
ABSTRACT

CHOI, KWANGBOM. P-Coffee: a new divide-and-conquer method for multiple sequence
alignment (Under the direction of Dr. Dennis R. Bahler).

We describe a new divide-and-conquer method, P-Coffee, for alignment of multiple

sequences. P-Coffee first identifies candidate alignment columns using a position-specific

substitution matrix (the T-Coffee extended library), tests those columns, and accepts only

qualified ones. Accepted columns do not only constitute a final alignment solution, but also

divide a given sequence set into partitions. The same procedure is recursively applied to each

partition until all the alignment columns are collected. In P-Coffee, we minimized the source

of bias by aligning all the sequences simultaneously without requiring any heuristic function

to optmize, phylogenetic tree, nor gap cost scheme. In this research, we show the

performance of our approach by comparing our results with that of T-Coffee using the 144

test sets provided in BAliBASE v1.0. P-Coffee outperformed T-Coffee in accuracy

especially for more complicated test sets.

Keywords: multiple sequence alignment, partition wall, wall identification, wall selection

P-Coffee: a new divide-and-conquer method
for multiple sequence alignment

by

Kwangbom Choi

A thesis submitted to the Graduate Faculty of

North Carolina State University

In partial fulfillment of the

Requirements for the degree of

Master of Science

In

Department of Computer Science

Raleigh, NC

January 2005

Approved by:

Dr. Jon Doyle Dr. Subhashis Ghosal

Dr. Dennis R. Bahler
Chair of Advisory Committee

 ii

DEDICATION

This thesis is dedicated to my parents Cheeman and Byunggon, my sisters Yoonsil and

Yoonjung, and my family Hyewon, Areme, and Minyoung, who have been always there for

me with unconditional love.

 iii

BIOGRAPHY

Kwangbom Choi received his Bachelor’s degree in Chemical Engineering from Seoul

National University in Korea. He worked over five years as a chemical engineer at Hanwha

Corporation. He began his involvement in Computer Science at the University of Illinois,

Urbana and Champaign as a non-degree undergraduate student. He has been a Master’s

student at the North Carolina State University also in the Department of Computer Science,

and completed a minor in Statistics.

 iv

ACKNOWLEDGMENTS

I would like to thank Dr. Dennis R. Bahler for his guidance and support during this research.

I am grateful to Dr. Jon Doyle and Dr. Subhashis Ghosal for being on my advisory

committee. I am also thankful to Dr. Christopher G. Healey for his help in using the systems

in Knowledge Discovery Laboratory.

 v

TABLE OF CONTENTS

List of Figures ………………………………………………………………………….. vii
List of Tables ………………………………………………………………………….. viii

1 Introduction ………………………………………………………………………….. 1

1.1 Cells and Proteins ……………………………………………………………... 1
1.2 Evolution from the Standpoint of Molecular Level ………………………….. 2
1.3 Phylogenetic Relationship among Proteins …………………………………… 3
1.4 The Importance of Sequence Alignment Methods ……………………………... 3
1.5 Multiple Sequence Alignment ………………………………………………… 4
1.6 Our Approach ………………………………………………………………… 5
1.7 Outline ………………………………………………………………………. 6

2 Background Information ……………………………………………………………... 7

2.1 Optimization Algorithms ……………………………………………………….. 7
2.1.1 Progressive Methods ………………………………………………….… 8
2.1.2 Iterative Methods ……………………………………………………….. 9

2.2 Objective Functions …………………………………………………………... 9
2.2.1 PAM Matrices …………………………………………………………... 10
2.2.2 BLOSUM Matrices ……………………………………………………. 11
2.2.3 Consistency-based Objective Function ………...………………………. 11

2.3 BAliBASE ……………………………………………………………………. 15

3 The Principles of P-Coffee …………………………………………………………... 18

3.1 Identification of Partition Walls ……………………………………………….... 18
3.1.1 The Definition of Partition and Partition Walls ……………………….. 19
3.1.2 The Advantages of Partitioning ……………………………………….. 21
3.1.3 Steps to Identify a Partition Wall ……………………………………….. 22

3.2 Techniques to Speedup the Wall Identification Process ……………………….. 24
3.2.1 Combination of Tree Building and the Highest Scorer Searching ……. 24
3.2.2 Thresholding …………………………………………………………... 24
3.2.3 Pruning ………………………………………………………………… 26
3.2.4 Sorting of Candidate Child Nodes ……………………………………. 26
3.2.5 Jumping ………………………………………………………………… 27

3.3 Example of Identifying a Partition Wall ……………………………………….. 29
3.4 Partition Wall Selection for Alignment Solution Construction ………………… 32

3.4.1 Reliability of a Partition Wall …………………………………………... 32
3.4.2 The True Power of Random Hierarchy ……………………………........ 33
3.4.3 The Construction Procedure of Alignment Solution …..………………... 36

3.5 Parameters ……………………………………………………………………. 39
3.5.1 The Threshold Pair Scores ……………………………………………... 39
3.5.2 The Multiplier and the Acceptance Qualification ……………………. 40

 vi

3.5.3 The Initial Acceptance Rate …………………………………………... 41

4 Tests and Results ……………………………………………………………………. 42

4.1 Tests …………………………………………………………………………... 42
4.1.1 Test #1: The Optimum Threshold Pair Score …………………………... 43
4.1.2 Test #2: The Optimum Initial Acceptance Rate ……………………….. 43
4.1.3 Test #3: The Optimum Combination of the Multiplier and

the Acceptance Qualification ……………………………………….….. 43
4.1.4 Test #4: The Performance of P-Coffee ………………………………… 44

4.2 Test Results ……………………………………………………………………. 45
4.2.1 The Optimum Threshold Pair Score ……………………………………. 45
4.2.2 The Optimum Initial Acceptance Rate ………………………………… 47
4.2.3 The Optimum Combination of Multiplier-Qualification ……………... 49
4.2.4 The Performance of P-Coffee …………………………………………... 55
4.2.5 Further Analysis of the Performance of P-Coffee ……………………. 59
4.2.6 The Run Time Analysis of P-Coffee ……………………………….... 60

5 Conclusion and Future Work ……………………………………………………….. 64

Bibliography ……………………………………………………………………………... 68

 vii

LIST OF FIGURES

2.1 The flow of T-Coffee ……………………………………………………………... 14
3.1 An example of virtual walls ……………………………………………………….. 20
3.2 Examples of random hierarchy for 4-sequence case ……………………………... 22
3.3 The number of new residue pairs generated by adding a child ……………………. 25
3.4 Jumping …………………………………………………………………………... 27
3.5 An example of tree construction ……………………………………………………. 29
3.6 Another random tree for the Section 3.3 example ………………………………… 34
3.7 The wall identified by two different random trees ………………………………… 35
4.1 Effect of the threshold pair score on the performance of the wall identification

process. …………………………………………………………………………... 46
4.2 The reliable range of the sum-of-pair scores ……………………………………….. 48
4.3 The surge in accuracy when we use reproducibility criterion ……………………. 51
4.4 Overall accuracy of each acceptance qualification ………………………………… 52
4.5 The number of correct walls identified …………………………………………... 53
4.6 The difference in (a) SP Score and (b) TP Score (Overall) ……………………….. 56
4.7 The difference in (a) SP Score and (b) TP Score (Ref1 Only) ……………………. 57
4.8 The difference in (a) SP Score and (b) TP Score (Ref2~5) ……………………….. 58
4.9 The relationship between the number of sequences and the accuracy of

reproduced walls ……………………………………………………………………. 59
4.10 Run time analysis of P-Coffee with a fixed number of sequences

(4-sequence cases) ………………………………………………………………… 60
4.11 Run time analysis of P-Coffee with a fixed number of sequences

(5-sequence cases) ………………………………………………………………… 61
4.12 Run time analysis with varying number of sequences (Ref 4 and 5 only) ……….. 62
4.13 Run time analysis with varying number of sequences (Ref 2 and 3 Only) ……….. 63

 viii

LIST OF TABLES

2.1 The description of BAliBASE categories …………………………………………... 14
3.1 Phases in P-Coffee ………………………………………………………………… 37
4.1 The performance of the partition wall identification with the varying threshold

pair scores …………………………………………………………………………... 45
4.2 Reliable score range of sum-of-pairs scoring scheme ……………………………... 47
4.3 The reliability of reproducible walls in various combinations of

multiplier-qualification …………………………………………………………... 50
4.4 The average accuracy P-Coffee compared with that of T-Coffee …………….…... 55

 1

CHAPTER 1

Introduction

1.1 Cells and Proteins

Cells are the elementary units of all living organisms. Each cell has its own functions,

which are mostly pursued by the biochemical activity of one or more proteins. Every protein

is composed of a linear chain of amino acids (or residues) in a particular order. There are

twenty different amino acids that are used to make up proteins.

When a cell needs to produce a certain protein for its proper function, it uses the

genetic information encoded in the form of DNA (deoxyribonucleic acid) sequence within its

nucleus. This DNA fragment is called a gene. By a specialized mechanism, a cell reads a

gene and then produces (or transcribes) an intermediary molecular called RNA (ribonucleic

acid). RNA travels from the nucleus to the cell component called cytoplasm, where a target

protein is produced (or translated) according to the genetic code transcribed in RNA. The

 2

overall procedure to generate a protein is called gene expression. The formulated protein then

moves to the suitable position in the cell, and participates in chemical reactions to

accomplish the mission of the cell.

1.2 Evolution from the Standpoint of Molecular Level

The evolutionary process brings about changes in DNA sequence. One major source

of such change is mutations, which are errors that randomly occur during the DNA

replication. There are different kind of mutations: point mutations (alteration of one

nucleotide), insertions (the gain of DNA sub-sequences), deletions (the loss of DNA sub-

sequences), and other DNA mutations. Only neutral or advantageous changes, which have

insignificant or favorable influence on the function of proteins, are accepted, since otherwise

mutations result in death by the selection process. This implies that some sequence regions

are more subject to mutation. In other words, sequence regions that play important roles in

forming the structure and function of proteins (called conserved region or motif) are less

likely to be mutated.

Sequences are homologous if they have evolved from a common ancestor.

Homologous sequences are called homologs. Note that they usually have similar sequences

but may not have similar function. Since sequence alignment shows sequence similarity but

not sequence homology directly, homology can only be inferred from the degree of similarity

in sequence or structure.

 3

1.3 Phylogenetic Relationship among Proteins

As described in the previous section, proteins hold the information about the

evolutionary history of an organism in their sequences. Therefore, by comparing amino acid

sequences (or protein sequences) from different organisms, we can estimate the evolutionary

relationships between the organisms. The evolutionary relationships among species or

proteins are frequently represented using trees (called phylogenetic trees), in which parent

nodes are ancestors of their child nodes. In more informative trees, the evolutionary

relatedness among organisms is often expressed using the configuration of nodes and the

length of branches.

