 0]

[cur_time > rcv_start]

[! switch_count]

[status_flags & CNTDWN == CNTDWN]

[cur_schedchunk == num_schedchunks(cur_bank)]

RCV SYNCARP

&& (! {sched.more_frames} || {sched.more_frames})

&& STATUS(! cur_rcv_bank) == INVALID && STATUS(! cur_tx_bank) == INVALID }]

my_node_ID in {sched.schedule} && ! {sched.active_bit}

[RCV({data}) && data.sched_bit &&

[RCV({data})]

[cur_time >= psc_sf_start]

[RCVSGNL("START_ROUTINE", msm]

update(traffic m
atrix)

sched_seen = 0;

F
W

D
({data}, m

sm
)

[R
C

V
({data}) &

&
 data.occ_bit]

FWD({data}, msm)

FWD({data}, msm)

Figure 5.9: Receive auxiliary state machine for the master node:>scheduling<
48

Event: An OCC payload embedded in data frame was received on the current listening wave-

length.

Transition: Forward the frame to the signaling_controller and return to the Routine Listen state.

• Receipt of a JOIN frame.

Event: An JOIN frame was received on the current listening wavelength.

Transition: Forward the frame to the signaling_controller and return to the Routine Listen state.

Also, the transition from the End of Schedchunk state to the End of Schedule state becomes split

into two, in order to aid in the transmission of a newly-calculated schedule. Both transitions first

check to make sure the end of schedule has been reached, by verifying that cur_schedchunk+1 equals

num_schedchunks(cur_bank). Next, the status of BANK_NEWCALC is checked. If INVALID, no ac-

tion is taken. If VALID, then a newly-calculated schedule has been placed in BANK_NEWCALC by

the software; <scheduling> copies the new schedule into BANK_CURFRAME so that it can be dissem-

inated in the next superframe.

5.5.2 Transmit Hardware

The transmit state machine <scheduling>, shown in Figure 5.10, retains all the functionality of <rou-

tine>, but possesses one extra transition. At the start of the superframe, indicated by cur_time >

psc_sf_start, it transmits the SYNCARP frame from the syncarp queue.

Also, the transition from the End of Schedchunk state to the End of Schedule state becomes split

into two, in order to aid in the transmission of a newly-calculated schedule. Both transitions first

check to make sure the end of schedule has been reached, by verifying that cur_schedchunk+1 equals

num_schedchunks(cur_bank). Next, the status of BANK_NEWCALC is checked. If INVALID, no ac-

tion is taken. If VALID, then a newly-calculated schedule has been placed in BANK_NEWCALC by

the software; <scheduling> copies the new schedule into BANK_CURFRAME so that it can be dissem-

inated in the next superframe.

49

COUNTDOWN

SWITCH
SCHEDULE

IDLESTARTING

END OF
SCHEDULE

VALID
SCHEDULE

[S
T

A
T

U
S

(T
X

_B
A

N
K

0)
 =

=
 V

A
LI

D
]

cu
r_

tx
_s

ch
ed

ul
e

=
 M

E
M

(c
ur

_t
x_

ba
nk

)
cu

r_
tx

_b
an

k
=

 T
X

_B
A

N
K

0

[switch_count > 0]
switch_count−−

[STATUS(! cur_tx_bank) == VALID]

STATUS(cur_tx_bank, INVALID)

cur_tx_bank = ! cur_tx_bank

cur_tx_schedule = MEM(cur_tx_bank)

cur_time >= psc_sf_start + sf_length − psc_offset]
[STATUS(cur_tx_bank) == VALID &&

TRANSMIT
TM

T_TX_START

WAITING FOR

TRANSMIT
OCC

SND({tm})
[tx_lambda = cur_tx_schedule(cur_tx_schedchunk).group_id] TRANSMIT

SND(HOL(cur_tx_queue))
[cur_time <= xmit_last && ! EMPTY(cur_tx_queue)]

