
Abstract

AL-OTOOM, MUAWYA MOHAMED. Preliminary Study of Trace-Cache-Based Control
Independence Architecture. (Under the direction of Dr. Eric Rotenberg.)

Conventional superscalar processors recover from a mispredicted branch by squashing all

instructions after the branch. While simple, this approach needlessly re-executes many future

control-independent (CI) instructions after the branch's reconvergent point. Selective

recovery is possible, but is complicated by the fact that some control-independent

instructions must be singled out for re-execution, namely those that depend on data

influenced by the mispredicted branch. That is, control-independent data-dependent (CIDD)

instructions must be singled out for re-execution, thus avoiding needless re-execution of

control-independent data-independent (CIDI) instructions.

To contrast different recovery models, we abstract the recovery process as constructing a

“recovery sub-program” for repairing partially incorrect future state. In this conceptual

framework, selective recovery constructs a shorter recovery sub-program than full recovery.

In current selective recovery microarchitectures, the recovery sub-program is constructed on-

the-fly after detecting a mispredicted branch, by sequencing through all CI instructions and

singling out only the CIDD instructions among them. Not only is this discriminating

approach complex, but the same recovery sub-program is repeatedly constructed every time

this branch is mispredicted.

We propose constructing the recovery sub-program for each branch once and caching it for

future use. In particular, traces of CIDD instructions are pre-constructed and stored in a

recovery trace cache. When a misprediction is detected, first, the branch's correct control-

dependent instructions are fetched from the conventional instruction cache as usual. Then, at

the reconvergent point, fetching simply switches from the instruction cache to the recovery

trace cache. The appropriate recovery trace is fetched from the recovery trace cache at this

time. In this way, fetching only the CIDD instructions is as simple as fetching all CI

instructions from a conventional instruction cache. No explicit singling-out process is needed

as this was done a priori, on the fill-side of the trace cache. Therefore, the recovery trace

cache is efficient on multiple levels, combining the simplicity of full recovery with the

performance of selective recovery.

This thesis explains the proposed trace-cache-based control independence architecture, at a

high level. Preliminary studies are also presented, to project the potential of exploiting

control independence as well as the effectiveness of a trace-cache-based approach in

particular. The results include (i) breakdowns of retired dynamic instructions into different

categories, based on their control and data dependences with respect to prior mispredicted

branches, (ii) contributions of individual recovery traces to total CIDI instruction savings,

and (iii) hit ratios of finite recovery trace caches.

PRELIMINARY STUDY OF TRACE-CACHE-BASED CONTROL
INDEPENDENCE ARCHITECTURE

by

MUAWYA MOHAMED AL-OTOOM

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the degree of

Master of Science

COMPUTER ENGINEERING

Raleigh, NC

2006

Approved by:

Dr. Eric Rotenberg

Chair of Advisory Committee

______________________ ______________________
Dr. W. Rhett Davis Dr. Suleyman Sair

 ii

Dedication

To my loving parents …

To my love Zeinab …

To my beloved Jordan …

 iii

Biography

Muawya Al-Otoom was born in Amman, Jordan, on November 1981, the second son of

Mohamed and Raisa Al-Otoom. Muawya spent the first seven years of his childhood in the

capital Amman where he attended the first year of his high school at Dar El-Elem School. In

1988, Muawya moved with his family to Souf, his hometown, to join the rest of Al-Otoom

family. In 1999, Muawya finished his high school education and joined Jordan University of

Science and Technology (JUST) to pursue his undergraduate education in computer

engineering. He received his Bachelor’s degree in computer engineering from JUST in 2003

and worked there for one year as a teaching assistant. Motivated by an undergraduate project

on Tomasulo’s algorithm, Muawya decided to pursue his graduate studies in computer

microarchitecture at North Carolina State University (NCSU) in 2004. He joined the research

group of Dr. Eric Rotenberg in 2005 as a Master Student. Now he is continuing his graduate

studies at NCSU toward the PhD degree under the direction of Dr. Eric Rotenberg. In 2006,

Muawya was invited to be a member of the Phi Kappa Phi honor society in recognition of his

academic achievements.

 iv

Acknowledgments

First, I would like to thank God for everything, for giving me health, family, friends,

education and good life.

I want to thank my parents, Mohamed and Raisa Al-Otoom. I don’t know what I would have

done without their continuous support. Despite, the long distance, I have never felt that I am

far from them. Thanks to my father for being a great model I wanted to be like always.

Thanks to my brothers, Muaz and Awni, and my sisters, Doa’a, Demah, and Amomah.

Thanks to all of my uncles and aunts for their calls, and for making sure that I am doing fine.

Thanks to my love Zeinab, her continuous calls and support were great help while we were

apart. Her trust in me helped me face all fears here and made me proud of her. I am waiting

for the day when we will be together.

Special thanks to my advisor, mentor, and teacher Dr. Eric Rotenberg. Thank you for

believing in me when nobody did. Thanks for being a good teacher through this year, and

showing me how to be a good researcher. Thanks for always reminding me how to write

good code by using the “Japanese Car Bumper” model. Thanks for tolerating my nagging

during the submission period.

I would like to thank my friends and roommates here in Raleigh: Tareq Ghaith, my previous

and current roommate, has always been a good brother; Mazen Kharbutli, my first friend in

Raleigh and unofficial mentor during my first experience in research, Ali El-Haj-Mahmoud,

my housemate and cubemate; Mahmoud Chehab (MC), my brother; Monther Al-Dwari,

 v

thanks for the 24-hour services upon coming to Raleigh; Khalid Gharaibeh and Hazim Al-

Dwari, my Cup-O-Joes dudes.

 I would like to thank all of my current and previous research group members: Ali El-Haj-

Mahmoud, Aravindh Anantaraman, Ahmed Al-Zawawi, Vimal Reddy, Hashem Hashemi,

Ravi Venkatesan, and Sailashri Parthasarathy. Special thanks to Ali and Aravindh for the 24-

hour technical and non-technical support. Thanks to Ahmed for being our enthusiastic

member responsible for the brainstorming us at our meetings and being the second criminal

in the crime of control independence after Eric.

I would like to thank my committee members, Dr. W. Rhett Davis and Dr. Suleyman Sair,

for their help in finishing up this work.

Thanks to Sandy Bronson, CESR administrative assistant, for making my life easier through

taking care of all administrative and logistic issues.

I would like to thank all of my professors at JUST, especially Dr. Omer Al-Jarah, Dr.

Abdullah Bataineh, and Dr. Sameer Bataineh.

Thanks to my friends during my undergrad studies and who are now here in the US, thanks

for keeping in touch: Ghaith Matalkah, Rawad Haddad, Abdullah Khresha, Bashar

Gharaibeh, Samer Al-Kiswani, Mohamed Kharashkah, Mwafag Al-Otoom, Mohamed

Zbeidee, and Hakim Hussein.

Thanks to all my fellows in Souf: Sadeq, Omar, Hassan, Hamzeh, Zaid, and Tawfeeg.

Thanks for keeping in touch during my stay here. Thanks for the good old days we spent in

 vi

Souf, especially “experiencing our survival skills at 3:00 AM driving with no windshield

while it’s raining cats and dogs”. Thanks to my cousin and friend, Ahmed, who I can always

depend on.

 vii

Table of Contents

List of Figures...viii

List of Tables ... x

Chapter 1 Introduction ...1

1.1 Motivation: Trend of Large Instruction Windows ..1
1.2 Revisiting Control Independence ...2

1.2.1 Managing Instructions Insertion and Removal ..5
1.2.2 Handling Selective Re-Issue ...6

1.3 The “Big Picture” ..7
1.4 Contributions... 10

Chapter 2 Target Future Microarchitecture ... 12

2.1 Reconvergent Point and Influenced Register Set (IRS) Predictor 13
2.2 Pre-constructing CIDD Recovery Traces ... 14
2.3 Preparing for Recovery.. 16
2.4 Recovery ... 17

2.4.1 Repairing the CD Region.. 17
2.4.2 Fetching and Executing the CIDD Recovery Traces.. 18

Chapter 3 Related Work... 23

3.1 Predication .. 23
3.2 Multipath Execution .. 24
3.3 Control Independence Techniques ... 25
3.4 Exploiting Caches for Faster Misprediction Recovery.. 29

Chapter 4 Evaluation Methodology ... 31

4.1 Simulation Environment .. 31
4.2 Description of Results Generated by the Simulator .. 32

4.2.1 Breakdown of Retired Instructions.. 32
4.2.2 Studying Locality: Contributions of Individual Recovery Traces 35
4.2.3 Trace Cache Hit Ratio... 36

4.3 Benchmarks... 36

Chapter 5 Results and Analysis .. 38

5.1 Breakdown of Retired Dynamic Instructions ... 38
5.2 Contribution of Traces to CIDI Savings... 41
5.3 Trace Cache Hit Ratio ... 44
5.4 Measuring Memory Violations .. 49
5.5 Control Independence Example: Top Trace in Twolf... 50