The degree of homology also reflects the evolutionary distance between two

organisms. Sequence identity (%) between two protein sequences is frequently used to

estimate the degree of homology and, thus, the evolutionary distance.

sequence identity (%) 100×=
sequenceshortertheinresiduesofnumberthe

alignedwhenresiduesidenticalofnumberthe (1.1)

1.4 The Importance of Sequence Alignment Methods

A staggering amount of DNA sequences as well as protein sequences from various

kinds of organisms became available by the success of worldwide genome projects. Since

characterizing all these sequences is time-consuming and costly, knowledge-based or ab

initio prediction techniques are commonly adopted to infer the structure and the function of

proteins.

 4

Most prediction techniques assume that protein function is determined by its three-

dimensional structure, and protein structure, in turn, depends upon its sequence. Therefore,

sequence-level analysis, mostly pursued by sequence alignment, has been one of the major

research areas in Bioinformatics.

Homology can also help to predict protein function. In this approach, a new protein

sequence is compared with other protein families (or homologs) whose structures or

functions are already known. If we can identify homology between a new sequence and a

protein family with known function, we can infer that the function of a new sequence would

be similar to that of the homologs.

1.5 Multiple Sequence Alignment

Under the “similar sequence – similar structure – similar function paradigm”, the

ultimate goal shared by various sequence alignment methods is to help predicting proteins’

structure or functions by identifying evolutionarily related amino acids (residue similarity or

equivalency) among sequences. Depending on how similarities are identified, alignment

methods can be classified into three categories: sequence-sequence alignment (or sequence

comparison), structure-structure alignment (or structure comparison) [1], and sequence-

structure alignment (or threading) [2, 3].

Since protein structure remains relatively unchanged as opposed to protein sequence

during the course of evolution [4], structure-based alignment methods produce more reliable

results for the detection of distant homologs even below the 20~30% sequence identity

region (so-called “twilight zone”) [5]. But they generally require considerable computational

 5

resources. On the other hand, sequence comparison is relatively much faster, but does not

generally identify remote evolutionary relationships below the twilight zone, although the

amount of sequence data is significantly larger than that of structure. To overcome this

drawback of pairwise sequence alignment, multiple sequence alignment (MSA) is usually

adopted for more reliable homology detection.

MSA is to arrange potentially equivalent residues of multiple sequences in a vertical

column. For some sequences that do not contain a similar residue (possibly caused by

insertion or deletion), we use a gap (denoted by ‘–’ in this thesis) instead. One rule here is

that we have to preserve the order of residues in each sequence and all the residues must be

assigned somewhere in the alignment. MSA is mainly used to identify highly conserved

regions in a protein family, which can be an indication of homology. MSA is also used in

protein structure classification, and prediction of protein structure and/or function [6]. MSA

is a computationally difficult problem. The NP-completeness of MSA is shown by Wang et

al [7].

1.6 Our Approach

In this research, we propose a new MSA method, P-Coffee, motivated by the idea that

if we can effectively identify alignment columns out of a given set of protein sequences, we

will eventually be able to obtain the entire alignment just by assembling the identified

columns. P-Coffee is a tree-based divide-and-conquer algorithm. In this method, we first

extract candidate columns from a sequence set, test each candidate column, accept only

qualified ones, and place them in the right position in the overall alignment. The columns

 6

divide the original sequence set into partitions, and this makes it possible to compute the

entire alignment by the divide-and-conquer algorithm. We name the algorithm “P-Coffee”

(partitioning-based multiple sequence alignment method that uses consistency-based

objective function for alignment evaluation) after “T-Coffee”, a most frequently used MSA

tool, in that our new alignment method uses position-specific substitution scores first

formulated by T-Coffee.

1.7 Outline

In Chapter 2, we describe two major common components of sequence alignment

methods, an objective function and optimization strategy. A frequently used benchmark

resource, BAliBASE, is also described in this chapter. In Chapter 3, we explain the principles

of P-Coffee in detail, and illustrate the principles with an example. We show how the values

of parameters introduced in P-Coffee are determined in Chapter 4. The benchmark result is

also presented in this chapter. Finally, in Chapter 5, we summarize this research, and suggest

future direction of our work.

 7

CHAPTER 2

Background Information

Sequence alignment methods are composed of two key components. One is a scoring

scheme (or an objective function) that evaluates the mutational equivalency between two

residues, and the other is an optimization strategy that describes how to reach to the optimum

alignment under the given scoring scheme. In this chapter, we will discuss these two

constituents. Additionally, we will explain a benchmark resource proposed by Thompson et

al [8], which is used widely for the performance assessment of MSA tools.

2.1 Optimization Algorithms

Sequence alignment algorithms can be classified by the notion of evolutionary

relatedness among sequences: Global alignment is, as implied by the name, to align similar

residues with the notion that the entire sequences are related. But for remote homologs, only

 8

some sub-sequences may be related. Based on this notion, in local alignment, residues in

such potentially related sub-sequences are aligned.

MSA algorithm can also be categorized by whether the algorithm deals with all the

sequences simultaneously or not. Simultaneous alignment is a notion that describes an

algorithm considering all sequences simultaneously when aligning multiple sequences. By

taking the whole sequence set into account concurrently, the simultaneous approach can

avoid errors made by arbitrarily fixing an optimal residue alignment for a subset of sequences.

It has been reported that this approach is advantageous especially when pairwise alignment

becomes unreliable due to the low similarity between sequences [9].

There exist exact methods that use simultaneous approach and find the

mathematically optimum alignment. Exact methods employ generalized Needleman and

Wunsch algorithm [10], the multi-dimensional dynamic programming (DP). But,

unfortunately, they can handle only a limited number of sequences [6]. The computational

complexity of MSA problem makes it difficult to align all the sequences simultaneously

without appropriate handling of sequence set. To overcome this problem, various heuristic

methods have been introduced. They roughly fall into two categories: the progressive

approach and the iterative approach.

2.1.1 Progressive Methods

Progressive methods are also based on DP, but DP is used pairwise; that is, in such a

way that always involves two sequences (or two sequence groups in bulk). This is made

possible by aligning the most closely related sequences or groups first at any steps along the

pre-computed phylogenetic tree. The advantage of progressive approaches is that they are

 9

usually simple and fast. On the other hand, a major drawback of this approach is that once

two sequences or groups are aligned into one group, the positions of residues in the group are

fixed, and no more adjustments for errors introduced in earlier stages are possible. PileUp

[11], MultAlign [12], ClusterW [13], MULTAL [14], PIMA [15], and T-Coffee [16] belong

to this category.

2.1.2 Iterative Methods

Iterative approaches begin by making one or more initial alignments of the sequences.

These alignments are generated randomly in some methods. The initial alignments are then

modified to generate more optimized alignments with regard to an objective function. In each

iteration (or cycle), one or more existing sub-optimal alignments are revised until they

converge. Various rules are used for the revision, and iterative methods are characterized by

such rules. The main shortcoming of iterative methods is that they require, sometimes

prohibitively, a large amount of computational time without any promise that the optimum

will be found. Stochastic methods are often adopted in the iterative approach: simulated

annealing in HMMT [17], genetic algorithm in SAGA [18], tabu search [19], hidden Markov

model in HMMER [20], and Gibbs sampler [21]. PRRP [22] is also a stochastic iterative

method.

2.2 Objective Functions

The reliability of objective functions used in sequence comparison depends upon their

ability to represent numerically the biological significance of aligned residue pairs. Because

of the complexity of evolution, it is impossible to make a single universally employable

 10

objective function that can distinguish biologically meaningful alignment in any situation.

The most widely used objective functions for sequence alignment are substitution matrices.

A substitution matrix is a two-dimensional matrix whose rows and columns are labeled by

residues, and which provide a way to discern whether an aligned residue pair is plausible.

Substitution scores are derived from the frequencies of point mutation observed in multiple

alignments of homologous protein sequences. So if a residue pair has a higher score in a

substitution matrix, the mutation between the corresponding two residues is more likely to

occur. Substitution matrices are usually given in the form of 20×20 matrix, covering every

possible pair of existing amino acids. The most naïve substitution scoring scheme is to give

score of 1 to the exact match, and 0 to an unmatched pair. This is called the identity matrix.

Many more realistic substitution matrices have been reported, but only two matrices, PAM

and BLOSUM, are most commonly employed in modern sequence alignment.

2.2.1 PAM Matrices

PAM (percent accepted mutation) [23] matrices are derived from the number of

mutational events observed throughout the analyzed sequences of a specific evolutionary

distance. The evolutionary distance is measured in percent divergence (or 100 – sequence

identity) of sequences compared. So, 1 PAM denotes that it is obtained by comparing

sequences with over 99% sequence identity. Each PAM matrix can only be used for

sequences in a specific evolutionary distance, but the distance can be computationally

extended by multiplying a matrix by itself, under certain independence assumptions.

 11

2.2.2 BLOSUM Matrices

BLOSUM (blocks of substitution matrix) [24] matrices are the most frequently

adopted objective function in sequence comparison today. Similarly to PAM matrices, they

are empirically derived from the frequency observation of residue substitutions, but the

difference from PAM matrices is that they count only point mutations that occur in highly

conserved regions in many protein homologs. Since these regions are more likely to indicate

biologically meaningful relationships among residues, the residues are more likely to be

aligned correctly, and the substitution scores are relatively more reliable[25]. As in PAM

matrices, each BLOSUM matrix is derived from a different evolutionary distance. In

BLOSUM, the evolutionary distance is measured in sequence identity (%) of the sequences

compared. For instance, BLOSUM62 matrix, commonly used in BLAST, is derived from

many protein families containing sequences of 62% identity on average.

2.2.3 Consistency-based Objective Function

Instead of depending solely on a single substitution matrix as explained above,

position-specific residue pair scores are derived from the collection of the aligned pairs

obtained by other pairwise alignment methods. Consistency-based objective functions

evaluate the consistency among various pairwise alignment results [6, 16, 26]. T-Coffee is a

progressive method that uses the position-specific scoring scheme.

