
ABSTRACT

DASARATHAN, DINESH. Benchmark Characterization of Embedded Processors. (Under

the direction of Professor Thomas M. Conte).

The design of a processor is an iterative process, with many cycles of simulation,

performance analysis and subsequent changes. The inputs to these cycles of simulations are

generally a selected subset of standard benchmarks. To aid in reducing the number of cycles

involved in design, one can characterize these selected benchmarks and use those charac-

teristics to hit at a good initial design that will converge faster. Methods and systems to

characterize benchmarks for normal processors are designed and implemented. This thesis

extends these approaches and defines an abstract system to characterize benchmarks for

embedded processors, taking into consideration the architectural requirements, power con-

straints and code compressibility. To demonstrate this method, around 25 benchmarks are

characterized (10 from SPEC, and 15 from standard embedded benchmark suites - Media-

bench and Netbench), and compared. Moreover, the similarities between these benchmarks

are also analyzed and presented.

Benchmark Characterization of Embedded Processors

by

Dinesh Dasarathan

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial satisfaction of the
requirements for the Degree of

Master of Science

Department of Computer Science

Raleigh

2005

Approved By:

Dr. Edward F. Gehringer Dr. Eric Rotenberg

Dr. Thomas M. Conte
Chair of Advisory Committee

ii

To my parents and advisor . . .

iii

Biography

Dinesh Dasarathan was born on 29th August, 1981, in Chennai, India. He graduated from

the College of Engineering - Guindy, Anna University, with a Bachelor of Engineering in

Computer Science in May 2003. He then enrolled in the graduate program in Computer

Science at North Carolina State University in Fall 2003. With the defense of this thesis, he

will receive the Master of Science in Computer Science degree.

iv

Acknowledgements

I am deeply indebted to my advisor, Dr. Thomas M. Conte, for his support and invaluable

guidance throughout my thesis. It was great fun to be part of the research group that is

led by one of the most energetic and witty persons I have ever met.

Thanks to Dr. Edward F. Gehringer and Dr. Eric Rotenberg for agreeing to be on my

thesis committee in spite of their tight schedule and for the valuable feedback regarding this

thesis document. I would also thank Dr. Rotenberg for providing me with his simulators

and benchmark executables, that helped me a lot in my research.

Thanks to Saurabh Sharma for giving valuable pointers that helped me on my experiments,

Paul Bryan for helping me proofread this document and Aravindh Anantaraman for helping

me integrate the WATTCH simulator with Dr. Rotenberg’s version of SimpleScalar.

I would like to thank my friends Chithi, Vurumaani, Baawa, Kaakka, Jaggu and Kriii for

making my graduate life pleasant and enjoyable. Finally, and most importantly, I would

like to thank my parents and Jonty for their love and affection.

v

Contents

List of Figures vi

List of Tables vii

1 Introduction 1

2 The Method of Benchmark Characterization 3

3 Power Characteristics 5

4 Code Compressibility 7

5 Processor Characteristics 9
5.1 Intermediate Instruction Frequencies . 9
5.2 Instruction Level Parallelism . 11
5.3 Branch Characteristics . 12

6 Memory System Characteristics 14
6.1 Cache Requirements . 15
6.2 TLB Requirements . 19
6.3 Memory Requirements . 21

7 Similar Benchmarks 23

8 Conclusion 30

Bibliography 31

vi

List of Figures

2.1 The Abstract System Model . 4

3.1 Total Power Consumed by the Benchmarks 6

4.1 Compression Ratios for Benchmarks . 8

5.1 IPC of Benchmarks . 12
5.2 Branch Misprediction Rates for Benchmarks 13

6.1 Mediabench - L1 Data Cache Design (32 byte block) for Max.10% Miss Ratio 16
6.2 Mediabench - L1 I-Cache Design (32 byte block) for Max. 10% Miss Ratio . 16
6.3 Mediabench - L2 Unified Cache Design (64 byte block) for Max 1% or In-

trinsic Miss Ratio . 17
6.4 SPEC2k and Netbench - L1 Data Cache Design (32 byte block) for Max 10%

