ABSTRACT
HONG, TAO. Long-Term Spatial Load Forecasting Using Human-Machine Co-construct
Intelligence Framework. (Under the direction of Dr. Simon Hsiang).
This thesis presents a formal study of the long-term spatial load forecasting problem: given
small area based electric load history of the service territory, current and future land use
information, return forecast load of the next 20 years. A hierarchical S-curve trending
method is developed to conduct the basic forecast. Due to uncertainties of the electric load
data, the results from the computerized program may conflict with the nature of the load
growth. Sometimes, the computerized program is not aware of the local development because
the land use data lacks such information. A human-machine co-construct intelligence
framework is proposed to improve the robustness and reasonability of the purely
computerized load forecasting program. The proposed algorithm has been implemented and
applied to several utility companies to forecast the long-term electric load growth in the

service territory and to get satisfying results.
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1 Introduction

1.1 Overview of Spatial Load Forecasting

If quality is defined by what the customers want, one way to measure the success of an
electric power distribution system is to deliver reliable electric power to customers spread
throughout utility’s service territory. Figure 1.1 shows a Google map of Madison in
Wisconsin, and Figure 1.2 shows its electric load distribution, which contains a pattern that is
typical of a medium-sized city in the United States.

1) There is high load density in and around the central business district (dlowntown) area,
while a lower density in the outlying suburban areas.

2) Even in the suburbs, the load density along the major industrial areas can be higher
than that of the downtown areas which are filled with residential customers and office
parks.

3) In rural areas, load density is very low because homes, commercial areas, and
industrial areas are spread far apart.

4) Due to the use of irrigation pumps and oil pumps in petroleum fields, the load density

can be surprisingly high in comparison with other rural areas.

In the planning stage, a distribution planner needs to provide an economic expansion plan to
meet the future load growth in the service territory based on an incremental load distribution
map (Figure 1.3). Such a map of density, namely a spatial load forecast [25], must provide

temporal, spatial, and magnitude information of load growth in sufficient detail, and with



sufficient accuracy to allow for quality planning of electric power transmission and
distribution facilities. Assessing the impacts of alternatives for conjunctive areas also
requires attention to processes the possibilities that take place on different spatial and
temporal scales. Information scale is the spatial and temporal scale of the information
required. Generally, a strategic resources manager (for example the local, regional or national
government) needs information on a scale relative to their responsibilities and authorities.
This level of information is likely to differ from the level desired by operational managers
dealing with day-to-day issues. Information at scales smaller than what is needed is seen as
being ‘noisy’. Information at scales larger than what is needed is not relevant or helpful.
Specifically, in load forecasting, the scale, or resolution, of the map is also depends on the

computing capability to generate historical load data.
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Figure 1.1 Map of Madison, WI



Figure 1.2 Electric load distribution of Madison, WI
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Figure 1.3 Load growth distribution of Madison, WI



The spatial information is addressed by using the small area forecast method: the utility
service territory is divided into many, perhaps thousands of small areas, and a forecast is

done for each.

Load forecast in utilities can be classified into roughly two categories according to different
forecasting needs, short term forecasting and long term forecasting [23]: Short-term
forecasting is motivated by a need to reach a decision, to commit to a particular installation
or type of construction, and to do so at the lead time. Therefore, the specific aim of the short-
term plan is a reliable “alarm” about when present facilities will become insufficient. Risk
comparisons (e.g., blackout potential) can be helpful, but they should be used cautiously and
tested if possible. There are dangers in comparing risks of diverse character, especially when
the intent of the comparison is seen as reducing a risk. One difficulty in using risk
comparisons is that it is not always easy to find risks that are sufficiently similar to make a
comparison meaningful, because very often one is to compare two alternatives that have two
different costs and two different risk levels. The long-term plan evaluates how well the short-
term planning commitments fit into long-term needs. No commitment needs to be made to
the elements in a long-term plan, and capacity and location are more important than timing in
long-term forecast. In other words, it is more important to know what will eventually be

needed than to know exactly when in will be needed.



1.2  Decision Making Process

Based on his/her domain knowledge (e.g., social, economic, or political background), one
planner is usually assigned to a certain region in service territory. In every planning period,
this planner submits an expansion plan that includes what equipment to maintain, purchase,
and install based on his/her experience, e.g., what development activities he/she has seen and
heard of in the past, the historical load data and outages that have occured in this region, the
construction-limit land information, etc. After all the planners submit their proposals, the
director or higher level managers in charge of planning will make the final decision
considering the trade off between benefit and cost, and then allocate a budget to each region

accordingly. A comprehensive planning process can be found in Chapter 26 of [23].

Opposite to the practice of budget underestimation for governmental contract competition,
most planners tend to overestimate the load to avoid outages in their own regions. The
bottom-up aggregation of plans submitted is almost always beyond the total budget. To fulfill
the overall budget, which is a hard constraint during the planning stage, overestimation of the
expansion plan creates difficulties for the management team to make budget allocation
decisions and can potentially be a waste of resources on unnecessary projects. Many utility
companies would like to use a computer based program to help examine each plan and
execute top-down allocation. When submitted to a state regulator from the utility company, a
final plan generated from a standard computer program is usually more convincing and easier

to defend than the one purely from planners.



A rather simple technique that can reach absurd conclusions if incorrectly applied is to equate
the benefits of a service to the cost of supplying the service by the least expensive alternative
method. Thus the benefits from hydroelectricity generation could be estimated as the cost of
generating that electricity by the least cost alternative method using solar, wind, geothermal,
coal-fired, natural gas or nuclear energy sources. Clearly, this approach to benefit estimation
is only valid if, were the project not adopted, the service in question would in fact be
demanded at, and supplied by, the least-cost alternative method. The pitfalls associated with
this method of benefit and cost estimation can be avoided if one clearly identifies reasonable

with and without project scenarios.

The challenge in creating such model-building environments is to make them sufficiently
useful and attractive that multiple stakeholders like to use them. They should be
understandable. They will have to be relatively easy and transparent, and even fun, to build.
They must be capable of simulating and producing different levels of detail with regard to
natural, engineering, economic and ecological processes that take place at different spatial
and temporal scales. And they must require no programming and debugging by the users.
One approach is to develop interactive modeling ‘shells’ specifically suited to modeling
environmental problems. Modeling shells are data-driven programs that become models once

sufficient data have been entered into them.



1.3 Literature Review

As load forecasting is highly related to the quality of system planning, attention has been
paid to the impact of load forecasting on system design [24] and economics [20]. A system
wide two-stage distribution planning algorithm is reported in [19]. Optimization software [4]
and techniques [10] are applied to load forecasting as well as planning. Load forecasting is
usually tied to reliability analysis [3, 35, 36] and distribution transformer load management

(TLM) [5].

There are dozens of different distribution load forecasting methods that have been used and
documented during the last 50 years. Some of them fall into the category of short-term
forecasting [12, 16], which is beyond the scope of this thesis. Some of them are long-term
forecasting methods, the majority of which are spatial load forecasting methods [25, 26]. In
[29], the authors summarized and compared 14 different distribution forecasting methods
which appeared during the 1960s to early 1980s. Some spatial load forecasting methods can
be used for transmission planning as well [11, 34]. As the development of computer
technologies and applications ramped up in the 1980s, many computer based load forecasting
methods were being developed [17, 21, 33]. Data issues and database development were paid
attention to during the same period [22], followed by the discussion of information

integration issues in distribution planning [37].

Many methods have been developed to overcome some specific difficulties of spatial load

forecasting: fuzzy logic has been applied to forecasting with the consideration of city re-



development [7, 8, 9]; a knowledge-based expert system has been designed for fast
developing utility’s long-term load forecasting [15]; an extended logistic model was used for
high growth load forecasting as well [1]; a method to take care of rural area load forecast was
reported in [27]; the load transfer issue has been investigated in [32]; forecasting under
uncertainties has been discussed in [31]; neural networks have been applied to forecasting
wind speed for long-term load forecasting [2]; the data mining approach has been used for
spatial modeling [14]; a load survey system was used to determine customer load
characteristics [6]; some fast algorithms have been developed to reduce computer running

time [28, 30].

Despite various methods, algorithms, computer codes/programs in use, all fall into three
basic types of methods: trending [28], simulation [18] and the hybrid method:

1) Trending methods look for some function to fit the past load growth patterns and
estimate the future load based on the function. The most common trending method is
to use multivariate regression to fit a polynomial function to load history data. This
approach has a number of failings when applied to spatial load forecasting, while
dozens of improved methods have been reported for load forecasting. The advantages
of the trending method include ease of use, simplicity, and a short-range response to
recent trends of load growth patterns. However, it often fails to have a useful estimate
of the long-range load.

2) Simulation methods attempt to model the load growth process to reproduce the load

history, as well as to identify the temporal, spatial, and magnitude information of the



future load growth. Simulation methods usually simulate an urban development
process based on land-use change information from government, customer rate class
from utilities, and load curve model of consumption patterns. Depending on the
quality of data, this approach has a fair to very good short-range accuracy. Depending
on the specific algorithm, this approach has a good to excellent long-range usefulness
for planning. The drawback of the simulation method is the expensive development
and training cost.

3) Hybrid trending-simulation methods combine features of trending and simulation. An
ideal hybrid method should well respond well to recent trends of load history in the
short-range, and keep the long-range accuracy as simulation methods have.
Meanwhile, the ideal hybrid method should be easy to use, and not require much
interaction and skills from the user. That ideal may be unattainable, but it is certainly

worth pursuing.

Systems approaches, including the use of extensions of the aforementioned methods can
provide an organized framework for resources management and for estimating the important
geomorphic, ecological, social and economic impacts and trends over relevant scales of space
and time. Within a systems framework, multiple purposes can be investigated, tradeoffs
among competing objectives may be identified and evaluated, potential adverse impacts can
be assessed, and the various costs and benefits, however measured, of a project may be
estimated and examined. This can all be done within a context or process that incorporates

the concerns and desires of all those with an interest or stake in the outcome.



Quantitative models can help inform interested stakeholders and those individuals or
agencies responsible for recommending or making decisions or policy. The merit and
advantages, as well as the limitations, of various quantitative methods for analysing various
planning or management issues are generally recognized throughout the community. The
assumptions and uncertainties associated with any model-generated impact predictions

should be understood and considered by those using these model predictions.

