
ABSTRACT

MARKOW, TANYA THAIS. A Knowledge Maturity Model: An Integration of Problem

Framing, Software Design, and Cognitive Engineering. (Under the direction of DR.

THOMAS LYNN HONEYCUTT).

 The Knowledge Maturity Model (KMM) is a new model proposed as an

alternative to an existing software engineering evaluation model, the Capability Maturity

Model (CMM). The KMM is offered as a solution to some key weaknesses of the CMM.

The CMM was developed in the early 1980s, when highly structured programming and

business practices were the standard. In the current agile methods computer science

environment, it is often difficult to evaluate a company which employs agile methods

using the CMM methodology. The CMM consists of five levels; in order to claim the

next higher level, all tasks of that level must be accomplished. Many companies

operating with agile software engineering and management practices tend to be

performing at many levels within the CMM, making it difficult to assign such an

organization an appropriate CMM level designation. The KMM proposes instead an

evaluation of the actual inner processes the company uses to develop software, rather

than it’s ability to achieve a given set of tasks, as required by CMM.

 It will be shown that the KMM bridges the gap between the CMM and agile

methods by employing the Knowledge Insight Model (KIM). The KIM is an iterative

process that employs four key roles: Framer, Maker, Finder and Sharer. The Framer is

responsible for the “big picture” of project management, including defining requirements

and scope. The Maker must create new concepts and code for solving the problem. The

Finder seeks out existing knowledge and information to help solve the problem. The

Sharer must create and maintain a database of the project and ensure that all involved get

the information they need. The Knowledge Maturity Model incorporates the concept of

levels or states of maturity from the CMM, and the core fundamentals of the KIM: the

roles and an iterative process. The synergy of these concepts gives rise to the four state

model of the KMM: recognition and use of the Plan, Do, Check, Act cycle, use of the

four roles of KIM, use of an iterative process, and finally, the fully working inner

mechanism or sharing mechanism of the KIM. The KMM allows an organization to

choose any traditional software engineering methodology for a given project by

providing the roles-based structure to make shifting between software engineering

methodologies easier, allowing companies to tailor their process for specific projects.

 KMM ties together the three fundamental centers that comprise the process of

developing software: systems engineering, software engineering, and cognitive

engineering. The KMM solves the systems engineering problem by providing a

generalized process that is a superset of any given software engineering methodology.

Because KMM provides a superset to all existing software engineering methodologies, it

frees up an organization to choose the one that best suits a given project, rather than

always having to use one standard approach, therefore addressing the software

engineering aspect. At the heart of KMM are the four roles, which addresses the need to

completely incorporate people into the process, thus bringing in the cognitive engineering

side of the discipline.

A Knowledge Maturity Model: An Integration of Problem Framing,

Software Design, and Cognitive Engineering

By

Tanya Thais Markow

A thesis submitted to the Graduate Faculty in partial fulfillment of
the requirements for the Degree of

Master of Science in COMPUTER SCIENCE

Department of Computer Science

North Carolina State University

2004

Approved By ___

Dr. Thomas L. Honeycutt, Chairperson of Advisory Committee

Dr. Christopher G. Healey

Dr. Robert St. Amant

Date: ___

 ii

To my husband, Pete and my daughter, Morgan,

for their tremendous love, support and patience.

To my mother, Annette Fogarty,

for raising me believing that with perseverance,

ALL things are possible.

And above all, I thank God for

all the blessings in my life.

 iii

BIOGRAPHY

Tanya Thais Markow (nee Tolles) was born in Mayfield Heights, Ohio on August 19,

1973. She attended Lakewood High School (1987-1990), and the United States Military

Academy at West Point (1991-1995), where she earned a Bachelor of Science in

Mechanical Engineering (Aerospace) and was commissioned as a Second Lieutenant in

the United States Army. She graduated from the Aviation Officer Basic Course as an

Honor Graduate in June 1996, designated an Army Aviator, and became an AH-64A

Apache Pilot in October 1996. She then served as an Attack Platoon Leader in

A Troop, 1-6 Cavalry, in the Republic of Korea (1996-1997). She returned to the United

States to 3-229th Aviation Regiment (Attack), Ft. Bragg, North Carolina, where she

served as Battalion Intelligence Officer. She deployed with her battalion to Bosnia-

Herzegovina in support of Stabilization Force IV, Operation Joint Endeavor (1998-1999).

Tanya then attended the Aviation Captain’s Career Course (2000). She served as

Battalion Adjutant Officer for 1-210th Aviation Regiment before being selected for

Company Command of HHC, 1-14th Aviation Regiment at Ft. Rucker, Alabama. She

earned the designation of AH-64A Apache Instructor Pilot in August 2001. Tanya is an

active duty Army Captain, with over 1000 hours in various aircraft, and is a Senior Army

Aviator. Selected in 2001 to teach Computer Science at the United States Military

Academy, Tanya is currently pursuing a Master of Science in Computer Science at North

Carolina State University in Raleigh, North Carolina.

 iv

ACKNOWLEDGEMENTS

I wish to thank Dr. Thomas L. Honeycutt for recognizing the potential for this thesis in

my eighteen-page answer to a homework problem he assigned in Software Engineering.

Thanks for your guidance and wisdom. I would also like to thank my committee

members, Dr. Christopher G. Healey and Dr. Robert St. Amant for their suggestions and

assistance during the course of my thesis.

I thank my husband for his love, patience, and help, and for being my best friend. I thank

my daughter for her unconditional love. I thank my mother for instilling the belief in me

that anything is possible. Finally, I wish to thank my friends at NCSU, specifically Sam

Krishna, Michael Dougherty, Neha Katira, David Wright, and Sarat Kocherlakota for

their help and friendship.

 v

TABLE OF CONTENTS

TABLE OF FIGURES.. vii
1. INTRODUCTION ... 1

1.1 Research Motivation: .. 1
1.2 Statement of the Problem:... 2
1.3 Goals for this thesis:.. 3
1.4 Knowledge Maturity Model (KMM):... 4
1.5 Objectives of this thesis: ... 5
1.6 Thesis Layout:... 6

2. CAPABILITY MATURITY MODEL (CMM).. 7
2.1 History of the Capability Maturity Model (CMM):.. 7
2.2 CMM Overview:... 8
2.3 Evolution of the CMM, Rise of the CMMI: ... 11

3. PROCESS IMPROVEMENT METHODS .. 12
3.1 Review of Literature: .. 12
3.2 Application of the Capability Maturity Model: .. 12
3.3 Methods for Advancing within the CMM Framework:.. 13
3.4 Advantages and Disadvantages of KIM: .. 16
3.5 Existing Process Analysis:.. 17

4. KNOWLEDGE INSIGHT MODEL (KIM) ... 19
4.1 Knowledge Insight Model (KIM) ... 19
4.2 Plan, Do, Check, Act (PDCA) Cycle.. 20
4.3 External, Internal, Discover, Refine Transition Matrix .. 21
4.4 Framer: .. 26
4.5 Maker: ... 27
4.6 Finder: ... 30
4.7 Sharer: ... 32

5.0 CLIMBING THE CMM USING THE KIM .. 34
5.1 Method Introduction: .. 34
5.2 CMM Level 1 to Level 2 using KIM:... 34
5.3 CMM Level 2 to Level 3 using KIM:... 39
5.4 CMM Level 3 to Level 4 using KIM:... 42
5.5 CMM Level 4 to Level 5 using KIM:... 46

6.0 KNOWLEDGE MATURITY MODEL.. 51
6.1 Introduction:.. 51
6.2 KMM Overview.. 53
6.3 KMM Evaluation .. 54
6.4 KMM as a Superset of The Waterfall Model.. 57
6.5 KMM as a Superset of The Spiral Model ... 59
6.6 KMM as a Superset of the Rational Unified Process ... 61
6.7 KMM as a Superset of Extreme Programming (XP) .. 65

 vi

6.8 KMM as a Superset of SCRUM ... 67

7. NASA AND THE KMM .. 70
7.1 Columbia... 70
7.2 Challenger / Columbia and the NASA Culture .. 70
7.3 New Culture with KMM... 72

8. CONCLUSIONS AND FUTURE WORK ... 74
8.1 Conclusions:.. 74
8.2 Future Work:... 76

LIST OF REFERENCES.. 77

 vii

TABLE OF FIGURES

Figure 1. Diagram of the five levels of the Capability Maturity Model [12]. 10
Figure 2. Plan, Do, Check, Act (PDCA) Cycle ... 20
Figure 3. Four Quadrant Matrix... 21
Figure 4. Refinement Evolution: Creative phase to development phase of design process

... 23
Figure 5. Creative Evolution: Creative phase of design process to a new design process

... 24
Figure 6. Knowledge Insight Model .. 25
Figure 7. Framer... 26
Figure 8. Maker.. 28
Figure 9. Finder.. 30
Figure 10. Sharer.. 32
Figure 11. Transitioning from CMM Level 1 to Level 2 using KIM 36
Figure 12. Transitioning from CMM Level 2 to Level 3 using KIM 40
Figure 13. Transitioning from CMM Level 3 to Level 4 using KIM 44
Figure 14. Transitioning from CMM Level 4 to Level 5 using KIM 48
Figure 15. The Three Aspects of Software Design and KMM.. 52
Figure 16. KMM Levels ... 56
Figure 17. Waterfall Model Instance of KMM... 58
Figure 18. Spiral Model ... 60
Figure 19. KMM as a Superset of the Spiral Model .. 61
Figure 20. KMM Applied to RUP ... 64
Figure 21. KMM Applied to XP.. 66
Figure 22. SCRUM [18] .. 68
Figure 23. KMM as Superset of SCRUM... 69

1. INTRODUCTION

1.1 Research Motivation:

There is “no silver bullet.” The truth of this statement is highly evident in the

constantly evolving world of software engineering. This fact has not hampered the

attempts by many to claim the latest “silver bullet” that would solve all of the discipline’s

problems in one magic methodology or process. Extreme programming, SCRUM,

Rational Unified Process, or even the classic waterfall and spiral models have all been

touted at one time or another as the preverbal “silver bullet” of software engineering.

The plain and simple truth is that all of these methodologies are employed, with various

degrees of success, throughout the industry on any given day. The heart of the problem is

that the way in which software engineers view these concepts is fundamentally flawed.