SCHEDCHUNK
END OF

[cur_tx_schedchunk < num_tx_schedchunks(cur_tx_bank)]
cur_tx_queue = cur_tx_schedule(cur_tx_schedchunk).group_id
xmit_start = psc_sf_start + cur_tx_schedule(cur_tx_schedchunk).T_tx_start − psc_offset
xmit_last = psc_sf_start + cur_tx_schedule(cur_tx_schedchunk).T_tx_last − psc_offset

cur_tx_schedchunk+
+

[cur_tim
e >

 xm
it_last]

WAITING FOR
START

cur_tx_queue = cur_syncarp_queue
psc_sf_start = psc_sf_start_next

xmit_start = psc_sf_start + cur_tx_schedule(0).T_tx_start − psc_offset

xmit_last = psc_sf_start + cur_tx_schedule(0).T_tx_last − psc_offset

cur_tx_schedchunk = 0 ; cur_tx_queue = cur_tx_schedule(0).group_id
[EMPTY(cur_tx_queue)]

cur_tx_schedule(cur_tx_schedchunk).group_id == cur_sched_lambda
SND({data.occ})

SNDSGNL("UNEXP_INVALID_BANK", msm)

[STATUS(cur_tx_bank) == INVALID]

[STATUS(! cur_tx_bank) == INVALID]

SNDSGNL("NO_VALID_SCHED", msm)

[STATUS(CUR_TX_BANK0) == INVALID]

SNDSGNL("BANKS_INVALID", msm)

BANK
VALID

[! switch_count]

[status_flags & CNTDWN == 0]

[c
ur

_t
im

e
>

=
 x

m
it_

st
ar

t]

[tx_lambda ! = cur_tx_schedule(cur_tx_schedchunk).group_id]

cur_tx_schedule(cur_tx_schedchunk).group_id != cur_sched_lambda

[cur_time <= xmit_last && EMPTY(cur_tx_queue)]

[cur_tx_schedchunk == num_tx_schedchunks(cur_tx_bank)]

[status_flags & CNTDWN == CNTDWN]

[cur_time >= psc_sf_start]

TRANSMIT
SYNCARP

[! EMPTY(cur_tx_queue)]

[RCVSGNL("START_ROUTINE", msm]

Figure 5.10: Transmit auxiliary state machine for the master node:<scheduling>
50

6 Helios-2 Scheduling Algorithm

6.1 The Helios-2 Scheduling Algorithm

Helios-2 network would typically consist of N nodes and C wavelengths, where C≤ N. Each node is

equipped with one slowly tunable transmitter (tuning time of ~100ms) and one fast tunable receiver

(tuning time of ~10µs). Slowly tunable transmitter is tunable only for the purpose of electing a master

node or for the load balancing and reconfiguration, it is fixed for all other purposes. The tunable receiver

can tune to, and listen on any of the C wavelengths.

We divide the receivers in a Helios-2 network into groups, discussed in [17], termed as virtual

receiver groups. These virtual receivers are a set of physical receivers that behave identically in terms

of tuning. Thus, from the point of scheduling the tuning of virtual receivers to the various channels, all

physical receivers in a virtual receiver group can be logically thought of as a single receiver.

Master node in Helios-2 network is responsible for assigning a group identification to a new node

joining the Helios-2 network. A nodes group identification can also be changed during the routine

operation of a Helios-2 network in response to the changes in traffic pattern. One such study on load

balancing and reconfigurations is presented in [21, 22].

In Helios-2 master node receives an OCC payload, containing packet queue occupancies, from each

node once per superframe. The master node may also receive a JOIN frame, containing packet queue

occupancies, from a new node wishing to join the network. From this information, the master node

can build the traffic matrixA, anG×C matrix, whereG is the number of groups in the network,C is

the number of wavelengths, and entryai j represents the number of slots needed for carrying traffic by

51

λ1 λ2 λ3 sum

g1 4 1 3 8
g2 2 3 2 7
g3 3 2 1 6
g4 2 2 1 5
g5 1 1 1 3

sum 12 11 8

Table 6.1: Example traffic matrix

wavelengthλ j to groupgi . For a network ofC = 3 wavelengths andG = 5 groups, a sample traffic

matrix is shown in Table 6.1.

