
 

 

ABSTRACT 

 

NARAYANASAMY, PRABHU. A New Heuristic for the Hamiltonian Circuit Problem. 

(Under the direction of Dr. Matthias F Stallmann.) 

In this research work, we have discussed a new heuristic for the Hamiltonian circuit problem. 

Our heuristic initially builds a small cycle in the given graph and incrementally expands the 

cycle by adding shorter cycles to it. We added features to our base heuristic to deal with the 

problems encountered during preliminary experiments. Most of our efforts were directed at 

cubic Cayley graphs but we also considered random, knight tour and geometric graphs.  

Our experimental results were mixed. In some but not all cases the enhancements improved 

performance. Runtime of our heuristic was generally not competitive with existing heuristics 

but this may be due to inefficient implementation. However, our experiments against 

geometric graphs were very successful and the performance was better than the Hertel’s 

SCHA algorithm, even in terms of runtime. 
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1. Introduction 

 

 

A Hamiltonian Cycle or a Hamiltonian Circuit is a cycle which visits every vertex of an 

undirected graph exactly once and returns to the starting vertex. The problem of finding 

whether such a cycle exists in a graph has been proved to be NP-Complete (Karp, 1972). 

This famous problem is named after the mathematician Sir William Rowan Hamilton, who 

described the problem as a mathematical game (Icosian Game) of finding the cycle in a 

dodecahedron (Figure 1.1 shows a dodecahedron and Hamiltonian cycle). Hamilton’s 

discovery can also be claimed as an inspiration from the Euler’s famous knight’s tour 

problem (Euler, 1759). Knight’s tour is a mathematical game in which a knight, placed on an 

empty chessboard, must visit all the squares once. 

 

 

 

Figure 1.1: Dodecahedron and its Hamilton Cycle 

 

Many algorithms were developed to solve the Hamiltonian cycle problem out of which the  
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most important is the path rotation algorithm by Pósa (Pósa, 1976). Many improvements 

were done on the base version of the path rotation algorithm, each of which made the path 

rotation technique more effective. 

Pósa’s algorithm constructs a path by adding vertices until it encounters a dead end, a point 

at which there is no possibility of adding more vertices to the path. From that juncture, it tries 

to do path rotation and if that is not possible it has to backtrack.  

Let’s look into a simple example of a path rotation technique. Consider the following graph 

in    Figure 1.2. 

 

Figure 1.2: Path rotation sample graph 
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(a) Before path rotation   (b) After path rotation 

Figure 1.3: Illustration of path rotation on sample graph 

 

Each vertex starting from 1 gets added to the path till it reaches the end vertex 7 and we get a 

resultant path as in Figure 1.3 (a). This is a dead end because the neighbors of vertex 7 are 

already on the path and neither of them finishes a Hamiltonian cycle.  As all the vertices are 

not in the path, the path rotation algorithm tries to identify a potential point for rotation. Here 

the vertex 7 has an edge to vertex 2. Thus the path 1-2-3-4-5-6-7 can be rotated to get 1-2-7-

6-5-4-3 and vertex 3 becomes the new end point as shown here as in Figure 1.3 (b). 

What if the last vertex 7, as in Figure 1.3 (a), doesn’t have an edge back to vertex 2? The 

algorithm has to backtrack till it finds a potential point for rotation. If it cannot find any point 

even after backtracking then the path has to be reconstructed with a new starting point. To 

visualize this scenario consider the Figure 1.4. As you see, there is no back edge (to the 

vertices that are already in the path as we had in previous example) here and the path rotation 

algorithm needs to backtrack. In fact Pósa’s algorithm didn’t have any backtracking feature.  
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Various implementations of the algorithm have backtracking feature built in them. 

 

 

Figure 1.4: Path rotation example where backtracking is needed 

 

   

 

(a) Initial Cycle    (b)After Cycle Expansion 

Figure 1.5: Our heuristic for path rotation sample 
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Our heuristic is a novel attempt to find whether the given graph is Hamiltonian. The heuristic 

attempts to find a smaller cycle initially and the cycle progressively gets expanded until all 

the vertices are included.  Our heuristic works very efficiently on this example. Initially a 

cycle is formed and then we expand the cycle as in Figure 1.5 to include all the vertices.  

Having the idea of uniting smaller cycles to make a larger cycle, our main focus in this 

research has been to work on this heuristic and identify its potential challenges.  

We begin in Chapter 2 with a brief survey of the existing work. There we have discussed 

various theorems and lemmas about the necessary and sufficient conditions for a graph to be 

Hamiltonian. Then we describe in detail the existing algorithms and some promising results 

that they have managed to achieve. 

In Chapter 3, we propose the base version of our heuristic and come up with various 

modifications to enhance the base version of the heuristic so that it can be used on various 

classes of graphs. 

In Chapter 4, we discuss on various families of graphs, Cayley graphs, knight tour graphs, 

random graphs and geometric graphs, against which we ran our heuristic. We document the 

method of generation for each class of graph and we list the important properties that hold on 

the classes of graphs with respect to Hamiltonian circuits. 

In Chapter 5, we document all the results that we have achieved with different versions of 

our heuristic against various classes of graphs described in Chapter 4. We also compare our 

heuristic performance against other existing heuristics. 

Chapter 6 summarizes our work and describes the various suggestions that can be taken up in 

future to improve the heuristic’s performance. 
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2. Literature Survey 
 

 

This section is divided into three main topics Section 2.1 gives the necessary fundamental 

notations and definitions on graphs and other terms which are important in the context of this 

thesis; Section 2.2 briefly describes relevant theorems and conjectures on Hamiltonian cycles 

and Section 2.3 gives with a brief survey of the work that has already been put forth with 

respect to heuristics for the Hamiltonian circuit problem. 

 

2.1.  Fundamental Notations and Definitions 

 

A graph consists of a vertex set V(G) and an edge set E(G). Each edge is a pair of vertices 

which are called end points of edge.  A graph can be either directed or undirected. An 

undirected graph is denoted by V(G) ={v1,v2, v3,….vn} and E(G)={u1v1, u2v2, …..,umvm}. The 

graph here is undirected, meaning that the edge uv is same as the edge vu whereas in a 

directed graph the edge uv ≠ vu.  

A vertex u is adjacent to a vertex v if the graph’s edge set contains the tuple uv. The degree 

of a vertex v is the number of vertices adjacent to v. Usually the minimum degree of a graph 

is denoted by δ(G) and maximum degree of a graph is denoted by ∆(G).  A graph is regular 

if the degree of all vertices is exactly equal to some constant k.  

 Let n represent the cardinality of the vertex set V(G). Similarly the cardinality of the edge set 

E(G) is denoted by m.  The time complexity of the algorithms is usually represented in terms 

m and n, the number of vertices and edges, respectively. 
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 Another term for the number of vertices is the order of G. 

If uv ε E(G) for every pair u,v ε V(G) and n=|V(G)|, then G is the complete graph Kn. As 

each vertex is connected to all other vertices in the graph, all complete graphs are 

Hamiltonian. 

A subgraph of a graph G is a graph H such that V(H) is a subset of V(G) and E(H) is a subset 

of  E(G). The components of a graph G are the maximal connected subgraphs of G. A cut 

edge or cut vertex of a graph is an edge or vertex whose deletion increases the number of 

components. The connectivity of G, written k(G), is the minimum size of a vertex set S such 

that G-S is disconnected or has only one vertex. A graph G is k-connected if its connectivity 

is at least k. 

An isomorphism from a simple graph G to a simple graph H is a bijection f : V(G) �V(H) 

such that uv ε E(G) if and only if  f(u) f(v) ε E(H).  An automorphism of G is an 

isomorphism from G to G.  

A graph G is vertex-transitive if, for every pair u, v ε V(G), there is an automorphism that 

maps u to v.  An important property is that all vertex-transitive graphs are regular. As we are 

going to see more of these vertex-transitive graphs throughout this thesis work, let’s look at a 

couple of examples. The 6-Cycle graph in Figure 2.1 (a) and the complete graph K5 in Figure 

2.1 (b) are common examples of vertex transitive graphs. Informally speaking, these graphs 

are vertex-transitive as no vertex can be distinguished from any other based on the edges 

surrounding it. In the Figure 2.1 (a) automorphism that maps, e.g. vertex 3 to vertex 5 are 4 

to 6; 6 to 2 etc.,. 

Similarly edge-transitive graph is a graph G such that, given any two edges e1 and e2 of G 

there is an automorphism of G that maps e1 to e2. The graphs in Figure 2.1 (a) and (b) are 

both vertex-transitive as well as edge-transitive as well. 
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(a) 6-Cycle graph                 (b)Complete graph on 5 vertices ( K5) 

Figure 2.1: Vertex-transitive graphs 

 

2.2. Theorems 

 

Beyond being an NP Complete Problem (Garey & Johnson, 1979), there are various 

theorems and conjectures regarding the conditions under which graphs contain Hamilton 

cycles. In this section, we will review some sufficient and necessary conditions for a graph to 

be Hamiltonian. 

Theorem 1: In a graph with a Hamiltonian cycle the degree of each vertex must be ≥ 2. 

It is obvious that if the graph is not bi-connected, a path can only exist. 

Theorem 2: If a vertex has 3 neighbors of degree 2, that graph cannot contain a Hamiltonian 

Cycle. 

Proof: From the theorem 1, we know that the two edges incident on a degree 2 vertex must 

both be in the cycle. Assume such a cycle exists in the graph. The degree 3 vertex must have  
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two of its incident edges included in the cycle. This leaves another degree 2 vertex, the 

remaining neighbor of degree 3 vertex, isolated. This is a contradiction. Hence no 

Hamiltonian cycle may exist. 

Theorem 3: (Dirac, 1952) If G is a graph of order n ≥ 3 such that δ(G)≥n/2 then G is 

Hamiltonian. 

This theorem gives us the lower bound on the minimum degree for a graph to be 

Hamiltonian. 

We have presented only the theorems that are relevant to this thesis work. Readers can refer 

to the texts (West, 2001), (Bondy & Murty, 2008) for a comprehensive coverage of all the 

necessary and sufficient conditions for a graph to be Hamiltonian. 

 

2.3.  Existing Heuristics 

 

We begin this section with some early algorithms that existed for solving the Hamiltonian 

cycle problem and then we move on to some of the latest algorithms. Readers should 

consider reading surveys by Gould (Gould, Updating the Hamiltonian problem—a survey, 

1991) (Gould, Advances on the Hamiltonian problem-a survey, 2003) and by Kawarabayashi 

(Kawarabayashi, 2001) for comprehensive coverage of all the important results regarding the 

Hamiltonian cycles in graphs. 

As mentioned in the introduction of this thesis, Hamiltonian cycle discovery can be regarded 

as an inspiration from the knight’s tour problem proposed by Euler (Euler, 1759). A knight’s 

tour (refer to chapter 4 section 4.3 for detailed description of knight’s tour) is a path taken by 

a knight in the game of chess. A knight starting from any square on a chess board must visit 

all the squares once and return back to the starting square. Many mathematicians De Moivre,  



10 

 

Roget, Vandermonde (Vandermonde, 1774), Warnsdroff (Warnsdorff, 1823), Pratt (Pratt, 

1825), Lengendre (Legendre, 1830), DeLavernede (DeLavernede, 1839) got attracted 

towards this problem during the late 1700’s and early 1800’s.  

First and foremost discovery of an algorithm for the knight’s tour problem was by H.C. 

Warnsdorff in 1823. Like other mathematicians, Warnsdorff described the knight’s tour as a 

mathematical puzzle. Later it was generalized into a Hamiltonian cycle problem. 

Warnsdorff proposed to select the moves with the fewest number of outgoing edges. In other 

words, the vertex has to be selected such that it has a minimum degree. In the case of ties, an 

arbitrary choice can be made. This rule, though simple, proved to be highly successful in 

detecting knight tours.  This is a general rule which can be applied to chess boards of any 

sizes.  There were failures in detecting cycles in the cases when ties were broken at random.  

Pohl (Pohl, 1967) in 1967 enhanced the Warnsdorff rules. Experiments conducted by Pohl 

based on the raw Warnsdorff rule failed on many cases due to the wrong first move and tie 

breaking rules. Hence Pohl came up with the following rule for breaking ties. “For each tie 

move, sum the number of moves available to it at the next level and pick the one yielding a 

minimum”. Pohl generalized the first move selection rule and tie breaking rule which can be 

summarized as follows. The vertex with highest degree has to be selected for the first move 

and in the case of ties the next level has to be examined. These rules proved to be highly 

successful and were able to find knight tours from any vertex on an 8 by 8 standard chess 

board. Further they were able to find tours on 20 by 20 and 40 by 40 boards.  

This technique of choosing higher degree neighbors first for general graphs might not yield 

good results. If an algorithm chooses always the higher degree neighbors initially then at the 

end it might end up at dead ends and it has to backtrack eventually. In fact this procedure is 

exactly converse of the DB2 algorithm that we are going to describe later in this section 

Gardner (Gardner, 1957) in 1957 claimed that all the platonic solids (also known as regular 

solids) were Hamiltonian.  
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They are solids with equivalent faces composed of congruent regular Polygons as shown in 

the Figure 2.2.  

 

Figure 2.2: Examples of Platonic Solids 

 

There were many interesting discoveries in finding Hamiltonian circuits in late 1960’s 

(Danielson, 1968) (Kamae, 1967) (Kroft, 1967) (Parthasarathy, 1964) (Rao & Murti, 1969) 

(Roberts & Flores, 1966) (Yau, 1967).  

