
ABSTRACT

GUPTA, ABHEEK. Inductor Geometries and Inductance Calculations for Power Transfer

in Biomedical Implants. (Under the direction of Dr. Gianluca Lazzi.)

Biomedical implants used as neural prostheses are often powered by low frequency

wireless inductive systems. Such an inductive coil system consists of the primary coil out-

side the body and the secondary coil implanted on-chip with the prosthesis. This thesis

proposes novel designs for the geometry of the on-chip coil and computes the inductive

coupling obtained by using the proposed geometries. Traditional inductance calculation

methods involve the use of computationally expensive field solvers or complicated analyti-

cal methods. A computational method employing the partial inductance concept is used to

calculate the self and mutual inductances at low frequencies of certain regular 2-D and 3-D

geometries (spirals, rectangular helices, pyramidal inductors etc.). These inductor geome-

tries are fabricated and the measurement results match closely with the values predicted

by the simulations. This provides an analytically simple, cost-efficient and computationally

fast method of finding the self and mutual inductances of regular 2-D and 3-D geometries

which can be used to reliably compute the coupling of the proposed on-chip inductor ge-

ometries. The inductor geometry for optimal power transfer can be chosen on the basis of

these inductance calculations.
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Chapter 1

Introduction

Biomedical implants used as neural prostheses typically do not reside fully inside

the body, but rather consist of an implantable stimulation unit linked to an external unit.

This is motivated by the desire to have a simpler implant with ease of upgrading signal

processing and other aspects of the exterior unit without incurring re-entrant surgery. Al-

though percutaneous (wired) connections between external and internal units have been

used in earlier developments, the transcutaneous (wireless) link is the method of choice due

to reduced mechanical tethering on the implant and lower risk of infection. A successful

biomedical implant needs a sophisticated electronic system to provide the necessary power

and data transmission between the external and internal implant units. The primary con-

cerns for the development of these microelectronics are efficiency, small size, low power

dissipation and minimal heat generation. Biomedical implants used as prostheses are often

powered by low frequency wireless inductive systems.

The use of transcutaneous, or wireless, connections is justified due to the following compli-

cations which are typical for alternative schemes [1]:

• Risk of infection: Percutaneous connectors (physically wired links between implanted

and exterior prosthesis components) raise the risk of infections due to a perpetual

breach of the body, through which wires must pass.

• Adverse reaction to excessive movement: Depending on mechanical anchoring, such as

to bone, percutaneous connectors may restrict movement of a prosthesis in the tissues
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in which it is implanted and with which it interfaces electrically. These tissues may

be free to move with respect to a percutaneous connector with obvious complications.

• Breakage of leads or device dislodging: For example, in the case of ocular prostheses,

rapid eye movement can break any penetrating wires passing through the scleral

wall, which might otherwise be used to connect an intraocular prosthesis to external

electronics. Furthermore, dislodging of the implant due to external tethering on the

wires could occur.

• Battery replacement: In the case of most prostheses, implantable batteries are un-

desirable because of the associated replacement surgery (except where charging can

be initiated from outside of the body, as from coils, for example). Even renewable

cells have limited recharge cycles. Furthermore, as a consequence of the biological

environment, implanted batteries must be enclosed in the implant encapsulant, which

would complicate replacement.

Magnetically coupled coils have been the traditional means of wireless connection to im-

planted devices [2]. Although there are many ways to transmit data to the implant, it has

been the primary way to transfer a significant amount of power to the implant. Because the

magnetic field strength over the coil axis falls as a third power of distance, this type of link

is suitable only for very small distances. The primary coil radiates energy widely in many

directions. This is primarily the case when the magnetic field may not be directed due to

the absence of magnetic material. The use of magnetic material should be avoided as it may

lead to adverse effects if the individual with the implant were to come under the influence

of an unwanted magnetic field. Due to discontinuity at the body surface and the absence

of magnetic material for reasons explained above, the coils are air-coupled. Depending on

the space between coils, air-coupling may result in very poor coupling coefficient between

the coils. Several studies have been conducted to measure the mutual inductance between

two air-coupled coils [3] [4] [5]. Coupling strength is dependent on coil loading, excitation

frequency, coil separation, coil geometry, coaxial alignment and angular alignment. Most of

these are subject to variation in prostheses. Typical values for coil-coupling coefficients are

between 0.01 and 0.1. To receive the required power at low coupling, high field strengths

are used. Because the low frequency at which the coils operate does not have much absorp-

tion in the tissue, this can generally be used safely. However, for high power implantable
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devices, electromagnetic absorption in the human body must be determined to ensure that

international safety standards are met.

1.1 Inductance Coupling and Geometries

Inductive telemetry has been the standard means of wireless connection to im-

planted devices for years. It is based on the mutual magnetic coupling of two proxi-

mal inductive coils. The secondary coil in this arrangement is implanted along with the

stimulator/neuro-recorder which it services, while the primary coil remains exterior. A low

frequency carrier (i.e. usually 1-10 MHz) is driven onto the primary coil which can then be

coupled onto the secondary coil for transfer of power. Transcutaneous power transfer for

medical applications via inductively coupled coils was first demonstrated by Schuder [6].

Since then, several papers have reported various advancements on the theme of inductive

wireless power transfer. However, the basic concept behind the transfer theme remains the

same. For power transfer, the two implant units are connected by a wireless inductive link,

allowing the internal implant unit to derive power from the external implant unit. The

primary inductor coil which is located on the external implant unit is driven by an exter-

nal transmitter circuit and transmits power. The secondary coil is located on the internal

implant along with a receiver circuit to receive power for the internal device electronics.

Two major disadvantages are noted here regarding magnetic coupling, which are

simply a characteristic of the coils.

• Direction of Radiation: It is obviously desirable to radiate energy only towards the

secondary coil. In reality, the primary coil radiates energy widely in many directions,

particularly with no ferrous core to concentrate the magnetic flux, as in a transformer.

This omni-directional radiation pattern imposes an unnecessary drain on the system

batteries.

• Poor Coupling: Due to the implantation, the coils must be disjoint and subsequently

cannot be coupled, or linked, by a common ferrous material, but are rather air-cored.

Therefore, the mutual-inductance, or coupling-coefficient, is quite low. This requires

high magnetic field strength in the primary coil in order to induce sufficient energy in

the secondary coil to power the implant. The coupling coefficient of the coils may be

enhanced by careful design of their geometries and relative orientation.



4

1.1.1 Importance of Coil Geometry

From magnetic flux considerations, it is known that the inductive coupling between

the two coils is determined by their geometries and relative orientation for a given separation.

The constraints on the dimensions of the coils are based on the environments in which they

are placed. Though the primary coil does not have very small area requirements since

it is outside the body, the secondary coil has to be miniaturized to satisfy the stringent

space constraints within the body. The secondary coil is often located on-chip to increase

integration density of the system which further reduces the space available to construct the

inductor. The geometry of the secondary on-chip inductor is thus seen to be of significant

importance since it needs to maximize coupling with the external inductor while being

integrated on-chip and complying with the space constraints.

1.1.2 Prior Research on Coil Coupling and Geometries

The optimization of the coil coupling depends on various factors. Research has

been conducted on various geometries in 2-D and 3-D coils as well as other geometric

coupling enhancement techniques.

Zierhofer et al. demonstrated that the coupling coefficient between coils can be considerably

enhanced if the turns of the coils are not concentrated at the circumferences, but distributed

across the diameters [5]. However, such a distribution of turns results in a reduction of the

unloaded quality factors of the coils. The same authors showed that an optimum number

of turns can be achieved for maximum net efficiency improvement [7].

Due to anatomical requirements of the implant, the coils may be frequently misaligned,

therefore reducing coupling efficiency. The possibility of coil misalignment is considered by

Flack et al. [8] who also provide calculations and graphs for the lateral misalignment case

between two coils whose planes are parallel, for a variety of spacings between the planes

and displacements between the axes of the coils. Soma et al. derive inductance formulae

for the lateral and angular misalignment of coils as well as for a combination of the two

kinds of misalignments [9].

From a fabrication point of view, various 2-D and 3-D inductors have been fabricated

on-chip. Neagu et al. optimize the design of the receiver coil by focusing on different

configurations of planar receiver coils made with the use of micromachining technologies
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such as thin-film deposition and electroplating [10]. Mokwa et al. improved the power

transfer of coils by developing a new fabrication process for the realization of multiple layer

coils by using a folding technique to manufacture single, double and 4-layer coils [11].

Tang et al. proposed and fabricated a miniature stacked 3-D inductor using standard digital

one-poly four-metal technology which led to a significant reduction in area compared to

conventional spiral inductors [12].

An on-chip 3-D inductor is fabricated by Young et al. [13] by electroplating copper traces

around an alumina insulating core, deposition of conformal photoresist by electroplating,

and using a 3-D maskless direct-write laser lithography tool to expose the resist. Chom-

nawang et al. designed, fabricated and characterized 3-D on-chip air core solenoid inductors

and 3-D on-chip suspended dome shaped spiral inductors using deformed sacrificial polymer

core and conformal photoresist electroplating techniques [14].

Yoon et al. fabricated arbitrary 3-D metal microstructures including suspended spiral induc-

tors, solenoid inductors and transformers using a new, thick-metal surface micromachining

technology [15].

A new 3-D assembly process called plastic deformation magnetic assembly was developed

by Zou et al. to fabricate vertical spiral inductors and solenoid inductors by first fabricating

the inductors on the substrate and then assembling them into the vertical position using

magnetic fields and plastic deformation materials [16].

Since planar inductors involve substantial substrate losses and parasitics [17] [18], thereby

reducing coupling efficiency, we choose to focus on 3-D on-chip inductors to obtain bet-

ter coupling with the external coil. Although a good deal of research has been published

in the areas of coil coupling as well as design and fabrication of 3-D inductors, this work

differs significantly from prior work in this field. In this research, we formulate a computa-

tional method which can directly calculate the mutual coupling between the external coil

and various geometries and structures for the internal coil. We propose some novel and

unique inductor geometries which may possibly provide good coupling. These geometries

are analyzed by our computational method once the method has been tested and validated

for simpler structures. The proposed 3-D geometries may be fabricated concurrently using

standard IC processes to establish the fabrication procedure to be used in their construction.

Having obtained the information from the computational method regarding the on-chip in-

ductor geometry with optimal coupling characteristics, we may proceed to fabricate the

chosen geometry on-chip and integrate it with the biomedical implant.
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1.2 Inductance Extraction Methodology

The problem statement for this research has been described in the previous couple

of sections. In short, it is desired to find out which inductor geometries give us the highest

coupling coefficient values to enable efficient power coupling. There are various methods

by which this question may be answered. One possible route is to actually fabricate the

structures in question, measure the inductance values and compare the values to select the

best possible geometry. However, given the small size of the inductor structures and the

technology required to fabricate such devices, the prohibitive cost of this approach makes

it impractical. We would need to compare many possible structures which differ from each

other by small deviations in a few parameters. It would be economically unfeasible to

fabricate the required number of approximately similar structures to isolate the optimal

inductor structure. Another possible method would be to use an analytical approach to

solve the problem. The difficulty with this approach is that precise analytical formulae do

not exist for the pyramidal inductor structures being proposed, and thus we cannot directly

analyze these structures using simple formulae.

However, it is possible to find a close approximation to the inductance values for these

structures by meshing the original structure into smaller segments and using quasi-analytical

methods. Such an approach would be tedious and labor-intensive in terms of attempting to

calculate the overall inductance by hand. The nature of the problem seems to suggest that a

computational approach may be tenable. The required meshing and computations could be

carried out by a computer code written specifically for the purpose. The code should ideally

be able to tackle any inductor structure of a certain geometry type. Different codes could be

written in order to handle inductors with different geometries. Thus, given the dimensions,

geometry and configuration of the inductors, the computer simulations would generate the

inductance value for the configuration. This approach is a time and cost-efficient way of

tackling the problem. It also allows us the flexibility of making dimensional and geometric

changes and observing, via simulations, how these changes affect the inductance value of

the structures.

The approach followed in researching this problem is to write computer codes in the C

programming language which incorporate the inductance extraction method for analyzing

a variety of inductor geometries. A code for a certain geometry essentially divides the

original structure into a number of segments which comprise the inductor and analyzes
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their interactions to find the total value of inductance. The results from the computer

simulations are then used to determine which inductor structure is most suited for our

purpose.

1.3 Inductance Calculation

Traditional inductance calculation methods [19] involve the use of electromagnetic

field solvers or complicated analytical methods. They may also require the use of approxi-

mate lumped or distributed models and experimentally fitted parameters. However, these

methods are both tedious and computationally expensive and may not easily analyze the

self and mutual inductance of certain inductor geometries of interest.

