
Abstract

YANG, KAI. Pair Learning In Undergraduate Computer Science Education. (Under
the direction of Laurie A. Williams)

Anecdotal evidence in industry and academia has shown that pair programmers,

whereby two programmers work collaboratively on the same task on one computer,

can produce higher quality design and codethan solo programmers who work alone.

Educators in various fields have also found that collaborative work helps students

learn better and allows them to be more confident in their study. Based on these two

findings, pair learning, which is the practice of pair programming with students, was

generated and applied in a computer science class setting.

To validate the effectiveness of pair learning, an experiment was run in a CS1

course at North Carolina State University in the fall semester of 2001. The

experiment focused on freshman and sophomores. Approximately 120 freshman and

sophomores participated in the study. The students registered in two sections of a

CS1 course without knowledge of the experiment. Both sections had the same

instructor, same programming assignments and same examinations. One section

utilized a traditional education style whereby all students worked alone; the other

section followed the pair learning paradigm where all students working with a

partner. Results supported the following findings:

1. Students who followed the pair learning style performed better on the

programming assignments and were more likely to get a higher scoreon the

examinations.

2. A higher percentage of the students who utilized the pair learning style

succeeded in the CS1 class by completing the course with a gradeof C or

better.

3. The teaching assistants in the pair learning section had reduced workload,

since students in the pair learning section were more self-sufficient.

4. Paired students demonstrated higher-order thinking skills than the students

when compared with the students who worked alone.

5. Students in the pair learning section were more likely to think far beyond the

programming assignment to applying their knowledge in more challenging

programming contexts.

6. Paired students collaborated more extensively with each other; and

collaboration is an important skill for programmers in industry.

Pair Learning In Undergraduate Computer Science Education

by

Kai Yang

A thesis submitted to the GraduateFaculty of
North Carolina StateUniversity

in partial fulfillment of the
requirements for the Degree of

Master of Science

COMPUTER SCIENCE

Raleigh

2002

APPROVED BY:

________________________________ ________________________________

Annie I. Antón, Ph.D. Eric N. Wiebe, Ph.D.

Laurie A. Williams, Ph.D.

Chair of Advisory Committee

ii

BIOGRAPHY

Kai Yang received a Bachelor of Science degree in Computer Science

department from Nankai University, China in 1998. After graduating, she stayed in

the same university as an instructor due to her outstanding performance. Having

taught one year, she came to USto join her husband in 1999. In Fall 2000, she

enrolled in the Computer Science department in North Carolina State University.

iii

Acknowledgement

This thesis would not have been possible without the help and support of the

following faculty, colleagues, friends and family. I begin by thanking my advisor,

Dr. Laurie Williams who provided immeasurable assistance throughout my

research. As English is not my first language, my thesis required a good bit of

polishing and she edited my thesis so carefully, even the grammatical errors. I

appreciate her assistance and hope it comforts her to know that I learned a lot from

this process. Laurie is not only my advisor; she is like an older sister. When I met a

problem in life, she kindly to helped me and I am most grateful. There is a Chinese

proverb that characterizes my two years at NC State: “stay with good people, you

can learn good things.”

My committee members, Dr. Eric Wiebe and Dr. Annie I. Antón were very

generous and patient with me. Dr. Wiebe provided a great deal of statistical analysis

assistance that proved extremely valuable; Dr. Antón polished my thesis and edited

it.

Ms. Carol Miller and Ms. Suzanne Balik, the instructorsof the CS1 course within

which I was conducting my research, were kind and supportive of my research.

Miriam Ferzli, a Ph.D. candidate in Mathematics, Science, and Technology

Education department, participated in this research by providing detailed student

observations that werevery enlightening.

The teaching assistants worked hard in the labs and the students provided me with

valuable feedback; they were central to this study.

iv

I thank my colleagues with whom I enjoyed working: Ashish, Mayank, Vinay,

Boby, Harman, David, Puneet, Anuja and Prashant.

Special thanks go to my family in China, my Mom, Dad and younger brother. They

asked me about my study progress each time we spoke, always encouraging me to

persevere. Their trust and encouragement were my sourceof strength and

inspiration as I completed my research and wrote this thesis. Finally, I thank my

husband for constantly supporting me during the challenging times and for sharing

in my happiness during the times marked by significant progress. Without him, this

thesis would not have been possible.

v

Table of Contents
Page

LIST OF TABLES..vii

LIST OF FIGURES...viii

Chapter 1 Introduction...1

1.1 Research Motivation ..1
1.1.1 The Need for More Computer Science Students................................1
1.1.2 Success Rate in the Beginning Computer Science Course.................1
1.1.3 Pair programming ..2
1.1.4 Pair Learning ...3
1.1.5 Motivation of this research...3

1.2 The Research Approach ...4

1.3 Summary of Remaining Chapters...5

Chapter 2 A Survey of Related Work ..6

2.1 Active Learning..6

2.2 Cooperative Learning...9

2.3 Pair Programming ..10
2.3.1 Prior Research in pair programming...11
2.3.2 Pair programming factors...13

3.1 Overview ...17

3.2 Step One: Class Registration and Pair Assignment17
3.2.1 Class Description...17
3.2.2 Peer Evaluation..19
3.2.3 Role Switching...20

3.3 Step Two: Data Collection ..21
3.3.1 Surveys..22
3.3.2 Programming Assessment ..23
3.3.3 Focus group ...24

Chapter 4 Experiment Findings...25

4.1 Quantitative Findings...25
4.1.1 Success / Retention Rate..25
4.1.2 Performance on Examinations..26
4.1.3 Performance on Project assignments..31
4.1.4 Attitude..34

4.2 Qualitative Findings...37
4.2.1 Students’ Behaviors during Pair Learning ..38
4.2.2 Teaching assistant’s workload..39

Chapter 5 Conclusion and Future Work...43

5.1 Future work ...46

vi

Appendix A Web-based Tool Support ...47

A.1 Pair assignment program...47

A.2 Peer Evaluation Program...52

Appendix B Programming Assessment..55

Appendix C Computer Science / Programming Interests Questionnaire.................57

REFERENCES...61

vii

LIST OF TABLES
Page

Table 1 Williams et al: Percentageof Test Cases Passed13

Table 2 Success rate..25

Table 3 Exam Scores...26

Table 4 Exam scoresof matching pairs..29

Table 5 Programming Assessment Score...30

Table 6 Summary of exam scores..30

Table 7 Programming Project Scores...31

Table 8 Project 3 scoresof matched pairs..33

Table 9 Summaries of Project Scores..34

Table 10 Internal Consistency Value...35

Table 11 Attitude survey scores at the beginning of the semester...........................36

Table 12 Attitude survey scores at the end of the semester36

Table 13 CourseEvaluations...37

viii

LIST OF FIGURES

Page

Figure 1 Williams et al: Relative Project Completion Times..................................12

Figure 2 Log in page...49

Figure 3 choose lab section ...50

Figure 4 Student assignments..51

Figure 5 Change student pairs...52

Figure 6 Peer Evaluation Log in Page..53

Figure 7 Peer Evaluation Page...54

1

Chapter 1 Introduction

1.1 Research Motivation

"Technology alone doesn’t make for good teaching and certainly does

not guarantee good learning. …… one must consider how basic,

pedagogical principles and puzzles associated with sound teaching

practice might (or might not) apply to each medium.”

------ Al Andrade, 2002

1.1.1 The Need for More Computer Science Students

With the increasingly popularity of computer technology, more and more

technologists in computer science are required in industry. Since universities are the

major sourceof propagating computer skills and knowledge, it is critical to help

students be as successful as possible in computer science courses. At many

universities, students need not declare their major during their first year. As a result,

many college students take computer science classes before they decide their major.

Therefore, the introductory computer courses play an important role in students’

ultimate decision to pursue a computer science degree.

1.1.2 Success Rate in the Beginning Computer Science Course

Educators generally measure the success rateof their classes in terms of the

percentage of students who complete the course (i.e. do not withdraw) with a grade

of C or better. Often this statistic is expressed in terms of the converse, the “DFW”

rate. The DFW rate is the percentage of students in a class who receive a gradeof D

or F or withdraw from the class. Anecdotally, many educators communicate a

2

typical DFW rate of about 50% in CS1 classes. The problem is often caused and/or

exacerbated by the fact that many students have a hard time seeking help when they

do programming assignments. Alternately, some students want to save face by not

asking questions they think may be perceived as “stupid” . Thus, computer science

educators are challenged to increase the overall success of introductory classes, to

evoke students’ interest, to help them learn better, and in turn to decrease the DFW

rates.

1.1.3 Pair programming

Pair programming is a style of programming where two programmers work

side-by-side at one computer, continuously collaborating on the same design,

algorithm, codeor test. One individual is called the “driver,” he/she is in charge of

the keyboard and mouse and is recording a design or code implementation. The

other is called the “navigator” , and continuously observes the driver while the driver

programs or does the design. It is the navigator’s responsibility to pick out the

tactical and strategic defects. Tactical defects are syntax errors, typos, calling the

wrong method, etc. Strategic defects occur when the driver is headed down the

wrong path – what they are implementing just won’t accomplish what it needs to

accomplish (Williams, Wiebe et al. 2002). The navigator also thinks strategically

about the work’s direction. During their collaboration, the driver and navigator can

discuss the direction of the program, the best algorithm to use, or anything that may

help solve the problem at hand. The brainstorming helps the pair finishes in a faster

and more effective way. We believe the ample communication makes the pair

programming relationship very effective.