Most of these algorithms were sequential and exhaustive.  Sequential algorithms had a 

straightforward strategy of adding vertices to a path till it reached a dead end. Then simple 

backtracking approach is applied to backtrack to a vertex where further expansion is possible 

and the procedure continues until all the vertices get added to the path. These approaches 

were exhaustive and the time complexities of these approaches were exponential. Figure 2.3 

shows a summarized version (original flowchart modified for better understandability) of a 

typical sequential search and backtracking approach by Kroft (Kroft, 1967) in finding all the 

Hamiltonian paths in a maze. 

Another notable work was from Hakimi (Hakimi, 1966), in 1966, who constructed 

deduction rules to eliminate partial paths early during the search for a circuit. Rubin (Rubin, 

1974), in 1974, came up with a search procedure which extended Hakimi’s work. He added 

more deduction rules to eliminate partial paths. In addition to this, he extended his method to 

both directed and undirected graphs. The deduction rules primarily concentrated on pruning  
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the edges and selecting the best possible path from the given possible paths of expansion. 

 

 

 

Figure 2.3: Illustration of sequential backtracking approach 
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In 1976, Pósa (Pósa, 1976) put forth a heuristic based on rotational transformation. This 

heuristic served as a milestone and a forerunner of many leading heuristics. Note that Euler’s 

discovery in 1759 (Euler, 1759) also included rotational transformations while finding 

knight-tours in chess boards. Pósa doesn’t present any implementation of his approach in his 

paper. Hence there are various implementations for this heuristic. His heuristic goes like this. 

Let G be a graph. An arbitrary starting point is chosen. From that starting vertex, vertices are 

added till we reach a dead end. Let the path thus formed be U(x1, x2,……,xk). If G contains an 

edge x1xj (1<j<k) then G should contain a path U`(xj-1, xj-2,…..x1, xj, xj+1,….,xk).  Note that 

both these path have a common end point xk. Hence Pósa’s heuristic transforms (or rotates) 

the path. He terms it as an allowable transformation from U�U`. Care should be taken that 

only one end point can be changed and not both at the same time. In his version no 

backtracking is ever done. Many implementations of this heuristic do have backtracking 

along with the rotational transformation. Figure 2.4 – 2.6 illustrates a simple rotational 

transformation. Figure 2.4 shows the input graph G. 

 

 

Figure 2.4: Illustration of Pósa’s heuristic – input graph G 

 

 

Figure 2.5: Illustration of Pósa’s heuristic – initial path 
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Let the start vertex be 1 and Figure 2.5 shows a path 1-2-3-4-5-6 in the graph with sequential 

addition of vertices to 1.At this juncture, there is no further possible ways to expand the path 

to include the vertex 7. Hence Pósa’s heuristic looks for possible rotational transformation.  

Here in this graph, we have an edge from 1 to 6. Fixing one end point as 1, a rotational 

transformation can be performed. Refer to Figure 2.6. 

    

 

Figure 2.6: Illustration of Pósa’s heuristic – path rotated 

 

Now the vertex 7 can be added easily to the path. Algorithm for Pósa’s approach is given in 

Figure 2.7. 

The probabilistic approach by Angulin and Valiant (Angluin & Valiant, 1977), in 1977, is an 

interesting initiative in this area.  The paper introduces two algorithms UHC (for undirected 

graphs) and DHC (for directed graphs).  Though experimental results are not presented, the 

paper claims and proves that the algorithms (UHC and DHC) almost certainly find 

Hamiltonian circuits in random graphs having at least cn logn edges in O(n (log n)
2
).   

The UHC/DHC algorithm chooses an arbitrary vertex to start with. From the initial vertex it 

constructs a path similar to that of Pósa’s heuristic. The core difference here is that the edges 

are deleted from the graph as they are being traversed. This is done to ensure that those edges 

are already part of the cycle and they should never be chosen again. The DHC algorithm has 

two important modes for directional rotational transformation (Note that rotational 

transformations for undirected and directed graphs are not the same).  
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Input: Graph G 

Output: Success/Failure 

PósaSearch(G) 

1. Select an arbitrary vertex s and let it be starting vertex of path P.  

2. P←s 

3. endpoint of P=s 

4. While (|P| ≤ n(G)) do 

5.          Select a neighbor, x, of the current endpoint at random such that x is not in P  

6.          If a neighbor x could be found then append x to the path P and endpoint of P is x 

7.          else do rotation if possible 

8.                  Select a neighbor of the current endpoint, w, such that w is in P 

9.                  If such a w could be found then do rotation at w 

10.                  else return failure. 

11.   End while 

12. If |P| = n(G) then if the end points of P are connected by an edge then return success  

13. else return failure 

 

 

Figure 2.7: Pósa’s Algorithm 

 

Let the partial path be P. Let x be the current end point in P. DHC-1 (transformation 1) has to 

occur if the following conditions are met. The new vertex, v, visited (from the current end 

point x) is already in P and if there are at least n/2 nodes in P inclusive of v and x. If u is the 

predecessor of v in P then the edge uv is deleted from P.  The edge xv is added. Hence the 

endpoint of the path now is u and the initial path P gets transformed into a path P` and a 

cycle C. 

The DHC-2 (transformation 2) is the inverse of the DHC-1. It converts a cycle and a path to a 

new path.  This occurs when the following conditions are met. If the new vertex v 

(predecessor u in cycle) to be visited (by extension of path) is in the cycle then connect the 

path (current end point e) and the cycle by adding an edge xv and delete the edge uv to 

transform into a new path p’. 
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The Figure 2.8 and Figure 2.9 shows DHC-1 and DHC-2 transformations. The authors of this 

paper have concluded with the statement “It is likely that the particular algorithms we give 

can be made more efficient in practice by various “heuristic” modifications. (For example, 

some preliminary experiments suggest that it might be better not to delete edges as they are 

explored.)”.  

 

 

 

Figure 2.8: DHC-1 transformation 
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Figure 2.9: DHC-2 transformation 

 

Interested readers can refer to the paper for the detailed algorithm and proofs regarding the 

run times. 

Bollabas, Fenner and Frieze (Bollabas, Frieze, & Fenner, An algorithm for finding Hamilton 

paths and cycles in random graphs, 1987) in 1987 put forth their Ham algorithm for finding 

Hamiltonian circuits in undirected random graphs. Rather different from previous algorithms, 

Ham algorithm uses cycle extension technique.  Two arbitrary vertices w1 and w2 from the bi-

connected graph G are chosen such that w1 w2 ε E(G). Let the path P contain the two vertices. 

The path extension is done from both the vertices w1 and w2 (such that all the vertices are 

added between them). If the new vertex to be added is not on the current path, the path gets 

extended. If the new vertex to be added is already in the path then immediately a cycle 

extension is done. Cycle extension is nothing but a rotational transformation. Let cycle C be 

the path P + w1 w2. Let u be the first vertex (with neighbors u1 and u2 in the path; u1<u2) 

along the path P such that it contains a lowest numbered neighbor v that is not in C. Then 

cycle extension is done by adding the edge uv to the cycle C and deleting the edge uu1 from 

the cycle.  Later many heuristics used this idea of cycle extension. This algorithm is 

deterministic and doesn’t make randomized choices like the previous algorithms. Frieze 

(Frieze, 1987) came up with a sparse HAM algorithm in 1987.  
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With his algorithm he proved that with a high probability (whp) his algorithm can find cycles 

in two classes of random graphs with constant average degree.  It had minor variations from 

HAM algorithm, like using a depth first search for backtracking instead of breadth first and 

extending the path from only one end and not from both the ends. Other notable extensions 

of HAM algorithm are Hide HAM (Broder, Frieze, & Shamir, 1991) and Linear HAM 

(Thomason, 1989) 

Then in 1988, Brunacci (Brunacci, 1988) came up with his DB2 algorithm for undirected 

graphs. We review this algorithm here in this survey as this is an entirely new approach 

rather than doing mere path extensions. DB2 algorithm uses a priority list of vertices where it 

prioritizes the vertices based on their degree. The degree two vertices get the top most 

priority. Then the priority list is filled by the edges which have degree greater than two in the 

increasing order.  The basic idea here is to use the lower degree edges first and then use 

higher degree at the last so as to have many options at the end for exploring rather than 

encountering dead ends. The algorithm starts simultaneously from every point and adds 

vertices to the path. In cases of vertex having multiple neighbors, choose a vertex with lower 

degree based on the edge priority list.  When the degree two vertices are “incompatible” (this 

term is used to indicate a situation of any two (or more) of the degree two vertices going to 

the same vertex) then Hamilton cycle cannot exist in the graph. The algorithm quits right 

here. If this isn’t the case, the DB2 procedure adds edges, till all vertices get included and all 

the components remain connected.  The Figure 2.10 and Figure 2.11 show how the DB2 

algorithm will work. (This figure is same as the figure available in the Brunacci’s paper). 
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Figure 2.10: DB2 Algorithm: Simultaneous Construction of cycles and paths 

 

 

Figure 2.11: DB2 Algorithm: Merging of cycles and paths 

 

In 1998, Vandegriend (Vandegriend, 1998) in his research work presents a detailed survey of 

various algorithms for finding Hamiltonian circuits. Vandegriend tries to categorize all the 

methods based on various strategies like backtracking, pruning (much work has been done on 

pruning), vertex selection.  

The research work tries to combine all the strategies and apply it efficiently for the random 

graphs, knight tour graphs, cross road graphs, degree bound graphs, geometric graphs etc. 

Alexander Hertel (Hertel, 2004) in 2004, has come up with a heuristic for detecting 

Hamiltonian cycles in sparse random graphs. All the work which we have reviewed so far 

concentrated on extending the paths, rotating the paths, extending the cycles etc. In this work, 
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 Hertel’s Hamiltonian cycle program calls another subroutine, “probability mill”, which 

basically prunes edges until a circuit is detected.  The program considers edge pruning to be 

the most important activity and prunes the edges initially at random (if there are no available 

edges that can be pruned) then it goes into a deterministic mode of pruning.  

A forced edge is an edge which has to be in the Hamiltonian circuit. For example, for a 

degree two vertex both the edges are forced. The pruning rules are as follows 

1. Odd forced cut is a cut across odd number of edges. There cannot be odd number of       

forced cuts in a graph. 

2. No Hamiltonian graph contains a hub. Hub here is a vertex with more than two forced 

edges. 

3. Forced edges incident on the two vertices of a 2-vertex cut is termed as barricade and 

no Hamiltonian graph can have a barricade. 

4. If a graph turns out to be non Hamiltonian after deleting an edge that edge can be 

safely forced. Similarly if a graph becomes non Hamiltonian after forcing an edge 

that edge can be safely pruned. 

5. Both edges across any 2-edge cut can be safely forced. 

6. If a vertex has 2 forced edges, all the rest of its edges can be safely pruned. 

7. If a graph contains an un-forced edge between two vertices of a two-vertex cut then 

that edge can be safely pruned. 

8. If a graph contains a chain (a path which has all its internal edges forced) which has 

unforced edges between its two heads then the edge can be safely pruned. 

 

All of these rules govern the heuristic run time. Hertel doesn’t claim that his heuristic is the 

fastest but the practical experiments show that it is one of the better heuristics in terms of 

detecting cycles in random graphs. 

Shields (Shields, 2004) in 2004, in his doctoral thesis put forth an algorithm which is an 

improvement over the Pósa’s path rotation heuristic. The research work highlights the cases  
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where the Pósa’s search would run indefinitely. The research work suggests a fine refinement 

over the technique which will make the search to terminate successfully in many cases. The 

basic idea here is to evaluate the end points before performing the sequence of rotations. 

After evaluation, the most promising candidate is chosen and sequence of rotations are 

performed and the path is extended. If no such sequence exists the heuristic terminates.  

Let P be a partial path and let end(p) be the endpoint in the partial path. The heuristic tries to 

construct a tree at the end point and determine the possibilities of rotation. Initially the end(p) 

is added to a first in first out queue and all of its neighbors are examined. Let u be end(p). If v 

is a neighbor of u and if v is on P, then the heuristic determines the endpoint w that would 

result after the rotation of P at v. If w has not been visited then w is marked visited and added 

to the tree as well as the queue meaning that it would no longer be a vertex which is 

unreachable. If v is not on P then the heuristic has succeeded and the search terminates there 

by performing the rotation at the endpoint u to get a new path R.   

To solve cubic Cayley graphs efficiently, Shields used the HAM’s cycle extension algorithm 

(described earlier in this section) and its variants. Shields algorithm was successful in finding 

cycles in some of the Cayley graphs in which no algorithm found a cycle before.  The 

algorithm was fine tuned to run against graphs with millions of vertices.  

 

2.4.  Conclusion 

 

 

In this chapter we began by reviewing some fundamental theorems on Hamiltonian cycles. 

We discussed few of the popular algorithms and heuristics which primarily focused on 

techniques like path rotation, backtracking, cycle extensions and edge pruning. Interested 

readers can refer to the references for more detailed procedures and running times of the 

algorithms presented.  
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Most of the algorithms which were presented were specific to certain classes of graphs 

(mostly random and regular graphs). There is hardly any experimental evidence that a single 

algorithm could work for all classes or most of the classes of graphs. There are still numerous 

algorithms and heuristics that exist which are mostly the variants of the algorithms presented 

here. On a different note there are number of parallel algorithms for finding Hamiltonian 

circuits in graphs. There are procedures related with artificial intelligence concepts for 

finding circuits. 
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3. Heuristic Design 
 

 

This chapter gives the reader the basic idea behind our heuristic with many examples. Further 

this chapter is divided into various sections such that each section will be an enhancement to 

the previous section. Under each section we list out the issues that we faced while testing and 

our proposed solutions to it.  