Miss Ratio . 17
6.5 SPEC2k and Netbench - L1 I-Cache Design (32 byte block) for 10% Miss Ratio 18
6.6 SPEC2k and Netbench - L2 Unified Cache Design (64 byte block) for Intrinsic

or Max 1% Miss Ratio . 18
6.7 Mediabench Memory Requirements . 21
6.8 SPEC2k and Netbench Memory Requirements 22

7.1 Similar Kiviat Graphs - Sample set 1 . 24
7.2 Similar Kiviat Graphs - Sample set 2 . 25
7.3 Similar Kiviat Graphs - Sample set 3 . 26
7.4 Similar Kiviat Graphs - Sample set 4 . 27
7.5 Similar Kiviat Graphs - Sample set 5 . 28
7.6 Similar Kiviat Graphs - Sample set 6 . 29

vii

List of Tables

5.1 Mediabench Intermediate Instruction Frequencies (in %) 10
5.2 SPEC 2000 Intermediate Instruction Frequencies (in %) 10
5.3 Netbench Intermediate Instruction Frequencies (in %) 10

6.1 TLB Requirements for Mediabench . 19
6.2 TLB Requirements for SPEC2K . 20
6.3 TLB Requirements for Netbench . 20

1

Chapter 1

Introduction

Processor design is a complex matter with a great number of design choices. Con-

sider the design of a system in which the addition of new hardware might improve overall

performance by executing certain instructions faster, or degrade performance by reduc-

ing the clock speed. How is it possible to know whether or not this hardware will finally

contribute to a better design of the system? The answer is simple: the usefulness of the

new hardware depends on the programs that the system will run. In order to maintain a

general standard, designers often use benchmark programs that are representative of the

programs that the system finally runs. Hence, the system’s performance while running the

benchmarks determines the design of the system.

The performance of a system can be simulated before it is ever built and the

simulation results can be used to improve the design. Simulation involves selecting an

initial design, simulating the design for each benchmark, often a lengthy process and then

adjusting the design, and reiterating. If the initial design is far from what is required, the

number of iterations will be large, wasting large amounts of effort and increasing the time to

market. Therefore, in order to reduce the number of design iterations, it is very important

to find an initial design that is closest to the final requirement. This is where benchmark

characterization comes into the picture.

2

The premise of this thesis is that it is possible to have a reference work that

contains the cost-effective designs for each benchmark, and to use these designs to determine

the initial design. The most attractive method would be to define an abstract system that

is general enough to include many system designs as special cases and then measure a

benchmark’s performance in terms of this abstract system. We call this the benchmark’s

characteristics and the process itself, benchmark characterization [5].

Until now, we have considered how benchmark characterization is relevant to pro-

cessor design in general-purpose systems. With the surge of the embedded systems market,

it is important to extend benchmark characterization to meet the design requirements of

embedded processors. Embedded processor design is quite different from general proces-

sor design, with design issues such as power utilization and code compression for smaller

memory requirements being important in addition to the architectural requirements of nor-

mal processors. The remaining portion of this thesis will deal with redefining the abstract

model of benchmark characterization for embedded processors and also characterizing some

common benchmark suites such as SPEC2000 [7], Mediabench [9] and Netbench [10] on

architectural as well as embedded aspects. This thesis would also focus upon how these

characteristics will affect the design of an embedded system. In addition, we shall also

be studying whether these benchmark suites are similar and also decide whether they are

suitable for embedded design.

3

Chapter 2

The Method of Benchmark

Characterization

The abstract system implemented to characterize the benchmarks involves a set

of simulators that take as input the run-time traces of the benchmarks, generate results

and then use these results to output their characteristics. The main constituents of this

abstract system are a single-pass memory simulation [3] that uses the recurrence-conflict

method, a modified form of the Simplescalar simulator [1], the WATTCH toolkit [2] for

Simplescalar and a byte-based Huffman encoder [8]. The traces were generated using a

modified form of the functional Simplescalar simulator, and fed into the abstract system.

