ABSTRACT

KUEBEL, ROBERT MARTIN. The Performance of Token Coherence on Scientific Work-
loads. (Under the direction of Dr. Gregory T. Byrd).

Broadcast snooping and directory protocols are, by far, the most common coher-
ence protocols in research and commercial systems. These protocols represent two extremes
of cache coherence protocol design with seemingly incompatible goals. Directory protocols
produce scalable systems by reducing network bandwidth requirements at the cost of in-
creasing latency. Snooping based systems allow low latency at the cost of increased band-
width. Recently, a promising class of coherence protocols called Token Coherence has been
shown to outperform directory and snooping protocols by attempting to combine the best
characteristics of both protocols. The concept of token counting allows the protocol to
safely multicast requests on an unordered network. This avoids indirection like a snooping
system but allows the system to scale by eliminating the need for an ordered network. Addi-
tionally, Token Coherence promises to be easier to implement, requiring nothing more than
reliable message delivery from the network, and provides a simple set of rules to guarantee
correctness.

Token Coherence was developed to improve the performance of multiprocessors
running “commercial” applications including web and database servers. The fact that token
coherence was designed with a specific class of applications in mind raises questions about its
ability to perform under different circumstances. Without a more thorough investigation
of the performance of Token Coherence, it is unclear whether its success on commercial
applications is representative of its performance on other workloads. The goal of this thesis
is to evaluate the performance of Token Coherence using a subset of the Splash2 benchmark
suite. Also, variations of Token Coherence described in the literature but whose effects on
performance were not published are examined.

This work shows that Token Coherence is not dependent on the peculiarities of
commercial workloads and can improve the performance of scientific applications. In fact,
Token Coherence performs well despite that assumptions under which it was conceived are
not necessarily true on all applications. In addition, some optimizations made to Token
Coherence specifically for commercial workloads do not have a significant positive benefit

for scientific workloads.

The Performance of Token Coherence on Scientific Workloads
by
Robert M. Kuebel

A thesis submitted to the Graduate Faculty of
North Carolina State University
in partial satisfaction of the
requirements for the Degree of
Master of Science

Computer Engineering

Raleigh, North Carolina
2005

Approved By:

Dr. Yan Solihin Dr. Vincent W. Freeh

Dr. Gregory T. Byrd
Chair of Advisory Committee

ii

Biography

Robert M. Kuebel was born in Akron, Ohio. He received a B.S. in Computer
Engineering from University of Cincinnati in 2003. Currently, he resides in Raleigh, North

Carolina with his wife Kari.

iii

Acknowledgements

I would like to thank the members of my Advisory Committee, especially Dr. Byrd,

for their guidance during this work.

Contents

List of Tables
List of Figures
1 Introduction

2 Prior Work

2.1 Snooping and Directory Coherence,
2.1.1 Snooping Coherence
2.1.2 Directory-Based Coherence

2.2 Bandwidth Adaptive Snoopingo

2.3 Multicast Snooping e

2.4 Token Coherence o v v i i i it i e e e
2.4.1 Persistent Requests
2.4.2 Performance Protocols

2.5 Optimizing for Migratory Data

3 Experimental Methodology

3.1 Simulator

3.2 Processor Model e

3.3 Protocols e
3.3.1 DASH e
3.3.2 Token Coherence Protocols

3.4 Benchmark Applications L0

3.5 Simulation Parameters e

3.6 Measurement Techniques o

4 Results

4.1 Rate of Retries and Persistent Requests

4.2 The Migratory Data Optimization

4.3 Performance Protocols

4.4 Persistent Read Requests

iv

vi

vii

20
20
22
23
23
24
25
25
28

4.5 Sensitivity to Network Parameters

5 Conclusion
5.1 Future Work

Bibliography

37

40
41

42

List of Tables

2.1
2.2

3.1
3.2

4.1
4.2

Requirements of five coherence protocols o0
Transient request responses.o

Benchmark parameters L Lo
Simulation parameters. Lo Lo

Persistent requests rates for TokenB.
Persistent requests rates TokenB, TokenD and TokenM.

vi

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

The latency-bandwidth trade-off in coherence protocols.
The latency-bandwidth trade-off in BASH.
The latency-bandwidth trade-off in Multicast Snooping.
An example race on a unordered broadcast network.

Level of detail in simulated systems.
A ReadX request to a block in the Dirty state.
Detail of one processing node. Lo

Cumulative persistent requests per percent of addresses and nodes.
Effect of the migratory data optimization on read and write misses..
The effect of the migratory optimization on DASH and TokenB.
Runtime of TokenB, TokenD and TokenM relative to BASH.
Effectiveness of persistent read requests.
The runtime of lu, ocean and radix with an alternate network.
Sensitivity to a slower network.

vii

Chapter 1

Introduction

For any particular problem, there may be countless solutions that provide adequate
results. Unfortunately, solutions that provide satisfactory results over the set of all problems
are rare. Consider the dozens of sorting algorithms. In terms of the number of comparisons,
a particular algorithm may perform quite well for a given input, but drastically worse for
another. Quicksort, for example, executes O(n logn) comparisons on average, but O(n?) in
the worst case. In the case of coherence protocols in Non-Uniform Memory Access (NUMA)
architectures, there have been few protocols that provide reasonable performance on a wide
variety of workloads.

Broadcast snooping [3, 7] and directory protocols [11, 13, 22] are, by far, the most
common coherence protocols in research and commercial systems. Both types of protocols
have been heavily researched and many optimizations [8, 24] and hybrids [20] have been
proposed. Research has also generated alternative protocols [6, 19] that have been shown to
outperform directory and traditional snooping protocols. Unfortunately, these alternatives
require specialized networks that, in practice, may be more difficult to implement than the
relatively simple network requirements of directory and snooping protocols. Recently, a
promising class of coherence protocols called Token Coherence [16, 18] has been shown to
outperform directory and snooping protocols. Additionally, Token Coherence promises to
be easier to implement. It requires nothing more than reliable message delivery from the
network and provides a simple set of rules to guarantee correctness.

Token Coherence was developed to improve the performance of multiprocessors

running “commercial” applications including web and database servers. The designers took
advantage of the behavior of commercial applications—namely, coherence races occur in-
frequently [18] and cache-to-cache transfers are frequent [5]. This allows the protocol to
make trade-offs that reduce the cost of non-racing messages even at the increased cost of
race detection and handling. Other aspects of commercial workloads may favor Token Co-
herence. For example, commercial applications typically exploit thread level parallelism.
Servers often handle each new request in a separate, independent thread. These threads
are only required to synchronize with other threads when accessing non-static shared data.
Finally, when the data being served is static or changes to that data are rare, each thread
can cache a copy of the data without suffering frequent invalidations. Token Coherence!
has been shown [18] to significantly improve the performance of commercial applications on
next-generation hardware, but results for other workloads have not been published.

The fact that Token Coherence was designed with a specific class of applications
in mind raises questions about its ability to perform under different circumstances. Does
the performance of Token Coherence depend on the features exhibited by commercial ap-
plications? Does the assumption that coherence races are rare break down under different
workloads? If so, what is the impact on performance?

Traditionally, researchers of parallel architectures have used “scientific” workloads
to measure the impact of proposed changes. These applications usually include technical
computing tasks such as fluid dynamics, N-body problems and matrix manipulations [27].
The characteristics of scientific applications are quite different from commercial applications
and potentially contain behaviors detrimental to the performance of Token Coherence. The
majority of scientific applications rely on data parallelism to achieve scalability. Another
important difference between these two classes of benchmarks is the frequency of different
sharing patterns. For example, a database server may exhibit migratory data frequently,
while a image rendering program may tend to have more widely shared data. Because of
their differences from commercial workloads, scientific applications are the focus of this
evaluation.

Without a more thorough investigation of the performance of Token Coherence,
it is unclear whether its success on commercial applications is representative of its perfor-

mance on other workloads. The goal of this thesis is to evaluate the performance of Token

!Token Coherence is a class of coherence protocols, not a particular implementation. Throughout this
thesis, “a protocol that implements Token Coherence” will be shortened to “Token Coherence.”

Coherence using a subset of the Splash2 benchmark suite. Also, variations of Token Coher-
ence described in the literature but whose effects on performance were not published will
be examined.

This work will show that, for the chosen parameters, Token Coherence is not
dependent on the peculiarities of commercial workloads and can improve the performance of
scientific applications. In fact, Token Coherence performs well despite that the assumption
that coherence races are rare does not hold for the studied applications. However, some
optimizations made to Token Coherence specifically for commercial workloads (a migratory
data optimization and “persistent read requests”) do not have a significant positive benefit
for scientific workloads.

The remainder of this work will be divided as follows. Chapter 2 describes existing
coherence protocols and the motivation for Token Coherence. Chapter 3 describes the
methods used to simulate the baseline system and three variations of Token Coherence.

Chapter 4 gives results and analysis. Finally, Chapter 5 summarizes this work.