 

3.1.  Basic Heuristic 

 

Recall that a Hamiltonian cycle is a cycle that starts at a certain vertex and gets back to the 

initial vertex after visiting all the vertices with the condition that no vertex is visited more 

than once. We see the resultant large cycle as a union of smaller cycles. We initially try to 

form a small cycle and incrementally enlarge the cycle by adding smaller cycles to it.  

The first step in the heuristic is to form the initial cycle. An arbitrary vertex s of the graph is 

chosen as the starting vertex. Two neighbors of s, call them x and y, are then selected. Having 

three vertices in hand, now a shortest path is found from vertex x to vertex y and the initial 

cycle is completed by extending the path towards the starting vertex s at both the ends. Let’s 

call the cycle thus formed as C. This cycle C has to be expanded until we include all the 

vertices.  

The core idea here is that the heuristic selects two adjacent vertices in the cycle and finds a 

shortest path between them.  We call a vertex open if it is already part of C and if it has 

neighbors which are not part of C. The cycle expansion function starts at vertex s. It finds 

two adjacent open vertices in C (call them v and w).  The cycle expansion function then finds 

a shortest path between v and w and grafts it to the cycle. Let’s consider the sample graph in  
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Figure 3.1. The starting vertex s is vertex 1 in our sample. 

 

 

Figure 3.1: Basic heuristic demonstration sample 

 

The initial cycle C is 1-2-3-4-23-27-31-1. The vertices 1 and 4 fall into the category of closed 

vertices as they don’t have any neighbors that are outside C.  All the vertices which are not 

closed are open. The cycle expansion function starts with the first set of adjacent open 

vertices from starting vertex s (in our case it is vertex 1). The heuristic selects vertices 2 and 

3 as first set of open vertices and finds a shortest path which expands the cycle as shown in 

Figure 3.2.  Now the vertices 2 and 3 can be closed. This process of selecting first set of 

adjacent open vertices start from the starting vertex s for each cycle expansion step.   

 

 

Figure 3.2: Basic heuristic cycle expansion demonstration sample 
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As discussed in the previous example, the cycle expansion function then scans for two 

adjacent open vertices from the starting vertex s and tries to expand the cycle through their 

neighbors.  If the function ends up in not finding a path then the second open neighbor can be 

considered. If there are no open neighbors left then the function skips this vertex and goes to 

the next vertex for a possible expansion.  This function continues till all the vertices are 

included in the cycle.  Refer to Table 3.1 for all the above mentioned rules. On failure, the 

whole heuristic is repeated from the next starting vertex (here in our case it is another 

arbitrary choice).  

 

Table 3.1:  Expanding the cycle 

 

Let C be s – v – w – x – y – z – s.  In selecting two adjacent open vertices there are 3 

possibilities 

1. s and  v are open. Then expand the cycle by finding a shortest path between them 

2. s is closed but v is open. Move ahead and select v and w and repeat the same process 

3. s is open but v is closed. Move and choose w and x and repeat the same process. 

 

 

 

1

4

2

8 7

5 6

3
 

Figure 3.3: Basic heuristic sample 
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The heuristic can be well explained with another example. Let’s consider the sample graph 

Figure 3.3.  

Consider the starting vertex s to be 1. Assume that the two neighbors x and y to be 5 and 4, 

respectively.  A shortest path is computed from vertex 5 to vertex 4 and the cycle is 

completed by extending the path towards vertex 1 at both ends. Refer to the Figure 3.4. Cycle 

C becomes 1-5-8-4-1. Now the cycle expansion function has to be called, as all the vertices 

of the graph aren’t part of the cycle C. Scan from the starting vertex s. As vertex 1 has a 

neighbor 2, which is not part of the cycle, vertex 1 is still considered to be open. On similar 

lines the next adjacent vertex 5 in the cycle is also open. As we have two adjacent open 

vertices there is a possibility of expanding the cycle. Consider an arbitrary neighbor of vertex 

1 and arbitrary neighbor of vertex 5 which are not part of the cycle. Fortunately both the 

vertices 1 and 5 have only one neighbor open. So now vertex 2 becomes the new x and vertex 

6 becomes the new y.  A shortest path between x and y is found and the cycle is expanded as 

shown in Figures 3.5 (a) and 3.5 (b). 

 

 

Figure 3.4: Basic Heuristic sample with initial cycle 

 

Now the cycle C gets updated to 1-2-6-5-8-4-1. After each cycle expansion step, all the open 

vertices are checked to see whether they can be marked closed. In our graph, Vertices 1 and 5 

can be closed.  
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Again as the length of the cycle is not equal to number of vertices in the graph, scan for 

adjacent open vertices from starting vertex. As the vertex 1 is closed, skip to the next pair of 

adjacent open vertices. In our case they are vertices 2 and 6. Here the vertices 3 and 7 can be 

marked as x and y as they are the only open neighbors of the vertices 2 and 6. 

 

 

 

(a) x and y are marked   (b) Cycle expansion and path 1-5 removed  

Figure 3.5: Basic heuristic sample after first cycle expansion 

 

Here the vertices 3 and 7 can be marked as x and y as they are the only open neighbors of the 

vertices 2 and 6. Upon finding a path from x to y and expanding the cycle we get the resultant 

expanded cycle as 1-2-3-7-6-5-8-4-1 as shown in Figure 3.6 Now the length of the cycle is 

same as the number of vertices and the heuristic has detected a Hamiltonian cycle. 
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Figure 3.6: Basic heuristic sample after second cycle expansion 

 

The pseudo code of the above described heuristic is given in Figures. 3.7 – 3.9.  

 

Input: Input Graph G 

Output: Success and print resultant Hamiltonian cycle or failure 

 
HamiltonianSearch (G) 

1  check whether the given graph is bi-connected 

2  for each vertex s ε G 

3 do C← StartCycle(s,G) //start cycle returns a cycle C 

4      if |C| == |n| 

5            then return success and print cycle 

6               else if |C|>1 

7   then C ← CycleExpansion(C,G) // expanded cycle gets returned 

8     if |C|==|n| 

9    then return success and print cycle 

10  return Failure as heuristic is not able to detect Hamiltonian cycle. 

 

Figure 3.7: Hamiltonian Search function pseudo code 
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Input: Starting vertex s and input graph G 

Output: Cycle C or 0 

 
StartCycle (s, G) 

1 for each neighbor x ε s 

2 do for each neighbor y ε s and y>x 

3  do path ← BFS (x, y, G) //returns the shortest path from x to y 

4        if |path| > 1  //if the length of the path is greater than 1  

5   then   C ← FormInitialCycle(s,path) //Cycle C gets returned 

6             return C 

7  return 0; //No Cycle could be formed 

 

Figure 3.8: Start Cycle function pseudo code 

 

 

Input: Cycle C and Input Graph G 

Output: Expanded Cycle C 

 

CycleExpansion(C,G) 

1 while C is not a Hamiltonian cycle do 

2          do let v,w be the first edge in C such that neither vertex v nor vertex w is closed 

3       for each neighbor x ε v and x not in C 

4  do for each neighbor y ε w and y not in C 

5   do  path ← BFS (x,y,G) 

6         if  |path| > 1  

7    then expand the cycle by inserting the path from x to y 

8                                                      break and return the expanded cycle 

9 return C //no possibility of expanding the cycle. Hence return the cycle  

 

Figure 3.9: Cycle Expansion function pseudo code 
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Encountered Issues 

 

The heuristic was performing well on random graphs, though the heuristic had to be restarted 

with different random seeds. There were some random choices made in choosing the start 

vertex and later sections of this chapter will cover them in great detail. We faced issues when 

we tried to run the heuristic against the symmetric graphs. Recall that a symmetric graph is a 

graph which is both edge transitive and vertex transitive. Refer to the chapter 2 section 2.1 

for detailed definitions of edge transitivity and vertex transitivity. 

Consider the graph in Figure 3.10. Let’s see how the heuristic works here in this example. 

Consider the heuristic starts with vertex 2 as its starting vertex. Vertex 3 and 1 are its 

neighbors. The shortest path from vertex 1 to vertex 3 leaves us with the initial cycle 2-3-11-

10-9-1-2 as shown in Figure 3.11. 

 

 

Figure 3.10: Symmetric graph example 
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Figure 3.11: Symmetric graph example with initial cycle 

 

Expanding the initial cycle through the open vertices 2 and 3, leaves us with the cycle 2-12-

13-5-4-3-11-10-9-1-2 and further expanding on the vertices 13 and 5 yields the cycle 2-12-

13-14-15-7-6-5-4-3-11-10-9-1-2. The cycle in the graph looks like in Figure 3.12. 

 

 

Figure 3.12: Symmetric graph example with final cycle 

As you notice, the vertices 16 and 8 are not included. Though there are adjacent open vertices 

15 and 7 in the cycle, further expansion is not possible without including the vertices that are 
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 already present in the cycle. Hence we encounter a situation where the heuristic has failed in 

detecting a Hamiltonian cycle. Even if the heuristic had chosen a different starting vertex and 

neighbors for the initial cycle, the result would have been the same. The heuristic fails to find 

a Hamiltonian cycle in this case, though many cycles exist.  One such cycle is 1-2-3-4-5-6-7-

8-9-10-11-12-13-14-15-16-1. 

 

Proposed Solutions 

 

In order to overcome the symmetric graph issue, we came up with the solution of breaking 

the graph’s symmetry. One of ways to break the graph’s symmetry is edge pruning.  Our 

main intuition here is that when we happen to delete an edge we break the symmetry and that 

helps us the heuristic to visit the vertices which it could not visit before.  Our proposed 

solution worked pretty well and the next section 3.2 deals with this enhancement in more 

detail. 

 

3.2. Edge Pruning 

 

Consider the example in the Figure 3.10 (reproduced as Figure 3.13 (a) in this section). 

Choosing which edge to be pruned in entirely random. Figure 3.13(b) shows the same graph 

with edge from vertex 1 to 9 pruned.  By removing this edge we break the symmetry of the 

graph and it aids in finding the Hamiltonian cycle easily. 
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(a) Original symmetric graph   (b) Edge pruned graph 

Figure 3.13: Symmetric graph example with edge pruned 

 

As in the previous section, let the heuristic start with vertex 2 and vertices 3 and 1 are its 

selected neighbors. The initial cycle looks 2-3-4-5-6-16-1-2 looks like in Figure 3.14. 

Now vertex 2 has an open neighbor 12 and vertex 3 has an open neighbor 11 which expands 

the initial cycle to 2-12-11-3-4-5-6-16-1-2. As the vertex 2 is closed, we move on to next set 

of adjacent open vertices. Vertices 12 and 11 have vertices 13 and 10 respectively.  Further 

expanding the cycle through those vertices leaves us with a cycle 2-12-13-14-8-9-10-11-3-4-

5-6-16-1-2 as shown in Figure 3.15.  
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Figure 3.14: Edge pruned graph with initial cycle 

 

 

Figure 3.15: Edge pruned graph with expanded cycle 

 

Now vertices 14 and 18 are adjacent open vertices with neighbors 15 and 7 open. Hence the 

heuristic finds the cycle by expanding through those vertices. The final cycle is 2-12-13-14-

15-7-8-9-10-11-3-4-5-6-16-1-2 and it looks like in Figure 3.16.  
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Figure 3.16: Edge pruned graph and the detected Hamiltonian cycle 

 

If the heuristic ends up in an unsuccessful attempt then it prunes an additional edge in the 

graph and same procedure of attempting to find a Hamiltonian cycle continues. The heuristic 

further takes care that the graph remains bi-connected even after pruning the edge. This edge 

pruning continues until the graph loses its bi-connectivity and no further edge could be 

pruned.  The pseudo code of edge pruning procedure is given in the Figure 3.17. The 

modified version of the “HamiltonianSearch” function is given in Figure 3.18 

 

Input: Input Graph G 

Output: Edge pruned graph G′ 
 

TrialsWithEdgePruning(G) 

1  while G is bi-connected   

2          Make a working copy of graph G and select an edge e to be pruned 

3          G′ ← G - e 

4          if  bi-connectivity (G′) = success    

5                return G′  //with this graph as input, Hamiltonian Search  function  continues    

 

Figure 3.17: Edge pruning function pseudo code 
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Input: Input Graph G 

Output: Success and print resultant Hamiltonian cycle or failure 

 
HamiltonianSearch (G)  

1  check whether the given graph is bi-connected and make a copy of G  

2  Let s be an arbitrary starting vertex  

3  While G is not Hamiltonian 

4            do C← StartCycle(s,G) //start cycle returns a cycle C 

5            if |C| == |n|  

6                     then return success and print cycle 

7            else if |C|>1 

8                     then C ← CycleExpansion(C,G) // expanded cycle gets returned 

9            if |C|==|n| 

10                   then return success and print cycle 

11          else 

12                   if (TrialsWithEdgePruning(G) == success) 

13                            then continue with the new edge pruned graph 

14                  else 

15                            restore the original graph and start with a new attempt                  

 

Figure 3.18: Hamiltonian Search function pseudo code with call to prune edges 

 

Decisions on Edge Pruning  

The heuristic makes couple of major decisions (arbitrarily) which contributes much towards 

the success rate of finding a Hamiltonian cycle.  First and foremost decision is the starting 

vertex and next critical decision is the selection of an edge that has to be pruned.  As we 

don’t determine which edge is better to prune and which starting vertex to use in many cases, 

we do let the heuristic to arbitrarily make a choice. 

