
ABSTRACT 

HONG, TAO. Long-Term Spatial Load Forecasting Using Human-Machine Co-construct 

Intelligence Framework. (Under the direction of Dr. Simon Hsiang). 

 

This thesis presents a formal study of the long-term spatial load forecasting problem: given 

small area based electric load history of the service territory, current and future land use 

information, return forecast load of the next 20 years. A hierarchical S-curve trending 

method is developed to conduct the basic forecast. Due to uncertainties of the electric load 

data, the results from the computerized program may conflict with the nature of the load 

growth. Sometimes, the computerized program is not aware of the local development because 

the land use data lacks such information. A human-machine co-construct intelligence 

framework is proposed to improve the robustness and reasonability of the purely 

computerized load forecasting program. The proposed algorithm has been implemented and 

applied to several utility companies to forecast the long-term electric load growth in the 

service territory and to get satisfying results. 
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1 Introduction 

1.1 Overview of Spatial Load Forecasting 

If quality is defined by what the customers want, one way to measure the success of an 

electric power distribution system is to deliver reliable electric power to customers spread 

throughout utility’s service territory. Figure 1.1 shows a Google map of Madison in 

Wisconsin, and Figure 1.2 shows its electric load distribution, which contains a pattern that is 

typical of a medium-sized city in the United States.  

1) There is high load density in and around the central business district (downtown) area, 

while a lower density in the outlying suburban areas.   

2) Even in the suburbs, the load density along the major industrial areas can be higher 

than that of the downtown areas which are filled with residential customers and office 

parks. 

3) In rural areas, load density is very low because homes, commercial areas, and 

industrial areas are spread far apart. 

4) Due to the use of irrigation pumps and oil pumps in petroleum fields, the load density 

can be surprisingly high in comparison with other rural areas. 

In the planning stage, a distribution planner needs to provide an economic expansion plan to 

meet the future load growth in the service territory based on an incremental load distribution 

map (Figure 1.3). Such a map of density, namely a spatial load forecast [25], must provide 

temporal, spatial, and magnitude information of load growth in sufficient detail, and with 
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sufficient accuracy to allow for quality planning of electric power transmission and 

distribution facilities. Assessing the impacts of alternatives for conjunctive areas also 

requires attention to processes the possibilities that take place on different spatial and 

temporal scales. Information scale is the spatial and temporal scale of the information 

required. Generally, a strategic resources manager (for example the local, regional or national 

government) needs information on a scale relative to their responsibilities and authorities. 

This level of information is likely to differ from the level desired by operational managers 

dealing with day-to-day issues.  Information at scales smaller than what is needed is seen as 

being ‘noisy’. Information at scales larger than what is needed is not relevant or helpful. 

Specifically, in load forecasting, the scale, or resolution, of the map is also depends on the 

computing capability to generate historical load data. 

Do
w
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n

 

Figure 1.1 Map of Madison, WI 
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Figure 1.2 Electric load distribution of Madison, WI 

 

Figure 1.3 Load growth distribution of Madison, WI 
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The spatial information is addressed by using the small area forecast method: the utility 

service territory is divided into many, perhaps thousands of small areas, and a forecast is 

done for each. 

Load forecast in utilities can be classified into roughly two categories according to different 

forecasting needs, short term forecasting and long term forecasting [23]: Short-term 

forecasting is motivated by a need to reach a decision, to commit to a particular installation 

or type of construction, and to do so at the lead time. Therefore, the specific aim of the short-

term plan is a reliable “alarm” about when present facilities will become insufficient. Risk 

comparisons (e.g., blackout potential) can be helpful, but they should be used cautiously and 

tested if possible. There are dangers in comparing risks of diverse character, especially when 

the intent of the comparison is seen as reducing a risk. One difficulty in using risk 

comparisons is that it is not always easy to find risks that are sufficiently similar to make a 

comparison meaningful, because very often one is to compare two alternatives that have two 

different costs and two different risk levels. The long-term plan evaluates how well the short-

term planning commitments fit into long-term needs. No commitment needs to be made to 

the elements in a long-term plan, and capacity and location are more important than timing in 

long-term forecast. In other words, it is more important to know what will eventually be 

needed than to know exactly when in will be needed. 
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1.2 Decision Making Process 