3

Pair programming has been used sporadically for decades (Williams and

Kessler 2002). Morerecently, pair programming has been popularized as an

important practice of an emerging software development methodology, eXtreme

Programming (XP) (Beck 2000). XPwas developed initially by Smalltalk code

developer and consultant Kent Beck with colleagues Ward Cunningham and Ron

Jeffries. “It is a lightweight discipline of software development based on principles

of simplicity, communication, feedback, and courage” (Jefferies 1999). The XP

methodology is growing in popularity, though its great success has been reported

anecdotal rather than empirically.

1.1.4 Pair Learning

Computer science courses require a great deal of programming assignments.

Pair learning introduces the pair programming technique in computer science

education so that students learn to program by working with another student at one

computer.

1.1.5 Motivation of this research

As we stated in Chapter 1.1.2, one of the obstacles that prevent students

from getting a grade of C or above is the fact that many students have hard time

seeking help when they do programming assignments, or they are reluctant to ask

others. In response, researchers considered using pair learning to help students help

each other in a non-threatening way. With pair learning, two students collaborate on

one task on one computer; they can discuss between each other. The problem of

waiting for teaching assistant for help can be alleviated. Since the students are peers,

they will not have as much fear of “ losing face” or appearing “stupid” to each other.

4

The objective of this research is to assess and refine the pair learning

technique in computer science education. Specifically, we examine whether the

practice can affect the performance and attitudes of students as they advance

through the computer science curriculum. We assess the following hypotheses:

1. More students that have participated in pair learning in CS1 will

succeed in the class by completing the class with a grade of C or better.

2. Students’ participation in pair learning in CS1 will lead to better

performance in examinations (exams are completed solo by all students) in that

class.

3. Students’ participation in pair learning in CS1 will lead to better

performance on course projects in that class.

4. Students’ participation in pair learning in CS1 will lead to a more

positive attitude toward the course and toward computer science in general.

5. Students’ participation in pair learning leads to a lower workload for

the teaching staff.

1.2 The Research Approach

To assess the effectiveness of pair learning, a formal experiment was

performed at North Carolina StateUniversity in Fall 2000 with a CS1 course. In the

experiment, students were divided into two sections; one section learned in the

traditional way, while the other section utilized pair learning. Students registered for

their section without knowledge of the experiment. Both sections had the same

instructor, same examinations and same project assignments. At the end of the

semester, we compared the two groups to investigateour hypotheses.

5

1.3 Summary of Remaining Chapters

The remainder of this thesis is organized as follows:

Chapter 2 A SURVEY OF RELATED WORK reviews the prior relevant

research conducted by other educators and researchers.

Chapter 3 METHODOLOGY describes the details of the experiment we ran

in the CS1 “Introductory to Java” course at North Carolina State University.

Chapter 4 EXPERIMENT FINDINGS discusses and analyzes the

quantitative and qualitative results we derived from this experiment.

Chapter 5 CONCLUSION AND DISCUSSION summarizes our conclusions

and discusses possible avenues for future.

APPENDIX introduces the tools we implemented to aid our study, including

a web-based pair-assign program and a web-based peer-evaluation program. The

Appendix also contains copies of the questionnaire and programming assessment

instrument utilized in our study.

6

Chapter 2 A Survey of Related Work

Many educators and researchers have made contributions to help students

learn better. This chapter surveys the studies and contributions of educators in areas

related to pair learning.

2.1 Active Learning
Active learning is an educational method that is different from traditional

education. In the traditional approach to college teaching, most class time is spent

with the professor lecturing and the students passively watching and listening. With

active learning, students actively take part in the class besides listening and taking

notes; the instructor’s responsibility is to direct the students to learn themselves

(Lorenzen 2002).

A simple implementation of the active learning technique is to insert some

short breaks in the traditional lecture. According to Bonwell (Bonwell 1996), there

are five variations of activities that can be done during these breaks: the pause

procedure, short writes, think-pair-share, formative quizzes, and lecture summaries.

The pause procedure is to stop for awhile every 13 to 18 minutes in the lecture,

allowing the students to discuss among them or catch up with the notes they missed.

With short writes (Angelo and Cross 1993), the instructor asks some simple

questions which ask the student to summarize the material taught in class, and the

students write answers to these questions (answers are not graded). Think-pair-share

occurs the when the instructor asks a question of the class. Students think

individually about the answer first, and then share their answers among neighbors.

Formative quizzes are some short quizzes with the questions similar to those seen

7

on exams, but the quiz will not be graded. Lecturesummaries invite the students to

summarize the lecture so that they can have a global view of the lecture.

Ruhl et al. (Ruhl, Hughes et al. 1987) performed an experiment to examine

the effectiveness of the pause procedure. In the control group, students learned in a

traditional way. In the experiment group, students employed a "pause procedure"

every 12-18 minutes. During the pauses, students were allowed to work in pairs for

two minutes to discuss and make up their notes. The instructor did not participate in

the students’ discussions. Both the experimental and control groups were asked to

write down everything they remembered in class for three minutes at the end of each

lecture (free-recall). Twelve days after the lecture, the students were also given a 65-

item multiple-choice comprehensive test to measure long-term retention. Their

research lasted two semesters and the results showed that the experimental group

students performed significantly better on the free-recall quizzes and the

comprehensive test. In addition, the difference between the two groups in the mean

scores was large enough to make an up to two-letter grades difference.

Dr. Richard M. Felder (Felder 1995);(Felder, Felder et al. 1998) has

performed a longitudinal study in the Chemical Engineering department at North

Carolina State University. He performed an experiment in the Fall 1990 semester in

an introductory chemical engineering course in which 123 students were enrolled.

With the experimental group, he used several active learning techniques. He

generally did not teach the class for more than 15 minutes without giving an

exercise of some sort or a stretch break. Occasionally, he ended a period with a

“one-minute paper,” (Angelo and Cross 1993) from which he elicited responses and

8

tailored his lecture accordingly. In “one-minute paper” , at the end of class, the

instructor stops the students two or three minutes early and asks students to respond

to some variation on the two questions briefly, “What was the most important thing

you learned during this class?” and “What important question remains

unanswered?” By performing this, on one hand, students can recall the class and

review it to answer each question, meanwhile they can learn how experts distinguish

main points from the details from the feedback from instructors to their answers; on

the other hand, instructors can decide whether any mid-course correctsor changes

are needed, which will help the instructors teach better next time. Additionally,

Felder asked the students to complete the homework in teams. As comparison, he

picked a control group, which was constituted of 189 students enrolled in the same

class in the Fall 1992 semester. The control group wastaught in the traditional way.

He hypothesized that the experimental group will learn better, i.e. have higher

retention rate, more positive attitudes and greater confidence levels in their problem-

solving skills. To assess the hypothesis, he collected a great deal of data including

demographic data, SAT scores, first-year grade-point averages, etc. as their

background information; course grades, statistics on persistence in the chemical

engineering curriculum, etc. as their subsequent information. His study indicated

that the experimental group outperformed the comparison group on the retention

rate, graduation in Chemical Engineering and many more graduates chose Chemical

Engineering as their major to pursue advance degrees.

Active learning is a teaching strategy. It can refer to anything students do in

a class other than listening to the instructor and taking notes. It includes asking and

9

answering questions, discussing and explaining concepts, formulating and solving

problems, summarizing lectures, brainstorming lists, and many other activities. The

work may be done by individual students or students working in groups. (Haller,

Gallagher et al.)

2.2 Cooperative Learning

Cooperative learning is another instructional methodology. In cooperative

learning, students work in a team to accomplish a common goal (Slavin 1990).

MacGregor (MacGregor 1998) investigated an instructional approach that

emphasized both collaborative techniques and structured design concepts. The

students were taught programming in an individualistic-traditional or a team-

structured way. He performed an experiment with thirty-two high school students

(juniors and seniors) enrolled in two sections of a computer course. The two

sections were taught by the same instructor. His results revealed the team-based

structured programming methodology significantly outperformed the

individualistic-traditional methodology when comparing students’ programming

performance and attitude toward programming. He also found that this approach had

significant positive correlations between students’ ability to design programs and

their overall programming performance and attitude toward programming. He

provided some qualitative results: the team-based groups spent more time on the

planning phase and discussions happened among them; the individual group spent

more time debugging their programs. The design phase is very important in the

programming; spending more time in design phase will generally save considerable

10

time in debugging. MacGregor’s study confirmed Lemos’ study (Lemos 1979) that

team-based approaches save time in debugging programs.

Priebe (Priebe 1997) also performed research on second-semester university

computer science students. One group of students received the traditional lecture

while the other group participated in cooperative learning for the same number of

hours as the previous group. His three hypotheses follow: (1) the cooperative

learning students would do better in concept comprehension than the control group;

(2) cooperative learning students would have improved logical thinking skills than

the control group students and (3) the cooperative learning students would have

better class attendance rates. Heused statistical methods to test his hypotheses. The

results revealed no difference between the cooperative learning and control groups

in concept comprehension or logical reasoning ability. However, the cooperative

learning group did have significantly better attendance. Priebe also emphasized how

team-oriented activities in the classroom modeled real-world teamwork in industry.