Chapter 6 Summary and Future Work.. 53

Bibliography.. 57

 viii

List of Figures

Figure 1-1: Control independence terminology..3
Figure 1-2: The “big picture”. ...8
Figure 2-1: High-level view of possible trace-cache-based control independence
microarchitecture. ...12
Figure 2-2: Pre-constructing CIDD recovery traces. ..14
Figure 2-3: Preparing for recovery...17
Figure 2-4: Repairing the CI region using the CIDD recovery trace from the trace cache.....19
Figure 2-5: Three types of data dependences among CIDD instructions in the recovery trace.
...20
Figure 4-1: Breakdown of retired instructions..34
Figure 5-1: Unbounded trace cache, logical trace length = 32 instructions.40
Figure 5-2: Unbounded trace cache, logical trace length = 64 instructions.40
Figure 5-3: Unbounded trace cache, logical trace length = 128 instructions.40
Figure 5-4: Contributions of unique traces (bzip2)...42
Figure 5-5: Contributions of unique traces (gap)..42
Figure 5-6: Contributions of unique traces (gcc)..42
Figure 5-7: Contributions of unique traces (gzip)...42
Figure 5-8: Contributions of unique traces (mcf). ..42
Figure 5-9: Contributions of unique traces (parser)..42
Figure 5-10: Contributions of unique traces (perlbmk). ...43
Figure 5-11: Contributions of unique traces (twolf). ..43
Figure 5-12: Contributions of unique traces (vortex). ..43
Figure 5-13: Contributions of unique traces (vpr). ...43
Figure 5-14: Recovery trace cache results for bzip2: instruction breakdown (left), hit ratios
(right)..45
Figure 5-15: Recovery trace cache results for gap: instruction breakdown (left), hit ratios
(right)..45
Figure 5-16: Recovery trace cache results for gcc: instruction breakdown (left), hit ratios
(right)..45
Figure 5-17: Recovery trace cache results for gzip: instruction breakdown (left), hit ratios
(right)..46
Figure 5-18: Recovery trace cache results for mcf: instruction breakdown (left), hit ratios
(right)..46
Figure 5-19: Recovery trace cache results for parser: instruction breakdown (left), hit ratios
(right)..46
Figure 5-20: Recovery trace cache results for perlbmk: instruction breakdown (left), hit ratios
(right)..47
Figure 5-21: Recovery trace cache results for twolf: instruction breakdown (left), hit ratios
(right)..47
Figure 5-22: Recovery trace cache results for vortex: instruction breakdown (left), hit ratios
(right)..47
Figure 5-23: Recovery trace cache results for vpr: instruction breakdown (left), hit ratios
(right)..48
Figure 5-24: Memory violations. ...50

 ix

Figure 5-25: Control independence example..52
Figure 5-26: Transformed code. ..52
Figure 5-27: CI region...52

 x

List of Tables

Table 4-1: SPEC2K benchmarks. ..37

 1

Chapter 1

Introduction

Researchers have proposed exploiting control independence to reduce the branch

misprediction penalty in high-performance processors. Control independence architectures

avoid needlessly re-executing future misprediction-independent instructions. This thesis

presents a preliminary study for a Trace-Cache-Based Control Independence Architecture.

My preliminary study discusses a possible microarchitecture at a high level and projects the

potential of the microarchitecture in terms of the amount of misprediction-independent

instruction savings and other results.

1.1 Motivation: Trend of Large Instruction Windows

Recent studies have suggested increasing the instruction window size

 [3] [10] [11] [20] [24] [38] as one solution to hide the latency of cache-missed loads. By

allowing future independent instructions after cache-missed loads to be fetched and executed,

much of the long latency of cache misses can be hidden effectively. However, with the

presence of branch mispredictions, forming large instruction windows will be extremely

difficult. All of the instructions after the misprediction have to be squashed, and this will

leave the instruction window with fewer instructions to execute in parallel with pending

cache-misses.

 2

Many solutions have been proposed [5] [15] [16] [21] [31] [35] [40] (discussed in the related

work section) to deal with the problem of branch mispredictions. Some of these solutions try

improve the accuracy of the branch predictor. Other solutions try to reduce the penalty of a

branch misprediction. Control independence [2] [7] [8] [12] [19] [31] [32] [35] [36] [41] is one

solution that aims at reducing the penalty of a branch misprediction by not squashing all

instructions after the branch, saving some of the good work that is independent of the branch

itself.

1.2 Revisiting Control Independence

Dynamic instructions, in general, depend on prior branches through two types of

dependences, control dependences and data dependences. As shown in Figure 1-1

instructions in both basic blocks A and B are considered to be control-dependent (CD) on the

branch since fetching them is dependent on the direction taken by the branch. Basic block C

is considered to be control-independent of the branch since it will be fetched regardless of the

decision taken by the branch. The first instruction in basic block C is called the reconvergent

point of the branch since it reconverges the control-flow of both paths of the branch.

Although all instructions in basic block C are control-independent (CI) of the branch, some

of them depend on values produced on either control-dependent path of the branch. For

example, the consumption of R5 in basic block C, depends on the direction taken by the

branch since it may use the production of R5 in basic block A or the production of R5 before

the branch, as shown in Figure 1-1 these instructions are considered to be control-

independent data-dependent (CIDD) on the branch. On the other hand, the rest of the

instructions after the reconvergent point are both control and data independent of the branch

 3

(CIDI). The benefit of exploiting control independence is not discarding CIDI instructions in

the shadow of branch mispredictions.

R5

BRANCH

R5

R5

A
B

C

co
nt

ro
l-d

ep
en

de
nt

(CD)

control-independent
data-independent

(CIDI)

control-independent
data-dependent

(CIDD)

Reconvergent point

Figure 1-1: Control independence terminology.

A conventional superscalar processor [33] recovers from a branch misprediction by

squashing all instructions after the misprediction and rolling back the architectural state. The

state is rolled back either by walking backward from the last fetched instruction until the

point of the branch misprediction, fixing the state and freeing resources incrementally, or by

restoring the state instantaneously from a checkpoint at the mispredicted branch or at an

earlier instruction. Although squashing all instructions after a branch misprediction will force

 4

the processor to re-execute many correct CIDI instructions unnecessarily, full squash

recovery is simple to implement. That is, it is simplest to squash CD, CIDD, and CIDI

instructions indiscriminately.

Processors that exploit control independence do not squash all instructions after the

mispredicted branch and roll back the architectural state the same way a conventional

superscalar processor does. Only the incorrect CD instructions are squashed or drained from

pipeline, freeing their allocated resources accordingly. Then the correct CD instructions are

fetched, thereby replacing the incorrect CD instructions that were removed. After repairing

the branch’s CD region, all CIDD instructions must be identified and re-issued again with

new correct values. Note that the architectural state is not rolled back when the branch

misprediction is detected. Therefore, when the misprediction is detected, the future state is

partially incorrect. Holes in the state caused by the incorrect CD and CIDD instructions are

fixed after fetching and executing the correct CD instructions and re-executing the CIDD

instructions.

In general, any control independence architecture should be able to support two main

requirements:

(i) Removing incorrect CD instructions from the middle of the instruction window

and inserting correct CD instructions into the middle of the instruction window.

(ii) Selectively re-issuing CIDD instructions with new correct values.

 5

1.2.1 Managing Instructions Insertion and Removal

Contemporary superscalar processors use a Reorder Buffer (ROB) [34] to maintain precise

register state for recovery from exceptions and branch mispredictions. The ROB is a circular

FIFO buffer containing all in-flight instructions in the window in program order. The FIFO

ensures that instructions commit their results to the precise architectural state in program

order, despite executing of instructions out-of-order. Unfortunately, the ROB is not

compatible with control independence, because control independence requires inserting and

removing instructions from the middle of the window, violating simple FIFO management of

the ROB.

Checkpoint-based architectures [3] [10] [11] [14] [24] [38] have been proposed as an alternative

to ROB-based architectures. A checkpoint-based architecture does not use a ROB to maintain

precise state for recovery. Instead, it maintains precise state by checkpointing the register

state at coarse intervals. The fact that there is no FIFO of instructions in between checkpoints

means there is no structural obstruction to prevent inserting/removing instructions between

checkpoints. In other words, a checkpoint-based architecture provides a flexible instruction

window, i.e., an expandable and collapsible window.

In addition to not presenting any structural obstruction for inserting/removing instructions

from the middle of the window, other aspects associated with instruction insertion/removal

are transparently handled by the checkpoint-based substrate:

• Incorrect CD instructions must be removed from the window, and their allocated

resources must be freed. Checkpoint-based architectures manage physical register

 6

allocation and deallocation through usage counters [3]. There is no custom

requirement to squash incorrect CD instructions and free their resources since it is

performed naturally by the substrate. Once an instruction executes, whether correct or

not, it will drain out of the pipeline and decrement usage counters of its source

registers. Once the usage counter of a physical register reaches zero and it is not

mapped to any logical register (in the rename map), it is freed autonomously.

Summing up, incorrect CD instructions need not be explicitly identified and

squashed, as all instructions eventually drain and physical registers are freed

autonomously.

• Correct CD instructions must link to their producers correctly. The correct CD

instructions are fetched out-of-order. The checkpoint taken at the mispredicted branch

can be used to rename these instructions, ensuring that they link to the right producers

in the middle of the window.

1.2.2 Handling Selective Re-Issue

Proposed control independence architectures handle the selective re-issue problem either by

saving all CI instructions in a separate buffer or fetching them one more time from the

instruction cache. These approaches are inefficient since the CI instructions include both

CIDI and CIDD instructions. Using either approach requires re-sequencing through all CI

instructions and singling out only the CIDD instructions for selective re-issuing. Having to

re-sequence through all CI instructions just to identify CIDD instructions reduces the benefit

of exploiting control independence.

 7

Another problem with these previous approaches is that they require repeatedly constructing

the same set of CIDD instructions, every time the same branch misprediction occurs.

We propose a novel approach, in which “compressed” recovery traces of CIDD instructions

are pre-constructed before resolving mispredictions and stored in a recovery trace cache. So,

when a branch misprediction occurs, a compressed trace of pre-identified CIDD instructions

will be fetched for recovery. This approach performs better because it avoids fetching all the

CI instructions just to single out CIDD instructions. Moreover, it is simple and more efficient

because it only constructs traces of CIDD instructions once, and then repeatedly reuses the

traces for many recurrences of the same misprediction.

As discussed previously, although full squashing after a mispredicted branch discards many

correctly executed instructions, it is very simple and appealing for designers since it requires

only rolling back the architectural state to the point of the misprediction and re-directing the

fetch engine to start fetching instructions from the correct path. In this thesis, I will suggest a

trace-cache-based control independence architecture that provides the illusion of full

squashing (hence preserving the simplicity of conventional recovery) without actually

discarding correctly executed instructions. This will be achieved by fetching correct CD

instructions from the instruction cache, as usual, and then simply switching the fetch unit to

fetch compressed CIDD traces from the recovery trace cache.

1.3 The “Big Picture”

This thesis proposes a misprediction recovery approach that combines the simplicity of full

recovery and the performance of selective recovery. This is illustrated in Figure 1-2 at a high

 8

BRANCH
Predicted

Path Actual
Path construct recovery

sub-program

BRANCH
Predicted

Path Actual
Path construct recovery

sub-program

sequence
through all CI
instructions to
identify CIDD
instructions

BRANCH
Predicted

Path Actual
Path construct recovery

sub-program

Recovery
Trace
Cache

Conventional
Recovery

Control
Independence

Recovery

Trace-Cache-
Based

Recovery

A

B

C

Incorrect
instructions

Correct
instructions

duplicate good
work

Figure 1-2: The “big picture”.