By default, T-Coffee first carries out two independent pairwise sequence alignments

for every possible pair of the sequences at hand: one by global alignment with the

Needleman and Wunsch algorithm (NW), and the other by local alignment with the SIM

algorithm [27]. All and only aligned residue pairs in each pairwise alignment are registered

 12

in separate base list (called the primary library in T-Coffee), with the sequence identity (%)

as their preliminary weights (or scores). For the local alignment library, the ten highest

scoring local alignments are accepted. Next, the union is taken over all the residue pairs

listed in the NW and SIM primary libraries to construct a single primary library. For residue

pairs that exist in both libraries, the preliminary scores are simply added. Then, T-Coffee

gives additional weight to the residue pairs that can be linked by another residue contained in

the remaining sequences. For each residue pair in the primary library, all the remaining

sequences are examined in search of such linkage. Whenever a link residue is found, the

smaller weight of either linkage is added to the current weight. This process is called library

extension. The final residue score can be expressed as the following equation.

the final residue pair score between Seq1-R1 and Seq2-R2

 = ∑
=

m

b 1

preliminary weight(Seq1-R1, Seq2-R2)

 ∑∑
=

+
n

i j1

min{weight(Seq1-R1, Seqi-Rj), weight(Seqi-Rj, Seq2-R2)} (2.1)

where m denotes the number of (base) primary libraries, n is the total number of sequences,

and Seqi-Rj means residue j in sequence i.

With these position-specific substitution scores, T-Coffee then performs a progressive

alignment. A distance matrix and a neighbor-joining guide tree (a kind of phylogenetic tree)

are obtained using the scores in the extended library, and, finally, the alignment solution is

i ≠ Seq1
i ≠ Seq2

 13

computed by a round of two-dimensional dynamic programming according to the order

implied by the guide tree configuration. The sum-of-pairs score is used as an objective

function in dynamic programming. The whole process is illustrated in Figure 2.1.

The main advantage of this position-specific scoring scheme is that we can plug in

any pairwise alignment result to form a primary library. Thanks to this feature, we can easily

incorporate various information into the substitution scores, in the expectation that this will

raise the reliability of the scores.

Although T-Coffee extended library holds every single signal of residue equivalency

in a given sequence set, T-Coffee has left room for improvement in accuracy because of its

dependence on a progressive approach while constructing an alignment solution. This was a

reasonable decision, since iterative approaches may incur prohibitive computational cost

without promise of a better solution. At the same time, however, it is worth looking for a

method that fully leverages the power of the T-Coffee extended library. In this work, we

suggest an improved way of using the T-Coffee extended library to align multiple protein

sequences.

 14

Figure 2.1: The flow of T-Coffee. This figure is redrawn from the
author’s version. [16]

Primary Library

Library Extension

Extended Library

Progressive Alignment

Primary Library by
Local Pairwise Alignment

(Lalign)

Primary Library by
Global Pairwise Alignment

(ClustalW)

Combination of Primary Libraries
(Signal Addition)

 15

2.3 BAliBASE

BAliBASE (benchmark alignment database) v1.0 provides 144 accurate reference

alignments so that we can easily benchmark the performance of MSA methods. The sequence

sets are categorized by length and sequence identity (%), compositional divergence, and the

presence of orphan sequences (a sequence that has lower than 25% sequence identity with

other members in a set), internal insertions, and N/C-terminal extensions (insertion of sub-

sequence at the beginning or at the end of original sequences). The core blocks (or conserved

regions) in a sequence set are capitalized and marked with underlines so that we can see

whether a test MSA method can catch biologically significant signals of residue

equivalencies.

Table 2.1: The description of BAliBASE categories

 Sequence
identity

Number of
sequences

range (average)

Number of
sequence sets Description

V1 < 25% 3~5 (4.3) 27
V2 20~40% 4~6 (4.4) 27 Reference 1
V3 > 35% 4~6 (4.7) 28

sequences with similar
identities and lengths

Reference 2 12~48% 15~24 (19.6) 23 up to 3 orphans

Reference 3 19~41% 19~28 (22.4) 12 divergent families
(up to 4 sub-groups)

Reference 4 13~43% 4~17 (8.4) 15 N/C-terminal extensions
(up to 400 residues)

Reference 5 19~38% 5~19 (9.3) 12 internal insertions
(up to 100 residues)

 16

BAliBASE also provides a standard program, BaliScore, that evaluates accuracies of

the MSA results. The program computes two different scores for each alignment: one is sum-

of-pairs score (or SP score) that estimates the ability to identify correct residue pairs, and the

other is column score (or TC score) that assess the competence in correctly aligning the

entire column. The two scores are calculated by the following equations.

SP Score =
∑

∑

=

=

Mr

j
j

Mt

i
i

r

t

1

1 (2.2)

where ti = ∑∑
= =

N

u

N

v
iuvp

1 1
, rj = ∑∑

= =

N

u

N

v
juvp

1 1
 each for test and reference alignment,

 N is the number of sequences contained in the problem set

 Mt is the number of columns in test alignment, and

 Mr is the number of columns in reference alignment.

TC Score =
M

c
t

Mt

i
i∑

=1 (2.3)

where ci =

u≠vu≠v

1 if residues Ru and Rv in the i-th column are aligned

0 otherwise,
piuv =

1 if all residues in the i-th column are aligned in reference

0 otherwise,

 17

The performance (SP scores only) of other well-known MSA methods are available in

the website http://www-igbmc.u-strasbg.fr/BioInfo/BAliBASE/prog_scores.html [28]. But T-

Coffee outperformed all the other methods on average, so, in this research, we will

extensively examine the performance of our new alignment method by comparing both the

SP score and TC score with those of T-Coffee, using the test cases provided in BAliBASE

v1.0.

 18

CHAPTER 3

The Principles of P-Coffee

In this chapter we explain the operation of our approach, P-Coffee. Specifically, we

show in detail how partition walls are identified from a given set of sequences, and how P-

Coffee aligns sequences with identified walls. An illustrative example of identifying a

partition wall is also given.

3.1 Identification of Partition Walls

Identifying partition walls from an unaligned mess of residues is the most important

component of the P-Coffee algorithm. In this section, we will make clear the definition of

partitions and partition walls, and will introduce the concept of complete and virtual walls.

We will also show the entire procedure of identifying partition walls, and the issues related to

the optimization of the procedure.

 19

3.1.1 The Definition of Partitions and Partition Walls

A partition wall is defined as a set of residues, each of which is chosen from the

given sequences. At most one residue can be chosen from each sequence. If no residue is

chosen from a sequence, a gap is used in its place. A partition wall exactly corresponds to a

column in a candidate alignment solution for a given sequence set. A complete wall refers to

one that does not contain any gaps. Two walls are compatible if they are completely

separated and do not cross over each other. Otherwise, two walls are said to be conflicting.

The residues in a partition wall are sorted in the order of sequence id (usually a unique

integer assigned to each sequence) so that we can easily check the compatibility of two walls.

A partition is a set of sub-sequences between two complete walls. A sub-sequence

can be a null string if no residues of a certain sequence are involved in the partition. A

partition cannot include any walls. The partitioning refers to dividing a given sequence set

into multiple disjoint partitions sectioned by single or multiple partition walls.

Lots of complexity is caused by allowing gaps in a wall. A partition cannot be

obtained with incomplete walls because there is no way of determining which position a gap

belongs to. We have overcome this difficulty by introducing the concept of virtual wall. To

obtain a partition between incomplete walls, we build virtual walls by borrowing a residue

from the appropriate neighboring walls that contain a residue for the corresponding sequence.

For a gap in the left wall of a partition, we borrow a residue from the nearest wall to the left

with no gap for the same sequence. Correspondingly, for a gap in the right wall, a residue is

borrowed from the nearest wall to the right. Residue donors do not have to be complete, but

have to have a residue for a required sequence. Virtual walls are always complete. But if we

use virtual walls for partitioning, partitions are no longer disjoint. This means that they can

 20

share some sub-sequences, which will be divided when more walls become available in later

steps. Note that virtual walls cannot be used to construct the entire alignment, because they

do not exist in reality.

In the case illustrated in Figure 3.1, there are two complete walls {S, D, R, Q} and {K,

K, S, A}, which are placed in solid boxes. There are four incomplete walls, which contain

underlined residues: {V, −, T, A}, {S, −, A, G}, {G, S, −, S}, and {R, −, K, K}. Gaps are

denoted by ‘−’. Walls are aligned because they correspond to the columns in some alignment,

as mentioned earlier.

Figure 3.1: An example of virtual walls (sequences from 1aab_ref1 in BAliBASE v1.0)

Suppose we want the partition between the walls {S, −, A, G} and {G, S, −, S}. Because both

of the walls are incomplete, we have to construct virtual walls to obtain the partition. In the

left wall {S, −, A, G}, the gap for sequence #2 should be replaced with the residue in the

nearest left wall with no gap for sequence #2. In this case, because {V, −, T, A} had again a

Seq #1 ~ DFR S

Seq #2 ~ EAK D

Seq #3 ~ SIK R

Seq #4 ~ EFK Q

R K VY ~

 K QA ~

K S EW ~

K A PY ~

 KHSDLSI V EM S KAAGAAWKEL G PEE

 DSAQGKLKLVNEAWKNL S PEE

 ENPDFKV T EV A KKGGELWRGLKD

KNPKNKSV A AV G KAAGERWKSL S ESE

 21

gap for sequence #2, we had to borrow a residue from {S, D, R, Q}, one of the complete

walls. Thus the left virtual wall is {S, D, A, G}. Similarly, for the gap in the right wall {G, S,

−, S}, we fill the gap for sequence #3 with the residue in the nearest right wall {R, −, K, K}.

Note that {R, −, K, K} is not complete, but holds a residue for sequence #3. Thus the right

virtual wall is {G, S, K, S}. The resulting partition is, therefore, {KAAGAAWKEL,

DSAQGKLKLVNEAWKNL, KKGGELWRGLKD, KAAGERWKSL}.

3.1.2 The Advantages of Partitioning

Partitioning a set of sequences at hand has two major advantages.

First, it reduces the individual problem size by dividing the original sequence set into

multiple independent sets of sub-sequences. Once a partition is fixed, we do not need to

consider alignment between a residue inside the partition and others outside the partition.

This significantly reduces the complexity in aligning the sub-sequences in a certain partition,

when compared with aligning without partitioning. The most important point here is that the

problem complexity reduces to O(L), linear time in the (average) length of the sequences,

assuming the number of sequences is fixed. Some partitions will contain null strings as

partitioning advances. For these partitions, we are only concerned with the remaining

sequences. Because the running time of the depth-first tree search algorithm is O(Bd), where

B is the branching factor and d is depth, the reduced depth of the problem will also result in

considerable speedup. We can obtain the overall alignment solution by simply

“concatenating” the alignment of each partition and partition walls in the original order

provided in the sequence set.

 Second, we can fix a part of the solution by identifying, evaluating, and accepting

 22

qualified partition walls during the running of the algorithm. As mentioned in the previous

section, a partition wall corresponds to a column in the alignment solution. Thus, to reach an

alignment solution, we can pay our attention only to unaligned portions, which are partitions.

