ABSTRACT

RAMNATH VENUGOPALAN, Improving Energy-efficiency in Sensor Networks by Raising
Communication Throughput using STT (Under the direction of Dr. Alexander G Dean).

Energy consumption plays a crucial role in the design of a battery operated embedded system
like a sensor node. Cutrrent technologies attempt to fulfill this need by optimizing various parts
of the sensor node like the software for communication by using energy-aware algorithms that
allow the sensor nodes to sleep as often as and as long as possible and by optimizing the
hardware to reduce its energy consumption. In addition to these, there are energy-aware
compiler techniques, for example, those on optimization of code-generation techniques of
compilers that advocate usage of instructions that consume the least energy, usage of compiler
optimizations like loop unrolling and cloning, elimination of dead code, those on instruction
scheduling for minimum number of switches, optimizations in register allocation, register
pipelining, etc. However, optimization of interrupt overhead, which is one of the biggest

contributors to energy consumption, is not addressed by any of these technologies.

Our new methods involve the elimination of interrupt overhead using a compiler technique
known as Software Thread Integration (STT). STI is a compiler technology which intetleaves
multiple assembly language threads at a fine-grain level. This method may be used in
conjunction with the above methods for improved energy-efficiency. The energy consumption
of a sensor node is primarily due to two components its communication (RF) module and its
computation (CPU) module. Currently, communication is performed using an interrupt-based
scheme that raises an mnterrupt at frequent intervals. The interrupt overheads mount up to large
values for long periods of communication. Using STT to intetleave the threads of computation
with the threads of communication allows these statically scheduled threads to function
without the use of interrupts. This saves a large number of cycles and time in interrupt
overhead. These savings can be used in multiple ways to save energy. 1) The cycles that are
saved can be used by the CPU to go to sleep when there is no work to be done. 2) The CPU
can be run at lower clock frequencies so as to save energy. 3) The code for the
communications can be run faster so that the bit-rate for communications can be increased to
the highest limit. This allows the RFM to transmit as fast as possible and go to sleep sooner.
The enetrgy consumption of the RFM depends on the transmit power if it is transmitting, and
the duration for which it has to stay powered up. The reduction in time that it has to stay on

decreases the energy consumption of the node.



We demonstrate these methods in this thesis by applying them to a sensor node that runs
communication and a DSP application and show significant reduction in energy consumption

of the node.
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Chapter 1

INTRODUCTION

In recent years, sensor networks have been undergoing a quiet revolution, promising to have a
significant impact on a broad range of applications relating to a variety of areas like national
security, health care, the environment, energy, food safety, and manufacturing. A sensor
network comprises of a large number of sensors that communicate with each other to achieve
a common goal. It is desirable to make the sensor nodes as inexpensive and energy-efficient as
possible since the sensor networks rely on their large numbers for accurate and high quality

results.

Current research in sensor networks is attempting to decrease the size, weight and cost of these
sensors by orders of magnitude so that this cost-effectiveness will lead to their deployment in
far larger numbers than it 1s today. Power consumption is a very important aspect of current
research in sensor networks due to the fact that the nodes in these sensor networks are
typically un-tethered and unattended and hence possess small energy reserves. The reduction in
size of the sensor nodes limits the size of the battery, which in turn limits the lifetime of the
battery. The lifetime of a sensor network is only as long as that of the batteries that power the
nodes and hence every portion of the node including the software must assume some of the

responsibility of reducing the energy consumption of the node.

The technique of Software Thread Integration (STI) [19], when applied to the software
running on the sensor nodes, will help in reducing their energy consumption. STT is a compiler
technology which interleaves multiple assembly language threads at a fine-grain level. The
resulting thread offers low-cost concutrency yet executes on a genetic processor without fast
context switches. This avoids the overhead that interrupts bring along with them. STT is
extremely valuable for recovering idle time from real-time threads performing low-level (e.g.

MAC and data link layer) network communication as are present in the wireless sensor nodes.



STI 1s used here to integrate these low-level communication threads on the nodes with other
applications that are required to run on the sensor nodes such as those that involve digital
signal processing tasks like filtering. This integration provides us with the benefit of the lack of
interrupt overhead coupled with excellent utilization of the idle time in the real-time thread.
This idle time is used for the DSP tasks and to sleep when the DSP work has been completed.
The amount of time that the node will be able to sleep when running STI-based threads is
greater than that when it is running ISR-based threads. This enables the node to consume
much lesser energy while running STI-based threads when compared to that consumed when it
runs ISR-based threads. This saving energy comes from the CPU, which is turned off during

the idle mode leaving just the communication running.

Another component of the sensor node that consumes a large percentage of the total amount
of energy consumed is the RF module (RFM). The ISR-based thread takes a much longer time
to run on the CPU due to the larger number of extra cycles of interrupt overhead that need to
be executed in addition to the communication instructions. This limits the highest bit-rate that

can be supported by the node to:

Highest bit-rate possible = 1/ Time taken by the CPU to execute the instructions in the communication thread

tfo send out 1 bit.

Equation 1-1: Highest bit-rate possible

Since the time taken by the CPU to execute the instructions in the communication thread to
send out 1 bit is much greater in the ISR-based thread than in the STT-based one, the highest
possible bit-rate for the STI-based thread is much greater than the ISR-based one. The energy
consumed by the RFM i1s dependent only on the duration for which it is actively participating
in communications and the power with which it 1s transmitting. It is not dependent on the bit-
rate. By completing the communications soon at a high bit-rate, the RFM can reduce the
duration for which it is required to be active mode and can go to sleep after that. The shorter
the duration for which it has to actively participate in communication, the lesser amount of
energy it is that is consumed by the RFM. Hence, higher bit-rates lead to less energy
consumption for the node. As the STI-based thread is capable of transmitting at much higher
bit-rates than the ISR-based thread, it can turn the RFM off much eatlier than the ISR-based



thread can. This leads to a much lower consumption of energy by the node running the STI-

based thread when compared to a node that is running the ISR-based thread.

It 1s possible with STT to save energy even by transmitting lesser number of bits as compared
to the ISR version. This reduction in the number of bits 1s achieved by reducing the number
of start/stop bit pairs to one per packet for the STI vetsion from one pet byte for the ISR
version. This is possible due to the lack of interrupt introduced timing variance in the STI-
based thread due to static scheduling. The STI-based thread meets all the deadlines for the real-
time communication thread while also executing the non-real-time application thread during

the idle time of the real-time thread with static scheduling of the two threads.

We go on to demonstrate in this thesis that STT can save a considerable amount of energy for

the wireless node thus elongating its lifetime. The lifetime 1s extended to the following:

Lifetime with STI = (energy consumed with the IS R-based thread/ energy consumed with the STI-based thread)

* Lifetime with ISR implementation

Equation 1-2: Lifetime with STT

The thesis has been organized as follows. Chapter 2 presents the background details and the
concepts of STI. Chapter 3 details the new methods used in this thesis. Chapter 4 goes on to
explain the hardware and software architecture used in obtaining the results. Chapter 5
discusses the results and analyses them in detail. Chapter 6 presents the conclusion and future

work.



Chapter 2

BACKGROUND

2.1 Wireless Sensor Networks

Recent advances in miniaturization using MEMS-based sensor technology and low-cost, low-
power design have led to active research in large-scale, highly distributed systems of small,
wireless, low-power, unattended sensors and actuators [1][2][3] also commonly known as
Wireless Sensor Networks. The idea is to ctreate sensor-tich ““smart environments" through
planned or ad-hoc deployment of thousands of sensors, each with a short-range wireless
communications channel, and capable of detecting ambient conditions such as temperature,

movement, sound, light, or the presence of certain objects.

Figure 2-1: A Sensor Network

These sensors are not as reliable or as accurate as their expensive macro-sensor counterpatts,
but their small size and low cost enable applications to network hundreds or thousands of

these micro-sensors in order to achieve high quality, fault-tolerant sensing networks. These

4



sensor networks are becoming very popular for reasons such as lower cost, ease of

deployment, and fault tolerance. Each sensor has wireless communication capability and

sufficient intelligence for signal processing and networking of the data. Some examples of

smart sensor networks are the following:

>

Military sensor networks to detect enemy movements, the presence of hazardous

material (such as poison gases or radiation, explosions, etc.)

Environmental sensor networks (such as in plains or deserts or on mountains or ocean

surfaces) to detect and monitor environmental changes.

Wireless traffic sensor networks to monitor vehicle traffic on a highway or in a

congested part of a city.

Wireless surveillance sensor networks for providing security in a shopping mall,

parking garage, or other facility.

Wireless parking lot sensor networks to determine which spots are occupied and which

spots are free.

Besides offering certain capabilities and enhancements in operational efficiency in these
conventional applications, smart sensor networks can assist in the national effort to

increase alertness to potential terrorist threats.

2.1.1 Sensor Nodes

Each of the nodes that form the sensor network is made up of the following sub systems:

The data and control processing a.ka computing subsystem consisting of a

microprocessor or microcontroller.

The communication subsystem consisting of a short range radio transceiver for

witreless communication.

The sensor subsystem consisting of the A/D convetter and vatious sensors including

acoustic and seismic sensors.



tv.  The power module that consists of the power supply to the node, including the

batteties.

The data 1s continuously sampled and stored in on-board RAM to be processed by the data
and control processing module. The other three modules are adaptable depending on the role
of the sensor within the network, and all three are controlled by the data and control

processing module.
2.1.2 Power Consumption and itsImportanceto Sensor Networks

Micro-sensor networks can contain hundreds or thousands of sensing nodes. It is desirable to
make these nodes as cheap and energy-efficient as possible and rely on their large numbers to
obtain high quality results. These nodes in the sensor systems are un-tethered and unattended
and therefore have small energy reserves. Small sensor nodes imply limited physical space for
batteries, and high density implies that periodic battery replacement will be a great
inconvenience and more likely, impossible. A state-of-the-art lithium primary battery offers an
energy density of about 2 kJ per cm’ [16]. Assuming that 1 cm’ is available within the node for
the battery and that the desired device lifetime is one year, the average power dissipation must
be less than

(2000 J) * (1 yeat / 365 Days) * (1 Day / 24 Hours) * (1 Hour / 3600 Seconds) = 63.4 u\W

As this value exceeds the standby power of most digital systems, energy dissipation is of
paramount concern. Moreover, Moore’s law simply does not apply to batteries: the energy
density of batteties has only doubled every five to 20 years, depending on the patticular
chemistry, and prolonged refinement of any chemistry yields diminishing returns [17]. Energy
conservation strategies are therefore essential for achieving the lifetimes necessary for viable

applications [18].

All communication--even passive listening--will have a significant effect on the energy reserves
of the node. The life of the sensor node depends on the life of its battery. To prolong the
lifetimes of the wireless sensors, all aspects of the sensor system should be energy efficient, and

design should focus on minimizing both computational and communication energy.