 9

level. The process of recovering from a branch misprediction is abstracted as constructing a

“recovery sub-program”. The recovery sub-program is a set of instructions that, when

executed, repairs the future architectural state of the processor. This abstraction provides a

conceptual framework for contrasting different recovery models.

Figure 1-2 shows how different paradigms construct a recovery sub-program for a single

mispredicted branch, to repair the future architectural state corresponding to the end of the

control flow graph (CFG) shown in the figure. Instructions colored in black are incorrect

instructions that need to be replaced or re-executed, specifically incorrect CD instructions

and CIDD instructions, respectively. Instructions colored in blue are correct instructions,

comprised of (i) CIDI instructions and (ii) instructions in the recovery sub-program.

Part A of the figure shows how a conventional superscalar processor recovers from the

mispredicted branch. Conceptually, it constructs a recovery sub-program that includes all

correct CD instructions and all CI instructions (CIDD and CIDI) after the mispredicted

branch. The recovery sub-program is easy to construct since it does not require

discriminating CIDD and CIDI instructions. However, the recovery sub-program duplicates

the work done by correct CIDI instructions as shown.

Part B of the figure shows how a conventional control independence architecture recovers

from the same misprediction, in terms of constructing a recovery sub-program. A shorter

recovery sub-program is constructed that includes the correct CD instructions and only CIDD

instructions among the CI instructions. While the recovery sub-program is more efficient

 10

(shorter) by virtue of not duplicating correct CIDI instructions, constructing it is more

complex and somewhat inefficient. Constructing the recovery sub-program requires

sequencing through all CI instructions to identify CIDD instructions as shown in the figure.

Moreover, the same recovery sub-program must be reconstructed every time the branch is

mispredicted.

Part C illustrates the paradigm proposed in this thesis, a trace-cache-based approach for

exploiting control independence. It constructs the same compressed recovery sub-program as

a conventional control independence architecture. But, rather than repeatedly constructing the

same recovery sub-program every time the branch is mispredicted, CIDD instructions are

efficiently supplied by the recovery trace cache. The new approach is similar to approach A,

in that it fetches the recovery sub-program from the instruction cache (CD region) and the

recovery trace cache (compressed CI region consisting of only CIDD instructions), similar to

fetching the whole program from the instruction cache. Yet the new approach is similar to

approach B, in that it does not duplicate good work performed by CIDI instructions.

Summing up, the new approach combines the simplicity of full recovery and the performance

of selective recovery.

1.4 Contributions

The main contributions of this thesis are:

• Preliminary analysis of CIDD traces in a recovery trace cache. Although a detailed

cycle-level timing simulator was not implemented for measuring performance

improvement of the target microarchitecture directly, we measure the potential

number of preserved CIDI instructions in the shadow of mispredictions using the

 11

recovery trace cache. CIDI instruction savings are measured using both unbounded

trace caches and multiple finite-sized trace cache configurations. Moreover, we

characterize the contributions of individual recovery traces to the total amount of

CIDI savings. The hit ratios of different trace cache configurations are also provided.

The combined studies give a preliminary indication of performance improvement.

• Trace-Cache-Based Control Independence Architecture. This thesis proposes the idea

of a trace-cache-based control independence architecture and discusses it at a high

level. However, a full microarchitecture design is left for future work. What

distinguishes this architecture from other proposed control independence architectures

is that it provides the illusion of simple full-squash recovery while still reducing the

amount of unnecessary re-execution of misprediction-independent instructions.

 12

Chapter 2

Target Future Microarchitecture

This chapter explains a possible microarchitecture for Trace-Cache-Based Control

Independence, at a high level. Figure 2-1 shows a high-level view of a superscalar pipeline

 [33] modified for trace-cache-based control independence. In the figure, pathways and

components are labeled with corresponding sections of this chapter that describe them.

Section 2.1 describes the reconvergence predictor, Section 2.2 describes the recovery trace,

pre-construction, and Section 2.3 and 2.4 describes preparing for recovery and recovery

respectively.

I$

ID

Reconv.
Predictor

Recovery
Trace Cache

IS RR EX WB RE

Recovery
Trace

Constructor
Section 2.1

Section 2.2

Fill Fetch

Section 2.3

Section 2.4

Figure 2-1: High-level view of possible trace-cache-based control independence microarchitecture.

 13

2.1 Reconvergent Point and Influenced Register Set (IRS) Predictor

To exploit control independence with respect to a branch misprediction, two pieces of

information are needed about the CD region of the mispredicted branch. (i) The program

counter (PC) of the reconvergent point, which identifies the first instruction in the CI region.

(ii) The Influenced Register Set (IRS), which is the set of logical registers that are written to

along one or more CD paths of the branch. These two pieces of information are used to

identify CIDD instructions when pre-constructing traces. All CI instructions, starting from

the reconvergent point, that directly or indirectly depend on logical registers specified in the

IRS will be singled out as CIDD instructions. This is explained in section 2.2.

The reconvergent points and IRSs of branches can be determined statically using a compiler

or dynamically using a hardware predictor. We borrow the Dynamic Reconvergence

Predictor proposed by Collins, Tullsen, and Wang [9] augmented with IRS predictions as

done by Al-Zawawi, Reddy, and Rotenberg [4]. The predictor is accessed at two different

points in the pipeline, (i) when beginning construction of the CIDD recovery trace for a

branch at the retirement stage (Section 2.2), and (ii) when preparing for possible recovery of

a branch at the dispatch stage (Section 2.3). In either case, the predictor is indexed using the

PC of the branch. The predictor supplies the predicted reconvergent PC and a predicted IRS

for the branch. (The predictor may also supply other information for guiding selective

application of control independence, such as the confidence of the reconvergent PC and IRS

predictions and the length of the CD region of the branch [4].)

 14

2.2 Pre-constructing CIDD Recovery Traces

Recovery traces of CIDD instructions are pre-constructed by monitoring the retired dynamic

instruction stream at the retirement stage of the pipeline. Figure 2-2 shows the overall

process divided into a sequence of four steps (labeled with block arrows 1 through 4).

The first step is performed when a branch is retired. The branch’s PC is used to index the

reconvergent point predictor. The predictor supplies the predicted reconvergent PC and IRS

for the branch. The predicted reconvergent PC is then held, as shown in Figure 2-2, for

detecting reconvergence of the CD region among instructions that follow. The IRS is also

held, for later use by the trace constructor to identify CIDD instructions among future CI

instructions, as shown in Figure 2-2.

Retired Instruction
Stream

(non-speculative)

Reconvergent Point
Predictor

Branch PC

Reconvergence
Detection

Instruction
PC

Trace
Constructor

Start

CI Instruction StreamCIDD Recovery Trace

Reconvergent
PC

Control Flow
T, NT, T, ….

Generate
Trace ID

Recovery Trace
Cache

Fill
Trace Trace ID

Reconvergent
PCIRS

1

2

3

4

Figure 2-2: Pre-constructing CIDD recovery traces.

 15

In the second step, retired instructions’ PCs are checked against the reconvergent point that

was set aside. Reconvergence of the CD region is detected when the next retired instruction

PC matches the reconvergent PC. All instructions including and after the reconvergent point

are considered to be CI with respect to the branch.

In the third step, after reconvergence is detected, CI instructions are examined. The trace

constructor uses the IRS that was set aside previously to single out CIDD instructions among

CI instructions. A CI instruction is CIDD if it depends directly or indirectly on registers

potentially written to within the branch’s CD region, as specified by the IRS. Direct and

indirect CIDD instructions are easily identified using a logical register table of “poison” bits

where logical registers specified in the IRS are initially poisoned [4]. An instruction is CIDD

if any of its sources is poisoned. An instruction marks its poison status in the table entry

corresponding to its logical destination register, propagating poison status to its dependents.

The identified CIDD instructions are grouped together to form the recovery trace. The trace

constructor decides when to end the CIDD trace, based on the trace selection policy [28] [29].

For the purpose of this study, we use two trace selection policies. In the first policy, a trace is

ended when the CI region (encompassing both CIDI and CIDD instructions) reaches a

maximum bound. The second policy also uses a maximum bound, but may prematurely end

the trace at the first indirect branch. Notice that the bound is with respect to “logical trace

length” which reflects the uncompressed CI region, as opposed to using a bound on the

“physical trace length” which reflects the number of CIDD instructions only (compressed

trace length).

 16

During step 3, in addition to collecting the CIDD instructions, the trace constructor collects

the branch outcomes (e.g., T, NT, T …) that characterize the control-flow of the CI region.

The reconvergent PC and the sequence of branch outcomes through the CI region uniquely

identify the recovery trace. We call this a trace ID [28] [29]. The trace ID is used to index into

the recovery trace cache for storing the constructed trace (assuming it is not already in the

trace cache).

Finally, in step 4, when construction of the CIDD recovery trace has finished and the trace ID

is now available, the trace cache is indexed using the trace ID and the new trace is stored into

the corresponding location in the trace cache.

2.3 Preparing for Recovery

To recover from a branch misprediction, the recovery trace cache must be accessed to obtain

the CIDD recovery trace corresponding to the current CI region fetched after the branch’s

reconvergent point. To do the access, some preparation is needed before the branch executes,

i.e., before recovery. In particular, the trace ID needs to be generated so that the trace cache

can be accessed later. Figure 2-3 shows the process of preparing for recovery, i.e., generating

the trace ID corresponding to the CI region in the window. When the branch is dispatched,

the reconvergent point predictor is accessed using the branch’s PC. The predictor supplies the

predicted reconvergent PC that terminates the CD region of the branch. After this, fetching

proceeds as usual, until the reconvergent point is fetched. After reconvergence is detected,

the branch predictions in the CI region are accumulated as control independent instructions

are fetched. By combining the reconvergent PC and the cumulative branch predictions, a

predicted trace ID is generated.

 17

If the branch was in fact mispredicted, then the misprediction is detected when the branch

executes. At this time, the predicted trace ID is used to access the trace cache, and the

recovery trace is supplied if the trace cache hits. Selective recovery, in the case of a trace

cache hit, is described in Section 2.4. In the case of a trace cache miss the processor falls

back to conventional full-squash recovery.