To generate traces, the selected benchmarks were compiled with gcc at the lowest level of

optimization. All but the SPEC benchmarks were run to completion. We could run only

the first few billions of events of the SPEC benchmarks for their reference inputs.

All of the processor characteristics mentioned below (IPC, intermediate instruction

frequency and branch characteristics) were output directly by the modified Simplescalar

simulator. Of these the intermediate instruction frequency was generated by modifying the

functional simulator, while IPC and branch characteristics were output by the cycle-accurate

simulator. The memory system characteristics were generated using the single-pass memory

simulator, while the power characteristics for each benchmark were produced using the

4

WATTCH toolkit coupled with the modified Simplescalar simulator. The code compression

characteristics were generated using the byte-based Huffman encoder. Figure 2.1 illustrates

the abstract system model.

Figure 2.1: The Abstract System Model

5

Chapter 3

Power Characteristics

Power is a very important factor in embedded processor design. Today’s embedded

processors are used in applications where battery power is critical, such as cell phones,

cars and other mobile devices. In order to prolong battery life, it is important to design

embedded processors that satisfy low-power constraints. Embedded systems nowadays have

at least two distinct modes of operation: the high-power mode and the sleep mode. (This is a

simplified view, with many more intermediate modes that progressively consume less power,

while executing the program less rapidly.) Techniques such as dynamic voltage or frequency

scaling have also come into widespread use to reduce the overall power consumption.

The power requirements of a benchmark used during design can indicate whether

different power modes are necessary in a system, and whether dynamic voltage or frequency

scaling need to be applied. We have analyzed all benchmarks using the WATTCH simu-

lator, and obtained the power consumed for each benchmark on the modified simplescalar

simulator, whose configuration is discussed in section 5.2. Figure 3.1 shows the power

characteristics for the cc3 model of the pipeline operating at 1000 MHz. The cc3 model

implements the idea that even dormant portions of the pipeline contribute to the total

power consumed. (In the case of WATTCH, dormant regions consume 10% of the power

consumed by active regions.)

6

While designing an embedded processor the designer has to take into account the

power requirements of the benchmark. Techniques such as dynamic voltage or frequency

scaling must be applied for designs where power is a constraint.

Figure 3.1: Total Power Consumed by the Benchmarks

7

Chapter 4

Code Compressibility

Since on-chip space and memory area are important constraints involved in em-

bedded processor design, prior work has been done on compressing the executable image

of the benchmark, so that more of it fits into the main memory. The compression ratio of

a benchmark can affect main memory design. If a benchmark is highly compressible, then

the designer has the freedom to manipulate the memory requirements accordingly.

There are many compression techniques available [6]. For this study the standard

Huffman encoding scheme was selected. This is a byte-based method, where bytes of exe-

cutable image are encoded on a per byte basis. The compression ratios of all benchmarks

are indicated by Figure 4.1.

Most of the benchmarks show a compression ratio of around 45%. This implies that

the designer has the advantage of reducing the main memory size by the same amount during

design. But, of special importance are the benchmarks DRR and URL. The compression

ratio for these benchmarks is almost negligible, since their corresponding executable images

have symbols occurring at the same frequency. Therefore, the Huffman encoder that works

at giving smaller codes to high frequent symbols shows a low compression ratio. For such

benchmarks, the designer has to take care not to manipulate memory requirements if high

performance is desired.

8

Figure 4.1: Compression Ratios for Benchmarks

9

Chapter 5

Processor Characteristics

5.1 Intermediate Instruction Frequencies

Processor design involves providing execution resources (e.g. registers, function

units, and supporting logic) to achieve high performance. Knowing the relative importance

of various operations can be extremely useful when designing a processor. Consider our

example from the introduction of whether to add hardware or not: information on the

relative use of different instruction classes in benchmarks could help answer this question.