2.1.3 Current Research in power optimization in sensor networks

Energy/power awareness [12] being such an important topic to sensor networks, there is a lot
of research that has gone into this area in the past and will continue to do so in the future. This
research has tried to bring energy-awareness to various facets of the sensor and the sensor-
network. There have been studies into the upper-bounds of the lifetime of a sensor network
and the factors that prevent them from achieving this theoretical maximum lifetime [4]. The
sensors themselves are being designed 1n as energy efficient a manner as possible [5][6][9][10].
The network layers, like the MAC layer [8], the network layer [7] are being optimized for
energy savings since communication is one of the major soutces of consumption of energy in a
sensor node. Partitioning the task at hand among several nodes is another way of saving
power for complex calculations like a 1024 point FFT [15]. A large amount of contemporary
research in sensor network is devoted to this area and the above are representative of only a

small portion of the same.

The main sources of power consumption in sensor networks are the computation and
communication subsystems and thus optimizations in those subsystems detive maximum
energy gains for the sensor nodes and most of the current research is concentrated therein.
Detailed analyses have performed in the areas of power consumption in a sensor node and

various optimizations have been suggested to improve them [11].
2.1.4 Digital Signal Processing in Sensor Networ ks

Networked micro-sensors enable a variety of new applications such as warehouse inventory
tracking, location sensing, machine-mounted sensing, patient monitoring, and building climate
control [12][13]. One prime example of a micro-sensor application is the use of acoustic
sensors for environmental monitoring. Reliable environment monitoring is important in a
variety of commercial and military applications. Acoustic sensors are highly versatile and can be
used in a variety of applications, such as speech recognition, traffic monitoring, and medical
diagnosis. Multiple sensors can be used to pinpoint the location of an acoustic source (e.g.,

moving vehicle, speaker) by using a line of bearing estimation technique.

The wireless communication network between sensors nodes facilitates sensor collaboration,
and the digital signal processing (DSP) for the analysis of sensor data can be done locally.
Common digital signal processing tasks in the analysis of sensor data are those that involve
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digital filtering to remove unwanted portions of the signal leaving only those portions that are
required for further analysis. Two major forms of such filters are the Finite Impulse Response

(FIR) and the Infinite Impulse Response (IIR) filters.

A Finite Impulse Response (FIR) filter produces an output, y(n), that is the weighted sum of the

current and past inputs, x(n).

Ha = E-'|ZI-'rr1 + blmﬂ—l + bﬂmn—ﬂ + ..+ El'q-'ﬂn—q

1
= Z ﬁj.’.[.‘,,,_j
7=t

The weights (b, b, b,...) are calculated to change the characteristic of the FIR filter to a high

pass, band pass or low pass filter for particular frequency ranges.

Xn-L Xn2 X n-q

Z Z

bo

Lo
—

Xn

Figure 2-2: An FIR filter

The impulse response of the FIR filter is "finite" because there is no feedback in the filter; if
you put in an impulse (that is, a single "1" sample followed by many "0" samples), zeroes will
eventually come out after the "1" sample has made its way in the delay line past all the

coefficients.

An Infinite Impulse Response (IIR) filter produces an output, y(n), that is the weighted sum of the

current and past inputs, x(n), and past outputs.
b q
Un = Z Biltn—i + z bjmn—j
i=1 §=0

The weights (b, b, b,... and a, a,, a,...) are calculated to change the characteristic of the IIR

filter to a high pass, band pass or low pass filter for particular frequency ranges.
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Figure 2-3: An IR Filter

The impulse response of an IIR filter is "infinite" because there is feedback in the filter; if you

put in an impulse (a single "1" sample followed by many "0" samples), an infinite number of

non-zero values will come out (theoretically).

Compared to IIR filters, FIR filters offer the following advantages:

1.

iv.

They can easily be designed to be "linear phase" i.e. linear-phase filters delay the input

signal, but don’t distort its phase.

They are simple to implement. On most DSP microprocessors, the FIR calculation can

be done by looping a single instruction.

They have desirable numeric properties. In practice, all DSP filters must be
implemented using "finite-precision" atithmetic, that is, a limited number of bits. The
use of finite-precision arithmetic in IIR filters can cause significant problems due to the
use of feedback, but FIR filters have no feedback, so they can usually be implemented
using fewer bits, and the designer has fewer practical problems to solve related to non-

ideal arithmetic.

They can be implemented using fractional arithmetic. Unlike IIR filters, it is always
possible to implement a FIR filter using coefficients with magnitude of less than 1.0.
(The overall gain of the FIR filter can be adjusted at its output, if desired.) This is an
important consideration when using fixed-point Digital Signal Processors, because it

makes the implementation much simpler.

Compared to IIR filters, FIR filters sometimes have the disadvantage that they require more

memorty and/or calculation to achieve a given filter response characteristic. Also, certain



responses are not practical to implement with FIR filters. An FIR filter can be used for the

implementation of matched filters that are very useful in signal processing.

IIR filters can achieve a given filtering characteristic using less memory and calculations than a
similar FIR filter. However, they are more susceptible to problems of finite-length arithmetic,
such as noise generated by calculations, and limit cycles. (This is a direct consequence of
feedback: when the output isn't computed petfectly and is fed back, the imperfection can

compound.) Also, they are harder (slower) to implement using fixed-point arithmetic.

2.1.5 Fixed Point Arithmetic

Certain types of embedded systems require the handling of real numbers also known as
floating point numbers (or at least what appear to be real numbers). Few microprocessors offer
real-number support, such as for floating-point data types and operations at the instruction
level. Those that do are generally large, complex, expensive, and not intended for embedded
applications. Certainly none of the small 4- and 8-bit microcontrollers support floating point,
even though these are precisely the processors that are going to be at the heart of many

apparently "real-number" applications.

Floating-point numbers allow one to deal with an extremely wide range of numbers: from the
very small to the very large. They do this by storing the number as some digits and the position
of the decimal point. Without a floating-point co-processot, this sort of arithmetic can be very
slow. Things can be speeded up by fixing the position of the decimal point and using integer

arithmetic operations. This is called fixed-point arithmetic.

In fixed-point arithmetic, a fixed number of bits are allocated to the decimal portion and
another fixed number of bits to the fractional portion. The programmer can treat the numbers
as integers and perform integer arithmetic with them so long as he takes care to not overflow
the maximum value that the fixed-point number can hold. The number of bits for integer and
fractional parts should be chosen such that overflow will not occur during the course of the
program. Addition and subtraction can be performed as with integers, but with multiplication
and division care needs to be taken to keep the decimal point fixed at the same position. For
example, multiplying two numbers that have 8 bits devoted to the fractional part causes the
decimal point to shift left by 8 bits, thus the result should now be shifted right by 8 bits before

using its value in another arithmetic operation. Thus, from the processors point of view all the
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arithmetic 1s integer-based but the programmer keeps track of the decimal point and views the

results as floating point numbers. This speeds up the arithmetic by 6-7 times.
2.2 Software Thread I ntegration

STI [19] is a compiler technology which interleaves multiple assembly language threads at a
fine-grain level. The resulting thread offers low-cost concurrency, but still executes on a genetic
processor without fast context switches. STT can be used for hardware to software migration
(HSM). HSM is the process of moving functions from dedicated hardware components to real-
time software. HSM helps to improve system cost, size, weight, power, function availability,
time to market, and field upgrades. The main targets of HSM are embedded systems, which
cannot afford the luxury of a high performance microprocessor yet require fine-grain thread

concurrency.

In HSM with STT, two assembly threads are integrated. One of the threads is a real time thread
with real time deadlines to meet and the other thread is a non real time thread associated with
the application. The real time thread is the software implementation of the dedicated hardware
function, which we want to move to software. The real time thread becomes the guest thread
and the non real time thread becomes the host thread. The real time thread does not use up the
processor the entire time its running. It has a fine grain idle time between instructions that have
real time deadlines to meet. This idle time is either used up in executing NOP instruction
(busy-waiting) until the next deadline to be met is reached or is used to process interrupts when
the real time deadlines are met using interrupts generated through a timer. STT helps us in
extracting this fine grain idle time that was hitherto wasted during the execution of a real time
thread using it for executing other threads. The existing thread, which does not have any real
time requirements becomes the host thread and the guest 1s inserted into the host thread at

locations which satisfy its real time constraints.

This kind of integration involves a variety of factors and must be done carefully. Static timing
analysis 1s performed on the control dependence graph generated for both the threads. This
timing analysis gives us information about how eatly or how late an instruction would be
executed when the threads are run and also the duration of execution of instructions. This type
of mformation helps n identifying mnsertion places in the host thread, where instructions from

the guest thread can be placed so that the real time requirements of the guest thread are
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propetly met. Control Dependence Graphs (CDG) facilitate easier implementation of static
timing analysis and provide excellent support for determining the insertion points that meet the
real time constraints in the host thread and the subsequent placement of the guest code in
those locations. Register reallocation techniques are also employed to enable sharing of the

processor’s register set by the two threads, without any conflicts.

ST is extremely valuable for recovering idle time from real-time guest threads petforming low-
level (e.g. MAC and data link layer) network communication and video refresh functions.
Other applications with significant fine-grain idle time can benefit from STT as well. An
example of an application in which STT has been implemented is given in [20] in which high
temperature (185-225 C) CAN network interface is implemented in software and integrated
with buffer management code for the CAN protocol. This system has been built and tested at
up to 225 °C.

A special compiler called 7hrint has been developed for this purpose. Thrint is a post-pass (back-
end) compiler, which reads assembly code, performs control-flow, data-flow and static timing

analysis, and integrates threads.
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Chapter 3

NEW METHODS - USING STI TO SAVE ENERGY

3.1 Byte-level Protocol controllers and Software Thread Integration

Byte-level protocol controllers are those protocol controllers that use a byte as the unit of
communication. A good example of a byte-level controller would be the Serial Petipheral

Interface (SPI), which sends and receives no more than 1 byte at a time.

Current implementations of byte-level protocol controllers are implemented in two possible

ways: Interrupt based and Polling Based.

The interrupt based protocols recognize the completion of transmission or reception of a byte

by the generation of an interrupt. This process has several disadvantages:

» High interrupt overhead. The interrupt process involves the following steps before the

ISR begins execution:
0 Finish current mnstruction: Up to 4 cycles

0 Push program counter onto the stack in Data SRAM (as is pointed to by the
SPH:SPL): 4 cycles.

0 Push status register onto the stack: 2 cycles
0 Follow interrupt vector (Jump instruction): 3 cycles.

This process results in a delay of 9-14 cycles before the ISR starts. The overhead
introduced by interrupts cause delays and a sizeable fall in throughput. The context
switch time becomes increasingly expensive as communication protocol rates rise

relative to processor speeds. This overhead makes higher data rates impossible.
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» Variation in execution time. Interrupt processing can begin only after the completion
of the current instruction, which can be anywhere between 1 and 4 cycles in length for

the ATMEL AVR series of microprocessors that have been used in this dissertation.