3.1.3 Steps to Identify a Partition Wall

Step 1. Generate a random hierarchy

As mentioned in Chapter 2, T-Coffee aligns sequences using a progressive approach

that relies on multiple running of dynamic programming in the order implied by a

precomputed phylogenetic tree. Instead of depending upon such a “hypothetical” tree, P-

Coffee generates a random hierarchy, which defines the contingent rank of each sequence.

This hierarchy is used when P-Coffee constructs a tree, and coordinates the parent-child

relationship among residues. Some of possible random hierarchies are shown in Figure 3.2.

In this four-sequence case, there exist 4! = 24 different hierarchies.

Figure 3.2: Examples of random hierarchy for 4-sequence case

Depth 0

|

Depth 1

|

Depth 2

|

Depth 3

Sequence #3

|

Sequence #4

|

Sequence #1

|

Sequence #2

Sequence #1

|

Sequence #4

|

Sequence #3

|

Sequence #2

Sequence #2

|

Sequence #1

|

Sequence #4

|

Sequence #3

Sequence #4

|

Sequence #3

|

Sequence #2

|

Sequence #1

 23

Step 2. Build a tree beginning with a residue randomly picked from the depth-0 sequence

Given a random hierarchy, P-Coffee starts building a tree by choosing one residue

from the depth-0 sequence. Beginning with the chosen residue as the root of the tree being

constructed, P-Coffee recursively attaches the residues that are contained in the T-Coffee

library when paired with the current parent residue. The simple rule here is that residues in

depth-(i) are rendered to be parent nodes of ones in depth-(i+1). In other words, edges are

directed in increasing order of depth, from lesser to greater. A tree is built in depth-first

fashion, and, when there are no residues that can be added to the current node, the tree

extension can stop even before it reaches the maximum depth.

Step 3. Do the depth-first search for the highest-scored path in the fully-grown tree

After a tree has been fully grown, P-Coffee searches for the highest-scored path in the

tree. When a path does not reach to the maximum depth, we can just assign a gap for each

remaining sequence with depth greater than that of the leaf. Then, if we sort the nodes in the

path in the order of sequence id, we can obtain a partition wall. Thus, by searching for the

highest-scored path in the tree, we can obtain the highest-scored partition wall. Here we

evaluate each path by sum-of-pairs score instead of path weight. Under the sum-of-pairs

scoring scheme, the score of an identified partition wall is calculated by summing up the

substitution scores of all the possible residue pairs. Therefore, if residues contained in a wall

are more interrelated, a higher score will result.

 24

3.2 Techniques to Speedup the Wall Identification Process

In order to speedup the identification process of partition walls, we use several tricks

during the tree construction procedure. The tricks used here are not new, but helpful in

making this recursive procedure affordable.

3.2.1 Combination of Tree Building and the Highest Scorer Searching

Because trees are needed only to obtain the highest-scored path, we can speed up the

identification process by combining the tree construction and the highest-scored path search.

Specifically, we update the position of current highest-scorer as well as its score whenever a

node is added to the tree. In this way, we get the highest-scored path as soon as we finish

constructing a tree. Trees are discarded without being stored in order to save memory.

3.2.2 Thresholding

Even if a residue found as a child lies within a partition range, we may not want to

add it because we regard the entailed pair score to be unreliable and presumably safely

neglected. The objective of thresholding is “not” to add a node that is expected to be

unreliable as a member of a path being extended. But of course, if the threshold pair score is

set too high, the algorithm will branch away from a node that is required to successfully

construct a wall with maximum available reliability.

As explained in Chapter 2, T-Coffee uses sequence identity (%) of two sequences as

the base substitution score for aligned residue pairs in the sequences. During the library

extension process of the T-Coffee, such base scores are only augmented according to the

 25

consistency of each residue pair. Therefore, sequence identity is the minimum score that is

guaranteed to any aligned residue pairs in T-Coffee extended library. In addition, it is

reported that sequence comparison detects relationships between protein residues reliably

down to about 30% sequence identity [5]. For all these reasons, it is expected that the

appropriate threshold score can be determined near the range of “twilight zone” identities.

Under the sum-of-pairs scoring scheme, one additional child node brings in multiple

pair scores. As shown in Figure 3.3 by the bold bi-directional arrows, we consider all

possible pairs between the child node at hand and the predecessor nodes in the path being

constructed.

Figure 3.3: The number of new residue pairs generated by adding a child

Depth-0

Depth-1

Depth-(i-1)

Depth-(i)

Depth-(i+1)

Depth-(i+2)

…

…

 The path that is currently

 being extended

← the current (parent) depth

← the current child depth

← the next child depth

……

 26

We apply a threshold pair score to the average of all the pair scores generated by adding a

child node. In this way, a child node that has fewer but stronger connections with its

predecessors can also be accepted.

3.2.3 Pruning

We can further save resources (computation time and memory) by “not” adding a

child if no relevant future path can possibly outscore the current highest. The maximum

substitution score can be trivially found in the T-Coffee extended library. And, we also know

the remaining depths to go and, therefore, the maximum number of residue pairs that will be

brought in under the sum-of-pairs scoring scheme. Therefore, by giving each residue pair the

maximum substitution score in the T-Coffee library, we can easily compute the upper bound

on the score that can be achieved by the path that is currently being extended. By comparing

this estimated upper bound with the current highest that is previously found, we can decide

whether to add a child node or not.

3.2.4 Sorting of Candidate Child Nodes

To maximize the effectiveness of pruning, it is better to come up with as high as

possible a score in earlier stage of the tree construction. To promote this situation, we

designed our method to consider pairs in decreasing order of score when examining

candidate child nodes for attachment. With this local greedy approach, the residue that entails

the highest substitution score available will be added first at each step of depth-first tree

construction, making higher scoring path more probable in earlier stage of tree construction.

 27

3.2.5 Jumping

Jumping describes finding related residues from lower depths than the current child

depth. Since with jumping more candidate residues are within the scope of a parent node, this

modification considerably increases the average branching factor. Thus, more candidate

paths (partition walls) are examined while searching for the highest-scored path. There is a

trade-off between the thoroughness of searching and the resulting computational cost.

Although a more branched tree would result, jumping does not mean that we can

necessarily identify a more reliable path from the tree, because of a side effect incurred by

jumping: jumping introduces a gap for the skipped sequence. For example, the one step

jumping from node (a) to node (c) will result in the path {…, a, −, c, …} as shown in Figure

3.4.

Figure 3.4: Jumping

Depth-0

Depth-1

Depth-(i-1)

Depth-(i)

Depth-(i+1)

Depth-(i+2)

Depth-(n-1)

…
…

← the current (parent) depth

← the current child depth

← the next child depth

← the bottom depth

c

a

b

 28

Dotted circles denote candidate nodes that may be added to the current (parent) node,

which is currently the node (a). Since a gap significantly reduces the sum-of-pairs score of a

wall by negating maximum (n – 1) substitution scores, where n denotes the total number of

sequences, a path with jumping history is less likely to make the highest score in the tree.

This can be easily noticed by comparing the score of the path {…, a, b, c, …} with that of the

path {…, a, −, c, …}. The latter will lose every pair score that involves the node (b), under

the sum-of-pairs scoring scheme.

Therefore, if the partition at hand contains many complete or almost complete walls,

jumping will not bring any improvement in accuracy. On the other hand, jumping will

expedite the tree building process when it is used for a partition that contains walls with

many gaps, because we do not have to wait until all non-gaps are placed in the top depths

consecutively by a random hierarchy. To reflect this idea, we designed P-Coffee to jump only

in case we cannot find any candidate child from the current child depth. As you may see in

Section 3.4, this lazy jumping is allowed after lots of complete walls are extracted out.

 29

3.3 Example of Identifying a Partition Wall

Figure 3.5 shows the 1aab (reference 1) case given in BAliBASE v1.0. Suppose a

random hierarchy #1→ #4→ #3→#2 is generated, and 1-11 (residue #11 of sequence #1) is

randomly picked as the root of the tree that is going to be constructed.

Figure 3.5: An example of tree construction. The path {F, F, L, Y} in a solid block denotes a
previously identified complete wall, by which a partition is formed on its left side. Jumping
is not allowed. The terms in the sum-of-pairs scores are given in the order of (1,4), (1,3),
(1,2), (4,3), (4,2), and (3,2), where (i, j) denotes the pair of sequence id’s. The table of
substitution scores is given as is in T-Coffee extended library.

kkdsnapkra M tsfmf F ssdfr~

dpnkpkra P saf F v F mgefr~

adkpkrp L aym L w L nsare~

kpkrp R sa Y N i Y V sa~

Seq #1

Seq #4

Seq #3

Seq #2

11

9

87

99

87

8

10

107

20

13

9

25

12

13

107

87 20

Related residue pair scores

1 2
11 6 99 (*)

1 3
11 8 65

1 4
11 9 105
11 13 25

2 3
6 8 87
9 8 20

10 12 87
13 12 20

2 4
6 9 87
9 9 27

10 13 87

3 4
8 9 107

12 13 107

The sum-of-pairs score of each path

{M, P, L, R}: 105 + 65 + 99 + 107 + 87 + 87 = 550
{M, P, L, Y}: 105 + 65 + 0 + 107 + 27 + 20 = 324
{M, F, L, N}: 25 + 0 + 0 + 107 + 87 + 87 = 306

An example score calculation of a jumping path

{M, P, –, Y}: 105 + 0 + 0 + 0 + 27 + 0 = 132

27

105 65

6

87

 30

The relevant residue number is put on the top of each node. And, the substitution

scores are placed at the bottom of each node, near the starting point of each directed edge.

The relevant substitution scores are excerpted from the T-Coffee extended library that is

computed beforehand for this sequence set. The lines with # sign specify the sequence

numbers. Other lines indicate residue pair by their position indices in each sequence, and its

score (bold face). For example, the line marked (*) means that the substitution score between

1-11 and 2-6 is 99.

A tree is built starting from the randomly picked root 1-11. So the current ongoing

path is {1-11}. By the random hierarchy, sequence #4 is at the current child depth. So we

refer to the category [# 1 4] in the T-Coffee library, and find out that 1-11 is related to 4-9

and 4-13, whose scores are 105 and 25 respectively. Because 4-9 makes higher score with 1-

11, it is first checked for attachment. Suppose we set the threshold pair score to 10. Because

the average score between 4-9 and every node in the ongoing path {1-11} is 107 / 1 = 107 >

10, it clears threshold condition. Next we check the pruning condition. From the current child

depth, there are two more depths to go, so maximum 2 + 3 = 5 residue pairs would be

brought in until the path reaches to the bottom depth. Because the maximum pair score is

found to be 107 for this set, the upper bound score the path {1-11, 4-9} can achieve is 107 +

107 × 5 = 642. This outscores the current highest, which is zero. So the candidate 4-9 also

clears the pruning condition, thus it is added to the root 1-11. The current ongoing path

becomes {1-11, 4-9}. The current highest is reset to node 4-9 with the score of 107.