Although accurate, electromagnetic simulators are slow and computationally intensive, both

in memory and time. Thus, while these field solvers are suitable for accurately simulating

simple structures, they are not suitable for simulating large three dimensional structures

with multiple segments. On-chip inductors require long simulation times, access to fast

processors and availability of substantial memory, factors that are aggravated by commonly

encountered situations where the spacing between conductors is small compared to their

width. Furthermore, since these simulators require both the lateral and vertical geometries

to be specified, considerable experience is required on the part of the user to simulate on-chip

inductors. These field solvers also do not provide any insight into the engineering trade-

offs involved in the design of on-chip inductors and transformers. Although the better

field solvers are excellent for verification, they are inconvenient at the initial design and

optimization stages. For the reasons noted above, full fledged field solvers are not a practical

option for on-chip inductance calculations.

Some analytical methods like the Greenhouse method [20] are often used in con-

junction with lumped models for calculation of the inductance value. This method is based

on a segmented summation approach which increases in complexity as the square of the

number of segments in the inductor and thus lacks a simple expression. Although the

Greenhouse method offers sufficient accuracy and adequate speed, it cannot provide an in-

ductor design directly from specifications. Thus the absence of a simple accurate expression

for the inductance diminishes the versatility of the lumped model and makes it inconvenient

for circuit design and optimization. Further, lumped models may not model some effects
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that affect the value of the inductance.

In this work, a low frequency method is investigated which uses the Partial In-

ductance formulation [21] to compute the self and mutual inductance values for a variety

of 2-D and 3-D geometries. The Partial Inductance formulation allows the evaluation of

inductances for a variety of arbitrary microcircuit geometries. In general, the inductance of

open loops is not a defined quantity since we typically require the flux linkage with the area

enclosed by a loop to calculate inductance and the area enclosed by an open loop is not

a meaningful concept [22]. The main contribution of this formulation is the establishment

of a relationship between incomplete loops and closed loops, thus allowing the definition

and computation of the inductance of incomplete loops. Further, it provides simplifications

which allow complicated geometries to be treated with ease under certain conditions. Since

accuracy, time and cost are the main factors that we are trying to optimize, we need to make

sure that neither complicated analytical methods, nor time or cost-intensive computational

methods are involved, and that the method developed gives predicted inductance values

within reasonable bounds of error for the required applications. For low frequencies and for

regular geometries, the Partial Inductance formulation allows the self and mutual induc-

tance of the inductor to be calculated with relative ease. A computationally efficient and

inexpensive method is developed for calculating the self and mutual inductances at low fre-

quencies of certain regular 2-D and 3-D geometries (spirals, rectangular helices, pyramidal

inductors etc.), using the Partial Inductance method.

1.4 Inductance Fabrication and Measurement

In carrying out this computational analysis, it is extremely important to validate

the values determined by the simulations. The computer analysis should be able to predict

the inductance of the given structures with a relatively high degree of accuracy and it is

important to know how the simulation values compare with the actual inductance values.

Possible sources of validation are measured inductance values of fabricated inductors and

results obtained for simple geometries using existing numerical simulation methods.

In order to provide independent verification sources for the inductance values predicted

by the computational analysis, several test structures were fabricated and then measured.

These structures were also simulated and the results predicted by the computational method
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were compared with the measurement results. If the computational results are in good agree-

ment with the measurement results, the validity of the computational method is established

and it may be used to confidently predict the inductance values of various structures with

reasonable accuracy and speed.

1.5 Organization of Thesis

The remainder of this thesis is organized in the following manner. Chapter 2

contains a description of the inductor geometries which have been proposed for optimal

power transfer. The explanation of the partial inductance method and the development of

the algorithm for the computational method are presented in Chapter 3. Inductor fabri-

cation details and the measurement process is described in Chapter 4. Chapter 5 contains

the analysis of the results for the various test structures. Finally, Chapter 6 presents the

conclusions of the work.
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Chapter 2

Inductor Geometries for Power

Transfer

In order to achieve optimal power transfer, we need to integrate inductors on chip

which maximize electromagnetic coupling with the external inductor. From magnetic flux

considerations, it is known that the inductive coupling between two coils is determined by

their geometries and relative orientation. The geometry of the secondary on-chip inductor

is thus seen to be of significant importance since it needs to maximize coupling with the

external inductor while being integrated on-chip and complying with the space constraints.

The purpose of this work is to examine a few novel inductor geometries which may be

fabricated on-chip and then compare the various options based on calculations of mutual

coupling with the external coil.

Traditionally, spiral inductors have been the preferred geometry for on-chip inductors pri-

marily due to the difficulties associated with the fabrication of 3-D inductors. For example,

previously fabricated 3-D inductors typically involve sacrificial cores [14], electroplating of

metal traces, electrodeposition of photoresist and maskless direct-write laser lithography

[13] - all of which are expensive and process-intensive methods. Whereas this expense and

effort to integrate inductors along with the chip electronics may be justified for the fabri-

cation of integrated high-Q inductors to be used as inductive circuit elements, we recognize
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that the on-chip inductor we intend to fabricate is part of a transformer unit to enable

wireless power transfer. This means that the space and geometry constraints involved in

the fabrication of this inductor are different from the typical case - specifically, our on-chip

inductor need not be located on the same side of the wafer as the chip electronics.

By allowing the inductor to be located on the opposite side of the wafer, we buy increased

flexibility with regard to the inductor dimensions, geometry and process techniques. Since

a 3-D coil geometry takes up less comparable surface area and does not involve as much

substrate losses and inter-metal capacitive coupling as a planar arrangement, we shall in-

vestigate a pyramidal geometry using the backside of the chip as the inductor base area.

Also, we shall try to use as much of the backside chip surface area to form the base of the

3-D inductor because large inductors lead to better coupling.

2.1 Proposed Inductor Geometries

The inductor geometries proposed in this section are a result of a collaborative

work with Dr. Mehmet Ozturk, ECE Dept., NCSU, Raleigh. Dr. Ozturk’s innovative ideas

on inductor geometries for maximal power coupling which would be compatible with current

IC fabrication processes comprise the core of this section of the thesis. The research carried

out in this area investigating different geometries and formulating the fabrication process

was done under his guidance.

• Pyramidal Geometry

A 3-D pyramidal geometry like the one shown in Fig. 2.1 is the basic design for the

backside on-chip inductor. This geometry provides us with the possibility of several

turns in the inductor, therefore increasing the magnetic flux generated by the coil while

still not taking up as much base surface area as a spiral inductor with a comparable

number of turns. In this configuration, the inductor metal lines are patterned on

the sides of a pyramid of dielectric material such as silicon oxide. The dielectric

pyramid may be formed via deposition or oxidation on the silicon wafer followed by

selective etching. The reverse side of the silicon wafer contains the chip electronics

which function as the control circuitry for the data and power transfer mechanism.

The flat portion on the top of the dielectric pyramid may accommodate some other
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component used by the implant - in this case, an antenna for transcutaneous wireless

data transfer.

Silicon Wafer

Chip Electronics

Inductor Traces
Dielectric Pyramid

Figure 2.1: Basic Geometry for Backside On-chip Pyramidal Inductor

• Recessed Pyramidal Geometry

A variant of the basic pyramidal geometry is a recessed pyramid as shown in Fig. 2.2.

This geometry can be further modified by providing a number of recesses along the

height of the pyramid.

Silicon Wafer

Inductor Traces
Recessed Dielectric Pyramid

Chip Electronics

Figure 2.2: Geometry for Recessed Backside Pyramidal Inductor

However, both the above inductor geometries are beset with fabrication and process

issues. Process runs to fabricate these inductors involve the electrodeposition of pho-

toresist for conformal coverage of the 3-D pyramidal surface in order to pattern the

metal lines. Electrodepositable photoresist technology is labor intensive, tedious and

error-prone. Since EDPs are still in the research and development stage in the in-

dustry, several anaphoretic/cataphoretic photoresists have to be tried out to obtain
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a satisfactory exposure of the metal lines. EDPs also have a short shelf life which

is highly unsuitable for research purposes. Another issue which arises with the ex-

posure is that offset photolithographic masks may be required to achieve satisfactory

exposure of the slanted pyramid sides due to diffraction effects.

• Trench Pyramidal Inductor

In view of the process issues described above, another pyramidal design, the back-

side trench inductor is proposed (Fig. 3) which can be fabricated using standard

photoresists and photolithography techniques. Since a pyramidal trench needs to be

conformally covered with photoresist in this case, a traditional spin-on photoresist is

considered viable. During the spin-on process, the photoresist will be spread outward

from the bottom of the trench, thus providing conformal coverage of the entire surface.

This allows us to use standard photoresists and photoresist spin-on processes coupled

with photolithographic exposure with a standard mask-set. Etching a deep trench in

the silicon wafer is the time consuming step in this process. The standard silicon etch

comprising Hydrofluoric Acid, Nitric Acid and Acetic Acid is an isotropic etch which

is unsuitable for our purpose since we need sharply defined trench pyramid slopes.

Therefore, an anisotropic etch comprising alkaline KOH and water may be used to

etch the silicon wafer in the required trench shape. This process takes a few hours

and needs to be carefully monitored.

Chip Electronics

Silicon Wafer

Wafer Backside TrenchDielectric Layer Inductor Traces

Figure 2.3: Cross Sectional Geometry for Backside Trench Pyramidal Inductor

The inductor geometries described above will be investigated for optimal power trans-

fer from the external inductor to the implant. We use the partial inductance concept

to develop a computational method which can analyze the self and mutual induc-

tances of these structures so as to reliably predict the inductive coupling achieved by

each geometry. These results will help us choose a specific inductor geometry for our
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biomedical implant. The next section explains the issues involved in fabricating the

inductors described above.

2.2 Investigation into Proposed Cleanroom Fabrication

The inductors that will be fabricated as described in Section 4.2 are scaled up

versions of the intended on-chip inductors. Since the partial inductance method is a scalable

method of computing inductances, a close match of predicted and measured results at these

dimensions validates the method for the actual inductor dimensions of interest as well. The

scalability of this method is borne out by the fact that the partial inductance method is used

at very small dimensions, eg. for calculating the inductance matrix of on-chip and off-chip

interconnects [23]. However, in order to verify and validate the method without doubt for

the inductor geometries of interest, we propose to fabricate some on-chip inductor geometries

using standard IC processing methods and then measure the inductance values obtained. A

good match for these inductors would validate the method for on-chip inductor dimensions.

The issues involved in fabricating the on-chip inductors and the factors motivating the choice

of the trench pyramidal inductor as the favored geometry for fabrication are explained below.

• Conformal Photoresist Deposition: The inductor metal traces in the first two

inductor geometries mentioned above - the pyramidal geometry and the recessed pyra-

midal geometry - are patterned on sloping surfaces, specifically, surfaces sloping down-

ward. This means that we need to have conformal coverage of the dielectric surface

by the sputtered metal as well as conformal coverage of the photoresist. Conformal

coverage of metal by sputtering or evaporation may be obtained since the metal va-

por or atoms may be expected to cover all surfaces in a relatively conformal manner.

However, conformal coverage of the surface by the photoresist is a very major prob-

lem. A useful comparison of techniques for conformal coverage of sloped surfaces is

supplied by Pham in [24], which surveys spin, spray and ED resists. For spin coating,

positive photoresist Hoechst AZ4562 is used; the spray coating is done using the EVG

101 system dispensing photoresist AZ4652 diluted with a solvent for good coverage

and a uniform layer; the electrodeposition is carried out using Eagle 2400ED positive

resist and Eagle 2100ED negative resist. Conventional spin coating of the photoresist

will not allow for fabrication of such continuous lines over that topography due to
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severe resist trends to accumulate [25]. The main obstacle is caused by the centrifu-

gal force when spinning. The deeply etched features cause a physical obstruction to

the solution flow, preventing coverage and often causing striation or resist thickness

variation such as the variation on the near and far sides of a cavity. With positive

photoresists this will prohibit opening of the exposed area. This will result in shorted

and/or interrupted lines. Modified spin coating techniques have been proposed [26],

but these can only be used for certain specific MEMS applications with modifications

of the equipment, the spinning method or the coating program. Another new coat-

ing technique called direct spray coating of photoresist [27] has been introduced as a

new method for MEMS applications. However, this technique, apart from being in

the early stages of exploration, is best suited for wafers with moderate topography.

There exists a flow of the resist due to its gravity, resulting in a thicker resist layer

at the bottom corner and a thinner one at the top corner of the same cavity. Wafers

with extreme topography can be produced best by using a coating process with high

shape conformality. The capabilities and characteristics of electrodepositable pho-

toresists (EDPs) are best suited for this purpose. This coating process is based on

the electrodeposition of a negative tone organic photoresist onto a cathodic polarised

conductive substrate in a bath. However, a major disadvantage of this method is that

it requires a conductive (metal) surface. Therefore, it cannot be used at all stages of

a process. The equipment required, setup and handling are more complicated than

other techniques and the coating bath should be checked and maintained frequently

to remove free acid by ultrafiltration in order to get a reproducible process. Thus,

electrodepositable photoresist technology is labor intensive, tedious and error-prone.

Further, EDPs also have a short shelf life which is highly unsuitable for research

purposes.