They are tools, not magical concepts that will radically transform the industry. Just as it

would be foolish for a carpenter to attempt to build a house using only a screwdriver, it is

just as ridiculous for a software engineering company to try to create all of its software

with only one methodology or process. A far more elegant solution for software

engineering would be to employ a layer above software engineering methodologies or

tools that allows an organization to use any of the tools it chooses, and move easily

between them with a minimum of disruption. There is also the question of evaluation.

There must be a way to determine the effectiveness of a particular methodology or tool.

It is difficult to analyze and compare the success of the myriad of methodologies from

 2

company to company. The Capability Maturity Model is one of the best-known ways to

evaluate the potential success of a software engineering firm. Using the Capability

Maturity Model (CMM), however, is also problematic. The CMM provides only a

checklist of key process areas, which must be accomplished to claim a particular level on

the five-level model. It does not provide the methodology, or “how” of process

improvement. A more generalized layer may not only aid in software development, but

might also provide the answer to the “how” of process improvement.

1.2 Statement of the Problem:

There are a multitude of software engineering methodologies to choose from. They

vary greatly from the early, highly structured Rational Unified Process, Waterfall and

Spiral Models, to the more modern “agile” methods, which include models such as XP

and SCRUM. The problem is deciding which is best to use for any given problem frame.

Rather than being forced to use the same method all the time, a mature and highly agile

organization could employ a layer above these methodologies that would allow them to

decompose any method and use it, as they choose. Such a layer could also be used to

accomplish process improvement and evaluation, using a method such as the CMM. The

CMM provides a checklist for process improvement evaluation, but does not provide a

method by which to accomplish the tasks required to move up the levels. The CMM does

not accurately portray the abilities of many companies using agile methods. The CMM

requires an organization to accomplish a list of set tasks in order to claim a particular

level. However, many companies using agile methods find that they employ some

 3

methods that would be rated at level five and some that would put them at level two.

Strict adherence to the CMM would require such an organization to claim a level two

status, but does not portray their higher skills in other areas. This can result in a company

being underrated. True maturity of a software engineering company should be based on

the inner workings, how the company actually develops software and how able that

company is to adapt as needed to accommodate the needs of the customer, without such

changes imposing great stress to the rest of the organization.

1.3 Goals for this thesis:

This paper will demonstrate a new paradigm for software engineering, the

Knowledge Maturity Model (KMM). The foundation for the KMM, the Knowledge

Insight Model (KIM), will be introduced and validated by demonstrating its use as a

process improvement methodology by showing how it can be employed to climb the

levels of the CMM. The KMM will be shown to represent another level of maturity in

software engineering. The KMM will also be demonstrated to serve as a superset of

current software engineering methodologies, allowing organizations to employ the

aspects of KMM to customize their own method(s), as appropriate for a given problem

frame. The KMM paradigm will provide the layer above software engineering

methodologies and process improvement that can aid in orchestrating both activities in an

organization. The KMM does not call for an upheaval of current software engineering

practices, but rather offers a paradigm shift to a simpler way of executing software

engineering and process improvement.

 4

1.4 Knowledge Maturity Model (KMM):

The Knowledge Maturity Model (KMM) is a new paradigm that employs the

concept of levels from the CMM, but also integrates the idea of roles-based software

engineering. The KMM provides a layer above software engineering and process

improvement methodologies, providing a method of control for these activities. At the

heart of the KMM is the KIM, a generalized process that is capable of multiple instances.

The KIM incorporates four roles: Framer, Maker, Finder, and Sharer. The KIM employs

a means by which to transition between these states: the Plan, Do, Check, Act (PDCA)

cycle. The KIM takes into account both internal and external factors that can influence

an organization.

 Each of the four roles allow team members to understand what their mission is,

based on which role they are assigned at any given time. The Framer is responsible for

defining the “big picture,” determining project scope, requirements and goals. The

Maker establishes new concepts that support the project goals. The Finder seeks out

existing knowledge that can aid in solving the problem at hand. The Sharer establishes a

database that all in the organization can access, to ensure that efforts are not duplicated.

The KMM consists of four maturity levels: Process Cycle, Roles, KIM, and Inner

Mechanism. In the KMM framework, a company at the Process Cycle level employs a

cycle, such as the Plan, Do, Check, Act (PDCA) cycle. An organization at the Roles

level, assigns roles, with clear tasks, to project team members. An organization at the

KIM level employs both roles and an iterative process model to accomplish software

projects. An organization at the highest level, Inner Mechanism, has achieved a superior

 5

level of communication both inside and outside the company. Such an organization

maintains a constantly updated database of all available knowledge that pertains to a

particular project. All team members have access to the database and it is maintained for

use on future projects and is considered a “living” database. The reason for the Inner

Mechanism as the highest level is that a lack of communication within companies is the

leading cause of duplicated efforts and stagnation of projects, due to the fact that one

department may not realize that another has already discovered the solution to a show-

stopping problem. An organization with a highly developed Inner Mechanism avoids

such pitfalls, and is at the pinnacle of maturity. The levels of the KMM may be used to

determine the overall maturity of an organization, however, the KMM levels are always a

part of an organization’s framework. An organization that has achieved the Inner

Mechanism level will not always need to apply this level to every project. A simple,

straightforward problem may be quickly solved, stored in a database and never require

the high level of communication of extremely large or complex problems. However, a

company at this level always has the ability to handle such problems, should they arise.

1.5 Objectives of this thesis:

 The objectives of this paper are:

 (1) Review relevant literature related to the Capability Maturity Model and

existing methodologies being used to climb the CMM “ladder.”

 (2) Introduce the Knowledge Insight Model and propose it as a solution to

integrating people into the problem of “climbing” the CMM “ladder.”

 6

(3) Validate the KIM by applying it to the CMM, demonstrating how it can be

employed by a software engineering organization to achieve the desired level on the

CMM, given the organization’s current level on the CMM and the target level.

 (4) Introduce the Knowledge Maturity Model (KMM), a new paradigm that

provides a control layer situated above both software engineering methodologies and

process improvement concepts. The KMM also offers another way to evaluate software

engineering process maturity.

1.6 Thesis Layout:

 Chapter 2 covers the Capability Maturity Model, its uses and evolution since its

introduction. Chapter 3 provides a review of literature and gives an overview of methods

that may be used for process improvement. Chapter 4 introduces the Knowledge Insight

Model. Chapter 5 validates the KIM by demonstrating its use in process improvement

within the framework of the Capability Maturity Model. Chapter 6 introduces the

Knowledge Maturity Model as a new paradigm that provides another way to evaluate

process maturity, as well as a new approach to employing existing software engineering

methodologies thereby allowing organizations to customize their own method(s).

Chapter 7 consists of conclusions from this research and proposes possible future

developments and research in the areas of process improvement and evaluation models.

 7

2. CAPABILITY MATURITY MODEL (CMM)

2.1 History of the Capability Maturity Model (CMM):

The desire to establish a measure for software engineering products as well as the

firms that create them, led to the development of the Capability Maturity Model by the

Software Engineering Institute (SEI) at Carnegie Melon University [12]. The need for

the Capability Maturity Model arose in November of 1986 from a request on the part of

the United States government, looking for a way to measure the performance of various

software engineering contractors [12]. The Department of Defense (DOD) had noticed a

disturbing trend among its software engineering contractors. Delays in product delivery

were often measured in terms of months and even years [12]. Often, projects were

scrapped altogether due to undelivered software products [12]. In September 1987, SEI,

in conjunction with the MITRE Corporation, debuted a “software process maturity

framework [12]” which consisted of a questionnaire (which is often mistaken for the

entire process itself), and a “software process assessment and software capability

evaluation [12].” Since then, the CMM has undergone several changes and refinements

to better bring it in line with the standards of the software engineering community and is

intended to serve as a “living document [12].”

 8

2.2 CMM Overview:

One common misconception about the CMM is that it is a process by which an

organization may improve its software engineering methodologies. This is not the case.

The CMM is simply a measure of the organization’s current software engineering process

and provides a set of goals, a checklist, of what the organization must accomplish in

order to advance up the CMM “ladder” of levels. The CMM was derived from the basics

of Total Quality Management (TQM) [12]. The CMM consists of five “levels” that are

may be equated to a ladder. Each of the levels corresponds with an improved state of the

company’s overall software engineering process.

1. Initial – a few “smart guys” devise solutions to software engineering requests

from customers. No organized, company-wide process in place. Such an organization

may produce quality software, but the timeframe and cost are often unknown at the outset

of the project. Even if the organization makes some predictions of time and cost, they are

likely to miss these goals.

2. Repeatable – the organization establishes a simple process that can be used to

develop software. A method of project management is established to ensure that the

organization can track project cost, time, and effectiveness (ie – does the software meet

the customer’s specifications?).

3. Defined – a standard operating procedure (SOP) is established for software

engineering activities across the organization. An SOP is also emplaced for managerial

activities. The level 3 organization assigns a group to oversee software engineering

processes. A training program is implemented across the organization to ensure that all

 9

employees are using the same methodologies, to ensure standardization. Because the

process is so well-defined, management is better able to track where any project is at any

time, within the organization, making it easier for management to communicate time,

cost, and functionality changes to the customer in a timely fashion.

4. Managed – the organization not only tracks project data such as cost,

timeliness and customer satisfaction, but goes a step further by establishing a set of

standards for these product measures. In this way, the organization is now able to

determine how effective it is in meeting goals and deadlines. The level 4 organization

also attempts to limit variations in its product, based on its standards. By further

controlling the quality of the final product, a level 4 organization is known for its

reliability.

5. Optimized – an organization at this level seeks to optimize the very processes

it uses to create software products. A level 5 organization analyzes its process, finds

flaws, corrects them, seeks out the reason such flaws were introduced in the first place,

and ultimately improves the overall process. An organization at this level uses this

process on its software products as well. A level 5 organization strives for a zero-defect

product. Level 5 organizations correct errors, fix the process that allowed the errors to be

generated, and evaluates and corrects the validation/verification process that allowed the

errors to slip by, optimizing the overall software engineering process [12].

 10

Figure 1. Diagram of the five levels of the Capability Maturity Model [12].