Different starting vertices 

In our symmetric graph example in the previous section, heuristic did start from vertex 2. 

Assume that it had started from the vertex 12. With 12 as the starting vertex and 13 and 11 as 

the neighbors heuristic ends up with a cycle 12-2-1-16-6-7-15-14-13-5-4-3-11-12 as shown  
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in Figure 3.19 (b). This cycle is not Hamiltonian and the remaining vertices with open 

neighbors, 7 and 11, are not adjacent in the cycle. 

 

 

(a) Original graph     (b) unsuccessful attempt 

Figure 3.19: Symmetric graph with starting vertex as 12 

 

Pruning different edges 

In our symmetric graph example in the previous section, heuristic did prune the edge from  

 

(a) Original graph     (b) unsuccessful attempt 

Figure 3.20: Symmetric graph with a different edge pruned 
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vertex 1 to vertex 9. If that wasn’t the case, assume our heuristic did prune the edge from 

vertex 16 to vertex 6. The graph looks like in Figure 3.20(a).Consider that the heuristic 

started with the vertex 2 as in Figure 3.14. The heuristic ends up with the cycle 2-12-13-14-

15-7-6-5-4-3-11-10-9-1-2 as shown in Figure 3.20 (b). Though the heuristic pruned the edge 

and broke the symmetry of the graph, it wasn’t successful in detecting the Hamiltonian cycle. 

This cycle is not Hamiltonian and the remaining vertices with open neighbors, 8 and 16, are 

not adjacent in the cycle. 

. 

 

Figure 3.21: Graph to demonstrate isolated vertices 

 

Encountered Issues 

 

The edge pruning proved to be very successful among various instances of symmetric graphs. 

As discussed in previous sections, edge selection for pruning and starting vertex becomes 

more critical. The edges in the shortest path become very significant, as the whole heuristic 

depends on the adjacent open vertices. 

Figure 3.21 shows a small part of a bigger graph. Assume that there is a path from vertex 1 to 

vertex 3 as shown by the hand-drawn line. The vertex 24 is a degree-two vertex as shown in  
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the Figure 3.21. 

Now if the shortest path goes along the path “- 21-22-23 –“, then the vertex 24 will never get 

included; it is an isolated vertex with respect to the cycle. Usually such scenarios happen 

with edge pruning. The heuristic may convert a vertex into a degree two vertex in course of 

pruning the edges in the graph. The underlying problem is that both edges incident on vertex 

24 must be included in every Hamiltonian cycle, a fact not considered by the heuristic. 

 

Proposed Solutions 

 

To overcome such issues of isolated vertices, we introduce the concept of forced edges. A 

forced edge is any edge that must be included in every Hamiltonian cycle. Note that there can 

be only two forced edges for a vertex. The reason behind this is that there can be only two 

edges for any vertex in the cycle. One is the incoming edge and the other is the outgoing 

edge. In Figure 3.21 vertex 24 will have couple of forced edges. Vertex 21 and vertex 23 will 

have one forced edge (to vertex 24). In all future figures we indicate forced edges by crossed 

lines across the edges.  The most critical operation is the propagation of forced edges in the 

graph and next section deals with them in detail. 

 

3.3. Forced Edges and Propagation of Forced Edges 

 

Consider the symmetric graph in Figure 3.20(a) (reproduced in this section as Figure 

3.22(a)). The heuristic didn’t successfully detect a Hamiltonian cycle with the starting vertex 

as 2. Let us see how the concept of forced edges makes it easier for the heuristic to detect the 

cycle in the same graph with the same starting vertex. Before moving into the example, one 

other important feature how distance in the shortest paths is handled in the presence of forced  
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edges. On encountering a forced edge, we traverse through the forced edges until we end up 

in a vertex which doesn’t have any more outgoing forced edges and the distance from the 

initial vertex to this destination vertex is considered to be one. 

 

 

(a) Original graph      (b) initial cycle 

Figure 3.22: Graph with forced edges 

 

With 2 as starting vertex and vertices 3 and 1 as its neighbors, in order, the heuristic finds an 

initial cycle 2-3-11-12-13-14-15-16-1-2 as shown in Figure 3.22(b). The forced edges are 

indicated with crossed lines across them. On starting from vertex 1, the heuristic follows the 

path of forced edges through vertices 16 and 15 and the distance from vertex 1 to vertex 15 is 

considered to be one or it can be assumed that one hop is necessary to reach from vertex 1 to 

vertex 15. 

With vertex 3 and 11 as the adjacent open vertices, cycle expands to 2-3-4-10-11-12-13-14-

15-16-1-2 as shown in Figure 3.23(a). Further expansion with vertices 4 and 10, leads us to a 

successful detection of Hamiltonian cycle 2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-1-2 as 

shown in Figure 3.23(b). Here, again, on reaching the vertex 5 the path from 5-6-7 is forced 

and the distance is considered to be one. 
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For a graph G, heuristic scans G and classifies the edges as forced and not forced. If there are 

forced edges then the forced edges have to be propagated through the graph so that 

appropriate path selections happen while finding shortest paths in G.  
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(a) With expanded cycle   (b) Successful attempt 

Figure 3.23: Successful detection of Hamiltonian cycle on graph with forced edges 

 

Consider the graph in Figure 3.24(a). Initially the graph G is scanned for forced edges. It tries 

to find a Hamiltonian cycle without the benefit of having forced edges identified. Figure 

3.24(b) shows an attempt made by the heuristic on the base graph G with 6 as starting vertex. 

The heuristic makes a single attempt in finding the cycle on the base graph with an arbitrary 

starting vertex. If it fails, edge pruning function gets called and an arbitrary edge gets 

removed. Assuming that the edge from vertex 7 to 12 gets removed the graph with forced 

edges looks like as shown in Figure 3.25. The edges 13-12, 12-11, 7-8 and 6-7 are forced. 
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(a) Input Graph    (b) Unsuccessful attempt 

Figure 3.24: Failure of heuristic on a graph with start vertex as 6 

 

 

Figure 3.25: Graph with marked forced edges. 
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Figure 3.26: Heuristic’s attempt with start vertex as 4 

 

 

Now consider that the heuristic starts with vertex 4 and vertices 5 and 15 are its selected 

neighbors.  Heuristic’s attempt on the graph can be seen in Figure 3.26. Again the heuristic 

fails. Hence further pruning happens and let’s consider now the edge 14 to 9 gets removed.   

Graph with marked forced edges looks like in Figure 3.27(a). Now propagate forced edges 

function has to be called which makes the graph look like in Figure 3.27(b). As there are two 

forced edges for the vertex 13 in Figure 3.27(a) the edge from vertex 13 to vertex 2 can be 

safely pruned. This makes couple of more edges (edge from vertex 2 to 3 and edge from 

vertex 2 to 1) to become forced. 
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(a) Edge 14 to 9 removed   (b) After propagating forced edges 

Figure 3.27: Demonstration of propagation of forced edges 

 

Having done this, heuristic has a better chance of finding the Hamiltonian cycle. The 

resultant graph after propagating forced edges is shown in Figure 3.27(b). The heuristic’s 

attempt to find the cycle for the graph in Figure 3.27(b) is shown in Figure 3.28. Hence 

propagation of forced edges becomes very critical in large instances of graphs.  

In addition to the “edge pruning” function, the “propagate forced edges” function removes 

the additional edges and thus making the graph better for the heuristic to detect Hamiltonian 

cycles. After each edge pruning a bi-connectivity check has to be made, since a graph must 

be bi-connected to be Hamiltonian. 
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Figure 3.28: Detected Hamiltonian cycle with start vertex as 5 and 6 and 4 as neighbors 

 

The pseudo code for the functions “mark forced edges” and “propagate forced edges” can be 

seen in Figure 3.29-3.30 

 

Input: Input Graph G 

Output: ForcedEdgeList F 

 

MarkForcedEdges(G) 
1  for each x ε G and degree[x] =2 do 

2  Add both the edges to the ForcedEdgeList F 

3  PropagateForcedEdges(G,F) // propagates the edges and update F 

4  return ForcedEdgeList F 

 

Figure 3.29: Mark forced edges function pseudo code 
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Input: Input Graph G, ForcedEdgeList F 

Output: UpdatedForcedEdgeList 

 

PropagateForcedEdges(G,F) 
1  while no forced deletions do 

2     for each x ε G and have two forced edges 

3         check for extra edges and delete //forced edge deletion 

4.         if (bi-connectivity(G)= success) then 

5.                mark new forced edges and add to F 

6          else 

7                 break and return “edge deletion not possible” 

8    return F 

 

Figure 3.30: Propagate forced edges function pseudo code 

 

Encountered Issues 

 

The forced edges and propagation of the forced edges produced very good results among 

various instances of symmetric graphs. When we moved to large instances of symmetric 

graphs we faced with the issue of dense components. By dense component, we mean a 

maximal sub graph with high density. Typically a large graph can have many dense 

components.  A pictorial representation of dense component is shown in the Figure 3.31. 

There are three dense components (between vertices 1 and 2, between vertices 28 and 15 and 

between vertices 172 and 25) in the graph. There can be any number of vertices in each 

component (if symmetric, all the components will have same number of vertices). As you can 

see in the first component, between vertex 1 and 2, there are hardly three outgoing edges. 

Though the heuristic is now equipped with edge pruning and forced edge propagation 

techniques it could not detect Hamiltonian cycles in graphs which had multiple dense 

components.  
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Figure 3.31: Dense components sample 

 

Proposed Solutions 

 

The main challenge lies in analyzing the graph structure, if the heuristic fails to give the 

result. When we moved to large instances, our heuristic failed in many graphs which led to  

 

 

Figure 3.32: Dense components sample with partial cycle 

 

our discovery of dense component structures in the graph. We started analyzing the partial 

cycles which the heuristic managed to find.  To visualize it better let’s again consider the 

Figure 3.31. 
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The heuristic returned a cycle “2-83-172-….- 35-2” as in Figure 3.32 for the graph with 

structure similar to that of Figure 3.31.  The cycle had less number of vertices in comparison 

with total number of vertices of the graph.  When we analyzed, we could recognize the 

existence of symmetric components (we call them as dense components as introduced in the 

previous sections). Here in our sample in Figure 3.32 heuristic was able to break only one 

such component. Graph with many dense components is equivalent to many small symmetric 

graphs bi-connected among them. As a rule of thumb, the heuristic has to break all 

symmetric components to detect the Hamiltonian cycle.  

 

3.4. Farthest Edge Removal 

 

We came up with the farthest edge removal technique to solve the issue concerning with 

dense components. The edge pruning code takes care of breaking symmetry in graphs. In 

order to break many dense components in one graph, edge pruning code was tweaked to 

remove edges which were far from each other. The farthest edge removal technique appears 

to break almost all the dense components. The rate of finding Hamiltonian cycle is directly 

proportional to the number of the dense components, the edge pruning code breaks.  

The heuristic selects an arbitrary edge to be pruned and makes an attempt to find the 

Hamiltonian cycle. Upon failure, it selects arbitrarily multiple edges and calculates the 

distance from the edges that were pruned earlier. The edge, which is farthest from the 

previously pruned edges, is selected and pruned. This gives us a higher probability that the 

edge pruned is outside the dense component and this heuristic improvement helps to break 

many such dense components.  Often, once the symmetry gets broken the heuristic will be 

able to add all the vertices to the cycle. At each step of edge pruning as before the heuristic 

checks for the bi-connectivity in the graph. 
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The pseudo code for the farthest edge removal logic is given in the Figure 3.33 and the 

modified version of the “HamiltonianSearch” function is given in Figure 3.34. Only the lines 

which have been modified are presented here. Refer to Figure 3.18 for previous full version 

of this function and replace the line with the lines in Figure 3.34. 

 

Input: Input Graph G, List of previous pruned edges L 

Output: Modified Graph G′ 
 

FarthestEdgeRemoval(G, PrunedEdgeList L) 
1  while G is bi-connected 

2       select multiple edges e1,e2…en in G 

3.      find the distance from L to e1,e2…en in G 

4.      distance between two edges vw and xy is the minimum among d(v,x), d(w,x),  

         d(v,y) and d(w,y) 

5.      select farthest edge ei 

6.       G′ = G - ei 

7.       if ( bi-connectivity(G′)=success) 

8              break and return G′ 
9       else continue the loop 

 

Figure 3.33:  Farthest edge removal function pseudo code. 

 

Consider the graph in Figure 3.31 (reproduced as Figure 3.35(a) with more edges inside each 

dense component).  Initially the pruned edge list is empty. When the heuristic removes the 

first edge, no exclusive check is made. The edge thus pruned, is added to the pruned edge list 

and now the list contains an edge. Figure 3.35(b) shows the first edge that got pruned in the 

dense component between vertices 172 and 35. 
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// Refer to Figure 3.18 for the full version. Replace the lines number 12-15 in Figure 3.18 

//with the lines below. 