The above descriptions of the resists available for conformal coverage of a variable

topography in silicon makes it obvious that they are process intensive and specialised

techniques. Our effort in this work has been to develop an inductor design which

may be fabricated by available IC processing technology with standard spin-on pho-

toresists. To this end, we explored the option of changing the pyramidal geometry to

make it more process friendly, especially in terms of photoresist coverage. This led to

the proposed trench inductor geometry. The hypothesis in this scenario is that since
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the sloped surfaces of the trench incline upward, the spin-on resist process will still

provide relatively conformal coverage. The reason for this is that the same centrifugal

force which spun the resist off the pyramidal surface in the previous cases, will cause

the resist to move upward from the bottom of the pit along the sloping sidewalls,

thus providing the required conformal coverage. This means that traditional spin-on

photoresists may be used for the patterning of metal traces onto the trench sidewalls.

• Photolithography Issues: The strong topography of the substrate to be patterned

constrains the choice of exposure tools [28]. Because of their small depth of focus,

wafer steppers cannot be used. For best image quality, a focused beam writing equip-

ment (eg. laser) should be used. However, high resolution images are rarely required

in 3-D structures; therefore, the economic shadow mask printing delivers a sufficiently

good quality for most applications. Two important issue that must be considered in

the photolithography step are (a) diffraction, and (b) reflections on tilted sidewalls.

Toward the bottom of the etch pits, the distance between the shadow mask and the

photoresist can be fairly large and diffraction therefore plays an important role. Very

little can be done concerning loss of resolution. However, the image quality may be

improved by choice of proper development parameters. Definitely the most severe

complication of lithography in 3-D structures is that the incidence of radiation may

not be perpendicular everywhere in the system. Light may be reflected from tilted

planes and may, at worst, cross-expose masked parts of the structure. This effect

may be countered by choosing resists that have a relatively strong absorption of the

specific wavelength of light being used for the exposure - strong enough to almost

completely suppress reflections from the resist-metal surface. Further, the radiation

exposure dose may be controlled to control this phenomenon.

• Silicon Etch: Having decided upon the trench pyramidal geometry for the reasons

cited above, we are faced with the task of etching a deep 200µm− 500µm trench into

the silicon wafer which will hold the inductor metal traces on its sidewalls. Silicon

etch is traditionally carried out by a 20% Hydrofluoric Acid, 45% Nitric Acid and

35% Acetic Acid mixture at about 25oC. This mixture has a rather rapid etch rate

and is suitable for creating deep trenches in a relatively short span of time. For eg.,

the etch rate of the above etch is ≈ 5µm/min which means that a 500µm deep pit

would take about 1.5 hours. However, the acidic mixture etches isotropically into the
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wafer which translates into a slight curvature in the sidewalls of the etched pit, which

is undesirable for our purposes.

An anisotropic etch is desired which is capable of creating sharply defined inclined

sidewalls as required by the inductor geometry defined earlier. Heated alkaline KOH

(with isopropyl alcohol) solutions at about 85oC can be used for preferential etching

of silicon along crystal planes. The etch rate will depend on the doping and crystal

orientation and the type of KOH solution used, but is typically on the order of about

1µm/min. We see that this is a rather slow etch in comparison since a a 500µm deep

pit would take about 8 hours. This rate may be enhanced to about 1.4µm/min by

increasing the temperature. However, to prevent boiling of the mixture, the tempera-

ture should not exceed 90oC. Typically, a test wafer is etched to determine the exact

etch rate since the rate depends on the current solution concentration which keeps

changing as the etch proceeds. Readings from this test etch may be used to etch the

wafers by the required amount. Since photoresist is susceptible to etching by KOH,

we need to use another layer to mask the silicon wafer. Typically, Silicon Nitride,

Si3N4 is used for this purpose. Further, since phosphoric acid H3PO4 is used to etch

the nitride, silicon oxide SiO2 is used to mask the nitride. Another important issue

with the KOH etch is that potassium (K+) is an extremely fast-diffusing alkali metal

ion and a lifetime killer for MOS devices. Thus, KOH etching is limited to designated

areas of the cleanroom. Cleanroom users of KOH must observe proper procedures

to avoid contaminating any metal-ion sensitive processes and equipment elsewhere in

the lab. KOH-etched substrates, however, may be later processed in clean equipment,

providing the procedures for decontamination are strictly followed.

• Process Summary: The formulation of the process flow for this specific process

to construct on-chip inductors was conducted under the guidance of Dr. Mehmet

Ozturk. The basic process to be followed in order to create the trench inductor is as

follows:

– RCA Clean: This preliminary step removes surface particles and impurities from

the wafer and ensures that we have a clean wafer surface for subsequent process-

ing.

– Nitride CVD: A Si3N4 layer is deposited onto the bare silicon wafer using chem-
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ical vapor deposition for purposes of masking the silicon wafer for the KOH etch.

– Oxide CVD: An SiO2 layer is then deposited over the nitride layer for the purpose

of masking the nitride layer during the H3PO4 etch.

– Photoresist Spin-On: Photoresist is then spun onto the oxide surface to mask

the oxide etch.

– Photolithography: The photoresist is exposed using a mask defining the rect-

angular shape of trench. Developer solution is then used to wash away the

developed resist.

– Oxide Etch: The SiO2 layer is etched in hydrofluoric acid, HF . The photoresist

mask is washed away with photoresist remover.

– Nitride Etch: The Si3N4 layer is etched with hot H3PO4 using the oxide layer

as a mask for the process.

– Silicon Etch: The alkaline KOH etch is used to etch the silicon wafer using the

nitride as a mask. This process also removes the oxide mask left over from the

previous step.

– Nitride Removal: The nitride mask from the previous step is then stripped using

the H3PO4 etch. Thus, we have now obtained the trench in the silicon wafer.

We must now obtain the aluminum inductor traces along the sidewalls.

– Oxide CVD: An SiO2 layer is then deposited over the trench for the purpose of

acting as the base on which the inductor is formed.

– Aluminum CVD: An Al layer is then deposited over the oxide to form the metallic

inductor traces.

– Photoresist Spin-On: Photoresist is dropped into the trench and the wafer is

spun to obtain conformal coverage over the sidewalls of the trench.

– Photolithography: The photoresist is exposed using a mask defining the inductor

geometry. Developer solution is then used to wash away the developed resist.

– Aluminum Etch: The metal is now etched using an aluminum etch contain-

ing phosphoric acid, H3PO4, nitric acid, HNO3, water, H2O, and acetic acid,

CH3COOH as a buffer. The photoresist mask is washed away with photore-

sist remover. Thus, the inductor metal traces now lie along the sidewalls of the

trench.
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This completes the process definition for the fabrication of the trench pyramidal

inductor. Inductors fabricated by this process may now be measured to val-

idate that the inductance values match those predicted by the computational

method. A good match of the values will verify the validity of the method for

on-chip inductor dimensions. A cleanroom process flow diagram for the inductor

fabrication is illustrated on the subsequent pages.
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• Cleanroom Process Flow Diagram:

(Formulated under the guidance of Dr. Mehmet Ozturk)

Silicon Wafer

Silicon Wafer

Silicon Wafer

Silicon Wafer

RCA Clean

LPCVD of Si3N4

Si3N4

Si3N4

SiO2

LPCVD of SiO2

Figure 2.4: Process Flow Diagram(contd.)
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Figure 2.5: Process Flow Diagram (contd.)
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Etch Si3N4 with hot H3PO4

Si3N4

Si3N4

SiO2

SiO2

Etch Si with Alkaline KOH Etch for T ≈ 3hrs)

Silicon Wafer

Silicon Wafer

Silicon Wafer

Removal of SiO2 and Si3N4 with HF and H3PO4

Figure 2.6: Process Flow Diagram (contd.)
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Figure 2.7: Process Flow Diagram (contd.)
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Chapter 3

The Partial Inductance Method

The objective of this work is to develop a computational method which can pre-

dict the self and mutual inductance values of certain inductor geometries with reasonable

accuracy and speed in order to be able to decide the optimal inductor geometry to be

used for power transfer to the transcutaneous biomedical implant. Several methods were

explored to decide which approach would solve the problem reliably and elegantly. The

primary factors considered were efficiency, simplicity and computational speed. The partial

inductance method satisfied all three criteria and seemed to be the best way to proceed for

a variety of reasons. As it turns out, the partial inductance method, like most other in-

ductance calculation methods, can theoretically find out the inductance values of any given

structure. However, for the specific structures we are interested in, the partial inductance

method simplifies the problem greatly due to the symmetry and regularity of the geome-

tries under investigation. This greatly reduces the complexity of the problem. Further,

since this method does not depend on full electromagnetic field solving techniques which

require iterative simulation of the entire problem space, the computational time required is

on the order of seconds instead of hours. Finally, the inherent accuracy of partial induc-

tance method is borne out by the fact that it is used widely for the purposes of on-chip

interconnect inductance matrix calculations in which the accuracy of inductance values is

very important [29] [30].

In essence, the partial inductance method partitions a structure into various parts

which can then be used to calculate partial inductances with respect to other parts of
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the same or different structure. These values of partial inductance comprise the partial

inductance matrix and the self or mutual inductance values desired may be calculated by

summing over the elements of the inductance matrix.

3.1 Inductive Interaction between Conductors

The process of inductive interaction between conductors carrying currents can be

decomposed into three effects which take place concurrently [22]:

• Currents flowing through conductors create magnetic fields (Ampere’s Law)

• Magnetic fields varying with time create induced electric fields (Faraday’s Law)

• Induced electric fields exert forces upon the electrons in the conductors and cause

electric voltage (Electric Potential) drops.

3.1.1 Ampere’s Law

Currents flowing through conductor loops and time- varying electric fields create

magnetic fields. This relationship between current density j, the electric field E and the

resulting magnetic field B is Ampere’s Law:

∇× B = µj + µε
∂E

∂t
(3.1.1)

The first term on the right hand side of (3.1.1) represents the contribution of the

current density to the magnetic field on the left hand side. µ is the magnetic permeability

of the insulator surrounding the wires and ε its electric permittivity. The curl operator on

the left hand side causes the resulting magnetic field to be wrapped around the existing

current flow patterns (see Fig. 3.1). The integral form, which can be derived from (1) via

Stokes’ Law, is

∮

S

B · dl = µ

∫

S

(

j + ε
∂E

∂t

)

· dS (3.1.2)

where S is a surface which intersects the wire (see Fig. 3.1). The current through the wire

creates a magnetic field around the wire. For a general, three-dimensional current flow this
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Figure 3.1: Magnetic Field created by time-variant current flowing through conductor loop

field is difficult to predict intuitively, but for one-dimensional wires the field direction can

be predicted with the right- hand rule: if the thumb of the right hand points in current

direction, the other fingers point in direction of the magnetic field.

The second term in the right-hand side integral of (3.1.2) is referred to as the

displacement current density, since it has the dimension of a current density and represents

the ac current flowing between two conductors due to their capacitive couplings. Time-

varying electric fields can create magnetic fields. Usually, however, this term is neglected

in Ampere’s Law for integrated circuits since the magnetic field created directly by the

currents flowing within the conductors is larger than the magnetic field created by the

displacement currents - even with dominant lateral capacitance coupling - by at least one

order of magnitude.

Discarding the displacement current term in (3.1.2) decouples the inductive and

capacitive effects within the circuit; therefore this step is referred to as a quasistatic ap-

proximation, since the capacitive electric fields are assumed to be roughly (quasi) static

and variations of the potential differences between conductors are sufficiently slow such

that the displacement term is negligible compared with the current term. The quasi-static

(differential and integral) form of Ampere’s Law is:
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∇× B = µj (3.1.3)

or
∮

S

B · dl = µ

∫

S

j · dS (3.1.4)

Though the displacement current contribution to the magnetic field is usually negligible, the

displacement current itself, however, is not negligible. It may be shown that the contribution

of the displacement currents to the magnetic field is negligible.

3.1.2 Faraday’s Law

Ampere’s Law gives us the first part of the inductive process: the creation of the

magnetic field. Only if these magnetic fields vary with time do these fields create induced

electric fields. Therefore, time-variant currents are required for induction, the relationship

of which is Faraday’s Law:

∮

j

Eind · dl = −∂φ

∂t
(3.1.5)

where φ =
∫

B ·dS is the magnetic flux with the integral taken over the area of the primary

loop and Eind is the induced electric field in the secondary loop. The induced electric field

wraps around the magnetic field lines (see Fig. 3.2). The portion of the induced electric

field which is parallel to the wire of the loop in Fig. 3.2 exerts force on the charges and

creates voltage in the loop. The induced E-field is caused by the time-variant magnetic

field in Eq.(3.1.4). The orientation of the loop with respect to the induced electric field

determines the amount of induced voltage. If the loop is orthogonal to the induced E-field

the total effect of the magnetic field on it will be zero (As we will see later in a more detailed

derivation, this causes partial inductive couplings between orthogonal wires to become zero).