Based on his/her domain knowledge (e.g., social, economic, or political background), one 

planner is usually assigned to a certain region in service territory. In every planning period, 

this planner submits an expansion plan that includes what equipment to maintain, purchase, 

and install based on his/her experience, e.g., what development activities he/she has seen and 

heard of in the past, the historical load data and outages that have occured in this region, the 

construction-limit land information, etc. After all the planners submit their proposals, the 

director or higher level managers in charge of planning will make the final decision 

considering the trade off between benefit and cost, and then allocate a budget to each region 

accordingly. A comprehensive planning process can be found in Chapter 26 of [23]. 

Opposite to the practice of budget underestimation for governmental contract competition, 

most planners tend to overestimate the load to avoid outages in their own regions. The 

bottom-up aggregation of plans submitted is almost always beyond the total budget. To fulfill 

the overall budget, which is a hard constraint during the planning stage, overestimation of the 

expansion plan creates difficulties for the management team to make budget allocation 

decisions and can potentially be a waste of resources on unnecessary projects. Many utility 

companies would like to use a computer based program to help examine each plan and 

execute top-down allocation. When submitted to a state regulator from the utility company, a 

final plan generated from a standard computer program is usually more convincing and easier 

to defend than the one purely from planners.  
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A rather simple technique that can reach absurd conclusions if incorrectly applied is to equate 

the benefits of a service to the cost of supplying the service by the least expensive alternative 

method. Thus the benefits from hydroelectricity generation could be estimated as the cost of 

generating that electricity by the least cost alternative method using solar, wind, geothermal, 

coal-fired, natural gas or nuclear energy sources. Clearly, this approach to benefit estimation 

is only valid if, were the project not adopted, the service in question would in fact be 

demanded at, and supplied by, the least-cost alternative method. The pitfalls associated with 

this method of benefit and cost estimation can be avoided if one clearly identifies reasonable 

with and without project scenarios. 

The challenge in creating such model-building environments is to make them sufficiently 

useful and attractive that multiple stakeholders like to use them. They should be 

understandable. They will have to be relatively easy and transparent, and even fun, to build. 

They must be capable of simulating and producing different levels of detail with regard to 

natural, engineering, economic and ecological processes that take place at different spatial 

and temporal scales. And they must require no programming and debugging by the users.  

One approach is to develop interactive modeling ‘shells’ specifically suited to modeling 

environmental problems. Modeling shells are data-driven programs that become models once 

sufficient data have been entered into them. 
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1.3 Literature Review 

As load forecasting is highly related to the quality of system planning, attention has been 

paid to the impact of load forecasting on system design [24] and economics [20]. A system 

wide two-stage distribution planning algorithm is reported in [19]. Optimization software [4] 

and techniques [10] are applied to load forecasting as well as planning. Load forecasting is 

usually tied to reliability analysis [3, 35, 36] and distribution transformer load management 

(TLM) [5].  

There are dozens of different distribution load forecasting methods that have been used and 

documented during the last 50 years.  Some of them fall into the category of short-term 

forecasting [12, 16], which is beyond the scope of this thesis. Some of them are long-term 

forecasting methods, the majority of which are spatial load forecasting methods [25, 26]. In 

[29], the authors summarized and compared 14 different distribution forecasting methods 

which appeared during the 1960s to early 1980s. Some spatial load forecasting methods can 

be used for transmission planning as well [11, 34]. As the development of computer 

technologies and applications ramped up in the 1980s, many computer based load forecasting 

methods were being developed [17, 21, 33]. Data issues and database development were paid 

attention to during the same period [22], followed by the discussion of information 

integration issues in distribution planning [37].  