 

12   if (farthestEdgeRemoval(G) == success) 

13          then continue with the new edge pruned graph 

14   else 

15         restore the original graph and start with a new attempt    
 

 

Figure 3.34: Hamiltonian Search function pseudo code with call to farthest edge removal 

  

 

 

(a) Original graph            (b) After removing an edge 

Figure 3.35: Farthest edge removal - initial edge pruning 

 

 

The heuristic makes an attempt to detect the Hamiltonian cycle. On failure, edge pruning 

functions arbitrarily selects multiple edges in the graph. Figure 3.36 shows the edges 

selected. 
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Figure 3.36: Farthest edge removal - edge pruning selections 

 

Here we have three edges selected. The first edge is present in the dense component with 

vertices 172 and 35.  The next one is present in the component with vertices 28 and 15 and 

the last one is present in the component with vertices 1 and 2. The main idea behind choosing 

multiple edges is to find the farthest edge and thereby increase the probability of breaking the 

dense component. The edge pruning list contains an edge in the component with vertices 172 

and 35. The distance from the selected edges to the edges in the edge pruning list, are 

computed. 

 

Figure 3.37: Farthest edge removal - couple of edges pruned 

 

Let the farthest edge among the selections is the one in dense component with vertices 2 and  
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1. Now the edge gets removed and added to the edge pruning list. The edge pruning list now 

has two edges in it. Figure 3.37 shows the graph with selected edge removed. 

This edge removal technique now guarantees of having broken symmetry in couple of dense 

components. This process continues till the heuristic finds a Hamiltonian cycle. This 

enhancement of farthest edge removal led to good success among large instances of 

symmetric graphs. 

 

3.5. Versions of the Heuristic 

 

As described in the previous sections, there are three major versions of our heuristic. The 

first version of our heuristic, called basic heuristic, is devoid of edge pruning. The second 

version of our heuristic, termed edge pruning heuristic, is with edge pruning and forced edge 

propagation rules.  The third version, called farthest edge removal heuristic, is with farthest 

edge removal logic. We created two additional versions of our heuristic. The fourth version, 

of our heuristic is same as the second edge pruning version except for the fact that the 

heuristic restarts when the bi-connectivity test fails.  Heuristic runs the bi-connectivity test 

whenever an edge is pruned and forced edges are propagated.  The second version upon 

failure of the bi-connectivity test restores the edge back to the graph and prunes a different 

edge. This process continues till no further edge could be pruned and then the heuristic 

restarts with a fresh copy. In the fourth version, we start pruning the edges as we do in 

second version. Once the bi-connectivity test fails, the heuristic doesn’t try a different edge. 

It rather restarts with a fresh copy. The rationale behind this is the fact that as edges are 

chosen at random for pruning there could be a chance that the heuristic failed to prune the 

correct edge. Hence when the bi-connectivity fails, heuristic restarts with a fresh copy. 

Similar to this fourth version, the fifth version of our heuristic is with farthest edge removal 

code and restart on bi-connectivity failure. As a peer to the farthest edge removal heuristic,  
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the fifth version differs from the third version from the fact that it restarts in bi-connectivity 

failure. 

 

3.6. Time Complexity 

 

On having discussed various techniques, it becomes very critical to discuss the time 

complexity of the heuristic.  This heuristic requires the input graph in the memory for 

efficient processing of edge pruning and forced edge propagation enhancements. 

 

Breadth first search (BFS) is the most critical operation in our heuristic. BFS takes O(m) 

where m is number of edges. Basic algorithm calls the BFS at most n times in the worst case  

when each call to BFS expands the cycle by a vertex. This basic algorithm with calls to BFS 

at O(mn) dominates all the other functions like forced edge selections, farthest edge removal 

and bi-connectivity tests (since each of these is O(m) and done only one per run of the basic 

algorithm). Hence per trial we have an O(mn) algorithm, but given that the input graphs are 

sparse, this is O(n
2
) for Cayley and knight tour graphs and O(n

2
 log n) for the random and 

geometric graphs. The number of trials that we make depends on number of edges we prune 

and re-run the basic algorithm. An arbitrary choice of removing at most n/4 edges worked 

well for our heuristic.  

 

Hence the time complexity O(n
3
) for Cayley and O(n

3
 log n) for random and geometric 

graphs. Though the worst case time complexity is O(n
3
) and O(n

3
 log n), our experiments 

suggest that it is close to O(n
2
). 
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3.7. Conclusion 

 

In this chapter we proposed a base algorithm for detecting Hamiltonian cycle. This chapter 

discussed the issues around the base algorithm in detail and the necessity of edge pruning to 

break symmetry in symmetric graphs. Later this chapter introduced the notion of forced 

edges and propagation of forced edges to gain success in various instances of symmetric 

graphs. Then we dealt with a potential problem of dense components in larger instances of 

symmetric graphs. Finally we introduced the notion of farthest edge removal and the 

intelligent edge pruning (though edges were selected arbitrarily) technique to break the dense 

components.  This step by step evolution of the base algorithm made our life easier as we 

progressed from smaller instances of symmetric graphs to larger instances. 
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4. Classes of Graphs 

 

This chapter deals with the various classes of graphs which were considered for our 

experiments to evaluate the performance of our heuristic.  The chapter is divided into 4 major 

sections covering cubic Cayley graphs, random graphs, knight tour and geometric graphs. 

Each section begins with a brief overview regarding the class of the graph, method of 

generation and its important properties regarding Hamiltonicity. 

4.1. Cubic Cayley graphs 

Cubic graphs are the graphs with all of its vertices having a degree of exactly 3. They are 

also called trivalent graphs or 3-regular graphs. Although it is one of the simplest classes of 

graphs, many graph theoretic problems remain NP-hard for the special case of cubic graphs. 

Cubic graphs were first studied in late 1800’s and interested readers can refer to work by 

Greenlaw and Petreschi (Greenlaw & Petreschi, 1995) to know about the history and 

important properties that hold on cubic graphs.  Refer to work by Robinson and Wormald 

(Robinson & Wormald, 1992) who have proved that almost all (as n tends to ∞) cubic graphs 

are Hamiltonian. 

Symmetric graphs are those graphs which are both vertex transitive and edge transitive. Refer 

to Section 2.1 for basic definitions regarding transitivity. A cubic symmetric graph is often 

referred to as a symmetric cube. Symmetric cubes were first studied by Foster in 1932 

(Foster, 1932). Since all cubic graphs must have even number of vertices, cubic symmetric 

graphs also have the same property.  

Cayley graphs are named after Arthur Cayley, who discovered them. He was also the first 

person to formally define the notion of groups in abstract algebra. Cayley graphs are often 

used as a model for developing interconnection networks. They were motivated by a theorem 

of Arthur Cayley. Every group G is isomorphic to a subgroup of the symmetric group on G. 

Readers can refer to the text  (Malik, Mordeson, & Sen, 1997) for the fundamentals in  
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abstract algebra. 

Definition 

A symmetric group Sn of degree n is the group of all permutations on n symbols. Hence Sn is 

a permutation group on n!, elements. 

Let A be a finite group, and let S be a non-empty, finite subset of A such that S doesn’t 

contain the identity element. Assume S to be symmetric, i.e., S = S
-1

.Then Cayley graph the 

A(G, S) is the graph with the vertex set V ε G and edge set E = {{x,y} : x,y in G, there exist s 

in S with y = xs}. Here the set S is called the generating set. 

Let’s see an example of how Cayley graphs are generated. Cayley graphs are generated by a 

set of generator permutations.  By mutually permuting the elements (permutations are done 

until no new elements can be formed) we get a closed set S.  Suppose S, a subset of S4, 

consists of generator permutations g1=1243; g2 = 1432; g3=1324.  As there are 4 elements in 

each set, the maximum possible distinct elements can be 24 (4!).  

 Generator permutations are applied to get a closed set S.  For example, possible 

permutations of 1243 are as follows. 

g1 applied to 1243 yields 1234  

g2 applied to 1243 yields 1342  

g3 applied to 1243 yields 1423 

Similarly by applying all permutations for all distinct elements we get 1234, 1243, 1432, 

1324, 1342, 1423. These elements form the set S.  As there are 6 elements in this set the 

number of vertices in this graph will be 6. To draw the edges, consider the first element 1234. 

It’s possible permutations were 1243, 1432 and 1324. Hence we draw three edges to these 

vertices. Similarly the whole graph is built.  
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Figure 4.1 shows the Cayley graph for this example. 

 

Figure 4.1: Cayley graph 

 

Properties of Cayley graphs and important results 

Readers can refer to the paper by Cooperman and Finkelstein (Cooperman & Finkelstein, 

1992) for interesting properties of Cayley graphs and various methods for generating them 

efficiently. 

All Cayley graphs are vertex transitive but the inverse doesn’t hold. The Peterson graph, 

shown in Figure 4.2, is a 3- regular graph with 10 nodes and 15 edges. This graph serves as 

the smallest counter example to prove the fact that all vertex transitive graphs are not Cayley 

graphs. Refer to paper by McKay and Praeger (McKay & Praeger, 1994) to know more about 

the graphs which are vertex transitive but not Cayley. 

Lovasz (Lovász, 1970), in 1970, conjectured that every finite vertex transitive graph has a 

Hamiltonian cycle. This conjecture is still open, i.e., no formal proof exists. Later in 1996,  
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Jixiang and Qiongxiang (Jixiang & Qiongxiang, 1996) have proved that almost all Cayley 

graphs are Hamiltonian. That is, as n, the order of the graphs, approaches infinity, the ratio of 

the number of Harniltonian Cayley graphs to the total number of Cayley graphs approaches 

1. 

A transposition is a function which swaps any two elements of a set. In other words, it is a 

bijective function. Elements of the symmetric group Sn can be generated by a minimal 

generating set of n-1 transpositions, called a basis. Kompel’maher and Liskovec 

(Kompel’maher & Liskovec, 1975) proved the fact that Cayley graph (Sn:B) is Hamiltonian 

for any basis B consisting of transpositions. 

 

Figure 4.2: Petersen Graph 

 

Witte (Witte & Keating, 1985) proved the conjecture, “Every connected Cayley graph (apart 

from k2) has a Hamiltonian Cycle”, for p- groups. A finite group is a p-group if and only if its 

order (the number of its elements) is a power of p. Further Pak and Radocic (Pak & Radoicic, 

2004) proved that every group G has a generating set of size ≤ log2(|G|) for which the 

corresponding Cayley graph is Hamiltonian. Krivelevich and Sudakov (Krivelevich & 

Sudakov, 2003) showed that taking a random set of log
5
(|G|) elements of G as generators, 

almost surely yields a Hamiltonian graph. 
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Ruskey and Savage (Ruskey & Savage, 1993) further enhanced this result, discovering 

Hamiltonian cycles in Cayley graphs by extending transposition matchings to a cycle. Let X 

be a generating set of transpositions for the Sn where n>4. For any xεX, Mx extends to a 

Hamiltonian cycle in the graph (Sn:X) 

Generation of Cayley graphs for our experiments 

Effler and Ruskey (Effler & Ruskey, 2000) worked in early 2000 on Cayley graphs. They 

generated the graphs with 3 involutions. An involution, σ, is an element of Sn such that σ2
= 1 

(element of order 2). They proved that most of the graphs with generating set S7 were 

Hamiltonian.  

Later Shields and Savage (Shields, 2004) continued this work and proved the fact that all the 

graphs in the generating set S7 were Hamiltonian. Further Shields enhanced the idea to 

generate graphs with one-involution and one non-involution. Most of the cubic Cayley 

graphs that were used for our experiments were from Shield’s work.  

Chapter 5 gives details about our experiments and results on this class of graphs. 

 

4.2. Random Graphs 

 

Random graphs were first introduced and defined by Erdos and Renyi (Erdős & Rényi, 1959) 

in 1959. According to them a random graph is a graph which can be generated by some 

random process.  With n vertices in hand adding edges at random (based on some probability 

distribution) produces different sets of random graphs. To confine ourselves into a specific 

random model, we will look into the most common model.  
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Definition 

Let’s call the model G(n,p), where p, 0<p<1 stands for probability of occurrence of an edge. 

In this model each edge in the graph are chosen independently with a probability p.  

Expected number of edges will be C(n,2)p. Each specific graph with n vertices and m edges 

has a probability P(G) = p
m

. (1-p) 
C(n,2)-m

. All throughout this discussion on random graphs, 

we always refer to G(n,p) model and we assume that the expected number of edges is m. 

Properties of random graphs and important results 

Interesting questions in this class of graphs are as follows. Are all random graphs 

Hamiltonian? The answer to this question is a resounding no. Since all the edges and 

elements are associated with some probability there is always a chance of graph being 

disconnected (existence of isolated vertices) or not being bi-connected (existence of cut 

vertices). Our next question is: When can we say that a random graph is Hamiltonian? To 

formally state this question, what is the value for n, the number of vertices, and what is the 

expected number of edges m required, to ensure that almost all random graphs are 

Hamiltonian? There were various conjectures to answer this question. In 1974, Pósa (Pósa, 

1976) put forth that if a graph has n vertices and if it has at least cn log n edges then the 

graph is Hamiltonian. Here c is some sufficiently large constant.  Korshunov in 1976 

(Korsunov, 1976) came up with a proof stating that the graph should have at least ½ n log n 

edges to be Hamiltonian. Many extensions were made on this result. Readers can refer to the 

text by Bollobas (Bollabas B. , 2004) for interesting results and properties of random graphs. 

The most important fact about random graphs was stated and proved by Komlos and 

Szermedi (J.Komlos & Szemeredi, 1983) and later Korshunov (Korshunov, 1985) also 

proved the same condition. The theorem goes like this.   

Let ω(n) be some function tending to ∞. Let the number of edges be represent by a function 

M(n). If M(n) = (n/2) ( log n+ log log n + ω(n) ), then almost all G(n,p) are Hamiltonian. 

