Abstract

YANG, KAI. Pair Learning In Undergraduate Computer Science Education. (Under
the direction of Laurie A. Williams)

Anecdotal evidence in industry and academia has shown that pair programmers,
whereby two programmers work collaboratively on the same task on one computer,
can produce higher quality design and code than solo programmers who work alone.
Educatorsin various fields have also found that collaborative work helps students
learn better and allows them to be more confident in their study. Based on these two
findings, pair learning, which is the practice of pair programming with students, was
generated and applied in a computer science class setting.
To validate the effectiveness of pair learning, an experiment was run in a CS1
course a North Carolina State University in the fall semester of 2001. The
experiment focused on freshman and sophomores. Approximately 120 freshman and
sophomores participated in the study. The students registered in two sections of a
CS1 course without knowledge of the experiment. Both sections had the same
instructor, same programming assignments and same examinations. One section
utilized a traditional education style whereby all students worked alone; the other
section followed the pair learning paradigm where all students working with a
partner. Results supported the following findings:
1. Students who followed the pair learning style performed better on the
programming assignments and were more likely to get a higher score on the

examinations.

. A higher percentage of the students who utilized the pair learning style
succeeded in the CS1 class by completing the course with a grade of C or
better.

. Theteaching assistants in the pair learning section had reduced workload,
since students in the pair learning section were more self-sufficient.

. Paired students demonstrated higher-order thinking skills than the students
when compared with the students who worked alone.

. Studentsin the pair learning section were more likely to think far beyond the
programming assignment to applying their knowledge in more challenging
programming contexts.

. Paired students collaborated more extensively with each other; and

collaboration is an important skill for programmers in industry.

Pair Learning In Undergraduate Computer Science Education

by

Kai Yang

A thesis submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Master of Science

COMPUTER SCIENCE

Raleigh

2002

APPROVED BY:

Anniel. Antén, Ph.D. Eric N. Wiebe, Ph.D.

Laurie A. Williams, Ph.D.
Chair of Advisory Committee

BIOGRAPHY
Kai Yang received a Bachelor of Science degree in Computer Science
department from Nankai University, Chinain 1998. After graduating, she stayed in
the same university as an instructor due to her outstanding performance. Having
taught one year, she came to USto join her husband in 1999. In Fall 2000, she

enrolled in the Computer Science department in North Carolina State University.

Acknowledgement

This thesis would not have been possible without the help and support of the
following faculty, colleagues, friends and family. | begin by thanking my advisor,
Dr. Laurie Williams who provided immeasurable assistance throughout my
research. As English is not my first language, my thesis required a good bit of
polishing and she edited my thesis so carefully, even the grammatical errors. |
appreciate her assistance and hope it comforts her to know that | learned a lot from
this process. Laurie is not only my advisor; she is like an older sister. When | met a
problemin life, she kindly to helped me and | am most grateful. There is a Chinese
proverb that characterizes my two years at NC State: “ stay with good people, you
can learn good things.”

My committee members, Dr. Eric Wiebe and Dr. Annie l. Anton were very
generous and patient with me. Dr. Wiebe provided a great deal of statistical analysis
assistance that proved extremely valuable; Dr. Antdn polished my thesis and edited
it.

Ms. Carol Miller and Ms. Suzanne Balik, the instructors of the CS1 course within
which | was conducting my research, were kind and supportive of my research.
Miriam Ferzli, aPh.D. candidate in Mathematics, Science, and Technology
Education department, participated in this research by providing detailed student
observations that were very enlightening.

The teaching assistants worked hard in the labs and the students provided me with

valuable feedback; they were central to this study.

| thank my colleagues with whom | enjoyed working: Ashish, Mayank, Vinay,
Boby, Harman, David, Puneet, Anuja and Prashant.

Special thanks go to my family in China, my Mom, Dad and younger brother. They
asked me about my study progress each time we spoke, always encouraging me to
persevere. Their trust and encouragement were my source of strength and
ingpiration as | completed my research and wrote this thesis. Finally, | thank my
husband for constantly supporting me during the challenging times and for sharing
in my happiness during the times marked by significant progress. Without him, this

thesis would not have been possible.

Table of Contents

Page

LIST OF TABLESttt Vii
LIST OF FIGURES ..o ettt e e eee e e e e e e eeeeenns viii
Chapter L INErOCUCLION.ceeeeeeeeeee ettt e e et e e e e e e e e e e e e e eea e e eeees 1
1.1 RESEAICN IMOLIVALION e et e e e e e e e e e e e e e e 1
1.1.1 The Need for More Computer Science Students.....coovveeeeveeeeeveeeennnnnn. 1
1.1.2 Success Rate in the Beginning Computer Science Course................. 1
1.1.3 PaAil PrOOrAIMIMING - eeeeeeeeeeeee e e e e e eeeeee e e e e e e e e e eeeee e aeeeeeeeeeeeeennaaaaeeeeerennnes 2

L. 1A PAIE LEAMING ceeeeeee e ettt e e e e e e e e et e e ee e e e e e e e e eeeeneeaeeeeeeeennnes 3
1.1.5 Motivation Of thiSTESEAICH..... oot e e 3

1.2 The RESEAICH APDIOBCN ...ttt 4
1.3 Summary of ReEMaiNiNG ChaDEEr'S.o e e eea e 5
Chapter 2 A SUrvey of REIGIEA WOTK ...ovveeee et e e eeee e 6
2.0 ACHVE LBAMNING. ..cceeeeeee et e e e e e et ee e e e e e e e e e eee i eaeaeeeeeeeeeenn 6
2.2 COOPEIAIVE LEAINING ... oo eeeeeeeeee ettt e e e ee e e e e e e e e e eee i eaaeeeeeeeeeeenns 9
G e Tl (o]0 [£=10010 011010 [FFTTTTTTT TR 10
2.3.1 Prior Rescarch in pair programiMingooeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeens 11
2.3.2 Pair programming FACLOIS.o oo eeeeeee e eeee e e e e e e e e eeeens 13

B OV VI ettt et e e e e e e e e e et e e e e e e e e e e ee e e e s eereeaeeeeeenanreeeenaeeerennns 17
3.2 Step One: Class Registration and Pair ASSIGNMENEoeveveeeeeeeeeeeeeeeieeeeeeennns 17
3.2, 0 ClaSS DBST I IION . evv e et et e et e e e et ee e e e e et eeeeeeeteeeeeeeaeeeerenaaeeeeennas 17
B.2.2 PO EVAIUBLION ...ceeeeee ettt e e e te e e e e e ee e e e e e e e e e e eeaeeeerennas 19
3.2. 3 ROIE SWITCNING . et eeeee ettt ettt e e e e te e e e e e ee e e e e e e e e eeeeaeeeerennas 20
3.3Step TWO: Dala COlBCHION ..cvvee oottt ettt e e e e e e e e e e e e e e e e eennns 21
33,1 SUIVEYS ...ttt ettt e e e st e e et e e s s bt e e e e s nnb e e e e eanbre e e e ennees 22
3.3.2 Programiming A SSESSIMIENT .. .eeeeeeeereereeeeeeresesseesaaseererasessesnaseeseenaaseesennns 23
B3 3 FOCUS GIOUD e eeeeeeeee e e e et eee e e e s e eeaeeenreenneennneees 24
Chapter 4 EXPeriment FINGINGScceueeeeeeee e eeee e eeeeeeeeeeeeeeeseeeseesesnassessesasesrennns 25
4.1 QUANTITAEIVE FINGINOS ..t eeeeeeee ettt et e et ee e e e et e e e e e eeaeeeeeenaeeerernaeeeeennanes 25
4.1.1 SUCCESS/ RELENION RAEE ... eeeeeee et ee e e e e e ee e e e rereeeeeeeaneas 25
4.1.2 Performance 0N EXamMINGLIONS.ceuueeeeeeeeeeeeee e e e e eeeeeeeeeeseesesaseesennenens 26
4.1.3 Performance 0N ProjeCt aSSIONMENTScevuueeeeeeeeeeeeeeeeeeeeeeeeereseseesennanens 31

O I N 10 (o [YRR P PTTRTRT 34

4.2 QUAIEAEIVE FINGINGS . .cevteeeeeeee ettt e e e et te e e e e e eeeeeeeeeseesenaeeereenaseeeennaaes 37
4.2.1 Students' Behaviors during Pair LEarNiNG «...cceeeeeeeeeeeeeeeeieeeeeeeeeeeeeennenens 38
4.2.2 Teaching assistant’ SWOIKIOAcevuieeeeee et e e e e e s 39
Chapter 5 Conclusion and FULUIE WOTK.......oe oo e e eie e e e e eeeeeeeeennns 43
D0 FULUIE WOTK vt ee et e et e e et e e e e et e e e e e e e eeeeeeeteseeeeeaseeseenareerenereesennns 46

Appendix A Web-based TOO! SUDIPOI -.....coeeeeeeeee e e e eeee e e e e e aeeeenes 47

A.1 Pair assignmeNt PrOOraMcocuieiverriee e esiessreesieeesreesbeesaeeesreesreesaeeennesenes 47
A.2 Peer Evaluation ProgramM.........c.coceeiieeiieenien ittt s 52
Appendix B Programming ASSESSIMENLE.........cciueerrerrieeseeesieesreesieeesiessressiseesseesnee 55
Appendix C Computer Science / Programming Interests Questionnaire................. 57
REFERENGCES ..ottt e e e e e e e e e s nnnrneees 61

vi

LIST OF TABLES

Page
Table 1 Williams et al: Percentage of Test CaseS Passedoovevvvevveeveneeseenneenne. 13
TADIE 2 SUCCESS FALE.....c.veeureeureeiee sttt 25
Tahle 3 EXAM SCOIES......ceeveeuiirieiriee ettt nne s 26
Table 4 Exam scores of MatChiNg PAITS.......cccvvreerreerreenriereree e 29
Table 5 Programming ASSESSMENE SCOIE.........cvuverveerreenriereseesieesreesre e e 30
Table 6 Summary Of EXaM SCOTES.ccveirirrireerree e 30
Table 7 Programming ProjeCt SCOTES.........ceueiveriiruerieieniesiesieeeesie s 31
Table 8 Project 3 scores of MatChed PAITS.........covvvveeeerierienieneeeee e 33
Table 9 Summaries of ProjeCt SCOMESceiveiieririerieie et 34
Table 10 Internal ConSItENCY VaAlUEcccuvrviieeiieerieeteee e 35
Table 11 Attitude survey scores at the beginning of the semedter........................... 36
Table 12 Attitude survey scores a the end of the semestercccevveeviciiieieenne. 36
Table 13 Course EVAlUBLIONS.cceiiieiiiieiie et 37

Vi

LIST OF FIGURES

Page
Figure 1 Williams et al: Relative Project Completion TIMES.........cccvvvevveervrrcerriene 12
FIQUIE 2 LOGINPAJEcouviiiiriiiiciee s 49
Figure 3 cho0Se 180 SECLIONcoveiiieei e e 50
Figure 4 Student 8SSIgNMENES.coovvreiieerieeseee e 51
Figure 5 Change StUeNnt PAITSccvvirerieeiiie s 52
Figure 6 Peer Evaluation LOQ iN Page..........ccciveviriireeieesieeie e 53
Figure 7 Peer EValUation PagE...........cccvieeieeriieiine e 54

viii

Chapter 1 Introduction

1.1 Research Motivation
"Technology alone doesn’t make for good teaching and certainly does
not guarantee good learning. one must consider how basic,
pedagogical principles and puzzles associated with sound teaching
practice might (or might not) apply to each medium.”