Helios-2 uses a one-pass greedy scheduling algorithm, the pseudo-code for which is shown in Al-

gorithm 1. The algorithm creates a schedule fromt = 0 forward in time without backtracking, always

attempting to schedule the highest priority node on the highest priority wavelength. Higher priority is

assigned to groups (respectively, wavelengths) that have higher corresponding row-sums (respectively,

column-sums) in the traffic matrixA. In the sample traffic matrix, the groups have been renumbered

in order of largest row-sum to smallest, such thatg1 has the largest row-sum andgG has the smallest,

with ties being broken arbitrarily. The same was done for the wavelengths:λ1 has the largest column-

sum andλC has the smallest. The traffic matrix gives rise to two lower bounds on the schedule length.

The maximum column-sum plusG tuning latencies is the channel bound and the maximum row-sum is

called the group bound. The maximum of the channel and node bounds is the greatest lower bound on

the schedule length.

6.2 Performance

The schedulers developed in previous works [13, 14, 15] produces schedules very close to the lower

bound in length, but requires a prohibitively long runtime. In particular, the scheduler for Hiper-l [13,

14] has a worst-case runtime ofO(CN4) while the scheduler for Helios [15] has a worst-case runtime

of O(C2N2). The scheduler developed for Helios-2 is a straightforward greedy scheduler that has a

worst-case runtime ofO(C2G2). This speedup is substantial because the number of groups would be

52

Algorithm 1 Helios-2 Scheduling Algorithm

/* initialize each entry in the receive and transmit schedule to 0*/

for (t = 0. . .2(glb)) { /* the schedule length will not exceed2(glb) */

for (λ = 1. . .C) {

rcv_schedule [t][λ] = 0 ;

tx_schedule [t][λ] = 0 ;

} /* end for */

} /* end for */

/* ***/

/* initialize remainingDemand to the sum of all the aλg’s */

remainingDemand = 0 ;

for (λ = 1. . .C) {

for (g = 1. . .G)

remainingDemand = remainingDemand + a[λ][g] ;

} /* end for */

/* ***/

/* begin scheduling*/

t = 0 ;

while (remainingDemand > 0) and (t < 2(glb)) { /* while there is still unmet demand*/

for (λ = 1. . .C) {

if (rcv_schedule [t][λ] == 0) { /* if no task has been assigned yet to thisλ at this slot*/

g = 1 ;

while ((g≤G) AND ((unavailable [g][t] == 1) OR (a[λ][g] == 0)))

g = g+1 ; /* find an available group with unfulfilled demand on thisλ */

if (g≤G) {

for (i = t to t+a[λ][g]−1)

rcv_schedule [i][λ] = g ;

for (i = t to t+a[λ][g]−1+ tuneLatency)

unavailable [g][i] = 1 ;

} /* end if */

n = 1 ;

for (n = 1. . .N) {

while ((n≤ N) AND ((tx_lambda(n)!=λ) OR (b[n][g] == 0)))

n = n+1 ;

for (j = t to t+b[n][λ]−1)

tx_schedule [i][λ] = n ;

b[n][g] = 0 ;

} /* end for */

a[λ][g] = 0 ;

remainingDemand = remainingDemand - a[λ][g] ;

} /* end if */

} /* end for */

t = t +1 ;

} /* end while*/
53

much smaller than number of nodes and equal to or less than the number of channels. Moreover, the

faster scheduler can be readily implemented in hardware, resulting in an additional gain in speed. To

achieve these gains in speed and simplicity, the new scheduler produces schedules that are not as close

to optimal as those produced by the original scheduler. However, the faster scheduler’s results are

"reasonably close" to optimal.