 (1)
 Initial

 (2)
Repeatable

 (3)
Defined

 (4)
Managed

 (5)
Optimizing

Disciplined
Process

Standard,
consistent
process

Predictable
Process

Continuously
improving
process

 11

2.3 Evolution of the CMM, Rise of the CMMI:

The Capability Maturity Model for Software Engineering has evolved over the

years, and the Software Engineering Institute at Carnegie Mellon University was poised

to release version 2.0 of the SW-CMM, and the other CMM categories, which include P-

CMM (People), IPD-CMM (Integrated Product Development), SA-CMM (Software

Acquisition), and SE-CMM (Systems Engineering). However, there has been a growing

desire in the industry, and within the Department of Defense, to see the entire CMM suite

of products brought into one suite that would be generalized enough to accommodate all

of the separate disciplines, allowing organizations to use one plan and reduce confusion

between departments. Thus, SEI scrapped the release of CMM 2.0 and instead the

Capability Maturity Model Integration (CMMI®) has come into being and will

eventually replace all the categories of the CMM on the market [4]. There was clearly a

desire on the part of SEI to attempt to provide potential users of the CMMI with

examples of organizations that have succeeded with CMM (called “best practices” in the

CMMI model) to help new using organizations of CMMI improve their processes while

applying the CMMI checklist. The specific examples, while applicable to some, will not

always be relevant to all potential users. The new CMMI suite of products makes a good

attempt to provide a process improvement methodology, but continues to lack something

fundamental to improving anything: how to integrate the people involved into the process

improvement methodology.

 12

3. PROCESS IMPROVEMENT METHODS

3.1 Review of Literature:

 The literature review of this paper is divided into four sections. The first section

deals with the Capability Maturity Model; its application in the computer science world

as well as some key issues to consider when using the CMM. The second section

addresses some other processes being used today to climb the CMM ladder of levels.

The third section discusses advantages and disadvantages of using the Knowledge Insight

Model to climb the CMM ladder. The fourth section provides an introduction to the

Knowledge Insight Model, the foundation for the KMM.

3.2 Application of the Capability Maturity Model:

 The Capability Maturity Model is by no means the only measure of software

engineering organizations, but it is certainly one of the most recognized models in the

industry. Many of the lucrative software engineering contracts today are sponsored by

the Department of Defense, for whom the CMM was devised [4]. This certainly makes

the CMM an attractive tool for many software engineering organizations.

 13

3.3 Methods for Advancing within the CMM Framework:

IDEAL – IDEAL is “a life-cycle model for software process improvement based upon

the Capability Maturity Model ® (CMM®) for software [3].” IDEAL is comprised of the

following phases:

¾ Initiating – lay the groundwork for improvement

¾ Diagnosing – determine where the organization is and what the goal is

¾ Establishing – come up with a plan for process improvement

¾ Acting – Execute the plan

¾ Learning – Get feedback from the improvement process to help refine the

new process or to use for future iterations

Advantages:

 1. Extremely generalized method; may be used for many areas of organization.

 2. Already well known and established in the computer science world.

 3. Iterative process that may be used over until the end goal is reached.

Disadvantages:

 1. Does not give guidance on the roles of personnel in the improvement process.

 2. May be too generalized.

CMMI – The Capability Maturity Model Integration is an attempt by SEI to 1.

Consolidate its CMM products into one suite that may be used for several different types

of work (Software, People Management, Systems Engineering, Software Acquisition, and

Integrated Product Development), and 2. To introduce “best practices,” that were

employed by successful CMM organizations, in hopes that these will help show

 14

organizations how to climb the CMM ladder. There are two different methodologies

within the CMMI, staged and continuous. The staged representation is a more static

methodology that is very similar to the original CMM; it is best represented by the stair-

step depiction of the CMM. The organization generally improves or develops the

required traits to move up each step of the ladder and generally will do this in sequential

fashion. The continuous method is better suited for organizations who wish to make

improvements at different time frames from different categories, rather than taking the

step-by-step approach of the staged method. The continuous method may be best for

organizations who look at the CMMI and recognize that they have achieved level 2 in

one arena, level 4 in another, level 3 in yet another, and they are best to continue to

develop in all areas at different paces, than to slow progression in other areas, while the

remaining catch up and the like.

Advantages:

1. One product may be potentially used across an organization for process

improvement.

2. Based on an established, well-known process in the industry (CMM).

3. Employs “best practices” learned over the years from organizations who have

used CMM.

4. Ability to use continuous or staged methods, as preferred by the organization.

Disadvantages:

1. More complicated than the original CMM; requires a “transition” for

organizations already using CMM.

 15

2. Does not explicitly address the “people” aspect of process improvement.

Consultants – Consultants are a wonderful way to climb the CMM/CMMI; if your

business can afford it!

Advantages:

1. Very tailored, specific plans for your organization.

2. Consultants tend to focus only the particular contract they are currently

working (ie – they are generally totally devoted to your problem or may only

be working for a few organizations at a given time, allowing them to spend a

lot of time focusing on your problem). When attempting to improve an

organization internally, while also trying to continue to produce (ie – multiple

distracters), there is less likelihood of completion of the process improvement

within the desired timeframe.

3. Generally, outsiders, such as consultants, are less likely to be defensive of

current practices. They are able to take a more objective view of where the

organization currently is and what must be done to get them where they want

to be.

4. An experienced consultant in the field of process improvement is likely to

have seen an organization similar to the one currently desiring help, and

therefore already has a basic “plan” that can be tailored to the particular

organization in need. Such a consultant may be able to recognize certain

patterns within a company and knows best how to achieve their goals, based

 16

on past experiences. Most organizations have not had the ability to look into

what other similar organizations have done in the line of process

improvement, and therefore do not have a body of knowledge of “best

practices” to use.

Disadvantages:

1. Can be VERY expensive; may be cost prohibitive for small companies that

really need it.

2. Some consultants may try to “sell” their idea, even if it is not what’s truly best

for the organization.

3. Consultants may tell the organization exactly what they want to hear, in order

to appease the management that hired them.

3.4 Advantages and Disadvantages of KIM:

Advantages of the Knowledge Insight Model are:

1. Assigning well-defined roles to all members of the project team (Framer,

 Finder, Maker, Sharer), thus reducing ambiguity.

2. It is an iterative process, allowing for multiple runs to achieve the

organization’s ultimate goals [7]

3. KIM does not lock the organization into any specific programming

methodology (ie – Waterfall, Spiral, SCRUM, XP, RUP), as it is highly

adaptable to different scenarios.

4. Communication, both within and outside the organization is a key factor in the

 17

Knowledge Insight Model; this is one of the weaknesses of many current

software engineering organizations.

 5. Existing processes may be easily mapped to the KIM; thus organizations with

 existing processes may make use of the KIM and potentially optimize with it.

 A disadvantage of the KIM is that it is a new process. Typically, those in both the

corporate world and academia are resistant to change. However, the Knowledge Insight

Model is easy to learn and is applicable in many areas of study, which may help

overcome the usual resistance to new ideas and models [7]

3.5 Existing Process Analysis:

 The review of literature shows that there are several possible ways to tackle the

problem of climbing up the CMM ladder. However, there is a lack of definition in the

“how” of process improvement. Roles within the organization are not well-defined as

they pertain to software engineering process improvement. While consultants certainly

take a lot of the problem off the back of the organization seeking to improve their

process, it is just not cost effective for many smaller software engineering companies

looking to improve their CMM standing. Once the consultants leave, there may be a lack

of understanding of what was done and therefore require some dependency on the

consultants for future improvements or changes. The CMMI is an attempt to give more

of the “how” to climb the ladder, but is far too specific and cannot be viewed as a

generalized process improvement vehicle. While IDEAL is an attractive way to execute

 18

process improvement, there is no real personnel direction included. The usual problem of

“what should I be doing right now?” is still a problem. The IDEAL model does meet the

goal of a generalized process improvement method, but may actually be too generalized,

to the point of almost seeming like common sense. By employing the Knowledge Insight

Model, we seek to demonstrate a generalized process that meets the end goal of the

organization: a higher level within the CMM framework. The introduction of roles to

those participating in the process improvement has many positive benefits, to include the

ability to adapt over to other types of projects in the organization (ie – the introduction of

roles in software engineering projects).

 19

4. KNOWLEDGE INSIGHT MODEL (KIM)

4.1 Knowledge Insight Model (KIM)

 The Knowledge Insight Model (KIM) was created in an effort to construct “an

instrument for acquiring knowledge [7]”. The KIM also addresses the need to collect and

share knowledge. The KIM is based off a Japanese idea, “Kaizen,” meaning to

continually analyze an organization’s current position and work through a continuous

improvement process [10].” People truly are any organization’s greatest asset. In order

to fully utilize this asset, an organization must ensure that the knowledge base of its

employees is compiled and distributed throughout the organization to help prevent

duplication of effort. This type of knowledge sharing also helps organizations through

the departure and/or absence of key personnel. The foundation of the KIM lies in the

four states or roles; Framer, Maker, Finder and Sharer. The mechanism that allows for

transitions between these states is provided by the Plan, Do, Check, Act (PDCA) cycle.

The KIM also takes into account both external and internal factors which affect the

development of a company, process or product. The process begins in the discover

phase, moves to refinement, and continually iterates between the two states to improve

ideas and concepts. This method was derived from the Japanese term “Hoshin” meaning

“continuous process improvement [10].”

 20

4.2 Plan, Do, Check, Act (PDCA) Cycle

 The Plan, Do, Check, Act (PDCA) Cycle plays a key role in the KIM. PDCA

provides the transitions between the states of Framer, Maker, Finder and Sharer. The

PDCA is four cycle methodology used to help identify and solve problems, and is

especially well suited to process improvement.

Figure 2. Plan, Do, Check, Act (PDCA) Cycle

¾ Plan to make changes to achieve process improvement; determine what the

problem is and devise a way to try to solve the problem(s).

¾ Do changes in a series of small increments. A good way to do this is

select one group within the company to serve as a test bed, allowing them

to work under the changed process, while all other groups continue under

the legacy process, so as not to disrupt business on a large scale.

¾ Check to see if the small changes are having the desired effect before moving on

P
Plan

D
Do

A
Act

C
Check

 21

to larger scale changes. Compare the test group with the norms

throughout the organization, and with historical data.

