
ABSTRACT

SONI, ARVIND. Probabilistic and Nondeterministic Systems . (Under the direction of

Professor Dr. S. Purushothaman Iyer).

Probabilistic and nondeterministic systems are important to model systems such

as distributed network protocols, concurrent systems and randomized algorithms, where

nondeterminism is inherently present along with probabilistic choices. Probabilistic transi-

tion systems without any nondeterminism have been explored over the past decade. Several

logics have been proposed to express the probabilistic behavior of systems. Nondetermin-

istic systems differ from their probabilistic counterparts in that there behavior needs a

notion of scheduler which resolves the nondeterministic choices. The probability space of

observations of such systems is dependent on the choice of scheduler. In the absence of

unique probability space the system properties can only be measured in intervals. The

methods proposed in literature for quantitative analysis of nondeterministic systems use

approximations for conjunction and disjunction to avoid the nonlinearity in the equations

for measures.

The contribution of this thesis is three fold. In the initial part we present a

model checking method for quantitative analysis of nondeterministic systems. We generate

a set of constraints and compute the minimum and maximum measure for the property

without using any approximations. Secondly, we present an abstraction and probabilistic bi-

simulation based approach to model and analyze randomized token stabilization protocol. In

the end we present a method for compositional verification of PNS where in we describe weak

predicate transformers which can be used to generate sub-specification for the unknown

systems from the specification of the composite system.
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Chapter 1

Introduction

Model checking [4, 13] has been established as an extremely successful mechanical

tool for automated verification, especially in hardware design. Model checking, as such, is

qualitative as it answers checks of satisfiability as either “yes” or “no”. There are a wide

range of models and applications which require quantitative answer to satisfiability. For

instance, randomized algorithms obtain high performance at the cost of obtaining correct

answers with high probability. Hence models for randomized algorithms call for quantitative

analysis. The interaction geometry of modern distributed systems and network protocols

requires quantitative estimates of e.g. performance and cost measures. In such cases conven-

tional model checking based on temporal logics, like CTL fails to deliver as many relevant

properties are simply not true. Thus one is forced to consider suitable extensions of logics

with quantitative information; in particular probabilistic logics.

The need for quantitative model checking calls for appropriate models and expres-

sive logics. Broadly speaking, two models known as probabilistic transition systems(PTS)

and probabilistic-nondeterministic systems(PNS) have been investigated in the literature.

Probabilistic transition systems(PTS) are essentially discrete time Markov chains(DTMC)

where the choice of next state on a particular action is resolved by a pre-defined probability

distribution. As an example of PTS consider modeling a communication protocol where

the messages are delivered correctly with probability (say) 0.999. The initial quantitative

analysis of PTS consisted in studying which temporal logic properties are satisfied with

probability 1 [15, 6] . Subsequently, [1] considered logics pCTL and pCTL* that expressed
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quantitative bounds on the probability of system evolution. The logics extend the temporal

operators with probabilistic operator P, with an interpretation that the formula P≥p(φ) is

true at a state s if the measure of traces which satisfy φ is at least p. The model check-

ing algorithms proposed in [1] can be used to determine the validity of pCTL and pCTL*

formulas for DTMCs. In [7] Huth et al propose algorithms to compute lower and upper

bounds on the probabilities to satisfy modal µ properties for PTS. The probability bounds

are computed by using approximations for conjunction and disjunction and by reducing the

quantitative analysis to a linear optimization problem. In an attempt to compute exact

probabilities for modal mu formulas on PTS, [14] propose a product graph based approach

which computes the probabilities as the solution of a set of (non-linear) equations.

Probabilistic transition systems are well suited to describe sequential processes

which have probabilistic resolution of choices, but with the increasing use of distributed and

parallel architecture of systems, and use of randomized algorithms, it becomes necessary to

incorporate non-determinism inherently built into such systems. The notion of concurrency

and randomization call for models which don’t resolve the choices probabilistically, but make

use of adversaries (schedulers) to resolve the internal(daemonic) and external(angelic) non-

determinism. The probabilistic-nondeterministic transition systems(PNS) are models in

which from a given state, on a given action label, there is a non-deterministic choice of a

set of probability distributions. The probability of reaching a state on an action label is the

combined result of selecting a probability distribution and then going to the state as per

the selected distribution. In this thesis we explore the model checking and compositional

verification of PNS.

1.1 Contributions

In [14], Cleaveland et. al. describe the Generalized Probabilistic Logic(GPL) for

Probabilistic Transition Systems. The logic provides operators to specify unique probability

bounds for the properties. IN PNS, however, there is a set of probability distributions for a

given state and given action label, so it is not possible to talk in terms of exact probabilities.

We extend GPL to express the quantitative measures in terms of intervals in [0,1]. We

develop a model checking algorithm, modchk fuzzy, to compute the quantitative measures

of EGPL properties. We give an implementation of a quantitative model checking tool and
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use it for the quantitative analysis of randomized token stabilization protocol in [8]. We

also extend the work on compositional verification of PTS to PNS.

The rest of the thesis is organized as follows, in Chapter 2 we formally define

the models PTS and PNS, the probability space used, and the notion of adversaries. In

Chapter 3 we revise the model checking algorithm of [14] for PTS to provide a extension for

the PNS. In Chapter 4 we give details of our implementation and case studies. In Chapter

5 we present Larsen and Skou’s([12]) work on compositional verification and present its

extension to PNS. In the last chapter we provide conclusions and directions for future work.
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Chapter 2

Probabilistic-Nondeterministic

Systems

2.1 Models

Given a set S, a weighing function π : S → R+ assigns positive real numbers to

elements of S. A weighing function π : S → [0, 1] is said to be a distribution over S provided
∑

s∈S

π(s) = 1. Let Dist(S) be the set of all the distributions over S. In the following, for all

S′ ⊆ S, π(S′) =
∑

s∈S′
π(s). Furthermore, a distribution π is called Dirac provided there is a

s ∈ S such that π(s) = 1. The probabilistic transition systems are defined with respect to

fixed sets Act and Prop of atomic actions and propositions, respectively. The former set

records the interactions the system may engage in with its environment, while the latter

provides information about the states the system may enter.

Definition 2.1.1. A probabilistic transition system is a tuple (S, δ, P, I, sinit)

• S is a finite set of states

• δ ⊆ S ×Act× S is the transition relation
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• P : δ → (0, 1], the transition probability distribution, satisfies:

– ∀s ∈ S.∀a ∈ Act.(∃s′.(s, a, s′) ∈ δ) =⇒ P (s, a, s′) ∈ (0, 1]

– ∀s ∈ S.∀a ∈ Act.
∑

s′:(s,a,s′)∈δ

P (s, a, s′) = 1

• I : S → 2Prop is the interpretation, which records the set of propositions true at a

state.

• sinit ∈ S is the initial state.

A PTS in a state s responds to an action a enabled by an environment by proba-

bilistically choosing one of the a-labeled transitions available at s. The quantity P (s, a, s′)

represents the probability with which the transition (s, a, s′) is selected as opposed to other

transitions labeled by a emanating from state s. Note that the conditions on P ensure that

for all actions and for all states the transition probability distribution is well-defined.

Definition 2.1.2. A probabilistic-nondeterministic transition system(PNS) is a tuple (S,∆, I, sinit):

• S is a finite set of states.

• sinit ∈ S is initial state.

• ∆ ⊆ S ×Act×Dist(S), is the transition relation.

• I :→ 2Prop is the interpretation, which records the set of propositions true at a state.

Fig.2.1 shows a simple PNS, which we use as a running example for this chapter,

where S = {s0, s1, s2, s3, s4, s5} and ∆ = {(s0, a, π1), (s0, a, π2), (s0, b, π3), (s1, c, π4)}

When an action a is requested of the system, the system responds, on its own

accord, by following one of the a actions possible from the current state. Once such a tran-

sition (s, a, π) is selected the next state reached is dictated by the probability distribution

π. For the PNS of Fig.2.1, s0 on a a can select either π1 or π2, and this choice determines

the probability of reaching the next state.
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Figure 2.1: (i)A simple PNS (ii)A schedule for PNS (iii)An observation for schedule

Most of the known models of computation for non-determinism and probabilis-

tic choice are subclasses of PNS. These include PTS which are deterministic, LTS which

have no probabilistic choice, and Concurrent Markov chains which have no external non-

determinism. Formally, we have:

Definition 2.1.3. A PNS P = (S,∆, sinit) is said to be a PTS provided for each s ∈ S and

each a ∈ Act there is at most one distribution π such that s
a
→ π.