This simple checking and adding process is repeated in depth-first fashion until we

have no more nodes to attach. The tree construction ends up with three paths; {M, P, L, R},

{M, P, L, Y}, and {M, F, L, N}. The sum-of-pairs scores are also calculated in Figure 3.5.

 31

According to the score, the path {M, P, L, R} is the highest-scored path. By sorting the nodes

in the path in the order of sequence id, the partition wall {M, R, L, P} is obtained.

There are a few more points to note in Figure 3.5. First, 2-13 (denoted by the dotted

circle) could not be added because it is outside the partition. Secondly, when 2-9 is checked

for the thresholding condition before being added to 3-8 (denoted by the dashed arrow), the

average pair score between 2-9 and every node in the path {1-11, 4-9, 3-8} is computed to be

(0 + 27 + 20) / 3 ≈ 16 > 10. If we set the threshold pair score to 20, then 2-9 will not be

accepted as a child of 3-8. Finally, if jumping is allowed, more parent-child relationships will

be added (denoted in thin directed edges) in the tree. One example score of a path with

jumping history is also calculated in Figure 3.5. The jumping paths in this case do not bring

any difference except the increased computational cost, since the partition contains complete

paths with high scores.

 32

3.4 Partition Wall Selection for Alignment Solution Construction

The reliability of an alignment solution depends upon that of columns used to

construct the alignment. Since columns correspond to partition walls in P-Coffee, it is crucial

to correctly evaluate the reliability of the walls found during the wall identification procedure.

In this section, we propose an additional criterion other than the sum-of-pairs score to select

reliable walls from the pool of identified walls.

3.4.1 Reliability of a Partition Wall

There are some issues about the reliability of partition walls. What is the reliability of

a partition wall, and how can we evaluate it? Does a higher sum-of-pairs score mean a more

reliable partition wall? Is the score the only criterion for reliability we can depend upon?

As for reliability, we can simply state that reliable walls should be able to catch

biologically meaningful residue equivalency. In fact, discovering correct residue

equivalencies from given protein sequences is the essence of all sequence alignment tools, in

that structure or function of proteins are predicted based on these equivalencies. On the other

hand, evaluating residue equivalency is not as straightforward as the objective itself, because

of the lack of dependable arrangements to incorporate information that relates residues into

sequence-level analysis. There have been efforts to exploit other source of equivalency

information such as structural data [29]. But, coming up with a sound objective function to

evaluate residue equivalencies is still an important issue.

The position-specific scoring scheme such as the extended library of T-Coffee is one

good example of an objective function evaluating the similarity of residues. But, what makes

problems complicated is that a higher sum-of-pairs score does not always result in a column

 33

in the reference alignment. We found that walls falling in only upper 15% of score range can

be used safely to construct alignment solutions.

Facing this challenge, we paid an attention to an important point: the sum-of-pairs

scoring scheme reflects the interrelatedness among residues contained in a column (or a

wall). Based on the idea, we invented a test that detects more reliable walls from the pool of

identified walls.

3.4.2 The True Power of Random Hierarchy

The breakthrough for the difficulty in reliability evaluation is to accept walls that

appear more than some specified number of times after a sufficiently large number of

iterations of wall identification. As explained in Section 3.1.3, P-Coffee first generates a

random hierarchy, and arbitrarily chooses one residue from the depth-0 sequence as root to

be extended. In each iteration, a different sequence hierarchy as well as a root is used, and

extended fully to a different tree. During this iterative procedure, a certain wall may be

identified more than once if residues contained in the wall are closely interrelated. Therefore,

by accepting reproducible walls, we can mimic the idea of the sum-of-pairs scoring scheme.

The advantage of this test is that it does not depend upon any scoring metric, so even

relatively low scorers may be accepted.

As we show in Chapter 4, this approach significantly raises the accuracy of identified

walls. With the combined use of the sum-of-pairs score and the reproducibility, we can also

raise the accuracy of the alignment solution. Taking advantage of the statistical behavior of

random hierarchy, we were able not only to make the algorithm independent from

 34

hypothetical phylogenetic trees but also to provide a novel way to discover the

interrelatedness among residues.

This can be illustrated by comparing Figure 3.5 and Figure 3.6. It can easily be

noticed by directed edges that the residues in the highest-scored path {M, P, L, R} are

interrelated in Figure 3.5. In Figure 3.6, we use a different hierarchy #3→ #2→ #1→#4 and a

different root 3-8, and found the different highest scored path {L, R, M, P}. But as indicated

in Figure 3.7, these two paths imply the same wall, {M, R, L, P}.

Figure 3.6: Another random tree for the Section 3.3 example

a d k p k r p L aymlw L ns~

k p k r p R sa Y ni Y vs~

kkdsnapkra M ts F mf F ss~

dpnkpkra P sa F F v F M ~

Seq #3

Seq #2

Seq #1

Seq #4

11

9

99

87

8

12

105

14

9

25

1613

25 105

Related residue pair scores

1 2
11 6 99
14 9 99

1 3
11 8 65
67 8 28

1 4
11 9 105
11 13 25
14 12 105
14 16 25

2 3
6 8 87
9 8 20

2 4
6 9 87
9 9 27

3 4
8 9 107

The sum-of-pairs score of each path

{L, R, M, P}: 87 + 65 + 107 + 99 + 87 + 105 = 550
{L, R, M, F}: 87 + 65 + 0 + 99 + 0 + 25 = 276
{L, Y, F, F}: 20 + 0 + 0 + 99 + 0 + 105 = 224

20

6

99

107 65

87

 35

Figure 3.7: The wall identified by two different random trees

kkdsnapkra M tsfmf F s~

 dpnkpkra P saffv F m~

 adkpkrp L aymlw L n~

 kpkrp R sayni Y v~

Seq #1

Seq #4

Seq #3

Seq #2

11

9

8

6

 adkpkrp L aymlw L n~

 kpkrp R sayni Y v~

kkdsnapkra M tsfmf F s~

 dpnkpkra P saffv F m~

Seq #3

Seq #2

Seq #1

Seq #4

8

6

11

9

 36

3.4.3 The Construction Procedure of Alignment Solution

The target alignment is constructed by recursively partitioning the given sequence set.

There are two base cases available for this recursive procedure. If a partition is composed of

at most one residue for each sequence, P-Coffee fixes the partition as one partition wall. If a

partition contains only residues that belong to a certain sequence, P-Coffee separates them

into distinctive columns that contain only one residue. After all partitions are fixed, P-Coffee

concatenates them into one big alignment solution. To save memory, we implemented this

recursive procedure so as to keep only selected walls and to handle each partition between

two walls one by one. Every partition from the leftmost one to the rightmost one undergoes

further partitioning during one phase.

There are parameters to be determined before running P-Coffee. The threshold pair

score is a parameter for screening out unreliable residues in order to speed up the wall

identification process. The threshold score of 10 is used throughout the phases except the last

one. The Multiplier is a parameter that defines the number of iterations for each phase. If it is

“×2”, the wall identifying procedure is repeated twice the maximum sequence length number

of times in the partition at hand. The Acceptance Qualification describes which walls to

accept in each phase. If it is “double+”, we only accept walls that are identified more than

once. We also have to decide whether to allow jumping. Detailed description of the

parameters is given in the next section.

Once a partition wall is selected, it is used not only as a building block for an entire

alignment solution but also as a boundary between partitions. As explained in the previous

sections, the original sequence set is divided into conceptually disjoint problem sets by

partition walls. Note that we do not consider alignments of residue pairs that have a partition

 37

wall between them. Therefore, it is important to select more reliable walls in the earlier

stages, so that partitions can safely disregard outsider residues during the iterative

partitioning process. Based on this idea, we designed P-Coffee to work in four phases. The

values of the parameters are summarized in Table 3.1.

Table 3.1: Phases in P-Coffee. Jumping is not a parameter for the algorithm, but included in
this table to show when it is activated. In phase #4, the acceptance qualification gives the
priority in the order of double+’s, and then, the high scorers.

 Multiplier Jumping Threshold Acceptance Qualification

PHASE #1 ×1 not allowed 10 top 5% scorers

PHASE #2 ×2 not allowed 10 triple+

PHASE #3 ×4 lazy jumping 10 double+

PHASE #4 ×2 lazy jumping 0 double+
all non-conflicting leftovers

In Phase #1, jumping is not allowed because it can be safely assumed that the

sequence set should contain many complete or almost complete walls initially. Only the top

5% highest scorers can survive in this phase. Considering that one partition wall reduces the

size of the corresponding partition to half on the average, we can still divide the original

problem into multiple partitions of significantly reduced size even retaining only this small

 38

portion of all identified walls. The wall identification is repeated the maximum sequence

length number of times. The reproducibility criterion is not applied in this phase.

In Phase #2, P-Coffee repeats the wall identification process for ×2 times to find more

walls that are reproducible. Only walls that identified more than twice are accepted. In Table

3.1, these walls are denoted by “triple+”, meaning the walls that appear “three times or more”

in one phase. The acceptance qualification is set to triple+ in order to select more reliable

walls in the earlier stages. Jumping is not allowed, because we expect that there still remain

many undiscovered complete walls since only 5% of walls are fixed in the previous phase.

Note that scores are not used for acceptance checking.

In Phase #3, lazy jumping is allowed so as to effectively identify walls that contain

gaps. Complete walls may still remain. But, if this is the case, lazy jumping will not actually

be used, since it is called only when there is no candidate child to be added at the current

child depth. To find more reproducible walls, we raise the multiplier to ×4. Walls identified

more than once are accepted. We denote these walls “double+” to represent the ones that

appear “two times or more” in one phase. No scores are used for acceptance either in this

phase.

Finally, in Phase #4, the multiplier ×2 is applied. In this phase, all non-conflicting

walls are accepted. Priority is given to double+’s, and then, higher scorers. Phase #4 repeats

itself until every wall is identified. The threshold is disabled in this phase, because we are

trying to fix all the partition walls irrespective of the reliability.

 39

3.5 Parameters

There are four parameters that have to be set before running P-Coffee. The threshold

pair score is required for efficient running of the wall identification process. The multiplier

and the acceptance qualification including the initial acceptance rate control the wall

selection procedure. In this section, we will describe in detail the features that these

parameters have.