------ Al Andrade, 2002

1.1.1 The Need for More Computer Science Students

With the increasingly popularity of computer technology, more and more
technologists in computer science are required in industry. Since universities are the
major source of propagating computer skills and knowledge, it is critical to help
students be as successful as possible in computer science courses. At many
universities, students need not declare their major during their first year. Asaresult,
many college students take computer science classes before they decide their major.
Therefore, the introductory computer courses play an important role in students
ultimate decision to pursue a computer science degree.

1.1.2 Success Rate in the Beginning Computer Science Course

Educators generally measure the success rate of their classes in terms of the
percentage of students who complete the course (i.e. do not withdraw) with a grade
of C or better. Often this statistic is expressed in terms of the converse, the “DFW”
rate. The DFW rate is the percentage of studentsin a class who receive agrade of D

or F or withdraw from the class. Anecdotally, many educators communicate a

typical DFW rate of about 50% in CSL1 classes. The problem is often caused and/or
exacerbated by the fact that many students have a hard time seeking help when they
do programming assignments. Alternately, some students want to save face by not
asking questions they think may be perceived as “stupid”. Thus, computer science
educators are challenged to increase the overall success of introductory classes, to
evoke students’ interest, to help them learn better, and in turn to decrease the DFW
rates.
1.1.3 Pair programming

Pair programming is a style of programming where two programmers work
side-by-side at one computer, continuously collaborating on the same design,
algorithm, code or test. Oneindividual is called the “driver,” he/she isin charge of
the keyboard and mouse and is recording a design or code implementation. The
other is called the “navigator”, and continuously observes the driver while the driver
programs or doesthe design. It is the navigator’s responsibility to pick out the
tactical and strategic defects. Tactical defects are syntax errors, typos, caling the
wrong method, etc. Strategic defects occur when the driver is headed down the
wrong path —what they are implementing just won't accomplish what it needs to
accomplish (Williams, Wiebe et al. 2002). The navigator also thinks strategically
about the work’ s direction. During their collaboration, the driver and navigator can
discuss the direction of the program, the best algorithm to use, or anything that may
help solve the problem at hand. The brainstorming helps the pair finishes in a faster
and more effective way. We believe the ample communication makes the pair

programming relationship very effective.

Pair programming has been used sporadically for decades (Williams and
Kessler 2002). More recently, pair programming has been popularized as an
important practice of an emerging software development methodology, eXtreme
Programming (XP) (Beck 2000). XP was developed initially by Smalltalk code
developer and consultant Kent Beck with colleagues Ward Cunningham and Ron
Jeffries. “It isalightweight discipline of software development based on principles
of simplicity, communication, feedback, and courage” (Jefferies 1999). The XP
methodology is growing in popularity, though its great success has been reported
anecdotal rather than empirically.

1.1.4 Pair Learning

Computer science courses require a great deal of programming assignments.
Pair learning introduces the pair programming technique in computer science
education so that students learn to program by working with another student a one
computer.

1.1.5 Motivation of thisresearch

As we stated in Chapter 1.1.2, one of the obstacles that prevent students
from getting a grade of C or above is the fact that many students have hard time
seeking help when they do programming assignments, or they are reluctant to ask
others. In response, researchers considered using pair learning to help students help
each other in a non-threatening way. With pair learning, two students collaborate on
one task on one computer; they can discuss between each other. The problem of
waiting for teaching assistant for help can be alleviated. Since the students are peers,

they will not have as much fear of “losing face” or appearing “stupid” to each other.

The objective of this research is to assess and refine the pair learning
technique in computer science education. Specifically, we examine whether the
practice can affect the performance and attitudes of students as they advance
through the computer science curriculum. We assess the following hypotheses:

1 More students that have participated in pair learning in CS1 will
succeed in the class by completing the class with a grade of C or better.

2. Students' participation in pair learning in CS1 will lead to better
performance in examinations (exams are completed solo by all students) in that
class.

3. Students participation in pair learning in CS1 will lead to better
performance on course projects in that class.

4. Students' participation in pair learning in CS1 will lead to a more
positive attitude toward the course and toward computer science in general.

5. Students’ participation in pair learning leads to alower workload for

the teaching staff.

1.2 The Research Approach
To assess the effectiveness of pair learning, aformal experiment was
performed at North Carolina State University in Fall 2000 with a CS1 course. Inthe
experiment, sudents were divided into two sections; one section learned in the
traditional way, while the other section utilized pair learning. Students registered for
their section without knowledge of the experiment. Both sections had the same
instructor, same examinations and same project assgnments. At the end of the

semester, we compared the two groups to investigate our hypotheses.

1.3 Summary of Remaining Chapters

The remainder of thisthesis is organized as follows:

Chapter 2 A SURVEY OF RELATED WORK reviewsthe prior relevant
research conducted by other educators and researchers.

Chapter 3METHODOLOGY describes the details of the experiment we ran
in the CS1 “Introductory to Java’ course a North Carolina State University.

Chapter 4 EXPERIMENT FINDINGS discusses and analyzes the
quantitative and qualitative results we derived from this experiment.

Chapter 5 CONCLUSION AND DISCUSSION summarizes our conclusions
and discusses possible avenues for future.

APPENDIX introduces the tools we implemented to aid our study, including
aweb-based pair-assign program and a web-based peer-evaluation program. The
Appendix also contains copies of the questionnaire and programming assessment

instrument utilized in our study.

Chapter 2 A Survey of Related Work

Many educators and researchers have made contributions to help students
learn better. This chapter surveys the studies and contributions of educatorsin areas

related to pair learning.

2.1 ActiveLearning
Active learning is an educational method that is different from traditional

education. In the traditional approach to college teaching, most class time is spent
with the professor lecturing and the students passively watching and listening. With
active learning, students actively take part in the class besides listening and taking
notes, the instructor’ s responsibility isto direct the students to learn themselves

(Lorenzen 2002).

A simple implementation of the active learning technique is to insert some
short breaks in the traditional lecture. According to Bonwell (Bonwell 1996), there
are five variations of activities that can be done during these breaks:. the pause
procedure, short writes, think-pair-share, formative quizzes, and lecture summaries.
The pause procedure isto stop for awhile every 13 to 18 minutes in the lecture,
allowing the students to discuss among them or catch up with the notes they missed.
With short writes (Angelo and Cross 1993), the instructor asks some simple
questions which ask the student to summarize the material taught in class, and the
students write answers to these questions (answers are not graded). Think-pair-share
occurs the when the instructor asks a question of the class. Students think
individually about the answer first, and then share their answers among neighbors.

Formative quizzes are some short quizzes with the questions similar to those seen

on exams, but the quiz will not be graded. Lecture summaries invite the students to

summarize the lecture so that they can have a global view of the lecture.

Ruhl et a. (Ruhl, Hughes et al. 1987) performed an experiment to examine
the effectiveness of the pause procedure. Inthe control group, students learned in a
traditional way. In the experiment group, students employed a " pause procedure”
every 12-18 minutes. During the pauses, students were allowed to work in pairs for
two minutes to discuss and make up their notes. The instructor did not participate in
the students' discussions. Both the experimental and control groups were asked to
write down everything they remembered in class for three minutes at the end of each
lecture (free-recall). Twelve days after the lecture, the students were also given a 65-
item multiple-choice comprehensive test to measure long-term retention. Their
research lasted two semesters and the results showed that the experimental group
students performed significantly better on the free-recall quizzes and the
comprehensive test. In addition, the difference between the two groupsin the mean

scores was large enough to make an up to two-letter grades difference.

Dr. Richard M. Felder (Felder 1995);(Felder, Felder et al. 1998) has
performed a longitudinal study in the Chemical Engineering department at North
Carolina State University. He performed an experiment in the Fall 1990 semester in
an introductory chemical engineering course in which 123 students were enrolled.
With the experimental group, he used several active learning techniques. He
generally did not teach the class for more than 15 minutes without giving an
exercise of some sort or a gtretch break. Occasionally, he ended a period with a

“one-minute paper,” (Angelo and Cross 1993) from which he elicited responses and

tailored his lecture accordingly. In “one-minute paper”, at the end of class, the
instructor stops the students two or three minutes early and asks students to respond
to some variation on the two questions briefly, “What was the most important thing
you learned during this class?’ and “What important question remains
unanswered?’ By performing this, on one hand, students can recall the class and
review it to answer each question, meanwhile they can learn how experts distinguish
main points from the details from the feedback from instructorsto their answers; on
the other hand, instructors can decide whether any mid-course corrects or changes
are needed, which will help the instructors teach better next time. Additionally,
Felder asked the students to complete the homework in teams. As comparison, he
picked a control group, which was constituted of 189 students enrolled in the same
classinthe Fall 1992 semester. The control group was taught in the traditional way.
He hypothesized that the experimental group will learn better, i.e. have higher
retention rate, more positive attitudes and greater confidence levels in their problem-
solving skills. To assess the hypothesis, he collected a great deal of dataincluding
demographic data, SAT scores, first-year grade-point averages, etc. astheir
background information; course grades, statistics on persistence in the chemical
engineering curriculum, etc. astheir subsequent information. His study indicated
that the experimental group outperformed the comparison group on the retention
rate, graduation in Chemical Engineering and many more graduates chose Chemical

Engineering as their major to pursue advance degrees.