This thesis has been devoted to the investigation of a hybrid method using Gompertz curve
(known as S-curve) fitting. S-curve has been used to model diffusion of innovations since
1950s. It has been adopted for transmission & distribution planning since late 1970s, as
summarized in [26]. S-curve is typical of a small area, distribution-level load growth, which
has three distinct phases: a dormant period (no load or growth in the small area before
development), a growth ramp (rapid growth in the small area under construction) and a
saturated period (slow growth in the small area being fully developed). There are three
parameters that control the shape of an S-curve: horizon year load (HYL, saturated load),
time to the start of ramping, and slope of the load growth. As a spatial load forecasting
problem has been formulated as an S-curve fitting, the major target is to determine these
three parameters, which is a challenging process directly related with the accuracy and
usefulness of the forecast. The kernel of the hierarchical trending method includes two
hierarchical procedures: bottom-up aggregation and top-down allocation, which are shown in

Figure 1.4, the details of which will be presented in Chapter 2.
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Figure 1.4 Bottom-up aggregation & top-down allocation

A comparison of a computational and human planner’s short-term load forecasts was
reported in [13]. However, there are rarely discussions of combining human and computer’s
intelligence. As an enhancement to the proposed hybrid trending method, this thesis also
investigates the framework of integrating the two intelligences together to achieve a good

solution, which will be discussed in Chapter 3.
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1.4 Organization of the Thesis

This thesis includes the whole algorithm development and the Graphical User Interface (GUI)
implementation process of a spatial load forecasting tool. Chapter 1 briefly introduces the
concept and significance of spatial load forecasting, the decision making process in utilities,
and the existing means used to solve spatial load forecasting problems. Chapter 2 presents
the detailed development of an automatic hierarchical trending algorithm, where each
functional module is described. Chapter 3 introduces an enhancement by embedding human-
machine co-construct intelligence (HMCCI) into the tool. Chapter 4 shows the
implementation of GUI with load forecasting results. The thesis is summarized in Chapter 35,

where future work is discussed as well.
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2 Hierarchical Trending Method

2.1 Overall Program Structure

In this chapter, a hierarchical trending method using S-curve has been investigated and

developed. Figure 2.1 shows an automated computer program structure.

Weather
Raw Historical Load Normalization .
(2]
Module £33
55
[
el
®©
3
8 Forecast Module
5
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Bottom-Up Aggregation

:Land Use Horizon Year Load %ﬂ%
(HYL) Module

Selected HYL Top-Down Allocation

Raw Forecast
ctual Lo;

Result Presentation Incremental Loa

Selected
Small Areas

B

Figure 2.1 An automated computer program structure of hierarchical trending method

13



As shown in Figure 2.1, the arrows represent data flow, while the rectangular blocks

represent functional modules:

1)

2)

3)

4)

Weather normalization module: this module applies a utility’s weather normalization
method to the raw historical load data to generate the adjusted historical load.
Different utility companies may have different weather normalization methods, which
mainly fall into various regressions.

Horizon year load (HYL) module: this module takes land use data and adjusted
historical load data to generate load densities for each land use type as well as the
HYL for each small area. It then selects the small areas with higher HYL than the
current load as the areas of interest to forecast the load growth on.

Neighborhood module: this module builds the neighborhood table according to the
total number and the location, sometimes together with load information as well, of
the selected areas of interest.

Forecast module: this module includes three sub-modules. The bottom-up module
iteratively fits S-curves and aggregates historical load and HYL for each small area in
each level based on the neighborhood table. The top-down module takes the S-curve
parameters from the bottom-up module as references, and allocates the utility’s
system forecast from the top level to the bottom level. Finally, the result
representation module fine tunes the raw forecasting results and displays the forecast

load in both data sheets and map format.
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The basic load forecast tool is made up of the four modules mentioned above together with
some display and user interface functions. Each module will be discussed in the following
sections, and the enhancement of the tool embedded with the HMCCI framework will be

discussed in the next chapter.
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2.2 Data Outlook

Compared with simulation data, real-world data provided by utilities has a lot more
uncertainties, noise and errors, which create difficulties for the forecasting. Before starting
the forecast algorithm development, several typical data sets obtainable from utilities are

introduced in this section.

2.2.1 Historical Load

Figure 2.2 shows the data format of transformer based historical load information that most
utilities can provide, which contains the following two sets:
1) Geographical information: In the geographical information system (GIS), the surface
of the earth has been cut into many small areas according to a certain scheme (e.g.,
1500ft by 1500ft). Each small area has a unique shape number, which is shown in
column A of Figure 2.2. The location of a transformer in the small area can be
represented by latitude and longitude, or another coordination scheme specified by a
particular GIS. As shown in Figure 2.2, Columns B and C represent the longitude and
latitude of the corresponding transformer, while Columns D and E represent its
coordinate in feet.
2) Load history: Load history information and details of the transformer (e.g., feeder
number, voltage level, etc.) are listed after geographical information, from which the

load history on a small area basis will be extracted.
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A B G D E F G H | J K L [l N a
1 |SHAPE_NUMBER_1500 ‘ LATITUDE |LDNG\TUDE ‘ S00_#1 | 500_1 |GGE_FID| |CUHHENT_FEEDE| VZUUWSYNEHGEESECTIUNll Y200FEEDERID ‘ YZUUIF’AHENTFEEDEl Y2001TR ‘ Y’ZUUISUB‘ YZUUIFHASEIKW_CD‘ YZUUIFHASEZKW_CE‘ e
2 TI9G 393684856 4307BTORE  ZIBIITHSI  I9I4AM 355936 1AT 14KV ECA Metwork | WM 14k ECA Metwark 0 ECATRI ECA 1615331326 1615331326
I TIGE] 29388299 430799870 2EI399.22 394216227 1264822 1BI0 BLT 46 Seg: 11930 1941 BLT 46 0/ELTRADTRE BLT4 2288227324 14EEBTINAG
4 TIE BOIBTHGY 430795488 216374335 IMOGBE3N 1264613 1EIZ BLT 415 Seg: 1937 - 11938 BLT 415 0BLTRADTRE BLT4 2133106832 1371004231
5} TG -B3387HIT 43079B444 ZIGIE2IET)  3M4IEHEIS 1264513 1EI3 BLT 415 Seg: 1337 - 11939 BLT 415 0BLTRADTRE BLT4 2204330136 5839273013
I TIE -B93677I03 430802482 ZBIGTTIE  3M3NZ9B 2E74T4 LBV BLT 415 [ [ 0 [ [ [ [
7 TIE 893862247 430802381 216337926 3IM3XI5ZE 1264613 1BR KV BLT 1306 M 14k BLT Metwork 0 BLTHTRITRZ BLTH# 2009133 2009133
z TISEI  -BA3BG041G| 430734345 XIE4ZATEA 3M02I07)  IMA36 1C3 BLT 416 Seq: 1933 - 11334 BLT 415 0/BLTRADTRE BLT4 1] 1 BETR4B2
9 T 333862418 430796316 216307923 393707915 129476 1CE BLT 415 Seg: 1315 - 12093 BLT 415 0BLTRADTRE BLT4 [ 1084279736
10 TI9G 893674508 430786492 2IG3EESAT  3933176E3 0104 0 Seg: 11929 - 11930 BLT 415 0BLTRADTRE BLT4 [ AB.ZETTHE
I T2 -B938I7H31 430818753 ZGDIGSES  34IITND| 131933 10-810 BLD 133 Seq: 17523 - 17740 BLT#12 0/BLTRADTRS BLT4 o o
| T 33379201 430842 216564453 395769474 131885 10-B2 BLO1313 Seg: W026 - 14027 BLT 413 0BLTRADTRS BLT4 [ [
| T3 -393788M02) 430836265  2IGBOG054  39E341Z8) 13924 10-B3 BLO1313 Seg: W020- 14026 BLT 413 0BLTRADTRS BLT4 1] 1]
L T -893795426 43083043 ZIEGTEE3 395446228 4256756 10-B5 BLO1313 [ [ 0 [ [ [ [
15 T -893798362 430831083 ZIEGETEA 39537047 13822 10-BE BLO1313 Seg: W024 - 14025 BLT 413 0BLTRADTRS BLT4 [ [
E T2id 393504403 430830732 ZIGEOIT03 395353531 330509 10-B3 BLD 133 Seq: M024 - 17524 BLT 413 0/BLTRADTRS BLT4 213433473 2383793235
| TIP3z B9391G9E3 430786472 21GZGHET  393664.916 BOSTOE 10-A24 14KV ECA Metwork | WM 14k ECA Metwark 0 ECATRI ECA 12.33680634 12.33680634
e TIP22 -BA33IEN4 430733019 ZB265204) 393636242 GOSTIZ 1-AZE 14KV ECA Metwork | WM 14k ECA Metwark 0 ECATRI ECA 1200386312 1200386312
N TIP3z 93916671 4307TEE24  ZB2GILZT 393362291 BOSEIS 1-AZE 14KV ECA Metwork | WM 14k ECA Metwark 0 ECATRI ECA 535553547 535553547
2 TIP3z 89392880 43.077RS36 216220743 393429635 144083 10-AZ7 14KV ECA Metwork | WM 14k ECA Metwark 0 ECATRI ECA 1866533564 1866533664
z TPz -80.390304B 430783778 2162004.05 303625675 GO9IE4 101-B4 kY ECA Metwork | WM 14k ECA Metwork 0/ECATRI ECA 3009430858 3009430858
o TIP22 393902008 43.079M94  ME2AZ0N2 393307036 BOSESZ 101-BS 14KV ECA Metwork | WM 14k ECA Metwark 0 ECATRI ECA 10871637396 1087163736
i) TIP3z BA3A0NI0T) 4307TAITY ZBAM4IH4) 39334TEE 4377 11D BLT 415 Seg: 1926 - 10609 BLT 415 0BLTRADTRE BLT4 [ 2000479731
z TP 333917638 4BOTE4TE 2IGZG03.26 332830448 609G0R 101010 14KV ECA Metwork | WM 14k ECA Metwark 0 ECATRI ECA BAE3339103 BAE3339103
i T2z 393902663 43076222 ZIG2SMTI 393068842  1Z6318E IM-EMR BLT 415 Seg: 1926 - 11927 BLT 415 0BLTRADTRE BLT4 33.369467 2458579702
E il 8028035 430770034 ZEIBIN|  IMIZEEIT 129667 101ED BLT 46 Seg: 11922 - 1925 BLT 46 0/ELTRADTRE BLT4 023274631 652409862
o TITA 893904277 4307B6385  ZIBIGEBET  39EEITNZ §13603 10MEE BLT 415 Seg: 1923 - 11924 BLT 415 0BLTRADTRE BLT4 [ ILITEZE
i) TIOE 89364547 4BOTVEN ZBI23TE 393INA4L) 129645 100F1 BLT 415 Seg: 1925 - 11926 BLT 415 0BLTRADTRE BLT4 [ 1357184048
E TI9G 893882072 430776546 216345695 39302084 55935 101F3 ARV BLT Network | M 4KV BLT Metwork. 0 BLTMET TR3 TF BLTHET 4613681454 4613681454
an 71950 393839373 430759808 216302547 3927BI03Z 129487 102-A1 BLT 415 Seg: 1922 - 11923 BLT 415 0BLTRADTRE BLT4 0.359846871 0230637827
E TISE0 -BA3ARSTA  AROTEGRS  2ME32AIGD 3G29T48E1 204121 102-Ad BLT 416 Seq: 11921- 11322 BLT 415 0/BLTRADTRE BLT4 1] 1]
| TP -B33A0MT 43076932 ZIG2ER4ET 92461139 BOSTZ4 102-A3 14KV ECA Metwork | WM 14k ECA Metwark 0 ECATRI ECA 1640405633 1640405633
3 TI9E 393879127 4307EGIST  ZIBIGITHI 393018789 156392 102-ES ARV BLT Network | M 4KV BLT Metwork. 0 BLTMET TR3 TF BLTHET 7053374721 7053374721
I TISH0 -89.3872974 430VE43EY 2630303 39202421 127354 102-CE ARV ELT Network | WM 4KVELT Metwork 0/BLTMET TR3 TF BLTRET 2362467254 2362467254
" TORN| 0IOTRION AOMTRAANG|  MEICATM| A0IABTONG| 193900 4 Mo AW T Mabanel WIS ALMDHT Rlabandd /D1 T HIET TEY TE O THIET 20 HORAMER 20 HORAMER