3.5.1 The Threshold Pair Scores

As explained in Chapter 2, sequence identity (%) is the minimum score that is

guaranteed to the aligned residue pairs belonging to the sequences. Admitting that sequence

comparison is reliable down to the twilight zone (25~30% identity), we may conclude that

we can ignore residue pairs with substitution score below this zone when extending a tree.

But if multiple sequences are used in search of hidden residue equivalencies, interrelatedness

among residues may be helpful in identifying reliable equivalencies below this limit. More

importantly, it is impossible to construct an alignment solution with columns that are

composed of only reliable residues, because in MSA we have to assign every residue to some

position in the alignment, irrespective of its reliability. Therefore, in the big picture, we

cannot ignore residues just because they entail substitution scores below the twilight zone.

Because of the lack of information sufficient to overcome this complexity, we

decided the proper level of the threshold pair score experimentally by observing the effect of

threshold values on algorithm performance.

If the threshold is set to a lower value, the branch factor will be larger, because many

unreliable residues can be added to growing tree, and the algorithm will require a large

 40

amount of computational resources. Note that this tree-based procedure has exponential time

complexity, so controlling the branch factor is crucial. On the other hand, if we set the

threshold excessively high, it will prevent the paths being constructed from reaching to the

bottom depth without gaps, thus making them unlikely to survive the competition among

paths in the tree. We want to find the optimum threshold value that controls the exponential

time complexity without sacrificing the reliability of identified walls.

3.5.2 The Multiplier and The Acceptance Qualification

As described in Section 3.4.3, the multiplier specifies the number of iterations used to

form a pool of partition walls in each phase, and the acceptance qualification describes a

condition for the walls to be accepted. We use the maximum sequence length as a

multiplicand so that each residue in the maximum length sequence can be examined

probabilistically at least once. Note that the closest number to the resulting alignment length

currently available is the maximum sequence length, because no two residues in the same

sequence can be in the same alignment column.

The higher the value of the multiplier, the greater the chance that walls appear more

than some specified number of times. But if the multiplier is set to a value beyond required,

redundant computation will result. For example, the wall that has been identified twice in ×2

iterations is roughly expected to appear four times in ×4 iterations, if the residues contained

in the wall are closely interrelated. Furthermore, even incorrect walls can pass this screen.

This happens in case they contain a small portion of interrelated residues and similar

hierarchies are used. On the other hand, if the multiplier is set to a value too small, the

 41

number of qualified walls will be reduced, since walls do not have enough chance to appeal

their reliability.

3.5.3 The Initial Acceptance Rate

The initial acceptance rate is one of the acceptance qualifications that is used only in

the initial phase of P-Coffee. The motivation of using the initial acceptance rate is that there

may exist a minimum score that we can use as a cutoff criterion when selecting a wall from

the pool of identified walls. Since this minimum will be different case by case, we normalize

it by the highest score found during the repetition of wall identification process.

The initial acceptance rate is defined by the following formula. So, for example, if the

rate is set to 10%, we will accept only the top 10% highest scorers from the identified walls

in Phase #1.

the initial acceptance rate normalized−= 1 minimum score for guaranteed hit

scorehighestoverallthe
scorefailhighestthe

−= 1 (3.1)

The initial acceptance rate is used only in Phase #1, since it is unlikely that we encounter

such high scorers again in the later phases once we use up all high scorers. The number of

accepted walls will be reduced as the acceptance rate gets smaller. So we want to estimate

the maximum score level that we can trust without further analysis.

 42

CHAPTER 4

Tests and Results

In the previous chapter, we explained some features that are introduced for more

effective and accurate running of the algorithm. We pointed out four parameters to be

determined before the running of P-Coffee. In this chapter, we will demonstrate how the

parameters have been determined. And then, we will show the competency of P-Coffee by

comparing its performance with T-Coffee using BAliBASE v1.0 test cases.

4.1 Tests

As clarified in Section 3.5, we can control the effectiveness of the P-Coffee by

adjusting the parameters – the threshold pair score, the initial acceptance rate, the multiplier,

and the acceptance qualification. In this section, we will suggest the ways to determine the

optimum values of these parameters.

 43

4.1.1 Test #1: The Optimum Threshold Pair Score

One of the most important benefits of BAliBASE is that we can evaluate the

correctness of an identified wall by simply seeing whether it is really included in the

reference alignment or not. We call it a hit if we can find a match, and a fail otherwise. Using

this feature, we can obtain the hit rate of the identified walls after repeating the wall

identification process for a specified number of times. In this test, we want to know to what

extent the algorithm should allow unreliable (lower scored pair) residues to be added to a tree

being constructed. So we can find out the optimum threshold value by selecting one that

makes the maximum hit rate. We tested 5, 10, 15, and 20 as the threshold values with the

multiplier value of ×1. We did not allow jumping in this test.

4.1.2 Test #2: The Optimum Initial Acceptance Rate

In this test, we wanted to find out the maximum level of acceptance rate that would

cover most of the test cases. This test can be done alongside Test #1, since we can obtain the

initial acceptance rate of each test case by simply keeping track of the highest fail score and

the overall highest during the iteration.

4.1.3 Test #3: The Optimum Combination of the Multiplier and the

Acceptance Qualification

As in Test #1, the optimum combination of the multiplier and the acceptance

qualification can be obtained by seeing which combination achieves the maximum hit rate.

 44

We tested the multiplier values of ×1, ×2, ×3, and ×4, and analyzed the hit rate as well as the

number of identified walls for the qualification values of singles, double+’s, and triple+’s for

each multiplier value. We used the threshold pair score of 10, and did not allow jumping in

this test.

4.1.4 Test #4: The Performance of P-Coffee

BAliBASE also provides a program, BaliScore, so that we can score our results

according to the standardized guideline. This score can be used to benchmark the

performance of our algorithm with that of other MSA tools. Because it is reported that T-

Coffee outperforms other well-known MSA tools, we benchmarked only with T-Coffee in

this test.

 45

4.2 Test Results

4.2.1 The Optimum Threshold Pair Score

As expected, if the threshold pair score is smaller, an exponentially larger amount of

CPU time is used to identify partition walls, because the branch factor of trees will increase.

The result is shown in Table 4.1 and Figure 4.1. But lower thresholds did not always result in

higher hit rates. This means that a branchy tree does not guarantee finding more reliable

partition walls. Rather, in many cases, hit rates decreased with the threshold values lower

than the optimums, because it is more likely that unnecessary residues are included in the

surviving walls.

Table 4.1: The performance of the partition wall identification with the varying threshold pair
scores. 1idy (ref 2), 1lvl (ref2), 1tgxA (ref2), and 1idy (ref3) are excluded from this result to
avoid a bias that can be arise as a result of their excessive amount of CPU time (in seconds)
used.

 Threshold = 5 Threshold = 10 Threshold = 15 Threshold = 20

 Hit
Rate

CPU
Time

Hit
Rate

CPU
Time

Hit
Rate

CPU
Time

Hit
Rate

CPU
Time

Ref 1 0.819 47 0.828 53 0.793 35 0.747 42

Ref 2 0.542 15200 0.542 5043 0.400 1141 0.305 811

Ref 3 0.541 18242 0.565 1265 0.423 227 0.317 157

Ref 4 0.575 425 0.519 211 0.469 92 0.383 88

Ref 5 0.730 576 0.731 216 0.726 96 0.692 95

Overall 0.714 3623 0.707 981 0.651 239 0.588 184

 46

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

5 10 15 20

The Threshold Pair Score

H
it

R
at

e

0

500

1000

1500

2000

2500

3000

3500

4000

C
P

U
 T

im
e

(s
ec

on
ds

)

Ref1
Ref2
Ref3
Ref4
Ref5
Avg Hit Rate
Avg CPU Time

Figure 4.1: Effect of the threshold pair score on the performance of the wall
identification process. The average hit rate declines from the threshold value
of 10.

Data shows that the most suitable threshold pair score is 10, since, on average, the hit

rate keeps its level even though it pays only 981 / 3623 ≈ 27% of CPU time compared with

the case that the threshold of 5 is used. The optimum threshold value proves that we cannot

ignore a residue just because it has a substitution score below the twilight zone sequence

identity.

 47

4.2.2 The Optimum Initial Acceptance Rate

For each threshold value that was used in the previous test, the initial acceptance rates

were observed. The result is summarized in Table 4.2. For example, the cell that is marked

(*) in Table 4.2 means that only the top 3.9% of the highest scoring walls were correct in

Reference 2 test cases when we use the threshold value of 10. Walls with scores below that

level are no longer safe to use to construct alignment solutions without further analysis.

The rates turn out to be insensitive to the threshold values. This is because the highest

fail score and the overall highest could be found no matter what threshold value below the

twilight zone is used.

Table 4.2: Reliable score range of sum-of-pairs scoring scheme

Threshold 5 10 15 20

Ref 1 0.209 0.207 0.210 0.200

Ref 2 0.039 (*) 0.039 0.039 0.041

Ref 3 0.071 0.070 0.063 0.066

Ref 4 0.092 0.086 0.087 0.089

Ref 5 0.199 0.137 0.140 0.135

Overall 0.156 0.149 0.151 0.145

 48

The data shows that, on average, only the top 15% highest scorers were reliable under

the sum-of-pairs scoring scheme. But, considering the narrowest range among all categories

(see the cell marked (*) in Table 4.2), we decided to accept only the top 5% highest scorers

in the first phase of P-Coffee. Figure 4.2 illustrates how many categories the optimum initial

acceptance rate covers.

0.000

0.050

0.100

0.150

0.200

0.250

Ref1 Ref2 Ref3 Ref4 Ref5 OVERALL

BAliBASE Categories

Th
e

Lo
w

es
t F

ai
l S

co
re

 /
Th

e
M

ax
im

um
 S

co
re

Threshold = 5
Threshold = 10
Threshold = 15
Threshold = 20

Figure 4.2: The reliable range of the sum-of-pair scores

 Reference 2 has the
narrowest safe range.

The selected initial acceptance rate

 49

The selected initial acceptance rate does not fully cover the test cases in Reference 2.

But even incorrect walls with scores near this region will not harm the reliability of an

overall alignment solution, since they would not have reached such high scores without

containing enough of the residue equivalencies we are looking for.

4.2.3 The Optimum Combination of Multiplier-Qualification

Various combinations of multiplier-qualification values were tested. As expected, the

accuracy grew in the order of singles, double+’s, and triple+’s throughout the categories. As

mentioned in Section 3.5.2, the accuracy declined as the multiplier was set to higher values.