He believes that the group setting fostered positive peer pressure that led to neater

and more complete assignment submissions. He, too, commented on the higher level

of self-teaching that occurred in the cooperative group setting.

Cooperative learning is a special form of active learning. In cooperative

learning, students are assigned to achieve one goal together. This could happen

either in class or outside of class.

2.3 Pair Programming

Pair programming is a form of cooperative learning, since in pair

programming, two students work in a team to achieve a common problem.

11

2.3.1 Prior Research in pair programming

In 1998, Nosek performed an experiment with 15 experienced system

programmers to work on a challenging problem (Nosek 1998). Five programmers

worked individually, and 10 programmers worked in pairs. He hypothesized the

following: 1) programmers working in pairs will produce more readable and

functional solutions; 2) pair groups will take less time on average to solve the

problem; 3) pair programmers would be more confident about their work; 4) more

experienced programmers would perform better than less experienced programmers.

He employed several statistical tests to assess his hypotheses. The programmers

working in pairs experienced a higher readability and functionality score. They were

also more confident and enjoyed the programming more than the group comprised

of individual programmers. In other words, hypotheses 1, 3 and 4 weresupported.

On average pair programmers spent less time than the individual programmers,

though the result is not statistically significant.

Although Nosek’s study showed that pair programmers performed better

than individual programmers, his study was somewhat narrow in scope. He drew his

conclusions from only 45 minutes of pair programming time with only 15

experienced programmers. Williams (Williams 2000), performed a larger pair

programming experiment; she studied 41 senior software engineering students in a

software engineering class. In that experiment, she divided the 28 students to form

the collaborative/pair groups and 13 students to be in the group comprised of

individual programmers. Student grade point averages (GPA) were used as a basis

to ensure the groups were academically equivalent. Moretasks were assigned to

12

students in the paired group to ensure that theoverall workload was even between

the both experimental subject groups.

She measured the time each group spent to finish the given task as well as

the codequality. In Figure 1, we seethat as a pair, the time pair programmers spent

is less than that by individual programmers. But when we counted the pair as two

people, then we see in program 2 and program 3, the pairs used essentially the same

amount of time to finish the task. In program 1, since the students collaborated with

each other the first time, they had a “ jelling” period, when they need to become

familiar with each other and with working in a pair. As a result, the pairs took 60%

more time than the individuals.

Relative Project Completion Times

0.0%
20.0%
40.0%
60.0%
80.0%

100.0%

Program 1 Program 2 Program 3

Individuals Pairs

Figure 1 Williams et al: Relative Project Completion Times

Although the pairs did not outperform the individuals in the time, they did a

better job in achieving higher quality code than the individual groups. They had a

higher rateof passing the automated tests made by the teaching staff. The figures

are listed in Table 1:

13

Table 1 Williams et al: Percentage of Test Cases Passed

Individuals Pairs

Program 1 73.4 86.4

Program 2 78.1 88.6

Program 3 70.4 87.1

Program 4 78.1 94.4

The experiment indicated that pair programming could produce higher

quality code than the individual programmers given around the same amount of

time.

Morerecently, educators at the University of California-Santa Cruz have

performed a pair programming experiment in an introductory computer science

undergraduate programming course (Bevan, Werner et al. 2002). They have also

found that the experimental group students, who followed the pair programming

technique had a higher retention rate and their performance on programming

assignments was better than the control group (McDowell, Werner et al. 2002).

2.3.2 Pair programming factors

There are several factors that come into play in pair programming: pair

pressure, pair share, pair review, pair jelling, pair-think, pair-relaying (Williams

2000). We focus our discussion on the first four factors below.

2.3.2.1 Pair Pressure

14

Pair programming places a positive “pair pressure” on each team member in

the pair (Williams, Kessler et al. 2000). From the observations we had in our

experiment, we saw all the student pairs working all the time: the driver typed the

code; the navigator was alert and helping. None of them checked their email or did

something unrelated to the lab, since no one wanted to let their partner down

(Williams 2000).

Meanwhile, from the feedback the pairing programming students gave, a lot

of the students were prepared before they come to the lab. As one pairing student

said “I don’t want to let my partner down”. Both Nosek and Williams’ studies

indicated similar findings.

2.3.2.2 Pair Share

“ Put a less experienced person together with a more experienced

person, and the former will be more likely to stretch.” (Leuf and

Cunningham 1999)

In the experiment we conducted in the study, some students learned

programming when they were in high school; others did not have any knowledge

about programming. So when they paired up with each other, a lot of students

provided feedback that they learned a lot from the other partner. They wanted to

work or collaborate with their partner again and/or they enjoyed working with each

other. One student wrote, “It was a great pleasure having [name] as a lab partner.

She shared her past experiences with Java programming with me which helped me

understand programming and compiling a lot better.” Another said “[name] was

always prepared, and because he had previous experience, he helped me learn new

15

things.” An interesting thing is that students who were said to be more experienced

did not realize they were only outputting. One of such a student said, “My partner

also helped me point out something I was wrong.” This may confirm the

experiences Jeffries (Williams, Kessler et al. 2000) reported. He worked with a

least-experienced developer, while at the end he felt the junior programmer helped

him.

2.3.2.3 Pair Reviews

“ As a testimonial, in the last six months before launching, theonly

code that caused problems was code written solo.” --- (K. Beck,

1999)

Review methods can be described as inspections, walk-throughs, and

personal reviews. Humphrey (Humphrey 1995) states “Doing reviews is the most

important step you can take to improve your software engineering performance.”

When programmers work in pairs, oneof the responsibilities of the navigator is to

review the codethe driver is writing. If he or she finds any errors and has different

opinions, they will discuss it immediately. So in pair programming, the navigator

reviews the code continuously. As a result, the code written by pair programmers

can be considered to have been reviewed.

2.3.2.4 Pair Jelling

In pair programming, two programmers work together on one task. They are

like one, since they need to “unify” their thoughts. They are also equal, since they

switch “driver” and “navigator” roles often.

16

But in the normal case, the programmers have worked alone for a while. So

as two individuals, when they work together, they need to spend some time to adjust

to the other’s working habits, programming style, etc (Williams, Kessler et al.

2000). In industry, the adjustment period is historically hoursor days, depending on

the individuals. In the university, we could also see from Williams’ study above, for

the first assignment, the pairs finished in shorter elapsed time and had better quality,

but their total working hour is 60% more than the solo group. This is also true in our

study, for the project assignments and the exams, the paired students outperformed

more than the solo students in the second time over the first time.

17

Chapter 3 Methodology

3.1 Overview
In the Fall 2001, a formal experiment was run in a CS1 course, Introduction

to Java, at North Carolina State University. The purposeof this study was to assess

the efficacy of pair learning for improving students’ learning success including

course retention rate, examination performance, project performance and attitudes

of computer science. The experiment involved three steps. First, the students

registered for one of the two CS1 course sections. In one section, students utilized

the pair learning technique and worked in pairs in the laboratory; in the other

section, students worked alone in the laboratory. When they signed up for the course

section, students had no knowledge of the experiment. In step two, we collected all

the students’ data, including their ten lab assignment scores, three exam scores,

three project scores and other background information, such as their gender, SAT-

Math score, and programming assessment score. The programming assessment was

a short quiz with eight questions that was given during the first lab period. It will be

introduced in detail in Section 3.3.2. In last step, statistical analysis was performed

on the data to evaluate the pair learning effect on the students. The first two of

these steps will be discussed in this chapter. The dataanalysis will be discussed in

Chapter 4.

3.2 Step One: Class Registration and Pair Assignment

3.2.1 ClassDescription

The course wastaught with 50-minute lectures twice a week and one three-

hour lab each week. Students attended labs in groups of 24 or less with other

18

students in their own lecture section. The labs were closed labs, whereby students

did their assignments in the allotted time and place. The teaching assistant often

started out with a short lectureon the assignment and was then available for

questions during the lab period. There were two midterm exams, one final exam, ten

lab assignments, and three programming projects. The programming projects were

primarily done outside of the closed lab.

The course is a service course, and is therefore taken by students throughout

the university and life-long students from industry to improve their programming

skills. Most students are from the College of Engineering. Additionally, most

students are freshmen and sophomores.

In the Fall of 2001, there were 112 students enrolled in the solo lecture

section (later called “section”), and 87 in the paired lecture section (later called

“section”). For each course section, students registered into five lab sections. There

were five paired and five solo laboratory sections in total. Both lecture sections took

the same class with the same instructor at different times, had the same lab

assignments, the same programming projects and the same midterms and finals.

(The exams were given to the second section immediately after the first, leaving

little time for students to tell the second section about the exam content.) If the total

number of the students in a paired lab was odd, then a group of three students would

work together: no students worked alone. If a student’s partner did not show up after

ten minutes of the lab starts, the student would be assigned a new partner by the

teaching assistant.