Active learning is ateaching strategy. It can refer to anything studentsdo in

a class other than listening to the instructor and taking notes. It includes asking and

answering questions, discussing and explaining concepts, formulating and solving
problems, summarizing lectures, brainstorming lists, and many other activities. The
work may be done by individual students or students working in groups. (Haller,

Gallagher et a.)

2.2 Cooperative Learning

Cooperative learning is another instructional methodology. In cooperative
learning, students work in ateam to accomplish a common goal (Slavin 1990).

MacGregor (MacGregor 1998) investigated an instructional approach that
emphasized both collaborative techniques and structured design concepts. The
students were taught programming in an individualistic-traditional or ateam-
structured way. He performed an experiment with thirty-two high school students
(juniors and seniors) enrolled in two sections of a computer course. The two
sections were taught by the same instructor. His results revealed the team-based
structured programming methodology significantly outperformed the
individualistic-traditional methodology when comparing students programming
performance and attitude toward programming. He also found that this approach had
significant positive correlations between students' ability to design programs and
their overall programming performance and attitude toward programming. He
provided some qualitative results. the team-based groups spent more time on the
planning phase and discussions happened among them; the individual group spent
more time debugging their programs. The design phase is very important in the

programming; spending more time in design phase will generally save considerable

time in debugging. MacGregor’s study confirmed Lemos' study (Lemos 1979) that
team-based approaches save time in debugging programs.

Priebe (Priebe 1997) aso performed research on second-semester university
computer science students. One group of students received the traditional lecture
while the other group participated in cooperative learning for the same number of
hours as the previous group. His three hypotheses follow: (1) the cooperative
learning students would do better in concept comprehension than the control group;
(2) cooperative learning students would have improved logical thinking skills than
the control group students and (3) the cooperative learning students would have
better class attendance rates. He used statistical methods to test his hypotheses. The
results revealed no difference between the cooperative learning and control groups
in concept comprehension or logical reasoning ability. However, the cooperative
learning group did have significantly better attendance. Priebe also emphasized how
team-oriented activities in the classroom modeled real-world teamwork in industry.
He believes that the group setting fostered positive peer pressure that led to neater
and more complete assignment submissions. He, too, commented on the higher level
of self-teaching that occurred in the cooperative group setting.

Cooperative learning is a special form of active learning. In cooperative
learning, students are assigned to achieve one goal together. This could happen

either in class or outside of class.

2.3 Pair Programming

Pair programming is a form of cooperative learning, since in pair

programming, two students work in ateam to achieve a common problem.

10

2.3.1 Prior Research in pair programming

In 1998, Nosek performed an experiment with 15 experienced system
programmers to work on a challenging problem (Nosek 1998). Five programmers
worked individually, and 10 programmers worked in pairs. He hypothesized the
following: 1) programmers working in pairs will produce more readable and
functional solutions; 2) pair groups will take less time on average to solve the
problem; 3) pair programmers would be more confident about their work; 4) more
experienced programmers would perform better than less experienced programmers.
He employed several statistical teststo assess his hypotheses. The programmers
working in pairs experienced a higher readability and functionality score. They were
also more confident and enjoyed the programming more than the group comprised
of individual programmers. In other words, hypotheses 1, 3 and 4 were supported.
On average pair programmers spent less time than the individual programmers,
though the result is not Satistically significant.

Although Nosek’s study showed that pair programmers performed better
than individual programmers, his study was somewhat narrow in scope. He drew his
conclusions from only 45 minutes of pair programming time with only 15
experienced programmers. Williams (Williams 2000), performed a larger pair
programming experiment; she studied 41 senior software engineering studentsin a
software engineering class. In that experiment, she divided the 28 studentsto form
the collaborative/pair groups and 13 students to be in the group comprised of
individual programmers. Student grade point averages (GPA) were used as a basis

to ensure the groups were academically equivalent. More tasks were assigned to

11

students in the paired group to ensure that the overall workload was even between
the both experimental subject groups.

She measured the time each group spent to finish the given task as well as
the code quality. In Figure 1, we see that as a pair, the time pair programmers spent
is less than that by individual programmers. But when we counted the pair as two
people, then we see in program 2 and program 3, the pairs used essentially the same
amount of time to finish the task. In program 1, since the students collaborated with
each other the first time, they had a“jelling” period, when they need to become
familiar with each other and with working in a pair. As aresult, the pairs took 60%

more time than the individuals.

Relative Project Completion Times

100.0%
80.0%
60.0%
40.0%
20.0%

0.0% T T
Program 1 Program 2 Program 3

O Individuals B Pairs

Figure 1 Williamset al: Relative Project Completion Times

Although the pairs did not outperform the individuals in the time, they did a
better job in achieving higher quality code than the individual groups. They had a
higher rate of passing the automated tests made by the teaching staff. The figures

arelisted in Table 1;

12

Table 1 Williams et al: Percentage of Test Cases Passed

Individuals Pairs
Program 1 73.4 86.4
Program 2 78.1 88.6
Program 3 704 87.1
Program 4 78.1 94.4

The experiment indicated that pair programming could produce higher
quality code than the individual programmers given around the same amount of
time.

More recently, educators at the University of California-Santa Cruz have
performed a pair programming experiment in an introductory computer science
undergraduate programming course (Bevan, Werner et a. 2002). They have also
found that the experimental group students, who followed the pair programming
technique had a higher retention rate and their performance on programming

assignments was better than the control group (McDowell, Werner et al. 2002).

2.3.2 Pair programming factors

There are several factorsthat come into play in pair programming: pair
pressure, pair share, pair review, pair jelling, pair-think, pair-relaying (Williams
2000). We focus our discussion on the first four factors below.

2.3.2.1 Pair Pressure

13

Pair programming places a positive “pair pressure’ on each team member in
the pair (Williams, Kessler et al. 2000). From the observations we had in our
experiment, we saw all the student pairs working all the time: the driver typed the
code; the navigator was aert and helping. None of them checked their email or did
something unrelated to the lab, since no one wanted to let their partner down
(Williams 2000).

Meanwhile, from the feedback the pairing programming students gave, a lot
of the students were prepared before they come to the lab. As one pairing student
said “1 don’'t want to let my partner down”. Both Nosek and Williams' studies
indicated similar findings.

2.3.2.2 Pair Share

“ Put a less experienced person together with a more experienced

person, and the former will be more likely to stretch.” (Leuf and

Cunningham 1999)

In the experiment we conducted in the study, some students learned
programming when they were in high school; others did not have any knowledge
about programming. So when they paired up with each other, alot of students
provided feedback that they learned alot from the other partner. They wanted to
work or collaborate with their partner again and/or they enjoyed working with each
other. One student wrote, “It was a great pleasure having [name] as a lab partner.
She shared her past experiences with Java programming with me which helped me
understand programming and compiling a lot better.” Another said “[name] was

always prepared, and because he had previous experience, he helped me learn new

14

things.” An interesting thing is that sudents who were said to be more experienced
did not realize they were only outputting. One of such a student said, “My partner
also helped me point out something | waswrong.” This may confirm the
experiences Jeffries (Williams, Kessler et al. 2000) reported. He worked with a
least-experienced developer, while at the end he felt the junior programmer helped
him.

2.3.2.3 Pair Reviews

“ As a testimonial, in the last six months before launching, the only

code that caused problems was code written solo.” --- (K. Beck,

1999)

Review methods can be described as inspections, walk-throughs, and
personal reviews. Humphrey (Humphrey 1995) states “Doing reviews is the most
important step you can take to improve your software engineering performance.”
When programmers work in pairs, one of the responsibilities of the navigator isto
review the code the driver iswriting. If he or she finds any errors and has different
opinions, they will discuss it immediately. So in pair programming, the navigator
reviews the code continuously. As aresult, the code written by pair programmers
can be considered to have been reviewed.

2.3.2.4 Pair Jdlling

In pair programming, two programmers work together on onetask. They are

like one, since they need to “unify” their thoughts. They are also equal, since they

switch “driver” and “navigator” roles often.

15

But in the normal case, the programmers have worked alone for awhile. So
as two individuals, when they work together, they need to spend some time to adjust
to the other’ s working habits, programming style, etc (Williams, Kessler et al.
2000). In industry, the adjustment period is historically hours or days, depending on
the individuals. In the university, we could also see from Williams' study above, for
the first assignment, the pairs finished in shorter elapsed time and had better quality,
but their total working hour is 60% more than the solo group. Thisisalso truein our
study, for the project assignments and the exams, the paired students outperformed

more than the solo students in the second time over the first time.

16

Chapter 3 Methodology

3.1 Overview
In the Fall 2001, aformal experiment was run in a CS1 course, Introduction

to Java, at North Carolina State University. The purpose of this study was to assess
the efficacy of pair learning for improving students’ learning success including
course retention rate, examination performance, project performance and attitudes
of computer science. The experiment involved three steps. First, the students
registered for one of the two CS1 course sections. In one section, students utilized
the pair learning technique and worked in pairs in the laboratory; in the other
section, students worked alone in the laboratory. When they signed up for the course
section, students had no knowledge of the experiment. In step two, we collected all
the students' data, including their ten lab assignment scores, three exam scores,
three project scores and other background information, such astheir gender, SAT-
Math score, and programming assessment score. The programming assessment was
a short quiz with eight questions that was given during the first lab period. It will be
introduced in detail in Section 3.3.2. In last step, statistical analysis was performed
on the data to evaluate the pair learning effect on the students. The first two of
these steps will be discussed in this chapter. The dataanalysis will be discussed in

Chapter 4.