A PNS is a labeled transition system (LTS) provided all distributions are Dirac.

A PNS reduces to a Concurrent Markov chain when |Act| = 1. Finally, a PTS is

a Markov chain if it is a PTS and |Act| = 1.

The execution of PNS is defined in terms of schedulers or adversaries. A sched-

uler(adversary) is a function which resolves the non-deterministic choice. A reactive sched-
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uler is a generalization of scheduler which takes the requested action into account while

resolving the non-determinism. There can be various kinds of reactive schedulers, for exam-

ple deterministic schedulers which at a given state and action label, always pick the same

probability distribution, policy based schedulers which resolve the non-determinism as per

pre-defined decision policies or randomized schedulers which resolve the nondeterminism us-

ing a random probability distribution. In this thesis we focus on randomized schedulers, and

to this end we define the notion of combined transition of PNS that takes into account the

randomized schedulers, by considering all possible linear combinations. For the following

definitions we fix a PNS P = (S,∆, I, sinit).

Definition 2.1.4. A combined transition is a triple (s, a, π) where π is a convex combina-

tion of a transitions enabled from s. Formally π =
∑

t=(s,a,πt)∈∆
λt·πt where

∑

t=(s,a,πt)∈∆
λt =

1.

For the simple PNS of fig. 2.1, a combined a transition from s0 is 1/2π1 + 1/2π2.

Based on the notion of combined transition we will now define the notion of a path that a

system might take:

Definition 2.1.5. A path σ starting from a state s0 is a possibly infinite sequence of the

form s0
a0,π0,r0
−→ s1 . . .

an−1,πn−1,rn−1
−→ sn . . ., where for all i ≥ 0 the triple (si, ai, πi) is a

combined transition and πi(si+1) = ri.

Given a path σ let fst(σ) = s0 denote the first state, and if σ is finite, let lst(σ) be

the last state of the path. We will use s
a,π,r
−→ σ to denote a path starting at s followed by σ

provided (s, a, π) is a combined transition and π(fst(σ)) = r. Similarly, σ
a,π,r
−→ s denotes an

extension of path σ. If fst(σ′) = lst(σ), the concatenation of two paths is denoted as σ.σ′.

Path σ′ is a prefix of σ, denoted by σ′ ≤ σ, if there exists a path σ′′ such that σ = σ′.σ′′. Let

the set of all paths starting from state s0 be denoted by P(s0). A maximal path σ is either

infinite, or lst(σ) 6
a
→ for all a.
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For the simple PNS, {s0
a,π1,1/3
−→ s1

c,π4,1.0
−→ s3, s0

a,π2,1/2
−→ s0

aπ2,1/2
−→ . . .} are maximal

paths. Sets of paths, under certain conditions, denote trees that can be looked upon as

reactive schedules. We will first define a tree as a set of paths that identify it. Formally,

we have:

Definition 2.1.6. A set of s0-rooted maximal paths T ⊆ P(s0) is said to be a tree provided

it is deterministic: If σ
a,π1,r1
−→ s1 and σ

a,π2,r2
−→ s2 are in T then π1 = π2. Define root(T ) = s0.

We extend the transition notation to trees, i.e. T
a,π,r
−→ T ′ if there is a s0

a,π,r
−→ s in

T and T ′ = {σ ∈ P(s) | s0
a,π,r
−→ σ ∈ T}. If T

a,π,r
−→ T ′ then T ′ is a subtree of T . A tree T is

maximal provided there is no other tree T ′ such that T ⊆ T ′.

For our running example, {s0
a,π1,1/3
−→ s1

c,π4,1.0
−→ s3, s0

a,π1,2/3
−→ s2, } is a tree.

{s0
a,π1,1/3
−→ s1

c,π4,1.0
−→ s3, s0

a,π1,2/3
−→ s2, s0

b,π3,1/2
−→ s4, s0

b,π3,1/2
−→ s5} is a maximal tree, and a

schedule. (see definition below).

Definition 2.1.7. A s0-rooted reactive schedule is a maximal s0-rooted tree. Let Ms0 be

the set of all maximal trees and, thus reactive schedules with s0 as its root.

Given a schedule T , which has resolved all non-determinism from the PNS P , we

can consider sets of paths that resolve all probabilistic choice [14].

Definition 2.1.8. Given a schedule T , a set of finite paths o is an observation of T if and

only if:

1. for each p ∈ o, there exists p′ ∈ T such that p is a prefix of p′, and

2. if σ
a,π,r
−→ s and σ

a,π,r′
−→ s′ are in o, then r = r′ and s = s′.

{s0
a,π1,1/3
−→ s1

c,π4,1.0
−→ s3, s0

b,π3,1/2
−→ s4}, is an observation for the schedule, {s0

a,π1,1/3
−→

s1
c,π4,1.0
−→ s3, s0

a,π1,2/3
−→ s2, s0

b,π3,1/2
−→ s4, s0

b,π3,1/2
−→ s5}(fig 2.1),

Let OT be the set of all observations of a schedule T and let Os = ∪T∈Ms
OT .
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2.1.1 Measure space

To build a measure space for a reactive schedule T we can start with observations o

and build basic cylindrical sets out of them as Bo = {σ ∈ T | ∃σ
′ ∈ o.σ′ ≤ σ}. The measure

of such a basic cylindrical set would be the product of the probabilistic choices in o, and

will be denoted as mT (o). The smallest Borel field containing such basic cylindrical sets

would then form the required probability space. These constructions are rather standard

and can be found in [14].

In the next chapter we define the logic to specify the properties of PNS, define the

function which maps the property to the set of observations which satisfy it.
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Chapter 3

Extended Generalized Probabilistic

Logic

The specification logic is required to be expressive enough to capture the properties

of interest in a particular class of systems. The PNS allows us to model non-determinism

along with the probabilistic choices. The behavior of PNS is determined by the schedules

and their observations. Thus the first requirement of any specification logic for PNS is

that it should be able to quantify over schedules. In the presence of multiple probability

distributions for a given state and action label it is impossible to talk in terms of exact

probabilities of properties. Therefore, the second requirement for the logic is that it should

allow us to express range of probabilities for satisfying the property. We should be able to

specify properties like there exists a scheduler such that Pr(s |= φ) ∈ [α, β] where [α, β] ⊆

[0, 1]. Kozen’s modal µ-calculus [9] is well suited to express the qualitative properties of

any system. We describe extended generalized probabilistic logic(EGPL) which extends the

modal µ-calculus with quantifiers over schedules(E ,A) and describe the semantics of EGPL

with respect to the observations of a schedule of the PNS. The nomenclature EGPL comes

from GPL [14] which essentially extends the modal µ-calculus with probabilistic quantifiers

P{≥,>} and is useful to specify properties of PTS where there is no nondeterminism.



11

3.1 Syntax of EGPL

The syntax for extended GPL (EGPL) is given by the following BNF-like grammar.

ψ ::= 〈a〉ψ | [a]ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | µx.ψ | νx.ψ | φ | X

φ ::= EY ψ | AY ψ | φ1 ∧ φ2 | φ1 ∨ φ2 | A | ¬A

where Y ⊆ [0, 1] and A ∈ Prop

The formulas generated from nonterminal φ are referred to as state formulas and ψ generate

formulas as path formulas. The operators µ and ν bind the variables in the usual sense,

and one may define the standard notion of free and bound variables. Also, we refer to an

occurrence of a bound variable X in a formula as a µ-occurrence if the closest enclosing

binding operator for X is µ and as a ν-occurrence otherwise. The following restrictions on

GPL formulas are applied to the EGPL formulas:

• in the formula EY ψ or AY ψ the formula ψ can not contain any free variables, and

• no sub-formula of the form µX.ψ(νX.ψ) may contain a free ν-occurrence(µ-occurrence)

of a variable. In other words the formula must be alternation free.