19

The students were assigned to collaborate with a new partner every two or

three labs. Two benefits of this switching are that students would not get tired of or

have ongoing difficulty interacting with a particular partner and they could

collaborate with several students throughout the semester. Additionally, the teaching

assistant could evaluate the contributions of each student based on the opinions of

four partners (see Section 3.2.2). For later reference convenience, we call each

period with the same partner a “rotating cycle” . The rotating cycle of the 10 labs

were: lab 1 – 3, lab 4 – 6, lab 7 – 8 and lab 9 – 10. A web-based partner assigning

tool was built as part of this research; the students did not choose their own partner.

This tool will be explained in detail in Appendix B.

Before each lab, the teaching assistants went to the pair assign website to

obtain the pair assignment for the students in their section(s). During the lab period,

the teaching assistants made any changes according the students’ presence. For

example, he or she can re-assign pairs and mark the students who are absent. At the

end of the lab, the students are required to turn in their lab assignment, and the

teaching assistant will give a scoreof 0 – 100 according to the program’s

performance.

3.2.2 Peer Evaluation

Computer science instructors areoften concerned that when students

program in pairs, some less motivated students may take advantage of their

partner’s work. To alleviate this concern, we required the students to complete a

peer evaluation for their partner at the end of each rotating cycle. The peer

20

evaluation was administered via a web-based tool, which will also be explained in

detail in Appendix B.

There are five quantitative questions and one qualitative question in the

evaluation. The students rated their partner a scale from 0% to 20% for the first five

quantitative questions, with a maximum additive scoreof 100%. The questions are

listed below:

1. Did your partner read the lab assignment and preparatory materials

before coming to the scheduled lab?

2. Did your partner do their fair share of the work?

3. Did your partner cooperatively follow the pair programming model

(rotating roles of driver and navigator)?

4. Did your partner make contributions to the completion of the lab

assignment?

5. Did your partner cooperate?

6. Write down any comments you have.

Each student’s lab grade was multiplied by the value of their average peer

evaluation score. For example, if a student had a lab scoreof 90, and he or she got a

70% in the evaluation, then his or her final lab grade is (90 * 70%) = 63.

3.2.3 Role Switching

In the lab, we periodically observed one student in the pair spending too

much time driving. One important factor of pair programming is the two

programmers are equal. They should make the same contributions to the task

(Williams, Kessler et al. 2000). Therefore in Spring 2002, we add a new feature to

21

the pairlearning lab – a kitchen timer. The timer was set for 20 or 30 minutes.

When the timer dings, the student pairs were required to switch the driver and

navigator roles. Thus, both students in a pair are assured an opportunity to be the

driver.

We conducted a focus group with the students to obtain their feedback about

pair learning. In the focus group, students extensively discussed the switching role:

how much time the pairs should be given before being asked to rotate. They asserted

that we needed to make the time period more flexible. One student said, “We paid

the same tuition, we should get the same amount of time to get on the computer.”

Another said, “We will actively rotateamong ourselves, the timer is disturbing.”

Another mentioned that there were some students that like to be the driver all the

time and were not very nice about switching. These students would not rotateuntil

the teaching assistant asked them to do so. After some discussions, they agreed the

need to rotate should be mandatory, but the time can be flexible to be 20 or 30

minutes or depending on the pair themselves.

3.3 Step Two: Data Collection

To assess the efficacy of pair learning to the CS1 course, we collected a

significant amount of data about the students. This data can be divided into two

categories, background and performance data. First, we collected background data

for each student. This background data includes: student name, gender, race, class,

major, section number, and SAT-Math score from the NCSU registration and

recordsoffice and from an online class archive. Because we were collecting

background information on the students, weobtained permission to collect the data

22

from the NCSU Institutional Review Board (IRB). The IRB declared the project

exempt from surveillance, however students did voluntarily sign a release form

allowing us to collect the data. Another bit of background information we collected

was the students’ programming background based on a programming assessment we

administered, as discussed in Section 3.3.2.

The data in the performance category was collected from the students in lab

or in class. This data can be further subdivided into sub-categories: (1) quantitative

data from students’ testsor programming assignment and (2) qualitative data

achieved from lab observation or feedback from students and teaching assistant. The

quantitative data include: score of lab1 through lab 10, two midterms and one final

exam scores, three project assignment scores, final grade, peer evaluation feedback

score (which was collected by a web-based program), attitude survey scores and

programming assessment scores, which will be discussed in Section 3.3.1 and

Section 3.3.2, respectively. The qualitative data included the comments students

provided in their peer evaluations, teaching assistant feedback, lab observations

about the students’ behavior, and a focus group, discussed in Section 3.3.3.

3.3.1 Surveys

To assess student attitudes toward computer science, they were required to

complete a questionnaire at both the beginning and end of the semester. The

questionnaire was developed to measure attitudes towards computer programming

and computer science in general. This instrument was derived from the Fennema-

Sherman mathematics attitudes scales (Fennema and Sherman 1976), modified to

23

reflect programming and computer science rather than mathematics (Wiebe 2001).

The attitude survey is constituted of five parts:

• Confidence in Learning Computer Science;

• Attitude toward Success in Computer Science;

• Computer Science as a Female Domain;

• Usefulness of Computer Science Scale; and

• Effectance Motivation in Computer Science Scale.

There were 57 questions in the above five categories and an additional five

questions asked about the students’ age, gender, race and background information.

For each of the 57 questions, there are five possible answers: a) strongly agree, b)

agree, but with reservations, c) neutral, neither agree nor disagree, d) disagree, but

with reservations and e) strongly disagree.

3.3.2 Programming Assessment

Due to the fact that many students (but not all) take a considerable amount of

programming courses in high school, we administered a programming assessment

for the students to complete during their first lab. Ms. Carol Miller, the instructor of

the CS1 course, provided the programming assessment. It was focused on basic

understanding of programming knowledge. This enabled us to gage know how

much programming knowledge the students had before they enrolled in the CS1

course. We used the results of this instrument to evaluate the academic equivalence

of the paired and the solo groups.

The programming assessment consisted of eight questions about the basic

conceptsof programming language. From the programming assessment score, we

24

could see how much knowledge a student had before he/she began the CS1 course.

Each teaching assistant would score the programming assessment for the students in

their own lab.

3.3.3 Focus group

To obtain additional qualitative feedback from students and teaching

assistants we also organized one student focus group and one teaching assistant

focus group. In the student focus group, students shared their thoughts about pair

learning and how it could be improved. Seven students participated in the student

focus group: three white male, three foreign students, one African American. In the

teaching assistant focus group, the teaching assistants shared their experiences about

pair learning. There were four teaching assistants participated it.

25

Chapter 4 Experiment Findings

Our study was mostly concerned with the performance of beginning

students. Therefore, we focused on analyzing the scoresof the freshman and

sophomores. In our analysis we thus excluded all the students who were in their

junior or senior year or were graduate students. Additionally, we excluded the

students who took the CS1 course for credit only or audited the class, surmising

those students were not as motivated to excel as other students. This reduced our

sample size to N = 69 in the solo section and N = 44 in the paired section.

4.1 Quantitative Findings

In our experiment, we measured the success / retention rate, examination

scores and project scoresof the experimental (pair learning) and control (solo)

groups.

4.1.1 Success / Retention Rate

Historically, beginning Computer Science classes have a low success rate,

often cited informally as about 50% nationally. We evaluated whether pair learning

can help improve the success rateof the CS1.

Table 2 Success rate

Section C and above Below C Success Rate

Pair 30 14 68.18%

Solo 31 38 44.93%

As shown in Table 2, we observed a 45% success rate in the solo section. In

the paired section, 68% of the students completed the course successfully. A Chi-

26

Square test showed a significant difference between the two sections (� 2 = 5.849, p<

0.016). We have hypothesized that a larger percentageof students would finish the

CS1 course with a gradeof C or above in the paired than those in the solo section.

These results indicated that the difference in success rate between the two sections

is statistically significant. We, therefore, state that pair learning is a valuable

education technique for helping beginning students succeed in their early computer

science academic careers.

4.1.2 Performance on Examinations

We hypothesized that the students in the paired section would have higher

examination scores than the solo students.

As shown in Table 3, on average, the paired section performed than the solo

section in the examinations. When we calculated the statistics, we eliminated all the

0 scores; we did not count the students who did not take the exams. We can see the

students in paired section outperformed than the solo students. But, we also want to

analyze whether the difference is made because of the application of pair learning or

for some other reason.

Table 3 Exam Scores

Exam Paired
Mean

Paired
Standard
Deviation

Solo
Mean

Solo
Standard
Deviation

Midterm 1 78.7 11.8 73.4 13.8
Midterm 2 65.8 24.2 49.5 27.2

Final 74.1 16.5 67.2 18.4

As stated earlier, students chose the course sections without knowledge of

this study. In theory, we hoped this would yield academically equivalent groups.

27

We performed statistical tests to assess the academic equivalence of the two

sections, i.e. the students in both sections have similar aptitude. Our basis for

comparison was their SAT-Math (SAT-M) scores and their scoreson the

programming assessment exam.