Figure 2.2 Typical data format of transformer based historical load

2.2.2 Weather Normalization

Historical data is measured under various conditions including different temperatures,
economic situations and so forth, which influence the load consumption. A theoretical load
consumption curve should be homogeneously increasing, while in reality, this curve turns out
to zigzag over time. In order to compare an apple to an apple, a normalization procedure has
to be conducted before the load forecasting process begins. Up to now, there is no identified
method to do weather normalization among the power industries, and different utility
companies may use different means, from simple to complicated, according to their local
situation. In this thesis, a multivariate regression approach will be discussed. The required
data format is shown in Figure 2.3. Other than the actual peak load for each year, three other

columns of data are required for weather normalization:
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1) Maximum temperature records the highest temperature that appeared during the year
of interest.

2) Cooling Degree Days (CDD) describes how much a period’s weather should result in
a building’s cooling requirements. The hotter the day is, the more the CDD is. If the
amount of CDD is double, then this should result in roughly double the cooling
requirements for a building. CDD is calculated individually for each day. CDD over a
month or billing cycle are merely a summation of CDD of the individual days.

3) Employment shows the number of employees or job positions in the service territory.
Sometimes it can be replaced by number of customers if the utility company has

customer count data in the service territory.

Year Actual Peak Load Maximum Temperature | Cooling Degree Days | Employment {or Customers)
1988 518.M 101.48 2310 10862
19849 512 86 894 /3 18.92 110.06
1950 518.M 91.84 16.95 111.55
1991 52322 92.76 17.99 112.86
1982 482.89 g9.12 9.03 114.22
1953 53915 40.02 18.95 115.85
1954 550.04 93 .69 15.96 1773
1985 §32.70 101.48 2503 118.33
1956 584 .06 91.84 17.99 120,75
1957 580493 40.02 12.94 122.08
1958 FO7.29 a7.36 11.94 123.26
1959 §92.29 79.04 20.09 12557
2000 BG5.14 90.92 15.95 12615
2001 713.37 91.84 2081 127 44
2002 §92.29 9052 18.92 12553
2003 §99.24 93 .69 16.95 132.25
2004 §32.70 g7.36 15.03 133.68
2005 599 .24 92 75 15.95 13510
2006 74248 894 /3 2091 136.66
2007 §a5 .40 40.52 12.94 137 .56

Figure 2.3 Typical data format for weather normalization
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2.2.3 Horizon Year Load

A land used based approach to calculate horizon year load (HYL) will be proposed in section

2.4. This approach requires a land use code and current and future land use information:

A land use code describes the purpose of land use or customer types within the small area,
e.g., commercial, industrial, low-density residential, high-density residential, water body, etc.

All types are coded using numbers as shown in Figure 2.4.

10 Water Body
20| Industrial f Business
38 | Exdractive
40 Tranzportation
S0 Cammercial (Retail and Services)
70| Institutional § Government
80| Parks § Outdoor Recrestion
90 Agricutture ! Vacant
97 Matural Area
29 YWoodland
100 | Rural Residential
110 | Low Density Residential
120 Medium Density Residertial
130 High Density Residertial
200 Mixed Commercial F Residential
210 Planned Meighborhood
400 Communication £ LEiities
999 Under Construction

Figure 2.4 Land use code

Current and future land use present the exact amount of land used for each land use code on a
small area basis, e.g., in a small area, 21.3% of the area is used for commercial purposes,

10.8% of the area is a water body (lake or river), and the other part is vacant. Both current
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and future land use information are required to calculate HYL. The data format of current

land use is shown in Figure 2.5, while future land use has exactly the same format as shown

in Figure 2.6.
A | B | ¢ | D ] E [ F | & | H [ 1 J | K L [ M M =
1| CURRENT LAMD USE TYFPE
| 2 | 1 2 3 4 5 5] 7 8 9 10 1 12 13
hlatural §
Commercia Low Medium High Parks 1 Woodland #
Inclustrial # | (Retail &  Institutional # Rural Density Density Density Communicat | Transportati | Agricutture /) Outdoor Water /

3 [SHAPE MNUMBER Business  Edractive | Services) Government  |Residertisl Residertisl |Residertisl |Residertial |ion / Lkities on acant Recreation | Cther
EX 57530 0 0 0 0 0 0 0 0 0 0 0 0 0.400239
| 5 | 57531 0 0 0 0 0 0.04697 0 0 0 0031715 0.07542 0 0779836
B | 675632 0 0 0 0 0 0 0 0 0 0.0102583 0.3479 0 0.562365
7 57533 0 0 0 0 0 0 0 0 0 0 0.213471 0 0680182
g | 67534 0 0 0 0 0 0 0 0 0 0 0.639305 0 016667
EN 57535 0 0 0 0 0 0 0 0 0 0 0.429012 0 0
| 10 | 57536 0 0 0 0 0 0 0 0 0 0 0.021501 0 0
11 57759 0 0 0 0 0 0 0 0 0 0 0.00755 0 0.730754
12 | 57760 0 0 0 0 0 001473 0 0 0 000332 052485 0 0.456966
|13 | 57761 0 0 0 0 0 0.003935 0 0 0 0.040432 0.805305 0 0.180182
14 | 57762 0 0 0 0 0 0 0 0 0 0 0.408337 0 0.591663
| 15 | 57763 0 0 0 0 0 0.047525 0 0 0 0 0511942 0 0.440531
|16 | 57764 0 0 0 0 0 0.041268 0 0 0 0.033461 0.924399 0 0
|17 | 57765 0 0 0 0 0 0 0 0 0 0.004239 0.041426 0 0
| 18 | 57587 0 0 0 0 0 0 0 0 0 0 011524 0 0.000128
| 19 | 575985 0 0 0 0 0 0 0 0 0 0 0551111 0 0.430343
| 20 | 57589 0 0 0 0 0 0.01086 0 0 0 0.052258 0.759434 0 0.137489
21 | 57590 0 0 0 0 0 0034624 0 0 0 0.077841 0.554844 0 0292621
| 22 | 575991 0 0 0 0 0 0 0 0 0 0 0714376 0 0.285624
| 23 | 575992 0 0 0 0 0 0.194692 0 0 0 0.029312) 0.274703 0 0.501282
| 24 | 57593 0 0 0 0 0 0.076351 0 0 0 0.06076 0.656614 0 0.052405
| 25 | 58215 0 0 0 0 0 0 0 0 0 0.00056 0.003078 0 0.002295

e £oE n n n n n n n n n nl nadiEen nlnanodac ¥

Figure 2.5 Current land use data
A | B c | D E | F 5 H [ 1 | 0 [ k [ L | W™ [ N [~
| 1| FUTURE LAMD USE TYPE
| 2 | 1 2 3 4 5 5] 7 8 9 10 " 12 13
hatural i
Commercial Lo hledium High Parks ! Wiondland f
Industrial # (Retail & Institutional / Rural Density Density Density Communicat | Transportati | Agricutture f Outdoor Wister /

3 | SHAPE NUMBER Business Extraclive  Services) | Government Residertial |Residertisl | Residentisl Residential ion J Utiities on ‘acant Recrestion | Other
|10 | 57536 0 0 0 0 0 0 0 0 0 0 0.021501 0 0
11 57759 o 0 0 0 0 0 o o o 0 0.007981 0 0730754
1 12 | 57760 0 0 0 0 0.01473 0 0 0 0 000332 052495 0 0.456966
13 | 57761 0 0 0 0 0.003938 0 0 0 0 0.040523 0.805305 0 0150192
|14 | 57762 0 0 0 0 0 ] 0 0 0 0 0408337 0 0.581663
| 15 | 57763 0 0 0 0 0.047528 0 0 0 0 0 0511242 0 0.44083
| 16 | 57764 0 0 0 0 0.041268 0 0 0 0 0033462 0924398 0 0
| 17 | 57765 0 0 0 0 0 0 0 0 0 0.00423%9 0.041426 0 0
|18 | 575987 0 0 0 0 0 0 0 0 0 0 011524 0 0.000128
19| 57585 0 0 0 0 0 0 0 0 0 0 0551111 0 0.430343
|20 | 57589 0 0 0 0 0.010581 0 0 0 0 0.082237 0799436 0 0137489
| 21 | 57590 0 0 0 0 0.034622 ] 0 0 0 0.077935 0554843 0 0282602
| 22 | 575991 0 0 0 0 0 0 0 0 0 0 0714376 0 0.285624
| 23 | 575992 0 0 0 0 0.194692 0 0 0 0 0029357 0274707 0 0501278
| 24 | 57593 0 0 0 0 0.076351 0 0 0 0 0.06077 0696613 0 0.092405
| 25 | 582148 0 0 0 0 0 0 0 0 0 0.000566 0.003078 0 0.002298
| 26 | 58216 0 0 0 0 0 ] 0 0 0 0 0341557 0 0202446
| 27 | 58217 0 0 0 0 0 0 0 0 0 0 0.84529 0 0.154697
| 28 | 58218 0 0 0 0 0.021588 ] 0 0 0 0 0178347 0 0.500331
| 29 | 55219 0 0 0 0 0.022524 0 0 0 0 0073174 0.233493 0 0670355
| 30 | 58220 0 0 0 0 0 0 0 0 0 0019828 0437854 0 0542253

Figure 2.6 Future land use data
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2.3 Data Preprocessing

2.3.1 Small Area Based Historical Load

The first step of data preprocessing is to convert transformer based load data to small area
based load data and assign coordinates to each small area. The extraction procedure is the
following:

1) Rank the shape numbers of all the small areas from low to high;

2) Define the reference point for each small area, e.g., the upper-left corner;

3) Add the load of transformers with the same shape number together, the result of

which is the historical load for this small area.