> Loss of synchronization between transmitter and receiver unless start and stop bits are

mtroduced for each byte.

> Amount of work that can be done apart from communication during the idle period

between transmitting two consecutive bytes of data is reduced.

Figure 3-1: Interrupt overhead for ISR implementation

The polling based byte-level protocol controllers busy wait on a certain event that indicates
completion of communication, for example, a bit in the SPI status register that is set to indicate
that the transmission or reception of a full byte 1s complete. The software runs in a loop until
there is a change in the status of the respective bit in the status register. The processor is now
forced to stay awake for the entire duration of communication due to the busy-waiting. This is
inevitable as this is the only way the processor can accurately ascertain the exact instant of
completion of communication so as to not lose synchronization between the transmitter and
receiver. Synchronization can easily be lost due to the accumulation of timing errors over the
communication period. For example, if the processor loses 1/4 bit-time at the teception of
each byte, it will begin to misread the data after it has received 4 bytes. Busy-waiting has the
advantage of maintaining synchronization between transmitter and receiver for the entire
duration of communication of a packet if their clocks are reasonably accurate. An obvious
disadvantage in busy-waiting is that the microprocessor 1s wasting its time busy waiting while it
could have gone to sleep to conserve energy or performed other useful work so as to maximize

its throughput.
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Figure 3-2: Busy wait implementation overheads

3.2 Saving Energy with Software Thread I ntegration

The technique of Software Thread Integration integrates two assembly threads, the real-time
guest code and the host code into a single assembly thread. The real-time guest code is
statically scheduled and 1s inserted into the host code so that it executes at the exact instants of

time as necessary to communicate at the required bit rate.

RT Guest Thread
Hardware

Idle Integrated Thread

A
Existing Thread {‘:T_.? —

Figure 3-3: STT and elimination of intetrupt overhead

In this case the real-time guest code is the communication code that needs to send data and
receive data at a certain bit-rate and the host code 1s an application that performs common
digital signal processing tasks like filtering. The filters that have been used here are an 8" order
Finite Impulse Response (FIR) filter and a 6™ order Infinite Impulse Response (ITR) filter.
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This technique completely eliminates the interrupt overhead due to static scheduling. This
allows for the availability of a larger number of free cycles for the processor to perform other
useful work. These free cycles can be used to sleep, as well as perform other useful work in

addition to communication, which allows the processor to conserve energy.

Before Integration

After Integration

Figure 3-4: Increase in communication bit-rate due to STI

The overhead introduced by interrupts can be so high as to limit the rate of communication.
The removal of this overhead enables the node to communicate at much higher rates. As
mentioned earlier, most of the energy in a sensor node is consumed by two major components
— the radio module and the micro-processor. The radio module’s energy consumption is
dependent on the power with which it transmits and the duration for which it stays powered
on. It does not depend on the bit-rate at which it transmits. Thus, the possible increase in bit-
rate mntroduced by STT can be used by the node to transmit as fast as it can and then put the
radio module to sleep after the transmission is complete. Here, the lengthening in the time that
the radio module can sleep allows for increase i energy savings. However, this is possible only
if the receiver is capable of recetving at the rate at which the transmitter 1s transmitting. This
may mean that both the transmitter and receiver nodes may have to run code that is integrated

using STL. In this way, both transmitter and receiver nodes stand to benefit by saving energy

due to STIL.
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Figure 3-4 above shows the increase in communication bit-rate due to STI. We can see that
before integration, the interrupt overhead takes up a sizeable portion of the CPU time away
from actual work being performed. After integration, the interrupt overhead has been removed
and actual work in the form of the communication and application has taken its place, thus

increasing throughput and the communication bit-rate of the node.

Before Integration

Interrupt
Overhead

Bvte

] Start/Stop
After Integration

Packet

Figure 3-5: Savings from using start and stop bits per packet

Byte-level protocol controllers, which are commonly in use like those for the UART, SPI, etc.
typically send one byte at a time and have to attain and maintain synchronization for every byte
that is transmitted and received. In case of SPI, a start bit will have to precede and a stop bit
will have to be appended to every byte that is communicated so as to attain and maintain
synchronization between transmitter and receiver for the period of time that the
communication of the byte is in progress. This needs to be done, since, in the wireless world,
there is no way for a receiver to know if it has drifted out of synchronization with the
transmitter or not if safeguards like this are not implemented. The receiver can continue
reading gatbage data without recognizing it as such until it tries to run a parity/CRC check on
the received packet. If the protocol controller is such that it must read the packet length field in
the received packet (J1850, CAN) to determine the length of the packet, then it may wait for a
very long period of time while it thinks that the data has been received, if this particular value
of packet length has been misread due to loss of synchronization. This may lead to energy
losses due to the processor cycles wasted and increase in duration that the radio module needs
to stay on. After the recognition of a bad packet, the receiver may request retransmission of the
whole packet, which leads to energy loss. Byte-level protocol controllers typically generate an

mnterrupt for every byte of data that is received, which introduces timing variability into the
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communication as mentioned eatlier. This variability may lead to the loss of synchronization
between transmitter and recetver during the communication of the packet thus leading to

energy losses through retransmissions.

In general there will be clock differences between any two clocks. Crystals are typically accurate
to about +/- 50 ppm (patts pet million), which means that they may drift about 50 cycles in
every 1 million cycles that they generate. A typical transfer of a byte takes about 32 cycles in the
STI implementation that we have. Thus, a packet of 100 bytes that will take 100*32 = 3200
cycles to transmit/receive should be communicated without synchronization problems caused
by clock drift. In this situation, the code generated by software thread integration, due to its
static scheduling (and hence lack of variability in execution time) ensures that the transmission
and reception maintain timing accuracy and happen at exact intervals of time. The basic
requirement is that by the end of the packet (since synchronization occurs at the beginning of
the communication of each packet) clocks can not have drifted more than 1 bit time totally. If
we were to choose a conservative figure of %2 * bit time for the clock drift to be on the safer
side, then the maximum frequency error allowed for a crystal so that the nodes do not lose

synchronization is

Mas. Allowable Frequency Error between crystals in ppm = 10° *(0.5 * bit time)/ (Duration of the longest
packet)

Where, duration of longest packet = 8 * length of longest packet in bytes * bit-time

Maxczmum allowable frequency error for 1crystal in ppm = (Max. Allowable Frequency Error between crystals
in ppm)/ 2

Equation 3-1: Maximum frequency drift without loss of synchronization

In case we consider a maximum packet length of 250 bytes and a maximum bit-rate of 500
kbps, the maximum allowable frequency error per crystal evaluates to 125 ppm, which is far
greater than the maximum frequency drft i currently available crystals. However, with
increase in packet size beyond 625 bytes (most common packet sizes in sensor networks are
under 100 bytes); the maximum frequency stability begins to fall below 50 ppm. After this, very
high frequency stability crystals (+/- 6 ppm) will be requited and this can prove expensive.
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Thus, if the clock generators for both the transmitter and the receiver modules have high
frequency stability and match each others frequency as closely as possible, then this technique
ensures that there will be no error in reception of the packet due to loss of synchronization.
Thus, after gaining synchronization at the beginning of the packet, it will not lose it till the last
bit of the packet has been recetved. It becomes unnecessary i this scenario to have to have
start and stop bits for every byte of data in the packet. Thus, the overhead of having start and
stop bits for every byte is reduced to having start and stop bits for one whole packet. This can

reduce the energy consumption twofold:

1. The reduction in the ovethead of start and stop bits (2 bits for every 10 bits of
communication = 20% overhead) is sizeable. The amount of reduction is dependent
on the size of the packet i.e. the larger the packet, the higher the percentage of savings
that will be obsetved. The radio module now has to transmit and receive that much
less amount of data, thus saving power in both the radio module and the

microprocessor module.

1. The perfect synchronization between the transmitter and receiver during the
communication period ensures that there are no losses of packets due to loss of
synchronization. This leads to a lower number of retransmissions in reliable protocols
like TCP, thus causing reduction in enetgy consumption in both the radio module and

microprocessor.

STT allows a byte-level protocol controller that has to pad every byte with start and stop bits to
be used as a packet-level protocol controller, which only has to pad each packet with start and

stop bits thus allowing for sizeable energy savings.
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Chapter 4

HARDWARE AND SOFTWARE ARCHITECTURE

4.1 Hardwar e Architecture

The nodes use an Atmega128 microcontroller from Atmel® and a Chipcon® CC1000 for its

communication needs.

CC1000 radio module

Atmegal28 with the STK501/500

»

Atmega Atmega
128 le—>n] cc1000 f——= «—=] cc1000 fee— 128
Radio A Radio
Transceiver ntennae Transceiver

Microcontroller Microcontroller

Figure 4-1: Sensor Nodes with an Atmega128 and a CC1000
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The architecture described above has not been implemented in its entirety. This, however, is
the architecture that the power analysis has been performed with. The Atmegal28
microcontrollers were connected to each other in the wired implementation described in
Section 4.3.2 for the purpose of actually measuring the effect of interrupt overhead in terms of
the number of cycles during communication between the two nodes and also for running the
integrated threads to verify the accuracy of the integration. The communication and DSP
threads were run on this architecture to verify their correctness before and after mtegration.
We have not used the CC1000 RFM since its energy performance can be completely and
accurately characterized based on data gained from the working of the wired implementation
of this architecture and transferring it to the wireless domain using numbers from its datasheet

as has been done here.
4.1.1 Atmega 128 Microcontroller

The Atmega 128 implements the AVR architecture, a RISC architecture featuring 8 bit native
word size, 32 general-purpose registers, and limited support for 16 bit operations. The
processor features a two-stage pipeline. This processor has multiply but lacks divide
instructions. Data memory is byte-accessible and byte-aligned. The Atmega 128 is currently at
the top of the performance spectrum of the AVR device family. We use an Atmel STK500
evaluation board with a 16 MHz clock. On-chip memory consists of 4 kilobytes of SRAM and
128 kilobytes of Flash EEPROM. In addition, 32 kilobytes of external SRAM are used (with a
one cycle performance penalty). No cache exists, and no coprocessor is available. The C
compiler used is AVR-GCC 3.2. It possesses on-chip debugging support in the form of a
JTAG imterface to which a JTAG emulator can be plugged in. It also possesses an on-chip 10-
bit ADC. The frequency of the Atmegal28 can be varied from 0.3 MHz up to 16 MHz.