3.1.3 Electric Potential

The induced electric field can be integrated along the victim loop and results in

an induced voltage which adds to the already existing voltage due to the resistance of the

loop:
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V

B

Eind

Figure 3.2: Electric Voltage created by time-variant magnetic field passing through a con-
ductor loop

V ind
i = −

∮

i

Eind · dl (3.1.6)

V

Ia

B

Eind

ij

Figure 3.3: Magnetic Field created by the time-variant current in loop j induces voltage in
loop i, since some of the magnetic field passes through i

3.1.4 Loop Inductance

Fig. 3.3 summarizes the combination of these three effects which combine to gen-

erate a voltage drop in the victim loop i due to a time-variant current in loop j. All

three relationships involved in the preceding equations are linear. Therefore, the resulting

combined relationship between time-derivatives of currents in the loops and the resulting

induced voltage drop is linear as well:

V ind
i = Lij

∂Ij

∂t
(3.1.7)

where Ij =
∫

j · dS and the integral is taken over the cross sectional area of conductor j.
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Lij is the mutual inductance of loop j upon loop i and Ij is the current flowing through the

loop j. V ind
i is the voltage induced in the victim loop i. For the special case where loops i

and j are the same, the coefficient Lii is the self inductance of loop i.

3.2 The Partial Inductance Concept

Inductance is defined as the ratio of the total magnetic flux that couples a closed

path to the current that is the source of the magnetic flux,

Lij ≡
φij

Ij
(3.2.1)

where the current Ij flows in loop j and causes flux φij to be set up in closed loop i.

Clearly, the concept of inductance is defined only for closed loops. The need for

partial inductances arises because we often deal with open loops or single linear conductors

for which the associated magnetic flux coupling cannot be readily defined. The concept

of a partial inductance was first developed by Rosa [31] in 1908 in application to linear

conductors and Grover [32] provided a comprehensive summary of partial inductances in

1946. A rigorous theoretical treatment of the subject was provided by Ruehli in [21], where

the general definition of the partial inductance of an arbitrarily shaped conductor is given

in terms of the magnetic vector potential. Ruehli formulated the partial inductance concept

for calculating multiloop inductances by dividing conductor loops into segments for which

the partial inductances were calculated. The partial inductance is intended to represent

the inductance that a circuit segment contributes as part of a closed loop circuit. A brief

review of the concept is given below.

If there exist two closed loops i and j with a current Ij flowing in loop j, the

mutual inductance between loops i and j is given by (3.2.1). The flux φij developed in loop

i is related to the magnetic vector potential Aij, generated by the current Ij flowing in loop

j, as

φij =
1

ai

∮

i

∫

ai

Aij · dli dai (3.2.2)

where dli is an element of conductor i with direction along the axis of the conductor and

ai represents the cross sectional area of conductor i.

The expression for the magnetic vector potential generated by the current Ij is given by
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Aij =
µ

4π

Ij

aj

∮

j

∫

aj

dlj daj

rij
(3.2.3)

where rij =| ri − rj |.
Inserting (3.2.3) in (3.2.2) and using the result in (3.2.1) yields

Lij =
µ

4π

1

aiaj

∮

i

∫

ai

∮

j

∫

aj

dli · dlj
rij

daidaj (3.2.4)

To develop relations for the inductances of the segments of the loops, we partition

each loop into a number of segments and re-write the integrations over the lengths as

summations over the straight loop segments

Lij =
K
∑

k=1

M
∑

m=1

µ

4π

1

akam

∫

ak

∫

am

∫ ck

bk

∫ cm

bm

dlk · dlm
rij

dakdam (3.2.5)

where loop i is divided into K segments and loop j into M segments, ak and am are the

cross sectional areas of the kth and mth segments, bk and bm are the starting points of

the kth and mth segments and ck and cm are the end points of the kth and mth segments

respectively.

K=5 M=6

Loop ‘i’ Loop ‘j’

kthsegment mthsegment

Lij

Figure 3.4: Partitioning of Loops into Segments

From this expression, we see that the argument of the double summation can be

defined as the partial inductance of the loop segments as

Lpkm
=

µ

4π

1

akam

∫

ak

∫

am

∫ ck

bk

∫ cm

bm

| dlk · dlm |
rij

dakdam (3.2.6)

leading to a more compact representation of the loop inductance in terms of the partial

inductance of the loop segments as

Lij =
K
∑

k=1

M
∑

m=1

SkmLpkm
(3.2.7)
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Here Skm is a sign term which is determined by the scalar product between the current

vectors i and j and is zero for the case of orthogonal current segments. Further, it is

evident that the derived partial mutual inductance formula (3.2.6) can be transformed into

a partial self inductance formula by making both the indices the same, i.e Lpkk
is obtained

by performing both sets of integrations over the same conductor.

From (3.2.6), we observe that the line integrals within the area integration can

be identified as the inductance between any two filaments r and s belonging to the two

conductor segments k and m

Lpfrs
=

µ

4π

∫ cr

br

∫ cs

bs

| dlr · dls |
rrs

(3.2.8)

Nk = 9 Nm = 6

Lpkm

Filament ‘r’

Filament ‘s’

kthsegment

mthsegment

Figure 3.5: Partitioning of Segments into Filaments

The partial inductance formula given by (3.2.6) takes into account finite con-

ductor cross sectional area. To facilitate computations, the integral over each segment’s

cross sectional area in the partial inductance formula is transformed into a summation by

partitioning it into a large (ideally infinite) number of rectangular cross sectional areas

representing filamentary cross sections. If the cross sectional areas of the kth and mth seg-

ments are divided into Nk and Nm rectangles respectively, (3.2.6) could be re-written as

the normalized summation of the partial inductances of Nk × Nm filaments

Lpkm
= lim

Nk,Nm→∞

1

NkNm

Nk
∑

r=1

Nm
∑

s=1

Lpfrs
(3.2.9)

Though Nk and Nm should ideally be very large, it will be seen that in practical

computations where the distance between the segments is much larger than the cross sec-

tional dimensions of the conductor, few or no filaments are needed per segment for accurate

results.
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Hence, the process of calculating the inductance based on this partial inductance

concept is as follows. The loop to be analyzed is broken into smaller segments, each of which

does not by itself form a closed circuit. Typically, the loop is partitioned into elements of

simple shape, such as straight wire elements of constant cross section for which precise and

convenient analytical partial inductance formulae are available. Each of these segments

is assigned a partial self inductance and each pair of these segments is assigned a partial

mutual inductance. The partial self and mutual inductances of the loop segments and the

topology of the segment connections are all the information required to calculate the total

self and mutual inductance of the circuit. The partial inductance matrix for a set of n

conductors is an n × n real symmetric matrix. The diagonal terms of this matrix are the

partial self inductances while the off-diagonal terms are partial mutual inductances. The

inductance of the loop can be calculated from this matrix by using (3.2.7) in which the

summation terms shown are precisely the partial inductance matrix elements.

3.3 Useful Partial Inductance Formulae

In order to calculate the elements of a partial inductance matrix of a standard

inductive coil geometry consisting of linear segments of rectangular cross section, we need

the partial self inductance formula for a linear conductor of rectangular cross section. The

closed form expression of this formula is given in [21] and involves the length, width and

thickness of the conductor segment. A different mathematical form of the same formula

which is easier for computations is given by Kundu [33] and is used for the calculation of

all partial self inductances in this paper.

Let the length of the kth segment be l[k] and the width and thickness be W [k] and T

respectively. Defining the normalized width and thickness as w = W [k]/l[k] and t =

T/l[k] and some other parameters r =
√

w2 + t2, aw =
√

w2 + 1, at =
√

t2 + 1 and ar =
√

w2 + t2 + 1, the partial self inductance of the segment k can be written as:
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Lpkk
=

2µlk
π
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(3.3.1)

where S(x) = loge

(

x +
√

1 + x2

)

and T (x) = arctan(x)

For the partial mutual inductances, it will be shown in Section 3.5 that partitioning

of the cross section of the segments into a number of filaments is not required for the current

work since the segment separation dimensions are larger than the cross sectional dimensions

for all geometries considered. Simulations comparing the partial mutual inductance values

obtained with and without the partitioning of each segment into filaments prove that the

differences are negligible. Thus, the loop segments are treated as single filaments for the

purposes of partial mutual inductance calculations and the formulae provided by Grover

[32] for various configurations of parallel filaments are used in this work.

For the case of two equal parallel straight filaments of length l and distance of separation

d, the partial mutual inductance is given by

M =
µl

2π

[

loge

(

l

d
+

√

1 +
l2

d2

)

−
√

1 +
d2

l2
+

d

l

]

(3.3.2)

For the case of unequal parallel filaments with varying degrees of overlap, a combination of

sum and difference terms based on the above formula gives the expression for the partial
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d

l

Figure 3.6: Two Equal Parallel Filaments

mutual inductance. If Ml is used as the notation to represent the mutual inductance of

2 equal parallel filaments spaced at a distance d for the given configuration, the mutual

inductance formulae for the different cases are given by:

• Unequal Parallel Offset Filaments

d

l

m

δ

Figure 3.7: Unequal Parallel Offset Filaments

M =
1

2

[

(Ml+m+δ + Mδ) − (Ml+δ + Mm+δ)
]

(3.3.3)

• Unequal Parallel Overlapping Filaments

d

l

m

δ

Figure 3.8: Unequal Parallel Overlapping Filaments

M =
1

2

[

(Ml+m−δ + Mδ) − (Ml−δ + Mm−δ)
]

(3.3.4)
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d

l

p q

m

Figure 3.9: Unequal Parallel Filaments with complete Overlap

• Unequal Parallel Filaments with complete Overlap

M =
1

2

[

(Mm+p + Mm+q) − (Mp + Mq)
]

(3.3.5)

• Unequal Parallel Filaments with Ends on Common Perpendicular

- On Same Side of Perpendicular

d

l

m

Figure 3.10: Unequal Parallel Filaments with Ends on same side of Common Perpendicular

M =
1

2

[

(Ml + Mm) − (Ml−m)
]

(3.3.6)

- On Opposite Sides of Perpendicular

d

l

m

Figure 3.11: Unequal Parallel Filaments with Ends on opposite sides of Common
Perpendicular

M =
1

2

[

(Ml+m) − (Ml + Mm)
]

(3.3.7)
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• Special Case of Unequal Coaxial Filaments

lm
δ

Figure 3.12: Special Case of Unequal Coaxial Filaments

M =
µ

4π

[

l loge

l + m

l
+ m loge

l + m

m

]

(3.3.8)

3.4 The Computational Method

The Partial Inductance concept is used to calculate the self and mutual induc-

tances of various 2-D and 3-D geometries. The computational method developed uses the

symmetry and/or regularity of the inductor geometries to facilitate rapid calculation of the

partial mutual inductances. A step-by-step algorithm is described below for the process of

calculating the inductance values of the geometries. This algorithm is coded in C for each

different type of geometry i.e separate C programs are written for loops, spirals, helices,

pyramids etc. The program for a certain geometry can be used to evaluate various different

variations of that geometry - with different dimensions, track spacing, metal width, thick-

ness etc. This serves as a useful tool for the rapid comparison of inductances of various

geometries and variations of a certain geometry.

3.4.1 Algorithm for Self-Inductance Calculation

The following algorithm describes the process of entering a specific inductor ge-

ometry into the code and calculating its self inductance value from its partial inductance

matrix.

• Segment Partitioning: The inductor geometry is partitioned into a number of segments

depending on the geometric symmetry and regularity of the structure and specified in

the code as an array of numbered segments. This essentially performs the important

step of dividing the inductor into a finite number of partial elements for the partial
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inductance analysis. Each of the segments is a partial element and will have its own

partial inductance value Lpkk
.

• Dimensional Parameter Specification: The initialization of the segment lengths, widths

and thicknesses are performed and stored in array variables. Variable conductor

widths over the inductor geometry are facilitated by allowing each segment’s width

to be specified separately. The thickness is assumed constant over the entire inductor

since it is usually not possible to vary metallization thickness over different segments.

By a suitable choice of segment partitions for the geometry, variable inductor widths

may be accommodated.

• Coordinate Calculation: The coordinates of the various segments and their endpoints

are calculated based on the geometry of the structure. The calculation and storage of

the coordinate positions of each segment’s endpoints and its axial location facilitates

the determination of the distances between segments.

• Sign Allocation: The geometric regularity of the structure is exploited in handling the

sign assignment for parallel segments and in determining the positions of the zeros in

the inductance matrix. The sign assigned to a partial inductance term arises from the

relative current direction in each pair of segments in the inductor. This will decide

the sign term Skm for each pair of segments k and m. Thus, parallel loop segments

are assigned a value of either +1 or −1 based on the relative direction of current while

perpendicular loop segments are assigned a value of 0, since their partial mutual

inductance is evidently zero. We also expect the diagonal elements of the partial self

inductance matrix to be positive.

• Partial Self Inductance Calculation:The partial self inductance calculations of all seg-

ments are based on the self inductance formula for a conductor with rectangular

cross-section, Eqn. 3.3.1. The formula uses the length, width and thickness of each

conductor segment to calculate the partial self inductance of that segment. These

values of partial self inductances Lpkk
form the diagonal elements of the partial self

inductance matrix [Lpkm
].