3.2 Semantics of EGPL

The semantics of EGPL is described in terms of observations of schedules. There-

fore, it is necessary to have quantifiers over schedules while talking about the properties

of PNS. E is the existential quantification over the schedules and the specification EY ψ is

satisfied if there exists a schedule of the PNS which satisfies the formula ψ with probability

which is in the interval Y . AY formulas quantify over all schedulers and the PNS satisfies

a A formula if all the schedules of the system satisfy the formula with probability in Y . An

observation rooted at s satisfies a state formula if s satisfies the formula. The path formu-

las when interpreted against a schedule have a measurable set of observations that satisfy

them. That is why they are also referred to as fuzzy formulas[14]. An observation satisfies

the 〈a〉ψ if the unique a-successor satisfies ψ. In order to formally specify the semantics of

EGPL we define two mutually recursive functions as follows.

• Θs : Ψ×Ms → Os, which returns the set of observations of a schedule, T ∈ Ms, that

satisfy a formula ψ ∈ Ψ.
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• |=⊆ S × Φ which indicates whether a state formula is true at a state s ∈ S.

Fix a PNS P = (S,∆, I, s0), and fix a state s ∈ S.

Definition 3.2.1. The function Θs(ψ, T ) is ∅ if root(T ) 6= s. Thus, assuming that

root(T ) = s we have

Θs(〈a〉ψ, T ) = {o ∈ OT | o
a,π,r
−→ o′ ∧ T

a,π,r
−→ T ′ ∧ o′ ∈ Θroot(T ′)(ψ, T

′)}

Θs([a]ψ, T ) = {o ∈ OT | (o
a,π,r
−→ o′) ⇒ (T

a,π,r
−→ T ′ ∧ o′ ∈ Θroot(T ′)(ψ, T

′))}

Θs(ψ1 ∧ ψ2, T ) = Θs(ψ1, T ) ∩Θs(ψ2, T )

Θs(ψ1 ∨ ψ2, T ) = Θs(ψ1, T ) ∪Θs(ψ2, T )

Θs(X) = Θs(ψ) where X 7→ ψ

Θs(µX.ψ) =
⋃inf
i=0Mi, where M0 = ∅ and Mi+1 = Θs(ψ[X 7→Mi], T )

Θs(νX.ψ) =
⋃inf
i=0Ni, where N0 = OT and Ni+1 = Θs(ψ[X 7→ Ni], T )

Θs(φ, T ) =















OT if s |= φ

∅ otherwise

Once a schedule, T , resolves all the non-determinism in the PNS, the systems be-

have like a PTS, hence the following theorem follows directly from the result of measurability

of Θs in [14].

Theorem 1. For any given schedule T , s ∈ S and ψ ∈ Ψ, Θs(ψ, T ) is measurable.

Definition 3.2.2. The relation |=⊆ S × Φ captures the semantics of state formulas as

follows:
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s |= AY ψ iff ∀T ∈ Ms, mT (Θs(ψ, T )) ∈ Y

s |= EY ψ iff ∃T ∈ Ms, mT (Θs(ψ, T )) ∈ Y

s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= φ1 ∨ φ2 iff s |= φ1 or s |= φ2

s |= A iff A ∈ I(s)

s |= ¬A iff A 6∈ I(s)

1.0

1/2

1/2 1.0

1.0

1/2

1/2

s2’

s4

s3

s1

s2

λ2λ1

π1 π2

Figure 3.1: PNS for token stabilization algorithm

In order to illustrate the kind of properties that can be specified using EGPL, we

consider the PNS of figure 3.1. The PNS is an abstraction of randomized token stabilization

algorithm for four symmetrical processes given by Israeli and Jalofan in [8]. The system

starts with all processes having the token(s4) and tries to get to a state where exactly one

process has the token(s1). We will postpone the details of the abstraction and execution

of the algorithm to chapter 5. Lets say we want to specify the following property for the

system: Does the system eventually stabilize with minimum probability 1.0 ? Lets give
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a dummy action label a to the system, and define that all the transitions are made on a.

From [5], ψ = µX.((s1)∨ 〈a〉X) represents the eventually stabilize property. φ = A[1.0,1.0]ψ

specifies that for all the schedulers the probability of satisfying ψ is 1.0. φ gives the required

specification.

The quantitative analysis of EGPL properties, like the one discussed above, re-

quires minimization(maximization) over the schedules to get the range of probability of

satisfying the formula. In the next chapter we describe an algorithm to generate a system

of equation whose minimum and maximum solution give the measure of the formula.
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Chapter 4

Model Checking of PNS

The PNS allows to model the non-determinism and EGPL gives the specification

which ranges over schedulers. The quantitative analysis of EGPL formula with respect to

PNS, is essentially the computation of minimum(or maximum) probabilities of satisfying the

formula over the set of schedulers. We intend to compute results of the form Pr(s0, ψ) ∈ [l, u]

where [l, u] ⊆ [0, 1]. In [14], Cleaveland et. al. propose an algorithm modchk-fuzzy, for

model checking GPL properties with respect to a PTS. The algorithm generates a product

graph from the PTS and Fisher-Ladner closure of the GPL formula. A system of equations

is generated from the product graph and one of the solutions of the equations gives the

measure of the GPL formula for the PTS. A PNS and a PTS differ only in the transition

probabilities where a PTS has a single probability associated with every transition, a PNS

has a range of probability values corresponding to the various possible schedules of the

PNS. This observation forms the basis of extending the algorithm for quantitative analysis

of PNS. In the following sections we tailor the algorithm modchk-fuzzy to compute the

probabilities for a restricted subset of EGPL properties with respect to PNS.

4.1 Outline of the approach

For a given start node s0 and a schedule T of PNS L, the algorithm computes the

measure of fuzzy formula ψ in three steps.
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• From L, s0, T, ψ construct a dependency graph

• From the dependency graph extract a set of constraints

• Minimize(maximize) the root variable with respect to constraints.

Before going into details of each step, two important comments are in order.

• The presence of multiple probability distributions in PNS, makes it impossible to

talk in terms of exact probabilities of properties. Therefore, we are interested in

computing the minimum and maximum probabilities of satisfying the property, where

the minimum and maximum are computed over all possible schedules. A randomized

schedule is uniquely identified by the random probability with which it resolves the

non-deterministic choices, i.e., the set of values it assigns to the λi’s(refer definition

2.1.7,2.1.4 ). These λi’s specify the constraints over transition probabilities. So a

maximization(minimization) of the root node of dependency graph subject to the

constraints gives the schedule corresponding to the maximum(minimum) probability

of satisfying the property. Thus the schedule, T , refers to the unknown schedule which

gives the maximum(minimum) probability of satisfying the property. In the following

discussion we assume the existence of such an optimal schedule T .

• We use EGPL without recursion for the specification of properties. The reason for

the restriction is explained towards the end of the chapter. In the rest of the chapter

EGPL refers to the restricted set of properties given by:

ψ ::= 〈a〉ψ | [a]ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | φ | X

φ ::= EY ψ | AY ψ | φ1 ∧ φ2 | φ1 ∨ φ2 | A | ¬A

where Y ⊆ [0, 1] and A ∈ Prop

4.2 Graph Construction

Fix a state s0 and a fuzzy(path) formula ψ. The first step in modchk − fuzzy

involves constructing a graph PG(s0, ψ) that describes the relationship between the quantity

mT (Θs0(ψ, T )), that we wish to compute, and the quantities of the form mT ′(Θs(ψ, T
′)),

where s is a state reachable from s0 and ψ
′ is an (appropriate) sub-formula of ψ. This graph

has vertices of the form (s, F ), where s ∈ S and F is a set of fuzzy formula, The edges from

(s, F ) then provide “local” information regarding mT (Θs(ψ, T )).

In order to define the graph formally we need the following notions.
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Definition 4.2.1. For a closed fuzzy formula ψ define the (Fisher-Ladner) closure, written

as Cl(ψ), as the smallest set of formula satisfying the following rules:

• ψ ∈ Cl(ψ)

• If ψ′ ∈ Cl(ψ) then

– if ψ′ = ψ1 ∧ ψ2 or ψ1 ∨ ψ2 then ψ1, ψ2 ∈ Cl(ψ)

– if ψ′ = 〈a〉ψ′′ or [a]ψ′′ for some a ∈ Act, then ψ′′ ∈ Cl(ψ)

One may easily show that Cl(ψ) contains no more elements than ψ contains sub

formula.

