
ABSTRACT 

 

CHOI, KWANGBOM. P-Coffee: a new divide-and-conquer method for multiple sequence 
alignment (Under the direction of Dr. Dennis R. Bahler). 
 

We describe a new divide-and-conquer method, P-Coffee, for alignment of multiple 

sequences. P-Coffee first identifies candidate alignment columns using a position-specific 

substitution matrix (the T-Coffee extended library), tests those columns, and accepts only 

qualified ones. Accepted columns do not only constitute a final alignment solution, but also 

divide a given sequence set into partitions. The same procedure is recursively applied to each 

partition until all the alignment columns are collected. In P-Coffee, we minimized the source 

of bias by aligning all the sequences simultaneously without requiring any heuristic function 

to optmize, phylogenetic tree, nor gap cost scheme. In this research, we show the 

performance of our approach by comparing our results with that of T-Coffee using the 144 

test sets provided in BAliBASE v1.0. P-Coffee outperformed T-Coffee in accuracy 

especially for more complicated test sets. 
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CHAPTER 1 

 

Introduction 

 

1.1 Cells and Proteins 

Cells are the elementary units of all living organisms. Each cell has its own functions, 

which are mostly pursued by the biochemical activity of one or more proteins. Every protein 

is composed of a linear chain of amino acids (or residues) in a particular order. There are 

twenty different amino acids that are used to make up proteins. 

When a cell needs to produce a certain protein for its proper function, it uses the 

genetic information encoded in the form of DNA (deoxyribonucleic acid) sequence within its 

nucleus. This DNA fragment is called a gene. By a specialized mechanism, a cell reads a 

gene and then produces (or transcribes) an intermediary molecular called RNA (ribonucleic 

acid). RNA travels from the nucleus to the cell component called cytoplasm, where a target 

protein is produced (or translated) according to the genetic code transcribed in RNA. The 
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overall procedure to generate a protein is called gene expression. The formulated protein then 

moves to the suitable position in the cell, and participates in chemical reactions to 

accomplish the mission of the cell. 

 

1.2 Evolution from the Standpoint of Molecular Level 

The evolutionary process brings about changes in DNA sequence. One major source 

of such change is mutations, which are errors that randomly occur during the DNA 

replication. There are different kind of mutations: point mutations (alteration of one 

nucleotide), insertions (the gain of DNA sub-sequences), deletions (the loss of DNA sub-

sequences), and other DNA mutations. Only neutral or advantageous changes, which have 

insignificant or favorable influence on the function of proteins, are accepted, since otherwise 

mutations result in death by the selection process. This implies that some sequence regions 

are more subject to mutation. In other words, sequence regions that play important roles in 

forming the structure and function of proteins (called conserved region or motif) are less 

likely to be mutated. 

Sequences are homologous if they have evolved from a common ancestor. 

Homologous sequences are called homologs. Note that they usually have similar sequences 

but may not have similar function. Since sequence alignment shows sequence similarity but 

not sequence homology directly, homology can only be inferred from the degree of similarity 

in sequence or structure. 
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1.3 Phylogenetic Relationship among Proteins 

As described in the previous section, proteins hold the information about the 

evolutionary history of an organism in their sequences. Therefore, by comparing amino acid 

sequences (or protein sequences) from different organisms, we can estimate the evolutionary 

relationships between the organisms. The evolutionary relationships among species or 

proteins are frequently represented using trees (called phylogenetic trees), in which parent 

nodes are ancestors of their child nodes. In more informative trees, the evolutionary 

relatedness among organisms is often expressed using the configuration of nodes and the 

length of branches. 

The degree of homology also reflects the evolutionary distance between two 

organisms. Sequence identity (%) between two protein sequences is frequently used to 

estimate the degree of homology and, thus, the evolutionary distance. 

 

sequence identity (%) 100×=
sequenceshortertheinresiduesofnumberthe

alignedwhenresiduesidenticalofnumberthe    (1.1) 

 

1.4 The Importance of Sequence Alignment Methods 

A staggering amount of DNA sequences as well as protein sequences from various 

kinds of organisms became available by the success of worldwide genome projects. Since 

characterizing all these sequences is time-consuming and costly, knowledge-based or ab 

initio prediction techniques are commonly adopted to infer the structure and the function of 

proteins. 
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Most prediction techniques assume that protein function is determined by its three-

dimensional structure, and protein structure, in turn, depends upon its sequence. Therefore, 

sequence-level analysis, mostly pursued by sequence alignment, has been one of the major 

research areas in Bioinformatics. 

Homology can also help to predict protein function. In this approach, a new protein 

sequence is compared with other protein families (or homologs) whose structures or 

functions are already known. If we can identify homology between a new sequence and a 

protein family with known function, we can infer that the function of a new sequence would 

be similar to that of the homologs. 

 

1.5 Multiple Sequence Alignment 

Under the “similar sequence – similar structure – similar function paradigm”, the 

ultimate goal shared by various sequence alignment methods is to help predicting proteins’ 

structure or functions by identifying evolutionarily related amino acids (residue similarity or 

equivalency) among sequences. Depending on how similarities are identified, alignment 

methods can be classified into three categories: sequence-sequence alignment (or sequence 

comparison), structure-structure alignment (or structure comparison) [1], and sequence-

structure alignment (or threading) [2, 3]. 

Since protein structure remains relatively unchanged as opposed to protein sequence 

during the course of evolution [4], structure-based alignment methods produce more reliable 

results for the detection of distant homologs even below the 20~30% sequence identity 

region (so-called “twilight zone”) [5]. But they generally require considerable computational 
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resources. On the other hand, sequence comparison is relatively much faster, but does not 

generally identify remote evolutionary relationships below the twilight zone, although the 

amount of sequence data is significantly larger than that of structure. To overcome this 

drawback of pairwise sequence alignment, multiple sequence alignment (MSA) is usually 

adopted for more reliable homology detection. 

MSA is to arrange potentially equivalent residues of multiple sequences in a vertical 

column. For some sequences that do not contain a similar residue (possibly caused by 

insertion or deletion), we use a gap (denoted by ‘–’ in this thesis) instead. One rule here is 

that we have to preserve the order of residues in each sequence and all the residues must be 

assigned somewhere in the alignment. MSA is mainly used to identify highly conserved 

regions in a protein family, which can be an indication of homology. MSA is also used in 

protein structure classification, and prediction of protein structure and/or function [6]. MSA 

is a computationally difficult problem. The NP-completeness of MSA is shown by Wang et 

al [7]. 

 

1.6 Our Approach 

In this research, we propose a new MSA method, P-Coffee, motivated by the idea that 

if we can effectively identify alignment columns out of a given set of protein sequences, we 

will eventually be able to obtain the entire alignment just by assembling the identified 

columns. P-Coffee is a tree-based divide-and-conquer algorithm. In this method, we first 

extract candidate columns from a sequence set, test each candidate column, accept only 

qualified ones, and place them in the right position in the overall alignment. The columns 
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divide the original sequence set into partitions, and this makes it possible to compute the 

entire alignment by the divide-and-conquer algorithm. We name the algorithm “P-Coffee” 

(partitioning-based multiple sequence alignment method that uses consistency-based 

objective function for alignment evaluation) after “T-Coffee”, a most frequently used MSA 

tool, in that our new alignment method uses position-specific substitution scores first 

formulated by T-Coffee. 

 

1.7 Outline 

In Chapter 2, we describe two major common components of sequence alignment 

methods, an objective function and optimization strategy. A frequently used benchmark 

resource, BAliBASE, is also described in this chapter. In Chapter 3, we explain the principles 

of P-Coffee in detail, and illustrate the principles with an example. We show how the values 

of parameters introduced in P-Coffee are determined in Chapter 4. The benchmark result is 

also presented in this chapter. Finally, in Chapter 5, we summarize this research, and suggest 

future direction of our work. 



 7

 

 

 

 

CHAPTER 2 

 

Background Information 

 

Sequence alignment methods are composed of two key components. One is a scoring 

scheme (or an objective function) that evaluates the mutational equivalency between two 

residues, and the other is an optimization strategy that describes how to reach to the optimum 

alignment under the given scoring scheme. In this chapter, we will discuss these two 

constituents. Additionally, we will explain a benchmark resource proposed by Thompson et 

al [8], which is used widely for the performance assessment of MSA tools. 