• Partial Mutual Inductance Calculation: The partial mutual inductances between the

segments of the same inductor are calculated using Grover’s formulae for mutual
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inductances of filaments in various parallel configurations, Eqns. 3.3.2 - 3.3.8. These

calculations utilize the lengths and coordinate locations of the segments calculated

earlier. The partial mutual inductance values Lpkm
populate the off-diagonal elements

in the partial self inductance matrix. The appropriate signs Skm calculated earlier are

associated with the off-diagonal values.

• Matrix Summation: The summation of the partial inductance matrix of the inductor

‘i’ gives the value of the self inductance Lii.

3.4.2 Algorithm for Mutual-Inductance Calculation

The algorithm for mutual inductance calculation is similar to the previous algo-

rithm. In this case, there are two different inductor geometries, both of which are parti-

tioned into segments and the segments are then used to compute the elements of the partial

inductance matrix; and hence the mutual inductance of the inductor configuration.

• Segment Partitioning: The two inductor geometries are both partitioned into a num-

ber of segments depending on the geometric symmetry and regularity of each structure

and specified in the code as two separate arrays of numbered segments. This essen-

tially performs the important step of dividing both inductors into a finite number of

partial elements for the partial inductance analysis. Each segment of an inductor is

a partial element and will have a mutual inductance with each segment of the other

inductor, leading to the partial inductance matrix elements [Lpkm
]. A diagonal ele-

ment in this matrix is simply the mutual inductance of two segments with the same

segment numbers in the two inductors. Hence, there is no intrinsic difference between

the diagonal and off-diagonal elements of this matrix.

• Dimensional Parameter Specification: The initialization of the segment lengths, widths

and thicknesses are performed and stored in array variables. Variable conductor

widths over the inductor geometry are facilitated by allowing each segment’s width

to be specified separately. The thickness is assumed constant over the entire inductor

since it is usually not possible to vary metallization thickness over different segments.

By a suitable choice of segment partitions for the geometry, variable inductor widths

may be accommodated.
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• Coordinate Calculation: The coordinates of the various segments of both inductors

and their endpoints are calculated based on the geometry of the structure. The

calculation and storage of the coordinate positions of each segment’s endpoints and

its axial location facilitates the determination of the distances between segments.

• Sign Allocation: The geometric regularity of the structures is exploited in handling the

sign assignment for parallel segments and in determining the positions of the zeros in

the inductance matrix. The sign assigned to a partial mutual inductance term arises

from the relative current direction in the pair of segments. This will decide the sign

term Skm for a pair of segments k and m, which belong to loops i and j respectively.

Thus, parallel segments are assigned a value of either +1 or −1 based on the relative

direction of current while perpendicular segments are assigned a value of 0, since their

partial mutual inductance is evidently zero.

• Partial Mutual Inductance Calculation: The partial mutual inductances between the

segments of the two inductors are calculated using Grover’s formulae for mutual in-

ductances of filaments in various parallel configurations, Eqns. 3.3.2 - 3.3.8. These

calculations utilize the lengths and coordinate locations of the segments calculated

earlier. The partial mutual inductance values Lpkm
populate both the diagonal and

off-diagonal elements in the partial mutual inductance matrix. The appropriate sign

Skm calculated earlier is associated with each matrix element.

• Matrix Summation: The summation of the partial inductance matrix of the inductor

pair i and j gives us the value of the mutual inductance Lij .

3.5 Justification for Non-Filamentisation of Segments

As mentioned in a preceding section, the partial inductance method allows us

to partition the cross section of a given segment into a number of elements, which are

then treated as filaments for purposes of inductance calculations. We term the process

of partitioning the cross section of a given segment as ‘filamentisation’. However, we shall

prove here that the error due to non-filamentisation of segments in this work is negligible due

to the dimensions of the segments and the separations between them. This implies that we

can treat segments as filaments for the purposes of partial mutual inductance calculations,
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thus greatly reducing the complexity of the computational algorithm without sacrificing the

accuracy of the predicted result.

Lpkm

Filament

Filament

Nk = 9 Nm = 6

m−th segment

k−th segment

Figure 3.13: Partitioning of Segments into Filaments

Without filamentisation, the partial mutual inductance between two segments k

and m would be calculated by treating each of them as a single filament. With filamentisa-

tion, each segment is partitioned into a number of filaments and the inductance is calculated

as the interaction of the filaments of one conductor with those of the other. For example,

in Fig. 3.13, we see that the kth segment has been partitioned into 9 filaments while the

mth segment has been partitioned into 6 filaments. The partial mutual inductance in this

case would be obtained by calculating the weighted sum of the inductances of the filaments

which comprise the two segments.

Lpkm
=

1

9 × 6

9
∑

r=1

6
∑

s=1

Lpfrs
(3.5.1)

To gain a quantitative idea of whether this filamentisation is required in our work,

we analyze the the different cases of interest for inductance calculations. We then compare

the inductance values computed by utilizing filamentisation to the values obtained without

filamentisation. We may differentiate the various possible inductance calculation scenarios

into the cases of (a) mutual inductance between two inductor structures, and (b) self in-

ductance of an inductor structure. Further, it should be mentioned that the test structures

fabricated to validate the computational method are actually dimensionally scaled versions

of the intended on-chip inductor structures. Therefore, for each of the cases above, we

are required to justify the validity of our assumption for (i) test structure dimensions, and

(ii) on-chip inductor dimensions. If the error observed is negligible, we may safely treat
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each segment of our inductors as a filament for the purposes of partial mutual inductance

calculations and thereby reduce the complexity of the computational algorithm.

3.5.1 Mutual Inductance Case

The calculation of the mutual inductance matrix for a two-inductor configuration

consists of finding the partial mutual inductances between the segments of one inductor with

respect to the other. Thus, it is clear that any two segments being considered for purposes

of partial mutual inductance calculation are separated approximately by the distance of

separation between the two inductors. The distance of separation between the two inductor

structures of a biomedical implant depends on how deep the implant is embedded within the

body and how close to the body the external unit is located. Since this distance is typically

large compared to the dimensions of the inductors, we expect that the segments may be

approximated as filaments and the error introduced should be negligible. We consider two

cases for the order of dimensions.

• Test Structure Dimensions: As we shall see later in Chapter 4, the dimensions of

the test structures are scaled up with respect to the actual dimensions of the proposed

on-chip inductors. For purposes of this calculation, we take a range of values for the

various dimensional parameters - linewidth W , metallization thickness T , distance of

separation D and length of segments L - approximated over the various test structures

that were fabricated. The specific case we shall consider for our calculations is that of

two straight equal parallel segments as shown in Fig. 3.13 and compare the values of

partial mutual inductance obtained for varying values of the above parameters with

and without filamentisation.

From the test structures fabricated, we see that the values of the dimensional param-

eters are in the following range:

D ≈ 25mm; W ≈ 0.5mm; T ≈ 50µm; L ≈ 5mm → 42.5mm

We thus take L as the independent variable and filamentise each segment into Nk =

Nm = 125 filaments widthwise. We construct a table of the inductance values and

error percentages between the two sets of values as shown in Table 3.1 where L is the

length of the two segments whose mutual inductance is being calculated, MF is the

partial mutual inductance with filamentisation, MS is the partial mutual inductance
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without filamentisation (or inductance considering the segments as filaments) and the

percentage error is calculated from the fractional difference relative to MS .

Table 3.1: Inductance values with & without Filamentisation(Test Dimensions)

Length of Segments, L (m) MF (Henry) MS(Henry) % Error = MF−MS

MS
× 100

5.00e-03 9.773483554e-11 9.772867025e-11 0.006309

7.50e-03 2.190513729e-10 2.190378113e-10 0.006191

1.00e-02 3.873717064e-10 3.873483106e-10 0.006040

1.25e-02 6.013109862e-10 6.012757284e-10 0.005864

1.50e-02 8.592556673e-10 8.592069311e-10 0.005672

1.75e-02 1.159447471e-09 1.159384016e-09 0.005473

2.00e-02 1.500056604e-09 1.499977510e-09 0.005273

2.25e-02 1.879240333e-09 1.879144939e-09 0.005076

2.50e-02 2.295186433e-09 2.295074280e-09 0.004887

2.75e-02 2.746143109e-09 2.746013892e-09 0.004706

3.00e-02 3.230437900e-09 3.230291425e-09 0.004534

3.25e-02 3.746488174e-09 3.746324328e-09 0.004374

3.50e-02 4.292805569e-09 4.292624298e-09 0.004223

3.75e-02 4.867996256e-09 4.867797547e-09 0.004082

4.00e-02 5.470758484e-09 5.470542349e-09 0.003951

4.25e-02 6.099878440e-09 6.099644912e-09 0.003829

This calculation was repeated with Nk = Nm = 500 and no difference was observed

in the error percentage, indicating that the number of filaments is sufficient. From

the inductance and error percentage values, it is evident that the change in results

obtained by utilizing filamentisation is minimal. Since other sources of error exist

which are greater in magnitude than the error observed here, we may safely neglect

this error.

• On-Chip Inductor Dimensions: To test the validity of our assumption for the

dimensions of on-chip inductors, we repeat the previous calculations for the approx-

imate on-chip range of values for the dimensional parameters - linewidth W , metal-

lization thickness T , distance of separation D and length of segments L. Yet again,

we consider the case of two straight equal parallel segments as shown in Fig. 3.13 and

compare the values of partial mutual inductance obtained for varying values of the

above parameters with and without filamentisation.
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For the on-chip inductors, the values of the dimensional parameters are approximated

to be in the following range:

D ≈ 25mm; W ≈ 25µm; T ≈ 0.3µm; L ≈ 1.25mm → 5mm

As in the previous calculation, we take L as the independent variable and filamentise

each segment into Nk = Nm = 125 filaments widthwise. We construct a table of

the inductance values and error percentages between the two sets of values as shown

in Table 3.2 where L is the length of the two segments whose mutual inductance

is being calculated, MF is the partial mutual inductance with filamentisation, MS

is the partial mutual inductance without filamentisation (or inductance considering

the segments as filaments) and the percentage error is calculated from the fractional

difference relative to MS .

Table 3.2: Inductance values with & without Filamentisation(On-Chip Dimensions)

Length of Segments, L (m) MF (Henry) MS(Henry) % Error = MF−MS

MS
× 100

1.25e-03 6.242460067e-12 6.242459029e-12 0.000017

1.50e-03 8.988321464e-12 8.988319972e-12 0.000017

1.75e-03 1.223278446e-11 1.223278243e-11 0.000017

2.00e-03 1.597552711e-11 1.597552446e-11 0.000017

2.25e-03 2.021617869e-11 2.021617533e-11 0.000017

2.50e-03 2.495432006e-11 2.495431593e-11 0.000017

2.75e-03 3.018948404e-11 3.018947904e-11 0.000017

3.00e-03 3.592115576e-11 3.592114982e-11 0.000017

3.25e-03 4.214877317e-11 4.214876621e-11 0.000017

3.50e-03 4.887172751e-11 4.887171944e-11 0.000016

3.75e-03 5.608936381e-11 5.608935457e-11 0.000016

4.00e-03 6.380098150e-11 6.380097100e-11 0.000016

4.25e-03 7.200583494e-11 7.200582311e-11 0.000016

4.50e-03 8.070313412e-11 8.070312087e-11 0.000016

4.75e-03 8.989204525e-11 8.989203051e-11 0.000016

5.00e-03 9.957169150e-11 9.957167520e-11 0.000016

As before, this calculation was repeated with Nk = Nm = 500 and no difference was

observed in the error percentage, indicating that the number of filaments is sufficient.

From the inductance and error percentage values, it is evident that the change in

results obtained by utilizing filamentisation is negligible and we may safely neglect
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this error.

Thus, for the calculation of mutual inductances between inductors, it is observed

that partitioning of the cross section of the segments into filaments is not required for the

current work since the segment separation dimensions are much larger than the cross sec-

tional dimensions for all geometries considered. Simulations comparing the partial mutual

inductance values obtained with and without the partitioning of each segment into filaments

prove that the differences are negligible. Thus, the segments are treated as single filaments

for the purposes of mutual inductance calculations and the formulae provided by Grover

[32] for various configurations of parallel filaments are used in this work.

3.5.2 Self Inductance Case

The calculation of the self inductance matrix for an inductor structure consists of

two parts - finding the partial self inductances of the inductor segments (diagonal matrix

elements) and then finding the partial mutual inductances between the inductor segments

(off-diagonal matrix elements). We are currently concerned with the partial mutual in-

ductance calculation. Any two segments being considered for purposes of partial mutual

inductance calculation are separated by variable distances - ranging between the track sep-

aration between the neighboring segments to the largest dimension of the inductor. Since

these distances are comparable to the dimensions of the segments, we must check that the

error introduced by non-filamentisation is not considerable. We must also consider the fact

that the self inductance of the inductor is dominated by the partial self inductances of the

segments i.e. the diagonal elements. Thus, an error introduced in the off-diagonal elements

may not contribute significant error to the final inductance value since the off-diagonal el-

ements are smaller than the diagonal elements. To quantify this relative error, we consider

two cases for the order of dimensions as before.