We consider uniform and bimodal traffic pattern for the numerical analysis of proposed scheduling

algorithm. Use of uniform traffic pattern for analysis is justified when the Master node in Helios-2

network is also running load balancing and reconfiguration algorithms. If the master node in Helios-2

network is not running any load balancing and reconfiguration algorithms then it is suitable to consider

network traffic as bimodal. There have been many studies [28] of typical TCP/IP Internet traffic, and a

common trait is the bimodal network traffic distribution.

The histograms shown in Figure 6.1 - 6.12 plot number of simulation runs against the percentage

variation of computed schedule from the lower bound. Simulation run length for all simulations was

10000. In simulations with various patterns of network traffic demand, the new scheduler produces

schedules within 3% of the lower bound, approximately 90% of the time.

For the results shown in Figure 6.1 - 6.8, the elements of traffic matrixA were chosen, with equal

probability, among the integers 1 through 25 (uniform distribution). We show four sets of two figures

each, corresponding to the four values of the set{C,G} as{4,8}, {4,16}, {8,8}, and{8,16}. Within

each set we use two different values for tuning latencyT, T = 1,8. At data rates of 1 Gigabits per second,

and packet sizes equal to the typical IP packet (1500 bytes), the packet transmission time is 12µs. Hence

the two values ofT correspond to transceiver tuning times of approximately 10µsand 100µsrespectively;

these two values correspond to possible implementations of optical filters as discussed in Chapter 7.

For the results shown in Figure 6.9 - 6.10, the elements of traffic matrixA were chosen using bimodal

distribution:with probability 0.5 an element is chosen from the uniform(1, 15) distribution and with

probability 0.5 from the uniform(12, 25) distribution. We show one set of two figures, corresponding to

the value of the set{C,G} as{4,8}. Within this set we use two different values for tuning latencyT,

T = 1,8.

Finally, for the results shown in Figure 6.11 - 6.12, the elements of traffic matrixA were chosen,

54

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.1: Performance of Helios-2 scheduler - Uniform(1, 25) Distribution

For C = 4 channels, G = 8 groups and T = 1 tuning slot

with equal probability, among the integers 1 through 50 (uniform distribution). We show one set of two

figures, corresponding to the value of the set{C,G} as{4,8}. Within each set we use two different

values for tuning latencyT, T = 1,8.

55

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.2: Performance of Helios-2 scheduler - Uniform(1, 25) Distribution

For C = 4 channels, G = 8 groups and T = 8 tuning slot

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.3: Performance of Helios-2 scheduler - Uniform(1, 25) Distribution

For C = 4 channels, G = 16 groups and T = 1 tuning slot

56

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.4: Performance of Helios-2 scheduler - Uniform(1, 25) Distribution

For C = 4 channels, G = 16 groups and T = 8 tuning slot

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.5: Performance of Helios-2 scheduler - Uniform(1, 25) Distribution

For C = 8 channels, G = 8 groups and T = 1 tuning slot

57

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.6: Performance of Helios-2 scheduler - Uniform(1, 25) Distribution

For C = 8 channels, G = 8 groups and T = 8 tuning slot

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.7: Performance of Helios-2 scheduler - Uniform(1, 25) Distribution

For C = 8 channels, G = 16 groups and T = 1 tuning slot

58

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.8: Performance of Helios-2 scheduler - Uniform(1, 25) Distribution

For C = 8 channels, G = 16 groups and T = 8 tuning slot

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.9: Performance of Helios-2 scheduler - Uniform(1, 50) Distribution

For C = 8 channels, G = 16 groups and T = 8 tuning slot

59

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.10: Performance of Helios-2 scheduler - Uniform(1, 50) Distribution

For C = 4 channels, G = 8 groups and T = 8 tuning slot

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.11: Performance of Helios-2 scheduler - Bimodal Distribution

For C = 4 channels, G = 8 groups and T = 1 tuning slot

60

0

1000

2000

3000

4000

5000

6000

7000

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

N
um

be
r

of
 S

im
ul

at
io

ns

Ratio - Schedule Length to Lower Bound

Figure 6.12: Performance of Helios-2 scheduler - Bimodal Distribution

For C = 4 channels, G = 8 groups and T = 8 tuning slot

61

7 Conclusion

7.1 Hardware Architecture

Hardware implementation, Figure 7.1, of Helios-2 can be broadly divided in two parts.