The Atmegal28 also possesses Serial Peripheral Interface (SPI) that allows for high speed
synchronous communication between several AVR devices. The SPI can be configured to run
at speeds ranging from f, /2" to f,,/2". This means that each bit will be transferred via the SPI
interface between two devices at speeds ranging from 2 cycles to 128 cycles depending on the
speed configured. Higher bit-rates like f_,/ 2" mean that an entire byte is transferred in 2¥8=16
cycles. Thus, every 16 cycles a new byte will be transferred. This will however not be possible

with interrupt-driven implementations of byte-level controllers since the interrupt overhead is

much higher than the 16 cycles that is required to transfer a byte. This prevents
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implementations using such high-speed transfers from using ISR based schemes and limits

them to using busy-wait schemes.

4.1.2 Power Characteristics of the Atmega 128
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Figure 4-2: Frequency vs. Power Characteristics for the Atmegal28
(24]

The Atmega 128 supports voltages from 2.7V to 5.5V. We use an operating voltage for the
Atmega 128 of 3.0 V to reduce power consumption. The Chipcon CC1000 is also run at 3.0 V,
which is its recommended operation voltage. The power consumption of the Atmega 128
depends on the duration for which it stays in active mode, the duration it stays in idle mode or
sleep mode, the frequency at which it is operating and the voltage supply it is operating at. The
power characteristics show that the energy consumption increases with increase 1 operating
frequency and the square of the supply voltage. The longer that the microprocessor stays in
active mode, the larger is the amount of energy that it consumes. Hence, the microprocessor
must attempt to stay in a sleep mode like the idle mode as long as possible. The Atmega 128
has five other sleep modes apart from idle: ADC Noise Reduction, Power-down, Power-Save,
Standby and Extended Standby where the supply current reduces to a few 10s of micro-
amperes from a few milli-Amperes in Active and Idle modes. The MCU can be sent into any

one of these modes by simply writing into the MCU Control Register (MCUCR).

Idle Mode — In this mode, the MCU enters Idle mode, stopping the CPU but allowing the

SRAM, Timet/Countets, SPI pott, and intetrupt system to continue functioning. This sleep
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mode basically halts clk ,;, and clkg; \q, While allowing the other clocks to run. The MCU can
be woken up from this sleep mode by externally triggered interrupts as well as internally

triggered ones.

ADC Noise Reduction Mode — In this mode, the CPU is stopped along with all of the I/O
modules except Asynchronous Timer and ADC, to minimize switching noise during ADC
conversions. This sleep mode basically halts clk; ,, clk p, and clkp; \q, While allowing the other
clocks to run. Apart form the ADC Conversion Complete interrupt, only an External Interrupt

can wake up the MCU from ADC Noise Reduction mode.

Power-Down Mode - In this mode, the register contents are saved, the External Oscillator is
stopped, disabling all other chip functions until the next interrupt or Hardware Reset. This
sleep mode basically halts all generated clocks, allowing operation of asynchronous modules
only. When waking up from Power-down mode, there 1s a delay from the wake-up condition
occurs until the wake-up becomes effective. This allows the clock to restart and become stable

after having been stopped.

Power-Save Mode - This mode 1s identical to Power-down, with the exception that the
asynchronous timer continues to run, allowing the user to maintain a timer base while the rest
of the device is sleeping. This sleep mode basically halts all clocks except clk,q, allowing
operation only of asynchronous modules, including Timer/Counter0 if clocked

asynchronously.

Standby Mode - This mode 1s identical to Power-down with the exception that the
Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very
fast start-up combined with low power consumption. From Standby mode, the device wakes

up in 6 clock cycles. This mode 1s available only with an external crystal or resonator.

Extended Standby Mode - This mode is identical to Power-save mode with the exception that
both the main Oscillator and the Asynchronous Timer continue to run. From Extended
Standby mode, the device wakes up in 6 clock cycles. This mode is available only with an

external crystal or resonator.

The overhead mtroduced by power-down, power-save modes can be as high as 18 cycles for

an external RC oscillator. To enter any of the six sleep modes, the SE bit in MCUCR must be
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written to logic one and a SLEEP instruction must be executed. The SM2, SM1, and SMO bits
in the MCUCR Register select which sleep mode (Idle, ADC Noise Reduction, Power-down,
Power-save, Standby, or Extended Standby) will be activated by the SLEEP instruction. If an
enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is
then halted for four cycles in addition to the start-up time; it executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the register file and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the Reset Vector. Thus, the overhead incurred by going
to sleep in any of the sleep modes apart from idle can be between 20-30 cycles, which are not

inclusive of the time taken by the ISR for the interrupt that woke the MCU.

Hence, we chose to use the /e sleep mode, which takes the least overhead among all of the
sleep modes and due to the fact that it only stops the CPU while allowing the SRAM,
Timer/Countets, SPI pott, and interrupt system to continue functioning. This is suitable for
our purposes as we need to allow the SPI port to continue functioning so that it can finish the
communication of data while the CPU is off. When the CPU has no wotk to do, including
waiting for communication to finish, it is put into extended standby mode due to the energy
savings of more than 2 orders of magnitude when compared to active mode and because the
overhead incurred is only about 6 cycles. The extended standby mode is chosen since the
timer/counter 0 can be used to wake the system up after a certain fixed petiod of time. This is
not possible with the standby mode. The power-down and power-save modes have high start-

up times and hence are not preferred.

The SPI interface is used along with the radio module, the CC1000 for wireless

communication.
4.1.3 CC1000 RF Transceiver

The CC1000 1s a single-chip UHF transceiver designed for very low power and very low
voltage wireless applications. The circuit is mainly intended for the ISM (Industrial, Scientific
and Medical) and SRD (Short Range Device) frequency bands at 315, 433, 868 and 915 MHz,
but can easily be programmed for operation at other frequencies in the 300-1000 MHz range.
The CC1000 can switch between Reception and Transmission or between two different
frequencies in 200 ps or less, ensuring as little overhead as possible in a two-way application.

The frequency synthesizer of the CC1000 can be programmed in steps of 250Hz for any
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frequency between 300 MHz and 1 GHz, thus providing a fine-grained accuracy in controlling
the communication frequency. The CC1000 suppotts data rates of up to 76.8 kbits/s. There
are other low power RF transceivers like the Chipcon® CC1020 that support higher bit-rates of
up to 153.6 kbits/s.

4.1.4 Power Characteristics of the CC1000

The CC1000 has a voltage supply range of 2.1 V to 3.6 V, allowing it to run on two standard
AA or AAA batteries. The low cutrent consumption of less than 10 mA at 868 MHz and 915
MHz (the current consumption at 433 MHz is even lower) enables an active time of more than
200 hours (using alkaline AA cells with a capacity of 2600 mAh and allowing for current
consumption by the micro controller). In power-down mode, the CC1000 draws less than 1
nA. Ultimately, this means the stand-by time for the node is only limited by the shelf life of the
batteries. It offers great flexibility for power management in order to meet strict power
consumption requirements in battery operated applications. Power Down mode 1s controlled
through the MAIN register. There are separate bits to control the Receiver part, the
Transmitter part, the frequency synthesizer and the crystal oscillator. This individual control
can be used to optimize for lowest possible current consumption in a certain application. The

characteristics of the CC1000 are as listed below.
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Specifications Min.  Typ. (433 /868 MHz)  Max.
Gereral: RF Frequency Range 300 1000
[uta Rate 0.6 T6.8
TX Modg: Output Power { programmable) -20 10/
FEK Separation (programmable) 1] i
RE Mode: Recelver Bensithity, 1.2 kbitis -10#-107
Power Supply:  Supply Voltage 21 3.6
Gurrent Gonsumption, RX: 1440.6
Gurrent Gonsumpton, TX, -20 dBm hJ3/ma.a
Gurrent Gonsumpton, TH, -5 dBm B.AM13R
Gurrent Gonsumption, TX, 0 dBm 10.4416.5
Current Consumption, TX, & dBm 14.8/25 .4
Gurrent Gonsumpton, TX, 10 dBm M.7-
Gurrent Gonsumpton, pover oawn 0.2 1

Figure 4-3: Characteristics of the CC1000 RF Transceiver

4.1.5 Power Charactetristics of the node

The overall power usage of the node 1s as shown in the following graphs:

Unit

MHz
kbitis
dBm
kHz
dBm
v

Node current in mA

14+

Current consumption of node at V = 3 Volts and F.,, =2 MHz

B RFM Current
OMCU Current

MCU Active & RFM  MCU Active & RFM  MCU Active & RFM ~ MCU Idle & RFM  MCU Idle & RFM  MCU Idle & RFM Idle  MCU Standby & ~ MCU Standby & ~ MCU Standby &
Transmit tting Receiving Idle Transmit tting Receiving RFM Transmi ting  RFM Receiving RFM Idle

Figure 4-4: Current consumption of node at fcpy=2MHz and V=3
volts
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Current consumption of node at V = 3 Volts and F,, = 20 MHz

35+

B RFM Current
OMCU Current

Node current in mA

MCU Active & RFM MCU Active & RFM MCU Active & RFM  MCU Idle & RFM  MCU Idle & RFM  MCU Idle & RFM

MCU Standby &
RFM Transmitting

MCU Standby & MCU Standby &
RFM Receiving RFM Idle

Transmiting Receiving Idle Transmitting Receiving Idle

Figure 4-5: Cutrent consumption of node at fcpy=20MHz and V=3
volts

The power consumption of the node in mW can be determined by multiplying the current
consumption shown in the above graphs by the supply voltage of 3V. During the period that
the MCU is in extended standby mode, the RFM also has to be in standby/idle mode since it is
not possible for the node to begin or continue communication while the MCU 1s in extended
standby mode. Hence the bars corresponding to the current consumption of the node while

the MCU is in extended standby mode are absent when the RFM is in transmit/teceive mode.

4.2 Testing and verification of results

A: What bits are put

on the bus and when?

Message Log File
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iscrete Send (e

(Reference)
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v

Comparison A:
Transmit Test Message

Message Log File

B, C: When is the bus sampled?

Discrete Receive
(Reference)

7N

Comparison B: Receive Comparison C: Receive
Reference Message Test Message

T

(Test)

Figure 4-6: Overview of verification approach
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In order to verify the correctness of the code after transformation with STI, we simulated the
integrated code with AVR Studio and generated log files that record the data output on a
particular port along with the time in the number of cycles of CPU time from the start of the
program at which this data was output. The microcontroller 1s run at 4 MHz. These log files
were then compared with known good (reference or “gold”) log files created from simulations
using the original (non-integrated) code. The timing of the code that generated the gold log

files had been set to exactly match a certain bit rate, which in our case was 100kbps.