• Test Structure Dimensions: For purposes of this calculation, we take a range of

values for the various dimensional parameters - linewidth W , metallization thickness

T , distance of separation D and length of segments L - approximated over the various

test structures that were fabricated. In the above approximation, we consider the

worst case scenario for estimating the value of D. Since smaller values of D will lead

to larger error, we take the smallest value of D expected in the test structure, which
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is the track separation between inductor segments. The specific case we shall consider

for our calculations is that of two straight equal parallel segments as shown in Fig.

3.13 and compare the values of partial mutual inductance obtained for varying values

of the above parameters with and without filamentisation.

From the test structures fabricated, we see that the values of the dimensional param-

eters are in the following range:

D ≈ 1mm; W ≈ 0.5mm; T ≈ 50µm; L ≈ 5mm → 42.5mm

Table 3.3: Inductance values with & without Filamentisation(Test Dimensions)

Length (m) MF (Henry) MS(Henry) LS (Henry) % Error = MF−MS

LS
× 100

5.00e-03 1.183948488e-09 1.174865821e-09 3.448131458e-09 0.263408

7.50e-03 2.252891525e-09 2.238951658e-09 5.764060076e-09 0.241841

1.00e-02 3.488056908e-09 3.469315737e-09 8.249770104e-09 0.227172

1.25e-02 4.848060571e-09 4.824542915e-09 1.086176860e-08 0.216518

1.50e-02 6.307987350e-09 6.279706165e-09 1.357442095e-08 0.208342

1.75e-02 7.851204801e-09 7.818167655e-09 1.637078323e-08 0.201806

2.00e-02 9.465824646e-09 9.428036332e-09 1.923881056e-08 0.196417

2.25e-02 1.114292725e-08 1.110039099e-08 2.216949601e-08 0.191868

2.50e-02 1.287557345e-08 1.282829151e-08 2.515584795e-08 0.187956

2.75e-02 1.465821100e-08 1.460618503e-08 2.819228067e-08 0.184540

3.00e-02 1.648629664e-08 1.642952790e-08 3.127422859e-08 0.181519

3.25e-02 1.835604399e-08 1.829453343e-08 3.439788987e-08 0.178821

3.50e-02 2.026424901e-08 2.019799739e-08 3.756004941e-08 0.176389

3.75e-02 2.220816522e-08 2.213717314e-08 4.075795262e-08 0.174180

4.00e-02 2.418541225e-08 2.410968021e-08 4.398921304e-08 0.172160

4.25e-02 2.619390722e-08 2.611343561e-08 4.725174315e-08 0.170304

We thus take L as the independent variable and filamentise each segment into Nk =

Nm = 125 filaments widthwise. We construct a table of the inductance values and

error percentages between the two sets of values as shown in Table 3.3 where L is the

length of the two segments whose mutual inductance is being calculated, MF is the

partial mutual inductance with filamentisation, MS is the partial mutual inductance

without filamentisation (or inductance considering the segments as filaments), LS is

the partial self inductance of the segment, and the worst case percentage relative

error is calculated from the fractional difference of MF and MS relative to LS . It is
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to be noted that the error is calculated relative to LS and not relative to MS . This

is because the value of the self inductance of the inductor is dominated by the partial

self inductance LS and thus the error contributed due to filamentisation to the overall

inductance should be calculated relative to this quantity.

This calculation was repeated with Nk = Nm = 500 and no significant difference was

observed in the error percentage, indicating that the number of filaments is sufficient.

Since the relative worst case error percentage values in Table 3.3 are uniformly < 0.3%,

the non-filamentisation of the inductor segments is justified.

• On-Chip Dimensions: To test the validity of our assumption for the dimensions

of on-chip inductors, we repeat the previous calculations for the approximate range

of values for the various on-chip dimensional parameters - linewidth W , metalliza-

tion thickness T , distance of separation D and length of segments L. This data was

obtained from previous on-chip inductor fabrication efforts and the estimated dimen-

sions for our on-chip inductors. In the above approximation, we consider the worst

case scenario for estimating the value of D. Since smaller values of D will lead to

larger error, we take the smallest value of D expected, which is the track separation

between on-chip inductor segments. The track separation is assumed to be equal to

the linewidth, which is generally the case. The specific case we shall consider for our

calculations is that of two straight equal parallel segments as shown in Fig. 3.13 and

compare the values of partial mutual inductance obtained for varying values of the

above parameters with and without filamentisation.

For the on-chip inductors, the values of the dimensional parameters are approximated

to be in the following range:

D ≈ 25µm; W ≈ 25µm; T ≈ 0.3µm; L ≈ 1.25mm → 5mm

As before, we take L as the independent variable and filamentise each segment into

Nk = Nm = 125 filaments widthwise. We construct a table of the inductance values

and error percentages between the two sets of values as shown in Table 3.4 where L is

the length of the two segments whose mutual inductance is being calculated, MF is the

partial mutual inductance with filamentisation, MS is the partial mutual inductance

without filamentisation (or inductance considering the segments as filaments), LS is

the partial self inductance of the segment, and the worst case percentage relative error
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Table 3.4: Inductance values with & without Filamentisation(On-Chip Dimensions)

Length (m) MF (Henry) MS(Henry) LS (Henry) % Error = MF−MS

LS
× 100

1.25e-03 7.433963774e-10 7.379057713e-10 1.279016869e-09 0.429283

1.50e-03 9.448102987e-10 9.382200469e-10 1.589185838e-09 0.414694

1.75e-03 1.154591614e-09 1.146901913e-09 1.907726849e-09 0.403082

2.00e-03 1.371537184e-09 1.362748159e-09 2.233434957e-09 0.393521

2.25e-03 1.594747067e-09 1.584858800e-09 2.565409381e-09 0.385446

2.50e-03 1.823522548e-09 1.812535095e-09 2.902950660e-09 0.378493

2.75e-03 2.057305343e-09 2.045218749e-09 3.245500333e-09 0.372411

3.00e-03 2.295639087e-09 2.282453380e-09 3.592601435e-09 0.367024

3.25e-03 2.538143725e-09 2.523858932e-09 3.943874157e-09 0.362202

3.50e-03 2.784497843e-09 2.769113982e-09 4.298996876e-09 0.357848

3.75e-03 3.034426051e-09 3.017943138e-09 4.657694339e-09 0.353886

4.00e-03 3.287689757e-09 3.270107803e-09 5.019726780e-09 0.350257

4.25e-03 3.544080244e-09 3.525399260e-09 5.384886855e-09 0.346915

4.50e-03 3.803413394e-09 3.783633388e-09 5.752989572e-09 0.343821

4.75e-03 4.065525573e-09 4.044646553e-09 6.123871177e-09 0.340945

5.00e-03 4.330270395e-09 4.308292367e-09 6.497386729e-09 0.338260

is calculated from the fractional difference of MF and MS relative to LS .

This calculation was repeated with Nk = Nm = 500 and no significant difference was

observed in the error percentage, indicating that the number of filaments is sufficient.

Since the relative worst case error percentage values in Table 3.3 are uniformly < 0.5%,

the non-filamentisation of the inductor segments is justified.

Therefore, for the calculation of self inductances of inductors, it is observed that partitioning

of the cross section of the segments into filaments is not required for the current work.

Simulations comparing the partial mutual inductance values obtained with and without the

partitioning of each segment into filaments prove that the relative error is negligible. Thus,

the segments are treated as single filaments for the purposes of self inductance calculations

and the formulae provided by Grover [32] for various configurations of parallel filaments are

used in this work.
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Chapter 4

Inductor Fabrication and

Measurements

The computational method developed on the basis of the partial inductance method

calculates the self and mutual inductances of several simple and complex inductor geome-

tries. It is possible to validate the results for some structures by using analytical formulae

from the literature or numerical methods to calculate the inductance of the structures. This

is a good source of verification for the results of the simpler structures, eg. square loops.

However, for more complex structures, accurate and reliable analytical formulae do not ex-

ist. Most of the formulae found in literature are approximate and empirical in nature and

do not provide very accurate results. Numerical methods are not able to handle complex

structures or take inordinate amounts of computational time. This indicates that we need to

have an independent and reliable source for cross-checking the inductance values generated

by the computational method. An obvious solution is to fabricate the inductor geometries

being simulated and measure the self and mutual inductance values. Though there are var-

ious issues involved in the fabrication and measurements, this seems to be the most suitable

approach in order to obtain reliable validation of the predicted inductance values. If the

computational results are in good agreement with the measurement results, the validity of

the computational method will be established and it may be used to confidently predict the
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inductance values of various structures with reasonable accuracy and speed.

4.1 Inductor Fabrication

While the actual dimensions of the secondary on-chip inductor would be deter-

mined by the precise function of the biomedical implant and its position in the human

body, we make the conservative assumption that most implants would be able to accom-

modate approximately a 5 mm × 5 mm inductor with a possible height of a few hundred

microns.

Test structures were fabricated using PCB prototype machines on dielectric laminate boards

and by other methods. The test structures fabricated using PCB technology were scaled up

in size and were around 15mm on the side and higher. Since the partial inductance method

is a scalable method of computing inductances, a close match of predicted and measured

results at these dimensions validates the method for the actual inductor dimensions of in-

terest as well. The scalability of this method is borne out by the fact that the partial

inductance method is used at very small dimensions, eg. for calculating the inductance

matrix of on-chip and off-chip interconnects [23]. The test inductors were fabricated with

copper on a laminate with high dielectric constant, using the LPKF Protomat PCB Pro-

totyping system (also called the milling machine) which was interfaced with Agilent ADS,

LPKF CircuitCam and BoardMaster.

The first step in the fabrication process was to design the layout of the inductor

geometry by hand with the appropriate dimensions. While deciding the dimensions of

the inductor, the fabrication restrictions and measurement apparatus had to be taken into

consideration. For instance, since the inductors were to be measured using the HP8510

Network Analyzer, they would have to be connected to the cables of the HP8510 using an

SMA connector. The SMA connector’s connection holes are 6 mm apart and this translates

into a dimensional constraint for the leads of the inductor. Further, for a spiral inductor,

the track separation had a lower bound decided by the pitch of the milling machine’s drill

bit. Once a hand layout had been completed, the layout design was entered into Agilent

ADS, which allowed the required layout to be made on several layers, - vias, metal, dielectric

etc. Once this design entry was completed, the layout was converted into the Gerber file

format and output to the LPKF CircuitCam. The Gerber data which was input to LPKF



51

CircuitCam was isolated ready for milling. Isolation is the process of computing the tool

paths to remove copper as the negative of the Gerber data. Data from the PCB design

software was imported into CircuitCam, modified, isolated and finally output to the LPKF

BoardMaster graphical machine control program. BoardMaster offers a user friendly system

for controlling the LPKF circuit board plotters. The graphical user interface displays the

cutting data generated by CircuitCam. The WYSIWYG (what you see is what you get)

display of the cutting data and material size enabled easy placement of different boards to

be processed. The data for drilling, milling and routing a board was contained in one file

with tool assignments. The machine then drilled the holes and milled the tracks on the

laminate board. The milled board was removed from the Milling Machine and the excess

Copper was peeled away from its surface. The board was cut to the size of the inductor

geometry. Finally, the SMA connector was soldered onto the board to form the contacts

required for the measurement setup. This was the summary of the technology and process

flow for the fabrication of most of the inductor geometries made in the course of this project.

Since the above method allows only the fabrication of planar inductors, the 3-D

test structures were constructed by hand. This involved the construction of test structures

using coils of copper wire. To construct a a rectangular helical inductor, the process involved

the use of regular insulated solid copper wire wound around a core of rectangular cross

section to form a rigid inductor in the shape of a helix. Leads were extended from the

inductor geometry in order to facilitate measurements. Similarly, a pyramidal inductor was

formed by wrapping turns of thin wire around a non-conducting pyramidal base, which was

especially fabricated and machined for this purpose.

4.2 Inductor Measurement

The fabricated inductors were measured with the Hewlett-Packard HP8510 Net-

work Analyzer. The S-parameters of the structure were measured by the Network Analyzer

and the inductances of the inductor geometries were extracted from the S-parameters. It

is to be noted that measurement associated errors are inevitable, but there is no definite

way of identifying and quantifying these errors for our structures. Thus, the measurement

error is lumped with the prediction error and error plots presented in a subsequent section

include the composite error from all possible sources.
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In order to measure the self inductance on an inductor, it was connected to the Network

Analyzer cables using the SMA connector which had been soldered onto the board. Next,

a frequency sweep was performed from 50 MHz to 2 GHz and the S parameters of the 1

port network were measured by the Network Analyzer. The data gathered by the Network

Analyzer could be seen in the form of a Smith Chart on the display on the instrument. This

would give a fair idea of whether the structure was behaving inductive at the frequencies of

interest.

For mutual inductance measurements, the two inductors of interest were connected to sep-

arate ports of the HP8510. To ensure that the two inductors were positioned correctly

relative to each other, they were mounted on a non-conductive strip which passed through

the central axis of each inductor and held the inductors together in a stable configuration

a certain distance apart.