Chapter 2

Prior Work

The ideal coherence protocol is one that uses nearly zero bandwidth (or more
practically, no more bandwidth than necessary) and has near zero latency. Of course, no
real protocol can achieve even one of these goals, let alone both. Snooping coherence and
directory coherence represent the two extremes: each approaches the ideal protocol in one
aspect. Snooping coherence is known for low latency and directory coherence uses little
bandwidth. Unfortunately, approaching one ideal trait comes at a cost—sacrificing ideality
in the other. This is shown graphically in figure 2.1. The curve between Directory and
Snooping represents a line of equal performance! and the origin represents the ideal protocol.
The performance characteristics of a system are not the only concern of designers. A
manageable level of complexity must be maintained for a systems to be designed and verified
in reasonable amount of time. If the effort of design and verification of all components of
a coherence system could be quantified with a single number called “complexity,” the ideal
protocol would have near zero complexity. Some protocols depend on certain network
characteristics (e.g. total ordering of messages) to operate correctly. Therefore, required
network features will be the fourth dimension for comparison in this work. Table 2.1 gives
a relative measure of these four characteristics for the protocols discussed here.

These characteristics are used to compare existing protocols and show how research
has progressed toward a ideal protocol. The drawbacks of common protocols are discussed

along with some previous attempts at overcoming those limitations. Two recent proposals

'TIgnore for the moment differences in network topology and bandwidth.

Latency

Directory

Perfect

Bandwidth

Figure 2.1: The latency-bandwidth trade-off in coherence protocols.

| Attribute || Directory | Snooping | BASH | Multicast Snooping | Token Coherence?
Latency High Low Low Low Low
Bandwidth Low High Fairly High Moderate Moderate
Protocol Complexity || Moderate Low High (2 protocols) Low Low
Network Any Ordered Ordered Ordered Any

Table 2.1: Requirements of five coherence protocols

most directly related to this work are Bandwidth Adaptive Snooping [20] and Multicast
Snooping [6]. Each attempts to combine the best features of snooping and directory co-
herence. Token Coherence is the most recent attempt at achieving a “best of both worlds”
protocol. The concept of Token Coherence and three implementations are also described in

this chapter.

2.1 Snooping and Directory Coherence

Snooping coherence and directory coherence are, by far, the most commonly im-

plemented coherence protocols. In some ways, these two schemes are duals. Snooping
coherence provides low latency responses (in terms of the number of network traversals) at
the cost of bandwidth, while directory coherence uses much less bandwidth at the cost of
higher latency. Because of these trade-offs, snooping coherence is dominant in small scale
systems and directory coherence excels in large systems where bandwidth is more precious.

This section discusses the advantages and drawbacks inherent to each of these protocols.

2TokenM, a multicast form of Token Coherence, is depicted here.

2.1.1 Snooping Coherence

A memory system is said to be “coherent” if a read to any memory location always
returns the value of the last write to that location. Therefore, to maintain coherence, every
coherence protocol must provide a method to determine the order of transactions for each
memory block. In snooping coherence systems, the ordering point is a totally-ordered
network such as a shared-wire bus or broadcast tree. In the simple case, the network is a
single access bus, allowing no overlapping of transactions. Fvery coherence message must
be received, in the same order, by every processor in the system. Therefore, as the number
of processors increases, the rate of coherence messages and the bandwidth requirement of
the bus also increase and the bus quickly becomes a bottleneck. Scaling a snooping network
to a large number of processors is difficult for two reasons: (1) the physically longer wires
and the capacitance of each device on the bus add resistance to the high-frequency signals
needed for inter-processor communication and (2) the bandwidth requirement grows quickly
as processors are added.

Despite being bandwidth hungry, snooping coherence provides two major advan-
tages. First, it has the ideal property of allowing any request to be satisfied in two traversals®
of the network. The first traversal broadcasts the request to all nodes. The second allows
the node designated by the protocol to provide a response such as a block of data. Also,
no explicit acknowledgments are needed because the network ensures that every processor
sees each request. For example, a processor issuing a READX request can be sure all other
processors have eliminated their copies of the requested block as soon as the READX is
observed on the bus. In contrast, directory systems often require each sharer to send an
INVALACK message to the requestor. The requestor cannot assume all copies of a block
have been eliminated until all acknowledgments have been collected. The second advantage
of snooping coherence is design simplicity. Humans find it much easier to reason about a
totally-ordered system than unsynchronized systems.

Several methods have been proposed to cope with bandwidth requirements of a
single shared bus. Systems like the Sun E10000 [7] use multiple pipelined, ordered address
buses for requests and a separate, unordered data response network. This eases the burden
on the single broadcast bus in two ways. First, large data packets do not travel on the same

network as the smaller request packets. Since the requests are totally ordered by the address

3Some transactions, such as a write-back to memory, may only require one bus transaction.

bus, the cache controllers can reconstruct the order of data responses and thus maintain
coherence. Second, the single address bus is split into four physical buses. Each handles a

distinct segment of the address space and allows multiple requests to execute in parallel.

2.1.2 Directory-Based Coherence

Directory-based systems distribute the task of ordering transactions. Instead of a
single ordering point, main memory is distributed among all nodes in the system. Each node
tracks the state of its assigned blocks in a per-node “directory.” The directory contains,
for each block, state information similar to cache state information and a list of sharers.
When a processor requires access to a block, a request is forwarded to the “home” node
(the node to which the desired block is assigned). Upon receiving the request, the home
node can respond with data if the block at the directory is up to date. If the block is dirty
(i.e. there exists a cached copy that has been written since memory was last updated), the
request must be forwarded to the current owner. This indirection occurs quite frequently
and is the source of directory coherence’s additional latency.

The cost of looking up a block’s state at the directory is often recovered by the
reduction of contention at various bandwidth limited resources (e.g. network links and 1.2
cache tags). The directory is required to know exactly which nodes in the system must
observe any particular transaction. Therefore, by forwarding requests to only those nodes,
any transaction will use the smallest amount of bandwidth possible. Nodes that are not
concerned with a transaction never receive notice that is has occurred. In addition to con-
serving bandwidth, directory systems allow multiple transactions to take place simultane-
ously. Each directory acts independently and in parallel with others. This allows directory
systems to scale to much larger configurations than snooping coherence systems.

Directory systems are generally not restricted to a specific network topology. Ad-
vanced directory protocols, such as the SGI Origin 2000 protocol [11], make no assumptions
about the ordering of messages, while systems like the AlphaServer GS320 [10] exploit a
more restrictive network model to eliminate the race cases that exist in unordered networks.
Most directory-based systems are implemented using a more general interconnect such as
a 2D grid or torus. The difficulty of determining transaction order, avoiding deadlock and
starvation and still providing correctness on such a network complicates directory protocols.

Therefore, snooping systems tend to be easier to design and verify.

Directory

Latency

Perfect

Bandwidth

Figure 2.2: The latency-bandwidth trade-off in BASH.

2.2 Bandwidth Adaptive Snooping

Martin, et al. saw an opportunity for a single protocol that could dynamically
adjust its bandwidth usage to achieve the best performance. The result was the Bandwidth
Adaptive Snooping Hybrid (BASH) protocol [20], that combines a snooping system and
directory system. The goal is to create a single protocol that can scale from small systems
to very large systems. It has been shown [20] that a snooping protocol can outperform
a directory protocol when bandwidth is plentiful. The reverse is true when bandwidth is
limited. Typically measures of bandwidth (e.g. cross sectional bandwidth) of a machine
grow with the number of processors. However, as the number of processors increases, the
average number of packets passing through each network link also increases. Eventually,
the amount of bandwidth available to each processor begins to diminish. For this reason,
bandwidth is a more precious commodity in larger systems. BASH constantly adjusts its
network bandwidth usage to use most of the available bandwidth without saturating the
network. This allows BASH to perform as well as either a snooping or directory protocol
under a wide range of program behaviors and machine sizes.

The default mode of BASH is to handle requests like a snooping system: all
requests are broadcast. As network contention increases, the protocol probabilistically
increases the number of messages sent using the built-in directory protocol. Migrating to a
directory based protocol when the network is congested can increase performance because
these protocols use mostly unicast messages. Unicasting instead of broadcasting like a
snooping protocol allows more requests to traverse the network in parallel, thus giving a

boost to performance. Also, a network with fewer messages in-flight is likely to be less

congested and thus have a lower end-to-end latency. A simplified directory at each node
handles the unicast requests. The advantage of BASH is its ability to tune itself to the
“sweet-spot” on the latency-bandwidth tradeoff curve. Figure 2.2 shows the region of the
latency-bandwidth curve favored by BASH.

The adaptation mechanism BASH uses is simple. Each node in the system mea-
sures the utilization of its own network link(s) as an estimate of the total network utilization.
The more often the local link’s utilization is greater than a given threshold, the more likely
the next message sent to the network will be a unicast according to the directory protocol.
The decision to broadcast or unicast is made on a message by message basis.

BASH modifies and combines the Sun E10000 (snooping) and the AlphaServer
GS320 (directory) protocols. These systems and the hybrid take advantage of a totally
ordered interconnect to maintain coherence. While BASH still requires an ordered network,
protocol design is more complex because of the need for two protocols: one broadcast

snooping and one directory.

2.3 Multicast Snooping

Multicast snooping is an attempt to combine the low latency of a broadcast snoop-
ing system with the scalability of a directory based system. The protocol [6] takes advantage
of the fact that most coherence transactions require only a small fraction of processors in
the system to be involved. Consider the bandwidth versus latency trade-off made in a
directory based system with explicit acknowledgments. During a READX operation in a
directory based machine, the requestor must access the home directory before it knows
which processors require invalidations. This conserves bandwidth by sending messages to
only the necessary processors, but accessing the directory to determine the exact set of
invalidations to send increases latency. In a broadcast snooping system, the directory is not
needed because all processors see each transaction and each can decide locally whether it
needs to act upon that transaction. This reduces latency, but increases required bandwidth
because each transaction must be seen by all processors. If the processors involved could
be determined by the requestor, a system with latency similar to a snooping system and
scalability like a directory-based machine could be constructed. Figure 2.3 shows Multi-

cast Snooping’s operating point relative to directory and snooping in terms of latency and

10

Directory

Latency

Multicast Snooping

Perfect

Bandwidth

Figure 2.3: The latency-bandwidth trade-off in Multicast Snooping.

bandwidth.