 

2.1 Optimization Algorithms 

Sequence alignment algorithms can be classified by the notion of evolutionary 

relatedness among sequences: Global alignment is, as implied by the name, to align similar 

residues with the notion that the entire sequences are related. But for remote homologs, only 
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some sub-sequences may be related. Based on this notion, in local alignment, residues in 

such potentially related sub-sequences are aligned. 

MSA algorithm can also be categorized by whether the algorithm deals with all the 

sequences simultaneously or not. Simultaneous alignment is a notion that describes an 

algorithm considering all sequences simultaneously when aligning multiple sequences. By 

taking the whole sequence set into account concurrently, the simultaneous approach can 

avoid errors made by arbitrarily fixing an optimal residue alignment for a subset of sequences. 

It has been reported that this approach is advantageous especially when pairwise alignment 

becomes unreliable due to the low similarity between sequences [9]. 

There exist exact methods that use simultaneous approach and find the 

mathematically optimum alignment. Exact methods employ generalized Needleman and 

Wunsch algorithm [10], the multi-dimensional dynamic programming (DP). But, 

unfortunately, they can handle only a limited number of sequences [6]. The computational 

complexity of MSA problem makes it difficult to align all the sequences simultaneously 

without appropriate handling of sequence set. To overcome this problem, various heuristic 

methods have been introduced. They roughly fall into two categories: the progressive 

approach and the iterative approach. 

 

2.1.1 Progressive Methods 

Progressive methods are also based on DP, but DP is used pairwise; that is, in such a 

way that always involves two sequences (or two sequence groups in bulk). This is made 

possible by aligning the most closely related sequences or groups first at any steps along the 

pre-computed phylogenetic tree. The advantage of progressive approaches is that they are 
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usually simple and fast. On the other hand, a major drawback of this approach is that once 

two sequences or groups are aligned into one group, the positions of residues in the group are 

fixed, and no more adjustments for errors introduced in earlier stages are possible. PileUp 

[11], MultAlign [12], ClusterW [13], MULTAL [14], PIMA [15], and T-Coffee [16] belong 

to this category. 

 

2.1.2 Iterative Methods 

Iterative approaches begin by making one or more initial alignments of the sequences. 

These alignments are generated randomly in some methods. The initial alignments are then 

modified to generate more optimized alignments with regard to an objective function. In each 

iteration (or cycle), one or more existing sub-optimal alignments are revised until they 

converge. Various rules are used for the revision, and iterative methods are characterized by 

such rules. The main shortcoming of iterative methods is that they require, sometimes 

prohibitively, a large amount of computational time without any promise that the optimum 

will be found. Stochastic methods are often adopted in the iterative approach: simulated 

annealing in HMMT [17], genetic algorithm in SAGA [18], tabu search [19], hidden Markov 

model in HMMER [20], and Gibbs sampler [21]. PRRP [22] is also a stochastic iterative 

method. 

 

2.2 Objective Functions 

The reliability of objective functions used in sequence comparison depends upon their 

ability to represent numerically the biological significance of aligned residue pairs. Because 

of the complexity of evolution, it is impossible to make a single universally employable 
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objective function that can distinguish biologically meaningful alignment in any situation. 

The most widely used objective functions for sequence alignment are substitution matrices. 

A substitution matrix is a two-dimensional matrix whose rows and columns are labeled by 

residues, and which provide a way to discern whether an aligned residue pair is plausible. 

Substitution scores are derived from the frequencies of point mutation observed in multiple 

alignments of homologous protein sequences. So if a residue pair has a higher score in a 

substitution matrix, the mutation between the corresponding two residues is more likely to 

occur. Substitution matrices are usually given in the form of 20×20 matrix, covering every 

possible pair of existing amino acids. The most naïve substitution scoring scheme is to give 

score of 1 to the exact match, and 0 to an unmatched pair. This is called the identity matrix. 

Many more realistic substitution matrices have been reported, but only two matrices, PAM 

and BLOSUM, are most commonly employed in modern sequence alignment. 

 

2.2.1 PAM Matrices 

PAM (percent accepted mutation) [23] matrices are derived from the number of 

mutational events observed throughout the analyzed sequences of a specific evolutionary 

distance. The evolutionary distance is measured in percent divergence (or 100 – sequence 

identity) of sequences compared. So, 1 PAM denotes that it is obtained by comparing 

sequences with over 99% sequence identity. Each PAM matrix can only be used for 

sequences in a specific evolutionary distance, but the distance can be computationally 

extended by multiplying a matrix by itself, under certain independence assumptions. 
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2.2.2 BLOSUM Matrices 

BLOSUM (blocks of substitution matrix) [24] matrices are the most frequently 

adopted objective function in sequence comparison today. Similarly to PAM matrices, they 

are empirically derived from the frequency observation of residue substitutions, but the 

difference from PAM matrices is that they count only point mutations that occur in highly 

conserved regions in many protein homologs. Since these regions are more likely to indicate 

biologically meaningful relationships among residues, the residues are more likely to be 

aligned correctly, and the substitution scores are relatively more reliable[25]. As in PAM 

matrices, each BLOSUM matrix is derived from a different evolutionary distance. In 

BLOSUM, the evolutionary distance is measured in sequence identity (%) of the sequences 

compared. For instance, BLOSUM62 matrix, commonly used in BLAST, is derived from 

many protein families containing sequences of 62% identity on average. 

 

2.2.3 Consistency-based Objective Function 

Instead of depending solely on a single substitution matrix as explained above, 

position-specific residue pair scores are derived from the collection of the aligned pairs 

obtained by other pairwise alignment methods. Consistency-based objective functions 

evaluate the consistency among various pairwise alignment results [6, 16, 26]. T-Coffee is a 

progressive method that uses the position-specific scoring scheme. 

By default, T-Coffee first carries out two independent pairwise sequence alignments 

for every possible pair of the sequences at hand: one by global alignment with the 

Needleman and Wunsch algorithm (NW), and the other by local alignment with the SIM 

algorithm [27]. All and only aligned residue pairs in each pairwise alignment are registered 
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in separate base list (called the primary library in T-Coffee), with the sequence identity (%) 

as their preliminary weights (or scores). For the local alignment library, the ten highest 

scoring local alignments are accepted. Next, the union is taken over all the residue pairs 

listed in the NW and SIM primary libraries to construct a single primary library. For residue 

pairs that exist in both libraries, the preliminary scores are simply added. Then, T-Coffee 

gives additional weight to the residue pairs that can be linked by another residue contained in 

the remaining sequences. For each residue pair in the primary library, all the remaining 

sequences are examined in search of such linkage. Whenever a link residue is found, the 

smaller weight of either linkage is added to the current weight. This process is called library 

extension. The final residue score can be expressed as the following equation. 

 

the final residue pair score between Seq1-R1 and Seq2-R2 

 = ∑
=

m

b 1

preliminary weight(Seq1-R1, Seq2-R2) 

 ∑∑
=

+
n

i j1

min{weight(Seq1-R1, Seqi-Rj), weight(Seqi-Rj, Seq2-R2)}        (2.1) 

 

 

where m denotes the number of (base) primary libraries, n is the total number of sequences, 

and Seqi-Rj means residue j in sequence i. 

With these position-specific substitution scores, T-Coffee then performs a progressive 

alignment. A distance matrix and a neighbor-joining guide tree (a kind of phylogenetic tree) 

are obtained using the scores in the extended library, and, finally, the alignment solution is 

i ≠ Seq1 
i ≠ Seq2 
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computed by a round of two-dimensional dynamic programming according to the order 

implied by the guide tree configuration. The sum-of-pairs score is used as an objective 

function in dynamic programming. The whole process is illustrated in Figure 2.1. 

The main advantage of this position-specific scoring scheme is that we can plug in 

any pairwise alignment result to form a primary library. Thanks to this feature, we can easily 

incorporate various information into the substitution scores, in the expectation that this will 

raise the reliability of the scores. 