The S parameter data measured by the HP8510 for either setup was transferred to a com-

puter and was analyzed using MATLAB to find out the inductance values from the S

parameter measurements. The following relationships easily extract the Inductance from

the Real and Imaginary parts of the S parameters which is the data provided by the Network

Analyzer.

For self inductance calculations,

S11 = Re(S11) + i ∗ Img(S11) (4.2.1)

which calculates the complex S11 parameter from the measurement data,

Z = 50

(

1 + S11

1 − S11

)

Ω (4.2.2)

which calculates impedance of the inductor structure, where 50 Ω is the impedance of the

connecting cables of the Network Analyzer,

X = Img(Z) (4.2.3)

which extracts the reactance as the imaginary part of the impedance, and finally,

L =

(

X

2πf

)

Henry (4.2.4)

which gives the value of the Inductance L from the frequency f and reactance X.
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Thus, in four simple steps, the self inductance of the fabricated inductor can be extracted

from the data provided by the Network Analyzer measurements. This procedure was fol-

lowed for each fabricated device: measuring its S parameters using the Network Analyzer,

analyzing the data using MATLAB and finding out the inductance values using the given

relations. The result was a set of inductance values for each frequency point of the frequency

sweep, which could be plotted against frequency.

For mutual inductance calculations,

Sij = Re(Sij) + i ∗ Img(Sij) (4.2.5)

which calculates the complex Sij parameter of the 2-port network from the measurement

data, where i = 1, 2 and j = 1, 2 to form the four Sij parameters.

Z12 = 50

(

2S12

(1 − S11)(1 − S22) − S12S21

)

Ω (4.2.6)

Z21 = 50

(

2S21

(1 − S11)(1 − S22) − S21S12

)

Ω (4.2.7)

which calculate the impedance matrix values of the mutual inductor configuration, where

50 Ω is the impedance of the connecting cables of the Network Analyzer,

X12 = Img(Z12) (4.2.8)

X21 = Img(Z21) (4.2.9)

which extract the elements of the reactance matrix as the imaginary parts of the impedance

matrix elements, and finally,

M12 =

(

X12

2πf

)

Henry (4.2.10)

M21 =

(

X21

2πf

)

Henry (4.2.11)

which give the values of the mutual inductance M12 and M21 from the frequency f and

reactance X. Ideally, M12 = M21, but due to inevitable measurement errors, the mutual

inductance values differ minutely over the entire measurement range and M12 ' M21.

The mutual inductance of the fabricated inductor can thus be extracted from the data

provided by the Network Analyzer measurements. This procedure was followed for each
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fabricated device: measuring its S parameters using the Network Analyzer, analyzing the

data using MATLAB and finding out the mutual inductance values using the given relations.

The result was a set of mutual inductance values for each frequency point of the frequency

sweep, which could be plotted against frequency.

The partial inductance method calculates a frequency-independent value of the

inductance. Therefore, though the measured results are frequency dependent, the low fre-

quency range of values of the measured results are generally taken as the accurate measure-

ment range for comparison.

Another instrument used to measure inductance values was a simple RLC meter,

which gives the Inductance values of any device when its leads are shorted to the input

terminals of the RLC meter. However, a drawback with this method was that additional

leads were required to be attached to the inductor, and these leads had to be simulated

separately, after the fabrication was complete. In practice, the device was fabricated, an

SMA was attached and the Network Analyzer readings were taken. After this, the SMA

was removed and solder leads were attached to the ends of the inductor. These leads were

measured for purposes of entering their dimensions into the computer simulation. Then,

the device was measured using the RLC meter. Thus, this alternate measurement scheme

provided another independent source of validation for the inductance values of the fabricated

geometries.

These two methods of measurement and the Thin-Strut Formalism method [34], an ex-

tension of the numerical FDTD method, were the three sources of comparison used for

validation of the predicted inductance values.
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Chapter 5

Analysis of Inductor Geometries

and Results

The purpose of this work is to examine inductor geometries which may be fabri-

cated on-chip and find the best option based on calculations of mutual coupling with the

external coil. However, in order that these coupling calculations may be considered reliable,

we need to first validate the results obtained for simpler structures via measurements or

known calculation methods. If the computational results are in good agreement with the

measurement results, the validity of the computational method will be established and it

may be used to confidently predict the inductance values of various structures with reason-

able accuracy and speed. A number of test structures were analyzed to test the validity of

the inductance prediction code.

5.1 Test Structures and Results

5.1.1 Self Inductance

• Square Loop:

A 10 mm square loop was fabricated on a PCB substrate as shown in Fig. 5.1 and the
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Figure 5.1: Square Loop
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Figure 5.2: Predicted and Measured Results Plot for Square Loop
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measurement results were compared with the predicted results (Fig. 5.2). Measure-

ments were performed by connecting the square loop via an SMA connector located

directly underneath the loop to a Network Analyzer. We observe that the predicted

value for the self inductance of the loop matches the experimental values closely for

low frequencies. It is to be noted that the comparison between predicted and observed

values should indeed be performed in the low frequency range since the code predicts

the low frequency inductance of a structure.

• Square Loop with Leads:

Since the SMA connector lies directly beneath the square loop in the previous struc-

ture, there is the possibility that the inductance measurements are affected by it. This

issue can be circumvented by fabricating a 10 mm square loop with long leads which

then connect to the SMA connector. The SMA connector would not be under the

square loop anymore, minimizing the effect it might have on the structure. The

square loop is fabricated as shown in Fig. 5.3 and the measurement results are shown

in Fig. 5.4. We observe that the inductance values are greater as expected, due to

the extra length of the leads. Once again, there is a reasonably good match between

the predicted and measured results.

• Spiral Inductor:

A spiral inductor with 4 turns and an outer side length of 15 mm is fabricated on a

PCB substrate with leads attached for measurement purposes as shown in Fig. 5.5. In

Fig. 5.6, the comparison results for the spiral inductor suggest that the computational

method predicts the inductance of relatively complicated inductor geometries with

good accuracy. The good match between the expected value and measurement results

for 2-D structures encourages us to extend the method to predict the inductances of

3-D structures.

• Rectangular Helical Inductor:

To test the validity of the results predicted by the method for 3-D structures, a

rectangular helical inductor 45 mm ×30 mm was constructed using several turns of

electrical wire wrapped around a non-conducting core as shown in Fig. 5.7. The

measurement method in this instance utilized a simple RLC meter since the Network

Analyzer could not be used due to the larger size and radius of the inductor leads.
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Figure 5.3: Square Loop with Leads
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Figure 5.5: Spiral Inductor
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Figure 5.7: Rectangular Helical Inductor
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As we see in Fig. 5.8, the results shown prove that a good match is obtained for the

helical inductor.

• Pyramidal Inductor:

Finally, a 3-D pyramidal inductor (50 mm ×50 mm base dimensions) is constructed on

a non-conducting pyramidal base as shown in Fig. 5.9 and Fig. 5.10, and the results

are plotted in Fig. 5.11. Two predicted results are obtained depending on slightly

differing definition of the segment heights. The good match between the results for

this pyramidal structure and for all previous structures validates the prediction of

self inductances with a high degree of accuracy. This is also a big step toward the

prediction of mutual inductance for coupled coils since the partial inductance concept

uses the same basic principle for the calculation of self and mutual inductances of

various structures.

Figure 5.9: Side View of Pyramidal Inductor

Figure 5.10: Top View of Pyramidal Inductor
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Figure 5.11: Predicted and Measured Results Plot for Pyramidal Inductor

5.1.2 Mutual Inductance

• Coaxial Square Loops: To test the validity of the method for simple mutual induc-

tance calculations, we calculate the values of mutual inductance for 2 square coaxial

loops (Fig. 5.12). Simulation results from the Thin-Strut Formalism (a numerical

FDTD based method) [34] for an identical configuration were used for comparison

purposes. The results, plotted in Fig. 5.13, show the comparison of mutual induc-

tance to self inductance ratios when the length of one square loop is varied while

holding the axial distance constant and when the axial distance between the loops

is varied while holding the square lengths constant. The plots indicate a very close

match in mutual inductance values obtained by two methods which employ totally

different approaches.
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Figure 5.12: Mutual Inductance between Coaxial Square Loops
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Figure 5.13: Predicted and Numerical Simulation Results Plot for 2 Square Loops

• Coaxial Spiral Loops:

The previous result encourages us to fabricate 2 identical spiral inductors 15 mm on

the outer side, arrange them in a coaxial configuration (Fig. 5.14) and compare the

inductance results. The measurement results for this coupling configuration are shown

in Fig. 5.15, Fig. 5.16 and Fig. 5.17 for different values of separation, D = 1.8 cm,

2.5 cm, 3.0 cm. These are the M12 and M21 values obtained from the S12 and S21

measurements respectively, which are nominally equal to each other. The results are

an excellent match and show that the method predicts mutual inductances accurately
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for relatively complex coupled structures. This also validates the mutual inductance

method for distances of separation generally used for biomedical implants.

Figure 5.14: Mutual Inductance between Spiral Inductors
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Figure 5.15: Predicted and Measured Results Plot for 2 Spiral Inductors, D=1.8 cm

• Pyramidal Inductor and Square Loop:

Finally, we construct the inductor coupling structure intended to couple the power to
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Figure 5.16: Predicted and Measured Results Plot for 2 Spiral Inductors, D=2.5 cm

the biomedical implant. A 3-D pyramidal inductor (50 mm ×50 mm base dimensions)

is placed coaxially with a large 145 mm ×115 mm square loop (Fig. 5.18). The reason

a large loop is used is because it is intended to represent the external inductor which

typically has a high inductance value. Further, since the dimensional constraints on

the external inductor are not strict, a relatively large inductor may be built for good

coupling. The axial distance of separation between the inductors is D ≈ 45 mm and

their coupling is measured and compared to the predicted results in Fig. 5.19. Yet

again, the low frequency values of the measured results are to be compared with the

predicted inductance value from the code. In this plot, we observe that the match

between the measured and predicted value is relatively close. In conjunction with

all the previous results, this result for the coupling between a 3-D inductor and a

rectangular loop indicates that this method can be used to predict the self and mutual

inductances of various regular 2-D and 3-D structures with a high degree of acuracy.
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Figure 5.17: Predicted and Measured Results Plot for 2 Spiral Inductors, D=3.0cm

Figure 5.18: Mutual Inductance between Pyramidal Inductor and Square Loop

In this section, we have seen plots comparing the predicted inductance values with

the measured or numerically simulated inductance values for both the self inductance

and mutual inductance cases. The results indicate a good match for the structures

and thus validate the computational method for the purposes of predicting inductance

values of different inductor geometries. These inductance predictions can be used for

deciding the optimal inductor geometry for coupling power to biomedical implants.
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Figure 5.19: Predicted and Measured Results Plot for Pyramidal Inductor and Square Loop

5.2 Error Analysis

The comparison of the predicted and measured/numerical results for the test struc-

tures indicate that the validity of the computational method has been firmly established.

However, an idea of the error involved in prediction is required before using the method

for inductance prediction. To get a quantitative estimate of the approximate error involved

in the prediction of inductances, we plot the error percentages for the various self and

mutual inductance structures. These error percentages essentially quantify the fractional

difference in predicted and measured/numerical inductance values as a percentage of the

measured/numerical value. In cases where there is more than one predicted value from

different methods, or in cases where the comparison is performed over a range of different

values of the independent variable, the average value of error is considered. It is to be noted

that since the measured/numerical values have an error associated with them as well, the er-

ror we plot is the combined error associated with the predicted and the measured/numerical
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values.

Error Percentage =
Predicted Value − Measured or Numerical Value

Measured or Numerical Value
× 100 (5.2.1)

For the case of self inductance values, the error percentage graph is shown in

Fig. 5.20 for the different test structures.
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Figure 5.20: Error Percentages for Predicted Self Inductance Values

From the error percentages plotted in Fig. 5.20, we see that the self inductances

are calculated by our method with a small relative error within ±4%, thereby verifying the

method for self inductance calculations.

Next, we plot the error percentages for the mutual inductance values of the various configu-

rations in Fig. 5.21. All the error percentages are well within ±6% and so we are justified in

stating that the method predicts the mutual inductance coupling with reasonable accuracy

for various geometrical structures.
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Figure 5.21: Error Percentages for Predicted Mutual Inductance Values

5.3 Optimal Geometry Analysis

The main object of this thesis so far has been to develop a computational method

which can accurately and quickly predict the self and mutual inductance of various induc-

tor geometries and configurations. The method has been validated by comparison with

measurement results for certain fabricated test structures. The results indicate that the

computational method predicts the self and mutual inductance values with a good degree

of accuracy for the structures of our interest. This computational method is now applied to

the problem of choosing an optimal inductor geometry for power coupling to the implant.