As shown in Figure 2.7, column B and C show the coordinates of the reference point in a
small area, while columns D to J are small area based annual peak load data from 2001 to

2007, the unit of which is kW.

A [ B \ c | o | E | F | e | H [ 1 T 4 |=

(1 YEAR

2 |SHAPE NUMBER COORDINATE XCOORDINATE Y 2001 2002 2003 2004 2005 2006 2007
B 57530 2068500 402000 0 0 0 0 0 0 0
(4 | 57531 2068500 403500 547191 446938 553405 52614 603313 332276 3.35085
[ 5 | 57532 2068500 405000 0 0 0 0 0 0 0
(6 | 57533 2068500 406500 0 0 0 0 0 0 0
(7 57534 2068500 408000 0 0 0 0 0 0 0
| 8 | 57535 2068500 409500 0 0 0 0 0 0 0
B 57536 2068500 411000 0 0 0 0 0 0 0
(10 | 57759 2070000 402000 0 0 0 0 0 0 0
(11| 57760 2070000 403500 884625 7.16416 108739 003373 846369 453365 541002
(12| 57761 2070000 405000 0 0 0 0 0 0 0
| 13 | 57762 2070000 406500 0 0 0 0 0 0 0
(14| 57763 2070000 408000 994063 7.75569 10971 962936 165619 9.02389 960405
(15 | 57764 2070000 409500 4.10393 3.28631 4.36899 3.07742 324155 3.84214 288834
(15 | 57765 2070000 411000 0 0 0 0 0 0 0
(17 | 57987 2071500 400500 0 0 0 0 0 0 0
(18 | 57988 2071500 402000 0 0 0 0 0 0 0
(19| 57989 2071500 403500 1.82397 131452 203886 1.88616 22424 1.04988 1.11901
(20 | 57990 2071500 405000 123118 102533 157284 151886 17.3415 0953469 9.78738
(21| 57991 2071500 406500 0 0 0 0 0 0 0
22 57992 2071500 408000 14.683 114384 116506 106221 123635 7.1432 595495
(23 | 57993 2071500 409500 1.09438 222155 282528 249172 320002 10.2585 135677

Figure 2.7 Small area based historical load data
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2.3.2 Service Territory Map

According to the coordinates of small areas, a service territory map can be drawn as the light
yellow area in Figure 2.8. In the beginning stage, the service territory map can be used to
verify the data quality. Sometimes due to errors from a data source, some regions may not
appear in the map correctly. By comparing the generated map with the real map, one can tell

approximately whether the service territory has been correctly represented.

Figure 2.8 Service territory map

2.3.3 Weather Normalization
In this thesis, a system-wide normalization is used to generate coefficients to normalize the

small area historical load. As shown in Figure 2.3, four categories of data will be used in a

system-wide normalization: actual peak load (y ), maximum temperature (x,), CDD (x,),
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and employment ( x, ), the natural log of which are denoted as y, x,, x,, and x, respectively.
The least square method is used to calculate the coefficient (k,, k,, and k;) of a line to best
fit the given data, the formula of which is

y=kx +k,x, +kx, 2.1
The weather normalized system load ( y") is shown as the blue curve in Figure 2.9, while the

purple curve represents the actual load.

‘—Q—Normalized Peak Load —s— Actual Peak Load ‘
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Figure 2.9 Weather normalized load vs. actual load

The coefficient ¢, is used to normalize small area load of a particular year i, and can be

calculated by:
¢, ==, (2.2)

where y, is the actual system load of year i, and y, is the normalized system load of the

same year.
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And the normalized load is equal to the actual historical load data multiplied by the

coefficient c;:

L.=cL (2.3)

ij i

where L is the actual historical load of a small area j in year i, and L,;,- is the normalized

load.
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2.4 Determining Horizon Year Load Using Land Use Information

Horizon year load (HYL) describes the load of a fully saturated small area. In long-range
spatial load forecast, an estimate of the farthest forecast year load can be considered as HYL,
although the land may be further developed or redeveloped after the forecast range. It is
crucial to get a quality HYL for a useful forecast. Figure 2.10 and Figure 2.11 show how

different HYLs affect the forecast given the same historical data.

As shown in Figure 2.10, in which HYL increases from 10kW to 80kW, the long range
forecast varies almost linearly according to the change of HYL. Historical data takes the role
of the saturation period when HYL is 10kW, while it acts as a dormant period when HYL is
80kW. Figure 2.11 shows how a small variation of HYL affects the forecast. When HYL
varies from 10kW to 16kW, historical data stays in the saturated stage, while the forecast of

the recent years vary less significantly than years further out.
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Figure 2.10 Effect of HYL on the overall forecast (1)
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Figure 2.11 Effect of HYL on the overall forecast (2)

HYL of the small areas in the service territory can be calculated based on land use data from

the county, customer count data from utilities, or both. In this section, a land use based
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method to determine HYL is introduced. An implementation in MS Excel is described as

follows:

The land use types are divided into 10 to 15 categories based on physical meaning of data
(e.g., group different factories as industrial land use). Original land use data from a given
county may includes 20 or even more types, which is inefficient for calculation, while 10 to
15 categories are fewer and more practical considering both the computational complexity

and the quality of the results.

The load density variables (d,, k = 1, 2, 3...) are set for each category, and are used to

calculate the load of the most recent historical year (known as base year b) for each small

area by multiplying load density with current land use:

L,=>(d,-CLU,), (2.4)

k

where ﬁbj is the calculated base year load of small area j, d, is the load density of category k,

and CLU,; is the acreage of current land use category & in small area j.

To solve the optimization formulation using Excel add-in Solver, tune the load density
variables to minimize the sum of square errors between the calculated base year load and the

weather normalized base year load with the constraint of non-negative load density:

Min: ML, -L,)
J
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s.t. d,20,k=1,2,3, ... (2.5)
Calculate the mismatch E; between the calculated and weather normalized base year load:
(2.6)

Multiply the calculated load density with future land use, and then add the mismatch
calculated from step 4 to the result from step 5 to get the adjusted load of horizon year, which

is HYL.

HYL,=)(d,-FLU)+E,, (2.7)
k

where FLU,; is the acreage of future land use category k in small area j.

Notice that in many cases, several small areas with a large mismatch may have a big affect
on the load densities. In practice, it is good to treat this small proportion of data as outliers

and use the other small areas to calculate the load densities.
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2.5 Neighborhood Module

In the hierarchical trending method, small areas are aggregated from bottom to top and the
system-wide load is distributed from top to bottom. During this process, small areas within
the same neighborhood are aggregated, and the load of the upper level region will be
allocated to the small areas within the same neighborhood as well. Neighbor here may not be
geographically adjacent, but a scheme exists to group the small areas or sub regions in each
level. The neighborhood table (Figure 2.12) is the link of this iterative method. This section

introduces a simple but robust approach to build a neighborhood table.

A | B [ ¢ [ b | E | F |

1| 1 1 1 1 1 1
| 2 | 2 1 1 1 1 1
ER 3 1 1 1 1 1
4 4 1 1 1 1 1
5 | 5 1 1 1 1 1
6 | B 2 1 1 1 1
7 7 2 1 1 1 1
8 | 8 2 1 1 1 1
ER 3 2 1 1 1 1
10| 10 2 1 1 1 1
11 | 11 3 1 1 1 1
12 | 12 3 1 1 1 1
13 | 13 3 1 1 1 1
14 | 14 3 1 1 1 1
15 15 3 1 1 1 1
16 | 16 4 1 1 1 1
17 | 17 4 1 1 1 1
18 | 18 4 1 1 1 1
19 | 19 4 1 1 1 1
20 | 20 4 1 1 1 1
| 21 | 21 5 2 1 1 1
|22 | 22 5 2 1 1 1
| 23 | 23 g 2 1 1 1
24 | 24 5 2 1 1 1
25 | 25 5 2 1 1 1
26 | % B 2 1 1 1
| 27 | 7 B 2 1 1 1
28| 28 B 2 1 1 1
29 | 29 B 2 1 1 1
30 | a0 B 2 1 1 1
El 3 7 2 1 1 1
32 | 32 7 2 1 1 1

33 33 7 2 1 1 1

Figure 2.12 Neighborhood table
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The neighborhood table is a table of indices of sub-regions. As shown in Figure 2.12, the
columns represent the levels from bottom to top, and each entry represents the sub-region
index in the corresponding level. For example, column B represents the 2™ level bottom-up,
and cell B7 represents the 2™ region in level #2. In this neighborhood table, small areas #1
through #5 in level #1 form sub-region #1 in level #2, sub-regions #1 through #4 in level #2
form sub-region #1 in level #3, and so forth. In each level, every sub-region should include
the same amount (4 or 5) of sub-regions in the lower level, though this is not a hard

requirement.

With the above considerations, the procedure of building a neighborhood table is described
as follows:

1) Determine a load growth threshold as the just noticeable difference for load
forecasting. In other words, if the horizon year load is no more than the sum of this
threshold and the base year load, planners can consider that there is no growth in this
small area through the forecast range.

2) Build a binary tree to calculate the potential numbers of sub-regions in each level as
shown in Figure 2.13. Each child node is equal to its parent node multiplied by 4 (if it
is the left child node) or 5 (if it is the right child node). The binary tree is built using
the depth-first search from the right to the left. Eliminate the node if its value is the
same as the one generated already. The value of the node in the bottom level should

be no more than the number of small areas.
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3) Determine the number of small areas that will be considered for forecast. This
number is the smallest potential sub-region number that includes all small areas
whose mismatches are above the threshold.

4) Assign indices to the selected small areas. In the binary tree, trace from level #1 to the

root to build the neighborhood table using the multiplier (4 or 5).

Level #6

Level #5

Level #4

Level #3

Level #2

Level #1

Figure 2.13 Potential amount of sub-regions in each level
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2.6 Bottom-Up Aggregation: S-curve Parameter Tuning

Historical load and horizon year load of the small areas within each neighborhood are
aggregated from the bottom level to the top level as shown in Figure 2.14. In each level, S-
curve is used to fit the corresponding data from each small area (bottom level) or sub-region
(second level or higher). During this bottom-up aggregation, the S-curve fitting is a crucial
segment, the results of which will be the starting point for each small area or sub-region of

top-down allocation. Parameter tuning of S-curve will be discussed in the following sections.