The node set N in the graph is a subset of the set S × 2Cl(ψ); that is, nodes have form

(s, F ), where s ∈ S and F ⊆ Cl(ψ). A node is classified according to the first rule, among

the following, that it satisfies.

• (s, F ) is an empty node if F = ∅.

• (s, F ) is a false node if there exists a state formula φ ∈ F with s 6|= φ or if there exists

a formula of the form 〈a〉ψ′ and there is no s′ such that s
a
→ s′.

• (s, F ) is a true node if (a)it has at least one state formula φ ∈ F such that s |= φ or

(b) it has at least one [a]ψ ∈ F but there are no transitions of the form s
a
→ s′ for

any s ∈ S.

• (s, F ) is an and node if there exists a formula ψ1 ∧ ψ2 ∈ F

• (s, F ) is an or node if there exists a formula ψ1 ∨ ψ2 ∈ F

• (s, F ) is an action node if every formula in F has the form 〈a〉ψ′ or [a]ψ′

The edges in the graph are labeled by the elements drawn from the set Act ∪ {ε+, ε−}

(assuming ε+, ε− /∈ Act). Define the set of action labels in a set of formula F as action(F ) =

{a ∈ Act|∃ψ.〈a〉ψ ∈ F ∨ [a]ψ ∈ F}. The edge set E ⊆ N × (Act ∪ {ε+, ε−})×N is defined

as follows.

• If n = (s, F ) is an empty node or a false node, then n is a sink node;
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• else if (s, F ) contains state formulas then (s, F ), ε+, (s, F )) ∈ E, where F ′ is F with

all the state formulas deleted.

• else if ψ = ψ1 ∧ ψ2 ∈ F then ((s, F ), ε+, (s, F − {ψ} ∪ {ψ1, ψ2})) ∈ E)

• else if ψ = ψ1 ∨ ψ2 ∈ F then ((s, F ), ε+, F − {ψ} ∪ {ψ1}) ∈ E, ((s, F ), ε+, F − {ψ} ∪

{ψ2}) ∈ E, and ((s, F ), ε−, (s, F − {ψ} ∪ {ψ1, ψ2})) ∈ E);

• else if (s, F ) is an action node, let Fa = {ψ
′|〈a〉ψ′ ∈ For[a]ψ′ ∈ F}. Then for any a ∈

Act with Fa 6= ∅ and s
′ ∈ S such that ∃π. (s, a, π) ∈ ∆∧π(s′) > 0, ((s, F ), a, (s′, Fa)) ∈

E.

The graph construction is guaranteed to terminate; this is due to the fact that all the

formulas in the construction are in Fisher-Ladner closure of ψ [9].

The edges in the graph indicate a “local relationship” between its end nodes. To

see this, first note that if (s, F ) is false then [[(s, F )]] = ∅ and mT (Θs(F, T )) = 0 and if it is an

empty node then all observations of schedule T satisfy the formula F i.e.[[(s, F )]] = OT and

mT (Θs(F, T ) = 1. If the node is an or node i.e. F = F ′∪{ψ1∨ψ2} then the semantics of the

logic entails that ∧F and (∧F ′∧ψ1)∨(∧F
′∧ψ2) are logically equivalent. Therefore we have

mT (Θs(F, T )) = mT (Θs(∧F
′∧ψ1, T ))+mT (Θs(∧F

′∧ψ2, T ))−mT (Θs(∧(F
′∪{ψ1, ψ2}), T ))

This observation is encoded in ε+, ε− edges emanating from the or node. Similar obser-

vations can be made for other nodes except the action nodes. Under the assumption of

existence of optimal schedule T the PNS reduces to PTS and we have the following results

from [14], which relate the nodes to their measures.

Lemma 1. For the product graph PG(s0, ψ) = (N,E)

• If (s, F ) is an empty node then

mT ([[s, F ]]) = 1

• If (s, F ) is a false node then

mT ([[s, F ]]) = 0



19

• If (s, F ) is an or-node with edges ((s, F ), ε+, (s, F1)), (((s, F ), ε
+, (s, F2)) and (s, F ), ε

−, (s, F3))

then

mT ([[(s, F )]]) = mT ([[(s, F1)]]) + mT ([[(s, F2)]])−mT ([[(s, F3)]])

• If (s, F ) is an action node then mT ([[(s, F )]]) =
∏

a∈action(F )

∑

((s,F ),a,(s′,F ′))∈E

Pr(s, a, s′)×

mT ([[(s
′, F ′)]])

• If (s, F ) is any other node then it has a unique successor (s, F ′)

mT ([[(s, F )]]) = mT ([[(s, F
′)]])

4.3 Generating constraints from the graph

We give a method to generate a set of constraints from the graph. The constraints

have one variable for each node of the graph. For every variable there is exactly one equation

with the variable on the LHS. The transition probabilities are expressed as variables whose

values are given by the values of λi’s and corresponding probability distributions πi. For

example,(refer Fig. 3.1), Pr(s3, a, s2) = y(s3,a,s2) = λ1 ∗
1
2 + λ2 ∗ 0. The constraints are

generated according to following rules.

1. If n is a empty node then Xn = 1;

2. If n is a false node then Xn = 0;

3. If there is an edge of the form (n, ε+, n′) then the equations for Xn is

Xn =
∑

(n,ε+,n′)∈E

Xn′ −
∑

(n,ε−,n′)∈E

Xn′

4. If n = (s, F ) is an action node, let An = {a|(n, a, n′) ∈ E}. Then,

∏

a∈An

∑

(n,a,(s′,F ′))∈E

(ys,a,s′ ·X(s′,F ′))

where ∀a ∈ An.∀s
′ ∈ S. ys,a,s′ =

∑

i λ
i
s,a ∗ π

i
s,a(s

′) where πis,a are the probability

distributions from s on a and
∑

i λ
i
s,a = 1
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The action node makes a transition with the probability defined by the scheduler.

The λi’s correspond to the unknown scheduler, T , which gives the maximum(minimum)

value. The product part of the action node equation comes from the fact that transition

with different action labels are independent of each other. Maximizing(minimizing) the

root variable with respect to the constraints gives the maximum(minimum) measure over

all possible schedules. Note that we use the optimization only for the root variable, that

is we compute the minimum(maximum) value of satisfying the property starting at the

root state. The probability values for internal nodes correspond to the schedule which

minimizes(maximizes) the root node, and hence are not necessarily optimal for the corre-

sponding node and sub formula pair.

Under the assumption of existence of the optimal schedule, T , the PNS becomes

a PTS and the following lemma follows from Lemma 1.(refer Lemma 19 in [14])

Lemma 2. Let Υ = {Xn = Υn} be the set of equations generated above, and let measure

values corresponding to optimal schedule T be V = {Xn = mT (Θs(∧F, T )}, where n =

(s, F ). Then V is a solution to Υ.

4.4 Model Checking Example

We illustrate the model checking algorithm for PNS of fig.3.1 and the property

φ = E[0.25,1.0](tt U[3] (s1)), where U[k] is the bounded until property defined as

φ1U[0]φ2 = φ2

φ1U[k]φ2 = φ2 ∨ (φ1 ∧ 〈a〉(φ1U[k− 1]φ2))

The property specifies that there exists a schedule so that probability of reaching state (s1)

in 3 or less steps is at least 0.5. It suffices to check if the maximum probability is greater

than equal to 0.25. The product graph is shown in fig.4.1. The root node is an or node

and one of the disjuncts is a false node as s4 6|= (s1). So node (s4, {〈a〉(tt U[2] (s1))}) is

the only node to explore. Note that the nodes s′2 and s3 can not reach s1 in one step hence

they are denoted as false nodes. Constructing the product graph in a similar fashion we get

the following set of constraints to maximize the root variable.