The verification procedure [26] we followed is as shown in Figure 4-6. Comparison A
determines if the times and values of the signals transmitted by the STT implementation match
the reference. In order to perform comparisons B and C, the log files generated by the
transmission of data using the STT implementation and the reference implementation was
input to the receive threads of both the STI and reference implementations. A hardware
debugging signal on an output pin of another port was used to indicate the bus sampling times.
This debugging signal is similar to the bit that is set in the SPI status register when a byte of
data has been completely received in the SPI data register. The log files generated by the
integrated (using STT) receive thread are now compared to those generated by the reference
recetve thread (non-STI, disctete-padded) to determine the timing accuracy of the bus
sampling instant in comparison B. In comparison C, the data received is also compared (using
log files) to that which was transmitted using both the STI and non-STT (discrete-padded)

versions of the transmit code and the accuracy of reception is verified.
4.3 Softwar e Ar chitecture and Design

In order to demonstrate and verify the power savings from using software thread integration, a
pair of communication threads (Transmit and Receive) have been integrated with a common
application like digital filters that ate used in sensor nodes as part of various voice/sound

recognition schemes such as would be used in the tracking of bird calls.

4.3.1 The Application

The digital filters that have been implemented here are an 8" order Finite Impulse Response
(FIR) filter and a 6™ order Infinite Impulse Response (IIR) filter. These filters have been
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chosen due to the fact that they are part of the most common implementations of sound
recognition schemes. These filters can be made to behave like high-pass, band-pass or low-pass
filters by merely changing the value of their filter coefficients. Another characteristic of these
filters 1s that, the higher the order of the filter, the better is their ability to filter out the

unwanted components of its input signal.

The digital filters are implemented using fixed point arithmetic. There 1s a large amount of
floating point arithmetic involved in the calculation of the filter output values. The atmegal28
does not have a Floating Point Unit (FPU) or a floating point co-processor and hence this
arithmetic can cause the program to run extremely slowly. Using fixed point arithmetic speeds
up the execution of the program by almost an order of magnitude. In this implementation, 32
bits in total are used to represent a real number, 16 of which are for the integer portion and the
remaining 16 for the fractional part. The details of such an implementation of digital filters
using fixed point arithmetic along with the issues that are required to be considered in such an

implementation such as overflow may be found in ATMEL’s AVR 223 Application Note [21].
4.3.2 The communication threads

The transmit and receive threads use the Serial Peripheral Interface (SPI) to send and receive
data. They are required to send and receive bytes at a certain agreed upon bit rate. The bit rate
is fixed by setting the SPI bus frequency as a factor of the clock frequency of the chip as
mentioned earlier. The transmit and receive threads run on two different nodes and
communicate with each other at a predetermined bit-rate. They are called by an application to

transmit/receive a packet to/from another node.

Wired Implementation

MISO

MOSI
Atmega 128 SCK Atmega 128

Figure 4-7: Wired Implementation of SPI Communication

29



The transmit node is configured as a SPI master and the receive node as a SPI slave by means
of driving a slave select pin high for a master and low for a slave. This allows high-speed
synchronous data transfer between the ATmega128 and peripheral devices or between several
AVR devices. The CPU using the SPI operates in either the master or slave mode. As shown in
the above Figure 4-7 there are four lines that control the operation of SPI. The SPI Master
initiates the communication cycle by pulling low the Slave Select (SS) pin of the desired Slave.
Master and Slave prepare the data to be sent in their respective Shift Registers, and the Master
generates the required clock pulses on the SCK line to interchange data. Data 1s always shifted
from Master to Slave on the Master Out Slave In (MOSI) line, and from Slave to Master on the
Master In Slave Out (MISO) line. After each data packet, the Master will synchronize the Slave
by pulling high the Slave Select (SS) line. This operation, where two 8-bit shift registers
communicate by shifting data onto and from the bus, is similar in operation to the
setializer/desetializer found on some protocol chips. Therefore a study of the SPI scheme

provides a generic solution to the operation of many protocol controllers.

)

Wireless Implementation

Atmega 128 Atmega 128

SCK SCK

Clock Clock

Figure 4-8: Wireless Implementation of SPI Communication

In a distributed environment, as in sensor networks, where there is no physical connection and
communication is through the wireless medium, SPI is configured as follows. Separate clock
lines drive the SCLK lines of various nodes. These clock signals need to be generated by
oscillators that have high frequency stability and match each others frequency as closely as
possible. This helps in maintaining synchronization between transmitter and receiver during

communication. Any node that transmits becomes the master and transmits on the MOSI line.
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The intended recipient in turn pulls its SS line low and operates as the slave and receives on the
MISO. The RF Module (RFM) is connected to the MOSI and MISO lines. Control 1s governed
by the SPI Control Register. The status register is used to verify the current status and the byte
to be transmitted is written to the SPI data register while the received byte is read from it. An
ISR can be setup to execute each time a byte is transmitted or received or the method of

polling the bit on the status register that indicates the receipt of a full byte of data can be used.

The transmission begins when the transmitter writes into the SPI Data Register (SPDR) and
ends after all the bytes have been shifted out. The Slave may continue to place new data to be
sent into SPDR before reading the incoming data. The last incoming byte will be kept in the
buffer register for later use. The system is single buffered in the transmit direction and double
buffered in the receive direction. This means that bytes to be transmitted cannot be written to
the SPI Data Register before the entire shift cycle is completed. When receiving data, however,
a received character must be read from the SPI Data Register before the next character has
been completely shifted in. Otherwise, the first byte 1s lost. In SPI Slave mode, the control
logic will sample the incoming signal of the SCK pin. To ensure correct sampling of the clock
signal, the frequency of the SPI clock should never exceed fosc/4. Here, the timing accuracy is
very important to not lose data. The higher the data rate, the more important the accuracy of

timing becomes.

As we have discussed eatlier, STT provides accuracy in timing in as far as the two clocks of the
two nodes generate clock signals that vary in frequency from each other by a very small
number. This number needs to be so small as to not cause a drift of a bit-time during the
transmission of a packet. This accuracy is provided due to the static scheduling that is brought

about by thread integration.

4.3.3 Integration

In order to achieve all the benefits of using STT that were discussed in chapter 4, we need to
integrate the communication threads with the application threads so as to optimally use both
the idle time and time available due to elimination of interrupt overhead. This integration can
be achieved by using our thread integrator tool (Thrint) [19][22]. Thrint is a post-pass (back-
end) compiler which reads assembly code, performs control-flow, data-flow and static timing

analysis, and integrates threads. It uses a hierarchical thread representation, which simplifies
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analysis and transformations. After the initial degenerate integration (combining the code for
the two threads mto one thread without regard for any timing or other issues), which is done
manually, it makes thread control-flows compatible through various code transformations
(initial integration, motion into code/conditional/loop, as well as integration of loops of
different speeds (faster and slower)). These transformations create an integrated thread, which
can be optimized for execution speed, timing accuracy, or code memory size. We use register
file partitioning techniques to share the processor's register set with a minimum of spilling and
filling. This implementation had little register pressure, and hence did not have to face a
performance penalty for this. The integrated thread that was generated in our case was

optimized for timing accuracy as that is of prime importance in this case.

Four mtegrated threads were generated after the completion of thread integration of the

communication threads with the FIR filter and the IIR filter applications:

th

1. Recetve thread integrated with the 8" order FIR digital filter application.
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Figure 4-9: Rx thread integrated with 8t order FIR

it. Transmit thread integrated with the 8" order FIR digital filter application.
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Figure 4-10: Tx thread integrated with 8™ order FIR

1it. Receive thread integrated with the 6™ order TIR digital filter application.
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Figure 4-11: Rx thread integrated with 6 order ITR

iv.  Transmit thread integrated with the 6™ order IR digital filter application.
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Figure 4-12: Tx thread integrated with 6™ order ITR

This results in six threads in the system that can be executed 1.e. the four integrated threads and

the two un-integrated (discrete-padded) communication threads (Receive and Transmit). The

un-integrated (discrete-padded) threads are just the transmit and receive threads that have not

been integrated with the application threads. These threads have been passed through Thrint

and have been statically scheduled so that they execute in a continuous loop and repeat at exact

intervals. They do not use interrupts or busy waiting as the non-STI implementations do. This

is done so that the timing accuracy provided by STT is maintained even when there is no other

external work to be done. The idle time in these threads is used mainly by the CPU to go to

sleep.
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Figure 4-13: Discrete Padded Rx thread Figure 4-14: Discrete Padded Tx thread

The integration process causes a code size explosion due to padding. The code size of the
mntegrated FIR-Tx and the integrated FIR-Rx threads increases by almost 42% and that of the
mntegrated IIR-Tx and the integrated IIR-Rx threads increases by about 45%.

4.3.4 The System

Any system that can have more than one thread of execution that is ready to run at one time
has to have a way of executing them all one by one. This can be achieved either by static or
dynamic scheduling. Static scheduling is a scheme wherein the order of execution of the
threads is predetermined by the designer of the system. Dynamic scheduling is a scheme
wherein the order of execution of the threads depends upon certain scheduling algorithms
implemented by the scheduler, which may be based on priority assigned to the threads or as

simple as first-in-first-out (FIFO) or as complex as a priority ceiling based scheme.

This system has 6 threads that can potentially be in the ready queue, as mentioned above. The
filter samples are collected separately and queued up as work for the digital filters. The filters
pick up the work from this queue and execute them when they (the filters) are scheduled. The
communication code transmits and receives packets of data as per the needs of the application
that 1s using it. The packets of data can be of variable length as indicated by the length field in

the packet. The packets are encapsulated by a start and stop bit to indicate the beginning and
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end of the packet. The integrated code needs to be scheduled only when there is work to

perform for both the communication and digital filter application code.
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Figure 4-15: Scheduling Threads on CPU with STI

The scheduler in Figure 4-15 checks for which queues have work waiting in them and
schedules the threads accordingly. If there is no work to be done for the digital filter
applications, the scheduler schedules the non-integrated (discrete-padded) transmit or receive
thread in case there 1s only communication work to be performed. If there 1s work for either
the FIR or the TIR filter along with communication, it will schedule the appropriate integrated
thread to run on the CPU. If there is no work to be done, then it, being a power-aware
scheduler, will put the CPU in a sleep mode for a short, configurable petiod, if it will still be
able to meet all deadlines by doing so. A point to be noted is that the communication module
needs to be in active mode only when there is communication going on and it can go to sleep
in case only the application is running. It can go to sleep only if by doing so, the deadline of the
next communication period will not be missed ie. there is so much idle time for the
communication module that it has enough time to go to sleep and wake up before the start of
the next communication period. In most cases it does not have that much idle time between

transmitting bytes of the same packet due to the long startup times for the radio module, so it
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will not go to sleep until the whole packet has been transmitted or received. However, the CPU
itself has much lower overheads for going to sleep and waking up and so it may go to sleep
between bytes of the same packet if possible. We have not implemented the scheduler in this
thesis as part of the system as suggested in this architecture as part of this thesis since it is not
germane to the ideas demonstrated herein. A similar scheme has been implemented with

AVRX in [27].