4.1.2.1 Academic Equivalence and the SAT-M

The students in the paired group had a mean SAT-M scoreof 662.10 while

the solo section had a mean score of 625.43. The One-Way ANOVA (assuming

equal variances between the two groups) revealed that the difference was

statistically significant (F (1, 101) = 5.19, p < .018). An ANCOVA further revealed

a correlation between SAT-M scores and exam scores (p < .0001 for all the three

exams). This indicated that we needed to use the SAT-M as a covariate to guarantee

the academic equivalence in the examinations. When using SAT-M as a covariate,

an ANCOVA test showed there was a significant difference between the two

sections in midterm 2 (F(1, 79) = 30.94, p< .036), but does not show a significant

difference between sections with regards to midterm1 or final exam scores (F(1, 91)

= 24.70, p<.335 for midterm 1; F(1, 71) = 25.96, p<.448 for final). Based on these

results, we can statethat the paired students did perform better on the exams, but the

difference was only statistically significant for one of three exams. According to

Williams (1999), there is a pair jelling period when the pair programmers began to

work together. Pair learning was a new concept for our students. They also need to

have a learning process for pairing with another student. Perhaps this explains

why, the difference is in the first exam was not statistically significant. In the second

exam, the students are more familiar with the pair learning protocol, so they began

28

to be used to it. As a result, the difference in the second exam is statistically

significant.

4.1.2.2 SAT-M as matching criteria

When we run the ANCOVA test for the exam scores with SAT-M as the

covariate, we assumed that the exam scores were distributed normally. However,

when we ran the Shapiro-Wilk test to test the normality of the three exams, the

results (p < .0001 for midterm 1, p < .0001 for midterm 2, p < .006 for final exam)

indicated that the exam score distributions were non-normal. The non-normal

distribution suggests that non-parametric statistical tests would be more appropriate

for evaluating the relationship of student learning skills and test scores, with SAT-M

as a covariate. However, there is not a non-parametric equivalent for an ANCOVA.

For that reason, an analysis based on post-hoc matched pairing based on SAT-M

was performed. Within these groups, a Mann-Whitney U test could be used to

examine differences in exam scores.

In order to do this we sorted the students in each section based on their SAT-

M score. For the analysis, student results were then paired, one from the paired

section and the other from the solo section. The pairs consisted of students having

the same or similar SAT-M scores (the difference between the two scores is less

than or equal to 10). For example, if a student with SAT-M of 750 in one section

was picked out, then we chose a student whose SAT-M score is between 740 and

760 from the other section to form a pair with the previous student. If there are

more than one student in the other group was qualified, then we randomly picked

one.

29

We calculated the average scores and did statistical analysis in the groups we

generated. Table 4 indicated that for the three exams, the paired section performed

better than the solo section on average for the matched pairs. To test the statistical

analysis, we ran the Mann-Whitney U test to assess whether the difference between

these paired and solo sections was statistically significant. The results indicated (for

midterm 1, U = 229.000, z = -2.345, p < .019; for midterm 2, U = 189.000, z = -

2.042, p < .041; for final exam, U = 193.500, z = -1.140, p < .254) that the

differences of midterm 1 and 2 between these two sections are statistically

significant.

Table 4 Exam scores of matching pairs

Paired Mean Paired Std.
Deviation

Solo Mean Solo Std.
Deviation

Midterm 1 78.296 11.4550 70.148 12.1424
Midterm 2 60.667 23.6251 43.208 30.2439
Final exam 70.500 17.1207 62.864 22.2867

4.1.2.3 Academic Equivalence and the Programming Assessment Score

We tested the statistical significance of the difference in programming

assessment scores. The main purpose of this assessment was to examine the

differences in the programming background the students had had before they took

the CS1 course. Table 5 shows that the mean score of the programming assessment

for paired section was higher than the solo section. We ran a t-test to test the

statistical significance of the difference between these two sections. The results (t =

1.807, p< .080) showed that the difference is not statistically significant, assuming

the variances are not equal. So from the programming background point of view, the

30

two sections of students are academically equivalent to a statistically significant

level.

Table 5 Programming Assessment Score

SECTION N Mean Std. Deviation

Solo 58 1.7716 1.63988

Pair 23 2.6957 2.22455

Since the two sections of students have similar programming ability, and the

distribution of the tests are non-normal, we ran a non-parametric test Mann-Whitney

U test to assess whether the difference between the two sections are different. The

results (U = 944.500, z = -2.201, p < .028 for midterm 1; U = 189.000, z = -2.042, p

< .041 for midterm 2; U = 632.000, z = -1.693, p < .090 for final exam) indicated

that the difference between the two sections in midterm 1 and midterm 2 are

statistically significant, while this is not the case in the final exam.

Table 6 Summary of exam scores

Statistically Significant?
Examinati
on

Mean
Paired

Mean
Solo

ANCOVA/
SAT-M

SAT-M
Matching

Mann-
Whitney U
test

Midterm 1 78.7 73.4 No Yes Yes

Midterm 2 65.8 49.5 Yes Yes Yes

Final 74.1 67.2 No No No

We hypothesized that pair programmers would perform better on

examinations. From the above experiment findings (see table 6), we can see that in

general pair learning did help the beginning students to earn a better scoreon their

31

examinations, although there is one exam for which the difference is not statistically

significant.

4.1.3 Performance on Project assignments

As stated in Chapter 1, we hypothesized that the students in the paired

section would do better in the project assignments than the students in solo section.

There were three projects in the Fall semester. Table 7 shows that, on

average, students in the paired section performed better on two of the three project

assignments. Again, when we performed calculations, we eliminated all the 0

scores; if a student did not hand in the projects, his or her score was not counted in

the calculation.

Table 7 Programming Project Scores

Project
number

Paired
Mean

Paired
Standard
Deviation

Solo
Mean

Solo
Standard
Deviation

Project 1 94.6 5.3 78.2 26.5
Project 2 86.3 19.7 68.7 33.7
Project 3 73.7 27.1 74.4 29.0

4.1.3.1 Academic Equivalence and the SAT-M

As we stated in 4.1.2.1, the difference between the two sections on the SAT-

M score was statistically significant (F (1, 101) = 5.19, p < .018). Therefore, we did

an ANCOVA test to find out whether there was a correlation between projects and

the SAT-M scores. The results showed that for project 1 and project 2, the

correlation between the project scores and SAT-M score is not statistically

significant, while for project 3, the correlation was statistically significant (F (1, 69)

= 7.186, p < .009). This indicated that weneeded to use the SAT-M as a covariate

32

for the project 3 to guarantee the academic equivalence in the project 3, while for

the other two projects we only need to run them without considering covariance.

First, for the project 1 and project 2, we needed to test the normality of the

grade distributions. So weran the Shapiro-Wilk test to test the normality of the first

two exams. The results (for project 1, statistic = .704, p < .0001; for project 2,

statistic = .778, p < .0001) indicated that the distributions of project 1 and project 2

were not normal.

Second, since the distribution of the projects were not normal, we ran a non-

parametric test Mann-Whitney U test, and the results (U = 882.500, p < .024 for

project 1; U = 715.000, p < .160 for project 2) showed that the difference between

the two sections on the project 1 is statistically significant; while it is not

statistically significant for project 2.

Third, for the project 3, since the SAT-M affects the results of project 3, we

ran an ANCOVA test using the SAT-M as the covariate, project 3 scores as the

dependent variable, section number as the fixed factor. The results (F (2, 69) = 7.19,

p < .0562) showed the difference between the two sections on project 3 after

covariate by SAT-M is not statistically significant.

4.1.3.2 SAT-M as matching criteria for project 3

From the results in Chapter 4.1.3.1, we knew that SAT-M score did not

significantly affect the project 1 and project 2 scores, so weonly needed to run the

ANCOVA test for the project 3 scores with SAT-M as the covariate. During this

analysis, we assumed that the project 3 scores weredistributed normally. However,

when we ran the Shapiro-Wilk test to test the normality of the project 3, the results

33

(statistic = .840, p < .0001) indicated that the project 3 scoredistribution is non-

normal. As was done with examination scores in Chapter 4.1.2.2, apost-hoc

matched pairing based on SAT-M was created between paired and solo groups.

With these groups, aMann-Whitney U test could be used to examine differences in

exam scores.

Again, when we did the calculation, we eliminated all the 0s. Table 8

indicated that the project 3, paired section did not perform better than the solo

section on average for the matching pairs. To test the statistical analysis, we ran the

Mann-Whitney U test to assess whether the difference between these paired and

solo sections are statistically significant. The results indicated that the difference

between these two sections is not statistically significant.

Table 8 Project 3 scores of matched pairs

Paired Mean Paired Std.
Deviation

Solo Mean Solo Std.
Deviation

Project 3 69.6522 30.18520 75.7717 27.00178

4.1.3.3 Academic Equivalence and the Programming Assessment Score

Same as we stated in Chapter 4.1.2.3, we also use the programming

assessment score as the covariate for the three project scores. Since we knew from

4.1.2.3, in the programming background point of view, the two sections of students

are not statistically significant different based on the programming assessment. The

distribution of the tests was non-normal, so we ran a non-parametric test Mann-

Whitney U test to assess whether the difference between the two sections was

different. The results for project 1 and project 2 has been provided in Section

34

4.1.3.1, and the results for project 3 is U = 715.000, p < .662, which indicated that

the difference between the two sections in project 3 is not statistically significant.

Table 9 Summaries of Project Scores

Statistically Significant?