3.2 Step One: Class Registration and Pair Assignment

3.2.1 Class Description

The course was taught with 50-minute lectures twice a week and one three-

hour lab each week. Students attended labs in groups of 24 or less with other

17

studentsin their own lecture section. The labs were closed labs, whereby students
did their assignments in the allotted time and place. The teaching assistant often
started out with a short lecture on the assignment and was then available for
questions during the lab period. There were two midterm exams, one final exam, ten
lab assignments, and three programming projects. The programming projects were
primarily done outside of the closed lab.

The course is a service course, and is therefore taken by students throughout
the university and life-long students from industry to improve their programming
skills. Most students are from the College of Engineering. Additionally, most
students are freshmen and sophomores.

In the Fall of 2001, there were 112 students enrolled in the solo lecture
section (later called “section™), and 87 in the paired lecture section (later called
“section”). For each course section, students registered into five lab sections. There
were five paired and five solo laboratory sections in total. Both lecture sections took
the same class with the same instructor at different times, had the same lab
assignments, the same programming projects and the same midterms and finals.
(The exams were given to the second section immediately after the first, leaving
little time for studentsto tell the second section about the exam content.) If the total
number of the students in a paired lab was odd, then a group of three students would
work together: no students worked alone. If a student’s partner did not show up after
ten minutes of the lab starts, the student would be assigned a new partner by the

teaching assistant.

18

The students were assigned to collaborate with a new partner every two or
three labs. Two benefits of this switching are that students would not get tired of or
have ongoing difficulty interacting with a particular partner and they could
collaborate with several students throughout the semester. Additionally, the teaching
assistant could evaluate the contributions of each student based on the opinions of
four partners (see Section 3.2.2). For later reference convenience, we call each
period with the same partner a “rotating cycle’. The rotating cycle of the 10 labs
were: lab1-3,lab4 -6, lab 7 -8 and lab 9 — 10. A web-based partner assigning
tool was built as part of this research; the students did not choose their own partner.
Thistool will be explained in detail in Appendix B.

Before each lab, the teaching assistants went to the pair assign website to
obtain the pair assignment for the students in their section(s). During the lab period,
the teaching assistants made any changes according the students' presence. For
example, he or she can re-assign pairs and mark the students who are absent. At the
end of the lab, the students are required to turnin their lab assignment, and the
teaching assistant will give a score of 0 — 100 according to the program’'s

performance.

3.2.2 Peer Evaluation

Computer science instructors are often concerned that when students
program in pairs, some less motivated students may take advantage of their
partner’s work. To alleviate this concern, we required the studentsto complete a

peer evaluation for their partner a the end of each rotating cycle. The peer

19

evaluation was administered via a web-based tool, which will also be explained in
detail in Appendix B.

There are five quantitative questions and one qualitative question in the
evaluation. The students rated their partner a scale from 0% to 20% for the first five
quantitative questions, with a maximum additive score of 100%. The questions are
listed below:

1. Did your partner read the lab assignment and preparatory materials
before coming to the scheduled lab?

2. Did your partner do their fair share of the work?

3. Did your partner cooperatively follow the pair programming model
(rotating roles of driver and navigator)?

4. Did your partner make contributions to the completion of the lab
assignment?

5. Did your partner cooperate?

6. Write down any comments you have.

Each student’ s lab grade was multiplied by the value of their average peer
evaluation score. For example, if a student had a lab score of 90, and he or she got a

70% in the evaluation, then his or her final lab grade is (90 * 70%) = 63.

3.2.3 Role Switching

In the lab, we periodically observed one student in the pair spending too
much time driving. One important factor of pair programming is the two
programmers are equal. They should make the same contributions to the task

(Williams, Kessler et al. 2000). Therefore in Spring 2002, we add a new feature to

20

the pairlearning lab — a kitchen timer. The timer was set for 20 or 30 minutes.
When the timer dings, the student pairs were required to switch the driver and
navigator roles. Thus, both students in a pair are assured an opportunity to be the
driver.

We conducted a focus group with the students to obtain their feedback about
pair learning. In the focus group, students extensively discussed the switching role:
how much time the pairs should be given before being asked to rotate. They asserted
that we needed to make the time period more flexible. One student said, “We paid
the same tuition, we should get the same amount of time to get on the computer.”
Another said, “We will actively rotate among ourselves, the timer is disturbing.”
Another mentioned that there were some students that like to be the driver all the
time and were not very nice about switching. These students would not rotate until
the teaching assistant asked them to do so. After some discussions, they agreed the
need to rotate should be mandatory, but the time can be flexible to be 20 or 30

minutes or depending on the pair themselves.

3.3 Step Two: Data Collection

To assess the efficacy of pair learning to the CS1 course, we collected a
significant amount of data about the students. This data can be divided into two
categories, background and performance data. First, we collected background data
for each student. This background dataincludes: student name, gender, race, class,
major, section number, and SAT-Math score from the NCSU registration and
records office and from an online class archive. Because we were collecting

background information on the students, we obtained permission to collect the data

21

from the NCSU Institutional Review Board (IRB). The IRB declared the project
exempt from surveillance, however students did voluntarily sign arelease form
allowing usto collect the data. Another bit of background information we collected
was the students' programming background based on a programming assessment we
administered, as discussed in Section 3.3.2.

The data in the performance category was collected from the studentsin lab
or in class. This data can be further subdivided into sub-categories. (1) quantitative
data from students' tests or programming assignment and (2) qualitative data
achieved from lab observation or feedback from students and teaching assistant. The
quantitative data include: score of labl through lab 10, two midterms and one final
exam scores, three project assignment scores, final grade, peer evaluation feedback
score (which was collected by a web-based program), attitude survey scores and
programming assessment scores, which will be discussed in Section 3.3.1 and
Section 3.3.2, respectively. The qualitative data included the comments students
provided in their peer evaluations, teaching assistant feedback, lab observations

about the students’ behavior, and a focus group, discussed in Section 3.3.3.

3.3.1 Surveys

To assess student attitudes toward computer science, they were required to
complete a questionnaire at both the beginning and end of the semester. The
questionnaire was developed to measure attitudes towards computer programming
and computer science in general. This instrument was derived from the Fennema-

Sherman mathematics attitudes scales (Fennema and Sherman 1976), modified to

22

reflect programming and computer science rather than mathematics (Wiebe 2001).

The attitude survey is constituted of five parts:

Confidence in Learning Computer Science;
o Attitude toward Success in Computer Science;
» Computer Science as a Female Domain;
» Usefulness of Computer Science Scale; and
» Effectance Motivation in Computer Science Scale.

There were 57 questions in the above five categories and an additional five
questions asked about the students' age, gender, race and background information.
For each of the 57 questions, there are five possible answers. a) strongly agree, b)
agree, but with reservations, c) neutral, neither agree nor disagree, d) disagree, but

with reservations and €) strongly disagree.

3.3.2 Programming Assessment

Due to the fact that many students (but not all) take a considerable amount of
programming courses in high school, we administered a programming assessment
for the students to complete during their first lab. Ms. Carol Miller, the instructor of
the CS1 course, provided the programming assessment. It was focused on basic
understanding of programming knowledge. This enabled us to gage know how
much programming knowledge the students had before they enrolled in the CS1
course. We used the results of this instrument to evaluate the academic equivalence
of the paired and the solo groups.

The programming assessment consisted of eight questions about the basic

concepts of programming language. From the programming assessment score, we

23

could see how much knowledge a student had before he/she began the CS1 course.
Each teaching assistant would score the programming assessment for the studentsin

their own lab.

3.3.3 Focus group

To obtain additional qualitative feedback from students and teaching
assistants we also organized one student focus group and one teaching assistant
focus group. In the student focus group, students shared their thoughts about pair
learning and how it could be improved. Seven students participated in the student
focus group: three white male, three foreign students, one African American. In the
teaching assistant focus group, the teaching assistants shared their experiences about

pair learning. There were four teaching assistants participated it.

24

Chapter 4 Experiment Findings

Our study was mostly concerned with the performance of beginning
students. Therefore, we focused on analyzing the scores of the freshman and
sophomores. In our analysis we thus excluded all the students who were in their
junior or senior year or were graduate sudents. Additionally, we excluded the
students who took the CS1 course for credit only or audited the class, surmising
those students were not as motivated to excel as other students. This reduced our

sample sizeto N = 69 in the solo section and N = 44 in the paired section.

4.1 Quantitative Findings

In our experiment, we measured the success/ retention rate, examination
scores and project scores of the experimental (pair learning) and control (solo)
groups.

4.1.1 Success / Retention Rate

Historically, beginning Computer Science classes have a low success rate,
often cited informally as about 50% nationally. We evaluated whether pair learning

can help improve the success rate of the CS1.

Table 2 Successrate

Section | C and above | Below C | Success Rate
Pair 30 14 68.18%
Solo 31 38 44.93%

As shown in Table 2, we observed a 45% success rate in the solo section. In

the paired section, 68% of the students completed the course successfully. A Chi-

25

Square test showed a significant difference between the two sections (x> = 5.849, p<
0.016). We have hypothesized that alarger percentage of students would finish the
CS1 course with agrade of C or above in the paired than those in the solo section.
These results indicated that the difference in success rate between the two sections
is statistically significant. We, therefore, state that pair learning is a valuable
education technique for helping beginning students succeed in their early computer

science academic careers.

4.1.2 Performance on Examinations

We hypothesized that the students in the paired section would have higher
examination scores than the solo students.

Asshown in Table 3, on average, the paired section performed than the solo
section in the examinations. When we calculated the statistics, we eliminated all the
0 scores; we did not count the students who did not take the exams. We can see the
students in paired section outperformed than the solo students. But, we also want to
analyze whether the difference is made because of the application of pair learning or

for some other reason.

Table 3 Exam Scores

Exam Paired Paired Solo Solo
Mean | Standard | Mean | Standard
Deviation Deviation
Midterm 1 78.7 11.8 73.4 13.8
Midterm2 | 65.8 24.2 49.5 27.2
Final 74.1 16.5 67.2 18.4

As stated earlier, students chose the course sections without knowledge of

this study. In theory, we hoped this would yield academically equivalent groups.