The Tiny OS [9][23] scheduler is a simple function queue scheduler that by default schedules
on a first-in-first-out (FIFO) basis. This can easily be changed so that it looks up the status of
the various queues in which work accumulates and schedule the appropriate thread in the
correct position in the function queue. It is simple to perform this modification to the Tiny OS
scheduler since it is easy to insert and remove functions (threads) from the function queue as
and when required and fits in very well with the architecture. These threads can very easily be

fitted into the Tiny OS model as modules.

Thus, this architecture allows for performing integrated work so long as there is work to be

performed by the integrated thread and if there is not, it finishes its work and goes to sleep.
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Chapter 5

RESULTS- ANALYSIS AND DISCUSSION

The theory that the concepts of Software Thread Integration can bring about large savings in
energy was evaluated by applying those concepts to the system discussed in the previous
chapter on software and hardware architecture. We have attempted to verify the theory by
modeling herein the following two design criteria for both the integrated and the non-

integrated thread (ISR-based implementation):
1. Change in the energy consumption of the node as the clock frequency changes.

2. Change mn the energy consumption of the node as the communication rate of the node

changes.
We assume herein that:

» 'The MCU can go to sleep (extended standby mode) only when it is not doing any
work ie. when the CPU is not performing any secondary application work or
executing instructions for communication and when the RFM is not performing

communication with another node.

» 'The MCU can go to an idle mode only when it is not executing any instructions,

however, it may still continue to perform any ongoing communication.

» The RF transceiver can go to sleep only when the communication work is finished

1.e. a packet has been completely transmitted.

The results have been obtained for the energy consumption of a packet size of 35 bytes
(chosen so as to match the packet format of Tiny OS with 23 bytes of data). The execution of

the secondary thread occuts between the transmission/reception of each byte and continues
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after the communication period if necessary. The CC1000 is assumed to be transmitting at 0.1
mW. A packet rate of 200 packets petr second has been assumed. The values for the active, idle
and extended standby currents for the Atmegal28 have been ascertained from its datasheet
[24]. The values for the transmit, recetve and power-down currents of the CC1000 RF

transceiver have been ascertained from its datasheet [25].

5.1 Experimental Method

We began with the ISR-based communication code, which was run at various bit-rates on the
wired implementation of communication to verify the accuracy of the communication between
two nodes. The number of CPU cycles used by the thread including intetrupt overhead was
measured using the information about the execution time given by the JTAG emulator and
multiplying it by the clock frequency of the MCU. The average of these measurements was
taken over several runs to minimize etror and was duly recorded. Then, the code for the
implementation of the digital filters was written and tested. The code in the filters was written
with loops unrolled to increase its performance. The filters coefficients were designed to
perform a low-pass, high-pass or band-pass filtering on the mput waveform The testing of the
filters was performed by feeding the node with (square and impulse) waveforms and
comparing the mput and output waveforms with a digital oscilloscope to verify the correctness

of the design and implementation of the filter.
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Figure 5-1: Control Dependence Figure 5-2: Control Dependence graph  Figure 5-3: Control Dependence graph of
graph of FIR\IIR threads of the Rx thread the Tx thread
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The digital filters were then integrated with the communication threads using STT to generate
the integrated communication threads as shown in Figure 4-9, Figure 4-10, Figure 4-11 and

Figure 4-12.

The correctness of the integrated thread was verified by simulations on a cycle accurate
simulator as described in Section 4.2. The actual energy consumption of the node at various
values of MCU clock frequencies and communication bit-rates was determined using the

following items:

> The actual number of cycles of computation and communication code after integration
as measured by summing up the number of cycles for the individual assembly

mnstructions using thrint

» Data of active, idle and extended standby cutrents of the Atmegal28 from its datasheet
and the active and power-down currents of the CC1000 at 0.1 mW transmit power

from its datasheet
» An assumed packet rate of 200 packets/sec and an assumed packet size of 35 bytes

These values were then inserted into a spreadsheet that we created to perform the necessary
calculations of the total energy consumed by the node during the communication of a packet.

The results are as shown in the following section.
5.2 Experimentsand Results

The first experiment is to observe the variation in the energy consumption of a node with

variation in the clock frequency of the MCU.
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Figure 5-4 shows the effects of increasing frequency on the energy consumption of a node that
is communicating at a fixed bit-rate. As can be observed, due to the high overhead introduced
by interrupts, ISR-based systems are not even able to run until the frequency is high enough to
allow them to execute. This is due to the large number of cycles (235 cycles for the
transmission/reception of a byte for the ISR based routines compared to 32 cycles per byte for
the STT-based routines) that the ISR-based communication routines take for execution. This
amount of interrupt overhead is similar to that observed in [27]. These communication
routines need to finish execution before the deadline for the transmission of the next byte is
reached. Increasing the frequency hastens the execution of these routines so that, in due
course, the time taken by them to execute falls below that necessary for them to finish before
the deadline for the next communication period. However, due to the lack of interrupt
overhead in the STI-based schemes, they are able to transmit at the same bit-rate at much
lower clock frequencies as there are far fewer cycles to execute. This leads to large savings in

energy.

As can be seen in Figure 5-4, the MCU can be doing any one of four things at any point in

time:
1. Running the code for the communication routines, or
2. Running the code for the DSP routines (FIR/IIR filtets), or
3. Inidle mode, or
4. In extended standby mode.

The MCU needs to be in active mode for the periods of time where it 1s running the code for
the communication or DSP routines. It can go into idle mode only when it is not running any
code but the MCU has to stay on due to the ongoing SPI communications. The idle mode
shuts the CPU off but allows the SPI to continue running and hence this adds to the energy
savings. After the completion of the SPI communications and the execution of code by the
CPU, it can go into extended standby mode where the energy consumption of the CPU is

almost 2 orders of magnitude lower than that of any of the other modes. The longer that the
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MCU is in extended standby mode the less energy it consumes. The RF module (RFM) can go

off as soon as it has finished with the communication portion to save energy.

As the clock frequency of the MCU increases, each execution cycle takes lesser amount of
time. So the processing that needs to be done by the processor finishes sooner and sooner.
Thus, the ISR-based routine is eventually able to execute at a certain frequency and the STI-

based routines start to finish their processing earlier thus leading to an increase in idle time.
Design Point 1:

Initially, at a low MCU clock frequency (f), the ISR-based thread can not even execute and only
the STT based thread is able to execute. Ideally, for better throughput and savings in energy, the
DSP code should be executed during the idle time between bytes where the processor has
finished execution of the communication code and is now waiting for the communication to
complete so that it can send out the next byte in the packet. However, at f and below, though
the communication code executes within time for the STI-based thread, the DSP-code is not
able to finish its execution by the time the communication is complete so the processor has to
stay in active mode for the entire duration of the communication and the duration for which it
is executing the remainder of the DSP code. This leads to an increase in energy usage of the
node due to the fact that the time that the node can go into extended standby mode is reduced
by the time T-T” and due to the absence of any idle time within the communication petiod. As
the bit-rate is constant in Figure 5-4, the time at which the RFM can go off stays invariant at
T°. In Figure 5-4, all the savings in energy come from the amount of time that the node is in

extended standby and idle modes.
Design Point 2:

At 2*f, the DSP code finishes just within the time that the node finishes communication. Here,
the processor is able to go into extended standby mode for the maximum possible time at the
chosen bit-rate and packet-rate. The maximum length of this time is limited by the difference
between the inter-packet time and the actual transmission/teception time of the packet (which
1s in turn, limited by the bit-rate). This limitation 1s due to the fact that the processor has to be
in idle ot active modes for the duration of the transmission/reception of the packet to allow

the communication to continue. At this frequency, the processor still has to stay active for the
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entire duration of the communication since the processing takes up all the CPU time and
hence it 1s not possible to go into idle mode. The ISR-based thread is still too long to run at

this frequency.

Design Point 3:

At 4%f, the ISR-based thread is just able to run and the STI-based thread continues to run. In
the STI-based thread, the DSP code is able to finish much faster thus leaving a large amount of
idle time during which the processor can go into idle mode and thus save energy in addition to
that which it already saves by going into extended standby mode. In the ISR-based thread, all
the communication work barely finishes in time and all the DSP work has to now be done
afterwards. This leads to a reduction in the time during which the CPU can go into extended
standby mode, which leads to an increased energy consumption in addition to that mcurred by
not being able to go into idle mode. This leads to higher energy consumption in the ISR-based
thread over the STI-based thread.

Design Point 4:

At 8*f, the available idle time increases for the STI-based thread and it is able to go into idle-
mode for longer periods of time. The ISR-based thread is now able to finish its processing of
the DSP code in advance so that it also has some idle time available to go into idle mode. Here
too the ISR-based implementation uses more energy than the STI-based one but, here the
difference between the two is reduced due to the fact that the ISR-based thread is now able to
go into extended standby mode for all of its available standby time too in addition to going to

idle mode for a short while.

Design Point 5:

At 16*f, the available idle time increases for both the STI-based thread and the ISR-based
thread and both of them are able to go into idle mode for that duration. Here the difference

between the two energy consumptions decreases further.

Hence, the trend that can be seen here is that as frequency increases, the difference between
the energy consumption of a node that runs STI-based threads and one that runs ISR-based

threads reduces. This is due to the fact that the effect of the increase in execution time
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mntroduced by interrupt overhead becomes lower at higher frequencies as each cycle executes in
a shorter amount of time when compared to the inter-byte time of communication. However,
higher frequencies lead to higher current consumption for the active, idle and extended

standby modes of the processor thus leading to an overall increase in energy consumption.