The Multicast Snooping protocol behaves much like a snooping protocol with a
few exceptions. The protocol defines a message to get a shared copy of a memory location,
GETS, and a message to get an exclusive copy of location, GETX. Each request includes a
set, of processors to which the message must be relayed. A simplified directory at memory
will acknowledge transactions positively if the predicted set of processors is sufficient. Oth-
erwise a partial or complete failure acknowledgment message will be sent to the requestor.
Failed requests are retried with the set of processors suggested by the failure acknowledg-
ment. To avoid deadlock, failed transactions are sent using a broadcast after n attempts.
To succeed, the destination set of GETX messages must contain at least all current sharers
and the current owner. GETS messages must be received by at least the current owner for
success.

The key to multicast snooping is correctly predicting the set of processors that
need to be involved with a certain transaction, the multicast “mask.” The predictor used
in Multicast Snooping is called StickySpatial(k). Each processor maintains a table direct-
mapped to the machine’s address space. Each entry in the table contains a tag, multicast
mask and a last invalidator field. A memory block B corresponds to the predictor index
B’, which is equal to B modulo the number of indices in the table. When a request is
completed successfully, memory or the owner of a block returns the current multicast mask.
This mask contains exactly the set of sharers. If the tag at B’ corresponds to the address
of the completed request, the multicast mask at B’ is logically OR’ed with the returned
mask. Otherwise the mask is set to the returned mask and the tag is updated. When

an invalidate is received by a processor, the last invalidator field is set to the requestor.

11

When a processor sends a GETX B message, the destination set is calculated by logically
OR’ing the requestor, directory, the multicast masks at indices B’ —k, ..., B—1, B/, B’ +1,
..., B'+ k. When a GETS B message is sent, only the requestor, directory and the last
invalidator field at B’ are OR’ed. Merging the destination sets of blocks with in the radius
k attempts to exploit spacial locality. That is, if a block’s mask is insufficient to complete
a request, the neighboring blocks may contain related data and therefore have the correct
bits set in the mask.

Multicast Snooping’s bandwidth conservation allows it to outperform broadcast
snooping. Also, Multicast Snooping’s avoidance of indirection allows it to outperform di-
rectory coherence. The disadvantage of Multicast Snooping is its reliance on a complex,
network topology similar to, but less restrictive than, Isotach [23] networks. Multicast
Snooping requires a total logical order of request messages. To meet this requirement, a
k-ary fat-tree with NV root nodes, arbitrarily ordered uplinks and totally ordered downlinks

is used. A logically separate, unordered data network supplies responses.

2.4 Token Coherence

Token Coherence [16], like BASH and Multicast Snooping, is an attempt to create
a “best of both worlds” protocol by combining the best features of snooping and directory
coherence while avoiding their drawbacks. The key observation in the development of
Token Coherence was that coherence races occur infrequently. In the commercial workloads
studied in [18], an average of 3% of messages suffered interference from racing messages.
This insight allows Token Coherence to make design choices that favor non-racing messages,
despite having a substantial negative impact on race detection and handling. Typically,
because race detection is applied to every transaction, a complex protocol or restrictive
network is required. Token Coherence requires neither.

Token Coherence was developed to increase the performance of commercial ap-
plications such as web and database servers on medium scale systems. Technology trends
indicate that medium scale systems, common among commercial users, in the near future
will enjoy highly integrated nodes with L1 and L2 caches, cache controllers, memory con-
trollers and network interface on the processor die much like the Alpha 21364 [22]. Often,
these highly integrated nodes employ a mesh network with multiple links per node. There-

12

fore, systems with structure similar to the AlphaServer GS1280 [9] or the IBM BlueGene/L
[1] are the target of Token Coherence.

Token coherence layers a “performance protocol,” which optimistically performs
transactions as if no races could occur, over a “correctness substrate,” which detects and
corrects races and starvation in the performance protocol. The idea is to allow the fast
(but not necessarily correct) performance protocol to be backed by a correct (but not
necessarily fast) correctness protocol that guarantees forward progress. The two protocols
are independent of each other. Thus, Token Coherence is said to decouple performance and
correctness. Traditionally, one protocol has met both objectives. The advantage is that
different sub-protocols can be used in different machine configurations. Three performance
protocols (TokenB, TokenD and TokenM [16]) are discussed in this work. TokenB is a
broadcast protocol intended for use in systems were bandwidth is plentiful. TokenD is
similar to a directory system and can be used were bandwidth is less abundant and the
increased latency of the directory lookup can be tolerated. TokenM is a compromise between
the two and attempts to avoid indirection at the directory and avoid broadcasting by using
destination set prediction similar to Multicast Snooping.

The decoupling of performance and correctness is made possible by the token
counting concept. Each memory block in the system has an associated set of T tokens,
where T is at least the number of processors in the system. One token is designated as the
“owner token” which may be “clean” or “dirty”. Tokens assigned to one block are never
used with another block and tokens are never created or destroyed, only passed between
processors or between processors and main memory. Each cache line in the system contains
a tag, valid-data bit, [logy T'| bits to hold the number of tokens and two additional bits
to designate whether or not the owner token is held and whether or not it is dirty. Since
tokens can travel without data, the valid-data bit is needed to determine whether the data
stored in the line can be used. The valid-data bit is set when a message arrives with data
and at least one token. The bit is cleared when the block contains zero tokens. A clean
owner token indicates that the copy of the block in main memory is up-to-date. Therefore,
the owner token is set to DIRTY when a block is written. When memory holds the owner
token, the token is set to CLEAN.

No processor can read a block without holding at least one of the block’s tokens and
valid data. Since the number of tokens is at least the number of processors, it is possible for

any number of processors to cache a block. No processor can write the block without holding

13

all of the block’s tokens and valid data. This ensures no two processors simultaneously write
to the same block. In a sense, the block itself is the ordering point for requests. There is
not a centralized or stationary ordering point as with previous protocols. The number of
tokens for a block held within a processor determine the state of that block. For example,
a MOESI coherence scheme can be achieved using token counting in the following way. A
cache line is in the INVALID state when it contains no tokens. It is in the SHARED state if
it contains less than T tokens and does not contain the owner token. The OWNED state
is reserved for cache lines that contain the owner token, but less than T tokens. A cache
line is in the EXCLUSIVE state if it contains all the tokens but has not written the line and
MoDIFIED if it has been written. Entering the MODIFIED state sets the owner token to
Dirry. To ensure dirty data is never discarded, any message that contains a dirty owner
token must also contain data. These rules ensure correctness, no matter the performance
protocol. In fact, any performance protocol will result in correct operation.

When a processor does not have enough tokens to perform a read or write to a
block A, it will send a “transient request” for A’s tokens. The performance protocol defines
how transient requests are handled. Any other processor may issue requests for some or
all of A’s tokens at the same time. Since the network does not act as an ordering point,
the requests will race for tokens. Therefore, transient requests may fail to retrieve sufficient
tokens. If the request fails to return the required number of tokens, the system will retry
the request for a period of time. Notice that a failed transaction does not complete and
correctness is maintained. If the message has not succeeded by the end of that period, the
correctness substrate takes over and activates a “persistent request.” Figure 2.4 shows why

a traditional broadcast snooping protocol fails to operate correctly in the same situation.

2.4.1 Persistent Requests

When the performance protocol fails to complete a request within a certain amount
of time, the correctness substrate is activated. T'wo persistent request schemes are relevant
to this work. The first is somewhat heavy-handed in that it always collects all the tokens
for a block despite the fact that the requestor may not require every token to complete the
request. Moreover, this method removes tokens from nodes that would not otherwise have
to relinquish their right to read the block. The second method addresses this problem by

collecting fewer than all tokens when a load caused the persistent request. Both methods

14

RdX
1 . Memory 1 . idx Memory 1 . = Memory
RdX RdX Ack
Ack
2 @ ® | @ Q N 3

RdX RdX Ack

| @ Memory i) Memory I] Memory
ra keply | @)
2 5 2 3 2 o
(d.) (e.) (f)

(a.) Initial state. Circles represent valid cached copies. (b.) Node 1 broadcasts a READX
request. (c.) Nodes 2 and 3 receive the READX, invalidate their copies and send ACKNOWL-
EDGMENT messages to 1. (d.) Node 3 issues a READ request. (e.) Memory responds to
node 3’s request with data. (f.) Memory responds to node 1’s request with a second copy of
data. Node 1 has received an ACKNOWLEDGMENT from each node and believes incorrectly
that is has an exclusive copy of the block.

Figure 2.4: An example race on a unordered broadcast network.

15

described here rely on a centralized arbiter to activate and deactivate persistent requests.
Each home node contains an instance of the persistent request arbitration logic. It is
important to note that the arbiter can activate at most one persistent request at a time.