MAX x4;

x4 = y1 ∗ x3; y1 = 1.0
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(s4, {(s1)} )

(s4, {((s1) \/ <a>(tt U[2] (s1)))})

(s4, {<a>(tt U[2] (s1))}) (s4, {(s1),<a>(tt U[2] (s1))})

(s3, {(tt U[2] (s1))})

1/2∗λ1y2= y3=1/2∗λ1 y4=λ2

x3

ε+ε+ ε−

a

0.0 0.0

x4

ε+ε+ ε−
0.0

(s3, {(s1)} ) (s3, {<a>(tt U[1] (s1))}) (s3, {(s1),<a>(tt U[1] (s1))})

0.0

(s3, {(tt U[1] (s1))}) (s2, {(tt U[1] (s1))}) (s2’, {(tt U[1] (s1))})

0.0

(s1,{(s1)})

1.0

y5=1/2

x2

x1
(s2’,{(s1)})

y6

0.0

y1=1.0

Figure 4.1: Product graph

x3 = y2 ∗ 0 + y3 ∗ x2 + y4 ∗ 0; y3 = λ1/2

where λ1 + λ2 = 1.0

x2 = y5 ∗ x1 + y6 ∗ 0; y5 = 1/2

x1 = 1.0

The maximum value of x4 = 0.25 is obtained for the scheduler which assigns λ1 = 1.0, λ2 =

0.

The complexity of the product graph construction is linear with respect to the size

of the product set of states of PNS and the Fisher-Ladner closure of the specification i.e.

O(|S|× |Cl(ψ)|) There is one variable per node of the product graph so number of variables

and the number of equations is also bounded by O(|S| × |Cl(ψ)|). The algorithm is an

explicit graph approach, hence it is expected to be memory intensive. However it allows

one to incorporate the independence of transitions having different action labels, which is

not the case with the symbolic MTBDD based approach of [11] where |Act| = 1.
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Model checking the complete EGPL logic with fix points cannot be done using the

above method based on product graph. The quantitative analysis of µ and ν properties

requires computation of maximum(minimum) for a set of variables corresponding to the

strongly connected components in the product graph(refer [14]). The back substitution of

these maximum(minimum) values does not ensure the optimal probability measures for the

nodes dependent on the variables of strongly connected component.

Current systems work in composition with each other, therefore before modeling

any real world problem into PNS we need composition operators for PNS. In the next

chapter we develop such a calculus for PNS. We also give results on how to decompose

the specification for a composite system into individual specification for subsystems. The

requirement for the decomposition is that the composite system satisfies the specification

if and only if the subsystems satisfy their individual specification. Such a decomposition

provides a top-down approach to building a composite system and allows the subcomponents

to be developed independently.
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Chapter 5

Implementation and Case Studies

In the last chapters we presented the mathematical machinery needed for quanti-

tative analysis of PNS. In this chapter we present an implementation of tool which enables

us to perform quantitative analysis of EGPL properties with respect to a given PNS. Then

we present a case study of a randomized self-stabilization protocol, where we model the

system as PNS and compute probabilities for reachability properties. A self-stabilizing pro-

tocol for a network of processes is a protocol which when started from some possibly illegal

start state returns to a legal/stable state without any outside intervention within finite

number of steps. The stable states are those where there is exactly one process designated

as “privileged”(has a token). The property of interest for such protocols is the minimum

probability of reaching the stable state within a given time bound and maximum expected

time to reach the stable state (given that the probability of reaching the stable state is 1).

The protocol we consider for case study is by Israeli and Jalofan [8]. It is a token based

self-stabilization protocol, where the stable state corresponds to exactly one process having

the token. Before we go into the details of the protocol we give a brief description of the

tool and modeling language.
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Figure 5.1: Quantitative Model Checker

5.1 Quantitative Model Checker

The model checker has three components as seen in Fig.5.1. The product graph

generator, takes a PNS model, a start state s0 and a path property of PNS, and generates the

product graph of Fisher-Ladner closure of the property and the PNS. This product graph

is used by the constraint generator which generates a set of constraints, and the optimizer

maximizes(minimizes) the variable corresponding to the root node of product graph with

respect to these constraints. The PNS is described using a PRISM[10] like language (see

appendix A for sample input file). States are uniquely identified by the set of atomic

propositions they satisfy and they are hashed to positive integers. Transitions are identified

with the start state, next state action label and probability interval. A typical transition

input looks like: []s=0 ->[a] 0.5:s=1 + 0.5:s=0 , where a is the action label. The non-

determinism in the PNS is specified by allowing the model to have multiple lines where a

given state on a given label goes to different probability distributions. The parser generates

an interval graph from the input PNS which is used by the product graph generator. The

key word COMPUTE provides the start state and the path property to be analyzed. We use the

optimization tool LINGO1 to solve the non-linear optimization and generate the probability

measure. In the next section we present the modeling and quantitative analysis of the token

based randomized self-stabilization protocol.

5.2 Randomized Self-Stabilizing Protocol(RSSP)

The protocol we consider in this section is due to Israeli and Jalofan [8]. It is a

token based protocol used by a system of n processes connected in an oriented ring and

having bidirectional communication. The goal of the protocol is to reach the ”stable” state

1 c© LINGO is the property of LINDO SYSTEMS INC.
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Figure 5.2: PNS for 4 processes token based randomized self-stabilization protocol
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Figure 5.3: A typical execution step in the protocol

starting from an ”illegal” state. Stable state is the one where exactly one process has

the token and an illegal state is the one where more than one processes have token. The

processes having the token are called active processes. The scheduler randomly picks one

of the active processes and this process propagates the token towards its left or right with

equal probability. When a processes has more than one token the tokens are merged into a

single token.

A typical graph based model of such a system with 4 processes is shown in figure

5.2. To illustrate a transition of the system, consider state (1010), the scheduler randomly

picks one of the active processes 1 or 3 (processes numbered left to right 1 to n). If process

1 is selected then with 1/2 probability it passes the token to process 4, i.e. next state is
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(0011), or with 1/2 the probability it goes to state (0110). Similar execution can be seen

for the choice of process 3 in fig.5.3

It is easy to see that the size of the graph is exponential in the number of processes,

O(2n). Therefore, even a small model of such system would generate large of number states

in the product graph which will proportionately generate large number of constraints and

variables. We focus on systems with 4 and 5 processes and exploit symmetry to reduce the

number of states while preserving the quantitative behavior of the system.

5.2.1 Abstraction based model

The evolution of RSSP from a particular state depends on the neighborhood struc-

ture of each process. By neighborhood structure we mean whether the process has active

or inactive process to its left and right.2

• If an active process has an active process on its left and right then the system evolves

to a state with one less number of tokens with probability 1.

• If it is adjacent to one active and one inactive process then with half probability it

evolves to one less number of tokens and half probability it goes to state with the

same number of tokens.

• If both its neighbors are inactive then with probability 1 it goes to a state with same

number of tokens.

So the first requirement of an abstraction for RSSP is that the set of states grouped together

must have same number of tokens The second requirement is that they should have the same

neighborhood structure for all the component processes. The abstraction described in the

section is based on the observation that if n processes are arranged in an oriented ring where

m are active and n−m are inactive then, finite number of rotations of the processes merely

relabels the processes while preserving their neighborhood structures. The finite number of

rotations refers to the bijective function which relabels the active(inactive) processes of one

state to the active(inactive) processes of another state while preserving the neighborhood

structure.

2Note that every process has the same sense of left and right as the ring is oriented.
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Figure 5.4: Equivalent states of 4 process PNS

Consider the 4 process PNS for RSSP, the state space can be partitioned into four

disjoint subsets, {t4, t3, t2, t1}, where ti corresponds to the state having i tokens (see fig.5.4).