26

We performed statistical tests to assess the academic equivalence of the two
sections, i.e. the studentsin both sections have similar aptitude. Our basis for
comparison was their SAT-Math (SAT-M) scores and their scores on the

programming assessment exam.
4.1.2.1 Academic Equivalence and the SAT-M

The students in the paired group had a mean SAT-M score of 662.10 while
the solo section had a mean score of 625.43. The One-Way ANOV A (assuming
equal variances between the two groups) revealed that the difference was
statistically significant (F (1, 101) = 5.19, p <.018). An ANCOVA further revealed
acorrelation between SAT-M scores and exam scores (p < .0001 for al the three
exams). Thisindicated that we needed to use the SAT-M as a covariate to guarantee
the academic equivalence in the examinations. When using SAT-M as a covariate,
an ANCOV A test showed there was a significant difference between the two
sections in midterm 2 (F(1, 79) = 30.94, p< .036), but does not show a significant
difference between sections with regards to midterml or final exam scores (F(1, 91)
= 24.70, p<.335 for midterm 1; F(1, 71) = 25.96, p<.448 for final). Based on these
results, we can state that the paired students did perform better on the exams, but the
difference was only statistically significant for one of three exams. According to
Williams (1999), there isa pair jelling period when the pair programmers began to
work together. Pair learning was a new concept for our students. They also need to
have a learning process for pairing with another sudent. Perhaps this explains
why, the difference is in the first exam was not statistically significant. In the second

exam, the students are more familiar with the pair learning protocol, so they began

27

to be used to it. As aresult, the difference in the second exam is statistically
significant.

4.1.2.2 SAT-M as matching criteria

When we run the ANCOV A test for the exam scores with SAT-M asthe
covariate, we assumed that the exam scores were distributed normally. However,
when we ran the Shapiro-Wilk test to test the normality of the three exams, the
results (p <.0001 for midterm 1, p <.0001 for midterm 2, p < .006 for final exam)
indicated that the exam score distributions were non-normal. The non-normal
distribution suggests that non-parametric statistical tests would be more appropriate
for evaluating the relationship of student learning skills and test scores, with SAT-M
asacovariate. However, there is not a non-parametric equivalent for an ANCOVA.
For that reason, an analysis based on post-hoc matched pairing based on SAT-M
was performed. Within these groups, a Mann-Whitney U test could be used to

examine differences in exam scores.

In order to do this we sorted the students in each section based on their SAT-
M score. For the analysis, student results were then paired, one from the paired
section and the other from the solo section. The pairs consisted of students having
the same or similar SAT-M scores (the difference between the two scoresis less
than or equal to 10). For example, if a student with SAT-M of 750 in one section
was picked out, then we chose a student whose SAT-M score is between 740 and
760 from the other section to form a pair with the previous student. If there are
more than one student in the other group was qualified, then we randomly picked

one.

28

We calculated the average scores and did statistical analysis in the groups we
generated. Table 4 indicated that for the three exams, the paired section performed
better than the solo section on average for the matched pairs. To test the statistical
analysis, we ran the Mann-Whitney U test to assess whether the difference between
these paired and solo sections was statistically significant. The results indicated (for
midterm 1, U = 229.000, z=-2.345, p < .019; for midterm 2, U = 189.000, z= -
2.042, p <.041; for final exam, U = 193.500, z = -1.140, p < .254) that the

differences of midterm 1 and 2 between these two sections are statistically

significant.
Table 4 Exam scores of matching pairs
Paired Mean | Paired Std. Solo Mean Solo Std.
Deviation Deviation
Midterm 1 78.296 11.4550 70.148 12.1424
Midterm 2 60.667 23.6251 43.208 30.2439
Final exam 70.500 17.1207 62.864 22.2867

4.1.2.3 Academic Equivalence and the Programming Assessment Score

We tested the statistical significance of the difference in programming

assessment scores. The main purpose of this assessment was to examine the

differences in the programming background the students had had before they took

the CS1 course. Table 5 shows that the mean score of the programming assessment

for paired section was higher than the solo section. We ran at-test to test the

statistical significance of the difference between these two sections. The results (t =

1.807, p< .080) showed that the difference is not statistically significant, assuming

the variances are not equal. So from the programming background point of view, the

29

two sections of students are academically equivalent to a statistically significant

level.

Table 5 Programming Assessment Score

SECTION N Mean Std. Deviation
Solo 58 1.7716 1.63988
Pair 23 2.6957 2.22455

Since the two sections of students have similar programming ability, and the
distribution of the tests are non-normal, we ran a non-parametric test Mann-Whitney
U test to assess whether the difference between the two sections are different. The
results (U = 944.500, z=-2.201, p <.028 for midterm 1; U = 189.000, z=-2.042, p
< .041 for midterm 2; U = 632.000, z = -1.693, p <.090 for final exam) indicated
that the difference between the two sections in midterm 1 and midterm 2 are

statistically significant, while thisis not the case in the final exam.

Table 6 Summary of exam scores

Statistically Significant?
Examinati | Mean Mean | ANCOVA/ | SAT-M Mann-
on Paired Solo SAT-M Matching | Whitney U
test
Midterm 1 | 78.7 73.4 No Yes Yes
Midterm 2 | 65.8 495 Yes Yes Yes
Fina 74.1 67.2 No No No

We hypothesized that pair programmers would perform better on

examinations. From the above experiment findings (see table 6), we can see that in

general pair learning did help the beginning studentsto earn a better score on their

30

examinations, although there is one exam for which the difference is not satistically
significant.

4.1.3 Performance on Project assignments

As stated in Chapter 1, we hypothesized that the students in the paired
section would do better in the project assignments than the students in solo section.

There were three projects in the Fall semester. Table 7 shows that, on
average, students in the paired section performed better on two of the three project
assignments. Again, when we performed calculations, we eliminated all the O
scores; if astudent did not hand in the projects, his or her score was not counted in

the calculation.

Table 7 Programming Project Scores

Project Paired Paired Solo Solo
number Mean | Standard | Mean | Standard
Deviation Deviation

Project 1 94.6 5.3 78.2 26.5

Project 2 86.3 19.7 68.7 33.7

Project 3 73.7 27.1 74.4 29.0

4.1.3.1 Academic Equivalence and the SAT-M

Aswe stated in 4.1.2.1, the difference between the two sections on the SAT-
M score was statistically significant (F (1, 101) = 5.19, p < .018). Therefore, we did
an ANCOV A test to find out whether there was a correlation between projects and
the SAT-M scores. The results showed that for project 1 and project 2, the
correlation between the project scores and SAT-M scoreis not statistically
significant, while for project 3, the correlation was statistically significant (F (1, 69)

=7.186, p <.009). Thisindicated that we needed to use the SAT-M as a covariate

31

for the project 3 to guarantee the academic equivalence in the project 3, while for
the other two projects we only need to run them without considering covariance.

First, for the project 1 and project 2, we needed to test the normality of the
grade distributions. So we ran the Shapiro-Wilk test to test the normality of the first
two exams. The results (for project 1, statistic = .704, p < .0001; for project 2,
statistic =.778, p < .0001) indicated that the distributions of project 1 and project 2
were not normal.

Second, since the distribution of the projects were not normal, we ran anon-
parametric test Mann-Whitney U test, and the results (U = 882.500, p < .024 for
project 1; U = 715.000, p < .160 for project 2) showed that the difference between
the two sections on the project 1 is statistically significant; while it is not
statistically significant for project 2.

Third, for the project 3, since the SAT-M affects the results of project 3, we
ran an ANCOVA test using the SAT-M as the covariate, project 3 scores asthe
dependent variable, section number as the fixed factor. The results (F (2, 69) = 7.19,
p < .0562) showed the difference between the two sections on project 3 after

covariate by SAT-M is not statistically significant.

4.1.3.2 SAT-M as matching criteriafor project 3

From the results in Chapter 4.1.3.1, we knew that SAT-M score did not
significantly affect the project 1 and project 2 scores, so we only needed to run the
ANCOVA test for the project 3 scores with SAT-M asthe covariate. During this
analysis, we assumed that the project 3 scores were distributed normally. However,

when we ran the Shapiro-Wilk test to test the normality of the project 3, the results

32

(statistic = .840, p < .0001) indicated that the project 3 score distribution is non-
normal. As was done with examination scores in Chapter 4.1.2.2, a post-hoc
matched pairing based on SAT-M was created between paired and solo groups.
With these groups, a Mann-Whitney U test could be used to examine differencesin

exam Scores.

Again, when we did the calculation, we eliminated al the Os. Table 8
indicated that the project 3, paired section did not perform better than the solo
section on average for the matching pairs. To test the statistical analysis, we ran the
Mann-Whitney U test to assess whether the difference between these paired and
solo sections are statistically significant. The results indicated that the difference

between these two sections is not satistically significant.

Table 8 Project 3 scores of matched pairs

Paired Mean | Paired Std. Solo Mean Solo Std.
Deviation Deviation

Project 3 69.6522 30.18520 75.7717 27.00178

4.1.3.3 Academic Equivalence and the Programming Assessment Score

Same as we stated in Chapter 4.1.2.3, we also use the programming
assessment score as the covariate for the three project scores. Since we knew from
4.1.2.3, in the programming background point of view, the two sections of students
are not satistically significant different based on the programming assessment. The
distribution of the tests was non-normal, so we ran a non-parametric test Mann-
Whitney U test to assess whether the difference between the two sections was

different. The results for project 1 and project 2 has been provided in Section

33

4.1.3.1, and the results for project 3isU = 715.000, p < .662, which indicated that

the difference between the two sections in project 3 is not satistically significant.

Table 9 Summaries of Project Scores

Statistically Significant?
Project | Mean | Mean | ANCOVA/ | SAT-M Programming
Paired | Solo | SAT-M Matching Assessment
Project | 946 |782 |Yes N/A Yes
1
Project | 86.3 |68.7 | No N/A No
2
Project | 73.7 |74.4 | No No No
3

We hypothesized that paired students would perform better on programming
assignments. From the above analysis, we see that pair learning did help students
perform better on their programming assignments. However, dueto the fact that the
lower level students dropped out of the class in the solo section, which resultsin a
higher average of the solo section, the difference between the paired students and

solo studentsin only half of the projectsis statistically significant.