The persistent request mechanism works as follows. A node determines that a
request has not been completed after several transient requests. The node sends a persistent
request message to the home node of the requested block. The home node places the
request in a queue if a persistent request has already been activated by the home node.
When the persistent request reaches the head of the queue, the home node broadcasts
persistent request activation messages to all nodes in the system. When a node receives the
activation request, it forwards tokens for the requested block to the requestor as directed
by the persistent request policy. By default, all tokens are sent. Also, any tokens received
after the activation message are forwarded to the requestor and any transient requests for
the block are ignored. Upon receipt of an activation message, a node records the newly
activated persistent requests in a table. The table must hold a record for each active
persistent request in the system. Therefore, the size of this table grows with the maximum
number of home nodes in the system times the maximum number of persistent requests
active per processor. To keep the table to a reasonable size, each home node is limited to
one outstanding persistent request.

When the requestor receives sufficient tokens to complete the transaction, a per-
sistent request deactivation message is sent to the home node. The home node forwards
a deactivation request to all nodes and removes the persistent request from the queue. In
an unordered network, nodes must acknowledge the activation and deactivation requests to
assist the arbiter in ensuring that the those messages are properly ordered.

The default response to persistent requests is to send all tokens corresponding to
the requested block to the requestor. This requires all nodes in the system to surrender the
right to read or write the block. This can cause unnecessary cache misses, so a second, more
conservative approach was developed. “Persistent read requests” are activated when a load
fails to complete within the allotted time. When a node receives a persistent read request
activation message, it forwards all but one non-owner token to the requestor. This allows
a node that was able to read the block before the persistent request (with the exception
of a node holding only the owner token) to maintain that right after responding to the
request. However, there is risk involved with this scheme. If a node causing a persistent

read request intends to modify the data shortly after the load completes, it will have to

16

‘ Current State H Response to READ ’ Response to READX
MODIFIED One Token with Data, | All Tokens, Transition
Transition to OWNED | to INVALID
EXCLUSIVE One Token with Data, | All Tokens, Transition
Transition to OWNED | to INVALID
OWNED One Token with Data | All Tokens, Transition
to INVALID
SHARED None All Tokens, Transition
to INVALID
INVALID None None

Table 2.2: Transient request responses.

contact each sharer again to collect all of the tokens. That is, the token “prefetching” effect
of normal persistent requests is lost. Normally, read-modify-write operations such as this
are completed quickly, but blocks requiring persistent requests are usually highly contested
and therefore, the home node will tend to have several persistent requests in the queue.
This causes the write operation to wait for several persistent requests to complete before it

is activated.

2.4.2 Performance Protocols

The next three sections discuss different performance protocols. In general nodes

respond to transient requests as described in table 2.2.

TokenB

TokenB is a broadcast performance protocol intended to avoid indirection latency
and the dependence on an ordered interconnect. Indirection can be avoided because each
node will receive each request and therefore no state lookup in a central directory is needed.
Like all other performance protocols, the reliance on an ordered interconnect is relieved by
the correctness substrate. TokenB will be most successful in systems with a large amount

of available bandwidth per processor.

17

TokenD

TokenD is very similar to directory coherence. It is a bandwidth efficient protocol
that requires indirection at the home node to find the current sharers and/or owner of a
block. Introducing indirection may seem contradictory to the goals of Token Coherence, but
TokenD performs two distinct functions. First, it allows the evaluation of Token Coherence
as a scalable protocol. Second, it lays the groundwork for TokenM, a multicast performance
protocol.

Just as in directory coherence, TokenD sends all requests to the home node of the
requested block. The home node forwards read requests to the current owner and write
requests to all sharers. Failed transient requests are retried by sending another message to
the home node. When a request times out, the persistent request method described above
is activated. Aside from existence of tokens, the most significant difference between TokenD
and a traditional directory protocol is the maintenance of directory state.

TokenD’s directory structure is called a “soft-state” directory because, as opposed
to traditional directory coherence, the state is not guaranteed to be completely accurate.
Because the correctness substrate ensures that no request is incorrectly satisfied, subtle
differences in the actual state of the system and the state reflected in the directory do not
cause errant operation. The soft-state directory contains a list of sharers, a “pending” list
and the current owner for each block. Upon receipt of a READ request, the home node
forwards the request to the current owner and the nodes in the pending list. The union of
the sharing list, the pending list and the current owner are the target of forwarded READX
messages. Requestors are added to the pending list when a request is received and removed
when the directory receives a “completion message.” When a node completes a cache miss,
it sends a completion message containing the address of the block and the new state of
the cache line to the directory. The directory clears the sender from the pending list and
updates its state based on completion information. If the new state is MODIFIED, the
directory clears the sharing list and sets the current owner to the sender. If the new state

is SHARED, the sender is added to the sharing list.

TokenM

TokenM is designed to combine the best features of all coherence protocols. It

requires no ordering in the interconnect, avoids indirection in most cases and uses multicast

18

messages therefore conserving bandwidth. TokenM extends TokenD in the same way that
Multicast Snooping extends directory coherence. As in TokenD, a soft-state directory is
placed at each home node. Additionally, a destination set predictor [17] is attached to each
processor. On a cache miss, the destination set predictor provides a set of nodes likely to
require notification of the pending transaction. The request is immediately forwarded to
those nodes. The request, with the predicted destination set appended, is also forwarded to
the directory. The directory compares the predicted destination set with the current state
of the directory. The request is forwarded the nodes node already notified by the requestor.

The operation of the sharing and pending lists is the same as with TokenD.

2.5 Optimizing for Migratory Data

Researchers (e.g. [8, 24]) have observed that read-modify-write operations in in-
validation-based coherence protocols may incur unnecessary network transactions. These
sequences are common inside of critical sections where a variable protected by a lock is read
then written by same processor. Cox [8] describes two criteria for identifying migratory
blocks: (1) there exist exactly two cached copies of the block and (2) the processor currently
attempting to write the block was not the last processor to successfully write to the block.

Consider this sequence of events (for simplicity, assume a broadcast bus connects
all processors). Processor A has exclusive access to memory location X and performs a
write. Then, processor B attempts to read X. This causes B to place a READ request
on the bus. When A receives this message, it responds by placing a copy of the data on
the bus. A and B transition to the shared state. Now, processor B attempts to write X,
but must eliminate the shared copy at A by broadcasting a READX message. After A has
accepted the invalidation message, B can write to X. If block X could have been identified as
migratory beforehand, processor A could send X and invalidate its own copy upon receiving
the READ request from B. This reduces latency by eliminating the latency of the second
request.

Martin used a modification of this scheme [16]. In general Token Coherence pro-
vides no way of finding the number of sharers of a block?. Therefore, the migratory op-

timization used in Token Coherence is based on a somewhat looser, less precise definition

4TokenD and TokenM could use the directory, but that is not guaranteed to be accurate.

19

of “migratory.” The migratory data optimization for Token Coherence is as follows. Any
block in the MODIFIED state that receives a READ request is immediately categorized as
migratory. The MODIFIED copy is then invalidated and the data is forwarded to the re-
questor. Upon receipt of the block, the requestor transitions to the MODIFIEDMIGRATORY
state. This state denotes that the block is dirty but has not yet been written by this pro-
cessor and allows misidentified blocks to return to non-migratory status. Both reads and
writes from the local processor to a MODIFIEDMIGRATORY block will hit, but a write will
cause the block to enter the MODIFIED state. Because Token Coherence cannot explicitly
count the number of sharers, this method runs the risk of identifying too many blocks as
migratory and causing cache misses that would have not otherwise occurred.

It is important to note that the accurate identification of migratory blocks is vital
to the success of migratory data optimizations such as described above. If non-migratory
blocks are considered migratory, performance of other sharing patterns will deteriorate.
Producer-consumer and widely-shared are two common sharing patterns that could suffer

performance degradation if blocks are misidentified as migratory.

20

Chapter 3

Experimental Methodology

This chapter describes the tools and techniques used in the evaluation of Token
Coherence. Since the goal of this work is to evaluate the performance of several Token
Coherence variations, not to accurately determine the absolute runtime, some features that
have no or little effect on the performance of the coherence protocol can be simplified. In
short, the modeled system is more precise from the CPU-cache interface toward the memory

system and less precise toward the CPU core. Figure 3.1 displays this graphically.

3.1 Simulator

The full system, event driven simulator VirtuTech Simics[15] was used to simulate
a system based on the “Serengeti” (part of Sun Microsystem’s Sun Fire server line) and its
attached peripherals such as SCSI controllers, CDROM and Ethernet network interface. The
simulator can model a variety of platforms ranging from large UltraSPARC multiprocessors
to Alpha servers to ARM-based evaluation boards. In addition, Simics simulates many of the
peripherals typically attached to these machines including frame buffers and Fibre-Channel
controllers. Though Simics can operate as a purely functional simulator, it is quite extensible
and allows the user to compile his own extensions as shared libraries. These libraries are
called modules. In this way, a cache model, coherence controller and interprocessor network

controller can be attached to each processor to create a cycle accurate simulator at the cost

21

CPU
L1 Cache
Less Detail
More Detail
Memory L2 Cache

#

Network Interface

Network

Figure 3.1: Level of detail in simulated systems.

of simulation speed. The Serengeti model seems to be the best suited to multiprocessor
simulation and thus thus was the obvious choice for the target platform of this study. The
Serengeti systems use UltraSPARC-III processors.

As a full system simulator, Simics models most kernel and user-visible aspects
of a system. The advantage is that unmodified operating systems and user programs can
be simulated easily and real world bottlenecks can be studied in much greater detail than
a physical machine allows. Unfortunately, there are at least two major drawbacks to this
method. Simulation run times are increased by operations that may be irrelevant to the user.
For example, operating system daemons and other user-level applications may spuriously
interrupt the program the user wants to study. The second drawback is variability. Simics
can produce deterministic results, but the interleaving of OS code, interrupt handlers and
other system perturbations can cause variations in the runtime of benchmarks with different
initial conditions.