The coupling coefficient k, defined by:

k =
M√

(L1L2)
(5.3.1)

is the standard measure of coupling between coils. This quantity is used to compare and

choose between the coil geometries.
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We analyze three different variations of the same basic inductor geometry - the

pyramidal inductor - as shown in Figs. 5.22, 5.23 and 5.24. Figs. 5.23 and 5.24 show

single and double recessed pyramids with one and two recessed plateaus in their geometries

respectively. These plateaus may contain a variable number of turns which leads to different

values of the coupling coefficient. For each of these three geometries, we vary two parameters

- the number of turns on the plateaus and track separation between segments, both of which

are typically within our control as designers, and observe the change in coupling predicted

by our method. To make a fair comparison possible, we ensure that the following parameters

are kept the same for a given comparison - total height of the entire structure, base length

and width, and total number of tracks on inclined surfaces. The external inductor coupled

with these inductor geometries is a simple rectangular loop inductor, giving rise to the

configuration shown in Fig. 5.25.

Silicon Wafer

Chip Electronics

Inductor Traces
Dielectric Pyramid

Figure 5.22: Basic Pyramidal Inductor Geometry

Silicon Wafer

Inductor Traces
Recessed Dielectric Pyramid

Chip Electronics

Figure 5.23: Recessed Pyramidal Inductor Geometry
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Chip Electronics

Double Recessed Dielectric Pyramid

Figure 5.24: Double Recessed Pyramidal Inductor Geometry

Figure 5.25: Mutual Inductance between Pyramidal Inductor and Square Loop

5.3.1 Varying the value of N

To observe the variation of the coupling coefficient k with respect to the first of the

two variable parameters, we introduce a notation to denote the precise structure of a basic or

recessed pyramidal structure for simplicity of description. For example, a 2−N−2 pyramid

is a recessed pyramid structure with a single plateau along the incline of the pyramid. The

lower sloped surface has 2 turns on it, the plateau has N turns, and the upper sloped surface

has 2 turns. Similarly, a 2−N − 2−N − 2 pyramid is a double recessed pyramid with two

plateaus along the incline of the pyramid, each of which has N turns while the three sloped

surfaces all have 2 turns each. It is evident that for the case of a basic pyramid, N = 0. We

compare the coupling coefficients of the single and double recessed pyramid with the basic

pyramid by examining different pyramidal structures and varying the value of N , where

the coupling coefficient for the basic pyramid is given by the y-axis value on the graph for

N = 0. We now take a look at the variation in the coupling coefficient, normalized to the

value of coupling coefficient for N = 0 and seek the optimal coupling configuration for a

variety of situations.
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• Test Structure, 2−N − 2 Pyramid: We first analyze the case of a single recessed

pyramid for test structure dimensions. The dimensions of the pyramidal inductor and

rectangular loop are approximately the same as those used in the mutual inductance

calculation in Section. 5.1. The plot of the normalized coupling coefficient is shown

in Fig. 5.26.
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Figure 5.26: Normalized Coupling Coefficient variation with N for 2 − N − 2 Pyramid

It is evident that the coupling coefficient of the Basic Pyramidal geometry is the

highest and it is thus the optimal geometry to couple power to the implant. There is no

advantage in building recessed pyramids for this situation. We see that our inductance

calculation analysis has thus provided us with an optimal pyramidal geometry to

couple with the external rectangular loop coil based on the value of the coupling

coefficient k.
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• On-Chip Dimensions, 3−N−3 Pyramid: To get an idea of the coupling coefficient

values we should obtain when we fabricate such inductor geometries on-chip, we com-

pute and compare the coupling coefficients for the single recessed pyramidal inductor

geometries with on-chip inductor dimensions, assuming a 7 mm ×7 mm backside chip

surface area available for the pyramidal inductor (Fig. 5.27).
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Figure 5.27: Normalized Coupling Coefficient variation with N for On-Chip 3 − N − 3
Pyramid

Yet again, we observe that the coupling coefficient of the Basic Pyramidal geometry

is the highest and it is thus the optimal geometry to couple power to the implant.

There is no advantage in building recessed pyramids for this situation. Our inductance

calculation analysis has thus provided us with an optimal on-chip pyramidal geometry

to couple with the external rectangular loop coil based on the value of the coupling

coefficient k.
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• On-Chip Dimensions, 2−N − 2−N − 2 Pyramid: We now analyze the case of a

double recessed on-chip pyramidal geometry with a number of turns on each plateau,

the number of turns N being the same on each plateau. As before, the N = 0 case

represents the basic pyramidal geometry and the coupling coefficients are normalized

to that value. We also note that the total height of the double recessed structure is

the same as that of the comparable basic pyramid. The comparison of the normalized

coupling coefficients is shown in Fig. 5.28.
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Figure 5.28: Normalized Coupling Coefficient variation with N for On-Chip 2−N−2−N−2
Pyramid

We observe from the plot that the Basic Pyramid is the optimal geometry yet again

and is advantageous as compared to the double recessed pyramidal geometry for this

situation. Given the previous plots, we may be tempted to discern a trend in this

dependence of coupling coefficients on N . However, that such a hypothesis would be

erroneous is proven by the subsequent analysis.
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• On-Chip Dimensions, 2−N−2 Pyramid: We analyze the case of a single recessed

on-chip pyramid with a 2 − N − 2 configuration in Fig. 5.29.
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Figure 5.29: Normalized Coupling Coefficient variation with N for On-Chip 2 − N − 2
Pyramid

From the figure, we observe that the maximal coupling is obtained when there are

6 turns on the plateau of the recessed pyramid. Therefore, the optimal pyramidal

structure for power coupling in this situation is a 2 − 6 − 2 recessed pyramid. Thus,

we see that the actual optimal inductor structure is dependent heavily on the precise

coupling situation in terms of configuration, dimensions and other factors. We may

not formulate any general rules to determine the optimal inductor geometry for all

situations. However, for a particular situation, it is possible to use our method to

compute inductances and hence coupling coefficients, plot comparative graphs and

thus determine the optimal coupling structure for the situation.
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5.3.2 Varying the value of Track Separation

We wish to observe the variation of coupling coefficient k with geometric dimen-

sions. It becomes evident that the horizontal track separation between the segments of the

inductor is a dimension over which we have some degree of control. The metal linewidth and

metallization thickness of the inductor traces are typically determined by available fabrica-

tion technology and other factors like electromigration etc. Electromigration considerations

may act as a constraint on the lower bound on the width and thickness since these inductor

traces may need to carry large currents over extended periods of time and thus need to be

wide and thick enough to handle sufficient current densities. The base dimensions of the

pyramid itself are constrained by the amount of on-chip space we have on the implant. The

height of the pyramid is also constrained by the depth of the trench we are able to etch in

the silicon wafer in a reasonable amount of time.

We must keep in mind that the coupling coefficient k is directly proportional to

the mutual inductance and inversely proportional to the square root of the self inductances

and is thus, in general dominated by the mutual inductance variation. So, changing some

dimensions may increase the mutual inductance but may simultaneously increase self in-

ductance of the structure by such an amount that it offsets the increase in the mutual

inductance and actually reduces the coupling coefficient. Thus, it is important to observe

the relative values of the coupling coefficient when changing the dimensions of the inductor

geometry.

Working with the dimensional constraint that the inductor is around 400µm high,

we choose a vertical turn separation z value of 100µm. This means that we may have 4

turns in the basic pyramidal inductor geometry. The linewidth chosen is 25µm and the

metallization thickness is 0.5µm. The three pyramidal inductor geometries - basic, single

recessed and double recessed - are assumed to be coupled with a large external rectangular

loop inductor with dimensions 14 mm ×12mm. Since the size constraint on the external

inductor is not strict, we could possibly build a larger inductor with a bigger inductance

value for larger coupling. However, for demonstration purposes, we work with the current

loop size. The coaxial distance of separation is 25 mm as was assumed to be the separation

distance for most biomedical implants.
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• On-Chip Dimensions, Basic Pyramid, 4 Turns: We analyze the case of a basic

on-chip pyramid with 4 turns and observe how the coupling coefficient varies with

changing track separation in Fig. 5.30. In this case, the track separation is varied

between 50µm and 550µm and the values of the coupling coefficient are normalized

to the value of the coupling coefficient for a track separation of 50µm.
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Figure 5.30: Normalized Coupling Coefficient variation with Track Separation for On-Chip
Basic Pyramid

From the plot, it is evident that the coupling coefficient decreases with increasing track

separation. Thus, it appears that we must try to decrease tr in order to maximize

k. This may be achieved by placing the inductor segments close together. We note

that our method has allowed us to optimize our inductor geometry for maximal power

transfer by a comparison of relative coupling coefficients.
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• On-Chip Dimensions, 2-2-2 Pyramid: Next, we analyze the case of a single

recessed on-chip pyramid with 2 − 2 − 2 turns. This means that there are 2 turns on

the lower sloping surface, 2 turns on the plateau and 2 turns on the upper sloping

surface. We wish to observe how the coupling coefficient varies with changing track

separation in Fig. 5.31. Yet again, the track separation is varied between 50µm and

550µm and the values of the coupling coefficient are normalized to the value of the

coupling coefficient for a track separation of 50µm.

50 100 150 200 250 300 350 400 450 500 550
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Normalized Coupling Coefficient k versus Track Separation for a Recessed Pyramid

N
O

R
M

A
LI

Z
E

D
 C

O
U

P
LI

N
G

 C
O

E
F

F
IC

IE
N

T
 , 

k

HORIZONTAL TRACK SEPARATION IN MICRONS

On−Chip 2−2−2 Pyramid  

Figure 5.31: Normalized Coupling Coefficient variation with Track Separation for On-Chip
2 − 2 − 2 Pyramid

In this case, we note that the normalized coupling coefficient actually rises to a max-

imum value before falling down again. The value of track separation for which the

maximal k is obtained is found to be 100µm. Therefore, we see that the optimal

single-recessed pyramidal geometry for power coupling in this situation will have a

track separation of 100µm.



79

• On-Chip Dimensions, 2-2-2-2 Pyramid: Finally, we analyze the case of a double

recessed on-chip pyramid with 2−2−2−2 turns to observe how the coupling coefficient

varies with changing track separation in Fig. 5.32.
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Figure 5.32: Normalized Coupling Coefficient variation with Track Separation for On-Chip
2 − 2 − 2 − 2 − 2 Pyramid

This case is observed to be similar to the first case since the optimal case for coupling

is given by the case of minimum track separation. Thus, our method has successfully

optimized the track separation of the inductor geometry for maximal power transfer

by a comparison of relative coupling coefficients.
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Chapter 6

Conclusion

This thesis has developed a computational method for inductance predictions of

inductors and investigated novel geometries for inductors used for power coupling to im-

plants. This chapter summarizes the major contributions of this work and identifies areas

that merit future study.

6.1 Contributions

• A computational method is developed from the partial inductance concept which is

used to predict the inductance values - self and mutual - of various different inductor

geometries and inductor configurations. Since power coupling to the implant depends

on the mutual inductance obtained between the on-chip and external inductors, the

predicted values of inductance may be used to choose an inductor geometry which

can maximize the power transfer.

• Several test inductor structures are fabricated and their inductance values are mea-

sured. These measurements serve as a comparison for the values predicted by the

computational code in order to prove the validity of the method. From the compar-

isons, it is evident that the computational method predicts the inductance values of

the test structures quite accurately, within acceptable limits of error.
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• Novel inductor geometries are proposed which are expected to enhance the coupling of

power into the implant. These geometries may be fabricated on-chip using standard

IC processing methods. Though on-chip 3-D inductors typically involve expensive

and tedious processes, the proposed geometries for the inductors are distinguished by

their ease of fabrication and cost-efficiency. A preliminary investigation is conducted

into the process flow for the fabrication of the on-chip inductors.

6.2 Future Work

This sections identifies topics covered in this thesis which merit more detailed study.

• The fabrication of on-chip inductor test structures is a work currently in progress.

Once the fabrication of these inductors has been completed, the inductance values

obtained from measurements can be compared with the inductance values predicted

by the computational code for the on-chip structures. This comparison will provide

a definite confirmation regarding the validity of the computational method for the

on-chip inductor geometries.

• The computational code may be enhanced and extended in a variety of ways. It

can be expanded to include a larger variety of geometries. Currently, the code can

handle 2-D geometries such as square & rectangular loops and spirals as well as 3-D

geometries such as rectangular helices and pyramids. Some geometries that the code

may be expanded to handle are polygonal 2-D and 3-D geometries such as spirals and

pyramids of hexagonal or octagonal shapes.

• Another possibility for the enhancement of the code is for it to be able to handle

segments inclined to each other at an angle. Currently, all segments are assumed to

be parallel or perpendicular to each other. While this assumption is approximately

valid for spirals, it may be violated for helices or pyramids which have a large vertical

track separation.

• Further, even though the current code does not implement filamentisation of the seg-

ments since it is not required for the current dimensions, future work may implement

this since it would lead to a more generalized and accurate code over a large range of

dimensions.
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• Finally, the current code can also be enhanced in its ability to handle the current

geometries. For instance, a good degree of knowledge of the code is required for a

user to be able to analyze a certain inductor geometry. This may be addressed by

making the code capable of handling the geometric specifications with just the required

dimensional parameters as inputs from the user. An interactive user interface may be

included to make the procedure fast, efficient and user-friendly.
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