There are
(

4
i

)

states corresponding to ti for i = 1 to 4. There are 4 states where system can

have 3 tokens and 6 states where the system has 2 tokens. We claim that all the 4 states of

t3 are identical with respect to qualitative properties. To see this note that all the 4 states

can be obtained by rotation of each other. For example consider state s = (1, 1, 1, 0), a

rotation takes the state to s′ = (1, 1, 0, 1) or s” = (0, 1, 1, 1), depending on the direction of

rotation (fig.5.4). In s, process p3 has the token and is adjacent to process p4 on right which

doesn’t have the token and process p2 on left which has the token. Similar configuration

can be seen for process p2 in s′ and process p4 in s”. So an execution of PNS which chooses

p3 in s can be simulated by choice of p2(p4) in s
′(s”). Similar mappings can be established

for p1, p2 and p4. Hence all the states in t3 are identical with respect to qualitative behavior

of the system. However, subset t2 has to be partitioned into subsets t21 and t22, because

elements in t21 cannot be obtained by finite rotation of elements in t22 and vice versa.

So, we have the following partition of state space P(S) = {t4, t3, t21, t22, t1}. The following

theorem establishes that the partition is probabilistic bi-simulation as described in [3].
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Theorem 2. Consider the relation, R, induced by the partition, P(S), sRs′ iff s, s′ ∈ ti. R

is a probabilistic bi-simulation.

Proof. • R is an equivalence relation.

• Let sRs′. The transition probability, Pr(s, a, r) =
∑

i λiPr(pi, a, r) where 1 ≤ i ≤ 4 is

the number of active processes in s. The same transition probability can be obtained

from s′ as Pr(s, a, r′) = λ1∗Pr(B(p1), a, r)+λ2∗Pr(B(p2), a, r)+λ3∗Pr(B(p3), a, r).

where rRr′ and B is the bijective function corresponding to finite rotation which

relabels the processes in s to processes in s′.

5.2.2 Experimental Results

t1
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t22t21

t31 t32
1

1

1/2 1/2 1/21/2

1.0

1/2

1/2 1.0
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s2’
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s3

s1

s2

(a) (b)

Figure 5.5: Abstract model of RSSP (a) 4 process system (b)5 process system

The model obtained by using the abstraction for 4 process RSSP is given in

Fig.(5.5(a)). We use the above abstraction to compute probability of reaching the stable

state in at most x steps, starting from the state where all the 4 processes have tokens(t4).
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Each step corresponds to the scheduler randomly picking up an active processes and the

process then passing the token to its left or right with equal probability. The property is

specified using the bounded until operator as follows

(tt Ux (t1 = 1))

Table 5.1 gives the minimum(MIN) and maximum(MAX) probability of reaching the stable

state in x steps. An interesting property to note from Table 5.1 is that the minimum (max-

imum) probabilities of satisfying the bounded until properties under randomized schedulers

is the same as minimum(maximum) probabilities obtained by considering non-deterministic

schedulers[3]. This stands as a witness to the theorem in [2], which states that for bounded

until properties it is sufficient to minimize or maximize over the non-deterministic schedules.

The number of variables and constraints grow linearly with respect to the number

of steps (see fig5.9). This is expected since the number of nodes in the product graph varies

linearly with the closure of formula, which keeps increasing with steps, if the system is kept

constant (refer chapter 4). The memory usage of LINGO varies linearly with the number of

constraints and variables(see fig5.7). The system has been optimized to reduce the number

of redundant equations of the form xi = xj and xi = 0. This optimization is possible in the

absence of recursion as every node(variable) of the product graph is referred exactly once

in the LHS and exactly once in the RHS of the constraints. The non-linear constraints

correspond to the randomized scheduling at state t3. The number of nodes corresponding

to t3 in the product graph, increase linearly with the number of steps and hence the number

of non-linear constraints also increase linearly.

Fig. 5.10 gives a comparison of the minimum probability of stabilizing 4 process

and 5 process RSSP. The number of steps required to stabilize with probability 1 is almost

doubled from 4 process to 5 process system.
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Figure 5.6: Minimum and maximum probability of stabilizing in x steps for 4 process RSSP
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Figure 5.7: Memory usage of LINDO to compute probability of stabilizing in x steps for 4
process RSSP
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Figure 5.9: Number of variables and constraints generated from the product graph
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Figure 5.10: Comparison of probabilities of stabilizing in x steps for 4 and 5 process RSSP
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Chapter 6

Compositional Verification of PNS

The study of compositionality is an essential component of top-down design method-

ology. In this approach we wish to decompose the specification of a composite system into

sufficient and necessary specifications of the components of a system. Consider a com-

posite system P4X, where 4 is a process algebra operator and X is the system is to be

designed(say X). Let F be the required specification for the composite system. We wish

to compute individual sub-specifications FX , for the unknown component such that the

following is satisfied.

X |= FX ⇔ P4X |= F

Clearly, while maintaining soundness we want the specification FXto be as weak as possible

so that we have greater latitude with possible implementation of X. In [12], Larsen et.al.

proposed a decomposition scheme for extended PML formula and SCCS like algebra for

PTS. In this work we develop a similar calculus CNPP , and add a non-deterministic

composition operator for the PNS composition. We then define the decomposition operator

W4 which gives the sub specification for the unknown component. In the end we prove a

theorem which states that the decomposition is sound and is sufficiently weak.
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6.1 Calculus for PNS

Definition 6.1.1. Let Act be a set of actions. Then the calculus of non-deterministic

probabilistic processes (CNPP) over a given set of actions Act has the following syntax

P ::= 0|a.P |P ⊕Q|P ⊕µ Q|P ×Q

In the above definition 0 denotes completely inactive process, whereas a.P can

perform the action a and then behave like P . The process P ×Q can only make a transition

c = (a, b) when both the components P and Q perform their corresponding actions. The

probabilistic summation construct P⊕µQ, selects the process P (Q) with probability µ(1−µ)

if both P and Q have transition on the action label a, else it selects the process having the

transition on a with probability 1. If neither of the processes has a transition on a then it

selects neither of them. The non-deterministic summation operator P ⊕ Q selects P with

probability λ ∈ [0, 1] and Q with probability 1 − λ if both have transitions on action a,

otherwise the behavior is same as probabilistic summation.

Definition 6.1.2. Let Act be a set of actions. In the presence of action based non-

deterministic choices we cannot calculate the exact probabilities, therefore we define the

transition probabilities in terms of intervals in [0, 1]. Let NPr be the set of processes. The

transition probability intervals π are defined as follows:

π(0, a, P ) = [0, 0] for all a ∈ Act and for P ∈ NPr

π(a.P, b,Q) =







[1, 1] if P = Q, b = a

[0, 0] otherwise

π(P ×Q, 〈a, ā〉, P ′ ×Q′) =







































[l, u] where l = lp ∗ lq,

u = up ∗ uq,

[lp, up] = π(P, a, P ′),

[lq, uq] = π(Q, ā,Q′]

[0, 0] otherwise
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π(P ⊕Q, a,R) =































































[l, u] where l = min(lp, lq),

u = max(up, uq),

[lp, up] = π(P, a,R),

[lq, uq] = π(Q, a,R) if P →a, Q→a

[lp, up] if Q 6→a

[lq, uq] if P 6→a

[0, 0] otherwise

π(P ⊕µ Q, a,R) =







































[µlp + (1− µ)lq, µup + (1− µ)uq] where [lp, up] = π(P, a,R),

[lq, uq] = π(Q, a,R) if P →a, Q→a

[lp, up] if Q 6→a

[lq, uq] if P 6→a

[0, 0] otherwise

For π(P, a, P ′) = [l, u], define min(max)π(P, a, P ′) = l(u). For the non-deterministic sum-

mation operator, the probability π(P ⊕Q, a,R) = [l, u] where l is the minimum and u is the

maximum of the two probabilities π(P, a,R) and π(Q, a,R), which corresponds to combined

transition of the PNS where the next state transition probabilities are defined by the convex

combination of available probability distributions.

In the next section we define a variant of extended PML([12]) which is used as the

specification logic.

6.2 A variant of extended PML

Syntax of the logic is given as follows

F ::= tt|c|F ∧G|¬F |[〈a〉[x1,y1]F1, ..., 〈a〉[xk,yk]Fk where φ(x,y)]|σc.F where σ = {µ, ν}

The logic essentially puts constraints on the minimum and maximum transition probabilities

at each step. These constraints, as we will see, define the intervals of transition for the

unknown system. Semantics of the logic is given with respect to the set of probabilistic

non-deterministic processes NPr.