Although T-Coffee extended library holds every single signal of residue equivalency 

in a given sequence set, T-Coffee has left room for improvement in accuracy because of its 

dependence on a progressive approach while constructing an alignment solution. This was a 

reasonable decision, since iterative approaches may incur prohibitive computational cost 

without promise of a better solution. At the same time, however, it is worth looking for a 

method that fully leverages the power of the T-Coffee extended library. In this work, we 

suggest an improved way of using the T-Coffee extended library to align multiple protein 

sequences. 
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Figure 2.1: The flow of T-Coffee. This figure is redrawn from the 
author’s version. [16] 
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2.3 BAliBASE 

BAliBASE (benchmark alignment database) v1.0 provides 144 accurate reference 

alignments so that we can easily benchmark the performance of MSA methods. The sequence 

sets are categorized by length and sequence identity (%), compositional divergence, and the 

presence of orphan sequences (a sequence that has lower than 25% sequence identity with 

other members in a set), internal insertions, and N/C-terminal extensions (insertion of sub-

sequence at the beginning or at the end of original sequences). The core blocks (or conserved 

regions) in a sequence set are capitalized and marked with underlines so that we can see 

whether a test MSA method can catch biologically significant signals of residue 

equivalencies. 

 

 

Table 2.1: The description of BAliBASE categories 

 Sequence 
identity 

Number of 
sequences 

range (average)

Number of 
sequence sets Description 

V1 < 25% 3~5 (4.3) 27 
V2 20~40% 4~6 (4.4) 27 Reference 1 
V3 > 35% 4~6 (4.7) 28 

sequences with similar 
identities and lengths 

Reference 2 12~48% 15~24 (19.6) 23 up to 3 orphans 

Reference 3 19~41% 19~28 (22.4) 12 divergent families 
(up to 4 sub-groups) 

Reference 4 13~43% 4~17 (8.4) 15 N/C-terminal extensions
(up to 400 residues) 

Reference 5 19~38% 5~19 (9.3) 12 internal insertions 
(up to 100 residues) 
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BAliBASE also provides a standard program, BaliScore, that evaluates accuracies of 

the MSA results. The program computes two different scores for each alignment: one is sum-

of-pairs score (or SP score) that estimates the ability to identify correct residue pairs, and the 

other is column score (or TC score) that assess the competence in correctly aligning the 

entire column. The two scores are calculated by the following equations. 

 

SP Score = 
∑

∑

=

=

Mr

j
j

Mt

i
i

r

t

1

1         (2.2) 

where ti = ∑∑
= =

N

u

N

v
iuvp

1 1
, rj = ∑∑

= =

N

u

N

v
juvp

1 1
 each for test and reference alignment, 

 

 

             N is the number of sequences contained in the problem set 

             Mt is the number of columns in test alignment, and 

           Mr is the number of columns in reference alignment. 

 

TC Score = 
M

c
t

Mt

i
i∑

=1         (2.3) 

 

where   ci =   

 

u≠vu≠v 

1 if residues Ru and Rv in the i-th column are aligned 

0 otherwise, 
piuv = 

1 if all residues in the i-th column are aligned in reference 

0 otherwise, 
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The performance (SP scores only) of other well-known MSA methods are available in 

the website http://www-igbmc.u-strasbg.fr/BioInfo/BAliBASE/prog_scores.html [28]. But T-

Coffee outperformed all the other methods on average, so, in this research, we will 

extensively examine the performance of our new alignment method by comparing both the 

SP score and TC score with those of T-Coffee, using the test cases provided in BAliBASE 

v1.0. 
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CHAPTER 3 

 

The Principles of P-Coffee 

 

In this chapter we explain the operation of our approach, P-Coffee. Specifically, we 

show in detail how partition walls are identified from a given set of sequences, and how P-

Coffee aligns sequences with identified walls. An illustrative example of identifying a 

partition wall is also given. 

 

3.1 Identification of Partition Walls 

Identifying partition walls from an unaligned mess of residues is the most important 

component of the P-Coffee algorithm. In this section, we will make clear the definition of 

partitions and partition walls, and will introduce the concept of complete and virtual walls. 

We will also show the entire procedure of identifying partition walls, and the issues related to 

the optimization of the procedure. 
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3.1.1 The Definition of Partitions and Partition Walls 

A partition wall is defined as a set of residues, each of which is chosen from the 

given sequences. At most one residue can be chosen from each sequence. If no residue is 

chosen from a sequence, a gap is used in its place. A partition wall exactly corresponds to a 

column in a candidate alignment solution for a given sequence set. A complete wall refers to 

one that does not contain any gaps. Two walls are compatible if they are completely 

separated and do not cross over each other. Otherwise, two walls are said to be conflicting. 

The residues in a partition wall are sorted in the order of sequence id (usually a unique 

integer assigned to each sequence) so that we can easily check the compatibility of two walls. 

A partition is a set of sub-sequences between two complete walls. A sub-sequence 

can be a null string if no residues of a certain sequence are involved in the partition. A 

partition cannot include any walls. The partitioning refers to dividing a given sequence set 

into multiple disjoint partitions sectioned by single or multiple partition walls. 

Lots of complexity is caused by allowing gaps in a wall. A partition cannot be 

obtained with incomplete walls because there is no way of determining which position a gap 

belongs to. We have overcome this difficulty by introducing the concept of virtual wall. To 

obtain a partition between incomplete walls, we build virtual walls by borrowing a residue 

from the appropriate neighboring walls that contain a residue for the corresponding sequence. 

For a gap in the left wall of a partition, we borrow a residue from the nearest wall to the left 

with no gap for the same sequence. Correspondingly, for a gap in the right wall, a residue is 

borrowed from the nearest wall to the right. Residue donors do not have to be complete, but 

have to have a residue for a required sequence. Virtual walls are always complete. But if we 

use virtual walls for partitioning, partitions are no longer disjoint. This means that they can 
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share some sub-sequences, which will be divided when more walls become available in later 

steps. Note that virtual walls cannot be used to construct the entire alignment, because they 

do not exist in reality. 

In the case illustrated in Figure 3.1, there are two complete walls {S, D, R, Q} and {K, 

K, S, A}, which are placed in solid boxes. There are four incomplete walls, which contain 

underlined residues: {V, −, T, A}, {S, −, A, G}, {G, S, −, S}, and {R, −, K, K}. Gaps are 

denoted by ‘−’. Walls are aligned because they correspond to the columns in some alignment, 

as mentioned earlier. 

 

 

 

 

 

 

 

 

Figure 3.1: An example of virtual walls (sequences from 1aab_ref1 in BAliBASE v1.0) 

 

 

Suppose we want the partition between the walls {S, −, A, G} and {G, S, −, S}. Because both 

of the walls are incomplete, we have to construct virtual walls to obtain the partition. In the 

left wall {S, −, A, G}, the gap for sequence #2 should be replaced with the residue in the 

nearest left wall with no gap for sequence #2. In this case, because {V, −, T, A} had again a 
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gap for sequence #2, we had to borrow a residue from {S, D, R, Q}, one of the complete 

walls. Thus the left virtual wall is {S, D, A, G}. Similarly, for the gap in the right wall {G, S, 

−, S}, we fill the gap for sequence #3 with the residue in the nearest right wall {R, −, K, K}. 

Note that {R, −, K, K} is not complete, but holds a residue for sequence #3. Thus the right 

virtual wall is {G, S, K, S}. The resulting partition is, therefore, {KAAGAAWKEL, 

DSAQGKLKLVNEAWKNL, KKGGELWRGLKD, KAAGERWKSL}. 

 

3.1.2 The Advantages of Partitioning 

Partitioning a set of sequences at hand has two major advantages. 

First, it reduces the individual problem size by dividing the original sequence set into 

multiple independent sets of sub-sequences. Once a partition is fixed, we do not need to 

consider alignment between a residue inside the partition and others outside the partition. 

This significantly reduces the complexity in aligning the sub-sequences in a certain partition, 

when compared with aligning without partitioning. The most important point here is that the 

problem complexity reduces to O(L), linear time in the (average) length of the sequences, 

assuming the number of sequences is fixed. Some partitions will contain null strings as 

partitioning advances. For these partitions, we are only concerned with the remaining 

sequences. Because the running time of the depth-first tree search algorithm is O(Bd), where 

B is the branching factor and d is depth, the reduced depth of the problem will also result in 

considerable speedup. We can obtain the overall alignment solution by simply 

“concatenating” the alignment of each partition and partition walls in the original order 

provided in the sequence set.         

 Second, we can fix a part of the solution by identifying, evaluating, and accepting 
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qualified partition walls during the running of the algorithm. As mentioned in the previous 

section, a partition wall corresponds to a column in the alignment solution. Thus, to reach an 

alignment solution, we can pay our attention only to unaligned portions, which are partitions. 