Such relative frequencies could also help answer how important floating-point hardware is,

or whether implementing a multiply/divide unit is worthwhile. To gather the intermediate

code instruction frequencies, we chose 11 categories of important instruction types (see

Tables 5.1, 5.2 and 5.3) and separated intermediate instructions from the traces we obtained

into these categories. (Note that ”*” indicates a frequency less than 1%, and a ”-” indicates

no occurrence.)

10

Table 5.1: Mediabench Intermediate Instruction Frequencies (in %)

Benchmark Branches Loads Stores itAlu itMul itDiv fpCvt fpAlu fpMul fpDiv fpSqrt

adpcm 27 7 1 65 * * - - - - -

epic 15 13 2 54 * * 6 5 5 * -

unepic 20 13 11 49 1 * 2 3 * 1 -

G721decode 23 14 4 58 1 * - - - - -

G721encode 23 13 4 59 1 * - - - - -

gsm toast 5 17 5 66 7 * - - - - -

gsm untoast 18 7 4 67 4 * - - - - -

jpeg 16 21 7 56 * * - - - - -

mipmap 16 22 12 38 * * 2 7 3 * -

osdemo 19 22 10 47 * * * 1 1 * *

texgen 13 22 12 40 1 * 2 5 5 * *

mpegdecode 12 15 4 53 * * 3 8 5 * *

mpegencode 17 27 2 51 * * 1 1 1 * *

Table 5.2: SPEC 2000 Intermediate Instruction Frequencies (in %)

Benchmark Branches Loads Stores itAlu itMul itDiv fpCvt fpAlu fpMul fpDiv fpSqrt

bzip 15 21 9 55 * * - - - - -

gap 8 21 11 54 6 * - - - - -

gcc 18 23 19 40 * * * - * * -

gzip 21 20 5 54 * * - - - - -

mcf 20 23 19 38 * * * * * - -

parser 20 28 10 41 * 1 - - - - -

perl 17 27 13 43 * * * * * * -

twolf 18 27 9 45 * 1 * * * * *

vortex 17 12 34 37 * * - - - - -

vpr 19 24 8 45 * * 1 2 1 * *

Table 5.3: Netbench Intermediate Instruction Frequencies (in %)

Benchmark Branches Loads Stores itAlu itMul itDiv fpCvt fpAlu fpMul fpDiv fpSqrt

aes 18 17 9 54 1 1 - - - - -

drr 35 27 9 29 * * - - - - -

routing 21 26 10 43 * * - - - - -

url 14 31 12 43 * * - - - - -

11

The value of high-performance integer hardware cannot be argued, as its use rep-

resents at least 40% of the instructions for all benchmarks. Integer division, floating-point

division, and floating-point conversions are hardly used by either SPEC2000 and Netbench

and could safely be implemented by software for designs based upon these benchmarks.

But, for design based on Mediabench, floating-point hardware becomes important for high

performance. Integer multiplication is also employed by Gsm and Gap, which suggests

that well-designed hardware should support integer multiplication, although perhaps not

a full-scale integer multiplier. The frequency of control transfers for Gsm and Gap shows

that these programs have longer basic blocks. Therefore, if the system will be running

applications similar to Gsm and Gap, branch-prediction hardware is less critical.

5.2 Instruction Level Parallelism

The number of parallel instructions that are available to be executed in one cycle

is another important characteristic of a benchmark. This can influence the degree of super-

scalar issue and also the parameters that will be used during concurrent execution, such as

the number of register read and write ports. A design based on a highly parallel benchmark

can have a higher degree of ports, while design based on lesser parallel benchmarks can

manage with a smaller degree of superscalar issue and fewer ports.