2.6.1 Format of S-curve

The typical format of S-curve (Gompertz function) can be written as:
(1) =ae"", (2.8)

where a is the upper asymptote, c¢ is the growth rate, and b and c are negative numbers. This

typical format can be adopted as:

_clt+In(=b)/c)

y(1)=ae”* (2.9)

Let

At = —lln(—b) . (2.10)
c

32



Figure 2.14 Bottom-up aggregation

Formula (2.9) is equivalent to:

7ec(r—Ar)

y() =ae , (2.11)

where a is the HYL of a small area, c is the load growth rate, and At is the ramp up time.

Comparing with the typical format in (2.8), formula (2.11) is fundamentally the same but has

the advantage that each of the three parameters has its own physical meaning, which is
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important to the users (planners) because the parameter tuning process can be easily
visualized. Therefore, formula (2.11) has been used to represent S-curve in this thesis. For
example, the ramp up time depends upon both b and ¢ in (2.8), while in (2.11) it is

determined by At only.

Figure 2.15 shows how the shape of S-curve is affected by tuning HYL parameter a: the S-
curve is stretched vertically as the HYL parameter is increasing. Figure 2.16 shows how the
shape of S-curve is affected by slope parameter c: the S-curve is stretched horizontally as the
absolute value of ¢ is decreasing. As the slope is approaching zero, the S-curve tends to
become a straight line. Figure 2.17 shows how the shape of S-curve is affected by ramp up

time parameter Az: the S-curve moving from the left to the right as At is increasing.
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Figure 2.15 S-curve shapes affected by HYL parameter
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Figure 2.16 S-curve shapes affected by slope parameter
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Figure 2.17 S-curve shapes affected by ramp up time parameter

35




2.6.2 Problem formulation

Bottom-up aggregation involves two elements:
1) Aggregate the historical load and HYL of the neighborhood small areas or sub-
regions to obtain the historical load and HYL of the sub-region in the upper level.
2) Fit the historical load data of a small area or sub-region given the HYL using S-curve,

which can be modeled as an optimization problem:

Min: \/ L i (e —no))

H 5
s.t. c<0, (2.12)

where H is the length of historical load, and A(¢) is the historical load of the rth year.
This step is to tune the slope and shift the curve horizontally to find the best match

with the historical load.
2.7 Top-Down Allocation: Multi-objective Optimization

Compared with the decision making process introduced in section 1.2, bottom-up
aggregation simulates regional planners’ forecasting process, while top-down allocation is
like distributing the corporation forecast load growth to sub-regions in lower levels, and even
down to the small areas in the bottom level (Figure 2.18). There are several goals during this
process:
1) Generated S-curves should match the correspondent historical load.
2) The sum of future forecasted loads of neighborhood small areas or sub-regions in a
given lower level should match the future forecasted load of the correspondent sub-

region in the upper level.
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3) Since the development period of regions with the same size is similar, the slope of
small areas of sub-regions in the same level should be close.

4) The load in the farthest forecast year should be close to HYL.

Figure 2.18 Top-down allocation

The corporation forecast load of the future years will be used in the top level to drive top-
down allocation. To achieve the above goals, a multi-objective optimization approach is
applied, where the first two are put into objectives, and the latter two are put into constraints:

1) Minimize historical load mismatch Fj:

1 & i (1-A1p)
t=1

where K is the number of neighbors in one neighborhood in a given level.

2) Minimize future load mismatch G:

2
1 N K i) B
G= \/m P (Z (ae ) f(f)J (2.14)

i=1
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where N is the total number of years including the historical years, and f(¥) is the
forecasted load of correspondent sub-region in the upper level.
3) Slope boundary: C , <c, <C

where C,  and C . represent the upper bound

and lower bound of the slope.

4) Ramp up time boundary: Af , <At, <Af .

To sum up, each allocation unit can be formulated as:

K
Min: MY F+M,G
i=1
s.t. Coin S, <C, .
At SAL S At

max ’

where M, and M, are the penalty factors for historical load mismatch and upper level future
forecasted load mismatch respectively. In practice, M; is set to be much larger than M, to

make the resulting forecast fit the historical load.
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3  Human-Machine Co-construct Intelligence

3.1 Motivation

Although the automated computer program is convenient for users, the results lack common
judgment. For instance, it may produce a higher load density of residential customers than
industrial customers, which is intuitively incorrect to a distribution planner. Since there are
many such rules based on planners’ experience, it’s neither efficient nor feasible to input all
of them as constraints into the program. As an enhancement, a human expert is integrated
into the problem solving loop to provide heuristics and insights to correct or confirm the
results from the computer. The iterative calibration process, in which human and machine
work together and negotiate with each other to come up with a solution, is named as human
machine co-construct intelligence (HMCCI). Figure 3.1 shows a semi-automated program
structure with the HMCCI framework implemented in the HYL module and the overall

procedure illustrated.

Through the further development and use of practical analytical multi-objective planning
techniques, analysts can begin to interact with all participants in the planning and
management process and can enlighten any who would argue that electric resources policy
evaluation and analyses should not be political. Analysts, utility company managers and
planners have to work in a political environment. They need to understand the process of
decision-making, what information is most useful to that process, and how it can best be

presented. Knowledge of these facts in a particular planning situation might largely dictate
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the particular approach to objective identification and quantification and to plan selection that

is most appropriate.

The method deemed most appropriate for a particular situation will depend not only on the
physical scale of the situation itself but also on the decision-makers, the decision-making
process, and the responsibilities accepted by the analysts, the participants and the decision-

makers.

Finally, because that the decisions being made at the current time are only part of a sequence
of decisions that will be made on into the future. No one can predict with certainty what
future generations will consider as being important or what they will want to do, but
spending some time trying to guess is not an idle exercise. It pays to plan ahead, as best one
can, and ask ourselves if the decisions being considered today will be those we think our
descendants would have wanted us to make. This kind of thinking gets us into issues of

adaptive management and sustainability

In the HYL module, distribution planners can critique the HYL density of each customer
class based on their planning experience, e.g., the load density of industrial land should be
much higher than that of residential land. Planners can also revise the land use data to his/her
knowledge of the place he is familiar with. As an overall procedure, planners can add
scenarios by adjusting the land use data and horizon year load of some particular small areas
to meet the expected load growth. In the following two sections of this chapter, methods of

using HMCCI to determine HYL and added scenarios will be discussed.
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Figure 3.1 A semi-automated hierarchical trending method with HMCCI framework

41



3.2 Determining Load Densities Using Greedy HMCCI

3.2.1 Greedy Selection Procedure

As discussed in Section 2.4, load densities are calculated as intermediate results using current

land use information and base year load, and HYL can be determined based on these load

densities and future land use information. An optimization problem is formulated to calculate

the load densities. Table 3.1 shows the resulting load densities when different amounts (from

100% to 99.0%) of the small areas are taken into consideration. Notice that all of these

densities are equally reasonable to a computer running the optimization problem formulated

in Section 2.4. However, an experienced distribution planner can understand the extensive

physical meanings about these numbers and help the computer to select a more suitable set of

load densities, or critique the current solutions to pursue better ones.

Table 3.1 Load densities for selection procedure

Land Use Information Load Density (kW/acre)
Current | Future

Index Land Use Type Acreage | Acreage | 100.0% | 99.8% [ 99.5% | 99.0%
1 Industrial / Business 2490 4820 45.57 37.26 31.24 28.55
2 Extractive 1060 394 0.00 0.00 0.00 0.00
3 Commercial (Retail & Services) 4025 6204 34.30 39.29 37.60 40.41
4 Institutional / Government 2791 2733 | HSNEB | 2671 | 2404 | 2225
5 Rural Residential 358 5553 | GG | HSS 9.92 | 11.74
6 Low Density Residential 16696 17446 2.64 4.81 6.26 6.58
7 Medium Density Residential 894 1607 36.62 35.49 31.21 32.84
8 High Density Residential 2525 3137 30.78 26.93 25.86 25.77
9 Communication / Utilities 695 673 1353 | 1568 | 1589 | SR |
10 Transportation 15372 16174 10.45 8.80 6.08 4.56
11 Agriculture / Vacant 66699 47679 0.00 0.00 0.00 0.00
12 Parks / Outdoor Recreation 5697 6802 0.00 0.27 0.65 0.96
13 Natural / Woodland / Water / Other | 47490 50689 0.00 0.00 0.00 0.00
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A greedy algorithm tries to find a local minimum at each stage of the problem with the hope
of reaching a global optimum at the end. Although most of the time greedy algorithms fail to
find the global optimum, they often produce a reasonably good approximation of the global
optimum within a short time. Various greedy algorithms have been developed to solve NP-
complete problems. However, due to the partial information utilized in each stage,
computerized greedy algorithms may even reach the worst solution sometimes. This is
definitely undesirable to some critical applications including load forecasting, because a bad
forecast may lead to a disaster in a city and create much damage to the society. In this section,
a human expert is put into the loop of the greedy strategy to have an overall control of the
results in order to avoid worst case scenarios, or to even improve the results from the purely

computerized program.

A greedy selection procedure can be described as following:

1) Find out the agreed upon observations among all the candidate solution sets.
Highlight the observations using the color green, and exclude them from the future
decision making.

2) Rank the significance of the remaining observations from more significant to less
significant. If all of the remaining observations are similarly significant, just place
them in any sequence.

3) Starting from the first observation in the queue, find out the solution set with the most
disagreement, if there is one, among all the solution sets, and mark the observation in

this solution set using the color red. If there is no disagreement on the observation,
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move to the next one, until all the observations have been checked or there is only
one solution set with no red mark. The remaining one or more solution sets without

red mark will be the preferred choices.

The key argument here is that the good enough subset and the selected subset. Informally, a
good enough subset is a subset of the search space in which the members satisfy some
planning criteria set forth by the decision maker. Oftentimes, a good enough subset is easy to
specify but difficult to obtain by the machine intelligence. In contrast, the selected subset is a
subset in which the members are picked out by the human intelligence using certain
evaluation analogies or metaphors as the outcome for the planning process. Every
optimization problem can, in principle, be conceived as the goal of matching a selected
subset with the good enough subset. Take Table 3.1 as an example:
1) All the solution sets agree that land use types #1, #11, and #13 have zero load
densities, which are highlighted in green.
2) Suppose the remaining land use types are equally significant, so they are placed as
they are numbered.
3) The load density of land use type #4 calculated by 100% small areas is marked as red,
because it is significantly higher than the others.
4) The load density of land use type #5 calculated by 100% small areas is marked as red,
because it is significantly higher than the others.
5) The load density of land use type #5 calculated by 99.8% small areas is marked as red,

because it is significantly lower than the others.
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6) The load density of land use type #9 calculated by 99% small areas is marked as red,
because it is significantly lower than the others.
7) Therefore, load densities calculated by 99.5% small areas are selected as a reasonable

solution set for further calculation of HYL.