4.1.4 Attitude

As stated in Chapter 1, we hypothesized that the students in the paired
section would have more positive attitudes towards the computer science major than
the solo section.

To evaluate the effect of the pair learning on the attitude of students, the
students completed a questionnaire as discussed in Chapter 3.2.3. For our analysis,
we gave a value to every answer for the questions. For example, answer a) strongly

agree (value=5); answer b) agree, but with reservations (value = 4); answer c)

neutral, neither agree nor disagree (value=3); answer d) disagree, but with
reservations (value=2); answer €) strongly disagree (value=1). Thisistrue for the
positive questions.

There were also some negative questions, for example, “1’m not good at
programming”. For those negative questions, we reversed the value of their answers.
For example, if a student’s answer for the negative question is a) strongly agree,
then the corresponding value is 1 instead of 5; if a student’s answer isb) agree, but
with reservations, then the corresponding value is 2 instead of 3 and so on.

We desired to summarize the students’ attitudes by compiling student results
into subscales. Dr. E. N. Wiebe (personal communication, Mar. 26, 2002) provided
the Cronbach Coefficient Alphatest data (seetable 10) to measure the internal
consistency of each of these five subscales in the attitude survey. The assumption
was all of the questions within a subscale (for example, the Confidence subscale)
measured the same attribute and therefore individuals should answer all of the
questions within the subscale similarly. Cronbach Coefficient Alpha measures this

level of consistency. If the value on thistest isover 0.8, it is considered avalid

instrument.
Table 10 Internal Consistency Value
Subscales Test Value | Cronbach Coefficient Alpha
Confidence 0.91
Attitude toward Success 0.86
Female Domain 0.83
Usefulness 0.91
Effectance M otivation 0.90

35

Because we proved internal consistency, we could add the students' answers

for each question in asubscale (see Table 11 and 12). Table 11 displays the values

the students did at the beginning of the semester; Table 12 displaysthe values at the

end of the semester. We ran a non-parametric analysis of variance (Mann-Whitney

U). The test indicated that there was no significant difference in any of these

categories between the paired and the solo lecture sections (p > .217 for al five

categories) either at the beginning or end of the semester. From these results, we

could not conclude that pair learning in the CS1 course helps the students have a

more positive attitude towards computer science solely. However, we can see the

trend that all the students had higher confidence at the end of the semester than the

beginning of the semester.

Table 11 Attitude survey scores at the beginning of the semester

Section Paired Paired Paired Std. | Solo Solo Solo Std.
Sample Mean Deviation | Sample | Mean Deviation
Number Number
(N) (N)
Confidence | 66 26.98 10.001 98 29.52 9.497
Success 65 21.65 7.688 97 20.92 6.819
Female 66 15.80 5.393 98 14.89 5.197
Usefulness | 66 23.20 7.814 96 23.82 8.823
Effectance | 66 28.62 9.566 95 29.12 8.606
Table 12 Attitude survey scores at the end of the semester
Section Paired Paired Paired Std. | Solo Solo Solo Std.
Sample Mean Deviation | Sample | Mean Deviation

36

Number Number

(N) (N)
Confidence | 50 29.22 13.140 54 31.93 12.700
Success 50 23.96 8.635 54 23.35 8.414
Female 50 17.34 6.699 53 15.62 6.464
Usefulness | 50 28.46 12.551 53 27.51 10.392
Effectance | 50 29.90 10.531 53 31.11 10.994

We also examined the NCSU course evaluations related to the students

attitude. The only data available on the course evaluation was a mean score, so ho

statistical evaluation could be performed. On the course evaluation, alisan

unfavorable score and a5 is a very favorable score. As shown in Table 13, students

did feel more favorable in the paired section, though the instructor, material and

evaluation artifacts were identical:

Table 13 Cour se Evaluations

Paired | Solo
Mean | Mean
Cour se Effectiveness 3.97 3.58
Instructor Effectiveness 4.20 3.69
Classroom is|nstructiveto L earning 426 | 4.26

We hypothesized that pair programming would cause the students to have

more positive attitudes about computer science. From the above analysis, we cannot

support this hypothesis.

4.2 Qualitative Findings

To better study the pair learning technique in the labs, we observed paired

and solo labs sessions. Following are the observation results we collected during the

37

Fall 2001 and Spring 2002 semesters. In the Fall 2001 semester, we observed
students not rotating the roles of driver and navigator when they programmed. Asa
result, there were students who did not have an opportunity to be the driver. To
avoid this, in Spring 2002 semester, each lab was equipped with a kitchen timer.
Teaching assistants set the timer for 20 or 30 minutes. When the timer went off,

students were required to rotate roles.

4.2.1 Students Behaviors during Pair Learning

In the paired section, we observed a great deal of discussions among the
students. Student pairs brain stormed with each other to solve their programming
assignments. Since they tended to figure things out amongst the two in the pair, they
rarely asked the teaching assistant questions. If they did, the questions were mostly
logistical in nature; for example, how they can improve more upon their programs
instead of operational questions like how to create a new directory. Most of the pairs
switched the “driver” and “navigator” roles when the timer went off or when they
came to a certain point shortly after the timer went off. Few pairs were reluctant to
change. But the students showed increasing willingness to switch as the semester
progressed (Williams, Wiebe et al. 2002).

In the solo section, the labs were fairly quiet. Students had questions on a
more frequent basis, so they raised their hands and waited for the teaching assistant
to help them. The maximum time a student waited before the teaching assistant
came to help him was thirty minutes. During this time the waiting students made
very little progress, if any. Some students even gave up trying to get the teaching

assistant’s attention and turned to their neighbors. When the teaching assistant

38

helped the students, they tended to take over the students' keyboard. One student
who withdrew from the CS1 course the year before and was in the paired lab in the
Spring semester shared his experiences in both semesters, “When | had the CS1
course last year in the solo lab | had a very simple syntax error, but | just could not
figure it out at that time. So | asked the teaching assistant. When | finally got hold of
him after waiting for awhile, he seemed reluctant to sit down to read the code line
by line with me, and it turned out | need to solve it myself. While in the paired lab,

my partner sat with me and pointed out the syntax error when | just made it.”

4.2.2 Teaching assistant’s workload

As previously discussed, in the paired section, students were not asreliant
upon the teaching assistant for technical advice. On average, the teaching assistant
spent very little time answering questions, generally less than 5 minutes each.
Sometimes, they even had time to do their own work. Whereas in the solo lab, we
observed much hand waving to get atention of the teaching assistant. The time the
teaching assistant spent to answer a question iswas longer, say from 5 minutes to 20
minutes. One teaching assistant who had been teaching both the paired and solo
sections said, “I got fewer questions in the paired lab and the questions the paired
lab asked are more reasonable. In the solo section, there was a student asking how to
create adirectory in the 7" lab, which he should have known in the first lab.”

Asfar asgrading is concerned, it is obvious that the grading load is halved
due to one pair submit one copy of homework.

We administered a questionnaire to the teaching assistants to obtain

feedback on their views of pair learning and their observations about students

39

behavior. There were ten teaching assistants, and five out of the ten replied. Among
the five teaching assistants (TA), two were responsible for paired labs, whereas
three are responsible for solo labs. Moreover, one of the two paired lab TAs taught
both the paired lab and solo lab. There seven questions, and the first four is for both
paired and solo section TASs, and the last three is for the paired section TA only. The
questions in the questionnaire are listed below (Q1: question 1), and the answers
from the teaching assistants are after the questions (A1: Answer to the first
question). Since the population of the respondents is too small, we did not do the

statistical analysis.

Q1: How many students were in your lab?

A1l: On average, there were around 20 students.

Q2: What percentage of lab time did you spend answering students' questions?

A2: The two paired lab TAs spent 10% and 25% of the lab time to answer students
questions respectively; while the solo labs TAS answer were 90%-95%, (essentially

the whole lab time), and 75% respectively.

Q3: Give several examples (at least 2) of the questions you were asked.

A3: The solo students asked like, “In our project, we're supposed to do such and
such, | don't really understand how to do that, can you help?”; while paired students

asked questions like, “What is a better way to code X' method? .

Q4: If you were ateaching assistant again, would you want to teach a paired or solo

lab?

A4: Most of the TAs said paired lab was interesting.

Question 5 — 7 isanswered by paired section TA only:

Q5: Based on your previous experiences as a teaching assistant or as CSC116
student, if you were a paired lab teaching assistant, could you please state at least

three differences you can think of between the solo labs?

Q6: On ascale from 1 (very receptive) to 5 (very resistant), rate how receptive your

students were towards pair programming at the beginning of the semester.

AG6: One of the TAs enumerated the difference between the paired lab and the solo
lab, “The main differences are the effects on the TA position. The grading is much
easier in the paired lab. The code is clearer in the paired lab having been proofed by
the other student while writing. The students in the paired lab thought the labs were
easier than the non-paired students thought. The time spent in lab was roughly only
3/5 the time spent in my non-paired sections. The extrawork given by the paired
students was obvious. MOST IMPORTANTLY : The extratime gained by not
having to answer as many questions allowed me more time to help the better
students do even better. It also allowed me to get to know the other students better.
In non-paired sections there are always a few that eat up your time asking stupid
questions. That was not the case in the paired lab. ALSO IMPORTANTLY: The
effects of having a lab where communication is required opened up the students to
talk to me more as well astheir partners. They were much more open than non-
paired students in talking to me about problems, concerns, etc.” The other TA also

said about his concerns, “In non-paired labs, students don't get help from their peers,

41

which isaminus. In paired labs sometimes students feel like they are dead weight if
their partner is very experienced so they might not want to work with someone

else’.

Q7: On ascale from 1 (very receptive) to 5 (very resistant), rate how receptive your

students were towards pair programming at the end of the semester.

A7: both of the TAs in paired lab answered the students grew up on the pair

learning.

So from our analysis above, the teaching assistant did have lower workload

in grading and answering questions.