From the data provided in Table 4.3, we have decided the values of the multiplier and the

acceptance qualification to be ×2-triple+. Compared with the most accurate combination, ×1-

triple+ (see underlined cells in Table 4.3), ×2-triple+ identified (9767 – 2732) / 2732 ≈ 258%

more partition walls without loss of the hit rate. The combination ×3-triple+ (see double

underlined cells) found even more partition walls than the optimum combination without

significant loss of accuracy, but it had some weakness for Reference 4 test cases (see the cell

marked (*)). On the other hand, the selected combination of ×2-triple+, was robust to the

type changes of the problem set. This is also illustrated in Figure 4.3.

 50

Table 4.3: The reliability of reproducible walls in various combinations
of multiplier-qualification. The test cases, 1idy, 1lvl, and 1tgxA (all in
reference 2), are excluded from this result. Because we counted the
walls that are identified more than three times as three, the raw hit rates
are estimated slightly lower than the real values.

Qualification Singles
Multipliers ×1 ×2 ×3 ×4
Ref1 0.681 0.479 0.304 0.176
Ref2 0.338 0.186 0.100 0.057
Ref3 0.345 0.177 0.090 0.050
Ref4 0.232 0.154 0.169 0.111
Ref5 0.510 0.275 0.156 0.097
Overall 0.497 0.298 0.190 0.110
Num of Walls 11272 9137 6861 4783
Qualification Double+
Multipliers ×1 ×2 ×3 ×4
Ref1 0.945 0.928 0.905 0.879
Ref2 0.895 0.856 0.844 0.830
Ref3 0.988 0.979 0.968 0.961
Ref4 0.826 0.757 0.660 0.593
Ref5 0.948 0.942 0.923 0.903
Overall 0.928 0.907 0.878 0.848
Num of Walls 8115 17473 23186 26545
Qualification Triple+
Multipliers ×1 ×2 ×3 ×4
Ref1 0.966 0.961 0.961 0.950
Ref2 0.919 0.911 0.901 0.894
Ref3 0.987 0.993 0.987 0.984
Ref4 0.925 0.908 (*) 0.841 0.802
Ref5 0.959 0.978 0.965 0.962
Overall 0.954 0.953 0.946 0.934
Num of Walls 2732 9767 16794 21840
 Raw (estimated)
Multipliers ×1 ×2 ×3 ×4
Overall 0.676 0.602 0.520 0.446

 51

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

Ref1 Ref2 Ref3 Ref4 Ref5

BAliBASE Categories

H
it

R
at

e

x1- Singles
x2- Singles
x3- Singles
x4- Singles
x1- double+
x2- double+
x3- double+
x4- double+
x1- Triple+
x2- Triple+
x3- Triple+
x4- Triple+

Figure 4.3: The surge in accuracy when we use reproducibility criterion

 52

The overall average accuracy of each qualification is illustrated in Figure 4.4.

Compared with the raw accuracy, the selected combination achieved an accuracy increase of

(0.953 – 0.602) / 0.602 ≈ 58%. Note that the limit we could have achieve was (1 – 0.602) /

0.602 ≈ 66%. Since over 95% of walls identified in Phase #2 are hits, this will significantly

contribute to the reliability of overall alignment solution.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

x1 x2 x3 x4

Multiplier

H
it

R
at

e

Singles
Double+
Triple+
Raw

Figure 4.4: Overall accuracy of each acceptance qualification

The selected combination of
multiplier-qualification

 53

The numbers of correct walls that are identified during the tests are illustrated in

Figure 4.5. As mentioned in Section 3.5.2, the number of singles decreased as the multiplier

was set to a larger value. Instead, more double+’s and triple+’s could be identified.

0

5000

10000

15000

20000

25000

30000

x1 x2 x3 x4

Multiplier

Th
e

N
um

be
r o

f C
or

re
ct

 W
al

ls

Singles
Double+
Triple+

Figure 4.5: The number of correct walls identified

Using the selected combination of ×2-triple+, we were able to identify total 9767

correct partition walls. Since the total alignment length of all the test sequence set is 49925,

the number of identified walls corresponds to 20% of all the columns to be found. This may

 54

look like a very small portion, but with this amount of walls, the average partition size is

reduced to less than 100% / 20% = 5. Since residues outside a partition are no longer

considered when a tree is being built in the partition, the probability that unreliable residues

are attached to the tree also decreases. This is why we apply relatively loose qualification

condition (which is ×4-double+) to Phase #3. We have not tested for this combination,

because we can indirectly show its effectiveness with the accuracies of the final alignment

solutions.

 55

4.2.4 The Performance of P-Coffee

The competency of P-Coffee is demonstrated by comparing its performance with that

of T-Coffee. The differences between the percent accuracy achieved by P-Coffee and T-

Coffee are plotted along with the average sequence identity of test sets. Both the residue pair

accuracy and the column accuracy are compared, and each result is drawn separately as in

Figure 4.6 (a) and (b). To make the differences clearer, we divided the data into two parts,

Reference 1 and the others. As shown in Figure 4.7, we could not identify any improvement

for the test cases in Reference 1. But, for References 2 to 5, which are composed of problem

sets with more sequences, P-Coffee improved both the residue pair accuracy and the column

accuracy on average by 6% and 18% respectively. As validated by the P-values for the

Wilcoxon signed rank tests both less than 10-7, the difference between P-Coffee and T-Coffee

is significant. This improvement can also be easily noticed by the dispersion of data points

shifted towards upper region of x-axis in Figure 4.8.

Table 4.4: The average accuracy P-Coffee compared with that of T-Coffee.

SP Score TC Score
T-Coffee P-Coffee T-Coffee P-Coffee

Ref 1 94.1% 93.8% 89.3% 89.9%
Ref 2 86.6% 93.1% 35.5% 59.6%
Ref 3 92.2% 97.5% 62.9% 85.0%
Ref 4 78.5% 85.5% 57.0% 70.2%
Ref 5 93.7% 97.5% 82.8% 90.8%

Overall 91.1% 93.5% 74.6% 82.7%

Ref 2~5 87.1% 92.9% 55.2% 73.1%

 56

-40%

-20%

0%

20%

40%

0 20 40 60 80

Average % Identity

P
-C

of
fe

e
- T

-C
of

fe
e

(%
 A

cc
ur

ac
y)

-120%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

0 20 40 60 80

Average % Identity

P
-C

of
fe

e
- T

-C
of

fe
e

(%
 A

cc
ur

ac
y)

Figure 4.6: The difference in (a) SP Score and (b) TP Score (Overall)

)
)

(a)

(b)

 57

-40%

-20%

0%

20%

40%

0 20 40 60 80

Average % Identity

P
-C

of
fe

e
- T

-C
of

fe
e

(%
 A

cc
ur

ac
y)

-120%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

0 20 40 60 80

Average % Identity

P
-C

of
fe

e
- T

-C
of

fe
e

(%
 A

cc
ur

ac
y)

Figure 4.7: The difference in (a) SP Score and (b) TP Score (Ref1 Only)

)
)

(a)

(b)

 58

-40%

-20%

0%

20%

40%

0 20 40 60

Average % Identity

P
-C

of
fe

e
- T

-C
of

fe
e

(%
 A

cc
ur

ac
y)

-120%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

0 20 40 60

Average % Identity

P
-C

of
fe

e
- T

-C
of

fe
e

(%
 A

cc
ur

ac
y)

Figure 4.8: The difference in (a) SP Score and (b) TP Score (Ref2~5)

)
)

(a)

(b)

 59

4.2.5 Further Analysis of the Performance of P-Coffee

P-Coffee outperformed T-Coffee in References 2 to 5 test cases. These categories

contain 15.5 sequences on average, while Reference 1 contains only 4.5 sequences. If the

number of sequences increases, the length of partition walls also increases. As a result, the

probability that a certain wall is identified more than once gets smaller, since more residues

should be interrelated. This makes the reproducible walls more reliable than those in cases

with fewer number of sequences. As shown in Figure 4.9, the hit rates of both double+’s and

triple+’s are distributed in the higher value range as the number of sequences increases.

0.000

1.000

0 5 10 15 20 25 30

The number of sequence

H
it

ra
te

Double+
Triple+

Figure 4.9: The relationship between the number of sequences and the
accuracy of reproduced walls

 60

4.2.6 The Run Time Analysis of P-Coffee algorithm

We analyzed the run time of P-Coffee with a fixed number of sequences, in order to

prove the advantage of partitioning. If the number of sequences is fixed, the run time of the

algorithm is expected to be O(L), where L is the average length of the sequences, because the

number of partition walls to be identified will increase proportional to the average length of

the sequence set in most cases. The analysis was done only with Reference 1 test cases,

because it is the only category that has enough data points that share the same number of

sequences. As illustrated in Figure 4.10 and Figure 4.11, the CPU time increased linearly in

the length of the sequence set.

-100.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0 200 400 600 800 1000 1200

The Alignment Length

C
P

U
 T

im
e

(s
ec

on
ds

)

ref1 v1
ref1 v2
ref1 v3
ref4
Linear (ref1 v2)

Figure 4.10: Run time analysis of P-Coffee with a fixed number of sequences (4-
sequence cases).

 61

-100.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0 100 200 300 400 500 600 700 800 900

The Alignment Length

C
P

U
 T

im
e

(s
ec

on
ds

)

ref1 v1
ref1 v2
ref1 v3
ref4
ref5
Linear (ref1 v3)

Figure 4.11: Run time analysis of P-Coffee with a fixed number of sequences (5-
sequence cases). The trend line in each graph of Figure 4.10 and Figure 4.11 is drawn
only for the sub-category that has the maximum range in the sequence length. We
used the length of the reference alignment instead of the average sequence length in
this graph.

We also examined the run time with varying numbers of sequences to observe the

influence of the tricks we have introduced in order to speed up the algorithm. Note that this

test was not possible for Reference 1 test cases, since they are composed of the sequence sets

with 4 to 6 sequences. As shown in Figure 4.12, the tricks worked to hold the run time within

roughly the linear time range for reference 4 and 5 test cases, except for one outlier. This

proves that the techniques used for speed up are properly handling the exponential time

complexity at least for BAliBASE test cases. But, we do not believe that the tricks can

 62

guarantee to hold an arbitrary sequence sets within the linear time complexity, as suggested

by the outlier.

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

0 5 10 15 20

The number of Sequences

C
P

U
 T

im
e

(s
ec

on
ds

)

ref4
ref5
Linear (ref5)

Figure 4.12: Run time analysis with varying number of sequences
(Ref 4 and 5 only). A trend line is added for reference 5 cases.

There are various environmental factors that can affect the time complexity of P-

Coffee: for example, average sequence identity, the distribution of residue pair scores, the

compositional features of sequence set (as in BAliBASE categories), or the size of the T-

Coffee library. If a problem set contains a large number of sequences, the effect of such

 63

environmental factors can be augmented. For this reason, it was difficult to analyze the

influence of the techniques for speedup. This is well illustrated in Figure 4.13 by the

widespread dispersion of data points. That is, for References 2 and 3 categories, it was not

possible to identify any trend in the run time with varying number of sequences.