3.2.2 Greedy Critique Procedure

Although the selection procedure allows a planner to select the best solution set in his/her
mind among all the solution sets provided by the computer, it may still fail when none of the
computer-provided solution sets are reasonable or when part of the solution sets have
considerable drawbacks. A critique procedure can overcome such a failed scenario:

1) Starting with a solution set, find out the agreement between the planner and the
computer. Mark the corresponding variables using the color green, make them as
constants, and exclude them from the optimizations.

2) Among the remaining variables, find the most disagreed on variable, change its value,
mark it as yellow, make is as a constant, and exclude it from the optimizations.

3) Tune the remaining variables to minimize the mismatches. If the all of the resulting
densities are colored by green or yellow, use them to compute HYL. Otherwise, go

back to step (1).

Since in each time the planner and the computer will at least agree on one observation of all
the finite many observations, the process will converge into a solution within finite many

steps.
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Table 3.2 shows a mock critique process starting with the calculation of 99.5% small areas,

where the agreed upon values are highlighted in green and the manually modified values are

highlighted in yellow:

1)

2)

3)

4)

5)

6)

7)

The planner agrees with the load densities of land use type #2, #11, #12, and #13.

The planner changes the load density of transportation from 6.08kW/acre to
2.00kW/acre.

Among the resulting load densities, the planner agrees on land use type #1, #7, #8,
and #9.

The planner changes the load density of the rural residential customers from
11.56kW/acre to 7.64kW/acre.

The planner agrees with none of the remaining resulting load densities.

The planner changes the load density of the commercial customers from 46kW/acre
to 38kW/acre.

The planner is satisfied with all of the load densities. The load density results can be

used in the HYL calculation.

Planners and managers working toward improving the performance of, or the solution sets

provided by, these complex systems must identify and evaluate alternative plans and

management or operating policies, comparing their predicted performance with desired goals

or objectives. This is achieved through the greedy critique procedure.
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Table 3.2 Using critique procedure to calculate load densities

Step

Step Step Step Step Step Step
Index Land Use Type 1 2 3 4 5
1 Industrial / Business 31.24 | 31.24
2 Extractive -:I
3 Commercial (Retail & Services) 37.60 | 37.60 | 44.79 | 44.79 | 46.00
4 Institutional / Government 24.04 | 24.04 | 19.97 | 19.97 | 18.02 | 18.02
5 Rural Residential 9.92 9.92 11.56 | 7.64 7.64
6 Low Density Residential 6.26 6.26 7.64 7.64
7 Medium Density Residential 31.21 | 31.21
8 High Density Residential 25.86 | 25.86
9 Communication / Utilities 15.89 | 15.89
10 Transportation 6.08 2.00 | 2.00 | 2.00 | 2.00 2.00
11 Agriculture / Vacant
12 Parks / Outdoor Recreation
13 Natural / Woodland / Water / Other

2.00
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3.3 Customized Scenarios

Although well-tuned load densities can provide overall matching with the current load of
most of the small areas, in a few small areas, which are treated as outliers, there may be some
local rules that differ a lot from the calculated load densities. Even among the small areas
used in the optimization problem, the variance of mismatches is still very large due to the
local information that a computer program doesn’t have. Therefore, such information has to

come from the local planners.

Furthermore, because of the multitude of factors that determine demand, perfect forecasting
of economic development and resulting demands is a utopian dream. Future demands are
often dependent on future scenarios. An electric load demand scenario is a logical
combination of basic parameters of the economy. An understanding of the functioning of the
socio-economic system, based on the human expert knowledge developed through the
assessment of past and present trends should be used to formulate a limited number of
consistent scenarios. Therefore, integration of planners’ local knowledge is essential for a

useful forecast.

3.3.1 Revising Horizon Year Load

As discussed in the last chapter, HYL can directly affect the forecast. Thus, a planner can
manipulate the forecast through revising HYL. For example, a local data center is going to
gradually increase the number of computers during the next several years, which will

apparently increase the future load consumption. However, this information will not be
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reflected by land use information, because land use is the same as before. Therefore, the
computer program is not able to indentify such growth. In this case, the planner can simply
increase the HYL to include the load growth introduced by an increased number of

computers.

Since HYL i1s calculated through land use data and base year load, land use data can affect
the HYL as well. It is possible that errors exist in the land use data, which will lead to a
wrong forecast if the error is significant. By looking at the forecast maps, a planner can tell
by intuition whether the forecast is reasonable or not. For example, the forecast map may
show that there is some load growth on a lake, which is a water body that has a zero load
density. When checking the future land use data, the planner finds that some residential land
use is misplaced on the lake. In this case, the planner can correct the land use data by erasing

the residential land on the map.

3.3.2 Adding New Business Information

Back to the example of the data center extension example, if the increase in number of
computers is going to take effect at the beginning of the following year, it is not suitable to
model this by increasing the HYL, because there is suppose to be a jump in the middle of the
original smooth S-curve. In this case, the planner can model the extension as a new business
by adding the same land use that is equal to the original data center to the corresponding
small areas. The extra load growth will be calculated separately and added to the top-down

forecast results.
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Redevelopment can be modeled as the combination of revising land use data and adding new
business as well. Sometimes, old residential land may be redeveloped as commercial land. If
future land use does not include such a redevelopment plan, the planner can subtract the
residential land use from the future land use data, and add new commercial customers as new

business to reflect the corresponding load growth.
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4  Implementation and Results

The whole algorithm has been implemented in Microsoft Office Excel 2003 Visual Basic for
Applications with Solver add-in. This chapter is devoted to introducing the implementation,

Graphical User Interface (GUI), and related results.
4.1 Initialization

Some basic information is necessary to initialize the tool, which is put into the

“Initialization” worksheet as shown in Figure 4.1.

In this worksheet, a planner needs to input the following information:

1) Names of the utility company and the planner. These two names will not be used in
the program, but are for documentation purpose.

2) Temporal information that includes the base year, length of historical data, and
forecast range. The first two will be used to generate the header of “Load History”
worksheet (Figure 2.7).

3) Spatial information. The planner should input the length of a bottom-level small area,
on which the size of the small area in both square footage and acreage is calculated
automatically. The planner should also fill in the number of land use types which will
be used to generate the headers of “Current Land Use” (Figure 2.5) and “Future Land

Use” worksheets (Figure 2.6).
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4) Corporation forecast. The planner can use a common percentage as the approximate

corporation forecast, or specify the load growth of each year.
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Figure 4.1 “Initialization” worksheet

After completing the above information, the planner can click the ‘“Next Step” button to

generate the headers of “Load History”, “Current Land Use” and “Future Land Use”
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worksheets. Then the planner should fill in the three tables following the pre-defined format.
The “Clear Data” button is used to reset the whole tool. By clicking this button, all the data

input by the user and calculated by the program will be cleared.
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4.2 Weather Normalization

Weather normalization is conducted after inputting the historical load, and current and future
land use information. “Weather Normalization” is a stand-alone worksheet as shown in

Figure 4.2. The data for calculation has been entered and hidden to the user.
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Figure 4.2 “Weather Normalization” worksheet

As introduced in Section 2.2.2, weather normalization applies a multivariate regression
approach to calculate the coefficient for each historical year. There are four functional
buttons in the “Weather Normalization” worksheet:

1) Clear Form: Delete all the data in this table.

2) Reset Form: Copy the pre-entered hidden data to the table.

3) Calculate Weather Normalization Parameters: Use multivariate regression to calculate

the coefficient for each year.
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4) Apply Weather Normalization Parameters: Multiply the raw historical load from the
“Load History” worksheet by the corresponding coefficient and output the weather

normalized load to the “All Data” worksheet as shown in Figure 4.3.
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| 11 | 57760 2070000 403500 6.813297 | 1057709 9.877694 8512716 4372203 5710488 §.500033113 o o o o
(12 | 5771 2070000 405000 a a a a a a a 0774271611 a a a a
[ 13 | a77e2 2070000 408500 a o o o o o 0 o o o o o
| 14 | 577E3 2070000 408000 944183 7.375863 10.67152 10.52837  16.65787 | 8702544 10437§58 19.13836885 o o o o
| 15 | 57764 2070000 409500 692555 3125366 4249722 3364929 3260327 3705323 3.043§7 10.86431755 a a a a
| 16 | a77ES 2070000 411000 a o o o o o o o o o o o
|17 | 57987 2071500 400500 a o o o o o o o o o o o
| 15 | 57935 2071500 402000 a a a a a a a a a a a a
119 | 57989 2071500 403500 1.6%1135 1.280146 | 1083204 2062376 225539 1.01249 1.15f123 3474433408 a a a a
| 20 | 57930 2071500 405000 9751144 15.299 16.60755 17.44193) 9195159 1043065 16.91762754 a a a a
| 21 | 57991 2071500 406500 a a a a a a a a a a a
| 22 | 57932 2071500 408000 13.211 10.87627 | 11.33259| 1161443 1243511 6885824 4285515 4317187045 o o o o
| 23 | 57993 2071500 409300 0.954851 . 2745154 | 27.24507 | 3218551 95931 14.32082 25.75376827 a a a a
| 24 | 28215 2073000 399000 a o o o o 0.00M966583 o o o o
| 25 | 58216 2073000 400500 a o o o o o o o o o o
| 26 | 55217 2073000 402000 a a a a a a a a a 0w
W 4 v W Load History 4 Current Land Use £ Future Land Use / Weather i Solver % All Data  Service Teritory £ Mew Busines < *

Figure 4.3 “All Data” worksheet — weather normalized historical load
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4.3 Horizon Year Load Solver

The HYL of each small area is calculated in the “HYL Solver” worksheet as shown in Figure

4.4. There are four functional buttons:

1) Initialize HYL Solver: Copy necessary data, such as the base year load, and the

current and future land use data to the present worksheet. Then calculate a statistical

summary (e.g., current and future acreage of each land use type) and set up formulas

to prepare for Solver’s optimization. Finally copy current and future land use data to

the “All Data” worksheet.

2) Calculate HYL: Run Solver twice to get the load densities as well as the HYL. All

small areas are used for optimization the first time, and a user-determined percentage

of small areas is used at the second time.

3) Apply HYL: Copy calculated HYL to the “All Data” worksheet.