Reader can refer to the paper by Bollabas (Bollabas B. , Almost all regular graphs are  
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Hamiltonian, 1983) for a detailed proof of the above theorem. 

Generation of random graphs for our experiments 

Vandegriend (Vandegriend, 1998) in his master’s thesis worked on various algorithms 

starting from naïve backtracking to the various variants of Pósa’s path rotation algorithm.  He 

generated different classes of graphs for his experiments up to 1600 vertices. We modified 

his code so that it can generate larger graphs which can be used as inputs to our heuristic. It 

was ensured that the G(n,p) graphs had at least as many edges as suggested by the theorem, 

so that the graph had a high probability of being Hamiltonian.  

All the random graphs for our experiments were from Vandegriend’s code in Skiena’s 

repository (Skiena, 1998). 

 

4.3. Knight tour graphs 

 

A knight’s tour is the path taken by a knight in the game of chess. The knight, starting at an 

arbitrary square, must move on an empty chess board so that it visits all the squares exactly 

once and returns back to the starting square. The analogy here is that, each square on a 

chessboard can be imagined as a vertex in the graph and visiting all squares once and 

returning back to the starting square is same as visiting all vertices exactly once and returning 

back to the starting vertex.  Moving from a square to other square is same as that of travelling 

through an edge from one vertex to another vertex. This is a Hamiltonian circuit problem of 

our interest.  

In a typical chessboard (8 by 8) there are 64 squares. A knight from a particular position can 

take any of the possible 8 moves. In the Figure 4.3, k corresponds to the current position of 

the night and moves are numbered from 1 till 8. However at some positions (towards the 
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 board boundaries) knight may not have all the possible 8 moves.  

The motivation behind considering knight’s tour for our experiments is that we wanted to try 

our heuristic against various classes of graphs were the Hamiltonian cycles were known and 

measure the performance of our heuristic. 
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Figure 4.3: Possible moves for a knight in a chessboard 

 

Definition 

The knight’s tour problem can be translated formally into a specific instance as defined 

below. 

Consider each square on a chessboard to be a vertex. Then in an n by m chessboard there can 

be mn vertices. An edge from vertex x to vertex y can be added in the graph if a knight can 

move from the square x to the square y following all the rules of chess. Given all these, our 

Hamiltonian circuit problem is nothing but to find a circuit in the chess board of given size. 

Figure 4.4 shows a sample knight tour (Hamiltonian circuit) on an 8 by 8 standard chess 

board. 
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Figure 4.4: Hamiltonian Circuit in an 8 by 8 standard chess board 

 

Properties of knight-tour graphs and important results 

The most general question here is: When can we conclude that the given board cannot have a 

Hamiltonian circuit? If the n by m chess board contains an odd number of squares then it 

cannot contain a circuit.  A 4 by m board cannot have a circuit for any value of m. A knight 

tour must typically alternate between the white and black squares of the chess board.  

Schwenk (Schwenk, 1991) has found all the possible combinations of m and n for which the 

Hamiltonian circuit cannot exist and proved that for all other values there does exist a 

Hamiltonian circuit. 

Readers can refer to the work Vandegriend (Vandegriend, 1998) for a detailed proof of many 

of these properties. In the paper (Raptopoulos & Spirakis, 2005) by Raptopoulos and 

Spirakis, they talk about the various classes of random graphs and efficient greedy methods 

to detect Hamiltonian cycles in knight-tour graphs. 
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Generation of knight-tour graphs for our experiments 

Again Vandegriend’s code from Skienna’s repository (Skiena, 1998) was used in generating 

knight tour graphs. Graphs of various board sizes (more than 1000 vertices) were generated 

and we ran experiments against those graphs.  

 

4.4. Geometric graphs 

 

Geometric graphs are graphs based on points in some geometric objects with edges 

connecting points that are nearby. 

Definition 

A geometric graph G (n, r) is constructed by choosing n points uniformly at random in a unit 

square [0, 1]
2
 and adding edges to connect any two points which are at a distance of at most r 

from each other. In other words, G (n, r) is a graph that has a vertex set V and an edge 

connecting each pair of vertices u and v at distance d (u, v) ≤ r; where d denotes a distance 

metric. 

Readers can refer to (Diaz, Mitsche, & Perez, 2007) for a detailed definition and description 

of geometric graphs. Geometric graphs depend on the kind of distance metric that is being 

used to generate them. There are two important norms to measure distances.   

Under Lp norm, 

 the distance ||x-y|| between two points x = (x1, y1) and y = (x2, y2) is (|x1-x2|
p
 + |y1-y2|

p
)
1/p

.  

In L∞ norm, the distance between x and y is max {|x1-x2|, |y1-y2|}. 
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In order for the geometric graph G(n,r) to be connected, the distance r has to be at least    

√log (n) / 4 (n) (Appel & Russo, 2002).  Diaz, Mitsche and Perez (Diaz, Mitsche, & Perez, 

2007) proved that when r = ω ( 
4√(log n/πn) ), G(n,r) becomes Hamiltonian.  

For a long time, geometric graphs have been used as models for large autonomous networks 

such as sensor networks. In recent times, they have received attention in ad-hoc wireless 

networks. Refer to Penrose (Penrose, Diaz, Petit, & Serna, 2001) for a detailed history and to 

know interesting facts about this class of graphs.  

Generation of geometric graphs for our experiments 

Geometric graphs were generated with a distance parameter r based on the definitions and 

theorems in the previous sections. Vandegriend’s code was used to generate the graphs of 

various sizes for our experiments. 

 

4.5. Conclusion 

 

In this chapter we discussed various classes of graphs and their method of generation. Most 

importantly we reviewed various important theorems regarding the Hamiltonicity in those 

classes of graphs.  In the next chapter we will document all the results of our heuristic on 

these classes of graphs. 
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5. Experimental Results 
 

This chapter deals with all the experiments that we have done and summarizes all the results. 

We begin by talking about the various configuration settings in our heuristic and machine 

configuration on which we ran the experiments. Chapter 3 dealt with various variations of 

our heuristic namely the base heuristic; edge pruning heuristic and farthest edge pruning 

heuristic. This chapter presents the results for various classes of graphs against different 

versions of our heuristic. This chapter also gives a comparison chart of our heuristic against 

the various existing popular heuristics. 

 

5.1. Heuristic Settings and Machine Configuration  

 

As described in the Section 3.5, there are five versions of our heuristic. Before getting into 

the experimental results we would like to make the terminology and heuristic settings clear 

for the readers.  

Attempt: When the heuristic restarts with a fresh copy of the graph we call that as an attempt. 

Trial:  Initially the heuristic tries to execute the basic algorithm and on failure, depending on 

the version of the heuristic, it might either execute normal edge pruning or farthest edge 

removal or nothing. After pruning an edge it tries to execute the basic algorithm again. Trial 

is nothing but the heuristic’s execution of the basic algorithm. In one attempt there may be 

many trials. If no edge pruning takes place each attempt has only one trial. 

Average Search Length per Node: There may be many BFS searches in a trial. Each time 

the heuristic tries to build the initial cycle or expand the cycle a breadth first search is 

performed. We record the total length of the searches and number of such searches. Average  
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search length is total length of searches / number of searches. Average search length per node 

is the average search length / number of nodes. 

Time per Node (in seconds): Time per Node is the statistic recorded to see total time spent 

on each vertex. Time per Node = total execution time/ number of vertices.  

Length of Cycle (in percentage): As the name implies it is the length of cycle formed by the 

heuristic as a percentage of maximum possible, i.e., a Hamiltonian cycle of length n. This 

statistic gives a clear idea of about the performance of individual versions of the heuristic. 

Heuristic Options: 

As our heuristic may run indefinitely until it finds a Hamiltonian circuit, we set various 

conditions for termination. It should be noted that the code wasn’t tuned for giving optimal 

performance. Number of attempts and time are the important parameters set before running 

the heuristic. Many of our experiments, on various classes of graphs, were given a run time 

of 15 minutes to find the cycle. After the specified time limit the heuristic quits.  We realized 

that this 15 minute time limit was never enough for the heuristic when dealing with larger 

instances of problem (>2500 vertices) on normal machines. Hence we ran them for 16 hours. 

Refer to the next paragraph for machine configurations. As there are many random choices to 

be made, the seed can be set as a parameter to the heuristic. If the seed is not provided, the 

algorithm takes the current time as the seed and generates random choices based on it. 

Machine Configuration: 

The smaller instances of the problems (<2000 vertices) were run on an Enterprise Red Hat 

Linux platform with two Intel(R) Pentium(R) 4 CPU 3.00GHz processors and a cache 

memory of 1024KB. The larger instances of the problem (>2000 vertices) were run in batch 

mode on machines of the NC State HPC (High Performance Computing) cluster. These have 

two Intel(R) Xeon(TM) CPU 2.80GHz processors with a cache size of 512 KB. Note that the 

‘edge pruning’ and ‘farthest edge removal’ versions were run on HPC machine whereas the 

‘basic heuristic’ version wasn’t. 
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5.2. Cayley Graphs 

 

A substantial part of the research was devoted to cubic graphs, specifically Cayley graphs. 

The motivation behind this is that cubic graphs are the most difficult ones to solve.  Initially, 

we tried to run our base heuristic on small instances (<150 vertices) of cubic graphs. The 

base heuristic was successful against the small instances but it failed to find cycles in larger 

graphs. 

All cubic Cayley graphs generated from three involutions were used for our experiments. The 

Table 5.1 gives the results of our base heuristic on various instances of graphs. Smaller 

instances were given a time out of 15 minutes. Larger instances (indicated by * against the 

vertices) were run on the HPC machine. 

As you can see from Table 5.1, basic version doesn’t find cycles even for the instances of 

graphs with vertices less than 500. The average length of the cycle which the base heuristic 

managed to find was around 85-90 %.  The edge pruning version of our heuristic was more 

successful in terms of statistics. It was highly successful on instances <2500 vertices. On the 

other hand edge pruning with restart on bi-connectivity failure didn’t perform as expected.  

More or less the results its results were similar to basic heuristic. Hence we didn’t run that 

heuristic against the larger instances. Farthest edge removal heuristic performance was 

almost equal to farthest edge removal with restart heuristic.  
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Table 5.1: Performance of our heuristic on Cayley graphs 

 

Graph 

No 
Vertices 

Length of the cycle detected in % 

Basic 

Heuristic 

Edge 

pruning 

Farthest 

edge 

removal 

Edge 

Pruning 

with restart 

Farthest 

edge 

removal 

with restart 

3007 336 100.0 100.0 100.0 100.0 100.0 

119 360 93.3 100.0 100.0 88.6 100.0 

636 360 88.6 100.0 100.0 93.3 100.0 

1073 576 89.9 100.0 100.0 89.9 100.0 

1088 576 100.0 100.0 100.0 100.0 100.0 

155 720 90.0 100.0 100.0 90.0 100.0 

2517 720 86.1 100.0 100.0 86.1 100.0 

225 1152 89.2 100.0 100.0 95.0 100.0 

2949 1152 96.2 92.4 94.1 88.2 94.1 

2109 1344 92.1 95.7 91.5 92.2 91.5 

814 1344 85.4 100.0 100.0 85.7 100.0 

217 1440 87.9 100.0 99.0 86.6 99.0 

338 2520 85.0 100.0 87.1 85.4 87.1 

833* 2520 92.2 91.4 91.9   91.7 

2222* 5040 87.5 87.5 87.2   87.2 

2269* 5040 85.8 87.3 85.5   85.4 

621* 20160 79.0 78.6 78.7   78.5 

928* 20160 84.2 83.9 84.2   85.9 

* indicates the runs made on HPC Machines  

 

 



70 

 

 

Figure 5.1: Edge Pruning vs Farthest Edge (both with bi-connectivity restarts) 

 

Figure 5.1 shows the comparison between the edge pruning heuristic with restart against 

farthest edge pruning heuristic with restart. Though there isn’t much difference between edge 

pruing and farthest edge heuristic, there is a huge difference here in Figure 5.1. 

We wanted to evaluate edge pruning and farthest edge with restart on the basis of number of 

attempts they took to find the cycle. As their performance in terms of detecting cycles is 

almost the same, the comparison on number of attempts would be more interesting. Figure 

5.2 shows the comparison on basis of number of attempts. We can clearly see that edge 

pruning heuristic performs much better than the farthest edge with restarts. 



71 

 

 

Figure 5.2: Edge pruning w/o restart vs Farthest edge with bi-connectivity restart 

 

As our heuristic is highly randomized, none of the results follow a particular pattern which 

you would normally expect from a deterministic algorithm. The results depend much on the 

random edge pruning choices that are made initially. Forced edge propagation eliminates 

many bad choices and makes it more convenient for the heuristic. But if the case of bad 

initial choices, the heuristic would waste much of its time in further pruning the edges and 

attempting to find cycles in the graph.  Refer to the chapter 6, future work section we have 

discussed much towards the edge pruning choices made. 

 

5.3. Random Graphs 

 

As described in Chapter 4, we generated random graphs with the help of Vandegriend’s code. 