Project Mean
Paired

Mean
Solo

ANCOVA/
SAT-M

SAT-M
Matching

Programming
Assessment

Project
1

94.6 78.2 Yes N/A Yes

Project
2

86.3 68.7 No N/A No

Project
3

73.7 74.4 No No No

We hypothesized that paired students would perform better on programming

assignments. From the above analysis, we see that pair learning did help students

perform better on their programming assignments. However, dueto the fact that the

lower level students dropped out of the class in the solo section, which results in a

higher average of the solo section, the difference between the paired students and

solo students in only half of the projects is statistically significant.

4.1.4 Attitude

As stated in Chapter 1, we hypothesized that the students in the paired

section would have more positive attitudes towards the computer science major than

the solo section.

To evaluate the effect of the pair learning on the attitudeof students, the

students completed a questionnaire as discussed in Chapter 3.2.3. For our analysis,

we gave a value to every answer for the questions. For example, answer a) strongly

agree (value=5); answer b) agree, but with reservations (value = 4); answer c)

35

neutral, neither agree nor disagree (value=3); answer d) disagree, but with

reservations (value=2); answer e) strongly disagree (value=1). This is true for the

positive questions.

There were also some negative questions, for example, “I’m not good at

programming”. For those negative questions, we reversed the value of their answers.

For example, if a student’s answer for the negative question is a) strongly agree,

then the corresponding value is 1 instead of 5; if a student’s answer is b) agree, but

with reservations, then the corresponding value is 2 instead of 3 and so on.

We desired to summarize the students’ attitudes by compiling student results

into subscales. Dr. E. N. Wiebe (personal communication, Mar. 26, 2002) provided

the Cronbach Coefficient Alpha test data (see table 10) to measure the internal

consistency of each of these five subscales in the attitude survey. The assumption

was all of the questions within a subscale (for example, the Confidence subscale)

measured the same attribute and therefore individuals should answer all of the

questions within the subscale similarly. Cronbach Coefficient Alpha measures this

level of consistency. If the value on this test is over 0.8, it is considered a valid

instrument.

Table 10 Internal Consistency Value

Subscales Test Value Cronbach Coefficient Alpha

Confidence 0.91

Attitude toward Success 0.86

Female Domain 0.83

Usefulness 0.91

Effectance Motivation 0.90

36

Because we proved internal consistency, we could add the students’ answers

for each question in a subscale (see Table 11 and 12). Table 11 displays the values

the students did at the beginning of the semester; Table 12 displays the values at the

end of the semester. We ran a non-parametric analysis of variance (Mann-Whitney

U). The test indicated that there was no significant difference in any of these

categories between the paired and the solo lecture sections (p > .217 for all five

categories) either at the beginning or end of the semester. From these results, we

could not conclude that pair learning in the CS1 course helps the students have a

more positive attitude towards computer science solely. However, we can see the

trend that all the students had higher confidence at the end of the semester than the

beginning of the semester.

Table 11 Attitude survey scores at the beginning of the semester

Section Paired

Sample

Number

(N)

Paired

Mean

Paired Std.

Deviation

Solo

Sample

Number

(N)

Solo

Mean

Solo Std.

Deviation

Confidence 66 26.98 10.001 98 29.52 9.497

Success 65 21.65 7.688 97 20.92 6.819

Female 66 15.80 5.393 98 14.89 5.197

Usefulness 66 23.20 7.814 96 23.82 8.823

Effectance 66 28.62 9.566 95 29.12 8.606

Table 12 Attitude survey scores at the end of the semester

Section Paired

Sample

Paired

Mean

Paired Std.

Deviation

Solo

Sample

Solo

Mean

Solo Std.

Deviation

37

Number

(N)

Number

(N)

Confidence 50 29.22 13.140 54 31.93 12.700

Success 50 23.96 8.635 54 23.35 8.414

Female 50 17.34 6.699 53 15.62 6.464

Usefulness 50 28.46 12.551 53 27.51 10.392

Effectance 50 29.90 10.531 53 31.11 10.994

We also examined the NCSU course evaluations related to the students’

attitude. The only data available on the course evaluation was a mean score, so no

statistical evaluation could be performed. On the course evaluation, a 1 is an

unfavorable score and a 5 is a very favorable score. As shown in Table 13, students

did feel more favorable in the paired section, though the instructor, material and

evaluation artifacts were identical:

Table 13 Course Evaluations

Paired
Mean

Solo
Mean

Course Effectiveness 3.97 3.58
Instructor Effectiveness 4.20 3.69
Classroom is Instructive to Learning 4.26 4.26

We hypothesized that pair programming would cause the students to have

more positive attitudes about computer science. From the above analysis, we cannot

support this hypothesis.

4.2 Qualitative Findings

To better study the pair learning technique in the labs, we observed paired

and solo labs sessions. Following are the observation results we collected during the

38

Fall 2001 and Spring 2002 semesters. In the Fall 2001 semester, weobserved

students not rotating the roles of driver and navigator when they programmed. As a

result, there were students who did not have an opportunity to be the driver. To

avoid this, in Spring 2002 semester, each lab was equipped with a kitchen timer.

Teaching assistants set the timer for 20 or 30 minutes. When the timer went off,

students were required to rotate roles.

4.2.1 Students’ Behaviors during Pair Learning

In the paired section, we observed a great deal of discussions among the

students. Student pairs brain stormed with each other to solve their programming

assignments. Since they tended to figure things out amongst the two in the pair, they

rarely asked the teaching assistant questions. If they did, the questions were mostly

logistical in nature; for example, how they can improve more upon their programs

instead of operational questions like how to createa new directory. Most of the pairs

switched the “driver” and “navigator” roles when the timer went off or when they

came to a certain point shortly after the timer went off. Few pairs were reluctant to

change. But the students showed increasing willingness to switch as the semester

progressed (Williams, Wiebe et al. 2002).

In the solo section, the labs were fairly quiet. Students had questions on a

more frequent basis, so they raised their hands and waited for the teaching assistant

to help them. The maximum time a student waited before the teaching assistant

came to help him was thirty minutes. During this time the waiting students made

very little progress, if any. Some students even gave up trying to get the teaching

assistant’s attention and turned to their neighbors. When the teaching assistant

39

helped the students, they tended to takeover the students’ keyboard. One student

who withdrew from the CS1 course the year before and was in the paired lab in the

Spring semester shared his experiences in both semesters, “When I had the CS1

course last year in the solo lab I had a very simple syntax error, but I just could not

figure it out at that time. So I asked the teaching assistant. When I finally got hold of

him after waiting for a while, he seemed reluctant to sit down to read the code line

by line with me, and it turned out I need to solve it myself. While in the paired lab,

my partner sat with me and pointed out the syntax error when I just made it.”

4.2.2 Teaching assistant’s workload

As previously discussed, in the paired section, students were not asreliant

upon the teaching assistant for technical advice. On average, the teaching assistant

spent very little time answering questions, generally less than 5 minutes each.

Sometimes, they even had time to do their own work. Whereas in the solo lab, we

observed much hand waving to get attention of the teaching assistant. The time the

teaching assistant spent to answer a question is was longer, say from 5 minutes to 20

minutes. One teaching assistant who had been teaching both the paired and solo

sections said, “I got fewer questions in the paired lab and the questions the paired

lab asked are more reasonable. In the solo section, there was a student asking how to

create adirectory in the 7th lab, which he should have known in the first lab.”

As far as grading is concerned, it is obvious that the grading load is halved

due to one pair submit one copy of homework.

We administered a questionnaire to the teaching assistants to obtain

feedback on their views of pair learning and their observations about students’

40

behavior. There were ten teaching assistants, and five out of the ten replied. Among

the five teaching assistants (TA), two were responsible for paired labs, whereas

three are responsible for solo labs. Moreover, one of the two paired lab TAs taught

both the paired lab and solo lab. There seven questions, and the first four is for both

paired and solo section TAs, and the last three is for the paired section TA only. The

questions in the questionnaire are listed below (Q1: question 1), and the answers

from the teaching assistants are after the questions (A1: Answer to the first

question). Since the population of the respondents is too small, we did not do the

statistical analysis.

Q1: How many students were in your lab?

A1: On average, there were around 20 students.

Q2: What percentageof lab time did you spend answering students’ questions?

A2: The two paired lab TAs spent 10% and 25% of the lab time to answer students’

questions respectively; while the solo labs TAs’ answer were 90%-95%, (essentially

the whole lab time), and 75% respectively.

Q3: Give several examples (at least 2) of the questions you were asked.

A3: The solo students asked like, “In our project, we're supposed to do such and

such, I don't really understand how to do that, can you help?” ; while paired students

asked questions like, “What is a better way to code 'x' method?”.

Q4: If you were a teaching assistant again, would you want to teach a paired or solo

lab?

41

A4: Most of the TAs said paired lab was interesting.

Question 5 – 7 is answered by paired section TA only:

Q5: Based on your previous experiences as a teaching assistant or as CSC116

student, if you were a paired lab teaching assistant, could you please state at least

three differences you can think of between the solo labs?

Q6: On a scale from 1 (very receptive) to 5 (very resistant), rate how receptive your

students were towards pair programming at the beginning of the semester.