The available parallelism in a benchmark can be best measured by running the

benchmark on a simulator such as Simplescalar, and finding the IPC. A modified form of

Simplescalar was used for this purpose. This version had the following configuration:

Rob size 64
IQ size 64
Fetch width 8
Dispatch width 8
Issue width 8
Issue-mem width 4
Retire width 4
I$: 128KB, 4-way set-associative, 128B line size
D$: 64KB, 4-way set-associative, 64B line size

This configuration was used as a standard in this thesis for generating all charac-

teristics involving the Simplescalar simulator.

12

Figure 5.1 indicates the IPC calculated using the above configuration for all 3

benchmark suites. It can be found that Mediabench and Netbench are highly parallel due

to more loops within the program, while SPEC2K comparatively has a lower number of

parallel instructions. Hence, designing a highly parallel machine can be cost-viable for

workloads similar to Gsm, Mpeg2, Texgen, Routing and Osdemo, but is rather wasteful if

the workload is similar to benchmarks like MCF and PERL.

Figure 5.1: IPC of Benchmarks

5.3 Branch Characteristics

The branch characteristics of a benchmark can determine if branch-prediction

hardware is critical for the design; and if so, it can indicate whether a highly-accurate,

high-cost branch predictor must be used, or whether a less-accurate, lower-cost branch

predictor will suffice. The branch characteristics of benchmarks can be best represented by

the misprediction rates when there is no interference between branches (branch interference

occurs if more than one branch maps to the same row in the branch-prediction table). To

achieve zero interference between branches, very large prediction tables were used, sized so

that they could accommodate one row for each value of the PC. The global branch history

of the branches was collected using a GShare predictor with tables of size of 16MB, to

13

prevent interference.

Figure 5.2 shows the branch misprediction rates calculated using this method. It

can be noted that benchmarks Mpeg Encoder and adpcm require highly accurate branch

predictors, whereas benchmarks Mipmap, Aes and routing may or may not need elaborate

branch predictors.

Figure 5.2: Branch Misprediction Rates for Benchmarks

14

Chapter 6

Memory System Characteristics

Modern memory systems consist of one or more levels of caching above a virtual

memory system. The entire set of miss ratios for the benchmarks constitutes a vast amount

of data. Instead of presenting that data, we present several cost-effective memory system

designs for the benchmarks. We describe these designs first by discussing the top-level

cache and second-level instruction and data cache requirements, then several good TLB

designs, and then we close by discussing main-memory design requirements. Throughout

this section we exclude the results for 4-way set-associative caches because we discovered

that the required cache sizes were the same as higher associativities.

The abstract system model employs a modified single-pass algorithm [3] to record

the number of recurrences and organizational misses for all cache dimensions in a design

space. This algorithm takes as input the miss ratio and the block size, and gives the least

expensive cache design for all associativities. If the given miss ratio cannot be met by

the benchmark, then the algorithm outputs the least expensive cache design that meets the

intrinsic miss ratio of the benchmark for that block size (The intrinsic miss ratio corresponds

to the miss ratio for a cache with an infinite number of blocks.)

Since some of the benchmarks had very long traces, statistical trace sampling [4]

was used to reduce run time, without unduly affecting the accuracy of the results.

15

6.1 Cache Requirements

Figures 6.1 - 6.6 show the minimum dimensions for all benchmark suites, required

for top-level instruction and data caches, which are backed up by a unified second-level

cache. The top-level caches use a block size of 32 bytes while the unified L2 cache uses a

block size of 64 bytes. The design criterion we used for L1 caches was to select the smallest

(i.e., least expensive) cache that provides a 10% miss ratio or better. Similarly, the design

criterion we used for the unified L2 cache was the smallest cache that provides a maximum

1% or intrinsic miss ratio.

For L1 data caches, the required cache size ranges from 256 bytes to 16MB (Mcf).