1. FPGA Back End - FPGA back end interfaces with host through PCI/PCI-X interface and with

optical front end. FPGA back end is responsible mainly for running Helios-2 state machine,

DMA controller for communication with host, Helios-2 frame parsing/generation.

2. Optics Front End - Optical front end interfaces with the Helios-2 network and with FPGA back

end. Optics front end is responsible for tuning the receive and transmit wavelength during initial-

ization/normal Helios-2 network operation.

7.2 FPGA Back End

FPGA Back End, Figure 7.2, can be broadly divided in three blocks discussed below.

7.2.1 Host Interface

Helios-2 NIC can be interfaced with Host through PCI/PCI-X interface module. This module would im-

plement functional, timing and electrical specifications of PCI/PCI-X Local Bus specification. PCI/PCI-

X configuration space module provides and appropriate set of configuration “hooks” which satisfy the

needs of configuration mechanisms defined in PCI/PCI-X Local Bus specification. PCI/PCI-X interface

62

Slowly Tunable
Transmitter

Fast Tunable
Receiver

State Machines
Helios−2

Slowly Tunable
Transmitter

Fast Tunable
Receiver

State Machines
Helios−2

PSC

Node 1

Node 3

Node 4

Optics Front End

P
C

I/
P

C
I−

X

T
r
a
n

sc
e
iv

e
r

FPGA Back End

Helios−2 Network Interface Card

Node 2

Optics Front End

P
C

I/
P

C
I−

X

T
r
a

n
sc

e
iv

e
r

FPGA Back End

Helios−2 Network Interface Card

Figure 7.1: Helios-2 Network

63

module is readily available in form of IP core. PCI/PCI-X module would be interfaced with FIFO, DMA

controllers and Memory Arbiter to assist in efficient transfer of data to/from host memory.

7.2.2 Helios-2 State Machines

Helios-2 state machines are initialized by Initialization and Control State Machine (ICSM). ICSM is

responsible for following functions

• Receiving Helios-2 control information from Host during start up or during regular operation.

ICSM populates Control Memory block with this information.

• Transmitting Helios-2 status and error information to the Host.

Control Memory, Schedule Memory and Signal Block is implemented using the memory available on

FPGA. All Helios-2 state machines are implemented using the logic gates available on FPGA. Helios-

2 Master State Machine also interfaces with On-FPGA processor (PowerPC 405 processor in Xilinx’s

Virtex-II Pro FPGA) [25]. This processor is used for schedule computation in the scheduler node.

7.2.3 Optics Interface

Optics interface consists of Frame Parser module, Frame Generator module, Tuning Control Logic mod-

ule and Transceivers. Frame Parser and Frame Generator modules are responsible for parsing and gener-

ating Helios-2 frames. Tuning control logic translates the transmit and receive optics tuning commands

received from different Helios-2 state machines to the tuning command understood by the Optics Front

End of Helios-2 NIC.

7.3 Optics Front End

Optical Front End of Helios-2, Figure 7.3, can be implemented in two ways depending on the way Fast

Tunable Receiver is realized.