42

Chapter 5 Conclusion and Future Work

A formal experiment was performed in a CS1 course, “Introduction to Java’,
in North Carolina State University. The purpose of this research was to assess
whether pair learning can help the entry level students learn better in the computer
science courses, help them more confident in the courses, and as a result, more

students will succeed in computer science. The following hypothesis was tested:

More students that have participated in pair learning in CS1 will succeed in
the class by completing the class with a grade of C or better.

e Students participation in pair learning in CS1 will lead to better
performance in examinations (exams are completed solo by all students) in
that class.

o Students participation in pair learning in CS1 will lead to better
performance on course projects in that class.

o Students participation in pair learning in CS1 will lead to a more postive
attitude toward the course and toward Computer Science in general.

o Students participation in pair learning lead to a lower workload for course
assistant.

199 students participated in this study, 112 in solo section and 87 in the
paired section. Since we focused primarily on “beginning students’, we eliminated
the graduate students, junior and senior students. As aresult, 69 students in the solo

section and 44 in the paired section comprised our experiment samples.

We analyzed the students’ three exam scores, three project scores,
success/retention rate, programming assessment scores, questionnaire values to
validate the hypothesis.

We hypothesized that more students who have participated in pair learning
in CS1 will succeed in the class by completing the class with a grade of C or better.
We found that pair learning did help students succeed by completing the class with a
grade of C or better.

We hypothesized that paired students would perform better in the
examinations. We found that, on average, the paired section students performed
better than the solo section students, although the difference in one of the exam is
not statistically significant. Further to guarantee the academic equivalence, we
considered student SAT-M and programming assessment scores and found out that
SAT-M score did affect the performance of students. We matched the students into
pairs according to smilar SAT-M scores and proved that the differences of midterm
1 and midterm 2 are gatistically significant, but this was not the case for final exam.
From the population of students that participated in the final exam, we observed
more students dropped out in solo section than that in the paired section, so this
resulted in the lower part of the solo section is gone. This phenomenon could
explain why the difference of final exam between the two sections is not statistically
significant while the other two are. So in general, we observed that pair learning did
help students perform better in exams, although the difference in one of the three

exams is not statistically significant.

We hypothesized that the experimental section would perform better in the
programming assignments. We found that, on average, paired section students
performed better than solo section on project 1 and project 2. In project 3, the solo
section students did slightly better than the paired section. The reason we raised
above can also interpret this phenomenon. So in general, we can see that pair
learning did help students perform better in the projects.

We hypothesized that pair learning could help students be more confident
and positive toward computer science. We found that the result of the questionnaire
demonstrated an improving trend for the students, although the difference is not
statistically significant. The attitude change is along-run term, so we could not
change it in one course. We expect that sudents’ attitudes will be improved towards
computer science after they took several paired section class.

We also hypothesized that pair learning can alleviate teaching assistants
working load in both grading and answering questions. We observed the teaching
assistant’s burden was indeed lowered: as evidenced by the need for less grading
work and moretime in labs.

Paired students demonstrated higher-order thinking skills than the students
when compared with the students who worked alone. They were more likely to
think far beyond the programming assignment to applying their knowledge in more
challenging programming contexts. Additionally, paired students collaborated more
extensively with each other; the collaboration skill will benefit them in the future
when they work, since collaboration is an important skill for programmersin

industry (Demarco and Lister 1987).

5.1 Futurework

We had also hoped to study the effect of pair learning on the female students
and African-American students. However, there were far too few women (12 in solo
section, 4 in paired section) and African American (8 in solo section, 6 in paired
section) to alow dtatistical evaluation. We hope to accumulate enough results of
women over several semestersto yield statistically significant results.

The pair learning technique may also be improved by learning more about
prudent pair assignments. Both in the student and teaching assistant focus groups,
we heard that the partner played an important role in the communication, directly
affecting the results of the learning process. Some students said their partners were
great and he/she learned a great deal from them. Others may complain that it was
difficult to collaborate with their partners. Having a good partner is very important
in pair learning. Students would prefer to pick their own partners. But when they
just came to university, they hardly know anyone. So they needed to be “randomly”
assigned. Future research should address this “random” assignment to determine if a
pattern for best matching each student into pairs, for example based on their
background equivalences or their personality type.

Finally, it would be interesting to analyze the interactions of the student pair
learners from a psychological perspective to see how they really communicate with
each other. As aresult, we can further find out how pair learning can benefit the

students psychologically.

46

Appendix A Web-based Tool Support

Aswe can saw from previous chapters, there were two web-based applications
written to support pair learning and this research. One tool was used by the teaching
assistants to automatically assign the pairs each week; the other tool was used by the

studentsto do the peer evaluation.

A.1 Pair assignment program

A.1.1 Pair assgnment algorithm implementation

Aswe stated before, the students were assigned partners rather than allowing
them to choose their partner. The partner assignment program was used to make
these assignments. This application is implemented using Java Server Pages (JSP)
with MS SQL Server database.

The purpose of this algorithm isto avoid the studentsto be with the same
partner for too long, i.e. students should change partner every cycle. The students
names are input to the database, ordered alphabetically. For the cycle 1, the odd
number students are assigned to their next neighbor, i.e. sudent (2* i — 1) is paired
with student (2 * i), where i isapositive integer. If the total number of studentsis
odd, then the last student will pair with the first two studentsto have a 3-member
group. For the cycle 2, the students are assigned to pair with the student next to his
neighbor, i.e. student i is paired with student (i + 2). If the total number of students
is odd, then the left student will be assigned to the first group. For the cycle 3, the
students are assigned to pair with the student next to his neighbor, i.e. sudent i is

paired with student (i + 3). If the total number of studentsis odd, the left student

47

would be assigned to the second group. And so on. In general, for the cycle N, the
student i is paired with student (i + N). If the total number of students is odd, the left
student will be assigned to the (N-1)" group. In this way we can fulfill our purpose
that the students can pairs as many as the cycle number.
A.1.2 Program flow

When a teaching assistant comes to this website, he/she needs to sign on first
(asinfigure 7.1). If the username and password are not right, he/she can not access
the web page. Those given access are then directed to another page asking him or
her to choose from the lab sections he/she isresponsible for (asin figure 7.2). After
that, an assignment of the studentsin that section shows on the web (asin figure
7.3). Then the teaching assistant can assign the student according to the contents on

the web page.

/3 Login - Microsoft Intemet Explorer e
JFMe Edit View Favortes Tools Help

| wBack - = - D Y | D Search [Favortes (4 Histony | B Sh B - 2 &

| Adess [] it #/pairogramming.csc nosu edulpaileaining? N H Links *

| Go glev| | &pseachweh @i Searchsite | @ Pageinf - FyUp - A HicHlak
NC STATE UNIVERSITY =]
Sign in

For TA FeedBack form please press here

To input project scores, please press here

UserlD
Password

Submit Reset

[
|&] Dore [| mtemet
star||| 1 @ 1@ G || Elton_| EYpiss_ | @1ntip | Bt | Esila | @ U | B Tera |) ater | (G thesic | £]iivin | [E Lo v s ZED 1045PM

Figure2 Log in page
If astudent is absent from alab or for any reason, the teaching assistant can

also reassign the student pairs and record any changes (as in figure 7.4). If a student
was reassigned a partner, the teaching assistant should record the new group number
on the website, and the data will be updated in the database. Updating the revised

assignment is important, because the actual, accurate pairings are necessary as input

into the peer evaluation tool, which is discussed below.

49

2} Choose your section - Microsoft Internet Explorer

NC STATE UNIVERSITY

[sestion 233

T 1 o]

Figure 3 choose lab section

50

73 hitp://pairprogramming. csc.ncsu.edu/pairleaming/showGroup.jsp - Microsoft Internet Explorer

NC STATE UNIVERSITY

Figure 4 Student assignments

51

2 http://pairprogramming. esc. ncsu.edu/pairlearning/reAssign.jsp - Microsoft Internet Explorer _la] x|
| Fle Edt View Favoites Toos Help ‘

| wBack - = - D Y | DSearch [Favortes (4 History | B Sh] - 2 &
| Adsress [) i /paiprogramming.csc. nosu edu/paileaming reAssign s N H Links *
| Go glev| | &pseachweh @i Searchsite | @ Pageinf - FyUp - A HicHlak

NC STATE UNIVERSITY ;‘

Student Name

)
=
[+]
E=
T
=
c
3
=2
L]
=

OXENDINE JAMES HERBERT
LEONARD DAVID BEMJAMIN
EFE HALIT HAKAN

BLACK DAVID NEAL

MEYERS IAN DAVID

GARNER GLENWQOD
CELENTAMNO CHRISTOPHER
OLIVEIRA GUILHERME TAVARES
BOYD JOEL LEE

BADER LUCAS MC CREA
NGUYEN TRUNG HOANG
POTOSKY NICHOLAS JAMES
HILTOMN TIMOTHY KENNETH
COVALT ZAKRY DAVID

FIEGLE RYAN PAUL

CARTER SAMMIE YWILLIAM
DEBARTOLC ZACHARY MICHAEL
YOUNG AUSTIN SCOTT

PLAUTZ CHRISTIAN MICHAEL

p.s. If the student is absent, please input '-1'

T T T T

L]

|&] Dore [| mtemet
s || 1 @ = @ 5y || &viou_| Episs | @1hip. | Edevi. | E1500a | @UNa | B Term | Fsier. | Eythesis | @tvin. [[ETne. E35ea | [Fois HITET 11:20PM

Figure 5 Change student pairs

A.2 Peer Evaluation Program

A.2.1 Program design

The purpose of this program isto assure the students all actively make
contributions in the group to avoid some students taking advantage of their partner’s
work. It isalso implemented using JSP and MS SQL Server database.

When a student comes to the website, he/she will be asked to log in first (as
shown in figure 7.5). He/she can also choose which lab he/she is going to do the
evaluation for. If the password and username are right, he/she will be directed to the

next page to answer the questions (as shown in figure 7.6). Each question will be

52

scaled from O — 20. If he/she answered a wrong character or a number out of the

boundary, then a JavaScript warning box will be pop out.