Many methods have been developed to overcome some specific difficulties of spatial load 

forecasting: fuzzy logic has been applied to forecasting with the consideration of city re-
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development [7, 8, 9]; a knowledge-based expert system has been designed for fast 

developing utility’s long-term load forecasting [15]; an extended logistic model was used for 

high growth load forecasting as well [1]; a method to take care of rural area load forecast was 

reported in [27]; the load transfer issue has been investigated in [32]; forecasting under 

uncertainties has been discussed in [31]; neural networks have been applied to forecasting 

wind speed for long-term load forecasting [2]; the data mining approach has been used for 

spatial modeling [14]; a load survey system was used to determine customer load 

characteristics [6]; some fast algorithms have been developed to reduce computer running 

time [28, 30].  

Despite various methods, algorithms, computer codes/programs in use, all fall into three 

basic types of methods: trending [28], simulation [18] and the hybrid method: 

1) Trending methods look for some function to fit the past load growth patterns and 

estimate the future load based on the function. The most common trending method is 

to use multivariate regression to fit a polynomial function to load history data. This 

approach has a number of failings when applied to spatial load forecasting, while 

dozens of improved methods have been reported for load forecasting. The advantages 

of the trending method include ease of use, simplicity, and a short-range response to 

recent trends of load growth patterns. However, it often fails to have a useful estimate 

of the long-range load. 

2) Simulation methods attempt to model the load growth process to reproduce the load 

history, as well as to identify the temporal, spatial, and magnitude information of the 
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future load growth. Simulation methods usually simulate an urban development 

process based on land-use change information from government, customer rate class 

from utilities, and load curve model of consumption patterns. Depending on the 

quality of data, this approach has a fair to very good short-range accuracy. Depending 

on the specific algorithm, this approach has a good to excellent long-range usefulness 

for planning. The drawback of the simulation method is the expensive development 

and training cost. 

3) Hybrid trending-simulation methods combine features of trending and simulation. An 

ideal hybrid method should well respond well to recent trends of load history in the 

short-range, and keep the long-range accuracy as simulation methods have. 

Meanwhile, the ideal hybrid method should be easy to use, and not require much 

interaction and skills from the user. That ideal may be unattainable, but it is certainly 

worth pursuing. 

Systems approaches, including the use of extensions of the aforementioned methods can 

provide an organized framework for resources management and for estimating the important 

geomorphic, ecological, social and economic impacts and trends over relevant scales of space 

and time. Within a systems framework, multiple purposes can be investigated, tradeoffs 

among competing objectives may be identified and evaluated, potential adverse impacts can 

be assessed, and the various costs and benefits, however measured, of a project may be 

estimated and examined. This can all be done within a context or process that incorporates 

the concerns and desires of all those with an interest or stake in the outcome. 
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Quantitative models can help inform interested stakeholders and those individuals or 

agencies responsible for recommending or making decisions or policy. The merit and 

advantages, as well as the limitations, of various quantitative methods for analysing various 

planning or management issues are generally recognized throughout the community. The 

assumptions and uncertainties associated with any model-generated impact predictions 

should be understood and considered by those using these model predictions. 

This thesis has been devoted to the investigation of a hybrid method using Gompertz curve 

(known as S-curve) fitting. S-curve has been used to model diffusion of innovations since 

1950s. It has been adopted for transmission & distribution planning since late 1970s, as 

summarized in [26]. S-curve is typical of a small area, distribution-level load growth, which 

has three distinct phases: a dormant period (no load or growth in the small area before 

development), a growth ramp (rapid growth in the small area under construction) and a 

saturated period (slow growth in the small area being fully developed). There are three 

parameters that control the shape of an S-curve: horizon year load (HYL, saturated load), 

time to the start of ramping, and slope of the load growth. As a spatial load forecasting 

problem has been formulated as an S-curve fitting, the major target is to determine these 

three parameters, which is a challenging process directly related with the accuracy and 

usefulness of the forecast. The kernel of the hierarchical trending method includes two 

hierarchical procedures: bottom-up aggregation and top-down allocation, which are shown in 