1. Optically Tuned - In this option, receiver is either MZ Interferometer chain or Acoustooptic Filter.

64

FIFO

Rx DMA

FIFO C
on

fi
gu

ra
tio

n
Sp

ac
e

PC
I/

PC
I−

X

Memory Arbiter/
Classifier

Control State Machine
Initialisation &

IP
/M

A
C

/g
 T

ab
le

C
on

tr
ol

 M
em

or
y

Sc
he

du
le

 M
em

or
y

Si
gn

al
 B

lo
ck

T
im

er
 &

 C
ou

nt
er

Sc
he

du
lin

g
SM

 /
R

ou
tin

e
SM

Fr
am

e
G

en
er

at
or

Fr
am

e
Pa

rs
er

T
un

in
g

C
on

tr
ol

L
og

ic

T
ra

ns
ce

iv
er

T
ra

ns
ce

iv
er

B
uf

fe
r

B
uf

fe
r

PCI/PCI−X Interface

Tx DMA

Master State Machine

Jo
in

 S
M

E
le

ct
io

n
SM

T
im

in
g

M
ea

su
re

m
en

t S
M

T
x

D
at

a

R
x

D
at

a

T
un

in
g

C
on

tr
ol

FI
FO

V
ir

te
x

II
 P

ro
 F

PG
A

Figure 7.2: Helios-2 FPGA Back End

65

• Receiver based on MZ Interferometer chain uses a series of splitters [24, 26]. Splitter splits

the incoming wave into two waveguides and a combiner recombines the signals at the out-

put of the waveguides. Phase difference of 180o is created using adjustable delay in one

of the waveguides. A series of these splitters can be used to select a single desired opti-

cal wavelength. Tuning time in hundred’s of nanosecond range can be achieved using MZ

Interferometer.

• Receiver based on Acoustooptic Filter technology a RF source to stimulates a piezoelectric

crystal [24, 27]. RF waves change the crystal’s index of refraction and this enables the crystal

to act as grating. By changing the RF waves a single optical wavelength can be selected.

Tuning times in the range of ten’s of microsecond can be achieved using Acoustooptic Filter.

2. Electronically Tuned - In this option, receiver is built using discrete optical modules. Input op-

tical signal is first feed to a optical De-multiplexer which split out the different wavelength’s.

These wavelength’s are then feed into different APD receiver’s. Output of these APD receiver’s is

electronically selected using an FPGA.

66

Demux

APD

APD

:
:

FPGA

Tx

Rx

Slowly Tunable Laser

Fast Tunable Receiver

Tx

Rx

Option 1

Tuning Time ~10us − 100ns

Slowly Tunable Laser

Tuning Time ~10ns

Option 2

Figure 7.3: Helios-2 Optical Front End

67

Bibliography

[1] Paul E. Green, Jr. Optical Networking Update. IEEE Journal on Selected Areas in Telecommunica-

tions, vol. 14, no. 5, June 1996.

[2] B. Mukherjee. Optical Communication Networks: Progress and Challenges. IEEE Journal on Se-

lected Areas in Telecommunications, vol. 18, no. 10, October 2000.

[3] Charles A. Brackett. Dense Wavelength Divison Multiplexing Networks: Principles and Applica-

tions. IEEE Journal on Selected Areas in Telecommunications, vol. 8, no. 6, August 1990.

[4] P. E. Green, Jr. Fiber Optic Networks, Englewood Cliffs: Prentice Hall, 1993.

[5] B. Mukherjee. Optical Communication Networks. New York: McGraw-Hill, 1997.

[6] B. Mukherjee. WDM-Based local lightwave networks Part I: Single-hop systems. IEEE Network

Magazine, pages 12-27, May 1992.

[7] B. Mukherjee. WDM-Based local lightwave networks Part II: Multi-hop systems. IEEE Network

Magazine, pages 20-32, July 1992.

[8] D. A. Levine and I. F. Akyildiz. PROTON: A Media Access Control Protocol for Optical Networks

with Star Topology. IEEE/ACM Transactions on Networking, vol. 3, no. 2, pages 158-168, 1995.

[9] K. Sivalingam and J. Wang. Media Access Protocols for WDM Networks with On-line Scheduling.

IEEE/OSA J. Lightwave Tech., vol. 14, no. 6, pages 1278-1286, 1996.