Mcf has a high miss rate since it is a classic example of pointer-chasing algorithms with huge

tree structures, where reference locality is far less than other benchmarks. L1 Instruction

caches have a range between 256 bytes and 16KB (gcc). The range is less here since

instruction streams follow the trend of spatial locality more closely than data streams. For

L2 unified caches, the required cache size ranges from 512 bytes to 4MB. It is important to

note that for a few benchmarks such as mcf and epic, the L2 cache requirement is less than

the L1 Data cache requirement. This is because for the unified cache, instruction streams

dominate the cache characteristics and yield a lower number of misses.

Most benchmarks show a decrease in cache-size requirement as the set associativity

increases. This is because misses due to cache dimension limitations account for a significant

portion of the overall misses. The reduced number of reloading misses causes misses due

to cache dimensions to dominate the miss ratio, thus making the benefit of increased set

associativity more obvious.

16

Figure 6.1: Mediabench - L1 Data Cache Design (32 byte block) for Max.10% Miss Ratio

Figure 6.2: Mediabench - L1 I-Cache Design (32 byte block) for Max. 10% Miss Ratio

17

Figure 6.3: Mediabench - L2 Unified Cache Design (64 byte block) for Max 1% or Intrinsic
Miss Ratio

Figure 6.4: SPEC2k and Netbench - L1 Data Cache Design (32 byte block) for Max 10%
Miss Ratio

18

Figure 6.5: SPEC2k and Netbench - L1 I-Cache Design (32 byte block) for 10% Miss Ratio

Figure 6.6: SPEC2k and Netbench - L2 Unified Cache Design (64 byte block) for Intrinsic
or Max 1% Miss Ratio

19

6.2 TLB Requirements

TLBs are common in embedded systems because they provide memory protection,

even if the memory system is purely physical. In general, the TLB caches virtual memory

translation results for the frequently accessed pages in the virtual space. Without a TLB,

it takes a significant number of cycles to translate a virtual address into a physical address

(typically 10 to 40 cycles). On the other hand, the cost of translation can be eliminated if

the translation results are found in the TLB. A small increase in the miss ratio of the TLB

usually results in a significant loss in performance. Therefore, it is important to design the

TLB to provide a very small miss ratio (that is, 0.1 percent or intrinsic). Tables 6.1, 6.2

and 6.3 presents the TLB dimensions required to guarantee a 0.1 percent miss ratio for each

benchmark suite. (Because the size of a page-table entry is dependent upon the size of the

virtual memory system, these sizes are presented in units of page-table entries instead of

bytes.)

Table 6.1: TLB Requirements for Mediabench

Page 512 1K 2K 4K

sizes byte byte byte byte

Benchmark 1 2 4 F 1 2 4 F 1 2 4 F 1 2 4 F

adpcm 32 16 8 8 16 8 8 4 8 8 8 4 4 4 4 4

epic 1024 128 128 128 512 32 16 16 256 32 16 16 128 32 8 8

unepic 1024 128 128 256 1024 64 32 32 512 64 16 16 256 64 16 8

g721decode 16384 128 128 64 8192 64 64 32 4096 32 32 32 2048 16 16 16

g721encode 16384 128 64 64 8192 64 32 32 2048 32 32 32 1024 16 16 16

gsmtoast 256 32 16 16 128 16 8 8 64 8 8 8 64 8 8 8

gsmuntoast 64 32 32 32 32 16 16 16 16 8 8 8 64 8 8 8

Jpeg 256 128 64 32 256 64 32 32 128 32 32 16 64 32 32 16

mipmap 2048 128 64 32 1024 64 64 32 512 64 32 32 256 64 32 32

osdemo 4096 512 256 256 1024 256 128 128 512 128 32 32 512 128 32 32

texgen 2048 512 512 128 1024 256 256 128 512 128 128 64 256 128 64 64

mpegdecode 256 128 64 32 256 64 32 16 256 32 16 16 2048 32 16 8

mpegencode 1024 64 64 32 512 64 32 32 1024 32 32 16 512 16 16 8

In general, the TLB size requirement decreases with the increase in page size

because larger page sizes result in fewer active pages. Therefore, the TLB has to accom-