Figure 1.4, the details of which will be presented in Chapter 2. 
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Figure 1.4 Bottom-up aggregation & top-down allocation 

 

A comparison of a computational and human planner’s short-term load forecasts was 

reported in [13]. However, there are rarely discussions of combining human and computer’s 

intelligence. As an enhancement to the proposed hybrid trending method, this thesis also 

investigates the framework of integrating the two intelligences together to achieve a good 

solution, which will be discussed in Chapter 3. 
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1.4 Organization of the Thesis 

This thesis includes the whole algorithm development and the Graphical User Interface (GUI) 

implementation process of a spatial load forecasting tool. Chapter 1 briefly introduces the 

concept and significance of spatial load forecasting, the decision making process in utilities, 

and the existing means used to solve spatial load forecasting problems. Chapter 2 presents 

the detailed development of an automatic hierarchical trending algorithm, where each 

functional module is described. Chapter 3 introduces an enhancement by embedding human-

machine co-construct intelligence (HMCCI) into the tool. Chapter 4 shows the 

implementation of GUI with load forecasting results. The thesis is summarized in Chapter 5, 

where future work is discussed as well. 

 

 

 



 

 

13 

2 Hierarchical Trending Method 

2.1 Overall Program Structure 

In this chapter, a hierarchical trending method using S-curve has been investigated and 

developed. Figure 2.1 shows an automated computer program structure.  
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Figure 2.1 An automated computer program structure of hierarchical trending method 
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As shown in Figure 2.1, the arrows represent data flow, while the rectangular blocks 

represent functional modules: 

1) Weather normalization module: this module applies a utility’s weather normalization 

method to the raw historical load data to generate the adjusted historical load. 

Different utility companies may have different weather normalization methods, which 

mainly fall into various regressions. 

2) Horizon year load (HYL) module: this module takes land use data and adjusted 

historical load data to generate load densities for each land use type as well as the 

HYL for each small area. It then selects the small areas with higher HYL than the 

current load as the areas of interest to forecast the load growth on. 

3) Neighborhood module: this module builds the neighborhood table according to the 

total number and the location, sometimes together with load information as well, of 

the selected areas of interest. 

4) Forecast module: this module includes three sub-modules. The bottom-up module 

iteratively fits S-curves and aggregates historical load and HYL for each small area in 

each level based on the neighborhood table. The top-down module takes the S-curve 

parameters from the bottom-up module as references, and allocates the  utility’s 

system forecast from the top level to the bottom level. Finally, the result 

representation module fine tunes the raw forecasting results and displays the forecast 

load in both data sheets and map format. 
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The basic load forecast tool is made up of the four modules mentioned above together with 

some display and user interface functions. Each module will be discussed in the following 

sections, and the enhancement of the tool embedded with the HMCCI framework will be 

discussed in the next chapter. 
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2.2 Data Outlook 

Compared with simulation data, real-world data provided by utilities has a lot more 

uncertainties, noise and errors, which create difficulties for the forecasting. Before starting 

the forecast algorithm development, several typical data sets obtainable from utilities are 

introduced in this section.  

2.2.1 Historical Load 

Figure 2.2 shows the data format of transformer based historical load information that most 

utilities can provide, which contains the following two sets:  

1) Geographical information: In the geographical information system (GIS), the surface 

of the earth has been cut into many small areas according to a certain scheme (e.g., 

1500ft by 1500ft). Each small area has a unique shape number, which is shown in 

column A of Figure 2.2. The location of a transformer in the small area can be 

represented by latitude and longitude, or another coordination scheme specified by a 

particular GIS. As shown in Figure 2.2, Columns B and C represent the longitude and 

latitude of the corresponding transformer, while Columns D and E represent its 

coordinate in feet.  