 

3.1.3 Steps to Identify a Partition Wall 

 

Step 1. Generate a random hierarchy 

As mentioned in Chapter 2, T-Coffee aligns sequences using a progressive approach 

that relies on multiple running of dynamic programming in the order implied by a 

precomputed phylogenetic tree. Instead of depending upon such a “hypothetical” tree, P-

Coffee generates a random hierarchy, which defines the contingent rank of each sequence. 

This hierarchy is used when P-Coffee constructs a tree, and coordinates the parent-child 

relationship among residues. Some of possible random hierarchies are shown in Figure 3.2. 

In this four-sequence case, there exist 4! = 24 different hierarchies. 

 

 

 

 

 

 

 

 

Figure 3.2: Examples of random hierarchy for 4-sequence case 
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Step 2. Build a tree beginning with a residue randomly picked from the depth-0 sequence 

Given a random hierarchy, P-Coffee starts building a tree by choosing one residue 

from the depth-0 sequence. Beginning with the chosen residue as the root of the tree being 

constructed, P-Coffee recursively attaches the residues that are contained in the T-Coffee 

library when paired with the current parent residue. The simple rule here is that residues in 

depth-(i) are rendered to be parent nodes of ones in depth-(i+1). In other words, edges are 

directed in increasing order of depth, from lesser to greater. A tree is built in depth-first 

fashion, and, when there are no residues that can be added to the current node, the tree 

extension can stop even before it reaches the maximum depth. 

 

Step 3. Do the depth-first search for the highest-scored path in the fully-grown tree 

After a tree has been fully grown, P-Coffee searches for the highest-scored path in the 

tree. When a path does not reach to the maximum depth, we can just assign a gap for each 

remaining sequence with depth greater than that of the leaf. Then, if we sort the nodes in the 

path in the order of sequence id, we can obtain a partition wall. Thus, by searching for the 

highest-scored path in the tree, we can obtain the highest-scored partition wall. Here we 

evaluate each path by sum-of-pairs score instead of path weight. Under the sum-of-pairs 

scoring scheme, the score of an identified partition wall is calculated by summing up the 

substitution scores of all the possible residue pairs. Therefore, if residues contained in a wall 

are more interrelated, a higher score will result. 
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3.2 Techniques to Speedup the Wall Identification Process 

In order to speedup the identification process of partition walls, we use several tricks 

during the tree construction procedure. The tricks used here are not new, but helpful in 

making this recursive procedure affordable. 

 

3.2.1 Combination of Tree Building and the Highest Scorer Searching 

Because trees are needed only to obtain the highest-scored path, we can speed up the 

identification process by combining the tree construction and the highest-scored path search. 

Specifically, we update the position of current highest-scorer as well as its score whenever a 

node is added to the tree. In this way, we get the highest-scored path as soon as we finish 

constructing a tree. Trees are discarded without being stored in order to save memory. 

 

3.2.2 Thresholding 

Even if a residue found as a child lies within a partition range, we may not want to 

add it because we regard the entailed pair score to be unreliable and presumably safely 

neglected. The objective of thresholding is “not” to add a node that is expected to be 

unreliable as a member of a path being extended. But of course, if the threshold pair score is 

set too high, the algorithm will branch away from a node that is required to successfully 

construct a wall with maximum available reliability. 

As explained in Chapter 2, T-Coffee uses sequence identity (%) of two sequences as 

the base substitution score for aligned residue pairs in the sequences. During the library 

extension process of the T-Coffee, such base scores are only augmented according to the 
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consistency of each residue pair. Therefore, sequence identity is the minimum score that is 

guaranteed to any aligned residue pairs in T-Coffee extended library. In addition, it is 

reported that sequence comparison detects relationships between protein residues reliably 

down to about 30% sequence identity [5]. For all these reasons, it is expected that the 

appropriate threshold score can be determined near the range of “twilight zone” identities. 

Under the sum-of-pairs scoring scheme, one additional child node brings in multiple 

pair scores. As shown in Figure 3.3 by the bold bi-directional arrows, we consider all 

possible pairs between the child node at hand and the predecessor nodes in the path being 

constructed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: The number of new residue pairs generated by adding a child 
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We apply a threshold pair score to the average of all the pair scores generated by adding a 

child node. In this way, a child node that has fewer but stronger connections with its 

predecessors can also be accepted. 

 

3.2.3 Pruning 

We can further save resources (computation time and memory) by “not” adding a 

child if no relevant future path can possibly outscore the current highest. The maximum 

substitution score can be trivially found in the T-Coffee extended library. And, we also know 

the remaining depths to go and, therefore, the maximum number of residue pairs that will be 

brought in under the sum-of-pairs scoring scheme. Therefore, by giving each residue pair the 

maximum substitution score in the T-Coffee library, we can easily compute the upper bound 

on the score that can be achieved by the path that is currently being extended. By comparing 

this estimated upper bound with the current highest that is previously found, we can decide 

whether to add a child node or not. 

 

3.2.4 Sorting of Candidate Child Nodes 

To maximize the effectiveness of pruning, it is better to come up with as high as 

possible a score in earlier stage of the tree construction. To promote this situation, we 

designed our method to consider pairs in decreasing order of score when examining 

candidate child nodes for attachment. With this local greedy approach, the residue that entails 

the highest substitution score available will be added first at each step of depth-first tree 

construction, making higher scoring path more probable in earlier stage of tree construction. 
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3.2.5 Jumping 

Jumping describes finding related residues from lower depths than the current child 

depth. Since with jumping more candidate residues are within the scope of a parent node, this 

modification considerably increases the average branching factor. Thus, more candidate 

paths (partition walls) are examined while searching for the highest-scored path. There is a 

trade-off between the thoroughness of searching and the resulting computational cost. 

Although a more branched tree would result, jumping does not mean that we can 

necessarily identify a more reliable path from the tree, because of a side effect incurred by 

jumping: jumping introduces a gap for the skipped sequence. For example, the one step 

jumping from node (a) to node (c) will result in the path {…, a, −, c, …} as shown in Figure 

3.4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Jumping 
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Dotted circles denote candidate nodes that may be added to the current (parent) node, 

which is currently the node (a). Since a gap significantly reduces the sum-of-pairs score of a 

wall by negating maximum (n – 1) substitution scores, where n denotes the total number of 

sequences, a path with jumping history is less likely to make the highest score in the tree. 

This can be easily noticed by comparing the score of the path {…, a, b, c, …} with that of the 

path {…, a, −, c, …}. The latter will lose every pair score that involves the node (b), under 

the sum-of-pairs scoring scheme. 

Therefore, if the partition at hand contains many complete or almost complete walls, 

jumping will not bring any improvement in accuracy. On the other hand, jumping will 

expedite the tree building process when it is used for a partition that contains walls with 

many gaps, because we do not have to wait until all non-gaps are placed in the top depths 

consecutively by a random hierarchy. To reflect this idea, we designed P-Coffee to jump only 

in case we cannot find any candidate child from the current child depth. As you may see in 

Section 3.4, this lazy jumping is allowed after lots of complete walls are extracted out. 
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3.3 Example of Identifying a Partition Wall 

Figure 3.5 shows the 1aab (reference 1) case given in BAliBASE v1.0. Suppose a 

random hierarchy #1→ #4→ #3→#2 is generated, and 1-11 (residue #11 of sequence #1) is 

randomly picked as the root of the tree that is going to be constructed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: An example of tree construction. The path {F, F, L, Y} in a solid block denotes a 
previously identified complete wall, by which a partition is formed on its left side. Jumping 
is not allowed. The terms in the sum-of-pairs scores are given in the order of (1,4), (1,3), 
(1,2), (4,3), (4,2), and (3,2), where (i, j) denotes the pair of sequence id’s. The table of 
substitution scores is given as is in T-Coffee extended library. 
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The relevant residue number is put on the top of each node. And, the substitution 

scores are placed at the bottom of each node, near the starting point of each directed edge. 

The relevant substitution scores are excerpted from the T-Coffee extended library that is 

computed beforehand for this sequence set. The lines with # sign specify the sequence 

numbers. Other lines indicate residue pair by their position indices in each sequence, and its 

score (bold face). For example, the line marked (*) means that the substitution score between 

1-11 and 2-6 is 99. 