The expected number of edges was ensured to be greater than the threshold given by  the 

function   (n/2){ log n+ log log n + ω(n) } where ω(n) is some function tending to infinity.   
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Table 5.2: Performance of our heuristic on random graphs 

 

Graph No Vertices 

Length of the cycle detected in % 

Basic 

Heuristic 

Edge 

pruning 

Farthest 

edge 

removal 

Farthest 

edge with 

restart 

R_200_1.3_1 200 99.0 100.0 100.0 98.0 

R_200_1.3_3 200 98.0 100.0 100.0 98.5 

R_300_1.3_1 300 97.3 100.0 100.0 96.7 

R_300_1.3_3 300 97.3 100.0 100.0 96.7 

R_500_1.3_1 500 94.8 100.0 100.0 94.4 

R_500_1.3_2 500 95.4 99.6 93.8 94.2 

R_600_1.3_1 600 95.7 100.0 94.0 95.2 

R_600_1.3_2 600 95.0 100.0 93.5 93.8 

R_800_1.3_1 800 93.6 99.9 92.9 93.3 

R_800_1.3_3 800 94.3 95.9 97.1 94.3 

R_10.86_2500_1* 2500 89.9 89.4 89.5 89.4 

R_10.86_2500_5* 2500 90.0 89.5 89.5 89.9 

R_11.72_5000_1* 5000 88.6 88.4 88.5 88.5 

R_11.72_5000_5* 5000 88.8 88.5 88.7 88.6 

R_12.57_10000_1* 10000 88.2 88.2 88.0 88.2 

R_12.57_10000_6* 10000 88.2 88.2 88.2 88.1 

* indicates the runs made on HPC Machines 
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This makes sure that the graph (G(n,p)) is Hamiltonian.  Having setup the instances for the 

test, we did run the experiments against all versions of our heuristic. 

Table 5.2 shows the performance of our heuristic on random graphs. As you can see, the 

heuristics were not able to find cycles in many cases.  Edge pruning heuristic which 

performed better for the Cayley graphs again performs better than the other heuristics here in 

the class of random graphs. The farthest edge heuristic with bi-connectivity restarts wasn’t 

able to find cycles in the cases of smaller instances of the graph though it performed fairly 

well in the case of Cayley graphs. 

Figure 5.3 shows the behavior of edge pruning heuristic when the instances become larger. 

 

 

Figure 5.3: Edge pruning heuristic performance 

 

As you see in Figure 5.3, the performance of the heuristic drops drastically above 1000 

vertices. Farthest edge removal heuristic’s performance is very similar to the performance of 

the edge pruning heuristic. 
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5.4. Knight Tour Graphs 

 

We wanted to try running our heuristic against knight-tour graphs as well. The Table 5.3 

shows the performance statistics of our heuristic against the knight tour graphs.  

 

Table 5.3: Performance of our heuristic on knight tour graphs 

 

Graph Name Vertices 

Length of the cycle detected in % 

Basic 

Heuristic 

Edge 

pruning 

Farthest 

edge 

removal 

Farthest 

edge with 

restart 

KT_20_20_400_2 400 96.5 99.0 96.5 96.5 

KT_20_20_400_3 400 96.5 100.0 96.0 96.5 

KT_20_30_600_1 600 96.0 99.7 96.0 95.7 

KT_20_30_600_3 600 96.0 95.7 95.0 95.7 

KT_20_40_800_1 800 95.8 95.5 95.8 95.3 

KT_20_40_800_3 800 95.8 95.8 95.5 95.5 

KT_30_30_900_2 900 96.0 95.1 95.6 95.8 

KT_30_30_900_3 900 96.0 95.6 95.6 95.8 

KT_40_40_1600_2 1600 96.0 95.3 95.4 95.9 

KT_40_40_1600_3 1600 95.9 95.5 95.5 95.9 

KT_50_100_5000_2* 5000 96.2 95.9 95.9 95.8 

KT_50_100_5000_3* 5000 96.0 95.8 95.8 95.9 

KT_100_100_10000_1* 10000 96.1 96.0 96.0 96.0 

KT_100_100_10000_5* 10000 96.1 96.0 96.0 96.0 

* indicates the runs made on HPC Machines 
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The two conditions that we have to make sure while creating the instances is that the (1) 

board shouldn’t have odd number of squares (2) Assuming the board is represented as m by 

n, we made sure that m ≠ 4 and n ≠ 4 (Refer to the theorems in chapter 4 regarding knight 

tour graphs). The knight tour graph names in the table follow the convention 

KT_m_n_#ofVertices_Index. 

On examining the results, it is clear that the heuristic has detected 95 % of the cycle before it 

failed in all the cases in knight tour graphs. Careful analysis (a step to be taken as a part of 

future work) regarding this behavior of the heuristic against this class of graph would 

certainly improve the results.  The performance of all the versions of the heuristics was 

almost the same. 

 

5.5. Geometric Graphs 

 

 

The heuristics were much successful against the geometric graphs. In fact all the versions of 

the heuristics were able to find cycles in geometric graphs in milliseconds. In most of the 

cases, it was able to find cycles on the first trial. 

The results clearly show that all versions of the heuristic perform superiorly against this class 

of graphs.  As a part of future work geometric graph instances of large sizes can be tested 

against all the versions of the heuristic. 
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5.6. Interesting Results 

 

The Tables 5.4-5.7 show the performance of the edge pruning heuristic on various classes of 

graphs.  “Number of Searches” in the table indicates the number of breadth first searches 

made.  “Total SearchLength” indicates the total length of cycles (BFS cycles) that were 

made by the heuristic. “AverageSearchLength”  is  TotalSearchLength/Number of Searches.  

Number of trials relies much on the order of edges removed.  The average length of the cycle 

increases as number of vertices increase. 
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Table 5.4: Experimental Results on Cayley graphs 

 

Graph 

Name 
Vertices 

Average Search 

Length 

Number of 

Trials 

3007 336 5.3 1 

119 360 30.2 659 

636 360 25.2 3512 

1073 576 42.7 83 

1088 576 20.8 3 

155 720 40.3 202 

158 720 41.5 1570 

225 1152 53.2 1137 

2949 1152 35.4 16960 

807 1344 55 9648 

814 1344 47 18049 

217 1440 63.9 410 

338 2520 67.1 368 

833* 2520 52 340350 

2230* 5040 65.5 146540 

2269* 5040 109.2 150673 

621* 20160 494.2 4310 

928* 20160 137.2 2941 

* indicates the runs made on HPC Machines 
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Table 5.5: Experimental Results on Random graphs 

 

Graph Name Vertices 

Average 

Search 

Length 

Number 

of Trials 

R_200_1.3_1 200 15.2 3928 

R_200_1.3_3 200 14.4 447 

R_300_1.3_1 300 17 2179 

R_300_1.3_3 300 18 7368 

R_500_1.3_1 500 23.8 1475 

R_500_1.3_3 500 22.2 28064 

R_600_1.3_1 600 24.5 23465 

R_600_1.3_2 600 26.4 1852 

R_800_1.3_1 800 31 25065 

R_800_1.3_3 800 28.7 26243 

R_10.86_2500_1* 2500 21.7 229343 

R_10.86_2500_5* 2500 22.2 383391 

R_11.72_5000_1* 5000 28.8 88838 

R_11.72_5000_5* 5000 27.6 87582 

R_12.57_10000_1* 10000 40.8 8674 

R_12.57_10000_3* 10000 40 11408 

* indicates the runs made on HPC Machines 
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Table 5.6: Experimental Results on Knight-tour graphs 

 

Graph Name Vertices 

Average 

Search 

Length 

Number 

of Trials 

KT_20_20_400_1 400 27.5 117528 

KT_20_20_400_3 400 20.4 27800 

KT_20_30_600_1 600 25.7 54790 

KT_20_30_600_3 600 25.7 55629 

KT_25_25_625_1 625 26.4 52622 

KT_25_25_625_2 625 26.3 51724 

KT_20_40_800_2 800 31.2 31187 

KT_20_40_800_3 800 30.9 31533 

KT_30_30_900_1 900 33 24253 

KT_30_30_900_3 900 47.4 24493 

KT_25_40_1000_2* 1000 33.7 1246424 

KT_25_40_1000_4* 1000 33.8 1213706 

KT_40_40_1600_2 1600 50.3 5558 

KT_40_40_1600_3 1600 51 5862 

KT_50_50_2500_1* 2500 70.9 181482 

KT_50_50_2500_5* 2500 70.6 178650 

KT_50_100_5000_2* 5000 115.5 28781 

KT_50_100_5000_4* 5000 116.8 28098 

KT_100_100_10000_1* 10000 218.8 1761 

KT_100_100_10000_5* 10000 223.6 2048 

* indicates the runs made on HPC Machines 
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Table 5.7: Experimental Results on Geometric graphs 

 

Graph Name Vertices 

Average 

Search 

Length 

Number 

of Trials 

 G_200_0.03_1 200 13.5 1 

 G_200_0.03_2 200 11.2 1 

 G_300_0.02_1 300 9.9 1 

 G_300_0.03_2 300 17.2 1 

 G_400_0.01_2 400 17.8 2 

 G_400_0.01_3 400 15.1 9 

 G_500_0.01_2 500 25.3 1 

 G_500_0.01_3 500 10.3 1 

 G_800_0.01_2 800 49.3 1 

 G_800_0.01_3 800 20.4 1 

G_0.0188_1000_3* 1000 17.5 1 

G_0.0188_1000_4* 1000 35 1 

G_0.0072_2520_3* 2500 25.8 1 

G_0.0072_2520_4* 2500 75.5 1 

G_0.00615_5000_1* 5000 161.4 1 

G_0.00615_5000_3* 5000 32.8 1 

G_0.00353_10000_2* 10000 160.7 1 

G_0.00353_10000_3* 10000 83 1 

 * indicates the runs made on HPC Machines 
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The chart in the Figure 5.4 shows the comparison between average search length versus 

number of vertices for all the classes of the graphs. There is a linear increase in terms of 

average search length. 

 

 

 

Figure 5.4: Average Search Length vs Number of Vertices 

 

Expected execution time per trial should be proportional to the product of  average search 

length, number of vertices and average degree. As average search length, indicates the 

number of nodes in the cycle, the total number of node accesses should be product of average 

search length and average degree of the graph. The Table 5.8 shows the results for Cayley 

graphs.   
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Table 5.8: Experimental Results Runtime/Trial 

 

Class Vertices 

Avg 

Search 

Length  

Avg 

Degree 

Expected 

Run 

time/trial 

Actual 

Run 

time/trial 

(seconds) 

Random 200 15.2 9.1 27512 < 0.05 

Random 200 14.5 9.1 26245 < 0.05 

Random 200 14.4 9.1 26064 < 0.05 

Geometric 200 13.5 16.1 43389 < 0.05 

Geometric 200 11.2 15.5 34720 < 0.05 

Geometric 200 13.1 15.7 41186.4 < 0.05 

Random 300 17 9.7 49317 < 0.05 

Random 300 17 9.7 49317 < 0.05 

Random 300 18 9.7 52218 < 0.05 

Geometric 300 9.9 16.6 49361.4 < 0.05 

Geometric 300 16.6 16.4 81871.2 < 0.05 

Geometric 300 17.2 16.5 85243.2 0.1 

Cayley 336 5.3 3.0 5342.4 < 0.05 

Cayley 360 30.2 3.0 32616 < 0.05 

Cayley 360 25.2 3.0 27216 < 0.05 

Knight tour 400 27.5 6.1 66880 < 0.05 

Knight tour 400 27.4 6.1 66636.8 < 0.05 

Knight tour 400 20.4 6.1 49612.8 < 0.05 

Geometric 400 17.8 11.5 81595.2 < 0.05 

Geometric 400 15.1 11.7 70909.6 < 0.05 

Random 500 23.8 10.5 124355 < 0.05 

Random 500 23.3 10.5 121742.5 < 0.05 

Random 500 22.2 10.5 115995 < 0.05 

Geometric 500 13.3 14.4 95693.5 < 0.05 

Geometric 500 25.3 14.3 181148 0.1 

Geometric 500 10.3 14.4 74005.5 < 0.05 
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Table 5.8: Continued 

 

Class Vertices 

Avg 

Search 

Length  

Avg 

Degree 

Expected 

Run 

time/trial 

Actual 

Run 

time/trial 

(seconds) 

Cayley 576 42.7 3.0 73785.6 < 0.05 

Cayley 576 20.8 3.0 35942.4 < 0.05 

Cayley 576 38.4 3.0 66355.2 < 0.05 

Random 600 24.5 10.7 157584 < 0.05 

Random 600 26.4 10.7 169804.8 < 0.05 

Random 600 25.9 10.7 166588.8 < 0.05 

Knight tour 600 25.7 6.4 98688 < 0.05 

Knight tour 600 25.7 6.4 98688 < 0.05 

Knight tour 600 25.7 6.4 98688 < 0.05 

Knight tour 625 26.4 6.5 107250 < 0.05 

Knight tour 625 26.3 6.5 106843.75 < 0.05 

Cayley 720 40.3 3.0 87048 < 0.05 

Cayley 720 41.5 3.0 89640 < 0.05 

Cayley 720 40.6 3.0 87696 < 0.05 

Random 800 31 11.2 276520 < 0.05 

Random 800 30.8 11.2 274736 < 0.05 

Random 800 28.7 11.2 256004 < 0.05 

Knight tour 800 30.9 6.5 161668.8 < 0.05 

Knight tour 800 31.2 6.5 163238.4 < 0.05 

Knight tour 800 30.9 6.5 161668.8 < 0.05 

Geometric 800 27.7 22.7 503032 0.2 

Geometric 800 49.3 22.5 888188.8 0.2 

Geometric 800 20.4 23.1 376176 0.2 

Knight tour 900 33 6.7 198990 < 0.05 

Knight tour 900 33.4 6.7 201402 < 0.05 

Knight tour 900 47.4 6.7 285822 < 0.05 
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Table 5.8: Continued 