A6: One of the TAs enumerated the difference between the paired lab and the solo

lab, “The main differences are the effects on the TA position. The grading is much

easier in the paired lab. The code is clearer in the paired lab having been proofed by

the other student while writing. The students in the paired lab thought the labs were

easier than the non-paired students thought. The time spent in lab was roughly only

3/5 the time spent in my non-paired sections. The extra work given by the paired

students was obvious. MOST IMPORTANTLY: The extra time gained by not

having to answer as many questions allowed me more time to help the better

students do even better. It also allowed me to get to know theother students better.

In non-paired sections there are always a few that eat up your time asking stupid

questions. That was not the case in the paired lab. ALSO IMPORTANTLY: The

effects of having a lab where communication is required opened up the students to

talk to me more as well as their partners. They were much moreopen than non-

paired students in talking to me about problems, concerns, etc.” Theother TA also

said about his concerns, “In non-paired labs, students don't get help from their peers,

42

which is a minus. In paired labs sometimes students feel like they are dead weight if

their partner is very experienced so they might not want to work with someone

else” .

Q7: On a scale from 1 (very receptive) to 5 (very resistant), rate how receptive your

students were towards pair programming at the end of the semester.

A7: both of the TAs in paired lab answered the students grew up on the pair

learning.

So from our analysis above, the teaching assistant did have lower workload

in grading and answering questions.

43

Chapter 5 Conclusion and Future Work

A formal experiment was performed in a CS1 course, “Introduction to Java” ,

in North Carolina State University. The purpose of this research was to assess

whether pair learning can help the entry level students learn better in the computer

science courses, help them more confident in the courses, and as a result, more

students will succeed in computer science. The following hypothesis was tested:

• More students that have participated in pair learning in CS1 will succeed in

the class by completing the class with a grade of C or better.

• Students’ participation in pair learning in CS1 will lead to better

performance in examinations (exams are completed solo by all students) in

that class.

• Students’ participation in pair learning in CS1 will lead to better

performance on course projects in that class.

• Students’ participation in pair learning in CS1 will lead to a more positive

attitude toward the course and toward Computer Science in general.

• Students’ participation in pair learning lead to a lower workload for course

assistant.

199 students participated in this study, 112 in solo section and 87 in the

paired section. Since we focused primarily on “beginning students” , we eliminated

the graduate students, junior and senior students. As a result, 69 students in the solo

section and 44 in the paired section comprised our experiment samples.

44

We analyzed the students’ three exam scores, three project scores,

success/retention rate, programming assessment scores, questionnaire values to

validate the hypothesis.

We hypothesized that more students who have participated in pair learning

in CS1 will succeed in the class by completing the class with a gradeof C or better.

We found that pair learning did help students succeed by completing the class with a

grade of C or better.

We hypothesized that paired students would perform better in the

examinations. We found that, on average, the paired section students performed

better than the solo section students, although the difference in one of the exam is

not statistically significant. Further to guarantee the academic equivalence, we

considered student SAT-M and programming assessment scores and found out that

SAT-M score did affect the performance of students. We matched the students into

pairs according to similar SAT-M scores and proved that the differences of midterm

1 and midterm 2 are statistically significant, but this was not the case for final exam.

From the population of students that participated in the final exam, we observed

more students dropped out in solo section than that in the paired section, so this

resulted in the lower part of the solo section is gone. This phenomenon could

explain why the difference of final exam between the two sections is not statistically

significant while the other two are. So in general, we observed that pair learning did

help students perform better in exams, although the difference in one of the three

exams is not statistically significant.

45

We hypothesized that the experimental section would perform better in the

programming assignments. We found that, on average, paired section students

performed better than solo section on project 1 and project 2. In project 3, the solo

section students did slightly better than the paired section. The reason we raised

above can also interpret this phenomenon. So in general, we can see that pair

learning did help students perform better in the projects.

We hypothesized that pair learning could help students be more confident

and positive toward computer science. We found that the result of the questionnaire

demonstrated an improving trend for the students, although the difference is not

statistically significant. The attitude change is a long-run term, so wecould not

change it in one course. We expect that students’ attitudes will be improved towards

computer science after they took several paired section class.

We also hypothesized that pair learning can alleviate teaching assistants’

working load in both grading and answering questions. We observed the teaching

assistant’s burden was indeed lowered: as evidenced by the need for less grading

work and more time in labs.

Paired students demonstrated higher-order thinking skills than the students

when compared with the students who worked alone. They were more likely to

think far beyond the programming assignment to applying their knowledge in more

challenging programming contexts. Additionally, paired students collaborated more

extensively with each other; the collaboration skill will benefit them in the future

when they work, since collaboration is an important skill for programmers in

industry (Demarco and Lister 1987).

46

5.1 Future work

We had also hoped to study the effect of pair learning on the female students

and African-American students. However, there were far too few women (12 in solo

section, 4 in paired section) and African American (8 in solo section, 6 in paired

section) to allow statistical evaluation. We hopeto accumulate enough results of

women over several semesters to yield statistically significant results.

The pair learning technique may also be improved by learning more about

prudent pair assignments. Both in the student and teaching assistant focus groups,

we heard that the partner played an important role in the communication, directly

affecting the results of the learning process. Some students said their partners were

great and he/she learned a great deal from them. Others may complain that it was

difficult to collaboratewith their partners. Having a good partner is very important

in pair learning. Students would prefer to pick their own partners. But when they

just came to university, they hardly know anyone. So they needed to be “randomly”

assigned. Future research should address this “random” assignment to determine if a

pattern for best matching each student into pairs, for example based on their

background equivalences or their personality type.

Finally, it would be interesting to analyze the interactions of the student pair

learners from a psychological perspective to see how they really communicate with

each other. As a result, wecan further find out how pair learning can benefit the

students psychologically.

47

Appendix A Web-based Tool Support

As we can saw from previous chapters, there were two web-based applications

written to support pair learning and this research. One tool was used by the teaching

assistants to automatically assign the pairs each week; the other tool was used by the

students to do the peer evaluation.

A.1 Pair assignment program

A.1.1 Pair assignment algorithm implementation

As we stated before, the students were assigned partners rather than allowing

them to choose their partner. The partner assignment program was used to make

these assignments. This application is implemented using Java Server Pages (JSP)

with MS SQL Server database.

The purposeof this algorithm is to avoid the students to be with the same

partner for too long, i.e. students should change partner every cycle. The students’

names are input to the database, ordered alphabetically. For the cycle 1, the odd

number students are assigned to their next neighbor, i.e. student (2 * i – 1) is paired

with student (2 * i), where i is a positive integer. If the total number of students is

odd, then the last student will pair with the first two students to have a 3-member

group. For the cycle 2, the students are assigned to pair with the student next to his

neighbor, i.e. student i is paired with student (i + 2). If the total number of students

is odd, then the left student will be assigned to the first group. For the cycle 3, the

students are assigned to pair with the student next to his neighbor, i.e. student i is

paired with student (i + 3). If the total number of students is odd, the left student

48

would be assigned to the second group. And so on. In general, for the cycle N, the

student i is paired with student (i + N). If the total number of students is odd, the left

student will be assigned to the (N-1)th group. In this way we can fulfill our purpose

that the students can pairs as many as the cycle number.

A.1.2 Program flow

When a teaching assistant comes to this website, he/she needs to sign on first

(as in figure 7.1). If the username and password are not right, he/she can not access

the web page. Those given access are then directed to another page asking him or

her to choose from the lab sections he/she is responsible for (as in figure 7.2). After

that, an assignment of the students in that section shows on the web (as in figure

7.3). Then the teaching assistant can assign the student according to the contentson

the web page.

49

Figure 2 Log in page

If a student is absent from a lab or for any reason, the teaching assistant can

also reassign the student pairs and record any changes (as in figure 7.4). If a student

was reassigned a partner, the teaching assistant should record the new group number

on the website, and the data will be updated in the database. Updating the revised

assignment is important, because the actual, accurate pairings are necessary as input

into the peer evaluation tool, which is discussed below.

50

Figure 3 choose lab section

51

Figure 4 Student assignments

52

Figure 5 Change student pairs

A.2 Peer Evaluation Program

A.2.1 Program design

The purposeof this program is to assure the students all actively make

contributions in the group to avoid some students taking advantageof their partner’s

work. It is also implemented using JSP and MS SQL Server database.

When a student comes to the website, he/she will be asked to log in first (as

shown in figure 7.5). He/she can also choose which lab he/she is going to do the

evaluation for. If the password and username are right, he/she will be directed to the

next page to answer the questions (as shown in figure 7.6). Each question will be

53

scaled from 0 – 20. If he/she answered a wrong character or a number out of the

boundary, then a JavaScript warning box will be pop out.

Figure 6 Peer Evaluation Log in Page

54

Figure 7 Peer Evaluation Page

55

Appendix B Programming Assessment

We're attempting to assess your programming background and skills. Answer as many question
as you can, even if you have little or no programming experience. If you don't know how to
answer a question you can simply write 'do not know'.