A tree is built starting from the randomly picked root 1-11. So the current ongoing 

path is {1-11}. By the random hierarchy, sequence #4 is at the current child depth. So we 

refer to the category [#  1  4] in the T-Coffee library, and find out that 1-11 is related to 4-9 

and 4-13, whose scores are 105 and 25 respectively. Because 4-9 makes higher score with 1-

11, it is first checked for attachment. Suppose we set the threshold pair score to 10. Because 

the average score between 4-9 and every node in the ongoing path {1-11} is 107 / 1 = 107 > 

10, it clears threshold condition. Next we check the pruning condition. From the current child 

depth, there are two more depths to go, so maximum 2 + 3 = 5 residue pairs would be 

brought in until the path reaches to the bottom depth. Because the maximum pair score is 

found to be 107 for this set, the upper bound score the path {1-11, 4-9} can achieve is 107 + 

107 × 5 = 642. This outscores the current highest, which is zero. So the candidate 4-9 also 

clears the pruning condition, thus it is added to the root 1-11. The current ongoing path 

becomes {1-11, 4-9}. The current highest is reset to node 4-9 with the score of 107. 

This simple checking and adding process is repeated in depth-first fashion until we 

have no more nodes to attach. The tree construction ends up with three paths; {M, P, L, R}, 

{M, P, L, Y}, and {M, F, L, N}. The sum-of-pairs scores are also calculated in Figure 3.5. 
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According to the score, the path {M, P, L, R} is the highest-scored path. By sorting the nodes 

in the path in the order of sequence id, the partition wall {M, R, L, P} is obtained. 

There are a few more points to note in Figure 3.5. First, 2-13 (denoted by the dotted 

circle) could not be added because it is outside the partition. Secondly, when 2-9 is checked 

for the thresholding condition before being added to 3-8 (denoted by the dashed arrow), the 

average pair score between 2-9 and every node in the path {1-11, 4-9, 3-8} is computed to be 

(0 + 27 + 20) / 3 ≈ 16 > 10. If we set the threshold pair score to 20, then 2-9 will not be 

accepted as a child of 3-8. Finally, if jumping is allowed, more parent-child relationships will 

be added (denoted in thin directed edges) in the tree. One example score of a path with 

jumping history is also calculated in Figure 3.5. The jumping paths in this case do not bring 

any difference except the increased computational cost, since the partition contains complete 

paths with high scores. 
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3.4 Partition Wall Selection for Alignment Solution Construction 

The reliability of an alignment solution depends upon that of columns used to 

construct the alignment. Since columns correspond to partition walls in P-Coffee, it is crucial 

to correctly evaluate the reliability of the walls found during the wall identification procedure. 

In this section, we propose an additional criterion other than the sum-of-pairs score to select 

reliable walls from the pool of identified walls. 

 

3.4.1 Reliability of a Partition Wall 

There are some issues about the reliability of partition walls. What is the reliability of 

a partition wall, and how can we evaluate it? Does a higher sum-of-pairs score mean a more 

reliable partition wall? Is the score the only criterion for reliability we can depend upon? 

As for reliability, we can simply state that reliable walls should be able to catch 

biologically meaningful residue equivalency. In fact, discovering correct residue 

equivalencies from given protein sequences is the essence of all sequence alignment tools, in 

that structure or function of proteins are predicted based on these equivalencies. On the other 

hand, evaluating residue equivalency is not as straightforward as the objective itself, because 

of the lack of dependable arrangements to incorporate information that relates residues into 

sequence-level analysis. There have been efforts to exploit other source of equivalency 

information such as structural data [29]. But, coming up with a sound objective function to 

evaluate residue equivalencies is still an important issue. 

The position-specific scoring scheme such as the extended library of T-Coffee is one 

good example of an objective function evaluating the similarity of residues. But, what makes 

problems complicated is that a higher sum-of-pairs score does not always result in a column 
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in the reference alignment. We found that walls falling in only upper 15% of score range can 

be used safely to construct alignment solutions. 

Facing this challenge, we paid an attention to an important point: the sum-of-pairs 

scoring scheme reflects the interrelatedness among residues contained in a column (or a 

wall). Based on the idea, we invented a test that detects more reliable walls from the pool of 

identified walls. 

 

3.4.2 The True Power of Random Hierarchy 

The breakthrough for the difficulty in reliability evaluation is to accept walls that 

appear more than some specified number of times after a sufficiently large number of 

iterations of wall identification. As explained in Section 3.1.3, P-Coffee first generates a 

random hierarchy, and arbitrarily chooses one residue from the depth-0 sequence as root to 

be extended. In each iteration, a different sequence hierarchy as well as a root is used, and 

extended fully to a different tree. During this iterative procedure, a certain wall may be 

identified more than once if residues contained in the wall are closely interrelated. Therefore, 

by accepting reproducible walls, we can mimic the idea of the sum-of-pairs scoring scheme. 

The advantage of this test is that it does not depend upon any scoring metric, so even 

relatively low scorers may be accepted. 

As we show in Chapter 4, this approach significantly raises the accuracy of identified 

walls. With the combined use of the sum-of-pairs score and the reproducibility, we can also 

raise the accuracy of the alignment solution. Taking advantage of the statistical behavior of 

random hierarchy, we were able not only to make the algorithm independent from 
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hypothetical phylogenetic trees but also to provide a novel way to discover the 

interrelatedness among residues. 

This can be illustrated by comparing Figure 3.5 and Figure 3.6. It can easily be 

noticed by directed edges that the residues in the highest-scored path {M, P, L, R} are 

interrelated in Figure 3.5. In Figure 3.6, we use a different hierarchy #3→ #2→ #1→#4 and a 

different root 3-8, and found the different highest scored path {L, R, M, P}. But as indicated 

in Figure 3.7, these two paths imply the same wall, {M, R, L, P}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Another random tree for the Section 3.3 example 
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Figure 3.7: The wall identified by two different random trees 
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3.4.3 The Construction Procedure of Alignment Solution 

The target alignment is constructed by recursively partitioning the given sequence set. 

There are two base cases available for this recursive procedure. If a partition is composed of 

at most one residue for each sequence, P-Coffee fixes the partition as one partition wall. If a 

partition contains only residues that belong to a certain sequence, P-Coffee separates them 

into distinctive columns that contain only one residue. After all partitions are fixed, P-Coffee 

concatenates them into one big alignment solution. To save memory, we implemented this 

recursive procedure so as to keep only selected walls and to handle each partition between 

two walls one by one. Every partition from the leftmost one to the rightmost one undergoes 

further partitioning during one phase. 

There are parameters to be determined before running P-Coffee. The threshold pair 

score is a parameter for screening out unreliable residues in order to speed up the wall 

identification process. The threshold score of 10 is used throughout the phases except the last 

one. The Multiplier is a parameter that defines the number of iterations for each phase. If it is 

“×2”, the wall identifying procedure is repeated twice the maximum sequence length number 

of times in the partition at hand. The Acceptance Qualification describes which walls to 

accept in each phase. If it is “double+”, we only accept walls that are identified more than 

once. We also have to decide whether to allow jumping. Detailed description of the 

parameters is given in the next section. 

Once a partition wall is selected, it is used not only as a building block for an entire 

alignment solution but also as a boundary between partitions. As explained in the previous 

sections, the original sequence set is divided into conceptually disjoint problem sets by 

partition walls. Note that we do not consider alignments of residue pairs that have a partition 
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wall between them. Therefore, it is important to select more reliable walls in the earlier 

stages, so that partitions can safely disregard outsider residues during the iterative 

partitioning process. Based on this idea, we designed P-Coffee to work in four phases. The 

values of the parameters are summarized in Table 3.1.  

 

 

Table 3.1: Phases in P-Coffee. Jumping is not a parameter for the algorithm, but included in 
this table to show when it is activated. In phase #4, the acceptance qualification gives the 
priority in the order of double+’s, and then, the high scorers. 
 

 Multiplier Jumping Threshold Acceptance Qualification 

PHASE #1 ×1 not allowed 10 top 5% scorers 

PHASE #2 ×2 not allowed 10 triple+ 

PHASE #3 ×4 lazy jumping 10 double+ 

PHASE #4 ×2 lazy jumping 0 double+ 
all non-conflicting leftovers 

 

 

In Phase #1, jumping is not allowed because it can be safely assumed that the 

sequence set should contain many complete or almost complete walls initially. Only the top 

5% highest scorers can survive in this phase. Considering that one partition wall reduces the 

size of the corresponding partition to half on the average, we can still divide the original 

problem into multiple partitions of significantly reduced size even retaining only this small 
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portion of all identified walls. The wall identification is repeated the maximum sequence 

length number of times. The reproducibility criterion is not applied in this phase. 