¾ Act to make the changes on a large scale and continue to monitor across the

organization to determine if the changes in process should be made

permanent [13].

4.3 External, Internal, Discover, Refine Transition Matrix

 The KIM considers the external and internal influences on a project, and how an

organization transitions between the effects of both. A process will begin in the

discovery mode, move into refinement, then continuously iterate between the two stages.

Discovery and refinement may occur due to internal or external forces or ideas, and thus

both must be considered by the organization. The four quadrant matrix in the figure

below demonstrates the relationship between these factors.

Figure 3. Four Quadrant Matrix

 Internal
Discover

External
Discover

Internal
Refine

External
Refine

Discover

Internal

Refine

External

 22

Solution increments occur when transitioning from discover to refinement, while

consolidation is indicated by a transition from refinement back to discover. These

transitions are continued iteratively until the refinement goal is achieved. Transitioning

from external to internal and vice versa is accomplished in order to discover and

incorporate both ideas from within an organization and without. Generally, an

organization will look outside for inspiration, devise a new concept, and then turn inward

for ideas on how to implement the new idea. The organization may then again look

outside to help refine their innovation. Iteration between external and internal influences

continues until the concept reaches a desired maturity level.

The final mature concept is then consolidated and used as input for further

development (Refinement Evolution), or it may also be used to work toward a new

creative goal (Creative Evolution).

 23

Figure 4. Refinement Evolution: Creative phase to development phase of design

process

Internal
Discover

External
Discover

Internal
Refine

External
Refine

Development
Process

Internal
Discover

External
Discover

Internal
Refine

External
Refine

Development
Process

 24

Figure 5. Creative Evolution: Creative phase of design process to a new design

process

 The KIM is generalized process that combines all of the facets of the PDCA cycle

and the External/Internal, Discover/Refinement transitions. The synthesis of these

concepts is illustrated in the overall graphic of the Knowledge Insight Model in Figure 6

below:

Internal
Discover

External
Discover

Internal
Refine

External
Refine

Development
Process

Internal
Discover

External
Discover

Internal
Refine

External
Refine

Development
Process

 25

Figure 6. Knowledge Insight Model

External Discover 1

Plan

1) Innovation
Internal Discover 1

Do

Internal Discover 2

Act

Internal Refine 1

Check

Internal Refine 2

Check

External Refine 1

Do

External Refine 2

Act

External Discover 2

Plan

4) Learning

6) Rationalization

7) Maturity

2)
 S

ol
ut

io
n

In
cr

em
en

t

3)
 C

on
so

lid
at

e

5)
 S

ol
ut

io
n

In
cr

em
en

t

8)
 C

on
so

lid
at

e

 26

4.4 Framer:

Figure 7. Framer

The Framer is concerned with devising an overall plan for how to accomplish the

task at hand. As the name suggests, and as evidenced in Figure 2, the Framer provides

the “frame” for the entire KIM process. The Framer must define the problem, establish a

External Discover 1

Plan

Innovation Internal Discover 1

Do

Internal Refine 1

Check

Internal Refine 2

Check

External Refine 2

Act
Maturity

S
ol

ut
io

n
In

cr
em

en
t

 27

timeline for the project, provide guidelines and requirements of the particular problem,

and offer potential solutions that the group should tackle to solve the problem [8]. The

Framer corresponds to the Plan phase of the Plan, Do, Check, Act cycle [7]. As such, the

Framer devises plans to carry out the project or to solve a problem. The focus of the

framer during each of the eight steps is as follows:

¾ External Discover 1: In this plan stage, the Framer must ask: “what problem

does the group seek to solve?”

¾ Internal Discover 1: In this do stage, the Framer must break the problem down

into smaller tasks to be tackled

¾ Internal Refine 1: In the first check stage, the Framer needs to determine and

compile a list of the potential risks in solving

the problem

¾ Internal Refine 2: In this second check phase, the Framer must determine, based

on initial estimates, if the group possess the ability to accomplish the tasks needed

to solve the problem. The Framer may also determine what additional resources

and/or additional study may be required to complete the project.

¾ External Refine 2: In this act phase, the Framer must establish an initial timeline

for the project [10].

4.5 Maker:

The Maker’s primary focus is on the physical creation of a product or process.

The Maker is responsible for creating any new knowledge or product that is required to

 28

accomplish the objectives, based on initial analysis. The Maker comprises much of the

creative force behind the project, and must work closely with the Finder to ensure that

there is not a sufficient existing process or product that can be used, thus avoiding

“reinventing the wheel.”

Figure 8. Maker

External Discover 1

Plan

 Innovation
Internal Discover 1

Do

Internal Discover 2

Act

Internal Refine 1

Check

S
ol

ut
io

n
In

cr
em

en
t

C
on

so
lid

at
e

 29

The steps of the KIM that comprise the Maker are:

¾ External Discover 1: In this plan stage, the Maker must determine what is

already in existence that may solve the problem or may contribute to the

development of a new concept for the project.

¾ Internal Discover 1: In this do stage, the Maker needs to compile the

requirements that the new product or

process must meet.

¾ Internal Refine1: In the check phase, the Maker must perform a risk analysis

must be performed to assess the risks as

determined by the Framer and possibly add risks as seen by the Maker.

The Maker will also try to find ways to mitigate risks in this step.

¾ Internal Discover 2: In this act phase, the Maker creates a new product or

process [10].

 30

4.6 Finder:

Figure 9. Finder

The Finder must scour all existing knowledge in the field being considered. In

doing this, the Finder keeps the Maker from creating “new” concepts that are already

proven and in existence elsewhere. In some cases, the contributions of the Finder may be

research-oriented, offering ideas to the Maker for how to tackle an existing solution in a

new way. The Finder is also responsible for seeking out a need or market for the new

Internal Refine 2

Check

External Refine 1

Do

External Refine 2

Act

External Discover 2

Plan

 Rationalization

 Maturity

S
ol

ut
io

n
In

cr
em

en
t

 31

product or process that the group is creating. The details of the steps that make up the

Finder phase are as follows:

¾ External Discover 2: In this plan stage, the Finder must determine what

information must be found by the Finder.

¾ External Refine 1: In the do stage, the Finder researches information external to

the organization; the Finder may at this stage refine his search based on

information discovered.

¾ Internal Refine 2: The Finder in the check stage will look internally for past

projects or other efforts that may aid in the current project.

¾ External Refine 2: The Finder in the act stage again looks outside the

organization to get all remaining information that may aid in project completion;

at this point, most of the data has been collected, and this is simply a final look to

ensure nothing that may be of assistance has been misse

 32

4.7 Sharer:

Figure 10. Sharer

The mission of the Sharer is to create and maintain an accurate and up-to-date

database of the data collected or created by all other members of the team. The Sharer

must also ensure that all involved have appropriate access to the information, to avoid

duplicated efforts. The role of the Sharer is the most important of all, as the Sharer is at

the center of all internal and external communications. One of the most common

problems in many major corporations today is a lack of communication within as well as

with outside organizations that contribute toward a common effort (ie – contractors,

Internal Discover 2

Act

Internal Refine 1

Check

Internal Refine 2

Check

External Refine 1

Do

External Discover 2

Plan

 Learning

 Rationalization

So
lu

ti
on

 I
nc

re
m

en
t

C
on

so
lid

at
e

 33

companies involved in partnerships, etc…) [2]. In order for an organization to make the

Sharer concept work, it must instill within the company a core value of information

sharing. Oftentimes, managers or project leaders may possess information that is vital to

another department of the company, but are reluctant to share this information, thinking

they will lose some real or imagined advantage over a peer (the proverbial “knowledge is

power” mentality). If this way of thinking can be eradicated, organizations can more

effectively exploit the use of the Sharer concept. The steps that comprise the Sharer

mechanism are as follows:

¾ External Discover 2: In this plan stage, the Sharer must determine what

types of data will likely need to be collected and who it should be shared

with.

¾ External Refine 1: In this do stage, the Sharer builds the first cut of the

database

¾ Internal Refine 2: In this check phase, the Sharer may poll those on the

project to see if the database provides the information they truly need.

¾ Internal Refine 1: The Sharer alters the database according to feedback

from Internal Refine 2, and then checks again to see if the updated

database meets the needs of those on the project.

¾ Internal Discover 2: In this act phase, the Sharer seeks out what major

changes may be required of the database (ie – if some of the original core

parameters that were being distributed have completely changed due to the

discovery of new information).

 34

5.0 CLIMBING THE CMM USING THE KIM

5.1 Method Introduction:

 The CMM may be viewed as a series of steps to be climbed by an organization.

The KIM may be used to iterate through the steps of the CMM, and the KIM may be

applied multiple times just to climb one level, or may only need to be applied once to

achieve similar results. This chapter shows how each of the personnel filling the four

roles of the KIM can work toward the goal of process improvement, and a higher CMM

level. It also demonstrates the KIM process in action; how an organization considers

both internal and external influences. While the CMM is the focus of this chapter, the

KIM may be used for any process improvement, as it is general enough to adapt to

various situations.

5.2 CMM Level 1 to Level 2 using KIM:

The transition from level 1 to level 2 is the first time a company makes an attempt

at some kind of order and framework for the software engineering process. This

transition is illustrated in Figure 11 below:

Each of the four KIM patterns play key roles throughout this transition:

Framer: The Framer’s role is to lay the groundwork for process improvement to move up

to a higher level of the CMM. The Framer will select a method to organize the software

engineering process within the company. The Framer may request research to find an

 35

appropriate method being successfully used in the industry, which may be modified, or

appended to with ideas generated from within the organization.

¾ The Maker supports the Framer during this transition by trying to come up with

new ideas and software engineering methodologies internally.

¾ The Finder supports the Framer during this transition by researching

methodologies used by other organizations or those used currently within the

organization, but not on a company-wide basis. This research will aid the Framer

in making a decision on which method is most appropriate.

¾ The Sharer supports the Framer during this transition by tracking all the potential

process improvement methodologies in a database.