4) Reset Form: Delete all the data and reset the form back to its original status.

c | 3] | E | F | [ | H [~

1 Land Use information
=1 Notation:
= L el e Cuner poreane Pl coreane Load Densty (WBSe). | ot wse f the percentage s p, then (1-p)/2 of the data with largest
| 2 Tosa e 38375 000 positive mismatch and (1-p)/2 of the data with largest absolute value of
[ 5 | 3 Commercial (Retail & Services) 402497 620392 3760 negative mismatch wil not be used to calculate load density, 99.5% is

6 4 nstiulional  Government 27a083 273271 2004 recommended for the current setup
7| s Rural Resiceniiel 3514 555208 022
e | s Low Density Residentil 18895.96 1744562 625 T -

El T Medium Density Residential 89394 1607 45 2
10| 8 High Density Residertial 252533 3716 2586 SteapldiddReset forny
11| 3 Commurication J Litiities 63545 67348 1583 [0 8 @ T e i, €I
B 10 Tt 15371 63 1517374 608 Step 2: Input the percentage of data to be used, then click Calculate HYL,
13| " Agricuture | Vacant BEBIB.52 4767926 000 Step 3: If the Ioad density resuits or HYL are not satisfied, go to step 2. If
14 | 12 Parks / Outdoor Recreation SB96ES 680214 08 o reasonable results coming up after several attempts, oo to step 4.
15| 13 Natural {¥Woodiand! /¥ater # ther 47489.80 s0888.87 0.00 Step 4: Ecit Ioad density cirectly unti the resultis satisfied]
e Sten 5: Click Apply HYL,
m

[ Defa Used I Warning:
0| Oy Load Density and Data Used can be edited by user. User should NOT
2 | ecit other data,
el Initialize HYL Solver Calculste HYL Apply HYL Reset Form

Shape Number Horizon ‘Year Losd  Base ‘Year Load

25 57530 0.00 0.00
o | 731 1242 354
B S5 0.00 000
| 20 | 57533 000 0.0
EQl 57534 0.00 0.00
Ex 7535 000 000
(2| 57536 000 000
| s7750 000 000
E 7760 850 571
| 35 | 57761 077 0.00
B s7762 000 0.00
Ed s7763 1314 1014

s | 7784 1088 305
E s7785 000 000

-

757 g o
W« v wl{ Current Land Use { Future Land Use { Weather Normaization 3 HYL Solver ¢ Al Data 4 Service Tenitory { Mew Business Load 4 Result Display Setup £ Forec [<

Figure 4.4 “HYL Solver” worksheet
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4.4 Service Territory Map

The “Service Territory” worksheet (Figure 4.5) has the following four functions:
1) Show service territory map and detailed small area information, such as historical
load, HYL, and current and future land use.
2) Allow user to edit future land use and HYL.
3) Allow user to add new business or development.

4) Allow user to select different accurate level to run engine.

The territory should often coincide with an administrative unit (region, district, county etc.),
because the administrative system usually requires an analysis of the functioning of the
resources within its administrative boundaries. The system boundaries however, depend on
its physical characteristics. They include the administrative area, but may extend over a

larger area, depending upon the physical boundaries.

As shown in Figure 4.5, the “Service Territory” worksheet is made of two blocks: the
information board and the map. The map is drawn according to the coordinates of small areas,

while the information board (Figure 4.6) includes the active functions and buttons.
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| o e[ e T T « Pofddddq q { q "A
T T
W
M 4 » M[{ HYL Solver £ Al Data ' Service Territory / Mew Business Load £ Result Display Setup ;| € >
: 4 : : 9
Figure 4.5 “Service Territory” worksheet
A | e | ¢ [ v | E | F | e | WA [ 0 | o |k [ L | M [ w [ o | P | @ | R [ 5 |~
17 Generate Map | Choose Area ‘ Change HYL ‘ Add New: Business | Calculate N8 Load
3 | AREA D SHAPE MU 2001 2002 2003 2004 2005 2006 2007 HYL Simall Area Acreage 51.66
4 856 63520 a i 0 0 a i 031398549 Calculated HYL _31.39854911
| S |
3
| 7 | Lend Use Index 1 2 3 4 8 & 7 8 £l 10 1 12 13
| &6 | Land Use Type dustrial /Business Extractive Services) overnment Residential 2esidertial 2esidential 3esidertial tion  Utiities 1sportation & fYacant Rscreation ter § Other
| 9| Load Densty 3123675744 0 3760301 2404133 9921471 5255429 3120858 2585562 15885627 BO77O23 0 0652583 [
|10 | Current Land Use 000%  000%  000%  000%  000% @ 000%  000%  000% 000%  000% G77A%  O00%  2.25%
{11 | Future Land Use 000%  000% 000% 000% @ 000% 000% 000% @ 000% 000%| 1000% 000% 000% 0.00%
12
[13 ] Start Year EndVear  DeftaHYL
14 MNE Land Use i
15
(16 | Modify HYL of a small area: Add New Business of a small area:
7] ) Fast Forasast Step O Click Generate Map if there is no map shown in the worksheet, Step O Click Generate Map if there is no map shown in the waorksheet,
(18 | Step 10 Select the small area to be edited on the service territory map. Click Step 1 Select the smal area to be edited on the service territory map. Click
114 | ) Medium Forecast Choose Area. Choose Area. Then click Add Mew Business.
% Step 2 Edit Future Land Use. Meanwhile the HYL correspondent to the new Step 3! Input nesw business information in row 14, which includes land use
B ® Slow Foregast Future Land Use is shiown in cell S4. Type the new HYL in J4. information and start & end year of the development.
% Start INSITE Engine Step 3 Click Change HYL to update the HYL in Al Data worksheet, Step 4: Click Calculate NB Load, L

W 4 v [ HYL Solver £ Al Data b Service Territory / Mew Business Load { Result Display Setup / Forecast Incremental Load / Forecast Actual Load £ Forecast Map £|<

Figure 4.6 “Service Territory” worksheet — information board

There are five buttons on the information board:

1) Generate Map: Draw service territory map based on small area coordinates in “All

Data” worksheet.

2) Choose Area: Show the detailed information of the selected small area on the service

territory map.
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3) Change HYL: A planner can change future land use data and HYL which are the cells

filled with the color white. The modified HYL will be copied to the “All Data”

worksheet to update the old one.

4) Add New Business: This row contains cells for new business land use, start year, and

end year that are shown as white cells on the board. A planner can fill in the blanks

with the corresponding new business information.

5) Calculate NB load: A new business load will be fit into an S-curve based on the

planner’s input, and then put into the “New Business Load” worksheet.

Other than the five buttons, there are three check boxes on the information board as well.

These boxes are used to select a forecast threshold, which is used to determine whether a

small area’s load is considered as growth. If the mismatch between the HYL and the base

year load is above the threshold, then the small area’s load can be considered as growth, and

vice versa. Table 4.1 shows the approximate time under different forecast speed settings

when the program is running on a computer with Intel Core 2 Duo 2.2GHz CPU and 2G

RAM.

Table 4.1 Computer run time under different forecast speed settings

Check Box Threshold (kW) Amount of small areas Time (min)
Fast Forecast 10 1024 50
Medium Forecast 5 1280 60
Slow Forecast 0 3460 110

Notice that the faster forecast has less accurate results than the slower one, because the

threshold of the faster forecast is higher than the slower ones. Increasing the load growth

threshold is one approach to reduce run time, while another more significant approach is to
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reduce the resolution of small areas, e.g., from 51.66 acres to 206.64 acres. Both of them will

sacrifice the accuracy of the forecast.

If a planner decides to delete some of the areas to increase the efficiency of the estimates, he
or she of course needs some kind of procedure or criterion that indicates which areas best to
delete. In reality, most decisions are made non-hierarchical, neither strictly bottom-up nor
strictly top-down, as radically transformational, involving the development of partial and
interim solutions which may ultimately play no role in the final decision. The process

intrinsically involves the discovery of new insight.
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4.5 Engine

4.5.1 Bottom-Up Aggregation

The small areas’ historical load and the HYL are aggregated from bottom level to top level,
and the data of each level are stored in a different workbook called “Level id” (“id” is
replaced by the level index) as shown in Figure 4.7, where the first column is the index of the

small area, the last column is HYL, and the middle columns are the load of historical years.

A | B | ¢ | o | E | F | & | H | 1
1 1) B.944183 7376063 1067152 10.52897 1665787 8702544 10.13718 12.04089
| 2 | 2 1321113 10.67627 11.33259 1161443 12.43511 G.8A0824 6285515 14.09999
Ex 3 0984681 2112747 27.48154 27 24507 32.18561 9.893193 14.32082 17.38285
4 | 4 1657546 13.18904 2653715 25.18269 27.64072 1460343 17.37837 28.11416
|5 | 6 27.40R95 2366526 31.8257 3364929 3275787 1797121 21.39927 24.88806
5 | B 0 7250845 11.80478 1259135 2076343 11.61053 13.99714 3169256
| 7 | 7 6881394 5.389143 7.656442 1074613 S.695717 9.905247 12.99541 15.01347
| & | 5 16.3203 18.0327 19.47434 19.22030 23.04748 27.01779 22.62605 24.8055
ER 9 19.81267 19.90793 1457918 20.29825 2293167 2165521 33.46798 36.01733
10 | 10 0 0 0 0 0 0 0 B.5E2421
11| 11| 41.34863 327438 38.40165 3039695 33.12492 18.20816 2585693 301031
| 12 | 12| 3431937 3021757 3463006 3539323 29613 13.3463 14.32584 16.97337
| 13 | 13 0 0 2133425 2329743 2029091 1877606 1.955296 4.00227
14 | 14 3321674 28.95446 30.40131 3190048 27 24295 16.43174 17.83283 20.02169
|15 | 15 10.88847 10.29924 8.114635 7.101931 1088175 6.379923 7.807898 10.50142
16 | 16 38.68078 35.0947 31.98008 33.36916 37 71916 4371395 38.08834 46.00774
| 17 | 17| B.E52958 8084879 13.38504 13.12648 1522174 17.38652 17.25118 19.42842
18| 18 9.837161 12.90973 1056886 12.83566 1826693 14.64177 19.37793 2243495
19 | 19 0 0 0 0 0 0 0 13.48622
| 20 | 20| 2543759 46.1304 103.9462 1014473 98.62414) GD.70812 6326448 9474017
| 21 | 21| B277447 4579882 £2.70553 53.44557 40.3444) 233674 257391 36.92159
| 22 | 22| 7.982757 B.357303 0692465 7571663 B5.90351 5641172 5483495 10.66576
| 23 | 23| 17.47337 19.94314 2226421 24.52701 2574554 2369132 21.33906 23.99599
| 24 | 24 0 0 0 0 6319837 7.729213 7.526715 9.005044
25 25 0 0 0 0 0 0 0 3.186269

Figure 4.7 Temporary results of bottom-up aggregation

The bottom-up S-curve fitting is implemented in a single “Bottom-Up Solver” worksheet as
shown in Figure 4.8. For each small area, historical data are copied onto this worksheet to
calculate the S-curve parameters. These parameters will be stored in temporary worksheets

call “Curve id” ” (“id” is replaced by the level index).
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A | s | ¢ [ o | E | F |6 [ H [ 0 [ o k [ L [ wm [ N 0o | P>
1
|2 | a deltat ¢ 1 2 3 4 5 G 7
'3 1 B42992 284341 -0.05656 288165.2) 3012013 3140821 3267199 339150.3) 3513315 3632446
4] 7285261 291023.4) 3014781 3077869 3284882 3396503 3512233 364263
15 | 2858.164) 276.8614 627512 1765.259 500.0053 -108.204 1018.399
B 2768
il v
M4 Wl Levels JLeveld { Levels / Levels / Curvest f Curves2 J Curves3 { Curvesd £ CurvesS f Curvess £ TopDownSolver ' BottomUpSolver /. Neighbiorh | € |

Figure 4.8 “Bottom-Up Solver” worksheet

4.5.2 Top-Down Allocation

The top-down allocation is also implemented in a single worksheet named “Top-Down
Solver” as shown in Figure 4.9. The upper level forecast data is copied from the
corresponding “Level id” worksheet, and the initial value of the S-curves parameters are
copied from the “Curve id” worksheet. After the Solver finishes the calculation for each sub-
region’s load allocation, the forecast results will be copied to the corresponding “Level id”
worksheet. All the worksheets generated by the engine, including the “Bottom-Up Solver”
worksheet, “Top-Down Solver” worksheet, “Level id” worksheets, and “Curve id”
worksheets (other than “levell” worksheet), will be deleted after the top-down allocation is

finished.