20

Table 6.2: TLB Requirements for SPEC2K

Page 512 1K 2K 4K

sizes byte byte byte byte

Benchmark 1 2 4 F 1 2 4 F 1 2 4 F 1 2 4 F

bzip 16384 8192 2048 2048 8192 4096 2048 1024 4096 2048 2048 1024 2048 1024 512 512

gap 1024 256 128 128 1024 128 64 64 1024 64 64 32 1024 64 32 32

gcc 16384 16384 4096 2048 8192 1024 512 256 4096 512 256 256 2048 256 128 128

gzip 16384 1024 512 512 8192 512 256 256 4096 256 128 128 2048 256 128 64

mcf 16384 4096 4096 1024 8192 2048 2048 1024 4096 1024 1024 512 2048 512 512 512

parser 16384 2048 2048 1024 8192 2048 1024 1024 4096 1024 1024 512 2048 512 512 512

perl 8192 2048 1024 512 8192 1024 512 256 2048 512 256 256 1024 512 256 128

twolf 4096 2048 2048 2048 2048 2048 1024 1024 2048 1024 1024 512 2048 1024 512 512

vortex 2048 2048 2048 1024 1024 1024 512 256 512 128 64 64 256 64 64 32

vpr 16384 16384 8192 2048 8192 8192 4096 1024 4096 4096 2048 1024 2048 2048 512 512

modate fewer address translation results. An interesting phenomenon is that neither GCC

nor MCF is the only most demanding benchmarks for TLB design. Although GCC consis-

tently requires more than four times the cache size that VPR does, their TLB requirements

are very comparable. This is because VPR accesses a comparable number of active pages

but accesses a much smaller number of blocks within them. This is a good example of a

demanding benchmark for TLB design that is undemanding in the context of cache design.

Table 6.3: TLB Requirements for Netbench

Page 512 1K 2K 4K

sizes byte byte byte byte

Benchmark 1 2 4 F 1 2 4 F 1 2 4 F 1 2 4 F

aes 16384 256 256 128 8192 128 128 64 4096 128 64 32 2048 64 32 32

drr 2048 256 128 64 1024 128 128 64 512 128 64 64 256 64 32 32

routing 128 128 64 32 8192 128 32 32 4096 64 32 16 2048 32 16 16

url 512 128 128 64 256 64 64 32 256 32 32 32 256 16 16 16

21

6.3 Memory Requirements

The design of main memory differs from that of cache memory in several ways.

First, main memory management is more affordable since it is implemented by software.

Second, the page size is usually much larger than the cache block size due to address

translation and disk access considerations. Third, the page fault penalty is much higher

than the cache miss penalty because page faults cause context switches and disk accesses. A

common goal in main memory design is to achieve the intrinsic page-fault rate of programs.

This fault rate refers to an infinite main memory. All intrinsic page faults are due to the

loading of accessed pages into the infinite main memory. The intrinsic page-fault rate of a

program is a function of the page size.

The main memory sizes required to achieve an intrinsic page fault rate for each

benchmark are shown for four page sizes in Figures 6.7 and 6.8. We can find that main

memory requirement increases as page size increases. This is because of internal fragmen-

tation. However, the increase may be justified by smaller TLB sizes and simpler physical

cache design.

Figure 6.7: Mediabench Memory Requirements

22

Figure 6.8: SPEC2k and Netbench Memory Requirements

23

Chapter 7

Similar Benchmarks

This section describes a model using Kiviat structures to determine the similarity

between benchmarks based on its characteristics. A Kiviat structure consists of many

characteristics of a particular entity combined in a single graph, so that entities can be

easily compared as a whole. We have considered Kiviat graphs for each benchmark using the

processor and memory characteristics only. Based on these graphs, a visual comparison can

be done to determine which benchmarks are similar. Some of the sets of similar benchmarks

are shown in Figures 7.1 - 7.6. The main use of this model is that it can also be used to

find benchmarks similar to the programs that a user eventually runs. This can help the

designer to select benchmarks similar to the workload of the processor, and also help users

to select processors designed with benchmarks that are similar to the workloads they shall

run.