36

F
igure 11. T

ransitioning from
 C

M
M

 L
evel 1 to L

evel 2 using K
IM

Figure 11. Transition from CMM Level 1 to Level 2 using KIM

1) Innovation

4) Learning

6) Rationalization

7) Maturity

8) C
onsolidate

2) S
olution Increm

ent

3) C
onsolidate

5) S
olution Increm

ent

Inputs: Level 1 company

Plan: establish plan to
move up to level 2

Do: Devise trial SOPs
 based on previous
software eng. successes.

Check: Will these SOPs
Work for most of the
Programming requests?

Act: Use new SOPs on a
limited trail within the
organization.

Plan: Revise timeline as
required. Plan to employ
the SOPs across the board
if limited trails successful.

Do: Implement the SOPs
company-wide and use on
all new projects.

Check: Evaluate the
effectiveness of the new
process. Is there an
improvement? Collect into
a database.

Act: Market the company
as a CMM Level 2
organization.

Use KIM for process improvement

Determine which
SOPs best suited
for which RQTS

Distribute the SOPs to
trial department.

Where are the gaps?

Get feedback from within
organization on the SOPs.

Try out new SOPs on projects.

Improvement noted.

 37

Maker: Responsible for devising any new software engineering procedures that may be

needed in order to implement a company-wide standardized software engineering process

that may be used for various types of software engineering problems. The Maker may

create new processes in their entirety, or may generate part of the overall process to

compliment existing processes as researched by the Finder.

¾ The Framer supports the Maker during this transition by providing the final

decision on which process improvement method will be used, as well as the

tentative timeline, and cost allocated for the process improvement project.

¾ The Finder supports the Maker during this transition by providing

information on methods being used throughout the industry to solve

 similar software engineering problems.

¾ The Sharer supports the Maker during this transition by providing the Maker with

a database appropriate for collecting information about the various software

engineering processes that the Maker creates.

Finder: Attempts to discover all available SE process information for use within

the company.

¾ The Framer supports the Finder during this transition by incorporating

the new methods of SE into the overall SE process plan

¾ The Maker supports the Finder during this transition by providing new

information that they create to solve the current problem

¾ The Sharer supports the Finder during this transition by all the new

SE information, both created and existing that was used to solve the

 38

current problem is incorporated into a database for future use

Sharer: Responsible for codifying all compiled information on the SE process

used by the company for solving problems and completing projects. Starts a

database of SE methods.

¾ The Framer supports the Sharer during this transition by determining

what information should be included in the SE database

¾ The Maker supports the Sharer during this transition by providing

information about which SE processes worked to solve the problem

¾ The Finder supports the Sharer during this transition by processes and

packages the existing SE processes which were used on the project

 39

5.3 CMM Level 2 to Level 3 using KIM:

The transition of a company from level 2 to level 3 is marked by the codifying of

the both the software engineering process and management procedures. This transition is

shown in Figure 12 .

Framer: Devises a plan to codify the SE policies created in the level 1 to level 2

transition; plan to design standard software process and management procedures

¾ The Maker supports the Framer during this transition by creating methods

to “fill in the blanks” of the standard software process; especially if those being

used in industry do not perfectly fit the needs of the company

¾ The Finder supports the Framer during this transition by collecting both

internal and external knowledge of standard software processes that may be

incorporated into the final product for the company to use

¾ The Sharer supports the Framer in this transition by ensuring that all

the gathered information on standard software processes is distributed to all

 throughout the company for approval for a codified system

Maker: Throughout this transition, the Maker must create solutions for the “holes” in a

potential standard software process; while a company may select an “off the shelf”

process that is used throughout industry, there will usually need to be slight or major

modifications to make the system work for the particular company in question

¾ The Framer supports the Maker during this transition by updating the plan for

a standard software process and management system to accommodate the

innovations in these areas made by the Maker

40

F
igure 12. T

ransitioning from
 C

M
M

 L
evel 2 to L

evel 3 using K
IM

1) Innovation

4) Learning

6) Rationalization

7) Maturity

8) C
onsolidate

2) S
olution Increm

ent

3) C
onsolidate

5) S
olution Increm

ent

Template standard software process.

Get input from
all at company
on draft Software
Engineering
process.

Compile ideas and
feedback for standard
software process from
co-workers.

Look at some standard
software processes
used by competitors.

Get each dept’s piece of
the std software process.

Standard software process
allows company to be more
efficient.

Level 3 achieved.

Inputs: Level 2 company,
 many more customers
 Plan: transition from
level 2 to 3

Do: Draft standard
software process for
 review by company.

Act: Does software made
using standard software
process meet customer rqts
with minor or no variations
in the process?

Check: Distribute standard
software process
throughout the company.

Check: How does company
standard software process
compare w/ competitors’?

Do: Codify the standard
software process;
publish it for
the company.
 Act: Seek out new

Customers that may
have more complex
requirements.

Plan: Decide to codify
a std software process
for the entire company.

Figure 12. Transitioning from CMM Level 2 to Level 3 using KIM

 41

¾ The Finder supports the Maker during this transition by checking to see what

standard software processes are being used in industry so that the Maker knows

what “holes” must be filled via creation of new processes

¾ The Sharer supports the Maker during this transition by getting feedback from

others both inside and outside the company on what may need to be created to

ensure a usable standard software process. Others within the company may have

 ideas that must be shared among all involved in the evolution of processes

Finder: The Finder concerns himself with ensuring that the standard software process

being developed will allow the company to produce products that fall within the

acceptable range of the average customer

¾ The Framer supports the Finder during this transition by refining the standard

software process and management system to ensure that it will meet the industry

standard for software

¾ The Maker supports the Finder during this transition by creating new processes

to ensure the company’s standard software process produces quality software

products

¾ The Sharer supports the Finder during this transition by passing along all

refinements and process changes until the final process is established

Sharer: The Sharer must ensure that all data on the candidate standard software process

as well as a management process is passed around to all within the company. This is the

 42

only way in which all members may have their ideas heard, debated, and incorporated or

rejected for the final process.

¾ The Framer supports the Sharer in this transition by providing the proposed

framework for the candidate standard software processes as well as the

proposed management processes

¾ The Maker supports the Sharer during this transition by creating new

knowledge, as required, to fill in the blanks and round out the data to be

 passed around the company

¾ The Finder supports the Sharer during this transition by collecting all the ideas,

both internal and external, for both processes

5.4 CMM Level 3 to Level 4 using KIM:

The transition from level 3 to level 4 is a step toward a truly mature process. A

level 4 company thoroughly understands the workings of the company, the software and

management processes, and has collected enough data on performance, cost, etc… to

predict how changes, such as producing on a new product, or trying out a new process,

may affect the company. This can be especially useful in weathering out “bumps” in the

corporate road, such as stock drop-offs, poor sales due to weak economy, and the

incorporation of a new product line. If these “spikes” can be ridden out, a company can

thrive long-term. The process is illustrated in Figure 13.

43

1) Innovation

4) Learning

6) Rationalization

7) Maturity

8) C
onsolidate

2) S
olution Increm

ent

3) C
onsolidate

5) S
olution Increm

ent

Collect data on all previous projects.

Based off
collected data,
draft performance
 standards.

Compile performance
standards and input
from all departments
of the company.

Can we achieve these
standards on a regular
basis?

Look at data to
detect a pattern in effects
of changes.

Better able to deal with
changes and “spikes”
in the model.

Level 4 achieved.

Inputs: Level 3
company, data from all
previous projects.

Do: Draft set of
standards by which to
measure performance.

Check: How do these
standards compare with
 those of competitors?

Act: Will these
standards ensure we
produce products that
are the industry
standard?

Plan: Way to predict
effect of changes in
process and effect of
introducing a new
product.

Do: Draft the pattern of
the effects of changes on
the overall process.

Check: Does the pattern
take into account all
possible “spikes” that
the company
could encounter?

Act: Company can now
handle big changes;
accept risk by trying out
new concepts and ideas.

Figure 13. Transitioning from CMM Level 3 to Level 4 using KIM

 44
Figure 13. Transitioning from CMM Level 3 to Level 4 using KIM

Framer: The Framer is primarily concerned with establishing what types of performance

data to track from previous projects, such as product performance, cost, completion time

against industry standards.

¾ The Maker supports the Framer during this transition by devising new ways to

track the various performance measures of the software engineering process.

¾ The Sharer supports the Framer during this transition by passing along all

previous data on the projects completed by the company and compiles a

database of this information. The Sharer is also responsible for modifying the

database to capture new information, as determined by the other members of the

process improvement team.

¾ The Finder supports the Framer during this transition by researching the

industry standards for the type of software the company creates to compare the

 performance, cost, etc… data against.

Maker: The Maker helps establish a set of standards by which to measure the company

based on all previous projects and the external information on the industry standard; also

looks for trends in the performance data (ie – effects of changes on the process over time)

¾ The Framer supports the Maker during this transition by providing the overall

plan for measuring performance, cost, project completion time, and the like.

¾ The Sharer supports the Maker during this transition by collecting and

compiling all data, both internal and external, to devise the standards of

measure for the company, and guide the Maker as to what data should be

collected on a regular basis.

 45

¾ The Finder supports the Maker during this transition by providing

research on what other companies use to measure their products, as well

as what measures the organization has used internally in the past.

Sharer: The Sharer must ensure that all data, both that collected internally, and that

researched externally, is compiled and placed in a database so that all may see it and

decide on what performance aspects of the company should be measured and what those

standards should be.

¾ The Framer guides the Sharer by continuously updating the overall plan for

what data to collect; the “plan” for data collection should be a living document

until all involved in the process improvement team have reviewed and given input

on the matter.

¾ The Maker supports the Sharer during this transition by reviewing what the sharer

compiles and collects and may add or subtract from that to ensure the

final tracking methodology will live up to industry standards.

¾ The Finder supports the Sharer during this transition by providing all collected

performance data, both internally and externally, so that it may be distributed

to all for review.

Finder: The Finder must continuously seek out ideas on what performance data to

collect, both within and outside the company. Research on what is done throughout the

industry will ensure that the company stays on the cutting edge

¾ The Framer supports the Finder during this transition by refining the overall

performance data collection plan to incorporate the new knowledge collected

 46

by the Finder

¾ The Maker supports the Finder during this transition by supplying all the

ideas that were generated internally for how and what data to collect.

¾ The Sharer supports the Finder during this transition by supplying all the

previously collected performance data.