In Phase #2, P-Coffee repeats the wall identification process for ×2 times to find more 

walls that are reproducible. Only walls that identified more than twice are accepted. In Table 

3.1, these walls are denoted by “triple+”, meaning the walls that appear “three times or more” 

in one phase. The acceptance qualification is set to triple+ in order to select more reliable 

walls in the earlier stages. Jumping is not allowed, because we expect that there still remain 

many undiscovered complete walls since only 5% of walls are fixed in the previous phase. 

Note that scores are not used for acceptance checking. 

In Phase #3, lazy jumping is allowed so as to effectively identify walls that contain 

gaps. Complete walls may still remain. But, if this is the case, lazy jumping will not actually 

be used, since it is called only when there is no candidate child to be added at the current 

child depth. To find more reproducible walls, we raise the multiplier to ×4. Walls identified 

more than once are accepted. We denote these walls “double+” to represent the ones that 

appear “two times or more” in one phase. No scores are used for acceptance either in this 

phase. 

Finally, in Phase #4, the multiplier ×2 is applied. In this phase, all non-conflicting 

walls are accepted. Priority is given to double+’s, and then, higher scorers. Phase #4 repeats 

itself until every wall is identified. The threshold is disabled in this phase, because we are 

trying to fix all the partition walls irrespective of the reliability. 
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3.5 Parameters 

There are four parameters that have to be set before running P-Coffee. The threshold 

pair score is required for efficient running of the wall identification process. The multiplier 

and the acceptance qualification including the initial acceptance rate control the wall 

selection procedure. In this section, we will describe in detail the features that these 

parameters have. 

 

3.5.1 The Threshold Pair Scores 

As explained in Chapter 2, sequence identity (%) is the minimum score that is 

guaranteed to the aligned residue pairs belonging to the sequences. Admitting that sequence 

comparison is reliable down to the twilight zone (25~30% identity), we may conclude that 

we can ignore residue pairs with substitution score below this zone when extending a tree. 

But if multiple sequences are used in search of hidden residue equivalencies, interrelatedness 

among residues may be helpful in identifying reliable equivalencies below this limit. More 

importantly, it is impossible to construct an alignment solution with columns that are 

composed of only reliable residues, because in MSA we have to assign every residue to some 

position in the alignment, irrespective of its reliability. Therefore, in the big picture, we 

cannot ignore residues just because they entail substitution scores below the twilight zone. 

Because of the lack of information sufficient to overcome this complexity, we 

decided the proper level of the threshold pair score experimentally by observing the effect of 

threshold values on algorithm performance. 

If the threshold is set to a lower value, the branch factor will be larger, because many 

unreliable residues can be added to growing tree, and the algorithm will require a large 
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amount of computational resources. Note that this tree-based procedure has exponential time 

complexity, so controlling the branch factor is crucial. On the other hand, if we set the 

threshold excessively high, it will prevent the paths being constructed from reaching to the 

bottom depth without gaps, thus making them unlikely to survive the competition among 

paths in the tree. We want to find the optimum threshold value that controls the exponential 

time complexity without sacrificing the reliability of identified walls. 

 

3.5.2 The Multiplier and The Acceptance Qualification 

As described in Section 3.4.3, the multiplier specifies the number of iterations used to 

form a pool of partition walls in each phase, and the acceptance qualification describes a 

condition for the walls to be accepted. We use the maximum sequence length as a 

multiplicand so that each residue in the maximum length sequence can be examined 

probabilistically at least once. Note that the closest number to the resulting alignment length 

currently available is the maximum sequence length, because no two residues in the same 

sequence can be in the same alignment column. 

The higher the value of the multiplier, the greater the chance that walls appear more 

than some specified number of times. But if the multiplier is set to a value beyond required, 

redundant computation will result. For example, the wall that has been identified twice in ×2 

iterations is roughly expected to appear four times in ×4 iterations, if the residues contained 

in the wall are closely interrelated. Furthermore, even incorrect walls can pass this screen. 

This happens in case they contain a small portion of interrelated residues and similar 

hierarchies are used. On the other hand, if the multiplier is set to a value too small, the 
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number of qualified walls will be reduced, since walls do not have enough chance to appeal 

their reliability. 

 

3.5.3 The Initial Acceptance Rate 

The initial acceptance rate is one of the acceptance qualifications that is used only in 

the initial phase of P-Coffee. The motivation of using the initial acceptance rate is that there 

may exist a minimum score that we can use as a cutoff criterion when selecting a wall from 

the pool of identified walls. Since this minimum will be different case by case, we normalize 

it by the highest score found during the repetition of wall identification process. 

The initial acceptance rate is defined by the following formula. So, for example, if the 

rate is set to 10%, we will accept only the top 10% highest scorers from the identified walls 

in Phase #1. 

 

the initial acceptance rate   normalized−= 1 minimum score for guaranteed hit 

scorehighestoverallthe
scorefailhighestthe

−= 1                           (3.1) 

 

The initial acceptance rate is used only in Phase #1, since it is unlikely that we encounter 

such high scorers again in the later phases once we use up all high scorers. The number of 

accepted walls will be reduced as the acceptance rate gets smaller. So we want to estimate 

the maximum score level that we can trust without further analysis. 



 42

 

 

 

 

CHAPTER 4 

 

Tests and Results 

 

In the previous chapter, we explained some features that are introduced for more 

effective and accurate running of the algorithm. We pointed out four parameters to be 

determined before the running of P-Coffee. In this chapter, we will demonstrate how the 

parameters have been determined. And then, we will show the competency of P-Coffee by 

comparing its performance with T-Coffee using BAliBASE v1.0 test cases. 

 

4.1 Tests 

As clarified in Section 3.5, we can control the effectiveness of the P-Coffee by 

adjusting the parameters – the threshold pair score, the initial acceptance rate, the multiplier, 

and the acceptance qualification. In this section, we will suggest the ways to determine the 

optimum values of these parameters. 



 43

 

4.1.1 Test #1: The Optimum Threshold Pair Score 

One of the most important benefits of BAliBASE is that we can evaluate the 

correctness of an identified wall by simply seeing whether it is really included in the 

reference alignment or not. We call it a hit if we can find a match, and a fail otherwise. Using 

this feature, we can obtain the hit rate of the identified walls after repeating the wall 

identification process for a specified number of times. In this test, we want to know to what 

extent the algorithm should allow unreliable (lower scored pair) residues to be added to a tree 

being constructed. So we can find out the optimum threshold value by selecting one that 

makes the maximum hit rate. We tested 5, 10, 15, and 20 as the threshold values with the 

multiplier value of ×1. We did not allow jumping in this test. 

 

4.1.2 Test #2: The Optimum Initial Acceptance Rate 

In this test, we wanted to find out the maximum level of acceptance rate that would 

cover most of the test cases. This test can be done alongside Test #1, since we can obtain the 

initial acceptance rate of each test case by simply keeping track of the highest fail score and 

the overall highest during the iteration. 

 

4.1.3 Test #3: The Optimum Combination of the Multiplier and the 

Acceptance Qualification 

As in Test #1, the optimum combination of the multiplier and the acceptance 

qualification can be obtained by seeing which combination achieves the maximum hit rate. 
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We tested the multiplier values of ×1, ×2, ×3, and ×4, and analyzed the hit rate as well as the 

number of identified walls for the qualification values of singles, double+’s, and triple+’s for 

each multiplier value. We used the threshold pair score of 10, and did not allow jumping in 

this test. 

 

4.1.4 Test #4: The Performance of P-Coffee 

BAliBASE also provides a program, BaliScore, so that we can score our results 

according to the standardized guideline. This score can be used to benchmark the 

performance of our algorithm with that of other MSA tools. Because it is reported that T-

Coffee outperforms other well-known MSA tools, we benchmarked only with T-Coffee in 

this test. 
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4.2 Test Results 

 

4.2.1 The Optimum Threshold Pair Score 

As expected, if the threshold pair score is smaller, an exponentially larger amount of 

CPU time is used to identify partition walls, because the branch factor of trees will increase. 

The result is shown in Table 4.1 and Figure 4.1. But lower thresholds did not always result in 

higher hit rates. This means that a branchy tree does not guarantee finding more reliable 

partition walls. Rather, in many cases, hit rates decreased with the threshold values lower 

than the optimums, because it is more likely that unnecessary residues are included in the 

surviving walls. 