0

10000

20000

30000

40000

50000

60000

70000

80000

15 17 19 21 23 25 27 29

The Number of Sequences

C
P

U
 T

im
es

 o
f R

ef
 2

 (s
ec

on
ds

)

0

1000

2000

3000

4000

5000

6000

ref2
ref3

Figure 4.13: Run time analysis with varying number of
sequences (Ref 2 and 3 only)

C
PU

 T
im

es
 o

f R
ef

 3
 (s

ec
on

ds
)

 64

CHAPTER 5

Conclusion and Future Work

In this research, we propose a new divide-and-conquer method, P-Coffee, for the

problem of multiple sequence alignment. The main differences from other MSA methods is

that the new method aligns sequences column by column, and that the method does not try to

maximize (or minimize) any objective function to reach a solution. In addition, P-Coffee

deals with all the sequences in a set simultaneously. Although P-Coffee used 25.7 times more

CPU time than T-Coffee, it outperformed T-Coffee by 5.9% in residue pair accuracy, and

18.0% in column accuracy for References 2 to 5 categories. For test cases in Reference 1, the

performance was almost same. P-Coffee has a relatively better performance on problem sets

that contain a larger number of sequences. In addition, P-Coffee was robust to the

compositional features of sequence sets such as sets containing orphans, sets with divergent

families, sets with N/C-terminal extensions, and sets with internal insertion.

 65

P-Coffee has two core techniques invented in this research. One is the tree-based

identification process of an alignment column (our term for this is “partition wall”). In this

process, the algorithm builds a tree according to a randomly generated sequence hierarchy,

using the substitution scores in the T-Coffee extended library (a position-specific scoring

scheme). And then, it identifies one partition wall by taking the path with the highest sum-of-

pairs score.

The other innovative technique is the test method that distinguishes probabilistically

more reliable walls out of the pool of identified walls. We invented this reliable test method

based on the idea that the walls containing closely interrelated residues can be identified

again with trees using the different hierarchies. In this test method, by accepting the walls

that identified more than a specified number of times, we could significantly improve the

accuracy of selected walls. The reproducible walls turned out to be even more reliable if the

number of sequences in the set gets larger.

The most significant achievement of this research is that the wall identification and

selection process, two major components of P-Coffee, can be used in any MSA tool as a pre-

processor that reduces the dimension of the problem by dividing the sequence set into smaller

partitions. This process is a potential breakthrough for most of iterative alignment tools that

have poor performance in large sequence sets. In fact, another divide-and-conquer algorithm,

DCA (divide and conquer alignment) designed by Stoye et al [30], improved the usability of

an exact alignment method (the MSA program [31]).

DCA algorithm computes a potential cut position using a heuristic function, and

divide a sequence set until the size of subsets reduces small enough so that the MSA program

can be applied. On the other hand, P-Coffee has its uniqueness in that it does not depend

 66

upon other alignment methods. This is possible since a sequence set is divided into partitions

using identified columns that correspond to a part of an alignment solution. The advantage of

our approach is that we minimized the sources of bias by not requiring any heuristic function

to optimize, phylogenetic tree, nor gap cost scheme (the parameters frequently used in other

sequence alignment methods for biologically proper distribution of gaps in an alignment

solution).

There is still a room for improvement in P-Coffee. First, we may be able to save time

by partitioning the T-Coffee library as well, whenever new sub-partitions are obtained. Since

the T-Coffee library contains all the position-specific substitution scores of residue pairs, the

data structure becomes large to hold the entire library. It is inefficient to scan through the

entire library whenever the algorithm looks up the required residue pairs. Considering that

the library scan happens whenever a node is looking for its candidate child nodes,

partitioning the library can save a large amount of look up time. Second, we may be able to

reduce the total number of wall identification activities by keeping the walls with a time

stamp, instead of discarding all of them after wall selection is completed in each phase. Some

unfairness can be brought about by this change, because walls that are found in an earlier

phase would have an unwanted advantage in meeting the acceptance qualification. This

problem may be resolved by giving a penalty to those walls in the form of an exponential

decay function. Finally, the performance of P-Coffee can be improved by incorporating more

reliable information additionally into the T-Coffee library. In fact, research related to this

matter is already reported. According to O’Sullivan et al, they integrated the results of

pairwise structure alignment tools such as SAP [32] and LSQman [33] into the primary

library of T-Coffee with weight of 100 [29]. This kind of efforts will amplify the difference

 67

between reliable residue pairs and others, and therefore the sum-of-pairs score will become

more reliable. Then, of course, we may be able to raise the initial acceptance rate.

 68

Bibliography

[1] M.B. Swindells, C.A. Orengo, D.T. Jones, E.G. Hutchinson, and J.M. Thornton.
Contemporary approaches to protein structure classification. BioEssays, 20:884-891,
1998.

[2] J.U. Bowie, R. Lüthy, and D. Eisenberg. A method to identify protein sequences that
fold into a known three-dimensional structure. Science, 253:164-170, 1991.

[3] D.T. Jones, W.R. Taylor, and J.M. Thornton. A new approach to protein fold
recognition. Nature, 358:86-89, 1992.

[4] C. Crothia, and A.M. Lesk. The relation between the divergence of sequence and
structure in proteins. The EMBO Journal, 5:823-826, 1986.

[5] R.F. Doolittle. Of URFs and ORFs: a primer on how to analyze derived amino acid
sequences. University Science Books, Mill Valley, CA, USA, 1986.

[6] C. Notredame. Recent progresses in multiple sequence alignment: a survey.
Pharmacogenomics, 3(1):131-144, 2002.

[7] L. Wang, and T. Jiang. On the complexity of multiple sequence alignment. Journal of
Computational Biology, 1:337-348, 1994.

 69

[8] J.D. Thompson, F. Plewniak, and O. Poch. BAliBASE: a benchmark alignment
database for the evaluation of multiple alignment programs. Bioinformatics, 15:87-88,
1999.

[9] S.W. Perrey, J. Stoye, V. Moulton, and A.W.M. Dress. On Simultaneous versus
Iterative Multiple Sequence Alignment. Submitted, 1997.
http://citeseer.ist.psu.edu/perrey97simultaneous.html

[10] S.B. Needleman, and C.D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48:443-453, 1970.

[11] J. Devereux, P. Haeberli, and O. Smithies. GCG package. Nucleic Acids Research,
12:387-395, 1984.

[12] F. Corper. Multiple sequence alignment with hierarchical clustering. Nucleic Acids
Research, 16:10881-10890, 1988.

[13] J.D. Thompson, D.G. Higgins, T.J. Gibson. CLUSTAL W: Improving the sensitivity
of progressive multiple sequence alignment through sequence weighting position-
specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673-
4690, 1994.

[14] W.R. Taylor, A flexible methods to align large numbers of biological sequences.
Journal of Molecular Evolution, 28:161-169, 1988.

[15] R. D. Smith, and T. F. Smith. Pattern-induced multi-sequence alignment (PIMA)
algorithm employing secondary structure-dependent gap penalties for use in
comparative modeling. Protein Engineering, Design and Selection, 5(1):35-41, 1992.

[16] C. Notredame, D.G. Higgins, and J. Heringa. T-Coffee: a novel method for multiple
sequence alignments. Journal of Molecular Biology, 302:205-217, 2000.

[17] S.R. Eddy. Multiple alignment using hidden Markov models. Intelligent Systems for
Molecular Biology, 3:114-120, 1995.

 70

[18] C. Notredame, and D.G. Higgins. SAGA: sequence alignment by genetic algorithm.
Nucleic Acids Research, 24:1515-1524, 1996.

[19] T. Riaz, Y. Wang, and K. Li. Multiple sequence alignment using tabu search.
Conferences in Research and Practice in Information Technology, 29:223-232, 2004.

[20] A. Krogh, M. Brown, I.S. Mian, K. Sjölander, and D. Haussler. Hidden Markov
Models in Computational Biology: Applications to Protein Modeling. Journal of
Molecular Biology, 235(5):1501-1531, 1994.

[21] C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S. Liu, A.F. Neuwald, and
J.C.Wootton. Detecting subtle sequence signals: a Gibbs sampling strategy for
multiple alignment. Science, 262:208-214, 1993.

[22] O. Gotoh. Significant Improvement in Accuracy of Multiple Protein Sequence
Alignments by Iterative Refinements as Assessed by Reference to Structural
Alignments. Journal of Molecular Biology, 264(4):823-838, 1996.

[23] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary change in
proteins. In Atlas of Protein Sequence and Structure (M.O. Dayhoff ed.), 5(3):345-
352, National Biomedical Research Foundation, Silver Spring, Washington D.C.,
1978.

[24] S. Henicoff, and J.G. Henicoff. Amino acid substitutuion matrices from protein
blocks. Proceedings of the National Academy of Sciences USA, 89:10915-10919,
1992.

[25] C.A. Orengo, D.T. Jones, and J.M. Thornton. Bioinformatics: Genes, Proteins, &
Computers. Bios Scientific Publishers Ltd., Oxford OX4 1RE, U.K., 2003.

[26] C. Notredame, L. Holm, and D.G. Higgins. COFFEE: an objective function for
multiple sequence alignments, Bioinformatics, 14(5):407-422, 1998.

[27] X. Huang, and W. Miller. A time-efficient linear-space local similarity algorithm.
Advances in Applied Mathematics, 12:337-357, 1991.

 71

[28] J.D. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of multiple
sequence alignment programs. Nucleic Acids Research, 27(13):2682-2690, 1999.

[29] O. O’Sullivan, K. Suhre, C. Abergel, D.G. Higgins, and C. Notredame. 3DCOFFEE:
Combining Protein Sequences and Structures within Multiple Sequence Alignments.
Journal of Molecular Biology, 340:385-395, 2004.

[30] J. Stoye, V. Moulton, A.W. Dress. DCA: an efficient implementation of the divide-
and-conquer approach to simultaneous multiple sequence alignment. Computer
Applications in the Biosciences, 13(6):625-626, 1997.

[31] D.J. Lipman, S.F. Altschul, and J.D. Kececioglu. A tool for multiple sequence
alignment. Proceedings of the National Academy of Sciences USA, 86:4412-4415,
1989

[32] W.R. Taylor, and C.A. Orengo. Protein structure alignment. Journal of Molecular
Biology, 208:1-22, 1989.

[33] G.J. Kleywegt. Use of non-crystallographic symmetry in protein structure refinement.
Acta Crystallographica D, 52:842-857, 1996.