Dispatch Instruction
Stream

(speculative)

Reconvergent Point
Predictor

Branch PC

Reconvergence
Detection

Instruction
PC

Accumulate
Predicted

Control-Flow

Start

CI Instruction
Stream

Reconvergent
PC

Predicted
Control Flow
T, NT, T, ….

Generate
Trace ID

Trace ID

Reconvergent
PC

Predicted
Trace ID

Figure 2-3: Preparing for recovery.

2.4 Recovery

2.4.1 Repairing the CD Region

As discussed previously, a checkpoint-based architecture provides a flexible substrate for

inserting/removing instructions from the middle of the window. Whether before or after a

 18

branch misprediction is detected, corresponding incorrect CD instructions finish as usual and

their physical registers are freed autonomously, except those registers tied to any checkpoint

or still mapped in the rename map table.

When the misprediction is detected, the fetch unit begins fetching correct CD instructions. A

second rename map, called the repair rename map, is initialized from the branch’s

checkpoint, and is used to rename correct CD instructions. Fetching correct CD instructions

stops when the reconvergent point is reached. The reconvergent PC was retrieved during the

recovery preparation step, as explained in Section 2.3.

2.4.2 Fetching and Executing the CIDD Recovery Traces

Similar to incorrect CD instructions, incorrect CIDD instructions finish as usual and any non-

checkpointed and unmapped physical registers free autonomously. After repairing the CD

region, the predicted trace ID generated during earlier preparations (Section 2.3) is used to

access the trace cache for fetching the CIDD recovery trace, as shown in Figure 2-4. As

CIDD instructions are fetched, they are renamed using the repair rename map which now

reflects the corrected CD region.

 19

Dispatch Instruction
Stream

(speculative)

Reconvergent Point
Predictor

Branch PC

Reconvergence
Detection

Instruction
PC

Accumulate
Predicted

Control-Flow

Start

CI Instruction
Stream

Reconvergent
PC

Predicted
Control Flow
T, NT, T, ….

Generate
Trace ID

Trace ID

Reconvergent
PC

Predicted
Trace ID

Recovery Trace
Cache

Figure 2-4: Repairing the CI region using the CIDD recovery trace from the trace cache.

To execute correctly, the trace’s CIDD instructions must be linked to their correct producers.

With respect to the re-dispatched CIDD instructions, there are three types of values, must be

made available: (i) values produced by instructions before the branch or within the branch’s

CD region, (ii) values produced by other CIDD instructions in the trace, and (iii) values

produced by CIDI instructions. Figure 2-5 shows the three types of data dependences

explained through an example.

For register values produced before or within the CD region and consumed by a CIDD

instruction in the recovery trace (dependence 1 in the figure), the recovery trace uses the

repair rename map, which now reflects correct producers up to the reconvergent point.

 20

R5

BRANCH

R5

Predicted
Path Actual

Path

R7
R5

R7 (D0)

R11

R11

CIDD
Recovery

Trace

CIDI

Trace
Register

File

1

CD CIDD
use repair

rename map

2

CIDD CIDD
use repair

rename map

D0

D0
3

CIDI CIDD
use trace register

file

Figure 2-5: Three types of data dependences among CIDD instructions in the recovery trace.

In the example, the repair rename map (which was initialized from the branch’s checkpoint)

indicates that the correct producer of R5 is the one before the branch instruction.

 21

Register values produced by CIDD instructions in the recovery trace and consumed by other

CIDD instructions in the recovery trace (dependence 2 in the figure) are handled as usual by

the repair rename map. Producers in the recovery trace update the repair rename map and

consumers use these mappings. In the figure, the production and consumption of R11,

localized within the recovery trace, is an example of the second type of dependence.

Register values produced by CIDI instructions and consumed by CIDD instructions in the

recovery trace (dependence 3 in the figure) pose a more difficult problem. The problem with

this type of dependence is that CIDI instructions may have already executed and their

physical registers may have been freed via the aggressive register reclamation policy [3].

Therefore, these values must be saved in some alternative storage area and the CIDD

instructions in the recovery trace must know how to link to them correctly in the event of a

branch misprediction.

One solution is to write these values to a separate register file, one register file dedicated to

each potential recovery trace in the window. We call these trace register file. CIDD

instructions in a recovery trace are pre-renamed [30] [37] [39] such that source registers

dependent on CIDI instructions (external to the trace) are linked to specific physical registers

in the trace register file. During preparation for recovery (Section 2.3), once reconvergence is

detected, all CI instructions not only write their values to the conventional physical register

file, as usual, but also to a larger trace register file. The particular destination physical

register in the trace register file is based on the distance of the producer CI instruction from

the reconvergent point. So, in the example of Figure 2-5, the first CI instruction writes its

 22

value for R7 into the conventional physical register file (using its conventional physical

register name), but it also writes this value to D0 in trace register file. D0 is selected based on

the distance of the CI producer instruction from the reconvergent point, which is zero in the

example. CIDD instructions in the recovery trace that consume this version of R7 link to the

D0 value via pre-renaming, done during trace pre-construction. All CIDD instructions in the

recovery trace that consume this version of R7 are pre-renamed to access D0 int trace register

file.

 23

Chapter 3

Related Work

3.1 Predication

Predication [17] [21] [22] [27] attempts to reduce the misprediction penalty of difficult-to-

predict forward branches. A difficult-to-predict branch is typically identified via profiling.

Mispredictions are avoided altogether for this branch, by removing the branch and combining

its control-dependent paths into one straight-line block. The branch is replaced with just the

predicate calculation part of the original branch. To achieve selection of instructions from

only one of the original paths, instructions from various paths are qualified by exclusive

predicates.

At run-time, all paths of the original branch are fetched since the compiler merged them into

a single straight-line block. After predicates are resolved, instructions from the correct path

execute and instructions from other paths are discarded. In some predication schemes,

instructions from all paths start executing before predicates are known. Only instructions

with true predicates commit their values to the architectural state, whereas instructions with

false predicates nullify their results.

Scheduling all paths and nullifying results of incorrect paths solves the problem of

inserting/removing instructions from the middle of the window. In other words, predication

removes control-flow and window management complexity associated with this control-flow.

 24

The performance advantage of predication is that correct CD instructions are fetched and

maybe executed before resolving the branch condition and without predicting the branch

condition. However, this performance advantage must be weighed against two performance

disadvantages. The first disadvantage is that predication wastes fetch bandwidth and maybe

execution bandwidth with respect to conventional speculation, since both selected and non-

selected instructions are scheduled. The second disadvantage is that CIDD instructions after

the predicated region are delayed with respect to conventional speculation. CIDD instructions

cannot execute speculatively since their source values are not forwarded from the predicated

region until predicates resolve. This squanders performance with respect to conventional

speculation, when speculation is correct.

In contrast to predication, microarchitectures that exploit control independence fully

capitalize on correct branch predictions by speculatively forwarding data to CIDD

instructions. Thus the benefits of conventional speculation are preserved. The advantage with

respect to conventional speculation is not re-executing CIDI instructions after a branch

misprediction.

3.2 Multipath Execution

Multipath execution [1] [13] [18] [40] speculatively executes both paths of branches. To prune

the total number of simultaneous paths, multipath execution is typically only applied to hard-

to-predict branches as identified by a confidence estimator [15]. When an unconfidently

predicted branch is encountered, a speculative thread is spawned to fetch and execute the

non-predicted path in parallel with the predicted path. When the branch is resolved, the

 25

incorrect thread is squashed. Different policies have been proposed for controlling the

number and quality of spawned threads. For example, TME [40] spawns alternate threads

only from the predicted path and SDPE [13] limits the number of simultaneous threads to

only two.

Multipath execution reduces the penalty of a mispredicted branch because the prediction is

hedged by also fetching and executing the non-predicted path. However, multipath execution

degrades performance with respect to conventional speculation when the branch prediction is

correct, since the correct path competes for fetch and execution bandwidth with the incorrect

path.

3.3 Control Independence Techniques

Multiscalar Processors [36] and other speculative multithreading architectures [2] [23] [26]

divide a sequential program into multiple speculatively-parallel tasks. The multiple tasks are

fetched and executed in parallel. In Multiscalar, a branch misprediction in one task does not

squash future tasks if the future tasks are control independent of the mispredicted branch.

However, if the register forwarding policy is to speculatively forward branch-influenced

values among tasks, then a branch misprediction in one task may squash future control-

independent tasks. The reason is that Multiscalar does not implement selective recovery with

respect to data-flow speculation. Thus the original register forwarding policy is to forward

inter-task register values only when branches influencing these values are resolved. This has

the downside of delaying CIDD instructions in future tasks until branches in previous tasks

resolve.

 26

Dynamic Multithreading [2] introduces selective recovery capabilities in the context of

speculative multithreading. DMT creates speculative threads at the return points of functions

and exit points of loops. Thus, DMT implicitly exploits control independence at these coarse-

grain reconvergent points. To facilitate selective re-execution of only CIDD instructions after

these reconvergent points, all instructions executed by a thread must be kept in a trace buffer

(there is one trace buffer per speculative thread). Selective re-execution of CIDD instructions

is performed by re-sequencing through all the speculative instructions in the trace buffer and

only instructions that depend on a misprediction get re-dispatched into the pipeline. In

contrast, our trace-cache-based approach does not need to re-sequence through all the CI

instructions just to single out the CIDD instructions. Moreover, constructing the “recovery

sub-program” is done only once, on the fill-side of the recovery trace cache.

Rotenberg and Smith advocate using trace processors for efficiently exploiting control

independence [32]. Fine-grain control independence (FGCI) is defined for exploiting control

independence with respect to arbitrary nested if-else constructs. FGCI targets relatively

short CD regions that fit within a single trace, thus, exploiting FGCI only requires replacing

the trace in the affected PE. They also define coarse-grain control independence (CGCI) for

other branches that cannot be covered with FGCI. CGCI uses global reconvergent points to

cover many branches. Global reconvergent points include the backward edges of loops, loop

exit points, and function return points. In the case of CGCI, multiple CD traces may need to

be inserted/removed from the middle of the window. To achieve this, the trace processor’s

processing elements (PEs) are managed as a linked list for arbitrary trace insertion/removal.