5.5 CMM Level 4 to Level 5 using KIM:

Level 5 has been achieved by only a select few in the software engineering field.

The company transitioning from level 4 to level 5 takes the data collected and analyzed

as a level 4 company and seeks ways to reduce discovered errors. If they find an error

rate of say two errors per million lines of code, a level 5 company will attempt to modify

their process to get that down to one error per million. This transition is demonstrated in

Figure 14.

Framer: The Framer introduces a plan to overhaul the current software and management

processes to minimize existing errors.

¾ The Maker supports the Framer during this transition by supplying ideas that

may allow the company to change the current software engineering process to

optimize the product and reduce errors

¾ The Sharer supports the Framer during this transition by ensuring all new ideas

for optimizing the process are passed along within the company; creates a

database of ideas for optimization

 47

¾ The Finder supports the Framer during this transition by obtaining all possible

information both internally and externally, on how to optimize the software

engineering and management processes

48

 F
igure 14. T

ransitioning from
 C

M
M

 L
evel 4 to L

evel 5 using K
IM

1) Innovation

4) Learning

6) Rationalization

7) Maturity

8) C
onsolidate

2) Solution 3) C
onsolidate

5) S
olution Increm

ent

Devise new aspect of process to reduce errors

Decide where
changes could be
 made to reduce
of current errors.

Decide what changes
to make to reduce
errors

Is it enough improvement
over competition?

Ensure all depts.
are able to make the
changes.

Will be at top of
SE field; able to focus
on future projects.

Level 5 achieved.

Inputs: Level 4 company,
 data on number of errors
 for company

Do: Compute current
number of errors per a set
number lines of code.

Check: Can we realistically
change the process enough
to eliminate those errors?
Will it be worth cost?

Act: Will this reduction of
errors increase sales and
overall product quality?

Plan: Create plan to revise
standard software process
and management process
to accommodate changes
that reduce errors

Do: Execute all changes
to reduce overall number
of errors

Check: Did we reduce
errors by amount
predicted?

Act: Look for innovative,
new, future products;
autopilot; free to create
new products that customer
doesn’t even know it needs.

Figure 14. Transitioning from CMM Level 4 to Level 5 using KIM

 49

Maker: The Maker is concerned with finding a way to revise the software engineering

process to optimize the product and reduce/eliminate errors

¾ The Framer supports the Maker during this transition by providing the overall

plan and goals of optimizing

¾ The Sharer supports the Maker during this transition by providing methods

used by other companies to optimize their process so the Maker can better decide

what changes should be made to the current process

¾ The Finder supports the Maker during this transition by seeking out

information on optimizing processes that have worked for other companies

Sharer: The Sharer must ensure the constant flow and availability of process optimizing

data that is found by the Finder

¾ The Framer supports the Sharer during this transition by providing the goals of

the optimization and plan for optimization

¾ The Maker supports the Sharer during this transition by creating new ideas for

optimizing based on information provided by the sharer

¾ The Finder supports the Sharer during this transition by seeking out the

information that the sharer will pass along to the rest of the company to

optimize the company’s processes

Finder: The Finder checks to see if the optimization will improve sales and demand for

the product. This may aid in the final decision of whether to optimize or not based on the

investment required to do so

¾ The Framer supports the Finder during this transition by re-evaluating the plan

 50

to optimize based on reports on whether the optimization will improve demand

for the product; the Framer may even scrap the plan altogether if costs to optimize

outweigh potential benefits

¾ The Maker comes up with the actual changes that would have to be made to

achieve the next step of optimization

¾ The Sharer supports the Finder during this transition by providing research

information on the cost to optimize based on the potential changes supplied

by the Maker as well as potential customer demand changes

 51

6.0 KNOWLEDGE MATURITY MODEL

6.1 Introduction:

 The Knowledge Maturity Model (KMM) is a new paradigm, which introduces a

layer of control above software engineering and process improvement methodologies. It

also introduces a new way to evaluate an organization’s level of maturity. The KMM

does not address an organization’s ability to accomplish a set of key tasks, as the CMM

does, but instead looks at the inner workings of how a company tackles software

engineering projects. The KMM provides companies a model that allows them to decide

what software engineering methodology is best for the particular problem frame they are

presented with, customize a method based on the best practices of existing methods, or

create a tailored process for the use of the organization. Rather than an organization

choosing to use the Waterfall or Spiral Models, XP, RUP, or SCRUM all the time, they

would be free to employ any of these methods, or create their own, adjusting from project

to project, should they choose. KMM makes this possible by providing the tools of the

four roles: Framer, Maker, Finder, and Sharer; a way by which to iterate through any of

the software engineering methodologies, the 8-step process of the KIM; and the four

states of the problem solving frame: Process Cycle, Roles, KIM, and Inner Mechanism.

The KMM provides an essential link between three key aspects of software design:

Cognitive Engineering, Software Engineering, and Systems Engineering [9]. KMM

addresses cognitive engineering by assigning roles to personnel involved in software

engineering or process improvement tasks. KMM includes the aspect of software

 52

engineering by providing a process (KIM) that allows an organization to employ any

software methodology to work in a particular problem frame. The KMM addresses the

final aspect, systems engineering, by giving an organization a framework that allows

them to shift from one software engineering methodology to another, even in the

execution of the same project, adding another level of agility to the software development

process.

 Figure 15. The Three Aspects of Software Design and KMM

Software Engineering

Cognitive Engineering Systems Engineering

KMM

 XP SCRUM RUP Spiral Waterfall

Framer Maker Finder Sharer KIM

 53

6.2 KMM Overview

 Dr. Nancy Leveson, in her paper “Software Engineering: A Look Back and A

Path to the Future,” discusses the fact that modern software engineering has progressed to

the point where complex problem frames require more than simply sitting down and

hacking out some code. The complexity and scope of modern problems often requires

large teams of people to write, integrate, test and validate. Dr. Leveson argues that

software engineering can no longer be viewed as an entity unto itself. Modern software

design must integrate three key engineering disciplines: Systems, Software and Cognitive

Engineering. The argument for employing Systems Engineering can be made by simply

reviewing a definition of the discipline itself: “Systems engineering is the branch of

engineering concerned with the development of large and complex systems, where a

system is understood to be an assembly or combination of interrelated elements or parts

working together toward a common objective [19].” Software engineering is an obvious

factor in software design, bringing the concepts of programming, verification, validation,

and software methodologies, such as the Waterfall and Spiral models, RUP, XP, and

SCRUM to the overall system. Cognitive engineering is the least intuitively obvious of

the three aspects of software design, but is coming quickly into the forefront. Cognitive

engineering includes the people, and their mental abilities and limitations, in the overall

equation of software design. This can include the ability of people to work together in

teams, the assignment of roles to team members, as well as the limitations of

programmers. Some in the software field once argued that software engineering, unlike

more “concrete” forms of engineering, that were clearly limited by the materials they

 54

employed or the laws of physics, was only limited by the imagination and skill of the

programmer [9]. This romantic notion is not true. There are very real human limitations

that do drive how software products are developed [9].

 The KMM takes agility to the next level, by allowing companies to select the

method that works best for a particular problem frame, by employing the four roles. The

KMM is a superset of any software engineering methodology. The four roles, used in

conjunction with the KIM generalized process and the awareness of and proper use of the

four states of the software design process allow an organization to quickly assume the use

of existing models by assigning roles to team members. The tasks and processes of

current software engineering methodologies can be decomposed and performed by each

of the four roles of the KMM. The KIM process is employed to execute the process of

the method of choice. The KMM evaluation scale consists of four level: Process Cycle,

Roles, KIM and Inner Mechanism, which are used to assess an organization’s abilities.

6.3 KMM Evaluation

 The four levels of the KMM consist of the Process Cycle, Roles, KIM, and the

Inner Mechanism. Many companies work at the Process Cycle level. These

organizations may employ a method such as the Waterfall or Spiral Models. There is a

logical, straightforward process to follow for project completion. An organization at the

Roles level has taken the next step and defined named roles that all team members

understand and employ. Each role has a clear-cut set of duties to perform, and all

employees know what basic tasks they must carry out with little or no guidance, for the

 55

problem frame. The third level, KIM, describes a company that employs both roles and

an iterative process for software engineering problems. The highest level of maturity in

KMM, Inner Mechanism, defines organizations with a highly developed Sharing process.

A company at the Inner Mechanism level communicates very effectively both internally

and externally. All knowledge for a given project and any knowledge that may even

pertain to the project is readily available in a continuously updated database, thus

avoiding costly duplication of effort as well as project delays caused by not knowing that

another department has already solved a daunting problem. It is also possible for a

mature company to move between these levels, as required, to complete the project at

hand. Some projects are simple, only requiring the use of a simple Process Cycle, such

as PDCA or CAPD. A more complex problem frame may call for the assigning of roles

to team members to clarify duties. The KIM state provides both roles and an iterative

process. The Inner Mechanism state is employed when a high degree of communication

is needed. The Inner Mechanism represents a highly efficient Sharer. Such a level is

certainly always desirable, but just as attaining CMM Level 5 is difficult and expensive,

maintaining a fully developed Inner Mechanism at all times is not necessary.

 56

Figure 16. KMM Levels

(1)
Process
Cycle

(2)
Roles

(3)
KIM

(4)
Inner

Mechanism

 57

6.4 KMM as a Superset of The Waterfall Model

 The Waterfall Model is one of the classic software engineering methodologies,

which has served as the basis for many of the agile methods currently being practiced and

developed. The Waterfall Model employs a simple, logical process for software

engineering. To demonstrate that KMM is a superset of this methodology, each of the

aspects of the PDCA cycle are assigned to each part of the Waterfall Model:
¾ Requirements Analysis: Plan

¾ Design: Plan/Do

¾ Implementation: Do/Act

¾ Testing: Check

¾ Integration and Maintenance: Act

The interpretation of these roles is fairly straightforward. The requirements and design

phases are attributed to the Plan aspect of the cycle, which correlates to the Framer

process of the KIM. Design and Implementation are a part of the Do cycle, which is

encompassed by the Maker process. The implementation and integration and

maintenance phases are correctly placed into the Act phase of the cycle, which falls into

the Finder process. Finally, the testing phase is considered part of the Check cycle,

which is controlled by the Sharer process.