Alameldeen and Wood studied performance variation [2] with a focus on commer-
cial workloads. They defined the “range of variation” to be the difference of the worst and
best observed runtime as a percentage of the mean runtime. The commercial applications
were shown to have a significant amount of variation across 20 runs of each benchmark,
as much as 14% in the case of Slashcode. The Splash2 version of Barnes and Ocean were

also evaluated and had significantly lower ranges of variation, scoring 0.59% and 1.13%

22

respectively. This suggests that scientific applications exhibit less variability than commer-
cial workloads. In fact, during the course of this work, range of variability between runs
of the same program was generally below 2%. Such minor variations do not warrant the
simulation overhead of averaging results from a series of runs.

To allow the user to model a custom memory interface, each memory object (e.g.
main memory and caches) in the system has an associated “Timing Interface” [26]. The
interface is a set of functions written by the user and loaded into the simulator via the
module mechanism. When the simulated system is configured, memory objects that should
be accurately modeled are attached to an instance of the user’s model. When a processor
wants to access a memory object, the operate() function of the timing model is invoked. This
allows the user’s memory model to stall the processor until the requested transaction has
completed. Specifically, the operate() function determines how many cycles the processor
should stall and returns that number. When the timing model returns 0, the memory
transaction is considered complete and the processor advances to the next instruction.
Simics allows multiple outstanding memory operations when used with a processor model
that supports overlapping memory references. Also, it and allows the user to specify a

custom memory consistency model.

3.2 Processor Model

Simics provides two UltraSPARC-III models, in addition to allowing the user to
create his own microarchitectural model. The first built-in model is an out-of-order pro-
cessor that allows the user to adjust parameters such as the ReOrder Buffer size, fetch
bandwidth and commit bandwidth [25]. Simics also provides a simple in-order model. This
processor executes, with the exception of memory operations, exactly one instruction per
cycle. Branch prediction is perfect so there are no speculative operations or rollbacks. When
the processor encounters a memory instruction, the timing interface is invoked as described
previously. This work is not concerned with measuring IPC rate or microarchitectural ef-
fects allowing the simple in-order model to be used. Moreover, each thread (with minor
differences for the master thread) in the benchmarks studied here executes the same code.
Therefore, simulating a more aggressive processor will speed up program execution between

cache misses and will do so at approximately the same rate on all processors.

23

While a simplified processor model allows for more efficient simulation, some higher
order effects are lost. A superscalar, out-of-order processor model would allow multiple
outstanding memory requests per processor, increasing the rate of coherence requests per

cycle.

3.3 Protocols

A slight variation of the Stanford DASH [13] directory protocol was used as a
baseline for the evaluation of three Token Coherence protocols. This section will discuss the
implementation of these protocols and highlight any differences from the description of these
protocols in the literature. To study the effects of the previously discussed migratory data

optimization, the each protocol can be configured to run with or without that optimization.

3.3.1 DASH

To provide a reference to existing coherence protocols, all Token Coherence proto-
cols in discussed in this work are compared to a variation of the Stanford DASH protocol[13].
The DASH protocol is a directory based invalidation protocol that uses three directory states
and a sharing list to identify which, if any processors, currently share a block of memory.
The caches in the DASH system mirror the directory in their use of three states: DIRTY,
SHARED and INvALID. The DASH prototype had four processors per node and the direc-
tory’s sharing list contained one bit per cluster. To follow the previous Token Coherence
studies, this work uses one processor per node and a full map directory.

The network used in this evaluation provides point-to-point ordering, a feature not
present in the DASH prototype. This ordering removes many corner cases of the protocol
where Negative Acknowledgments (NACKs) would be used to correct awkwardly ordered
messages (i.e. invalidation requests arriving at node that has not yet received valid data).
Finally, the DASH prototype provided release consistency which is not supported by the
chosen processor model. Therefore, the consistency model provided by all memory systems
in this work is sequential consistency.

A release consistent machine allows the data response to a READX message to

be used immediately, instead of waiting for all INVALACK messages to be collected. This

24

4. InvalAck Home 3b. DirtyXfer
1.ReadX 2. ReadFwd
Requestor Owner
3a. DataReply

Figure 3.2: A ReadX request to a block in the Dirty state.

reduces the effective latency of READX requests. This is important in DASH because data
will return to the requestor in three hops while INVALACKs require four hops. Refer to
figure 3.2. The requestor suffers a write cache miss and sends a request the the home node.
The home node forwards the message to the current owner. When the owner receives the
forwarded request, a DIRTYXFER message is sent to the directory to update the current
owner and a DATAREPLY is sent to the requestor. Now, the requestor has an up-to-date
block, but the directory must acknowledge that is has updated the current owner of the
block. A naive implementation of this optimization violates sequential consistency. How-
ever, if the processor stalls at the next cache miss and waits for the pending INVALACKs

for the previous miss before continuing, sequential consistency can be preserved [12].

3.3.2 Token Coherence Protocols

The three Token Coherence protocols, including the correctness substrate and
migratory data optimization, were reproduced faithfully according to Martin’s dissertation
[16]. However, the model does differ slightly from the description in section 2.4. The
model used here is the MOSI version of token counting also described by Martin [16, 18].
The advantage of the MOESI protocol is that the EXCLUSIVE state can be evicted with
a dataless message. A MOSI protocol cannot distinguish between an exclusive clean and
exclusive modified block and therefore, must include data when the block is evicted. Due
to the large caches modeled in this study evictions are exceedingly rare. Therefore, the

performance difference between the MOESI and MOSI counting schemes is negligible.

25

Benchmark ‘ Parameters

barnes 16k particles, 3 time steps

cholesky tk29.0

lu 512-by-512 matrix, contiguous

ocean 258-by-258 matrix, contiguous

radix 1M keys, max key 524288, radix 1024
water-n2 512 molecules

water-sp 512 molecules, cutoff radius 6.2 A

Table 3.1: Benchmark parameters

3.4 Benchmark Applications

The Splash2 benchmark suite is probably the most widely used evaluation method
for parallel architectures. The suite [27] was developed for the study of shared address-
space multiprocessors and consists of twelve applications. Seven of those applications were
chosen for this study. The subset was selected to reduce the total simulation time and still
retain the wide variety of sharing patterns and work distribution methods. The graphics
applications (radiosity, raytrace and volrend) were eliminated. Barnes and fmmm are both
N-body simulations (3D and 2D respectively) and have similar runtime characteristics.
Thus, the shorter running fmm is redundant and removed. The default parameters for each
application were used with the exception of radix where the number of keys was doubled.
These are listed in table 3.1. Except for choosing the “contiguous” versions of lu and ocean,
no additional effort was made to distribute data in an intelligent manner.

Each application was compiled with GCC version 3.3.3 using the “-O3” optimiza-
tion level. A subset of the PARMACS [4] macros for portable parallel programming written
by Alexis Vartanian allows the applications to be linked with the Solaris native Pthread
libraries. The Solaris system call processor_bind() was used to ensure a one-to-one mapping

of threads to processors.

3.5 Simulation Parameters

The models used in this work are used to expose the differences in coherence

protocols. As such, they are tuned to expose the differences in how coherence misses are

26

handled. Larges caches are employed to minimize the effect of capacity and conflict misses.
Also, the caches are allowed to warm before statistics are collected. This reduces the number
of cold misses measured. A perfect L1 cache with contents exactly equal to that of the L2 is
implicitly modeled by allowing local memory accesses that would hit in the L2 to complete
in zero time. It is assumed that a L1 cache would have a high hit rate for the problem sizes
studied here.

The simulated machines presented here follow the previous Token Coherence eval-
uations [16, 18], which, in turn, were guided by the Alpha EV7 [22]. Figure 3.3 gives a
high-level sketch of a node. Sixteen nodes with integrated L.1 and L2 caches, cache con-
trollers, memory controllers, network interface and optionally a directory and destination
set predictor are connected through a 2D torus operating at 3.0 GB/s. This is an aggressive
network implementation in terms of network bytes per instruction. Networks supporting
the bandwidth requirements of broadcasting have already been built for systems up to 64
processors [7], much larger than the system studied here. Therefore, system bandwidth is
not considered a bottleneck. However, due to the nature of persistent requests (requiring
many network traversals to complete) network latency is more likely to be a performance
limiter. Like previous work, it is assumed the the network is capable of multicast routing
[14, 21] and therefore broadcasting and multicasting will be handled efficiently. Network
contention is modeled only at the receiving end-points. With multicast routing, multiple
routes to any node and a large amount of available bandwidth, contention is assumed to
be minimal at intermediate hops in a message’s path. All network paths are point-to-point
ordered.

All memories in the system (main memory, cache tags, directories, etc.) are 4-way
interleaved by block address. The DASH system allows memory and directory accesses to
occur in parallel if both resources are free. Similarly, the Token based systems can access
the directory and memory simultaneously.

The destination set predictor used in the TokenM protocol is Martin’s GROUP [17]
predictor. The predictor is a 16k-entry table direct mapped to physical addresses. Each
entry contains a tag, rollover counter and a 2-bit saturating counter for each remote node
in the system. Nodes whose corresponding counter is 2 will be predicted as a member
of the destination set. An entry is allocated in the predictor when tokens are received
from another processor’s cache. Upon receiving token requests and responses from other

processors the table is updated in the following way. If the address of the message hits in the

27

Figure 3.3: Detail of one processing node.

table, the remote processor’s counter and the 5-bit rollover counter is incremented. When
an entry’s rollover counter reaches zero, each 2-bit counter in the entry is decremented.
This prevents nodes that are no longer active in sharing a block to be removed from the
predicted destination set.