68

[10] M. S. Chen, N. R. Dono, and R. Ramaswami. A Media Access Protocol for Packet-switched

Wavelength Divison Multipaccess Metropolitan Area Networks. IEEE Journal on Selected Areas

in Telecommunications, vol. 8, no. 6, pages 1048-1057, 1990.

[11] P. A. Humblet, R. Ramaswami, and K. N. Sivarajan. An Efficient Communication Protocol for

High-Speed Packet Switched Multichannel Networks. IEEE Journal on Selected Areas in Telecom-

munications, vol. 11, no. 4, pages 568-578, 1993.

[12] Vijay Sivaraman and George N. Rouskas. A Reservation Protocol for Broadcast WDM Networks

and Stability Analysis. Computer Networks, vol. 32, no. 2, pages 211-227, February 2000.

[13] George N. Rouskas and Vijay Sivaraman. Packet Scheduling in Broadcast WDM Networks with

Arbitrary Transceiver Tuning Latencies. IEEE/ACM Transactions on Networking, vol. 5, no. 3,

pages 359-370, June 1997.

[14] George N. Rouskas and Mostafa H. Ammar. Analysis and Optimization of Transmission Schedules

for Single-Hop WDM Networks. IEEE/ACM Transactions on Networking, vol. 3, no. 2, pages 211-

221, April 1995

[15] Ilia Baldine, Laura E. Jackson, and George N. Rouskas. Helios: A Broadcast Optical Architecture.

Proceedings of Networking 2002, pages 887-894, May 2002.

[16] George N. Rouskas and Mostafa H. Ammar. Multi-Destination Communication Over Tunable-

Receiver Single-Hop WDM Networks. IEEE Journal on Selected Areas in Communications, vol.

15, no. 3, pages 501-511, April 1997.

[17] Zeydy Ortiz, George N. Rouskas, and Harry G. Perros. Maximizing Multicast Throughput in WDM

Networks with Tuning Latencies Using the Virtual Receiver Concept. European Transactions on

Telecommunications, vol. 11, no. 2, pages 63-72, January 2000.

[18] Zeydy Ortiz, George N. Rouskas, and Harry G. Perros. Scheduling Combined Unicast and Multi-

cast Traffic in Broadcast WDM Networks. Photonic Network Communications Journal, vol. 2, no.

2, pages 135-154, May 2000.

69

[19] W. Tseng, C. Sue, and S. Kuo. Performance Analysis for Unicast and Multicast Traffic in

Broadcast-and-Select WDM Networks. IEEE International Symposium on Computer and Commu-

nications, pages 72-78, 1999.

[20] Jason P. Jue and Biswanath Mukherjee. The Advantages of Partitioning Multicast Transmissions

in a Single-Hop Optical WDM Network. IEEE International Conference on Communications, vol.

1, pages 427-431, 1997.

[21] Ilia Baldine and George N. Rouskas. Reconfiguration and Dynamic Load Balancing in Broadcast

WDM Networks. Photonic Network Communications Journal, vol. 1, no. 1, pages 49-64, June 1999.

[22] Ilia Baldine and George N. Rouskas. Dynamic Reconfiguration Policies for WDM Networks. IEEE

Infocom, pages 313-320, March 1999.

[23] Ilia Baldine and George N. Rouskas. Dynamic Load Balancing in Broadcast WDM Networks with

Tuning Latencies. IEEE Infocom, pages 78-85, March 1998.

[24] M. Borella, J. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee. Optical Components for WDM

Lightwave Networks. Proceedings of the IEEE, vol. 85, no. 8, pages 1274-1307, August 1997.

[25] The Virtex II Pro FPGA. In http://www.xilinx.com

[26] Tunable Optical Filter. In http://www.optune.ca

[27] Tunable Optical Filter. In http://www.brimrose.com

[28] J. Mogul. “Observing TCP Dynamics in Real Networks”. Proceedings of ACM SIGCOMM, pages

305-317, October 1992.

70