For both FGCI and CGCI, after repairing the CD trace(s), all CI traces are re-dispatched to

 27

identify and re-issue direct CIDD instructions. Then, indirect CIDD instructions re-issue

automatically via the existing issue logic. This is possible because all traces remain in the

PEs until retirement, ready to re-issue instructions as needed. The fact that all CI traces must

be redispatched, places trace processors among the class of control independence

architectures that must resequence through all CI instructions to identify CIDD instructions.

The instruction reuse buffer [35] records the result values of instructions along with the

source values that produced the results. The reuse buffer is consulted when an instruction is

dispatched. If the instruction hits in the reuse buffer and its current source values match the

previous source values in the reuse buffer, the result value in the reuse buffer can be reused.

In this case, the instruction bypasses the execution core and writes its reusable value to the

register file. Instruction reuse implicitly exploits control independence in the form of squash

reuse. All instructions after a mispredicted branch are squashed. Nonetheless, if a squashed

CIDI instruction executed and wrote its result value to the reuse buffer before the

mispredicted branch resolved, then the CIDI instruction is not re-executed when it is re-

fetched. However, all CI instructions still need to be re-fetched even if not all of them need to

be re-executed. This places squash reuse among control independence architectures that must

resequence through all CI instructions to single out CIDD instructions. The dual-ROB

approach proposed by Chou, Fung, and Shen features a secondary ROB that serves as a FIFO

squash reuse buffer [8].

In the Skipper microarchitecture [7], if a candidate branch is unconfidently predicted, the

processor skips fetching of the branch’s CD region. In this case, the fetch unit is redirected to

the CI region early. When a CD region is skipped, the processor creates gaps in the middle of

 28

the ROB and the load/store queues to allow skipped CD instructions to be filled in after

resolving the branch. The size of the gap is the maximum length among all paths (similar to

how trace processors pad traces for FGCI branches). As mentioned, the CI region is fetched

early, before the skipped CD region. Among the CI instructions, only CIDI instructions can

execute before the branch resolves. Similar to predication, CIDD instructions are delayed

because they depend on values that are influenced by the deferred CD region.

Gandhi, Akkary, and Srinivasan target only mispredicted branches that exhibit exact

convergence [12]. In exact convergence, the correct target of the mispredicted branch is the

reconvergent point itself. Thus, repairing the mispredicted branch does not require inserting

any instructions in the middle of the window, greatly simplifying exploiting of control

independence. However, the effects of incorrect CD instructions must be reversed. They

propose converting each incorrect CD instruction into a move instruction, that copies the

value from the physical register that was unmapped by the instruction to the instruction’s

own physical register. When the CD instructions re-execute, this time as move instructions,

CIDD instructions re-execute. This requires buffering all CI instructions, either in the issue

queue or in separate replay buffers. They suggest implementing selective re-issuing by one of

three means: (1) all instructions remain in the issue queue until they are non-speculative, or

(2) all CI instructions are placed in a replay buffer and are scanned to single out CIDD

instructions for re-injection into the pipeline, or (3) all CI instructions are placed in a replay

buffer and dependence bit vectors are used to identify CIDD instructions directly without

scanning.

 29

Zilles, Emer, and Sohi propose exploiting control independence in the context of exception

handling [41]. They propose executing the exception handler in a separate hardware context

and not squashing instructions after the excepting instruction. All instructions after the

excepting instruction are CI instructions, and many of these are CIDI instructions.

This thesis is heavily influenced by a precursor project [4] that leverages the Continual Flow

Pipeline (CFP) [38] as a convenient substrate for tolerating branch mispredictions.

The CFP-CI microarchitecture [4] essentially constructs CIDD traces on-the-fly within CFP’s

slice data buffer (SDB). When a mispredicted branch is detected, the correct CD instructions

are fetched from the instruction cache followed by the branch’s CIDD instructions from the

SDB. The SDB and recovery trace cache play the same role of supplying compressed

recovery traces. The key distinction is that my approach does not repeatedly construct

recovery traces. Rather, each unique recovery trace is pre-constructed once and cached. A

trace-cache-based approach potentially simplifies exploiting control independence compared

to an SDB-based approach.

3.4 Exploiting Caches for Faster Misprediction Recovery

Bondi, Nanda, and Dutta proposed the Misprediction Recovery Cache (MRC) [5] to reduce

the pipeline refill penalty following a mispredicted branch. The technique is particularly

beneficial in the context of CISC ISAs (e.g., x86), which often require many fetch and

decode pipeline stages. When a mispredicted branch is detected and the fetch unit is

redirected to the branch’s correct target, a trace of decoded correct-path instructions is

accumulated in the MRC. If the same misprediction recurs in the future, the MRC is

consulted in parallel with redirecting the fetch unit. If there is a hit in the MRC, it supplies

 30

the already decoded instructions, significantly reducing or eliminating the deep pipeline refill

penalty. The MRC does not exploit control independence because all instructions after the

mispredicted branch are still re-fetched and re-executed. Nonetheless, the time required to re-

fetch and re-decode both CD and CI instructions is reduced.

 31

Chapter 4

Evaluation Methodology

4.1 Simulation Environment

I developed a custom trace-driven simulator, using the Simplescalar toolset [6]. The

simulator generates three types of results:

(i) The breakdown of all retired instructions, that shows the percentages of CIDI

instructions, CIDD instructions, CD instructions, and remaining instructions that

are not in the shadow of mispredictions.

(ii) The contribution of each unique recovery trace to the total number of saved CIDI

instructions.

(iii) The hit ratios of recovery trace caches.

Timing and hardware resources are not modeled, except for the recovery trace cache. The

recovery trace cache is modeled in order to measure its hit ratio and how hit ratio affects

actual CIDI instruction savings.

Although a trace-driven simulator is used, the simulator still fetches instructions on the

wrong paths of mispredicted branches, specifically within the CI regions of branches. A

predicted recovery trace, which is based on branch predictions in the CI region, may itself

contain partially incorrect control-flow. Incorrect CD instructions corresponding to other

 32

mispredictions within the CI region of the branch being serviced, are not counted among the

branch’s CIDI and CIDD instructions. Modeling wrong control-flow within predicted

recovery traces will more accurately reflect the number of retired CIDI and CIDD

instructions with respect to the mispredicted branch being serviced.

4.2 Description of Results Generated by the Simulator

4.2.1 Breakdown of Retired Instructions

The first set of results, that will be presented in the results chapter, is a breakdown of retired

dynamic instructions into different categories. As shown in Figure 4-1, dynamic instructions

are first divided into two categories. Dynamic instructions that were fetched after one or

more unresolved mispredicted branches in the window, are considered to be in the shadow of

a branch misprediction. These instructions are targeted for savings by any control

independence architecture. Instructions that were fetched when there were no prior

unresolved mispredicted branches are not considered to be in the shadow of a branch

misprediction. As such, these instructions do not represent opportunity for applying control

independence, as there are no prior mispredictions.

Dynamic instructions in the shadows of branch mispredictions are further divided into CD

instructions and CI instructions. CI instructions are further broken down into those that are

logically part of traces that either hit or miss in the trace cache. CI instructions that hit in the

trace cache are then classified as either data independent (DI) or data dependent (DD) with

respect to the prior branch misprediction.

 33

On the right-hand side of Figure 4-1 are shown the labels used in the results section to

convey each category: “not in misp. shadow”, “CD”, “CIDD”, and “CIDI”. The CIDI

category represents the savings, in terms of not needlessly re-executing CIDI instructions.

Only CIDD instructions are re-executed efficiently using the recovery trace cache.

Note that the “CD” label refers to both truly CD instructions as well as CI instructions that

are not covered by the trace cache due to a trace miss. In the case of a miss, the proposed

architecture cannot discriminate between CI and CD instructions, that is, all instructions in

the shadow of the misprediction are deemed CD (even the CI instructions). In other words,

on a trace cache miss, conventional full-squash recovery is used thereby handling CI

instructions as CD instructions.

A subtle point is that an instruction may be in the shadows of multiple branch mispredictions.

Note that all measures are with respect to the last misprediction prior to an instruction. Thus,

for example, CIDI consists of instructions that were CIDI at least with respect to the last

prior misprediction and maybe more.

 34

DI

DD

Control
Dependency

Data
Dependency

In the
shadow

of a
branch
misp.

Not in the shadow of a branch misp.

Misprediction
Shadow

Trace
Cache

Hit

Trace Cache
Miss

Trace Cache
Hit/Miss

CIDD

+ CD

Not in misp.
shadow

CI

CD

CIDI

Figure 4-1: Breakdown of retired instructions.

The above breakdown is misleading in the context of a mispredicted branch that has a very

long incorrect CD path. The mispredicted branch is likely to be resolved before the fetch unit

 35

even reaches the reconvergent point along the long incorrect path. In this case, the CI

instructions are not truly in the shadow of a misprediction (not fetched yet) and as such it is

misleading to classify them as either CIDI or CIDD.

To more closely represent a mispredicted branch with a long incorrect CD path, its CI

instructions are not marked as CIDD or CIDI with respect to this branch, rather they are

marked as “not in misp. shadow” since they will most likely be fetched after the mispredicted

branch is resolved. We define a long incorrect CD path to be 128 or more instructions. The

128-instruction threshold approximates the number of incorrect CD instructions that can be

fetched in a 4-issue processor assuming a fetch-to-resolve branch misprediction penalty of 32

cycles.

4.2.2 Studying Locality: Contributions of Individual Recovery Traces

In the previous section, the CIDI category represents the total number of instruction savings

due to exploiting control independence. A moderately sized trace cache will only be effective

if relatively few unique recovery traces (e.g., 10%) contribute most of the CIDI instruction

savings (e.g., 90%). Accordingly, the second set of results characterizes the contributions of

individual recovery traces to the total number of CIDI instructions. The contribution of a

unique recovery trace is the number of CIDI instructions after the reconvergent point that are

not re-executed when the recovery trace is used, multiplied by the number of times the trace

is used for recovery. After determining individual contributions, traces are sorted in

descending order from highest to lowest contribution.

 36

4.2.3 Trace Cache Hit Ratio

The actual achievable CIDI instruction savings depends on the trace cache hit ratio. The last

set of results presents hit ratios, for different trace cache configurations.