A high rate of requests for a block can cause large queuing delays at contention
points. The main memory is especially susceptible to these delays because of its longer
latency. The properties of Token Coherence allows the memory controller to reduce the
rate of requests issued to the main memory RAMs, thus reducing queuing latency. The
following optimizations were made to the Token Coherence memory controller. Since tran-
sient requests can be retried, it is common for a processor to have more than one identical
request queued at the memory controller. The first optimization is to merge repeated re-
quests into one. Persistent requests exist to ensure the requestor gains access to sufficient
tokens to complete its request. Transient requests for the same address as an incoming
persistent request are purged from the memory controller’s queue. This reduces the latency
of persistent requests. Finally, if the memory queues become so long that the requestor is
likely to reissue its request, incoming requests are dropped. To avoid deleting tokens and

preventing deadlock, persistent request messages and writebacks are never dropped.

28

Processor
Processor Model ‘ 16 x 1 GHz, Single Issue, In-Order
Caches
L1 0 ns hit latency, 4 MB, contents always equal to L2
L2 6 ns hit latency, 4-way set associative, 4 MB, random replace-
ment, 4-way interleaved
Network
Topology 2D torus, point-to-point ordered
Link Latency 15 ns end-to-end
Channel Width 4 bytes
Channel Frequency | 750 MHz
Max. Throughput | 3.0 GBs
Memory
Latency ‘ 80 ns, 4-way interleaved
Token Store and Directory
Latency ‘ 20 ns, 4-way interleaved

Table 3.2: Simulation parameters.

3.6 Measurement Techniques

All statistics reported were collected during the parallel section of each application.
The caches are allowed to warm during the initialization phase of the program. The statistics
counters of the simulator are reset at the beginning of the parallel section but the contents
of the caches, directories and destination set predictors (if applicable) are maintained. Hints

in Splash2 source codes were used as a guide to place timing and processor binding code.

29

Chapter 4

Results

This chapter describes the results of experiments designed to evaluate the perfor-
mance of several Token Coherence variants on a subset of the Splash2 benchmarks. First,
the effectiveness of the migratory data optimization is examined for DASH and TokenB.
Then TokenB, TokenD and TokenM are each evaluated relative to DASH. Finally, because
the cost of persistent requests is a potential bottleneck in Token Coherence, a method of

reducing the frequency of persistent requests, persistent read requests, is evaluated.

4.1 Rate of Retries and Persistent Requests

This section will give some insight the following sections by describing the behavior
of the benchmarks with respect to persistent requests. Due to the bandwidth and latency
cost of persistent requests, the rate at which they occur has a major impact on the perfor-
mance of Token Coherence. Moreover, because each home node can only activate a single
persistent request at a time, the distribution of persistent requests across home nodes and
the shared data space are also important. If a large portion of persistent requests target a
single home node, that node will quickly become a bottleneck.

Commercial workloads have been shown to maintain persistent request rates on
the order of 0.2% with retry rates of 2-5% [18]. Table 4.1 describes the rates of persistent

requests and retries on seven scientific benchmarks. Clearly, the rate of persistent requests

30

Benchmark | Persistent Request Rate | Retry Rate

Barnes 7.89 12.4
Cholesky 6.46 8.85
LU 9.91 14.5
Ocean 27.5 40.8
Radix 16.5 18.3
Water-n2 11.3 14.7
Water-sp 18.0 26.3
Apachel 0.29 4.25
OLTPT 0.21 2.43
SPECjbbf 0.07 2.40

: Results from [18].

Table 4.1: Persistent requests and retries per 100 cache misses for TokenB.

is much higher in the workloads studied here. The benchmarks exhibit persistent request
rates of 6.5 27.5% with retry rates up to 40.8%. Though the rate of persistent requests per
cache miss is quite high, what is more important is the rate of persistent requests to each
home node. Because a persistent request cannot be activated until all previous persistent
requests to the same home node have been satisfied, unevenly distributed persistent requests
can cause a single home node to become overloaded and the queue of persistent requests at
that node will grow considerably.

This raises the question: “Are persistent requests evenly distributed?” Figure 4.1
shows the distribution of persistent requests across addresses and home nodes. Clearly, the
target addresses of persistent requests are not evenly distributed. In fact, 10% of persistent
request addresses account for 40-80% of all persistent requests. The high frequency of
persistent requests to these blocks causes persistent requests to the same block to queue at
the home node, drastically increasing the miss latency. The problem of queuing persistent
requests is exacerbated by the fact that persistent requests are poorly distributed among

home nodes. Nearly all persistent requests are handled by three or fewer home nodes.

4.2 The Migratory Data Optimization

All previously published evaluations of Token Coherence have used the migratory

data optimization described in Chapter 2. This study explores different workloads from

31

100 .
90 I
wn
% 80 i
S
‘%7 70 i
.~ 60 1
]
£ 50 1
L barnes — |
< ' cholesky ===~~~
= ol T
< ocean
=0 radix — 7]
10 water-n2 777" B
‘ | | Water‘—sp ””””””
0
0 10 20 30 10 -
% of Persistent Request Addresses
100 : S
90 [P R]
wn
g 80 i
§ —
Soé* 70
.~ 60 1
o]
g 507 i
: barnes — |
: i cholesky =777~
= ol S
< ocean
=20 radix ——— 7]
107 water-n2 ~~ 7" B
0 : ‘ | \ ‘VVateI‘—Sp‘ *******
1 2 3 4 5 6 . .

Number of Nodes

Figure 4.1: Cumulative percentage of persistent requests versus (a.) cumulative percentage
of persistent request target addresses and (b.) cumulative number of target home nodes.
For clarity only a portion of the horizontal axis is shown.

32

that body of work. Also, no results have been published that quantify the performance
increase of the optimization. Therefore, the optimization must be re-evaluated here.

The goal of the migratory data optimization is to increase performance by elimi-
nating the often unnecessary cache miss incurred when upgrading a readable block to an ex-
clusive state. The danger of this optimization is the possibility of predicting non-migratory
blocks as migratory. A misprediction is likely to cause an extra read miss. Consider this
sequence of events. Processor A writes a block. Processor B reads that block and receives
the data in the exclusive state due to the migratory data optimization. Processor A reads
the block and suffers a read miss. In this example, processor A suffers a read miss that
would not have occurred without the migratory data optimization. Additionally, processor
B does not benefit from the optimization because it has not written the block before moving
the the SHARED state when A requests a readable copy. If enough readable-to-exclusive
misses are eliminated to overcome the additional read misses caused by misprediction, the
migratory data optimization will be beneficial. Unfortunately, Token Coherence lacks a
mechanism to directly enumerate the sharers of a block. This is a liability when deter-
mining which blocks to treat as migratory. The number of read and write misses suffered
by the migratory version of each protocol is shown relative to the non-migratory version
in figure 4.2. All benchmarks with the exception of ocean exhibit the expected tradeoff of
fewer write misses for more read misses. The results for ocean are anomalous and will be
explained separately.

The performance of the DASH protocol with and without the optimization are
used as points of comparison for TokenB’s behavior. The runtime of each benchmark both
with and without the optimization is shown in figure 4.3. All runtimes are normalized to
DASH without the optimization. With DASH, enabling the optimization improves runtime
by —0.2% — 49.0% (ignoring ocean for the moment) with an average of 2.9%. Only one
application, barnes, did not benefit from the optimization. Figure 4.2 clearly shows that
barnes suffered a significant increase in the number of read misses (56%) while only receiving
a moderate decrease in the number of write misses (32%) with the optimization enabled.
In this case the negative effect of the optimization did not outweigh the positive effect.

Few applications using TokenB enjoy a significant speedup from the migratory
optimization. Speedups range from —1.5% to +1.1% (again, without ocean) with an average
of —0.5%. In fact, only one application, radix, decreases execution time. Radix is unusual

in that 92.5% of all persistent requests target one address. This is important because

3.5 7
DASH (writes) ——
3 DASH (reads) 88848
TokenB (writes) XXX
B TokenB (reads) H-—
2.5
9 [|

Relative Miss Rate

barnes cholesky lu ocean radix water-n2water-sp

Figure 4.2: Effect of the migratory data optimization on read and write misses.

14 DASH C—3
DASH migr. BXX2
TokenB SIS _|

o (o, N
2 TokenB migr.
=
= 0o
202
= 3 o
kX X @ o
~ oS0 XK 3039,
R o2
[%6%; No%% %%
= £XX P ‘ XX XX
o2 OXRXY 3059,
Q 4 RS KXY
N o2 OXRXY 2020
= 0% PR R
< RS Ogaess K
30 DR R
g R Oaisoox K
3059, PR (039,
= Y @00 20
@) 02 DX R (%0
o303 OXRXY 030
Z, 554 DR o
B4 B
:::z DX KXY
2058
oo %
o2
R
=
| ode%
554
RS

barnes cholesky lu ocean radix water-n2water-sp

Figure 4.3: The effect of the migratory optimization on DASH and TokenB.

33

34

persistent requests are long latency operations. Moreover, persistent requests to the same
address cannot be overlapped and must be completely serialized. Persistent requests in other
benchmarks are more evenly distributed. The migratory data optimization increases the
number of write hits to this block. This eliminates some misses to a highly contended block
which would likely result in a persistent request. The result is a shorter queue of persistent
requests and therefore a lower average miss latency to the most frequently missed block.