It is interesting to note that some benchmarks have similar characteristics across

application domains, and across benchmark sets (e.g., MPEG2Decode and GAP). But still it

can be found that most of the sample sets are dominated by a single suite of the benchmarks

rather than a combination of two or more suites. This shows that all three suites are

fundamentally different. SPEC is found to have greater memory requirements than both

Mediabench and Netbench while Netbench has different branch prediction characteristics

from the other two. The instruction level parallelism of both Mediabench and Netbench

are also higher than that of SPEC.

24

Figure 7.1: Similar Kiviat Graphs - Sample set 1

25

Figure 7.2: Similar Kiviat Graphs - Sample set 2

26

Figure 7.3: Similar Kiviat Graphs - Sample set 3

27

Figure 7.4: Similar Kiviat Graphs - Sample set 4

28

Figure 7.5: Similar Kiviat Graphs - Sample set 5

29

Figure 7.6: Similar Kiviat Graphs - Sample set 6

30

Chapter 8

Conclusion

Benchmark characterization is a very important step in processor design and is

involved in reducing the number of iterations required to attain the best possible initial

design. Characterizing benchmarks for embedded processors involves generating power and

system-constrained characteristics in addition to the normal architectural characteristics

that are generated for a normal processor. An abstract system model that has been designed

with simulators can be used to characterize benchmarks. This characterization provides us

with processor, memory, power and compression requirements that can indicate at a good

possible initial design for a workload similar to that benchmark. Using these characteristics

it can also be found that the three benchmark suites (SPEC, Mediabench and Netbench)

differ widely in their characteristics. It is observed that SPEC has greater requirements

compared to the embedded benchmark suites Mediabench and Netbench. So, a design

based on a SPEC benchmark will be overdone for an embedded processor. Therefore, we

can conclude that SPEC is not appropriate for embedded processor design.

31

Bibliography

[1] T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for computer

system modeling, February 2002. Volume 35, Issue 2, Page(s):59–67.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-level

power analysis and optimizations. In Proceedings of the 27th International Symposium

on Computer Architecture, number 10-14 in Computer Architecture, pages 83–94, 2000.

[3] T.M. Conte. Systematic computer architecture prototyping, Septemeber 1992. PhD

thesis, Department of Computer Science, University of Illinois, Urbana IL.

[4] T.M. Conte, M.A. Hirsch, and W.W. Hwu. Combining trace sampling with single pass

methods for efficient cache simulation, 1999. IEEE Transactions on Computers.

[5] T.M. Conte and W.W. Hwu. Benchmark characterization. In Proceedings of the

Twenty-Fourth Annual Hawaii International Conference, number 8-11 in System Sci-

ences, pages 365–372, 1991.

[6] T.M. Conte and S.Y. Larin. Compiler-driven cached code compression schemes for

embedded ilp processors. In Proceedings of the 32nd annual ACM/IEEE international

symposium on Microarchitecture, 2000.

[7] J.L. Henning. Spec cpu2000: measuring cpu performance in the new millennium, July

2000. Volume 33, Issue 7,Page(s):28–35.

[8] D.A. Huffman. A method for the construction of minimum-redundancy codes. In

Proceedings of the IRE, pages 1098–1101, 1952.

32

[9] Chunho Lee, M. Potkonjak, and W.H. Mangione-Smith. Mediabench: a tool for evalu-

ating and synthesizing multimedia and communications systems. In Proceedings. Thir-

tieth Annual IEEE/ACM International Symposium of Microarchitecture, pages 330–

335, 1997.

[10] G. Memik, W.H. Mangione-Smith, and W. Hu. Netbench: a benchmarking suite for

network processors, November 2001. IEEE/ACM International Conference on Com-

puter Aided Design, 2001. ICCAD 2001.