4.3 Benchmarks

Table 4-1 shows the benchmarks used for this study. Ten of the SPEC2K integer benchmarks

are simulated. The remaining two SPEC2K integer benchmarks (eon and crafty) did not

compile using the Simplescalar gcc compiler because of compatibility issues. None of the

SPEC2K floating-point benchmarks are included since they have low misprediction rates,

hence there is little need for exploiting control independence. The ref inputs are used for all

benchmarks, with specific parameters shown in Table 4-1.

For each benchmark, the first one billion instructions are skipped without warming the

recovery trace cache or the branch predictor. The next 100 million instructions are simulated.

Table 4-1 also shows the branch misprediction rates for the benchmarks using a gshare

branch predictor [25], with a 64K-entry pattern history table and a 4K-entry branch target

buffer.

 37

Table 4-1: SPEC2K benchmarks.

Benchmark Input Dataset Conditional Branch
Misprediction Rate

bzip2 input.program 58 0.5%
gap -l ./lib.gap –q –m 64M ref.in 3.0%
gcc expr.i –O3 –o expr.s 4.7%
gzip input.program 16 9.5%
mcf inp.in 3.8%
parser 2.1.dict –batch ref.in 4.2%
perlbmk -I./lib splitmail.pl 850 5 19 18 1500 0.6%
twolf ref 11.2%
vortex lendian1.raw 1.1%
vpr net.in arch.in place.out dum.out -nodisp

-place_only -init_t 5 -exit_t 0.005
-alpha_t 0.9412 -inner_num 2

8.4%

 38

Chapter 5

Results and Analysis

In this chapter, I will present the results of my study. Four types of results are presented.

First, retired dynamic instructions are broken down into the four categories that were

discussed in Section 4.2.1, for an unbounded recovery trace cache. Second, contributions of

individual recovery traces to total CIDI instruction savings are presented. Third, recovery

trace cache hit ratios and retired dynamic instruction breakdowns are shown for different

finite-size trace cache configurations. Finally, an example of control independence from the

twolf benchmark is studied in depth.

5.1 Breakdown of Retired Dynamic Instructions

As explained in Chapter 4, all retired dynamic instructions are classified into one of four

categories, according to their control and data dependences with respect to prior branch

mispredictions. For this set of results, an unbounded trace cache is used to study the intrinsic

behavior of benchmarks. The logical trace length and the trace selection policy are varied.

The logical trace length is the total number of CI instructions after the reconvergent point,

from which CIDI savings will be exploited. For example, if the logical trace length is 64

instructions, this means that the physical trace length (CIDD instructions only) will vary from

zero to 64. When the physical trace length is zero, there are no CIDD instructions in the trace

and all CI instructions after the reconvergent point are CIDI instructions (100% savings). On

 39

the other hand, if the physical trace length is 64 instructions, then all CI instructions after the

reconvergent point are CIDD instructions and there are no CIDI instructions (0% savings).

 Figure 5-1, Figure 5-2, and Figure 5-3 show the breakdown of retired dynamic instructions

for an unbounded trace cache, with logical trace lengths of 32, 64, and 128 instructions,

respectively. For each figure, two trace selection policies are shown. The default policy ends

traces at the maximum logical trace length (32, 64, or 128 instructions). The modified policy

ends traces at either the maximum logical trace length or the first indirect branch.

First, I will discuss CIDI savings for a specific logical trace length and trace selection policy.

Then I will explain how CIDI savings change with different logical trace lengths and

selection policies. For the case of a logical trace length of 64 instructions and default trace

selection policy, CIDI savings vary among benchmarks from 1% (perlbmk) to 31% (twolf).

Referring to Table 4-1, notice that twolf has the highest branch misprediction rate of 11.2%

while perlbmk has the very low misprediction rate of 0.6%. Based on misprediction rate,

there is more opportunity to exploit control independence in twolf than perlbmk. Twolf

shows a large percentage of instructions in the shadow of mispredictions (43%) whereas

perlbmk has a much smaller percentage (7%). Twolf achieves 31% CIDI savings among 43%

of instructions in the shadows of mispredictions, indicating a large amount of control

independence.

 40

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip2 ga

p
gcc gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip2 ga

p
gcc gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

 (a) default trace selection policy (b) modified trace selection policy

Figure 5-1: Unbounded trace cache, logical trace length = 32 instructions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip2 ga

p
gcc gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip2 ga

p
gcc gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

 (a) default trace selection policy (b) modified trace selection policy

Figure 5-2: Unbounded trace cache, logical trace length = 64 instructions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip2 ga

p
gcc gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip2 ga

p
gcc gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

 (a) default trace selection policy (b) modified trace selection policy

Figure 5-3: Unbounded trace cache, logical trace length = 128 instructions.

Using the modified trace selection policy (end at indirect branch) reduces CIDI savings. For

example, in twolf, CIDI savings reduce from 31% to 24%. This difference is due to the fact

that traces are smaller for the second policy. This shrinks the CI region from which the

 41

processor can extract CIDI savings. This also increases the percentage of instructions that are

not in the shadow of branch mispredictions, since ending traces earlier appears to move some

instructions out of the shadow of branch mispredictions (they are squashed and considered

again later). Increasing the logical trace length tends to increase CIDI savings for the same

reason. Increasing trace length appears to extend the shadows of branch mispredictions. For

example, for vpr, increasing trace length from 64 to 128 increases CIDI savings from 26% to

41% (corresponding to 49% and 67% of instructions in misprediction shadows, respectively).

5.2 Contribution of Traces to CIDI Savings

This section shows the contributions of individual recovery traces to the total amount of CIDI

instruction savings. For each unique trace used for recovery, the number of CIDI instructions

is recorded and multiplied by how many times the trace was used for recovery. This product

is the trace’s individual contribution to overall CIDI savings. Traces are then sorted in

descending order based on their contributions. In the graphs that follow, the x-axis shows

individual traces sorted based on their contributions and the y-axis shows the cumulative

contribution of the traces with respect to the total savings. Figure 5-4 to Figure 5-13 show the

contribution graphs for the ten benchmarks. The logical trace length is 64 instructions and the

default trace selection policy is used.

For the trace cache to perform well (high hit ratio), high locality is needed. High locality

exists if relatively few traces (e.g., 20% of all traces) contribute a high percentage of the total

savings (e.g., 80% of total savings).

 42

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Cu
m

ul
at

iv
e

fr
ac

tio
n

of
 to

ta
l C

ID
I s

av
in

gs

Unique traces (sorted by contribution to total CIDI savings)
Figure 5-4: Contributions of unique traces (bzip2).

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

C
um

ul
at

iv
e

fra
ct

io
n

of
 to

ta
l C

ID
I s

av
in

gs

Unique traces (sorted by contribution to total CIDI savings)
Figure 5-5: Contributions of unique traces (gap).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100002000030000400005000060000700008000090000100000

Cu
m

ul
at

iv
e

fr
ac

tio
n

of
 to

ta
l C

ID
I s

av
in

gs

Unique traces (sorted by contribution to total CIDI savings)
Figure 5-6: Contributions of unique traces (gcc).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

C
um

ul
at

iv
e

fra
ct

io
n

of
 to

ta
l C

ID
I s

av
in

gs

Unique traces (sorted by contribution to total CIDI savings)
Figure 5-7: Contributions of unique traces (gzip).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 100001200014000160001800020000

Cu
m

ul
at

iv
e

fr
ac

tio
n

of
 to

ta
l C

ID
I s

av
in

gs

Unique traces (sorted by contribution to total CIDI savings)
Figure 5-8: Contributions of unique traces (mcf).

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

C
um

ul
at

iv
e

fra
ct

io
n

of
 to

ta
l C

ID
I s

av
in

gs

Unique traces (sorted by contribution to total CIDI savings)
Figure 5-9: Contributions of unique traces

(parser).

 43

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900

Cu
m

ul
at

iv
e

fr
ac

tio
n

of
 to

ta
l C

ID
I s

av
in

gs

Unique traces (sorted by contribution to total CIDI savings)
Figure 5-10: Contributions of unique traces

(perlbmk).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 100001500020000250003000035000400004500050000

Cu
m

ul
at

iv
e

fr
ac

tio
n

of
 to

ta
l C

ID
I s

av
in

gs

Unique traces (sorted by contribution to total CIDI savings)
Figure 5-11: Contributions of unique traces

(twolf).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

Cu
m

ul
at

iv
e

fr
ac

tio
n

of
 to

ta
l C

ID
I s

av
in

gs

Unique traces (sorted by contribution to total CIDI savings)
Figure 5-12: Contributions of unique traces

(vortex).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000

Cu
m

ul
at

iv
e

fr
ac

tio
n

of
 to

ta
l C

ID
I s

av
in

gs

Unique traces (sorted by contribution to total CIDI savings)
Figure 5-13: Contributions of unique traces (vpr).

The results show that there is a high degree of locality in all benchmarks. Nonetheless, the

number of top-contributing traces needed to achieve 80% savings varies among the

benchmarks, ranging from 3 traces for bzip2 to 16,000 traces for gcc. Thus, the required trace

cache capacity likely varies among the benchmarks.

These graphs can be used as a guide for performance only if the percentage of CIDI

instructions among retired instructions is substantial. For example, for bzip2 and perlbmk,

although only 3 and 23 traces are needed to achieve 80% of total CIDI savings, the

 44

percentage of CIDI instructions among all retired instructions is very small anyway (2.32%

and 1.1%, respectively).

Analysis of twolf is more meaningful since, unlike bzip2 and perlbmk, it has a high

percentage of CIDI instructions among all retired instructions (31%). Twolf achieves 80% of

all CIDI savings with the top 3,000 unique traces, which constitute only 6.7% of all the

unique traces in twolf. This gives some indication of the required trace cache capacity for

twolf.

5.3 Trace Cache Hit Ratio

Figure 5-14 to Figure 5-23 show the behavior of the ten benchmarks with various finite-sized

trace cache configurations. For each benchmark, the graph on the left shows the breakdown

of retired dynamic instructions and the graph on the right shows trace cache hit ratios. For

both graphs, the x-axis shows different trace cache configurations. The number of trace cache

lines is varied from 2048 lines to 512 lines. For each such configuration, set-associativity is

varied. For example, for the 2048-line configuration, 1 is a direct-mapped trace cache with

2048 sets, whereas 8 is an 8-way set-associative trace cache with 256 sets. In both cases the

number of lines is 2048. The hit ratio is the fraction of times the trace cache hits when a trace

is required for recovery.