STI-based schemes allow the processor to run at a lower frequency while transmitting at the
required bit-rate and completing the execution of the DSP code by the time the
communication ends so that it can go into extended standby mode earlier (subject to the
limitations stated earlier) and into idle mode whenever possible. The ISR-based schemes are
able to run only at higher frequencies and only much higher frequencies allow them to finish
eatly enough to make use of the standby and idle times. This leads to large savings in power

and energy for the STI-based schemes as can be seen in the results that follow.
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Figure 5-5: Variation in Energy consumption with Clock Frequency
at a bit rate of 500 kbps

45

20



Energy Consumed in mA-Sec

0.03

0.025

0.02

0.015

0.01

0.005

Clock Frequency Vs. Energy Consumed at 375 kbps

—@— Simplex Tx Energy without STI

—@— Simplex Rx Energy without STI

- - A& - -Simplex Tx Energy without STI and No Idle Mode between bytes
- - & - - Simplex Rx Energy without STI and No Idle Mode between bytes
—@— Simplex Tx Energy with STI

~——O~——Simplex Rx Energy with STI

- - & - - Simplex Tx Energy with STl and No Idle Mode between bytes

- - 4 - - Simplex Rx Energy with STI and No Idle Mode between bytes

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Clock Frequency in MHz

Figure 5-6: Variation in Energy consumption with Clock Frequency
at a bit rate of 375 kbps

46

20



0.09

0.08

0.07

0.06

o
o
a

Energy Consumed in mA-Sec
o
<)
=

0.03

0.02

0.01

Clock Frequency Vs. Energy Consumed at 100 kbps

—@— Simplex Tx Energy without STI

—@— Simplex Rx Energy without STI

- - & - - Simplex Tx Energy without STI and No Idle Mode between bytes
- - 4 - - Simplex Rx Energy without STI and No Idle Mode between bytes
—@— Simplex Tx Energy with STI

——0—— Simplex Rx Energy with STI

- - & - - Simplex Tx Energy with STI and No Idle Mode between bytes

- - 4 - -Simplex Rx Energy with STI and No Idle Mode between bytes

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Clock Frequency in MHz

Figure 5-7: Variation in Energy consumption with Clock Frequency
at a bit rate of 100 kbps

47



0.16

0.14

0.12

o
=

0.08

0.06

Energy Consumed in mA-Sec

0.04

0.02

Clock Frequency Vs. Energy Consumed at 56 kbps

—@— Simplex Tx Energy without STI

—@—— Simplex Rx Energy without STI

- - & - - Simplex Tx Energy without STI and No Idle Mode between bytes
- - & - - Simplex Rx Energy without STI and No Idle Mode between bytes
—@— Simplex Tx Energy with STI

——@0——Simplex Rx Energy with STI

- - & - - Simplex Tx Energy with STI and No Idle Mode between bytes

- - 4 - - Simplex Rx Energy with STI and No Idle Mode between bytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Clock Frequency in MHz

Figure 5-8: Variation in Energy consumption with Clock Frequency
at a bit rate of 56 kbps

48



The graphs Figure 5-5, Figure 5-6, Figure 5-7 and Figure 5-8 show that there is a considerable
savings in energy that can be obtained by using STI. All the graphs are for a constant bit-rate,
so the power savings that can be achieved by turning the RFM off eatly is constant across the
all the lines 1 a graph as can be observed in Figure 5-4 and hence all the savings observed in
the graphs is due to savings from the CPU. The major savings in energy come from the
standby time 1.e. the time used by the CPU to go to extended standby mode due to its very low

current consumption and low increase in magnitude with clock frequency.

All the graphs show an initial sharp decrease in the energy consumption with the increase in
frequency followed by a period of very slow to no decrease in the energy consumption with
increase in clock frequency. This phenomenon can be attributed to that fact that increase in
frequency leads to a decrease in cycle time and this causes the work that needs to be performed
by the CPU to take a shorter amount of time. Thus, more work can be accomplished in the
time between the transmission/reception of any two bytes of a packet. This leads to less work
that needs be done after the completion of communication and hence more time during which
the CPU can stay in extended standby mode and less time that it needs to stay in active mode.
This leads to energy savings for the node. The doubling of clock frequency causes the work to
be executed in half the amount of time it would take with the original frequency. During the
mnitial phase of sharp decrease, the percentage of frequency increase is also sharp i.e. the first
step of increase of 1 unit between 1 MHz and 2 MHz amounts to a doubling (factor of 2
increase) of the frequency and hence halving of the number of cycles that the CPU work takes
and hence the energy consumption drops sharply. The next unit increase leads to a 150%
increase (factor of 1.5) in the frequency and a corresponding drop in energy consumption.
Thus, let the lower frequency be f,, the higher frequency be f,, the energy consumption of the

node at f; be E; and that at f, be E,, then the relation between them may be defined as:

By a(141)*E,

Equation 5-1: Proportionality relation between energy consumption and frequency increase

Or, B, = &X(1H//[)*E/+ £,

Equation 5-2: Change in Energy consumption with frequency increase

49



Where, k, is the proportionality constant and k, is a constant that is dependent on the rate of

increase of the active currents with increase in clock frequency.

The above equations are valid only for those values of frequencies during which the CPU work

can not be completed during the communication period.

As can be determined from the equation the drop in energy consumption begins to taper off as
the value of (1-f/f,) decreases with increase in the values of f; and f,. This is what is observed
in the graphs till the point where the CPU work just finishes by the end of the communication
period. After this point, the energy consumption begins to increase with the increase in
frequency. This can be attributed to the fact that after this point, the CPU work finishes before
the end of the communication period. This leaves some time between transmission of bytes
that 1s unused where the CPU can not turn off (extended standby mode) but has to stay in
idle/active mode. If the CPU has an idle mode, as is present in the Atmegal28, during which
the communication process can proceed while the CPU itself is turned off then it can choose
to go into idle mode to save energy and switch to active mode when necessary, else it has to
continue to stay in active mode. In the case of the Atmegal28, the energy consumption in the
idle mode 1s about 50% of that in the active mode as opposed to that in extended standby
mode, which is about two orders of magnitude less than that in active mode. After this point in
the graphs, the period of time for which the CPU is in extended standby mode stays constant

as 1t 1s now at its upper limit that 1s defined by the communication bit-rate:

Maxcimum Standby time = Time between the commencement of transmission of two packets — Time taken for

communication of the packet.

Equation 5-3: Maximum Standby Time

Standby time at any frequency = Time between the commencement of transmission of two packets —

Maxcimum(Time taken for communication of the packet, Time taken by CPU to complete processing).

Equation 5-4: Standby Time at any frequency

From this point on, the decrease in the active period is only possible by the CPU going into
idle mode if it has no other task to petform between transmission/reception of bytes. The

amount of time that the CPU is in idle/active mode is constant at the value of the difference
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between the inter-packet time and the standby time. For processors that do not have the ability
to go into idle mode, the total time that the processor has to stay in active mode is constant.
Hence, the energy consumption of the node now begins to increase with frequency due to the
increase in active current with the increase in frequency. For processors like the Atmegal28
that possess the ability to go into idle mode, the energy consumption still continues to increase
(albeit at a lower slope as the idle current ~= 50% of active current for the atmegal28) since
the idle current of the atmega128 also increases with increase in clock frequency. Also, with the
increase in frequency, the amount of time that the processor needs to stay in active mode (t, ;)
decreases, which increases the time that the processor needs to stay in idle mode (tg,) since
teie Ttiae= @ constant as mentioned eatlier. However, since the idle current is a large fraction

(>= "2) of the active current, the overall energy consumption still increases, albeit at a lower

rate than that in the processors that do not have the ability to go into idle mode.

As 1s evident from the graphs as well as the equations, the above discussion applies to both the
STI- and the ISR- based threads. However, the STI-based threads consume less energy than
the ISR-based threads. This is due to the fact that the STT-based threads ate able to run at a
lower frequency than the ISR-based threads, which leads to energy savings and that there are
far fewer cycles of communication work that need to be performed in the STI-based threads
due to the lack of interrupt overhead that forms a large part of the cycles of the ISR-based
thread. This leads to latger amounts of idle time available to the STI-based implementations.
This idle time is used to go into idle mode to consetve energy. Also, the STI-based threads are
able to use up all the standby time to go into standby mode and are able to do so at an earlier
time by finishing their work well in advance of the time stipulated for the communication of

the packet.

A related interesting observation is that increasing the number of bytes per packet will also
increase the number of cycles of interrupt overhead per packet, which is used by STT for
petforming DSP work and sleep. Hence, in this case the STT-based implementation will be able
to sleep in idle mode for a longer period of time than the ISR implementation. This increase in
the amount of sleep will lead to a larger amount of savings in energy for the STI
implementation. The shape of the curves will remain the same as in the above case, just

increasing the difference between the STT and ISR versions in terms of energy consumption.
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Another observation that can be made by looking at the four figures Figure 5-5, Figure 5-6,
Figure 5-7 and Figure 5-8 1s that as the bit-rate increases, the percentage of energy saved with
STI increases. The ISR and the STT implementations are both running at the same bit-rates, so
the savings due to the RFM turning off early are the same in both the threads. However, the
increase in bit-rates causes the overall energy consumption to reduce due to the fact that the
RFM is able to turn off earlier with higher bit-rates. This also means that the communications
end sooner and with the STT implementations it 1s possible to end the processing work sooner
than the ISR implementations can possibly do due to the overhead of interrupts. This causes
increased standby time and decreased active time with STT implementations, which leads to a
lower energy consumption than the ISR-based implementations are capable of. One thing to
bear in mind is that this particular portion of energy savings is limited by the difference
between the number of cycles that the ISR-based thread has to execute as compared to that
which the STI-based version has to execute. Hence, as can be seen in the graphs, the difference
in the least energy consumptions of the STI- and ISR- based threads (difference between the
lowest points in the graphs of the two implementations) 1s almost constant across the various
bit-rates. This difference is directly proportional to the difference in the number of cycles
between the two implementations. Hence, with the decrease in overall energy consumption,
the total energy savings become a larger percentage of the overall energy thus leading to a

higher percentage of energy saved with higher bit-rates.

The second experiment is to obsetrve the variation in the energy consumption of the node with

changes in the bit-rate of communication.
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Figure 5-9 shows the change in the energy consumption of the node with the increase in the
communication bit-rate of the node. Here, since the frequency of the MCU clock 1s constant,
the total amount of time taken by the CPU to execute instructions for communication and the
DSP work (total processing time) is constant across all the bit-rates. Thus, the savings in energy

in this case depend primarily on:
1. The RFM - How soon can the RFM be turned off after communication (1°):

This 1s governed by the bit-rate of communication. The higher the bit-rate, the sooner

the RFM can be turned off and the greater is the amount of energy that can be saved.

2. The CPU - How much lower is the transmission/reception time (I°) than the total

processing time (1):

If the communication time is lesser than or equal to the total processing time, the CPU
has to stay in active mode for the entire duration of the total processing time since the
processing time becomes the bottleneck in this situation. The minimum amount of
time that the CPU needs to be in active mode 1s fixed (since the frequency and the
number of cycles are fixed) and thus the power consumed by the CPU will remain
constant in this case. The energy consumption is the least in such a situation due to the
RFM turning off eatly and the CPU is using the minimum amount of energy possible
since it now does not have to wait for the RFM to complete communication. If the
communication time were to be greater than the processing time, the CPU could go
into 1dle mode and save energy but would not be able to go mto extended standby
mode untl the end of communication, so the amount of energy saved would be
reduced. The bottleneck in this case would be the communication time and the larger
the communication time, the longer the RFM has to stay on, which also leads to

increased energy consumption.
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Design Point 1:

In Figure 5-9, at the low bit-rate of b kbps, the communication is just beginning to be possible
for both the ISR and the STI-based threads as the bit-rate is just above the minimum bit-rate
required to maintain the specified packet-rate. At this bit-rate, the CPU standby time is minimal
and so is the amount of time that the RFM can go to sleep. This means that the CPU is
required to be in active or idle mode for a long time. This leads to higher consumption of
energy by the node. Due to the low bit-rate, the overall time taken to transmit a packet (I°) is
large and so is the time between the execution of the last instruction by the CPU for the
communication of a byte and the first mstruction for the communication of the next byte in
the packet by the node. This time is completely used up in the ISR-based thread for the
execution of the DSP work at this bit-rate thereby forcing the CPU to stay in active mode for
the entite duration of the communication. The STI-based thread, due to the elimination of
interrupt overhead, is able to complete the execution of the DSP work eatly and uses the
remaining idle time to go to idle mode in order to save energy. Due to this, the energy used by

the STI-based thread is much lower than that used by the ISR-based thread.