 

Table 4.1: The performance of the partition wall identification with the varying threshold pair 
scores. 1idy (ref 2), 1lvl (ref2), 1tgxA (ref2), and 1idy (ref3) are excluded from this result to 
avoid a bias that can be arise as a result of their excessive amount of CPU time (in seconds) 
used. 
 

 Threshold = 5 Threshold = 10 Threshold = 15 Threshold = 20 

 Hit 
Rate 

CPU 
Time 

Hit 
Rate 

CPU 
Time 

Hit 
Rate 

CPU 
Time 

Hit 
Rate 

CPU 
Time 

Ref 1 0.819 47 0.828 53 0.793 35 0.747 42

Ref 2 0.542 15200 0.542 5043 0.400 1141 0.305 811

Ref 3 0.541 18242 0.565 1265 0.423 227 0.317 157

Ref 4 0.575 425 0.519 211 0.469 92 0.383 88

Ref 5 0.730 576 0.731 216 0.726 96 0.692 95

Overall 0.714 3623 0.707 981 0.651 239 0.588 184
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Figure 4.1: Effect of the threshold pair score on the performance of the wall 
identification process. The average hit rate declines from the threshold value 
of 10. 

 

 

Data shows that the most suitable threshold pair score is 10, since, on average, the hit 

rate keeps its level even though it pays only 981 / 3623 ≈ 27% of CPU time compared with 

the case that the threshold of 5 is used. The optimum threshold value proves that we cannot 

ignore a residue just because it has a substitution score below the twilight zone sequence 

identity. 
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4.2.2 The Optimum Initial Acceptance Rate 

For each threshold value that was used in the previous test, the initial acceptance rates 

were observed. The result is summarized in Table 4.2. For example, the cell that is marked 

(*) in Table 4.2 means that only the top 3.9% of the highest scoring walls were correct in 

Reference 2 test cases when we use the threshold value of 10. Walls with scores below that 

level are no longer safe to use to construct alignment solutions without further analysis. 

The rates turn out to be insensitive to the threshold values. This is because the highest 

fail score and the overall highest could be found no matter what threshold value below the 

twilight zone is used. 

 

 

Table 4.2: Reliable score range of sum-of-pairs scoring scheme 

Threshold 5 10 15 20 

Ref 1 0.209 0.207 0.210 0.200 

Ref 2 0.039 (*) 0.039 0.039 0.041 

Ref 3 0.071 0.070 0.063 0.066 

Ref 4 0.092 0.086 0.087 0.089 

Ref 5 0.199 0.137 0.140 0.135 

Overall 0.156 0.149 0.151 0.145 
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The data shows that, on average, only the top 15% highest scorers were reliable under 

the sum-of-pairs scoring scheme. But, considering the narrowest range among all categories 

(see the cell marked (*) in Table 4.2), we decided to accept only the top 5% highest scorers 

in the first phase of P-Coffee. Figure 4.2 illustrates how many categories the optimum initial 

acceptance rate covers. 
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Figure 4.2: The reliable range of the sum-of-pair scores 

 

 Reference 2 has the 
narrowest safe range. 

The selected initial acceptance rate 
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The selected initial acceptance rate does not fully cover the test cases in Reference 2. 

But even incorrect walls with scores near this region will not harm the reliability of an 

overall alignment solution, since they would not have reached such high scores without 

containing enough of the residue equivalencies we are looking for. 

 

4.2.3 The Optimum Combination of Multiplier-Qualification 

Various combinations of multiplier-qualification values were tested. As expected, the 

accuracy grew in the order of singles, double+’s, and triple+’s throughout the categories. As 

mentioned in Section 3.5.2, the accuracy declined as the multiplier was set to higher values. 

From the data provided in Table 4.3, we have decided the values of the multiplier and the 

acceptance qualification to be ×2-triple+. Compared with the most accurate combination, ×1-

triple+ (see underlined cells in Table 4.3), ×2-triple+ identified (9767 – 2732) / 2732 ≈ 258% 

more partition walls without loss of the hit rate. The combination ×3-triple+ (see double 

underlined cells) found even more partition walls than the optimum combination without 

significant loss of accuracy, but it had some weakness for Reference 4 test cases (see the cell 

marked (*)). On the other hand, the selected combination of ×2-triple+, was robust to the 

type changes of the problem set. This is also illustrated in Figure 4.3.  
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Table 4.3: The reliability of reproducible walls in various combinations 
of multiplier-qualification. The test cases, 1idy, 1lvl, and 1tgxA (all in 
reference 2), are excluded from this result. Because we counted the 
walls that are identified more than three times as three, the raw hit rates 
are estimated slightly lower than the real values. 

 
Qualification Singles 
Multipliers ×1 ×2 ×3 ×4 
Ref1 0.681 0.479 0.304 0.176 
Ref2 0.338 0.186 0.100 0.057 
Ref3 0.345 0.177 0.090 0.050 
Ref4 0.232 0.154 0.169 0.111 
Ref5 0.510 0.275 0.156 0.097 
Overall 0.497 0.298 0.190 0.110 
Num of Walls 11272 9137 6861 4783 
Qualification Double+ 
Multipliers ×1 ×2 ×3 ×4 
Ref1 0.945 0.928 0.905 0.879 
Ref2 0.895 0.856 0.844 0.830 
Ref3 0.988 0.979 0.968 0.961 
Ref4 0.826 0.757 0.660 0.593 
Ref5 0.948 0.942 0.923 0.903 
Overall 0.928 0.907 0.878 0.848 
Num of Walls 8115 17473 23186 26545 
Qualification Triple+ 
Multipliers ×1 ×2 ×3 ×4 
Ref1 0.966 0.961 0.961 0.950 
Ref2 0.919 0.911 0.901 0.894 
Ref3 0.987 0.993 0.987 0.984 
Ref4 0.925 0.908 (*) 0.841 0.802 
Ref5 0.959 0.978 0.965 0.962 
Overall 0.954 0.953 0.946 0.934 
Num of Walls 2732 9767 16794 21840 
 Raw (estimated) 
Multipliers ×1 ×2 ×3 ×4 
Overall 0.676 0.602 0.520 0.446 
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Figure 4.3: The surge in accuracy when we use reproducibility criterion 
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The overall average accuracy of each qualification is illustrated in Figure 4.4. 

Compared with the raw accuracy, the selected combination achieved an accuracy increase of 

(0.953 – 0.602) / 0.602 ≈ 58%. Note that the limit we could have achieve was (1 – 0.602) / 

0.602 ≈ 66%. Since over 95% of walls identified in Phase #2 are hits, this will significantly 

contribute to the reliability of overall alignment solution. 
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Figure 4.4: Overall accuracy of each acceptance qualification 
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The numbers of correct walls that are identified during the tests are illustrated in 

Figure 4.5. As mentioned in Section 3.5.2, the number of singles decreased as the multiplier 

was set to a larger value. Instead, more double+’s and triple+’s could be identified. 
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Figure 4.5: The number of correct walls identified 

 

 

Using the selected combination of ×2-triple+, we were able to identify total 9767 

correct partition walls. Since the total alignment length of all the test sequence set is 49925, 

the number of identified walls corresponds to 20% of all the columns to be found. This may 
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look like a very small portion, but with this amount of walls, the average partition size is 

reduced to less than 100% / 20% = 5. Since residues outside a partition are no longer 

considered when a tree is being built in the partition, the probability that unreliable residues 

are attached to the tree also decreases. This is why we apply relatively loose qualification 

condition (which is ×4-double+) to Phase #3. We have not tested for this combination, 

because we can indirectly show its effectiveness with the accuracies of the final alignment 

solutions. 
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4.2.4 The Performance of P-Coffee 

The competency of P-Coffee is demonstrated by comparing its performance with that 

of T-Coffee. The differences between the percent accuracy achieved by P-Coffee and T-

Coffee are plotted along with the average sequence identity of test sets. Both the residue pair 

accuracy and the column accuracy are compared, and each result is drawn separately as in 

Figure 4.6 (a) and (b). To make the differences clearer, we divided the data into two parts, 

Reference 1 and the others. As shown in Figure 4.7, we could not identify any improvement 

for the test cases in Reference 1. But, for References 2 to 5, which are composed of problem 

sets with more sequences, P-Coffee improved both the residue pair accuracy and the column 

accuracy on average by 6% and 18% respectively. As validated by the P-values for the 

Wilcoxon signed rank tests both less than 10-7, the difference between P-Coffee and T-Coffee 

is significant. This improvement can also be easily noticed by the dispersion of data points 

shifted towards upper region of x-axis in Figure 4.8. 