 

Class Vertices 

Avg 

Search 

Length  

Avg 

Degree 

Expected 

Run 

time/trial 

Actual 

Run 

time/trial 

(seconds) 

Knight tour 1000 33.7 6.7 225790 < 0.05 

Knight tour 1000 33.8 6.7 226460 < 0.05 

Geometric 1000 32.7 52.0 1701708 0.3 

Geometric 1000 20.2 52.6 1062116 0.3 

Geometric 1000 17.5 51.5 900725 0.2 

Geometric 1000 35 52.9 1850100 0.2 

Geometric 1000 20.5 51.9 1063745 0.3 

Cayley 1152 53.2 3.0 183859.2 < 0.05 

Cayley 1152 35.4 3.0 122342.4 0.1 

Cayley 1152 49.6 3.0 171417.6 < 0.05 

Cayley 1344 51.7 3.0 208454.4 < 0.05 

Cayley 1344 55 3.0 221760 < 0.05 

Cayley 1344 47 3.0 189504 < 0.05 

Cayley 1440 63.9 3.0 276048 < 0.05 

Knight tour 1600 50.9 7.0 571708.8 0.2 

Knight tour 1600 50.3 7.0 564969.6 0.2 

Knight tour 1600 51 7.0 572832 0.2 

Random 2500 21.7 10.9 589155 0.3 

Random 2500 21.2 10.9 575580 0.1 

Random 2500 21.5 10.9 583725 0.1 

Random 2500 22.2 10.9 602730 0.2 

Knight tour 2500 70.9 7.2 1277972.5 0.3 

Knight tour 2500 70.8 7.2 1276170 0.3 

Knight tour 2500 70.7 7.2 1274367.5 0.3 

Knight tour 2500 70.6 7.2 1272565 0.3 

Geometric 2500 41.8 53.1 5546860 2.3 

Geometric 2500 51.8 52.7 6827240 1.6 

Geometric 2500 25.8 53.4 3441720 1.7 

Geometric 2500 75.5 53.1 10020737.5 1.7 

Geometric 2500 29.1 53.4 3881212.5 1.6 
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Table 5.8: Continued 

 

Class Vertices 

Avg 

Search 

Length  

Avg 

Degree 

Expected 

Run 

time/trial 

Actual 

Run 

time/trial 

(seconds) 

Cayley 2520 63.1 3.0 477036 0.1 

Cayley 2520 67.1 3.0 507276 0.1 

Cayley 2520 63 3.0 476280 0.2 

Cayley 2520 57.3 3.0 433188 0.2 

Cayley 2520 52 3.0 393120 0.2 

Random 5000 28.8 11.7 1687680 0.7 

Random 5000 28.6 11.7 1675960 0.7 

Random 5000 28.8 11.7 1687680 0.6 

Random 5000 28.4 11.7 1664240 1.0 

Random 5000 27.6 11.7 1617360 0.7 

Knight tour 5000 116.5 7.4 4310500 2.0 

Knight tour 5000 115.5 7.4 4273500 2.0 

Knight tour 5000 115.7 7.4 4280900 2.0 

Knight tour 5000 116.8 7.4 4321600 2.0 

Knight tour 5000 116.6 7.4 4314200 2.0 

Geometric 5000 161.4 89.8 72468600 23 

Geometric 5000 100.3 90.6 45440915 15.7 

Geometric 5000 32.8 90.7 14866600 16.3 

Geometric 5000 70.8 90.7 32097180 15.1 

Geometric 5000 46.9 90.7 21278530 14.9 

Cayley 5040 73.1 3.0 1105272 0.4 

Cayley 5040 65.5 3.0 990360 0.4 

Cayley 5040 109.2 3.0 1651104 0.4 

Random 10000 40.6 12.6 5103420 3.3 

Random 10000 40.8 12.6 5128560 10.0 

Random 10000 40.6 12.6 5103420 5.0 

Random 10000 40 12.6 5028000 5.0 

Random 10000 40.7 12.6 5115990 5.0 

Random 10000 40.3 12.6 5065710 5.0 
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Table 5.8: Continued 

 

Class Vertices 

Avg 

Search 

Length  

Avg 

Degree 

Expected 

Run 

time/trial 

Actual 

Run 

time/trial 

(seconds) 

Knight tour 10000 218.8 7.6 16628800 < 0.05 

Knight tour 10000 221.2 7.6 16811200 < 0.05 

Knight tour 10000 222.6 7.6 16917600 < 0.05 

Knight tour 10000 219.2 7.6 16659200 < 0.05 

Knight tour 10000 223.6 7.6 16993600 < 0.05 

Geometric 10000 86.8 105.8 91834400 68 

Geometric 10000 160.7 105.7 169779550 69.7 

Geometric 10000 83 105.6 87631400 74.6 

Geometric 10000 159.1 105.4 167659580 73.9 

Geometric 10000 89.3 105.5 94247220 81.5 

Cayley 20160 494.2 3.0 29889216 13.4 

Cayley 20160 137.2 3.0 8297856 19.7 

 

 

5.7. Comparison with other heuristics 

 

The biggest demerit of our heuristic is that it runs indefinitely even in the case of graphs 

which don’t have Hamiltonian cycles. Edge pruning procedure doesn’t detect the possible 

existence of cycles before pruning the edges. Hence our heuristic performs considerably poor 

when compared to programs of Shields, McKay and Hertel (Hertel, 2004) in the case of 

Cayley graphs.    

The code hasn’t been fine tuned to beat the run times of the other popular heuristics. We 

wanted to check the heuristic’s effectiveness rather than run times.  We ran experiments on 

Cayley graphs and compared against the results that were available in the Ruskey’s website 

(Effler & Ruskey, 2000).  As our heuristic was not able to find cycles in instances of Cayley  
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graphs (>2500) we could not compete against the popular heuristics (that proved to solve 

larger instances of Cayley graphs easily).  

As our heuristic performed better in the case of geometric graphs we wanted to compare the 

performance against a well known heuristic.  The Table 5.9 shows the comparison of our 

heuristic performance against the Hertel’s SCHA algorithm (Refer to chapter 2 literature 

review section for more details regarding this algorithm) in terms of time taken. Version 5 of 

Hertel’s SCHA algorithm was used as a basis for comparison.  

The experiments were run with a maximum time limit of 10 minutes on a Intel ® CPU 

T2250 system with a processor speed for 1.73 GHz and 2 GB RAM. The time taken by our 

heuristic was less than the SCHA algorithm as the size of the instances increased. In fact for 

lager instances (graph size=10000) the SCHA algorithm didn’t find the cycles in the 

specified time limit whereas our heuristic found cycles in all the instances. 
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Table 5.9: Comparison for our heuristic vs SCHA algorithm 

 

Graph Name Vertices 

Time taken by our 

heuristic (in seconds) 

Time taken by SCHA 

algorithm (in seconds) 

 G_200_0.03_1 200 0 0.2 

 G_200_0.03_2 200 0 0.7 

 G_200_0.03_3 200 0 0.0 

 G_300_0.02_1 300 0.1 0.5 

 G_300_0.02_3 300 0.2 1.3 

 G_300_0.03_2 300 0.1 0.3 

 G_400_0.01_2 400 0.2 356.9 

 G_400_0.01_3 400 1.2 35.7 

 G_500_0.01_1 500 0.2 39.4 

 G_500_0.01_2 500 0.2 245.4 

 G_500_0.01_3 500 0.2 126.9 

 G_800_0.01_1 800 0.5 11.3 

 G_800_0.01_2 800 0.5 6.8 

 G_800_0.01_3 800 0.5 83.5 

G_0.0188_1000_1 1000 1.2 0.3 

G_0.0188_1000_2 1000 1 4.2 

G_0.0188_1000_3 1000 1.2 0.5 

G_0.0188_1000_4 1000 1.1 1.7 

G_0.0188_1000_5 1000 1.1 0.8 

G_0.0072_2520_1 2520 5.9 43.3 

G_0.0072_2520_2 2520 6.9 74.7 

G_0.0072_2520_3 2520 7.8 337.7 

G_0.0072_2520_4 2520 7.5 33.0 

G_0.0072_2520_5 2520 5.2 570.9 

G_0.00615_5000_1 5000 35.5 211.1 

G_0.00615_5000_2 5000 45.2 Didn't complete (98.9%) 

G_0.00615_5000_3 5000 40.2 Didn't complete (98.7%) 

G_0.00615_5000_4 5000 50.1 152.8 

G_0.00615_5000_5 5000 44.4 Didn't complete (98.9%) 
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Table 5.10: Continued 

 

Graph Name Vertices 

Time taken by our 

heuristic (in seconds) 

Time taken by SCHA 

algorithm (in seconds) 

G_0.00353_10000_1 10000 230.2 Didn't complete (96.8%) 

G_0.00353_10000_2 10000 249.6 Didn't complete (94.1%) 

G_0.00353_10000_3 10000 216.9 Didn't complete (94.5%) 

G_0.00353_10000_4 10000 225.2 Didn't complete (94.9%) 

G_0.00353_10000_5 10000 275 Didn't complete (92.8%) 

 

 

The Vandegriend’s code (variations of Pósa’s algorithm) was much slower and it was not 

completing for even the small instances of geometric graphs that we had.  Hence we didn’t 

compare against those implementations. 

 

5.8. Conclusion 

 

 

In this chapter, we presented the results of our heuristic (all the versions) against various 

classes of graphs (Cayley, random, knight tour and geometric).  Other than the geometric 

graph instances, the results against other classes of graphs weren’t encouraging. The edge 

pruning heuristic was slightly better than the other heuristics in case of Cayley and random 

graphs.  In the case of knight tour graphs, in all most all the cases the heuristic (all the 

versions) found about 95 % of the cycle which is an encouraging factor.  Finally we 

presented the comparison results of our heuristic against the Hertel’s SCHA algorithm on 

geometric graphs. With other classes of graphs, our heuristic performed poorly when 

compared with the popular heuristics. 
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6. Conclusions and Future Work 

 

 

In this thesis, we presented a novel heuristic for the Hamiltonian circuit problem. We 

analyzed and explored the method in depth. Novel ideas such as forced edge propagation and 

farthest edge removal were applied to the basic heuristic. As expected, randomization of our 

heuristic gave better results than a methodical deterministic approach. In chapter 5, we 

presented experimental results for our heuristic’s performance on different classes of graphs 

(Cayley, random, knight tour and geometric graphs).  We now conclude with various 

suggestions that can be taken up as future research. 

First and foremost, as pointed out in chapter 5, our heuristic runs indefinitely on graphs until 

it finds a Hamiltonian circuit. Analysis can be done here and the heuristic can be modified 

such a way that it tries to recognize non Hamiltonian graphs rather quickly. The theorems 

introduced in Chapter 2 and the surveys (Gould, Advances on the Hamiltonian problem-a 

survey, 2003) (Gould, Updating the Hamiltonian problem—a survey, 1991) give all the 

necessary and sufficient conditions for a graph to be Hamiltonian. It can be made sure that 

the heuristic checks for these conditions. 

The next improvement can be done in the edge pruning procedure. The heuristic initially 

selects a random edge to be pruned (if all the vertices have greater than degree 2) and after 

propagating forced edges the heuristic still makes random choices. Instead of making mere 

random choices, the graph structures can be analyzed (as in Hertel’s algorithm) and 

appropriate edge pruning procedure changes could be made. Farthest edge removal technique 

is not applicable to all graphs because most graphs don’t have multiple dense components. 

Analysis can be done to detect dense components on the fly and use farthest edge removal 

wherever appropriate rather than using it for the entire procedure. 
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There are many improvements that can be considered to improve runtime. We store the graph 

as an adjacency list in the memory and process the graph for the Hamiltonian cycle. Rather 

than following this approach, edges can be generated on the fly and memory could be saved 

and the processing could be faster. In this way we are not restricting the heuristic to run for a 

relatively small number of vertices. Most of the graphs that are of theoretical interest, i.e., are 

conjectured but not known to be Hamiltonian, have tens or even hundreds of thousands of 

vertices. Code tuning should also be considered in future to achieve much better 

performance. 

In knight tour graphs, from our experimental results, it is clear that the heuristic managed to   

include 95% of the vertices in the cycle, almost in all the cases. Our heuristic relies much on 

adjacent open nodes in the cycle to perform cycle expansion. In some cases it is possible that 

the adjacent nodes may not be open and the vertices (that are not part of the cycle) could be 

left out for the same reason. We suspect that same problem could exist in larger instances of 

cubic Cayley graphs as well.  Hence a hybrid procedure like path extension can be used 

along with our heuristic to achieve better results. The main advantage of our heuristic is that 

it can generate a cycle which includes almost 80% of vertices on the first trial for most of the 

graphs. A simple path rotation is also an option so that the open nodes come together and the 

cycle expansion procedure can efficiently make use of this. 

Our heuristic is not equipped with backtracking. Once the heuristic ends up with a graph 

which is no longer bi-connected (after edge pruning) then it restarts with a fresh copy of the 

graph to start a new attempt. Once the heuristic prunes an edge it never puts it back. In this 

way, the heuristic loses much of its information as it could have pruned an important edge 

that is needed for the Hamiltonian cycle. Some sort of backtracking could be done to restore 

the edges that were determined to be wrong decisions and try with another set of edges. 

Restoring an edge back to the graph makes the propagation of forced edge component more 

complex. Hence an in-depth analysis has to be done before taking this approach as it could 

affect the run time of the heuristic to a large extent. 
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