I c [ o | E [ F | & | H | [ o [k [t [ m | v [ o[ p | 8 [ rR [ s [ 7T [ uw [ v [ w [ & [ v [ 2 [—
Region/D a[HYL] deltat  slope  MasH  MismatchH ear i 1 Z 3 0 5 E 7 B 3 10 [ 12 1 " [ '
1021 6153303 1144099 030853 0 1844125 1) 135E-09) 87IE07 0.000104 0003464 0045653 006994 1244092 3484466 7435950 1299058 1356643 2649743 3009606 39.99596| 4397709 46.05508
1022 5949621 B 024 0 043586 1 AGFE-0| 9TE-08 LOSE-05 0000486 0009703 0102015 064891 2791365 8739053 2150705 43676 7625353 1182053 1668796 2185743 2709325 1
1023 7950639 B D24 5234063 101391 1 237E-0] LEQ7 L3GE-05 000062 0012322 0123466 0523523 352918 1L0B07 27251 5542908 96TV 1500B3  Z1L7EN| 2777725 M383W ¢
1024 3451368 [ 024 o 0.0msst 1 247E-H| 138508 \7PIE-06 TTEE05 0001042 0016206 0103084 0441538 1358067 34IG038 630824 1211338 17TTT 265033 3476364 4303343
[ 024 i [ [ i o [i]
il 024 o i i i i o o i i o o 0 i i o o i i i

SUM (TD)  19E-09) 103E-06 000013 0004649 0.069432 0.554661 2819615 10.23743 20.65396| 65.20868 1265209 2MG3T5 320095  444.1H| 5753935 705.5664

03
024
0375 Fegion D [H]
[ [ [ [ [
Objective History  Forecast o

0.001
166.9817| 1034067 BI57E.01

47404 4435441 4BIGIET G204063 4130468
0

Upper 5: 0

4741904 4439441 4BIGIE7 5294063 A1804BE ZE10327 5444243 3938278 1626634 2435081 3388088 4440M3 GEA0632 BEAIE4E |

Mismateh
135E-09) FIE07 0.000104 0003464 0.045653 0306994 1244092
1E7E-10 S7E-02 LOSE-05 0.00043% 0005703 0902015  0.84381
Z3PE0|  LIEO7 474189 443887 4E030E 61846 -33GE9E
Z97EN 13BE-03 173E06 77BE06 0001542 0016208 0103084
[} [i] [ [ [} [i] [
[i] [i] [ [ [i] [i] [

S-SUM | 18E.03) 10SE0E 474177 443479 454695 470933 136087 158668 267885 340741 37.0384 DLEESE  1G7IE 0136338 2134006 4170184

W 4 v W/ Forecast Incremental Load 4 Forecast Actual Load { Forecast Man /£ Levell  Level2 { Level3 £ Level4 / LevelS Y TopDownSolver { Levels £ Curves1 f Curves2 £ Curve: |€ >

Figure 4.9 “Top-Down Solver” worksheet
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4.6 Forecast Results

4.6.1 Result Display Setup

A planner can select some particular years or all years within the forecast range to display

forecast results in the “Result Display Setup” worksheet (Figure 4.10) by selecting one of the

two check boxes.

A B | C E | F |
1
2
3 Forecast Options
g @ Forecast Load For &l Years
? yForecast Load For Selected Years
8
9
10 FORECAST YEAR Yes/No
11 2008 YES
12 2009 YES
13 2010 YES
14 2011 YES
15 2m2 YES
1k 2013 YES
17 2014 YES
18 2015 YES
19 2016 YES
20 2017 YES
21 2018 YES
22 2019 YES
23 2020 YES
24 2021 YES
25 2022 YES
2k 2023 YES
27 2024 YES
28 2025 YES
29 2026 YES
0 2027 YES
)
32 Show Forecast Load |
33

24
4 4 » w|{ Service Teritary 4 Mew Business Load ' Result Display Setup ¢/ Forecast 1]<

gl

hd

Figure 4.10 “Result Display Setup” worksheet
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4.6.2 Final Forecast Results

Final forecast results are presented in both data format and map format. Data format includes
the incremental load (Figure 4.11) and the actual load (Figure 4.12). The incremental load is
the load growth compared with the base year. If the growth is less than the threshold pre-
determined in the “Service Territory” worksheet, it is treated as equal to the threshold. The

actual load is the sum of the incremental load and the base year load.

A | c [ o [ e [ F [ & [ v [ v+ [ o+ [ w [ v [ m [ w [ o p [ a ] r [ s [ 7 [ ul v [ w ][
EASE TEAR FORECAST YEAR:
AREAID_SHAPENUM 2007 2003 2009 200 2on  Pmi  2gt3 204 205 206 20W 20 2019 2020 2021 2022 2023 202e 2025 2026 20ey
T 57530 o o o o o o o o 0 0 o 0 0 0 o o o o
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3 57532 o o o o o
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KX 6 57535 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o 0 0 0 0
N 7 57538 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
K ] 57759 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0
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2 | [ s77El 0 003833% 003323 0063783 0253443 0.16307 0434728 051302 0574655 06243 0G6I635 0693023 0TMIEZ O73NGE QT43027  OTHIER DIGTIEZ OTE2EN 0FESTSR QTGN 0768831
| n 57782 0 0 0 0 0 0 0 0 o 0 [ 0 0 0 ]
En @ 7763 W0M3TIS2Y BOES2ST GESI332 TIOTES 7O3SISH TH7IS04 SI34495 3300058 S4SIM SEINGE3 ST02047 DTN BACEAEE BEETE4 SENOITY 923083 SSHETZ BSESTIS BOGE2 BOTAENS 898035
K 3 57764 304967002 TIES53+ 47I0657 S3TOMEZ GOIMIF BS54 BES053 GOMMSE TIZOVET 7281035 74051 TEOUBZE 7574457 TEGI0GY TETHSH TOTEI] 77IIMT 1752609 T76TASL TTGRET 7787859
e | i 57765 o o o o o o o o o o o o o
K [ 57987 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o 0 0 0 0
e | i 57358 o o o o o o o o o o o o o o o o o o o o o
En 7 57903 UIGMEEIY 144927 1GG99E7 IGG390E  17O0E3 1736393 1BA2IIP  1G7TIE 1904423 1325229 14105 1953458 1962841 1570024 13VGI3 197572 196290 1985393 1397EST 1999683 198972
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1 [ 57380 ] o ] 0 0 0 0 0 0
oz | 20 57932 G255WS3 1463650 1954838 2201998 249933 274762 2049487 L2081 241122 3342603 3421913 3483438 3501133 O5E7T 50644 D6ITB4I 034433 JB4TA3 657001 6EMES IBTOTE
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Figure 4.11 “Forecast Incremental Load” worksheet
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Figure 4.12 “Forecast Actual Load” worksheet
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The “Forecast Map” worksheet is shown in Figure 4.13. In the upper-left corner, which is
shown in larger detail Figure 4.14, the planner can select which year to look at and whether
to view the incremental or actual load map. For instance, Figure 4.15 and Figure 4.16 show
the incremental load map and the actual load map of 2009’s forecast results respectively. In

both maps, the darker the color code is, the more load or load growth the small area has.
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Figure 4.13 “Forecast Map” worksheet
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Figure 4.14 Forecast map selection

Figure 4.15 Forecast incremental load map (2010)
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Figure 4.16 Forecast actual load map (2010)
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5

5.1

Conclusion and Future Work

Conclusion

This thesis presents a tool for long-range spatial load forecasting. A hierarchical trending

method has been investigated and implemented. An advanced feature, HMCCI, has been

proposed to integrate human planners into the decision making process. The proposed

method has been applied to several utilities and has received satisfactory results. Compared

with most existing methods and tools in the literature and industry, the tool presented has the

following advantages:

1)

2)

3)

4)

Easy to set up. The required user inputs can be extracted easily from most utilities’
databases.

Short run time. It takes less than two hours to get the results for a service territory
with 3400 small areas. Moreover, the run time can be further reduced by selecting a
higher load growth threshold.

Short training period. It takes one business day to train the planners to understand the
basic forecast concept, master the tool and produce forecast results.

Planner-friendly. HMCCI can allow more planners’ involvement in order to get more
reasonable results through several human-machine interaction cycles. Compared with
other tools purely performed by the computer, this tool can bring in the planners’
years of experience and knowledge of local development to guarantee the quality of

the forecast.
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Compared with most simulation methods, which are very popular in the current industry
market, but require a tremendous investment of time and money to train planners, set up, and
make a run, the proposed method is much more time and money efficient. However, the

proposed method may not be as detailed or accurate in its results as simulation method is.
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5.2 Future Work

Although the proposed tool has provided useful results for some utilities with limited budgets
and resources for load forecasting, there are still several research topics that need to be

further investigated in order to perfect the tool.

The current neighborhood table is built based on total number of small areas without the
consideration of geographical information. The grouping of the nearest small areas or the
small areas with similar land use types might be helpful to the forecast. The investigation of

different grouping methods is expected to be one way to improve the current work.

In section 3.2.2, a simple greedy strategy is used to calculate load densities. Each time at
least one type of land use is reduced, the whole procedure converges very fast. However, the
accuracy of such an approach highly depends upon the skill of the planners. The proposed
greedy strategy can be improved by adopting other more complicated greedy strategies, such
as best first search, A* algorithm, etc. This will add more iterations to allow planners and
computers to re-evaluate and revise what they’ve agreed on, so that even if the planners make

a mistake, the computer has a chance to pick up on the error and give a warning.
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