 

 

Table 4.4: The average accuracy P-Coffee compared with that of T-Coffee. 

SP Score TC Score 
T-Coffee P-Coffee T-Coffee P-Coffee 

Ref 1 94.1% 93.8% 89.3% 89.9% 
Ref 2 86.6% 93.1% 35.5% 59.6% 
Ref 3 92.2% 97.5% 62.9% 85.0% 
Ref 4 78.5% 85.5% 57.0% 70.2% 
Ref 5 93.7% 97.5% 82.8% 90.8% 

Overall 91.1% 93.5% 74.6% 82.7% 

Ref 2~5 87.1% 92.9% 55.2% 73.1% 
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Figure 4.6: The difference in (a) SP Score and (b) TP Score (Overall) 
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Figure 4.7: The difference in (a) SP Score and (b) TP Score (Ref1 Only) 
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Figure 4.8: The difference in (a) SP Score and (b) TP Score (Ref2~5) 
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4.2.5 Further Analysis of the Performance of P-Coffee 

P-Coffee outperformed T-Coffee in References 2 to 5 test cases. These categories 

contain 15.5 sequences on average, while Reference 1 contains only 4.5 sequences. If the 

number of sequences increases, the length of partition walls also increases. As a result, the 

probability that a certain wall is identified more than once gets smaller, since more residues 

should be interrelated. This makes the reproducible walls more reliable than those in cases 

with fewer number of sequences. As shown in Figure 4.9, the hit rates of both double+’s and 

triple+’s are distributed in the higher value range as the number of sequences increases. 
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Figure 4.9: The relationship between the number of sequences and the 
accuracy of reproduced walls 
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4.2.6 The Run Time Analysis of P-Coffee algorithm 

We analyzed the run time of P-Coffee with a fixed number of sequences, in order to 

prove the advantage of partitioning. If the number of sequences is fixed, the run time of the 

algorithm is expected to be O(L), where L is the average length of the sequences, because the 

number of partition walls to be identified will increase proportional to the average length of 

the sequence set in most cases. The analysis was done only with Reference 1 test cases, 

because it is the only category that has enough data points that share the same number of 

sequences. As illustrated in Figure 4.10 and Figure 4.11, the CPU time increased linearly in 

the length of the sequence set. 
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Figure 4.10: Run time analysis of P-Coffee with a fixed number of sequences (4-
sequence cases). 
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Figure 4.11: Run time analysis of P-Coffee with a fixed number of sequences (5-
sequence cases). The trend line in each graph of Figure 4.10 and Figure 4.11 is drawn 
only for the sub-category that has the maximum range in the sequence length. We 
used the length of the reference alignment instead of the average sequence length in 
this graph. 

 

 

We also examined the run time with varying numbers of sequences to observe the 

influence of the tricks we have introduced in order to speed up the algorithm. Note that this 

test was not possible for Reference 1 test cases, since they are composed of the sequence sets 

with 4 to 6 sequences. As shown in Figure 4.12, the tricks worked to hold the run time within 

roughly the linear time range for reference 4 and 5 test cases, except for one outlier. This 

proves that the techniques used for speed up are properly handling the exponential time 

complexity at least for BAliBASE test cases. But, we do not believe that the tricks can 
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guarantee to hold an arbitrary sequence sets within the linear time complexity, as suggested 

by the outlier. 
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Figure 4.12: Run time analysis with varying number of sequences 
(Ref 4 and 5 only). A trend line is added for reference 5 cases. 

 

 

There are various environmental factors that can affect the time complexity of P-

Coffee: for example, average sequence identity, the distribution of residue pair scores, the 

compositional features of sequence set (as in BAliBASE categories), or the size of the T-

Coffee library. If a problem set contains a large number of sequences, the effect of such 
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environmental factors can be augmented. For this reason, it was difficult to analyze the 

influence of the techniques for speedup. This is well illustrated in Figure 4.13 by the 

widespread dispersion of data points. That is, for References 2 and 3 categories, it was not 

possible to identify any trend in the run time with varying number of sequences. 
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Figure 4.13: Run time analysis with varying number of 
sequences (Ref 2 and 3 only) 
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CHAPTER 5 

 

Conclusion and Future Work 

 

In this research, we propose a new divide-and-conquer method, P-Coffee, for the 

problem of multiple sequence alignment. The main differences from other MSA methods is 

that the new method aligns sequences column by column, and that the method does not try to 

maximize (or minimize) any objective function to reach a solution. In addition, P-Coffee 

deals with all the sequences in a set simultaneously. Although P-Coffee used 25.7 times more 

CPU time than T-Coffee, it outperformed T-Coffee by 5.9% in residue pair accuracy, and 

18.0% in column accuracy for References 2 to 5 categories. For test cases in Reference 1, the 

performance was almost same. P-Coffee has a relatively better performance on problem sets 

that contain a larger number of sequences. In addition, P-Coffee was robust to the 

compositional features of sequence sets such as sets containing orphans, sets with divergent 

families, sets with N/C-terminal extensions, and sets with internal insertion. 
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P-Coffee has two core techniques invented in this research. One is the tree-based 

identification process of an alignment column (our term for this is “partition wall”). In this 

process, the algorithm builds a tree according to a randomly generated sequence hierarchy, 

using the substitution scores in the T-Coffee extended library (a position-specific scoring 

scheme). And then, it identifies one partition wall by taking the path with the highest sum-of-

pairs score. 

The other innovative technique is the test method that distinguishes probabilistically 

more reliable walls out of the pool of identified walls. We invented this reliable test method 

based on the idea that the walls containing closely interrelated residues can be identified 

again with trees using the different hierarchies. In this test method, by accepting the walls 

that identified more than a specified number of times, we could significantly improve the 

accuracy of selected walls. The reproducible walls turned out to be even more reliable if the 

number of sequences in the set gets larger. 

The most significant achievement of this research is that the wall identification and 

selection process, two major components of P-Coffee, can be used in any MSA tool as a pre-

processor that reduces the dimension of the problem by dividing the sequence set into smaller 

partitions. This process is a potential breakthrough for most of iterative alignment tools that 

have poor performance in large sequence sets. In fact, another divide-and-conquer algorithm, 

DCA (divide and conquer alignment) designed by Stoye et al [30], improved the usability of 

an exact alignment method (the MSA program [31]). 

DCA algorithm computes a potential cut position using a heuristic function, and 

divide a sequence set until the size of subsets reduces small enough so that the MSA program 

can be applied. On the other hand, P-Coffee has its uniqueness in that it does not depend 
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upon other alignment methods. This is possible since a sequence set is divided into partitions 

using identified columns that correspond to a part of an alignment solution. The advantage of 

our approach is that we minimized the sources of bias by not requiring any heuristic function 

to optimize, phylogenetic tree, nor gap cost scheme (the parameters frequently used in other 

sequence alignment methods for biologically proper distribution of gaps in an alignment 

solution). 

There is still a room for improvement in P-Coffee. First, we may be able to save time 

by partitioning the T-Coffee library as well, whenever new sub-partitions are obtained. Since 

the T-Coffee library contains all the position-specific substitution scores of residue pairs, the 

data structure becomes large to hold the entire library. It is inefficient to scan through the 

entire library whenever the algorithm looks up the required residue pairs. Considering that 

the library scan happens whenever a node is looking for its candidate child nodes, 

partitioning the library can save a large amount of look up time. Second, we may be able to 

reduce the total number of wall identification activities by keeping the walls with a time 

stamp, instead of discarding all of them after wall selection is completed in each phase. Some 

unfairness can be brought about by this change, because walls that are found in an earlier 

phase would have an unwanted advantage in meeting the acceptance qualification. This 

problem may be resolved by giving a penalty to those walls in the form of an exponential 

decay function. Finally, the performance of P-Coffee can be improved by incorporating more 

reliable information additionally into the T-Coffee library. In fact, research related to this 

matter is already reported. According to O’Sullivan et al, they integrated the results of 

pairwise structure alignment tools such as SAP [32] and LSQman [33] into the primary 

library of T-Coffee with weight of 100 [29]. This kind of efforts will amplify the difference 
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between reliable residue pairs and others, and therefore the sum-of-pairs score will become 

more reliable. Then, of course, we may be able to raise the initial acceptance rate. 
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