As expected both protocols exhibit a reduction in write misses and an increase
in read misses with the migratory optimization active. The percentage of write misses
avoided and extra read misses created by the optimization is roughly equal between DASH
and TokenB. However, the cause for the difference in runtime becomes apparent when the
potential benefit of predicting a migratory block is analyzed. TokenB and other Token
Coherence protocols have less to gain from the migratory optimization relative to DASH
for the following reason. When the optimization works properly, DASH replaces a dirty
to shared operation (116 cycles on average without contention) followed by a READX to a
shared block (140 cycles average) with a change of owner operation (116 cycles) followed
by a cache hit (0 cycles). This saves 116 cycles per invocation of the optimization. On the
other hand, TokenB will replace a READ (66 cycles average without contention) followed
by a READX (66 cycles) with a single READ operation. This saves only 66 cycles.

The performance of ocean is drastically reduced when the migratory data opti-
mization is enabled. The shared data in ocean is divided among processors in the system
and each processor only modifies its own section of the shared data. The copying of neigh-
bor data in the first four loops of the laplacalc() function cause a huge number of cache
misses with the optimization enabled. The misses due to these loops account for most of
the decrease in performance.

The migratory data optimization also has the potential to reduce contention and
therefore increase performance. However, the reduction of contention in the network and

various memories was not significant in this study.

4.3 Performance Protocols

Given the properties of the studied coherence protocols and the simulated machine

the following relationships are likely. (1.) TokenB outperforms DASH because the network

35

1.2

X2

—
|
%
Y|
%
2
S
ool

0%
%,
RS

R
XX
%
X5

120

)
R
X
)
X
é
R

R
\

%
%
S

X5

S
X
2

%
X

S

Q>
2

%
X

o

&R

R
4
0%

b

0.8 -

5
3
RK

>
L.

XX

X

2

%
Do,
XX
R
X
5

2

XX

2
Q2

20
%

9.4
<
%

X

2
Do

&S
XX
5

IR

%k
3
X

R

2

0%
)

0.6 [~

2

X

Do %
2
Do %%

X

2
’0

>

X

2
X
KX

Q>
X

2

X

x>
R

2
L.

2

X
L.

>
X

.

&R
<R
%
X

2

2%
X
%
XX
5
RK

Normalized Runtime
&

2

120

2
2
X

KX
o
IRR

Q2
2

KR

>
X

[an)
IS
OO,
XX
XX
R

L.
X
Q2

Q>
X

2
2
2

120

2
X

X

&S
&R
<R

%

X

2
2

X

2
b4

R
b4
Q

X5

Q>
X

2
Q2

)
[\
0%
RRK
X
2
K2
XX

X
3
X
)

120

959.9.0,0.0.0.0.0.0.0.0.0.0.0.0.0.9.9.0.0.0.0.0.0
X

S 0.0.9.0.9.0.0.9.9.0.0.0.09.0.09.0.00.0.09.0.099.9

2

X

2
X

2
2
Q2

9.4
2
RRR

Q2
O

9090900090.9.9:9.9.9.0,9,0.90.0.0.90.9.9.9.9.9.9.9.9.9,

"
X
o,
o,
X

%
&
5

20

X
%
25
&

2

2

2
X

2
D%

R

X
<
X

o
S
%
X
.
S

barnes cholesky lu ocean radix water-n2water-sp

Figure 4.4: Runtime of TokenB, TokenD and TokenM relative to BASH.

has a large amount of bandwidth available to support broadcast. Also, coherence requests
in DASH suffer an extra latency penalty for indirection. TokenB avoids the home directory.
(2.) TokenB outperforms TokenD for the same reasons. (3.) TokenM’s performance will
fall between TokenB and TokenD. The latency-bandwidth tradeoff, discussed in Chapter
2, TokenM predicts that because TokenM uses an amount of bandwidth between TokenB
and TokenD, TokenM’s requests will have an average miss latency between the other two
Token Coherence protocols. Therefore, TokenM is likely to not perform as well as TokenB
but better than TokenD. However, TokenM has the potential to avoid indirection and si-
multaneously reduce contention. This combination of features is not possible either TokenB
or TokenD. Figure 4.4 shows the runtime of DASH and the three performance protocols
without the migratory data optimization. All runtimes are normalized to DASH.

In all cases the above predictions matched the results of the simulator. Despite the
high persistent request and retry rates. Token Coherence outperforms DASH in all but four
situations: the combinations of TokenD or TokenM and ocean or radix. The added latency
of forwarding requests to the home node increases the length of time a request is vulnerable

to interference from a racing request!. Relative to TokenB, the number of racing requests

!'Request A is considered to “race” request B if both requests are simultaneously outstanding.

36

Persistent Request Rate
Benchmark || TokenB | TokenD | TokenM
Barnes 6.05 8.04 7.88
Cholesky 6.46 10.8 8.44
LU 9.91 11.2 11.7
Ocean 27.9 34.7 31.0
Radix 16.5 16.4 16.9
Water-n2 11.3 13.7 14.7
Water-sp 18.0 21.1 19.4

Table 4.2: Persistent requests per 100 cache misses for TokenB, TokenD and TokenM.

increases by 68% and 76% for ocean and radix respectively when using TokenD. More races
produce conflicts which, in turn, increase miss latency. TokenM can only partially reduce
the number of conflicting races.

Table 4.2 shows the persistent request rates for each of the three performance
protocols. The persistent request rates of TokenD and TokenM are clearly higher than that
of TokenB due to the effect of races just described. Comparing figure 4.4 and table 4.2,
we can see that, as expected, persistent request rate is a fairly good estimator of relative

performance.

4.4 Persistent Read Requests

Another optimization of Token Coherence that has been used in other work with-
out a quantitative display of its effectiveness is the persistent read request. When a load
causes a persistent read request, a minimal number of tokens are moved to the requestor.
In contrast the default persistent request mechanism requires all tokens to be sent to the re-
questor causing unnecessary read misses. Therefore, the benefit of persistent read requests
is a reduction of read misses. Figure 4.5 shows the runtime of the Splash2 subset using per-
sistent read requests, relative to the runtime of the default persistent request scheme. The
persistent read request mechanism improves performance by 0-5.7%. Lu and radix enjoy
the largest reduction in read misses and consequently, the largest speedup. Persistent read
requests reduce the number of read misses in lu and radix by 15.2% and 14.8% respectively.

The remaining benchmarks average only a 10.9% reduction in read misses.

37

1.4 Exclusive PR —— —
Read PR BAAX

0.8 -

Normalized Runtime

barnes cholesky lu ocean radix water-n2water-sp

Figure 4.5: Effectiveness of persistent read requests.

4.5 Sensitivity to Network Parameters

The network parameters used in all simulations discussed up to this point have
been somewhat ambitious. This section describes the results of three scientific benchmarks
simulated with a less aggressive network model. Three benchmarks with interesting prop-
erties were chosen to run with the new parameters. Ocean exhibited moderate bandwidth
utilization in the previous tests, but proved to be sensitive to miss latency. Radix consumed
more bandwidth than any other benchmark run under TokenB and also showed some sen-
sitivity to request latency. Finally, acting as a kind of control group, lu performed well
under all three performance protocols. The latency of each network link was extended from
15 to 35 ns and the link bandwidth was halved, resulting in 1.5 Gb/s links. Neither the
persistent read request or the migratory data optimization was used runs presented in this
section. Figure 4.6 shows the runtime of the three benchmarks with the adjusted network
parameters.

With the new parameters, ocean and radix continue to perform poorly with To-
kenD and TokenM. Again, the number of racing request increases dramatically in those
cases. Ocean suffers a 54% in racing requests when using either for TokenD or TokenM.

This results in increases 52% and 54% in the number of persistent requests when using To-

38

1.6
DASH ——
1.4 - TokenB ———
TokenD 8RAA
qé L2 [~ TokenM XXX —
= -
[aet
T 08 .
N
£ 06 -
3
20471 .
021 .
0
ocean radix

Figure 4.6: The runtime of lu, ocean and radix with an alternate network.

kenD and TokenM respectively. The same effect is less dramatic with radix. The increased
request latency of TokenD and TokenM cause 33% and 21% more races respecively. This
results in 11% more persistent requests when either TokenD or TokenM is used. In contrast,
the performance of lu improves when using TokenD or TokenM. This improvement mainly
is due to reduced network contention. Delays caused by network contention were reduced
by 59% and 41% for TokenD and TokenM. On average TokenB remained competitive with
DASH. The increased network load of TokenB caused a slight slow down compared,u to
DASH for lu and ocean, 6.5% and 2.6% respectively.

Figure 4.7 shows the increase in runtime for each lu, ocean and radix compared
to the more aggressive network. In lu and radix, the sensitivity of DASH, TokenD and
TokenM are comparable. This is expected because of the unicast and multicasting features
of the those protocols. The slowdown of TokenB for each benchmark was moderate, despite
being a broadcast protocol. For all protocols radix slowed down considerably when using
the slower network. This is due to its higher cache miss rate and network bandwidth usage.

Ocean’s slowdown was quite high for the reasons described earlier in this section.