 45

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

hi
t r

at
io

Figure 5-14: Recovery trace cache results for bzip2: instruction breakdown (left), hit ratios (right).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

hi
t r

at
io

Figure 5-15: Recovery trace cache results for gap: instruction breakdown (left), hit ratios (right).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

hi
t r

at
io

Figure 5-16: Recovery trace cache results for gcc: instruction breakdown (left), hit ratios (right).

 46

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

hi
t r

at
io

Figure 5-17: Recovery trace cache results for gzip: instruction breakdown (left), hit ratios (right).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

hi
t r

at
io

Figure 5-18: Recovery trace cache results for mcf: instruction breakdown (left), hit ratios (right).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

hi
t r

at
io

Figure 5-19: Recovery trace cache results for parser: instruction breakdown (left), hit ratios (right).

 47

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

hi
t r

at
io

Figure 5-20: Recovery trace cache results for perlbmk: instruction breakdown (left), hit ratios (right).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

hi
t r

at
io

Figure 5-21: Recovery trace cache results for twolf: instruction breakdown (left), hit ratios (right).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

hi
t r

at
io

Figure 5-22: Recovery trace cache results for vortex: instruction breakdown (left), hit ratios (right).

 48

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

%
 o

f r
et

ire
d

in
st

ru
ct

io
ns

CIDI
CIDD
CD
not in misp. shadow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 1 2 4 8 1 2 4 8

2048 1024 512
different recovery trace cache configurations

hi
t r

at
io

Figure 5-23: Recovery trace cache results for vpr: instruction breakdown (left), hit ratios (right).

The first thing to notice in the breakdown graphs is that the number of instructions that are

not in the shadow of a branch misprediction does not change with trace cache configuration

since it does not depend on whether or not recovery traces hit or miss in the cache.

Next, decreasing the size and/or associativity of the cache decreases the number of CIDI and

CIDD instructions. This is due to the fact that, if a trace misses in the cache, then all

instructions after the branch misprediction will be considered CD on the branch. This was

explained in Section 4.2.1: the processor resorts to full-squash recovery if a recovery trace is

not available. Notice that the decrease in CIDI/CIDD corresponds to an increase in CD. For

benchmarks that construct many unique recovery traces, increasing cache size and/or

associativity increases the percentage of CIDI instruction savings. This trend is noticeable for

gcc, mcf, parser, twolf, and vpr. In contrast, bzip2, gap, gzip, perlbmk, and vortex construct

fewer unique recovery traces, thus increasing cache size and/or associativity does not yield a

noticeable increase in CIDI instruction savings.

Trace cache hit ratios follow the same trend. Hit ratios are only affected by size and/or

associativity, for those benchmarks that require many recovery traces. For example, gcc, mcf,

 49

parser, twolf, and vpr require many traces. These benchmarks show moderate to high

sensitivity to changing cache size and associativity.

5.4 Measuring Memory Violations

All previous results assume branches only influence CI instructions through register

dependences. Yet, branches also influence CI instructions through memory dependences. We

assume loads issue speculatively. To account for branch-influenced memory dependences,

we measure the frequency of possible mispredicted CI loads. A CI load may get a wrong

value if there is a prior store to the same address in the branch’s CD region (because the store

may be fetched late), or if there is a prior CIDD store to the same address (because the store

must re-execute).

Figure 5-24 shows a breakdown of retired load instructions into three categories: (i) “depend

on CD store” shows the percent of loads that depend on CD stores, (ii) “depend on CIDD

store” shows the percent of loads that depend on CIDD stores, (iii) “depend on CIDI/other

store” shows the percent of loads that depend on CIDI stores or stores before the branch. The

first two categories represent mispredicted loads.

The figure shows that, for all benchmarks, almost all load instructions depend on branch-

independent store instructions (“depend on CIDI/other store”). For gzip, 2% of load

instructions depend on store instructions within the CD region. Some benchmarks (e.g., gzip,

parser, twolf, and vpr) show small percentages of load instructions that depend on CIDD

stores. Interestingly, these are the same benchmarks that show the most CIDI savings, so

naturally they experience some mispredicted loads.

 50

We conclude that load violations are likely to be infrequent in an actual implementation.

Therefore, it may suffice to handle load violations like exceptions (flush pipeline and restart).

Repeatedly mispredicted loads and their dependents can be included in CIDD recovery

traces, for efficient selective recovery of the mispredicted loads.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip ga

p
gc

c
gz

ip mcf

pars
er perl

tw
olf

vo
rte

x vp
r

%
 o

f r
et

ire
d

lo
ad

s

depend on CIDI/other store
depend on CIDD store
depend on CD store

Figure 5-24: Memory violations.

5.5 Control Independence Example: Top Trace in Twolf

This section presents and discusses an example of control independence taken from twolf,

one benchmark that shows a high percentage of CIDI instruction savings. The logical trace

length is 64 and default trace selection is used. The recovery trace that yields the highest

contribution to total CIDI savings was selected for study in depth. This recovery trace

contributes 1.2% of the total CIDI savings. Among 64 CI instructions between the

 51

reconvergent point and the end of the trace, 62 instructions are CIDI, that is, the recovery

trace contains only 2 CIDD instructions. This trace was used for recovery 12,562 times.

Figure 5-25 shows the C code from twolf that contains the mispredicted branch that uses the

recovery trace. It is the branch corresponding to the if-else statement. This branch

mispredicted 12,735 times. We noticed that the compiler transformed this if-else

statement into an if statement, as shown in Figure 5-26. Thus, the CI region of the

mispredicted branch is a subset of the XPICK_INT function, as can be seen in the figure.

The value of temp is passed to the function through argument register a2, which means

there are only register dependences between the CD and the CI regions, and no memory

dependences. The function body of XPICK_INT is shown in Figure 5-27. The function

contains another if-else branch. The else is always taken, and the branch predictor

predicts the else path with more than 99.9% accuracy. As mentioned above, the trace has

only 2 CIDD instructions. One of the instructions is a move of the value in a2 to s0. The

other instruction is the branch instruction that compares the value of s0 with zero, which

corresponds to the if(c < 0) statement. Most of the CIDI instruction savings come from

the entrance code of the XPICK_INT function and subsequent instructions inside the

PICK_INT function. It so happens that the CI region ends after the return from PICK_INT

and just before the branch corresponding to the while (d == c) statement.

 52

Figure 5-25: Control independence example

Figure 5-26: Transformed code.

Figure 5-27: CI region.

XPICK_INT (int l, int u, int c)
{
 int d;

 if (c < 0)
 {
 return (-c);
 }
 else
 {
 do
 {
 d = PICK_INT(l, u);
 } while (d == c);

 return (d);
 }
}

bblock = blk;
bycenter = bblckptr->bycenter;

if (bblock == ablock)
{
 bxcenter = XPICK_INT(l, r, axcenter) ;
}
else
{
 bxcenter = XPICK_INT(l, r, 0) ;
}

bblock = blk;
bycenter = bblckptr->bycenter;

int temp = 0;
if (bblock == ablock)
{
 temp = axcenter;
}

bxcenter = XPICK_INT (l, r, temp);

 53

Chapter 6

Summary and Future Work

Conventional superscalar processors use full recovery to recover from branch mispredictions.

While simple, full recovery needlessly re-executes many future CIDI instructions. On the

other hand, selective recovery is possible, but is complicated by the fact that it requires

sequencing through all CI instructions to single out CIDD instructions for re-execution.

In this thesis, I conceptualize the recovery process as constructing a “recovery sub-program”

for repairing partially incorrect future state. Selective recovery constructs a reduced recovery

sub-program that consists of only CD and CIDD instructions, and not CIDI instructions.

Unfortunately, constructing the reduced recovery sub-program on-the-fly is complex. To

compound the problem, the same recovery sub-program is repeatedly constructed, every time

the corresponding branch is mispredicted.

I propose a trace-cache-based technique, where the CIDD component of the recovery sub-

program for each branch is pre-constructed once and cached in a recovery trace cache for

future use. When a misprediction is detected, first the branch's correct CD instructions are

fetched from the instruction cache as usual and then its CIDD trace is fetched from the

recovery trace cache. With the trace cache, fetching only CIDD instructions is as simple as

fetching all CI instructions from a conventional instruction cache, as it does not require

explicitly singling out CIDD instructions. Distilling CIDD instructions was done a priori, on

 54

the fill-side of the trace cache. Therefore, the recovery trace cache is efficient on multiple

levels, combining the simplicity of full recovery with the performance of selective recovery.

This thesis explains the proposed trace-cache-based control independence architecture, at a

high level. Preliminary studies are also presented, to project the potential of exploiting

control independence and the viability of a trace-cache-based approach in particular.

The four sets of results presented in this thesis are summarized below.

(i) Retired dynamic instructions are broken down into different categories, based on their

control and data dependences with respect to prior mispredicted branches. Breakdowns are

first provided in the context of unbounded trace caches to understand the intrinsic behavior of

benchmarks. The results indicate there is significant opportunity to exploit control

independence in benchmarks with severe mispredictions. For a logical trace length of 64

instructions and default trace selection, the percentage of CIDI instructions (i.e., the

percentage of dynamic instructions in the shadows of mispredictions that are not needlessly

re-executed) ranges from 1% to 31%, and is 13% on average.

(ii) Unique recovery traces are characterized in terms of their individual contributions to total

CIDI instruction savings. The results show that, for benchmarks with high percentages of

CIDI savings (i.e., benchmarks for which exploiting control independence is worthwhile),

only a moderate number of unique traces is required to achieve most of the CIDI savings

potential.

 55

(iii) Recovery trace cache hit ratios and retired instruction breakdowns are characterized for

various recovery trace cache configurations. Among benchmarks with significant CIDI

savings in the case of an unbounded trace cache, twolf has the lowest hit ratios, ranging from

32% (512 lines, direct-mapped) to 61% (2,048 lines, 8-way set-associative). For twolf, the

512-line direct-mapped trace cache and 2,048-line 8-way trace cache capture 37% and 69%

of total CIDI savings, respectively.

(iv) Measurements of possible mispredicted CI loads, caused by correct CD stores that are

fetched late or CIDD stores that re-execute, show that load violations are infrequent and

unlikely to be a performance limiter in an actual implementation.