2) Load history: Load history information and details of the transformer (e.g., feeder 

number, voltage level, etc.) are listed after geographical information, from which the 

load history on a small area basis will be extracted. 
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Figure 2.2 Typical data format of transformer based historical load 

 

2.2.2 Weather Normalization 

Historical data is measured under various conditions including different temperatures, 

economic situations and so forth, which influence the load consumption. A theoretical load 

consumption curve should be homogeneously increasing, while in reality, this curve turns out 

to zigzag over time. In order to compare an apple to an apple, a normalization procedure has 

to be conducted before the load forecasting process begins. Up to now, there is no identified 

method to do weather normalization among the power industries, and different utility 

companies may use different means, from simple to complicated, according to their local 

situation. In this thesis, a multivariate regression approach will be discussed. The required 

data format is shown in Figure 2.3. Other than the actual peak load for each year, three other 

columns of data are required for weather normalization: 
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1) Maximum temperature records the highest temperature that appeared during the year 

of interest. 

2) Cooling Degree Days (CDD) describes how much a period’s weather should result in 

a building’s cooling requirements. The hotter the day is, the more the CDD is. If the 

amount of CDD is double, then this should result in roughly double the cooling 

requirements for a building. CDD is calculated individually for each day. CDD over a 

month or billing cycle are merely a summation of CDD of the individual days. 

3) Employment shows the number of employees or job positions in the service territory. 

Sometimes it can be replaced by number of customers if the utility company has 

customer count data in the service territory. 

 

Figure 2.3 Typical data format for weather normalization 
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2.2.3 Horizon Year Load 

A land used based approach to calculate horizon year load (HYL) will be proposed in section 

2.4. This approach requires a land use code and current and future land use information:  

A land use code describes the purpose of land use or customer types within the small area, 

e.g., commercial, industrial, low-density residential, high-density residential, water body, etc. 

All types are coded using numbers as shown in Figure 2.4. 

 

Figure 2.4 Land use code 

Current and future land use present the exact amount of land used for each land use code on a 

small area basis, e.g., in a small area, 21.3% of the area is used for commercial purposes, 

10.8% of the area is a water body (lake or river), and the other part is vacant. Both current 
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and future land use information are required to calculate HYL. The data format of current 

land use is shown in Figure 2.5, while future land use has exactly the same format as shown 

in Figure 2.6.  

 

Figure 2.5 Current land use data 

 

Figure 2.6 Future land use data 



 

 

21 

2.3 Data Preprocessing 

2.3.1 Small Area Based Historical Load 

The first step of data preprocessing is to convert transformer based load data to small area 

based load data and assign coordinates to each small area. The extraction procedure is the 

following: 

1) Rank the shape numbers of all the small areas from low to high; 

2) Define the reference point for each small area, e.g., the upper-left corner; 

3) Add the load of transformers with the same shape number together, the result of 

which is the historical load for this small area. 

As shown in Figure 2.7, column B and C show the coordinates of the reference point in a 

small area, while columns D to J are small area based annual peak load data from 2001 to 

2007, the unit of which is kW.  

 

Figure 2.7 Small area based historical load data 
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2.3.2 Service Territory Map 

According to the coordinates of small areas, a service territory map can be drawn as the light 

yellow area in Figure 2.8.  In the beginning stage, the service territory map can be used to 

verify the data quality. Sometimes due to errors from a data source, some regions may not 

appear in the map correctly. By comparing the generated map with the real map, one can tell 

approximately whether the service territory has been correctly represented. 