 58

Figure 17. Waterfall Model Instance of KMM

The Waterfall Model only employs the Process Cycle level of the KMM

evaluation model. Most organizations using it do not assign roles. Roles have been

assigned here, for the purpose of demonstrating it as an instance of the KMM.

Requirements

Analysis

Innovation Design

Implementation

Test
Integration

and
Maintenance Maturity

 C
on

so
lid

at
e

 S
ol

ut
io

n
In

cr
em

en
t

 59

6.5 KMM as a Superset of The Spiral Model

 The Spiral Model introduced the concept of a truly iterative process for software

engineering. Rather than simply completing a given set of steps or phases in a particular

order, the Spiral Model may be applied to any phase of the software development

process. The Spiral Model consists of six “task regions” which are traversed starting

from the center of the diagram (figure 20), and works outward in a clockwise fashion.

The blocks in the diagram represent potential starting points for different kinds of

projects [14].

The six phases of the Spiral Model can be assumed by the parts of the PDCA cycle as

follows:

¾ Customer Communication: Check

¾ Planning: Plan

¾ Risk Analysis: Act

¾ Engineering: Do/Plan

¾ Construction & Release: Do/Check

¾ Customer Evaluation: Act

The spiral model does add iteration to the software engineering process, but is still

basically at the Process Cycle level. The Spiral Model employs the Check, Act, Plan, Do

(CAPD) cycle, rather than the PDCA that the Waterfall Model uses. The Spiral Model’s

CAPD cycle is the Sharer pattern, which is a positive step toward an Inner Mechanism.

 60

Figure 18. Spiral Model

The Spiral Model starts in the Check phase, obtaining customer communication,

employing the Sharer mechanism of the KIM. It then moves into the Plan phase, which

correlates to the Planning aspect of the Spiral Model. Risk Analysis appropriately falls

into the Act category, and is best suited for the Finder process. Engineering is primarily

an aspect of the Do and Plan phases, which is controlled by both the Maker and Framer

processes. Construction and Release are part of the Do and Check phases, which are

 61

driven by the Maker and Sharer mechanisms. Finally, the Customer Evaluation phase is

part of the Act phase and are also encompassed by the Finder process.

Figure 19. KMM as a Superset of the Spiral Model

6.6 KMM as a Superset of the Rational Unified Process

 Much of the software engineering world has moved away from the structured

programming concepts of the past. The Rational Unified Process (RUP) was devised in

Customer
Communication

Construction
&

Release

Engineering

Planning

 Learning

 Rationalization

Risk Analysis

 C
on

so
lid

at
e

 S
ol

ut
io

n
In

cr
em

en
t

 62

the structured, procedural environment of the past few decades. Such projects were “big

picture,” and business based projects. RUP consists of four phases, with each phase

having multiple iterations that must be completed before moving onto the next phase

[16]. The four phases are: inception, elaboration, construction and transition (figure 15).

During the inception phase, the project size is defined, and the “big picture” is

established. The elaboration phase consists of defining the problem and analyzing

requirements. During the construction phase, the developers actually write the programs

to complete the project. Finally, in the transition phase, the software product is delivered

to the customer for use [16].

 The different aspects of the RUP can be linked to the different phases of the

PDCA cycle. They correlate as follows:

¾ Business Modeling: Plan

¾ Requirements: Plan

¾ Analysis and Design: Do

¾ Implementation: Do

¾ Test: Check

¾ Deployment: Act

¾ Configuration and Change Management: Check

¾ Project Management: Plan

¾ Environment: Plan

The KIM is well-suited to representing the RUP, as it can capture the iterative

nature of the RUP. Reviewing figure 20, it is clear that different iterations of the RUP

 63

are dominated by one of the four roles of the KIM. The Initial and Elaboration 1

iterations, are dominated by the Framer process. Elaboration 2 and Construction 1 are

defined by the Maker phase. Construction 2 and the final Construction iterations are best

defined by the Sharer phase. Transition 1 is captured by the Finder process. Finally,

Transition 2 is defined by a return to the Sharer phase.

 64

Figure 20. KMM Applied to RUP

Plan

Plan

Do

Do
Check

Act

Check

Plan

Plan

D P

C
C A

D

C

P
AFRAMER

Initial, Elab #1

MAKER
Elab #2, Const #1

C
D

A

P
FINDER
Tran #1

P A

C

C

D

SHARER
Const #2
Const #N
Tran #2

 65

6.7 KMM as a Superset of Extreme Programming (XP)

 Extreme programming (XP) takes a bottom-up approach to programming projects.

XP is agile enough to allow for major changes to be made very late in the project

development. XP does not need every requirement be known and completely understood

in the first phase of the project, as in RUP. XP consists of twelve practices that help

ensure its flexibility. These twelve practices can be assigned to each of the four aspects

of the PDCA cycle as follows:

¾ The Planning Game: Plan

¾ Small Releases: Check

¾ System Metaphor: Plan

¾ Simple Design: Plan, Do

¾ Continuous Testing: Act

¾ Refactoring: Do

¾ Pair Programming: Do

¾ Collective Code Ownership: Do

¾ Continuous Integration: Act

¾ Forty Hour Work Week: Plan

¾ On-Site Customer: Check

¾ Coding Standards: Plan, Do

When XP is represented in the KMM framework, the cycle and the twelve practices must

be separated. The cycle consists of Planning, Implementation, Testing, and Prototype

Release. The twelve practices act as attributes of steps in the cycle.

 66

Figure 21. KMM Applied to XP

 Figure 21 demonstrates the XP cycle as a subset of the KMM. XP consists of

one overall project plan with multiple iterations lasting from one to three weeks, each

External Discover 1

Plan

Innovation Internal Discover 1

Do

Internal Refine 1

Check

Internal Refine 2

Check

External Refine 2

Act Maturity

 C

on
so

li
da

te

So
lu

tio
n

In
cr

em
en

t

Internal
Discover 2

Act

Internal
Refine 1
Check

Internal
Refine 2
Check

External
Refine 1

Do

External
Discover 2

Plan

 Learning

Rationalizatio

C
on

so
lid

at
e

So
l’

n
In

cr
em

en
t

Iteration Cycle

Overall Plan

 67

ending with the delivery of a working prototype, until the final product is produced and

delivered. XP is depicted in KMM as two processes, the Framer for the overall plan or

“outer loop,” and the Sharer, which defines the multiple iterations, occurring on the

“inner loop.” Some of the twelve practices are attributes of the cycle, rather than

comprising the cycle itself. The practices of pair programming and refactoring are

simply attributes of how coding will be accomplished. Likewise, the forty-hour

workweek, coding standards, and collective code ownership are simply guidelines that

the Framer and Maker use to ensure a healthy and orderly work environment. The On

Site Customer attribute describes the relationship between customer and client, but is not

a part of the software development cycle, and so is also not included in the actual KMM

model.

6.8 KMM as a Superset of SCRUM

 The concept of SCRUM has its origins in the sport of Rugby. In Rugby, SCRUM

is the term used to describe the group of players that move together down the field.

SCRUM is based around the use of a daily SCRUM or 15 minute meeting of the team

members, which is intended to allow members to share what they have done since the last

SCRUM, any obstacles that they need to work through, and what they intend to do before

the next SCRUM [18]. SCRUM takes all the customer requirements and desired

functionality and compiles them into a product backlog. The product backlog is then

expanded into tasks by team. SCRUM uses “sprints” or 30 day increments in which the

team produces a working prototype for evaluation by the customer. This allows for

 68

changes to occur as the product is being developed, rather than trying to make major

changes in functionality after all the coding is already complete, as is often the case in

more structured methods, such as RUP. During the sprints, the team members work

through sprint backlog in order to accomplish all the desired requirements of the

customer, as defined in the product backlog. SCRUM may be used independently, or

may be used as a “wrapper” around other engineering processes, such as XP [18]. The

workings of SCRUM are illustrated in figure 21 below:

Figure 22. SCRUM [18]

 SCRUM can be modeled by the KMM as depicted in Figure 23. The outer cycle,

the Framer model, represents the activities of the overall plan for the project. The inner

 69

cycle, the Sharer model, depicts the activities of the 30-day sprint. This Sharer model is

iterated through repeatedly until the final product is released.

Figure 23. KMM as Superset of SCRUM

External Discover 1
Plan

Initial SCRUM

Innovation

Internal Discover 1
Do

Create Backlog

Internal Refine 1
Check

Distribute B-log tasks

Internal Refine 2
Check

Obtain Customer Tests

External Refine 2
Act

Deploy Product w/
New functionality

Maturity

Internal
Discover 2
Prototype
Release

Internal
Refine 1
Integrate

 Internal

Refine 2
Testing

External
Refine 1

Code
Sprint B-log

External
Discover 2

Daily
SCRUM

 Learning

 Rationalization

30-Day Sprint

Overall Plan

 C
on

so
lid

at
e

 S
ol

’n
 I

nc
r.

 C
on

so
lid

at
e

 S
ol

’n
 I

nc
re

m
en

t

 Act

 Plan

 Do

 Check

 Check

 70

7. NASA AND THE KMM

7.1 Columbia

 The loss of the Space Shuttle Columbia, STS-107 and her crew, on 1 February

2003 revealed fundamental flaws in the very fabric of the National Aeronautics and

Space Administration (NASA). Many would argue that the loss of the vehicle and crew

were due to foam from the External Tank striking the leading edge of the left wing, thus

creating a hole in a Reinforced Carbon-Carbon (RCC) panel, allowing extreme heat to

penetrate into the wing and ultimately to burn and break up the entire vehicle. This is

certainly the physical cause, but the root of the problem lies in the culture of the NASA

workforce, an extremely poor communication network within the organization, and the

lack of a working, fully accessible knowledge system across NASA. In spite of the fact

that many of the departments of NASA, and their contractors, are rated in the top of their

fields, (the Onboard Shuttle Software Group maintains a CMM Level 5 status), it is clear

that NASA is not at the peak of maturity when considered on the Knowledge Maturity

Model (KMM). NASA lacks the Inner Mechanism, the easy flow of information and

knowledge within an organization, so that all who require information can obtain in, with

little or no bureaucracy.