This thesis is a preliminary study of a trace-cache-based control independence architecture.

In future work, a detailed and comprehensive microarchitecture must be designed,

implemented in a cycle-level simulator, and evaluated for performance and other metrics.

The results provided in this study are encouraging and justify pursuing a trace-cache-based

control independence architecture.

At least two aspects of the microarchitecture are not elaborated in this thesis and are left for

future work.

The first aspect deals with checkpoint placement. A recovery trace only provides selective

recovery within the scope of the logical trace length. Thus, the fetch unit and processor state

must be rolled back logically to the endpoint of the recovery trace. This requires pre-placing

 56

a checkpoint logically at the end of the trace (or logically before the end of the trace, the

closer the better). Fortunately, the recovery preparation phase provides a convenient

timeframe for pre-placement of checkpoints.

The second aspect deals with repairing mappings in checkpoints that are logically between

the start and end of a recovery trace. New mappings in the repair rename map, that are live at

a checkpoint's logical position in the dynamic instruction stream, must be merged into the

checkpoint. I believe key information can be deduced during trace pre-construction, that

greatly simplifies determining which mappings must be merged.

In addition to fleshing out the microarchitecture, performance optimizations will be explored

in future work. For example, while the recovery trace cache presented in this thesis gives

equal weight to all recovery traces, caching should favor highly compressed recovery traces,

i.e., recovery traces with very few CIDD instructions. These recovery traces correspond to

mispredicted branches for which there are many misprediction-independent instructions, in

which case selective recovery is substantially distinct from full recovery. Even moderately

compressed recovery traces should be favored, if they make significant individual

contributions to total CIDI savings. It may be that a very small recovery trace cache can

exploit most of the control independence opportunity, if only high-payoff recovery traces are

cached. This hypothesis will be tested in future work.

 57

Bibliography

[1] P. Ahuja, K. Skadron, M. Martonosi, and D. Clark. Multipath Execution:

Opportunities and Limits. In Proc. of the 12th Annual International Conference on
Supercomputing, pages 101-108, July 1998.

[2] H. Akkary and M. Driscoll. A Dynamic Multithreading Processor. In Proc. of the

31st Annual International Symposium on Microarchitecture, pages 226-236, Dec.
1998.

[3] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Processing and Recovery:

Towards Scalable Large Instruction Window Processors. In Proc. of the 36th
Annual International Symposium on Microarchitecture, pages 423-434, Dec. 2003.

[4] A. S. Al-Zawawi, V. Reddy, E. Rotenberg. An Efficient Control Independence

Architecture. Unpublished Report. In submission.

[5] J. O. Bondi, A. K. Nanda, and S. Dutta. Integrating a Misprediction Recovery
Cache (MRC) into a Superscalar Pipeline. In Proc. of the 29th Annual International
Symposium on Microarchitecture, pages 14–23, Dec. 1996.

[6] D. Burger, T. M. Austin, and S. Bennett. The Simplescalar Toolset, Version 2.

Tech. Report CS-TR-1997-1342, CS Dept., Univ. of Wisconsin-Madison, July
1997.

[7] C. Cher and T.N. Vijaykumar. Skipper: A Microarchitecture for Exploiting Control-

Flow Independence. In Proceedings of the 34thd Annual International Symposium
on Microarchitecture, pages 4-15, Nov. 2001.

[8] Y. Chou, J. Fung, and J. Shen. Reducing Branch Misprediction Penalties via

Dynamic Control Independence Detection. In Proc. of the Annual International
Conference on SuperComputing, pages 109-118, June 1999.

[9] J. D. Collins, D. M. Tullsen, and H. Wang. Control Flow Optimizations via

Dynamic Reconvergence Prediction. In Proc. of the 37th Annual International
Symposium on Microarchitecture, pages 129-140, Dec. 2004.

[10] A. Cristal, D. Ortega, J. Llosa, M. Valero. Kilo-instruction Processors. In Proc. of

the 5th International Symposium on High Performance Computing, pages 10-25,
Oct. 2003.

 58

[11] A. Cristal, M. Valero, J. Llosa, and A. González. Large virtual ROBs by processor
checkpointing. Technical Report UPC-DAC-2002.

[12] A. Gandhi, H. Akkary, and S. Srinivasan. Reducing Branch Misprediction Penalty

via Selective Recovery. In Proc. of the 10th Annual International Symposium on
High Performance Computer Architecture, pages 254-265, Dec. 2004.

[13] T.H. Heil and J.E. Smith. Selective Dual Path Execution. Technical Report,

University of Wisconsin-Madison, ECE, Nov. 1997.

[14] W. W. Hwu and Y. N. Patt. Checkpoint Repair for Out-Of-Order Execution
Machines. In Proc. of the 14th Annual International Symposium on Computer
Architecture, pages 18-26, July 1987.

[15] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning Confidence to Conditional

Branch Predictions. In Proc. of the 29th Annual International Symposium on
Microarchitecture, pages 142-152, Dec. 1996.

[16] D. A. Jim´enez and C. Lin. Dynamic Branch Prediction with Perceptrons. In Proc.

of the 7th Annual International Symposium on High Performance Computer
Architecture, pages 197-206, Jan. 2001.

[17] A. Klauser, T. Austin, D. Grunwald, and B. Calder. Dynamic Hammock Predication

for Nonpredicated Instruction Set Architectures. In Proc. of the 1998 International
Conference on Parallel Architectures and Compilation Techniques, pages 278-285,
Oct. 1998.

[18] A. Klauser, A. Paithankar and D. Grunwald. Selective Eager Execution on the

PolyPath Architecture. In Proc. of the 25th Annual International Symposium on
Computer Architecture, pages 250-259, June 1998.

[19] M. S. Lam and R. P. Wilson. Limits of Control Flow on Parallelism. In Proc. of the

19th Annual International Symposium on Computer Architecture, pages 46–57,
May 1992.

[20] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg. A Large, Fast

Instruction Window for Tolerating Cache Misses. In Proc. of the 29th Annual
International Symposium on Computer Architecture, pages 59-70, May 2002.

[21] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher, and

W. W. Hwu. Characterizing the Impact of Predicated Execution on Branch
Prediction. In Proc. of the 27th Annual International Symposium on
Microarchitecture, pages 217-227, Dec. 1994.

[22] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W. W. Hwu. A

Comparison of Full and Partial Predicated Execution Support for ILP Processors. In

 59

Proc. of the 22nd Annual International Symposium on Computer Architecture,
pages 138–149, May 1995.

[23] P. Marcuello, A. González, J. Tubella. Speculative Multithreaded Processors. In

Proc. of the 12th Annual International Conference on Supercomputing, pages 77-84,
July 1998.

[24] J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic, J. Torrellas. Cherry:

Checkpointed Early Resource Recycling in Out-of-order Microprocessors. In Proc.
of the 35th Annual International Symposium on Microarchitecture, pages 3-14, Nov.
2002.

[25] S. McFarling, Combining Branch Predictors. Technical Report TN-36, Digital

Western Research Laboratory, June 1993.

[26] I. Park, B. Falsafi, and T. N. Vijaykumar. Implicitly – Multithreaded Processors. In
Proc. of the 30th Annual International Symposium on Computer Architecture, pages
39-50, June 2003.

[27] D. N. Pnevmatikatos and G. S. Sohi. Guarded Execution and Branch Prediction in

Dynamic ILP Processors. In Proc. of the 21st Annual International Symposium on
Computer Architecture, pages 120-129, April 1994.

[28] E. Rotenberg, S. Bennett, and J. E. Smith. A Trace Cache Microarchitecture and

Evaluation. IEEE Transactions on Computers, Special Issue on Cache Memory,
48(2): pages 111-120, Feb. 1999.

[29] E. Rotenberg, S. Bennett, and J. E. Smith. Trace Cache: a Low Latency Approach

to High Bandwidth Instruction Fetching. In Proc. of the 29th Annual International
Symposium on Microarchitecture, pages 24-34, Dec. 1996.

[30] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith. Trace Processors. In Proc.

of the 30th Annual International Symposium on Microarchitecture, pages 138-148,
Dec. 1997.

[31] E. Rotenberg, Q. Jacobson, and J. E. Smith. A Study of Control Independence in

Superscalar Processors. In Proc. of the5th International Symposium on High-
Performance Computer Architecture, pages 115-124. Jan. 1999.

[32] E. Rotenberg and J. E. Smith. Control Independence in Trace Processors. In Proc.

of the 32nd Annual International Symposium on Microarchitecture, pages 4-15,
Nov. 1999.

[33] J. E. Smith and G. S. Sohi. The Microarchitecture of Superscalar Processors. In

Proc. IEEE, volume 83, pages 1609-1624, Dec. 1995.

 60

[34] J. E. Smith and A. R. Pleszkun. Implementation of Precise Interrupts in Pipelined
Processors. In Proc. of the 12th Annual International Symposium on Computer
Architecture, pages 36-44, June 1985.

[35] A. Sodani and G. Sohi. Dynamic Instruction Reuse. In Proceedings of the 24th

Annual International Symposium on Computer Architecture, pages 194–205, June
1997.

[36] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar Processors. In Proc. of

the 22nd Annual International Symposium on Computer Architecture, pages 414-
425. June 1995.

[37] E. Sprangle and Y. Patt. Facilitating Superscalar Processing via a Combined

Static/Dynamic Register Renaming Scheme. In Proc. of the 27th International
Symposium on Microarchitecture, pages 143-147, Dec. 1994.

[38] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Continual Flow

Pipelines. In Proc. of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems, 107-119, Oct. 2004.

[39] S. Vajapeyam and T. Mitra. Improving Superscalar Instruction Dispatch and Issue

by Exploiting Dynamic Code Sequences. In Proc. of the 24th Annual International
Symposium on Computer Architecture, pages 1-12, June 1997.

[40] S. Wallace, B. Calder, and D. Tullsen. Threaded Multiple Path Execution. In 25th

Annual International Symposium on Computer Architecture, pages 238-249. June
1998.

[41] C.B. Zilles, J.S. Emer, G.S. Sohi. The Use of Multithreading for Exception

Handling. In Proc. of the 32nd Annual International Symposium on
Microarchitecture, pages 219-229, Nov. 1999.