 

Figure 2.8 Service territory map 

2.3.3 Weather Normalization 

In this thesis, a system-wide normalization is used to generate coefficients to normalize the 

small area historical load. As shown in Figure 2.3, four categories of data will be used in a 

system-wide normalization: actual peak load ( y ), maximum temperature ( 1x ), CDD ( 2x ), 
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and employment (
3x ), the natural log of which are denoted as y , 

1x , 
2x , and 

3x  respectively. 

The least square method is used to calculate the coefficient (
1k , 

2k , and 3k ) of a line to best 

fit the given data, the formula of which is 

                                         332211 xkxkxky ++=      (2.1) 

The weather normalized system load ( 'y ) is shown as the blue curve in Figure 2.9, while the 

purple curve represents the actual load.  
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Figure 2.9 Weather normalized load vs. actual load 

The coefficient 
ic  is used to normalize small area load of a particular year i, and can be 

calculated by: 

i

i
i

y

y
c

'

= ,                                                         (2.2) 

where 
iy  is the actual system load of year i, and '

iy  is the normalized system load of the 

same year. 
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And the normalized load is equal to the actual historical load data multiplied by the 

coefficient ic : 

ijiij LcL =
' ,                                                            (2.3) 

where ijL  is the actual historical load of a small area j in year i, and '

ijL  is the normalized 

load. 
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2.4 Determining Horizon Year Load Using Land Use Information 

Horizon year load (HYL) describes the load of a fully saturated small area. In long-range 

spatial load forecast, an estimate of the farthest forecast year load can be considered as HYL, 

although the land may be further developed or redeveloped after the forecast range. It is 

crucial to get a quality HYL for a useful forecast. Figure 2.10 and Figure 2.11 show how 

different HYLs affect the forecast given the same historical data.  

As shown in Figure 2.10, in which HYL increases from 10kW to 80kW, the long range 

forecast varies almost linearly according to the change of HYL. Historical data takes the role 

of the saturation period when HYL is 10kW, while it acts as a dormant period when HYL is 

80kW. Figure 2.11 shows how a small variation of HYL affects the forecast. When HYL 

varies from 10kW to 16kW, historical data stays in the saturated stage, while the forecast of 

the recent years vary less significantly than years further out. 
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Figure 2.10 Effect of HYL on the overall forecast (1) 

Effect of HYL (2)
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Figure 2.11 Effect of HYL on the overall forecast (2) 

HYL of the small areas in the service territory can be calculated based on land use data from 

the county, customer count data from utilities, or both. In this section, a land use based 
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method to determine HYL is introduced. An implementation in MS Excel is described as 

follows: 

The land use types are divided into 10 to 15 categories based on physical meaning of data 

(e.g., group different factories as industrial land use). Original land use data from a given 

county may includes 20 or even more types, which is inefficient for calculation, while 10 to 

15 categories are fewer and more practical considering both the computational complexity 

and the quality of the results. 

The load density variables ( kd , k = 1, 2, 3…) are set for each category, and are used to 

calculate the load of the most recent historical year (known as base year b) for each small 

area by multiplying load density with current land use: 

∑ ⋅=
k

kjkbj CLUdL )('̂ ,                                                   (2.4) 

where '̂

bjL  is the calculated base year load of small area j, kd  is the load density of category k, 

and 
kjCLU  is the acreage of current land use category k in small area j. 

To solve the optimization formulation using Excel add-in Solver, tune the load density 

variables to minimize the sum of square errors between the calculated base year load and the 

weather normalized base year load with the constraint of non-negative load density: 

                         Min:                          ∑ −
j

bjbj LL 2'' )ˆ(   
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                 s.t.                         0≥kd , k = 1, 2, 3, …                                             (2.5) 

Calculate the mismatch Ej between the calculated and weather normalized base year load: 

''̂

bjbjj LLE −= ,                                                       (2.6) 

Multiply the calculated load density with future land use, and then add the mismatch 

calculated from step 4 to the result from step 5 to get the adjusted load of horizon year, which 

is HYL. 

j

k

kjkj EFLUdHYL +⋅=∑ )( ,                                           (2.7)   

where kjFLU  is the acreage of future land use category k in small area j. 