7.2 Challenger / Columbia and the NASA Culture

 The Columbia Accident Investigation Board came to a startling conclusion. The

culture of NASA prior to and during the Columbia tragedy was almost identical to that

 71

before the loss of the Challenger, STS-51L, and her crew, on 28 January 1986. The

board that investigated the loss of Challenger, known as the Rogers Commission,

determined that over many successful flights of the Space Shuttle fleet, NASA had

slowly begun to accept what were once launch-aborting problems as simple maintenance

issues to be studied, rather than used to assess a GO/NO-GO for launch. A contributing

cause was that these problems would occur, and yet missions were successful in spite of

them. However, many engineers at all levels were adamant about the need to look at the

O-Ring design and the effect of cold weather on them. The engineers who attempted to

communicate their concerns were silenced by the management of NASA, under pressure

to maintain a demanding schedule of Shuttle launches. The breakdown of

communication between the engineers and management at NASA ultimately led to the

loss of Challenger and her crew. The Rogers Commission recommended that the Space

Shuttle Program be moved from Johnson Space Center to Washington D.C. “with the aim

of preventing communication deficiencies that contributed to the Challenger accident

[2].” However the non-communicative culture of pre-Challenger NASA was pervasive.

The changes instituted following Challenger were fought at every level. “Cultural norms

tend to be fairly resilient…the norms bounce back into shape after being stretched or

bent. Beliefs held in common throughout the organization resist alteration [2].” Thus

NASA found itself back in the pre-Challenger culture. The key was a severe lack of

communication, “the structure of NASA’s Shuttle Program blocked the flow of critical

information up the hierarchy [2].” The communication problems were not only from

bottom to top, but also the other way around. The loose knit group of engineers which

 72

formed via email the day after the launch of Columbia, the “Debris Assessment Team,”

desired further data about previous missions involving foam strikes, but were denied

access to it based on their low “paygrade” and the fact that the departments some of them

worked in were technically outside of the Shuttle Program and were thus not privy to

such data. In fact, this group of engineers went so far as to contact the Department of

Defense to obtain satellite imagery of the Columbia while in orbit, to determine if there

was damage, but this request was stopped by NASA, and the engineers involved were

reprimanded for going around the NASA hierarchy. Communication was not the only

flaw, there was much confusion about the roles of personnel within the organization.

“Also, the Board found many safety units with unclear roles and responsibilities that left

crucial gaps [2].” This lack of clear roles caused “ambiguous working relationships [2]”

within NASA and its contractors.

7.3 New Culture with KMM

 Certainly, there are many aspects of the NASA culture which must be corrected,

and they cover the entire spectrum, from psychological issues, to business and financial

practices, and even undue political pressures. The KMM cannot solve the problems in all

of these areas, but it does provide a template for a working knowledge system that makes

knowledge transfer simpler and less bureaucratic. The KMM introduces the four roles,

Framer, Maker, Finder, and Sharer. Employing these roles at NASA will greatly reduce

job ambiguity and define the relationships between people in the organization. However,

the greatest benefit would be gleaned from the role of the Sharer. An organization with a

 73

fully functioning Inner Mechanism, where the Sharer function is operating at the highest

possible level, ensures that knowledge is made readily available to all who may require it.

The Sharing function would become the backbone at NASA. Introducing an extensive,

“living” database, accessible to all within the organization, would eliminate the problem

encountered by low-level engineers during the Columbia flight, denied data based on

paygrade. A fundamental change of culture is needed, however, the KMM will establish

the framework for the rise of a new culture, steeped in knowledge sharing, distinct roles,

and clear communication lines at every level.

 74

8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions:

 Software design and process maturity are rapidly changing areas of interest in the

computer science world. There exist a myriad of software engineering methodologies;

treating these as tools, rather than the proverbial “silver bullet” of the discipline, requires

that there be a level above, to make efficient use of all these potential tools. Many

current process maturity models are not well suited to properly evaluate organizations

employing agile methods, thereby not giving a true picture of the potential abilities of

such companies.

 In this thesis, a layer above software engineering methodologies, the Knowledge

Maturity Model, was developed. This layer provides a needed tie between three aspects

of software design which have, to date, been addressed independently: software

engineering, cognitive engineering, and systems engineering. Simply recognizing the

requirement for these three aspects to be executed together enables the shift of focus

needed to address many of the problem areas in software design. An organization that

adopts the KMM ensures that all team members understand the functions and interaction

between the four basic cognitive roles of Framer, Maker, Finder and Sharer. This

understanding allows such an organization to look at the various software engineering

methodologies and decompose their steps and phases into the four roles, allowing the

team members who assume the duties of the roles to know what tasks they are required to

perform, and how they should interact with other team members, as part of an overall

 75

systems engineering style plan. In doing this, the organization reduces ambiguity and

makes it much simpler to decipher methodologies which may otherwise appear daunting

to adopt. This thesis also demonstrated the use of the Knowledge Insight Model (KIM)

as a method by which to climb the Capability Maturity Model (CMM). This verified the

ability to use the KIM, which is at the heart of the KMM, for process improvement. The

KMM took this concept one step further by demonstrating a new, four-level maturity

model. The new model better reflects true maturity within a software engineering

organization, by measuring the ability of such a company to employ roles, processes, and

ultimately communicate knowledge, in order to create the best possible software

products. It essentially measures the potential of an organization to tie together software

engineering, cognitive engineering, and systems engineering effectively.

 The KMM was shown to be beneficial to organizations in need of improved

knowledge management processes. By analyzing the culture of NASA, before two

tragedies, the loss of the Challenger and Columbia, the importance of the Sharer function

and a fully working Inner Mechanism was examined. Many departments and contractors

of NASA are considered at the pinnacle of their fields, and yet they suffered from two

key weaknesses: the lack of defined roles and the lack of a fully-accessible knowledge

system led to the loss of two Space Shuttles and 14 crew members. It is clear that NASA

would benefit from the use of the KMM, in clarifying roles, and implementing an

effective knowledge system that would ensure best possible dissemination of knowledge

to engineers and management.

 76

8.2 Future Work:

 Experiments could be conducted using an actual software engineering company,

providing one team with the tools of the KMM, and using a control team, which would

employ their normal methodologies. The experiment would require that the teams create

multiple software products using a different software engineering methodology each

time, to see if the KMM provides a measurable time and/or efficiency improvement. A

similar experiment could test the process improvement aspect of the KMM by employing

test and control teams, to determine if such a project is simplified by using the KMM.

 A very interesting test would be the introduction of the KMM to NASA to see if

such a complex and very technically competent organization can benefit from its use to

build a more effective culture.

 Today’s software engineering environment is in a constant flux. New

methodologies seem to be developed overnight. Many organizations desire a way to

achieve process improvement, without using costly consultants. Abstracting these

concepts to a higher level allows the same basic concepts of the four roles, the PDCA

Cycle and a simple iterative process to be employed for both of these tasks. Making use

of a simple layer, above existing methodologies for software design and process

improvement, makes these complex tasks far less daunting.

 The KMM shows potential to be employed in the realm of knowledge

management, as briefly explored in this thesis, in conjunction with the culture at NASA.

Further research and experimentation may lead to breakthroughs in knowledge

management which could be employed across multiple fields in academia and industry.

 77

LIST OF REFERENCES

[1] Brooks, Frederick P. JR. “No Silver Bullet: Essence and Accidents in Software
 Engineering.” IEEE Computer Society Press. Los Alamitos, California
 1987.

[2] “Columbia Accident Investigation Board.” National Aeronautics and Space
 Administration. 2003.

[3] “Capability Maturity Model® for Software (SW-CMM®).” Carnegie Mellon
 Software Engineering Institute. 24 July 2002. Carnegie Mellon University.
 13 February 2003. <www.sei.cmu.edu/cmm/cmm.html>.

[4] “Capability Maturity Model Integration® (CMMI®).” Carnegie Mellon Software
 Engineering Institute. 18 August 2003. < www.sei.cmu.edu/cmmi>.

[5] Fishman, Charles. (Dec 96/Jan 97). “They Write the Right Stuff.”
 Fast Company. 06, 95.

[6] Gremba, Jennifer, and Chuck Myers. “The IDEALSMModel: A Practical Guide for
 Improvement.” Bridge. Issue 3, 1997.

[7] Honeycutt, Thomas L. Knowledge Enabling Organon: Knowledge Executive Officer.
 North Carolina: KEI LLP, 2001.

[8] Honeycutt, Thomas L., and Sarat M. Kocherlakota. A Knowledge Insight Model
 Framework for Knowledge Discovery and Data Mining. North Carolina
 North Carolina State University. 2002.

[9] Leveson, Nancy. Software Engineering: A Look Back and a Path to the Future.
 Massachusetts Institute of Technology. No date.
 http://sunnyday.mit.edu/cacm.html.

[10] Menjoge, Zehlam. Software Development using the Knowledge Insight Approach.
 North Carolina: North Carolina State University, 2003.

[11] Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V. Weber.
 “Capability Maturity Model, Version 1.1.” IEEE Software. 10.4 (1993): 18-27.

 78

[12] Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. “The
 Capability Maturity Model: Guidelines for Improving the Software Process.”
 Addison-Wesley Publishing Company, New York, New York, 1995.

[13] “PDCA Cycle.” HCi. 20 December 2003.
 <http://www.hci.com.au/hcisite2/toolkit/pdcacycl.htm#Plan-Do-Check-Act>.

[14] Pressman, Roger S. Software Engineering: A Practitioner’s Approach.
 McGraw-Hill Higher Education, New York, New York, 2001.

[15] “Reaching CMM Levels 2 and 3 with the Rational Unified Process: Rational

Software White Paper.” Rational. No date.
<http://www.rational.com/media/whitepapers/rupcmm.pdf>.

[16] “What is the Rational Unified Process?” RevMedia Inc.
 http://www.revmedia.com/process_what_is_rup.php. 2003.

[17] “RUP.” Novasoft. http://nsuml.sourceforge.net/zebra/zebra3.html. 2003.

[18] “SCRUM Development Process.” Advanced Development Methods, Inc.
 www.controlchaos.com. 2003.

[19] “System Engineering Definitions.” University College London.
 http://www.ucl.ac.uk/syseng/pages/sedef.html. No date.