Design Point 2:

At the bit-rate of 2*b kbps, the RFM now completes transmission in half the time that it took
for b kbps. This allows the REM to go to sleep eatlier and thus conserve energy. The mncrease
in bit-rate also leads to the decrease in the time (by half) between the execution of the last
mstruction by the CPU for the communication of a byte and the first instruction for the
communication of the next byte in the packet by the node. Hence the mstructions for the DSP
work that finished within the communication period for the ISR-based thread eatlier now may
not do so and may have to be executed after the communication has ceased. The ISR-based
thread in fact just finishes its communication work by the end of the communication period
and 1s unable to perform any DSP work during that time and hence has to postpone it for after
the communication petiod. This increases the time that the CPU is required to be in active
mode. The STI-based thread in this case 1s just able to finish its work by the time the
communication is completed. Here the CPU is able to go to extended standby mode and the
RFM i1s able to go to sleep as soon as the communication is complete which 1s much eatlier

than is possible for the ISR-based thread due to its large interrupt overhead. This leads to a
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large savings in energy for the STI-based thread as the CPU is able to go to extended standby

mode much eatlier.
Design Point 3:

At the bit-rate of 4*b kbps, the overhead of interrupts does not permit the ISR-based thread to
execute since the execution of the communication mstructions would take longer than the
required communication period for that bit-rate. Only the STI-based thread is able to run here.
Here, the time taken for communication is lower than that for the total work. The high bit-rate
ensures that the RFM can go to sleep earlier thus saving energy. The CPU can go to extended

standby mode only after the completion of execution of all the DSP work.

Here, the progression of events show that as the bit-rate increases the RFM 1s able to turn off
eatlier and save energy. It also shows that, as bit-rate increases, CPU has to wait for lesser and
lesser amounts of time for the communication to finish untl a point is reached where the
communication actually finishes before the computation does. After this point, there are no
more savings that can be gained from the CPU by increasing bit-rate, since the CPU does not
have to wait for the RFM anymore and can go to extended standby mode as soon as it finishes
processing expeditiously. All the savings hereafter come from the RFM turning off sooner due

to increasing bit-rate.

Hence, as bit-rate increases, there is considerable energy savings from turning off the RFM
earlier. Higher bit-rates are not possible with ISR-based schemes; hence the amount of energy
that can be saved by turning the RFM off early 1s limited. The STI-based schemes are capable
of much higher data-rates and hence can turn the RFM off much earlier and save more energy.
Both the implementations, however, are subject to a lower limit of CPU energy consumption
due to the fact that the time taken by the CPU to complete its work is constant as mentioned

earlier.
The total time that the CPU needs to be active/idle is given by:

T = Masxcimum (T, T,,,.), where T,

- work

= CPU cycles for DSP and communication/ Frequency of the cou

Equation 5-5: Total CPU active/idle time
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IfT=T the CPU has to be in active mode for the entire duration, but if T=T°, the CPU

work>

can move to idle mode for the duration of T- T, in order to save energy. At higher bit-rates,

T’ becomes so small that T= T, and at lower bit-rates T” can be greater than T , and then

T=T".

The charts below demonstrate the behavior of the energy consumption of the node with

increase in bit-rate:
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Figure 5-10: Variation in Energy consumption with Data Rate of
communication at a clock frequency of 20 MHz
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Figure 5-11: Variation in Energy consumption with Data Rate of
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59



Energy Consumed in mA-Sec

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

SPI Data Rate Vs. Energy Consumed at Fcpu= 8Mhz

0.01 0.02 0.03

—@— Simplex Tx Energy without STI

—@— Simplex Rx Energy without STI

- - & - - Simplex Tx Energy without STI
and No Idle Mode between bytes

- - 4 - - Simplex Rx Energy without STI
and No Idle Mode between bytes

—@— Simplex Tx Energy with STI

——@——Simplex Rx Energy with STI

- - & - - Simplex Tx Energy with STl and
No Idle Mode between bytes

- - 4 - - Simplex Rx Energy with STI and
No Idle Mode between bytes

0.06 0.13 0.25

SPI Bus rate as a multiple of Fcpu
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In Figure 5-10, Figure 5-11 and Figure 5-12, it is seen that the energy consumption falls sharply
with the increase in bit-rate initially and then begins to level off later. At low bit-rates, the
standby time 1s low and the CPU has to stay in either active or idle mode for a long period of
time. If the CPU 1s one that does not have an idle sleep mode, then it has to stay in the active
mode for the entire duration of communication since the communication takes much longer
than the computation. Such a CPU will consume more energy than one with idle mode for all
the cases where the communication takes longer than the computation and the CPU 1s forced
to wait for the communication to complete so that it can go into extended standby mode.
However, in cases where the computation time is greater than the communication time, the
CPU is unable to go mnto idle mode and hence the energy consumption curves of the two kinds

of CPUs are identical.

With the doubling of the bit-rate, the RFM 1is able to turn off at half the time since the
communication takes half the previous amount of time. This has the additional effect that
CPU needs to wait for much lesser time for the completion of the communication. The

duration that the RFM needs to stay on with increase in bit-rate 1s given by the following

equation:
T son @ (17(2)¥T,, saxs where n=current bit rate/ least bit rate and T, 1 is the maximum amonnt of

time that the REM needs to stay on, which occurs at the least bit rate.

T,

- Hfon_new

= EX1/(2)¥T,, s where k= proportionality constant.

- ifm L

Equation 5-6: Relation between RFM active time and bit-rate

The energy consumed 1s directly proportional to the time that the RFM needs to stay on and
the duration that the CPU needs to be in active/idle mode. The duration that the CPU needs
to be in active/idle mode is directly dependent on the time that the RFM needs to stay on for
the bit-rates at which the computation time 1s lower than the communication time. Hence, the

energy consumption may be shown as follows:
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E a/éﬂ(TJ + B2%T where T,

Hen' 7 )ﬂiﬂt‘y’ Lpl{iﬂt‘y epit_ner

=time taken by the CPU at the increased bit-rate, k1, k2 are
constants that depend on the current consumptions of the REM and CPU respectively at the chosen frequency
and transmission power.

Equation 5-7: Relation between energy and active time for CPU and
RFM

Hence, the E, . initially decreases sharply m an inverse-exponential manner due to the

new

exponential decrease in T

T when T

and T which is directly proportional to the value of

rfm_new cpu_new>

>=T When T

rfm_new cpu_new*

<T the value of T becomes

tfm_new tfm_new cpu_new> cpu_new

independent of the value of T as explained eatlier. This leads to a lower limit, beyond

tfm_new

which the E. _ can not decrease. The relation between E__ and the bit-rate follows an inverse-

new new

exponential curve throughout due to its dependency on the value of T as can be observed

tfm_new

in the graphs.

Another observation from these graphs is that the maximum energy consumption seems to
decrease with increase in frequency, which is different from that which is seen in the previous
set of results. This illusion 1s due to the fact that the bit-rates on the X-axis of the graphs shows
the bit-rates as a multiple of the clock frequency and the value of 0.01 for the SPI bus-rate is
actually a2 much higher bit-rate for f_,=20 MHz than for f_,=8 MHz. We have seen that the
energy consumed drops mverse-exponentially with the increase in bit-rate, which 1s the same

phenomenon that can be seen here.

The amount of energy consumed by the STI-based thread is always lower than that consumed
by the ISR-based thread due to the larger number of cycles that the ISR-based threads need to

execute to achieve the same result as the STI-based thread.

It is also obvious from these graphs that the STI-based system is capable of a much higher
communication rate than the ISR-based thread and this can be used to turn the RFM off much

eatlier and achieve very substantial savings in energy.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis we have seen that it is possible with STT to cause a significant reduction in energy
consumption of a sensor node when compared to that of the current implementations using
ISRs. STT allows for communication at high bit-rates and thus low energy consumption due to
the REM turning off early. This when taken along with the elimination of interrupt overhead
leads to further savings in energy. STT makes it possible for a node to produce the same results
as an ISR-based version while running at a much lower frequency due to the elimination of
interrupt overhead. The node consumes much less energy when running at lower frequencies.
Since both the idle and active currents of the CPU increase with the increase in clock
frequency, as 1s shown in the graphs (Clock Frequency vs. Energy Consumed), there is a point
where the node consumes the least amount of energy. The energy consumption of the node
before and after this point is higher than it is at this point. This point manifests itself when the
computation time fits exactly within the idle time of the communication; not more and not
less. This pomt 1s much lower for the STI-based threads than the ISR-based threads and this

optimum clock frequency is what the nodes should attempt to run at.

Also observable is that the energy consumption decreases with increase in bit-rate (SPI Bus
Rate vs. Energy Consumed) and that this decrease follows an exponential curve where the
percentage of decrease in energy consumption reduces as the frequency continues to increase.

The knee of this curve where the sharp drop ends is the optimal bit-rate.

Thus, it is possible to choose a combination of the optimum frequency for this optimum bit-
rate at which the node consumes the least amount of energy. This point is much lower for the
STI-based nodes than the ISR-based nodes. Also, the difference between the energy

consumptions of the ISR-based and STI-based nodes increases even further if a higher packet
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size 1s chosen since the amount of ISR overhead increases with the number of bytes in the

packet.
6.2 FutureWork

The function of a distributed wireless sensor node comprises of many tasks, not the least of
which are routing updates, self-reconfiguration related tasks like election of cluster heads,
collaborative signal processing, which reduces the signal processing load on a single sensor,
petiodic sampling of vatious sensots like acoustic, seismic, infrared, still/motion video-camera,
etc., periodic communication of task results and more. Of these many of them are real-time
tasks such as sensor sampling and others are non-real time tasks like processing routing
updates which can be queued and processed. Such a combination of real-time and non-real-
time 1s conducive to the use of STI. STT may be applied to as many of these tasks as possible
and the energy consumption of such a completely STI-based node should be evaluated with
that of an ISR-based node and the energy savings be recorded. This evaluation will give the
complete picture of the amount of energy that can be saved with STT and the increase in the
longevity of the node and the sensor network due to STI. The results and graphs presented in

this thesis may be used as a basis to envisage the outcome of and to plan this experiment.
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