Before you begin, pleaseprovide your nameand indicatewhat programming languageyou will beusing:

Name:___

Programming Language:
__

Arithmetic

1. Use integer arithmetic to evaluate the following expressions. Use standard
integer arithmetic as implemented in common programming languages (e.g. C,
C++, Basic, Java)

3 + 5 * 2 = _____

4 * 3 + 6 = _____

7 / 2 + 4 = _____

13 / 4 / 2 = _____

2. If / and + have the same precedence, what is the value of

3 + 1 / 4 / 2 + 5 = _____________

If / has higher precedence than +, what is the value of that same
expression?

3 + 1 / 4 / 2 + 5 = _____________

Selection

3. Assume an integer variable named temperature has been declared and
assigned a value.
Write a statement that displays "Water" to the console if the value of
temperature is between 32 and 212 (inclusive).

56

Iteration (loops)

4. Write a loop that sets a variable named sum to the sum of the even numbers
between 1 and 99. Assume that sum has been declared and initialized to zero.

5. Use nested loops to produce the following console output:

*
**

Arrays

6. Assume an integer array named intArray has been initialized to hold 10
values. Write a code segment that displays (to the console) the smallest value
stored in the array.

Encapsulation

7.Some programming languages use classes. Explain what a class is and provide
a short program example.

8. Functions are commonly used in programming languages. Explain
what a function is and provide a short example. If your programming
experience has been in Java or C++, explain methods instead, and
provide a method for the class you just provided.

57

Appendix C Computer Science / Programming Interests Questionnaire

Computer Science / Programming Interests Questionnaire (Wiebe 2001)

Directions

Enter your student ID number onto the answer sheet. Please note that your
answers will be kept confidential.

On the following pages are a series of statements.
1. Read each statement.
2. Think of the extent to which you agree or disagree with each statement
3. Mark your response on the answer sheet

Please remember:
- There are no right or wrong answers. Don't be afraid to put down what you really

think.
- Don't spend a lot of time on any one item. Move quickly!
- Complete all of the items.

Respond to the following questions on the answer sheet, using the following
scale:

a) strongly agree
b) agree, but with reservations
c) neutral, neither agree nor disagree
d) disagree, but with reservations
e) strongly disagree

1. I plan to major in computer science.

2. Generally I have felt secure about attempting computer programming problems.

3. I am sure I could do advanced work in computer science.

4. I am sure that I can learn programming.

5. I think I could handle more difficult programming problems.

6. I can get good grades in computer science.

7. I have a lot of self-confidence when it comes to programming.

8. I'm no good at programming.

9. I don't think I could do advanced computer science.

10. I'm not the type to do well in computer programming.

11. For some reason even though I work hard at it, programming seems unusually
hard for me.

58

12. Most subjects I can handle O.K., but I have a knack for flubbing up
programming problems.

13. Computer science has been my worst subject.

14. It would make me happy to be recognized as an excellent student in computer
science.

15. I'd be proud to be the outstanding student in computer science.

16. I'd be happy to get top grades in computer science.

17. It would be really great to win a prize in computer science.

18. Being first in a programming competition would make me pleased.

19. Being regarded as smart in computer science would be a great thing.

20. Winning a prize in computer science would make me feel unpleasantly
conspicuous.

21. People would think I was some kind of a nerd if I got A's in computer science.

22. If I had good grades in computer science, I would try to hide it.

23. If I got the highest grade in computer science I'd prefer no one knew.

24. It would make people like me less if I were a really good computer science
student.

25. I don't like people to think I'm smart in computer science.

26. Females are as good as males at programming.

27. Studying computer science is just as appropriate for women as for men.

28. I would trust a woman just as much as I would trust a man to figure out
important programming problems.

29. Women certainly are logical enough to do well in computer science.

30. It's hard to believe a female could be a genius in computer science.

31. It makes sense that there are more men than women in computer science.

32. I would have more faith in the answer for a programming problem solved by a
man than a woman.

33. Women who enjoy studying computer science are a bit peculiar.

34. I'll need programming for my future work.

35. I study programming because I know how useful it is.

36. Knowing programming will help me earn a living.

37. Computer science is a worthwhile and necessary subject.

38. I'll need a firm mastery of programming for my future work.

39. I will use programming in many ways throughout my life.

59

40. Programming is of no relevance to my life.

41. Programming will not be important to me in my life's work.

42. I see computer science as a subject I will rarely use in my daily life.

43. Taking computer science courses is a wasteof time.

44. In terms of my adult life it is not important for me to do well in computer
science in college.

45. I expect to have little use for programming when I get out of school.

46. I like writing computer programs.

47. Programming is enjoyable and stimulating to me.

48. When a programming problem arises that I can't immediately solve, I stick with
it until I have the solution.

49. Once I start trying to work on a program, I find it hard to stop.

50. When a question is left unanswered in computer science class, I continue to
think about it afterward.

51. I am challenged by programming problems I can't understand immediately.

52. Figuring out programming problems does not appeal to me.

53. The challenge of programming problems does not appeal to me.

54. Programming boring.

55. I don't understand how some people can spend so such time on writing programs
and seem to enjoy it.

56. I would rather have someone give me the solution to a difficult programming
problem than to have to work it out for myself.

57. I do as little work in computer science courses as possible.

Please answer the following questions about yourself on the answer sheet:

58. Age:
a) 18 years old or younger
b) 19 years old
c) 20 years old
d) 21 - 30 years old
e) 31 years old or older

59. Gender:
a) Female
b) Male

60. Classification (Grade Level):
a) Freshman

60

b) Sophomore
c) Junior
d) Senior
e) Post-undergraduateor Graduate

61. Number of computer science or programming courses you have previously taken
in high school or college:
a) None
b) One course
c) Two courses
d) Threeor four courses
e) more than four courses

62. Ethnicity/Race:
a) White (non-Hispanic)
b) Black (non-Hispanic)
c) Asian American
d) Hispanic American
e) Others

Thank you for your time! Please let us know if you have any questions about this
questionnaire or the study we are conducting. Questions or concerns can
either be directed to the instructor of this courseor the project director, Dr.
Laurie Williams, Dept. of Computer Science, williams@csc.ncsu.edu, 513-
4151

61

REFERENCES

Angelo, T. A. and K. P. Cross (1993). Classroom assessment techniques - a
handbook for college teachers. New York, Jossey-Bass Publishers.

Beck, K. (2000). Extreme programming explained: embrace change, Addison-
Wesley.

Bevan, J., L. Werner, et al. (2002). Guidelines for the use of pair programming in a
freshman programming class. Fifteenth Conference on Software Engineering
Education and Training, Covington, Kentucky, IEEE Computer Society
Press.

Bonwell, C. C. (1996). Using Active Learning in College Classes: A Range of
Options for Faculty.

Demarco, T. and T. Lister (1987). Peopleware. New York, Dorset House Publishers.
Felder, R. M. (1995). "A Longitudinal Study of Engineering Student Performance

and Retention. IV. Instructional Methods and Student Responses to Them."
Journal of Engineering Education 84(4): 361-367.

Felder, R. M., G. N. Felder, et al. (1998). "A Longitudinal Study of Engineering
Student Performance and Retention. V. Comparisons with Traditionally-
Taught Students." Journal of Engineering Education 87(4): 469-480.

Fennema, E. and J. A. Sherman (1976). "Fennema-Sherman mathematics attitudes
scales." JSAS: Catalog of Selected Documents in Psychology 6(31).

Haller, C. R., V. J. Gallagher, et al. (2000). "Dynamics of Peer Education in
Cooperative Learning Workgroups." Journal of Engineering Education
89(3): 285-293.

Humphrey, W. S. (1995). A Discipline for Software Engineering.
Jefferies, R. (1999). Pair programming.
Lemos, R. S. (1979). "An implementation of structured walk-throughs in teaching

COBOL Programming." Communications of the ACM 22: 335-340.
Leuf, B. and W. Cunningham (1999). Pair Programming. 2002.
Lorenzen, M. (2002). Active Learning and Library Instruction. 2002.
MacGregor, K. S. (1998). "Computer programming instruction: effects of

collaboration and structured design mileposts." Journal of Research on
Computing in Education 21: 155-164.

McDowell, C., L. Werner, et al. (2002). The effects of pair programming on
performance in an introductory programming course. Conference of the
Special Interest Group of Computer Science Educators, Northern Kentucy,
ACM Press.

Nosek, J. T. (1998). "The Case for Collaborative Porgramming." Communications
of the ACM 41(3): 105-108.

Priebe, R. L. (1997). The effects of cooperative learning on content comprehension
in a second-semester university computer science course. Science Education.
Austin, University of Texas at Austin.

Ruhl, K. L., C. A. Hughes, et al. (1987). Using the pause procedure to enhance
lecture recall. Teacher Education and Special Education. 10.

Slavin, R. E. (1990). Cooperative Learning Theory, Research, and Practice.
Wiebe, E. N. (2001). Computer Science / Programming Interests Questionnaire.

62

Williams, L. A. (2000). The Collaborative Software Process. Computer Science.
Salt Lake City, The University of Utah: 186.

Williams, L. A. and R. R. Kessler (2002). Pair Programming Illuminated. Boston,
Addison-Wesley.

Williams, L. A., R. R. Kessler, et al. (2000). "Strengthening the Case for Pair
Programming." IEEE Software 17.

Williams, L. A., E. N. Wiebe, et al. (2002). "In Support of Pair Programming in the
Introductory Computer Science Course." Computer Science Education.