73 hitp://pairprogramming. csc.ncsu.edu/peer/ - Miciosoft Internet Explorer

NC STATE UNIVERSITY

Figure 6 Peer Evaluation Log in Page

53

2} Welcome to the peer-evaluation - Microsoft Intemnet Explorer

Figure 7 Peer Evaluation Page

Appendix B Programming Assessment

We're attempting to assess your programming background and skills. Answer as many question
as you can, even if you have little or no programming experience. If you don't know how to
answer a question you can simply write 'do not know'.

Before you begin, please provide your name and indicate what programming language you will be using:

Nane:

Pr ogr anm ng Language:

Arithnetic

1. Use integer arithnetic to evaluate the foll owi ng expressions. Use standard
integer arithmetic as inplenmented in common programm ng | anguages (e.g. C,
C++, Basic, Java)

3+5*2= _
4*3+6= __
71 2+4= ___
13/ 41/ 2 =

2. If /| and + have the sane precedence, what is the val ue of

3 +1/ 4] 2 +5 =

If / has higher precedence than +, what is the value of that sane
expr essi on?

3+1/ 4] 2 +5 =

Sel ection

3. Assunme an integer variable naned tenperature has been decl ared and
assi gned a val ue.

Wite a statenent that displays "Water" to the console if the val ue of
tenperature is between 32 and 212 (i ncl usive).

55

Iteration (I oops)

4. Wite a loop that sets a variable naned sumto the sum of the even nunbers
between 1 and 99. Assune that sum has been declared and initialized to zero.

5. Use nested | oops to produce the foll owi ng consol e output:

* %
* k%

* Kk k%

Arrays

6. Assunme an integer array naned intArray has been initialized to hold 10
values. Wite a code segnent that displays (to the console) the snallest val ue
stored in the array.

Encapsul ati on
7. Some progranmi ng | anguages use cl asses. Explain what a class is and provide

a short program exanpl e.

8. Functions are conmonly used in progranm ng | anguages. Explain
what a function is and provide a short exanple. If your progranm ng
experi ence has been in Java or C++, explain nmethods instead, and
provide a nethod for the class you just provided.

56

Appendix C Computer Science / Programming I nterests Questionnaire
Computer Science/ Programming Interests Questionnaire (Wiebe 2001)
Directions

Enter your student ID number onto the answer sheet. Please note that your
answers will be kept confidential.

On the following pages are a series of statements.
1. Read each statement.
2. Think of the extent to which you agree or disagree with each statement
3. Mark your response on the answer sheet

Please remember:

- There are no right or wrong answers. Don't be afraid to put down what you really
think.

- Don't spend alot of time on any one item. Move quickly!

- Complete all of the items.

Respond to the following questions on the answer sheet, using the following
scale:

a) strongly agree

b) agree, but with reservations

c) neutral, neither agree nor disagree

d) disagree, but with reservations

e) strongly disagree

| plan to major in computer science.

Generally | have felt secure about attempting computer programming problems.
| am sure | could do advanced work in computer science.

| am surethat | can learn programming.

| think I could handle more difficult programming problems.

| can get good grades in computer science.

| have alot of self-confidence when it comesto programming.

I'm no good a programming.

© o N o o~ DN BRE

| don't think I could do advanced computer science.

=
o

. I'm not the type to do well in computer programming.

[EE
[N

. For some reason even though | work hard at it, programming seems unusually
hard for me.

57

12.

13.
14.

15.
16.
17.
18.
19.
20.

21.
22.
23.
24.

25.
26.
27.
28.

29.
30.
31.
32.

33.
34.
35.
36.
37.
38.
39.

Most subjects | can handle O.K., but | have a knack for flubbing up
programming problems.

Computer science has been my worst subject.

It would make me happy to be recognized as an excellent sudent in computer
science.

I'd be proud to be the outstanding student in computer science.

I'd be happy to get top grades in computer science.

It would be really great to win a prize in computer science.

Being first in a programming competition would make me pleased.
Being regarded as smart in computer science would be a great thing.

Winning a prize in computer science would make me feel unpleasantly
CONSPiCuUoUS.

People would think 1 was some kind of anerd if | got A'sin computer science.
If I had good grades in computer science, | would try to hide it.
If I got the highest grade in computer science I'd prefer no one knew.

It would make people like me lessif | were areally good computer science
student.

| don't like people to think I'm smart in computer science.
Females are as good as males at programming.
Studying computer science is just as appropriate for women as for men.

| would trust a woman just as much as | would trust a man to figure out
important programming problems.

Women certainly are logical enough to do well in computer science.
It's hard to believe afemale could be a genius in computer science.
It makes sense that there are more men than women in computer science.

I would have more faith in the answer for a programming problem solved by a
man than a woman.

Women who enjoy studying computer science are a bit peculiar.
I'll need programming for my future work.

| study programming because | know how useful it is.

Knowing programming will help me earn aliving.

Computer science is a worthwhile and necessary subject.

I'll need a firm mastery of programming for my future work.

I will use programming in many ways throughout my life.

40.
4]1.
42.
43.
44,

45,
46.
47.
48.

49.
50.

ol.
52.
53.
4.
55.

56.

S7.

Programming is of no relevance to my life.

Programming will not be important to me in my life's work.

| see computer science as a subject | will rarely use in my daily life.
Taking computer science courses is awaste of time.

In terms of my adult life it is not important for me to do well in computer
science in college.

| expect to have little use for programming when | get out of school.
| like writing computer programs.
Programming is enjoyable and stimulating to me.

When a programming problem arises that | can't immediately solve, | stick with
it until I have the solution.

Once | start trying to work on aprogram, | find it hard to stop.

When a question is left unanswered in computer science class, | continue to
think about it afterward.

| am challenged by programming problems | can't understand immediately.
Figuring out programming problems does not appeal to me.

The challenge of programming problems does not appeal to me.
Programming boring.

| don't understand how some people can spend so such time on writing programs
and seem to enjoy it.

| would rather have someone give me the solution to a difficult programming
problem than to have to work it out for myself.

| do aslittle work in computer science courses as possible.

Please answer the following questions about yourself on the answer sheet:

58.

59.

60.

Age:

a) 18 years old or younger
b) 19 yearsold

c) 20 yearsold

d) 21 - 30 yearsold

€) 31 yearsold or older

Gender:
a) Female
b) Male

Classification (Grade Level):
a) Freshman

59

61.

62.

b) Sophomore

C) Junior

d) Senior

€) Pogt-undergraduate or Graduate

Number of computer science or programming courses you have previously taken
in high school or college:

a) None

b) One course

c) Two courses

d) Three or four courses

€) more than four courses

Ethnicity/Race:

a) White (non-Hispanic)
b) Black (non-Hispanic)
c) Asian American

d) Hispanic American
e) Others

Thank you for your time! Please let us know if you have any questions about this

questionnaire or the study we are conducting. Questions or concerns can
either be directed to the instructor of this course or the project director, Dr.
Laurie Williams, Dept. of Computer Science, williams@csc.ncsu.edu, 513-
4151

60

REFERENCES

Angelo, T. A. and K. P. Cross (1993). Classroom assessment techniques - a
handbook for college teachers. New Y ork, Jossey-Bass Publishers.

Beck, K. (2000). Extreme programming explained: embrace change, Addison-
Wesley.

Bevan, J., L. Werner, et a. (2002). Guidelines for the use of pair programming in a
freshman programming class. Fifteenth Conference on Software Engineering
Education and Training, Covington, Kentucky, IEEE Computer Society
Press.

Bonwell, C. C. (1996). Using Active Learning in College Classes. A Range of
Options for Faculty.

Demarco, T. and T. Lister (1987). Peopleware. New Y ork, Dorset House Publishers.

Felder, R. M. (1995). "A Longitudinal Study of Engineering Student Performance
and Retention. V. Instructional Methods and Student Responses to Them."
Journal of Engineering Education 84(4): 361-367.

Felder, R. M., G. N. Felder, et al. (1998). "A Longitudinal Study of Engineering
Student Performance and Retention. V. Comparisons with Traditionally-
Taught Students." Journal of Engineering Education 87(4): 469-480.

Fennema, E. and J. A. Sherman (1976). "Fennema-Sherman mathematics attitudes
scales.” JSAS: Catalog of Selected Documents in Psychology 6(31).

Haller, C. R., V. J. Gallagher, et a. (2000). "Dynamics of Peer Education in
Cooperative Learning Workgroups." Journal of Engineering Education
89(3): 285-293.

Humphrey, W. S. (1995). A Discipline for Software Engineering.

Jefferies, R. (1999). Pair programming.

Lemos, R. S. (1979). "An implementation of structured walk-throughs in teaching
COBOL Programming.” Communications of the ACM 22: 335-340.

Leuf, B. and W. Cunningham (1999). Pair Programming. 2002.

Lorenzen, M. (2002). Active Learning and Library Instruction. 2002.

MacGregor, K. S. (1998). "Computer programming instruction: effects of
collaboration and structured design mileposts.” Journal of Research on
Computing in Education 21: 155-164.

McDowell, C., L. Werner, et a. (2002). The effects of pair programming on
performance in an introductory programming course. Conference of the
Special Interest Group of Computer Science Educators, Northern Kentucy,
ACM Press.

Nosek, J. T. (1998). "The Case for Collaborative Porgramming.” Communications
of the ACM 41(3): 105-108.

Priebe, R. L. (1997). The effects of cooperative learning on content comprehension
in a second-semester university computer science course. Science Education.
Austin, University of Texas at Austin.

Ruhl, K. L., C. A. Hughes, et al. (1987). Using the pause procedure to enhance
lecture recall. Teacher Education and Special Education. 10.

Slavin, R. E. (1990). Cooperative L earning Theory, Research, and Practice.

Wiebe, E. N. (2001). Computer Science/ Programming Interests Questionnaire.

61

Williams, L. A. (2000). The Collaborative Software Process. Computer Science.
Salt Lake City, The University of Utah: 186.

Williams, L. A. and R. R. Kessler (2002). Pair Programming |lluminated. Boston,
Addison-Wesley.

Williams, L. A., R. R. Kessler, et a. (2000). "Strengthening the Case for Pair
Programming.” |EEE Software 17.

Williams, L. A., E. N. Wiebe, et a. (2002). "In Support of Pair Programming in the
Introductory Computer Science Course." Computer Science Education.

62