• [[tt]] = NPr

• [[c]] = [[F ]][c 7→ F ]
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• [[σc.F ]] = [[F ]] where [σc.F/c]

• [[F ∧G]] = [[F ]] ∩ [[G]]

• J[〈a〉[x1,y1]F1, ..., 〈a〉[xk,yk]Fk where φ(x1, y1, . . . , xk, yk)]K

= {P ∈ V | φ(min{π(P, a, [[F1]])}/x1,max{π(P, a, [[F1]])}/y1, . . . ,

min{π(P, a, [[Fk]])}/xk,max{π(P, a, [[Fk]])}/yk)}

We now have the framework to answer the following question.

Given a PNS P , an unknown PNS X, and the composition operator4 ∈ {a., P⊕µ, P⊕, P×},

compute W4(F ) such that 4X |= F iff X |= W4(F )

6.3 Decomposing Formulas

Definition 6.3.1. Let a ∈ Act, µ ∈]0, 1[, and P a process. We define the transformers W4

inductively as follows:

W4(tt) = tt

W4(c) = W4(F ) where [c 7→ F ]

W4(σc.F ) = W4(F )[c 7→ σc.F ]

W4(F ∧G) = W4(F ) ∧W4(G)

W4(¬F ) = ¬W4(F )

For F = [< a >[x1,y1] F1, ..., < a >[xn,yn] Fn where φ(x,y)]
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Wb.(F ) =



















































tt ; b 6= a, φ(0,0)

ff ; b 6= a,¬φ(0,0)

ff ; b = a,Γ = {}

∨

ν∈Γ

(
∧

νi=1
Fi ∧

∧

νi=0
¬Fi) ; otherwise

where Γ denotes the set of tuples ν = (ν1, . . . , νn) where each νi = xi = yi = 0 or 1 such

that φ(x,y) holds.

WP⊕µ(F ) =































F ;P
a
6→

¬ < a >[0,1] tt ∨GP,F ;P
a
→ and P |= F

GP,F ;P
a
→ and P 6|= F

where GP,F = [< a >[x1,y1] F1, ..., < a >[xn,yn] Fn where φ(. . . , (µ ∗min{π(P, a, [[Fi]])} +

(1− µ) ∗ xi)/xi, . . . , (µ ∗max{π(P, a, [[Fi]])}+ (1− µ) ∗ yi)/yi, . . .)]

WP⊕(F ) =































F ;P
a
6→

¬ < a >[0,1] tt ∨GP,F ;P
a
→ and P |= F

GP,F ;P
a
→ and P 6|= F

where GP,F = [< a >[x1,y1] F1, ..., < a >[xn,yn] Fn where

φ(. . . ,min(min{π(P, a, [[Fi]])}, xi)/xi, . . . ,max(max{π(P, a, [[Fi]])}, yi)/yi, . . .)]

In the following < a > denotes the ordered pair < b, c >.

WP×(F ) =



































tt ;P
b
6→ and φ(0,0)

ff ;P
b
6→ and ¬φ(0,0)

∧

1≤i≤M,1≤j≤n

< c >[xi,j ,yi,j ] WPi×(Fj) where φ
′ holds ;P

b
→

where, Pi’s are the b− derivatives of P such that, P
b
→
[αi,βi]

Pi and

φ′ = φ(. . . , min
i=1 to M

{αi ∗ xi,j}/xj , . . . , max
i=1 to M

{βi ∗ yi,j}/yj , . . .)
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Theorem 3.

4(X) |= F iff X |= W4(F )

Proof. By induction on the structure of F .

• F = tt, vacuously true.

• F = c, under assumption that there are no unbounded variables, let [c 7→ F ′]

4(X) |= c

⇔4(X) |= F ′

⇔ X |= W4(F
′), by ind. hyp.

• F = ¬F

4(X) |= ¬F

⇔4(X) 6|= F

⇔ X 6|= W4(F ), by ind. hyp.

⇔ X |= ¬W4(F )

• F = F ∧G

4(X) |= F ∧G

⇔4(X) |= F ∧4(X) |= G

⇔ X |= W4(F ) ∧X |= W4(G), by ind. hyp.

⇔ X |= W4(F ) ∧W4(G)

• F = [< a >[x1,y1] F1, . . . , < a >[x1,y1] F1 where φ(x,y)]

There are following four cases depending on the operator.
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1. b.X |= F iff X |= Wb.(F ).

The base cases are trivially true. Suppose that X |=
∨

ν∈Γ

(
∧

νi=1
Fi ∧

∧

νi=0
¬Fi) where

ν ∈ Γ is the set of n-tuples such that νi = xi = yi = 0 or 11 and φ(x,y) holds.

Then on making the transition on b, we enter process X which models exactly

those Fi such that the condition of φ holds. Hence, b.X |= F .

Suppose that b.X |= F , and let i range over the formulas such that X |= Fi and j

range over the formulas such that X 6|= Fj . Then X |=
∧

i Fi ∧
∧

j ¬Fj . Now the

condition φ determines the set of Fi’s and Fj ’s. Note that there can various such

partitions satisfying the condition φ, and the set Γ ranges over all such tuples.

Hence X |= Wb.(F ).

2. P ⊕X |= F iff X |= W4(F )

If P
a
6→ then X has to model F , as the scheduler will always schedule X. If

P
a
→ andP |= F then either X |= ¬ < a >[0,1] i.e.

a
6→ or X |= GP,F . Sup-

pose that X |= GP,F . GP,F is the same as F except that xi is replaced by

min(min{π(P, a, JFiK)}, xi) and yi by max(max{π(P, a, JFiK)}, yi). By defini-

tion of ⊕, π(P ⊕X, a, JFiK) = [li, ui] where li = min(min{π(P, a, JFiK)}, xi) and

ui = max(max{π(P, a, JFiK)}, yi). From the supposition, φ(l,u) is true, hence

P ⊕X |= F .

Similar argument holds for the only if part.

3. P ⊕µ X |= F iff X |= W4(F )

Follows from 2.

1Since b. is a deterministic operator minimum and maximum probabilities are equal
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4. P ×X |= F iff X |= W4(F )

If P
b
6→ then by definition of P × X, there is no transition on < b, c >. So, if

φ(0,0 is true then P can be lock-step composed with any X and the system will

satisfy F . Otherwise, if φ(0,0) is false then no system X when coupled with P

would satisfy the formula.

If P
b
→, then suppose

X |=
∧

1≤i≤M,1≤j≤n

< c >[xi,j ,yi,j ] WPi×(Fj) where φ
′ holds

where, Pi’s are the b− derivatives of P such that, P
b
→
[αi,βi]

Pi and

φ′ = φ(. . . , min
i=1 to M

{αi ∗ xi,j}/xj , . . . , max
i=1 to M

{βi ∗ yi,j}/yj , . . .)

By the definition of the × operator, π(P × X,< b, c >, Pi × [[WPi×(Fj)]]) =

[αi ∗ xi,j , βi ∗ yi,j ] and by induction hypothesis, Pi × [[WPi×Fj ]] |= Fj . So

min
i=1 to M

{αi ∗xi,j} gives the minimum probability of P ×X satisfying < b, c > Fj

and by φ′ this minimum probability satisfies φ. Similar argument holds for the

maximum probability. Hence P ×X |= F .

P ×X |= F

⇔ Pi ×X
′ |= Fj for all 1 ≤ i ≤M, 1 ≤ j ≤ n

⇔ X ′ |= WPi×(Fj) for all 1 ≤ i ≤M, 1 ≤ j ≤ n by ind. hyp.

⇔ X |=
∧

1≤i≤M,1≤j≤n

< c >[xi,j ,yi,j ] WPi×(Fj)

π(P ×X,< b, c >, Pi × [[WPi×(Fj)]]) = [αi ∗ xi,j , βi ∗ yi,j ]

∴ min(π(P ×X,< b, c >, [[Fj ]]) = min{αi ∗ xi,j}

similarly max(π(P ×X,< b, c >, [[Fj ]]) = max{βi ∗ yi,j})
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∴ φ⇒ φ′

Hence X |= WP×(F )

6.4 A Signal Handler Example

repair

alarm

Resources
Handler
Signal

Figure 6.1: Resource and signal handler system

In order to illustrate the above decomposition scheme, we consider a system con-

sisting of a signal handler and resources(Fig6.1). The resources fail with certain probability(2/3)

and they generate an alarm(alarm). The signal handler on receiving the alarm can either

buffer it and wait for more alarms or buffer it and switch to serving the alarms. Since

the alarms are generated pretty frequently we would like the signal handler to buffer and

serve more frequently rather than buffer and wait for more alarms. We model a 2 resource

scenario, where process P0 denotes both the resources working and P0 |= (Good), where

(Good) is a atomic proposition. P1 and P2 denote failure of 1 and 2 resources respectively.