39

X

B0KKKRIK AKX KKK
BR30RRIRIRRIIRIIRIIRIRRIIRIORIIIRIRIARIRIA
QRRRRIRIARIIRIARRIRIRIIRIARIIRIANRIR
QSR5XRAREARKLIAAKAKKAKKK

DASH —1
TokenB BXXXA

TokenD RXXXXX

030305030 0°07070°070-0-0-020-0-020-0 00 0-0°¢.
020202620502 % %2266 % % % %% %% % % % %
00
0000000 %0 %026 %6 %6 %6 %6 %6 %6 %6226 %6 %222 %% %%
1900000200000 000020002020 00 220909909990,
1900020000000 00 000000900 0.9.9.9,9.9,9,9,.9.9.%,

1.5 Foken)M R

QUIIIUNY] POZI[RULION

radix

ocean

Sensitivity to a slower network.

Figure 4.7

40

Chapter 5

Conclusion

This work has shown that Token Coherence is not dependent on the peculiarities
of commercial workloads and can improve the performance of scientific applications on
mesh of highly integrated processing nodes. In fact, Token Coherence performs well despite
persistent request rates up to 27.5%, much higher than previously published benchmarks.
While the poor distribution of persistent request target addresses across home nodes is a
concern for scalability, it is not detrimental to performance at 16 nodes with the parameters
used here. However, some variants of Token Coherence that work well with commercial
workloads do not produce a benefit for scientific workloads. Specifically, the migratory data
optimization is not effective on the benchmarks studied here. The ocean application has
a particularly adverse reaction to the optimization increasing runtime by 36%. Also, read
persistent requests give a moderate boost to scientific applications, reducing runtime by up
to 5.7%.

The three performance protocols evaluated performed as predicted with respect to
the baseline DASH protocol. TokenB is the fastest of the four protocols across all bench-
marks. TokenM always falls between the performance of TokenB and TokenD. For all but
two benchmarks, ocean and radix, TokenD and TokenM are also faster than DASH. The ex-
ceptions are due to a high rate of conflicting races. This is a weak point of Token Coherence
due to the race recovery mechanism, persistent requests, which have long latency compared
to transient requests. To address Token Coherence’s sensitivity to network parameters a less

aggressive network implementation was also tested. Despite the less generous bandwidth

41

and increased latency of the system TokenB remained competitive with DASH.

The contributions of this work are as follows.

1. The performance of Token Coherence was measured under a new set of benchmarks

quite different from previously published work.

2. The rate of persistent requests were shown to have an impact on performance, but the
increased persistent request rates were not detrimental to performance in this study.
For example, lu and radix perform significantly better with TokenB than with DASH
despite persistent request rates of 9.9% and 16.5%. These are much higher than the

2-5% reported for commercial benchmarks.

3. The effectiveness of two optimizations for Token Coherence used in previous work
(without a quantitative measure of performance gain) was measured. The migratory
data optimization was shown not to be effective for scientific workloads and the read

persistent request optimization provides only minor speedups.

4. The sensitivity of Token Coherence to network parameters was measured. Though
more sensitive to a slower network design than DASH, the Token Coherence protocols

remained competitive with DASH despite modest network parameters.

5.1 Future Work

The first point of concern with the realism of the setup presented here is the
simplified processor model. A more complete system should be modeled allowing multiple
outstanding memory transactions from each processor. Additionally, the current processor
model lacks the ability to throttle its own network activity when the network becomes
congested. This feature is essential to accurately model fully utilized networks.

Finally, the network sensitivity studied conducted here should be expanded. La-
tency and bandwidth limitations should be studied independently and more data points are
needed. Of course, this study ought to provide results for, at least, all seven benchmarks is

chosen for the evaluation of the default parameters.

42

Bibliography

1]

[2]

NR Adiga et al. An Overview of the BlueGene/L. Supercomputer. In Proceedings of
the 2002 ACM/IEEE Conference on Supercomputing, 2002.

A. Alameldeen and D. Wood. Variability in Architectural Simulations of Multi-
threaded Workloads. In Proceedings of the Ninth IEEE Symposium on High-

Performance Computer Architecture, February 2003.

James Archibald and Jean-Loup Baer. Cache Coherence Crotocols: Evaluation Using

a Multiprocessor Simulation Model. ACM Trans. Comput. Syst., 4(4):273-298, 1986.

E. Artiaga, N. Navarro, X. Martorell, and Y. Becerra. Implementing PARMACS

Macros for Shared-Memory Multiprocessor Environments, 1997.

L. Barroso, K. Gharachorloo, and F. Bugnion. Memory System Characterization of
Commercial Workloads. In ISCA ’98: Proceedings of the 25nd Annual Anternational
Aymposium on Computer Architecture, pages 314, 1998.

E. Ender Bilir, Ross M. Dickson, Ying Hu, Manoj Plakal, Daniel J. Sorin, Mark D.
Hill, and David A. Wood. Multicast Snooping: A New Coherence Method Using a
Multicast Address Network. In ISCA ’99: Proceedings of the 26th Annual International
Symposium on Computer Architecture, pages 294-304. IEEE Computer Society, 1999.

Alan Charlesworth. Starfire: Extending the SMP Envelope. IEEE Micro, 18(1):39 49,
1998.

Alan L. Cox and Robert J. Fowler. Adaptive Cache Coherency for Detecting Migratory
Shared Data. In ISCA ’93: Proceedings of the 20th Annual International Symposium
on Computer Architecture, pages 98 108. ACM Press, 1993.

[9]

[10]

[12]

[13]

[16]

[17]

43

Zarka Cvetanovic. Performance Analysis of AlphaServer GS1280. [FEE Micro, 18,
January 2003.

Kourosh Gharachorloo, Madhu Sharma, Simon Steely, and Stephen Van Doren. Archi-
tecture and Design of AlphaServer GS320. In ASPLOS-IX: Proceedings of the Ninth
International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 13—24. ACM Press, 2000.

James Laudon and Daniel Lenoski. The SGI Origin: a ccNUMA highly scalable server.
In ISCA °97: Proceedings of the 24th Annual International Symposium on Computer
Architecture, pages 241-251. ACM Press, 1997.

Alvin R. Lebeck and David A. Wood. Dynamic Self-Invalidation: Reducing Coherence
Overhead in Shared-Memory Multiprocessors. In ISCA ’95: Proceedings of the 22nd

Annual Anternational Aymposium on Computer Architecture, pages 48 59. ACM Press,
1995.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hen-
nessy. The Directory-Dased Dache Doherence Drotocol for the DASH Dultiprocessor.
In ISCA °90: Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 148-159. ACM Press, 1990.

Xiaola Lin and Lionel M. Ni. Deadlock-Free Multicast Wormhole Routing in Multicom-
puter Networks. In ISCA ’91: Proceedings of the 18th Annual International Symposium
on Computer Architecture, pages 116-125, New York, NY, USA, 1991. ACM Press.

P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner. Simics: A Full System Simulation Platform.
Computer, 35:50-58, February 2002.

Milo M. K. Martin. Token Coherence. PhD thesis, University of Wisconsin - Madison,
2003.

Milo M. K. Martin, Pacia J. Harper, Daniel J. Sorin, Mark D. Hill, and David A.
Wood. Using Destination-set Prediction to Improve the Latency/Bandwidth Tradeoff
in Shared-Memory Multiprocessors. In ISCA °03: Proceedings of the 30th Annual
International Symposium on Computer Architecture, pages 206-217. ACM Press, 2003.

[18]

[19]

[25]
[26]

[27]

44

Milo M. K. Martin, Mark D. Hill, and David A. Wood. Token Coherence: Decoupling
Performance and Correctness. In ISCA ’03: Proceedings of the 30th Annual Interna-
tional Symposium on Computer Architecture, pages 182—-193. ACM Press, 2003.

Milo M. K. Martin, Daniel J. Sorin, Anatassia Ailamaki, Alaa R. Alameldeen, Ross M.
Dickson, Carl J. Mauer, Kevin E. Moore, Manoj Plakal, Mark D. Hill, and David A.
Wood. Timestamp Snooping: An Approach for Extending SMPs. In ASPLOS-IX:
Proceedings of the Ninth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 25-36. ACM Press, 2000.

Milo M. K. Martin, Daniel J. Sorin, Mark D. Hill, and David A. Wood. Bandwidth
Adaptive Snooping. In HPCA ’02: Proceedings of the Eighth International Symposium
on High-Performance Computer Architecture, page 251. IEEE Computer Society, 2002.

Prasant Mohapatra and Vara Varavithya. A Hardware Multicast Routing Algorithm
for Two-Dimensional Meshes. pages 198-205, 1996.

Shubhendu S. Mukherjee, Peter Bannon, Steven Lang, Aaron Spink, and David Webb.
The Alpha 21364 Network Architecture. In HOTI ’01: Proceedings of the The Ninth

Symposium on High Performance Interconnects, page 113. IEEE Computer Society,
2001.

Paul F. Reynolds, Jr., Craig Williams, and Raymond R. Wagner, Jr. Isotach Networks.
IEEE Trans. Parallel Distrib. Syst., 8(4):337 348, 1997.

Per Stenstrom, Mats Brorsson, and Lars Sandberg. An Adaptive Cache Coherence
Protocol Optimized for Migratory Sharing. In ISCA ’93: Proceedings of the 20th An-
nual International Symposium on Computer Architecture, pages 109-118. ACM Press,
1993.

Virtutech AB. Simics Out of Order Processor Models. October 2003.
Virtutech AB. Simics User Guide for Unix. October 2003.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The SPLASH-2 Programs: Characterization and Methodological Considera-
tions. In ISCA ’95: Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 24-36. ACM Press, 1995.