P1 one resource is failed and the other is working, so it can either generate another alarm

and go to P2, or it can remain in P1. P1 and P2 on receiving the repair signal go back to

P0. In terms of process algebra the system is described as

P0 = 〈alarm〉.P0 ⊕1/9 (〈alarm〉.P1 ⊕1/2 〈alarm〉.P2)

P1 = (〈alarm〉.P1 ⊕2/3 〈alarm〉.P2)⊕ 〈repair〉.P0

P2 = 〈repair〉.P0
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We want the composite system of signal handler and resources to satisfy the property that

an alarm signal generated by the resources should be received by the signal handler(SH)

with high probability and following it the repair signal should be generated by signal han-

dler and received by resources with high probability. The composite system should revert to

the state which models the proposition (Good). The property can be specified in extended

PML as:

F = [〈alarm, alarm〉[x,y](F1) where φ(x, y) = (y > λ)] where λ is a constant in [0, 1] and

F1 = [〈repair, repair〉[x′,y′](Good) where Ω(x′, y′) = (x′ = 1.0 ∧ y′ = 1.0))]

We derive a specification for SH by using our results on compositional verification:

The composite system P0 × SH |= F iff SH |= WP0×(F ).

1. WP0×(F )

= 〈alarm〉[x0,y0]WP0×(F1) ∧ 〈alarm〉[x1,y1]WP1×(F1) ∧ 〈alarm〉[x2,y2]WP2×(F1)

where φ′(x0, y0, x1, y1, x2, y2) = φ(max{4/9 ∗ y1, 4/9 ∗ y2, 1/9 ∗ y0}/y) = max{4/9 ∗

y1, 4/9 ∗ y2, 1/9 ∗ y0} > λ), since P0
alarm
−→

[4/9,4/9]
P1, P0

alarm
−→

[4/9,4/9]
P2, and P0

alarm
−→

[1/9,1/9]
P0

2. WP0×(F1) = ff P0 6
repair
−→

3. WP1×(F1)

= 〈repair〉[x′
1
,y′

1
]WP0×((Good)) where Ω′(x′1, y

′
1) = Ω(min{1.0∗x′1}/x

′,max{1.0∗y′1}/y
′) =

(x′1 = 1.0 ∧ y′1 = 1.0), since P1
repair
−→
[1.0,1.0]

P0

= 〈repair〉[1,1]WP0×((Good))

4. WP2×(F1)

= 〈repair〉[x′
1
,y′

1
]WP0×((Good)) where Ω′(x′1, y

′
1) = Ω(min{1.0∗x′1}/x

′,max{1.0∗y′1}/y
′) =

(x′1 = 1.0 ∧ y′1 = 1.0), since P2
repair
−→
[1.0,1.0]

P0

= 〈repair〉[1,1]WP0×((Good))

5. WP0×((Good)) = tt, since P0 |= (Good)⇒ P0 ×X |= (Good) where X |= tt

6. From 1 to 5, we get

SH |= 〈alarm〉[0,0]ff∧〈alarm〉[x1,y1]〈repair〉[1,1]tt∧〈alarm〉[x2,y2]〈repair〉[1,1]tt where max{4/9∗
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y1, 4/9 ∗ y2} > λ ⇔ SH |= 〈alarm〉[x,y]〈repair〉[1,1]tt where 4/9 ∗ y > λ

The specification generated for SH provides constraints for the design of the system. The

SH should have two states: the first state should wait for alarm signals and then make

a transition to the repair state. In the repair state it should always generate the repair.

Suppose that we design the SH such that it goes to the repair state every time it receives

an alarm signal, i.e. the probability x = y = 1.0, then the maximum probability of the

composite system handling the alarms successfully is 4/9. The maximum probability for

the composite system to successfully handle the alarms is bounded by 4/9. The bound

was generated from the known components of the system, that is the resources and the

nature of composition operator, ×. Thus the results on compositional verification provide an

important tool to generate the specification for unknown systems and analyze the limitations

imposed by the nature of interfacing and behavior of known components.
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Chapter 7

Conclusion and Future Work

PNS is an expressive model which incorporates the non-determinism along with

probabilistic choices. We have used PNS to model the non-determinism in randomized

systems and to reason about composite systems with non-determinism arising due to con-

currency. Randomization is usually used to break symmetry, as in the token stabilization

protocol, or to make decisions in the absence of any guided choice, for example selection of

pivot element in quick sort. The advantage of using a randomization based approach is that

it achieves high performance because it doesn’t invest resources to inspect the consequences

of choices it makes, However, random resolution of choices make it difficult to estimate the

lower bounds on resources needed to achieve the goal. For instance, for the randomized

token stabilization protocol, it is important to know the probability of stabilization in a

given amount of time (number of steps). The model checking algorithm, modchk-fuzzy, pro-

vides a generic method for quantitative analysis of reachability properties using randomized

schedulers.

The results on sufficiently weak decomposition of the original specification for a

composite system enables for flexible and independent design of subcomponents. Usually,

some parts of the composite system are known and the specification for the entire system is

available and we need a method to generate the sub-specifications for the unknown system.

When the components work concurrently then the problem is two fold, firstly we have to

generate constraints for the behavior of the scheduler and secondly we have generate the sub-

specification for the unknown system under the scheduler constraints. The extended PML
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specifications suit very well for the decomposition because they incorporate the scheduler

constraints as interval bounds on each transition. Thus the use of extended PML allows us

to generate the sub-specification recursively at each transition of the composite system.

We used token based randomized stabilization protocol to see the efficiency of

modchk fuzzy algorithm. Leaving apart the inherent exponential blow up of the system, the

method is competitive with respect to resources and time needed to perform the quantitative

analysis. Moreover the algorithm allows to utilize the symmetry of the system, which

greatly reduces the state space. Token rings are very important for several distributed

protocols, and randomized stabilization protocol is necessary to recover from illegal states

(like more than one token). Therefore it would be interesting to explore the generalization

of symmetry based abstraction approach to see if it reduces the state space for n process

systems. Firstly, the generalization requires the number of different configurations of the

token ring when m out of n processes are active. Two configurations are same if one can

be obtained from another by rotation (relabeling) of processes. This will give an estimate

of the reduction in state space. Secondly, there is need for methods to automate the

process of abstraction and generation of probabilistically bi-similar models of RSSP from

the original model. Another approach to quantitative analysis would be to exploit the trend

in the minimum and maximum probabilities of stabilization to come up with approximate

functions of such measures with respect to n and x, the number of transitions.

To summarize the future work we would like to explore and generalize the results

based on symmetry for such systems as RSSP. We would like to develop a set of bench-

mark problems with nondeterminism where modalities are used to specify the independence

of transitions. Lastly theres need to expand the work to symbolic techniques as explicit

methods are handicapped when it comes to bigger systems from real life scenarios.
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Appendix A

Input Language for PNS

MODULE

s1 : [0..1];

s2 : [0..1];

s3 : [0..1];

s4 : [0..1];

ACTION a;

[] s4=1 ->[a] 0.5 : (s3=1) + 0.5 : (s4=1);

[] s4=1 ->[a] 1.0 : (s3=0) ;

[] s3=1 ->[a] 0.5 : (s2=1) + 0.5 : (s3=0);

[] s3=1 ->[a] 1.0 : (s2=0) ;

[] s2=1 ->[a] 0.5 : (s2=0) + 0.5 : (s1=1);

[] s2=0 ->[a] 0.5 : (s2=0) + 0.5 : (s2=1);

ENDMODULE
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COMPUTE(s4=1, Mu{x}(s1=1 | <a>x));