Notice that in many cases, several small areas with a large mismatch may have a big affect 

on the load densities. In practice, it is good to treat this small proportion of data as outliers 

and use the other small areas to calculate the load densities. 
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2.5 Neighborhood Module 

In the hierarchical trending method, small areas are aggregated from bottom to top and the 

system-wide load is distributed from top to bottom. During this process, small areas within 

the same neighborhood are aggregated, and the load of the upper level region will be 

allocated to the small areas within the same neighborhood as well. Neighbor here may not be 

geographically adjacent, but a scheme exists to group the small areas or sub regions in each 

level. The neighborhood table (Figure 2.12) is the link of this iterative method. This section 

introduces a simple but robust approach to build a neighborhood table. 

 

Figure 2.12 Neighborhood table 
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The neighborhood table is a table of indices of sub-regions. As shown in Figure 2.12, the 

columns represent the levels from bottom to top, and each entry represents the sub-region 

index in the corresponding level. For example, column B represents the 2nd level bottom-up, 

and cell B7 represents the 2
nd

 region in level #2. In this neighborhood table, small areas #1 

through #5 in level #1 form sub-region #1 in level #2, sub-regions #1 through #4 in level #2 

form sub-region #1 in level #3, and so forth. In each level, every sub-region should include 

the same amount (4 or 5) of sub-regions in the lower level, though this is not a hard 

requirement. 

With the above considerations, the procedure of building a neighborhood table is described 

as follows: 

1) Determine a load growth threshold as the just noticeable difference for load 

forecasting. In other words, if the horizon year load is no more than the sum of this 

threshold and the base year load, planners can consider that there is no growth in this 

small area through the forecast range. 

2) Build a binary tree to calculate the potential numbers of sub-regions in each level as 

shown in Figure 2.13. Each child node is equal to its parent node multiplied by 4 (if it 

is the left child node) or 5 (if it is the right child node). The binary tree is built using 

the depth-first search from the right to the left. Eliminate the node if its value is the 

same as the one generated already. The value of the node in the bottom level should 

be no more than the number of small areas.  
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3) Determine the number of small areas that will be considered for forecast. This 

number is the smallest potential sub-region number that includes all small areas 

whose mismatches are above the threshold. 

4) Assign indices to the selected small areas. In the binary tree, trace from level #1 to the 

root to build the neighborhood table using the multiplier (4 or 5). 
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Figure 2.13 Potential amount of sub-regions in each level 
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2.6 Bottom-Up Aggregation: S-curve Parameter Tuning 

Historical load and horizon year load of the small areas within each neighborhood are 

aggregated from the bottom level to the top level as shown in Figure 2.14. In each level, S-

curve is used to fit the corresponding data from each small area (bottom level) or sub-region 

(second level or higher). During this bottom-up aggregation, the S-curve fitting is a crucial 

segment, the results of which will be the starting point for each small area or sub-region of 

top-down allocation. Parameter tuning of S-curve will be discussed in the following sections. 

2.6.1 Format of S-curve 

The typical format of S-curve (Gompertz function) can be written as: 

ctbe
aety =)( ,                                                           (2.8) 

where a is the upper asymptote, c is the growth rate, and b and c are negative numbers. This 

typical format can be adopted as: 

        
( )cbtce

aety
/)ln(

)(
−+

−
= .                                                     (2.9) 

Let  

)ln(
1

b
c

t −−=∆ .                                                     (2.10) 

 



 

 

33 

 

 

 

Figure 2.14 Bottom-up aggregation 

Formula (2.9) is equivalent to: 

 
)(

)(
ttce

aety
∆−

−
= ,                                                     (2.11) 

where a is the HYL of a small area, c is the load growth rate, and ∆t is the ramp up time.  

Comparing with the typical format in (2.8), formula (2.11) is fundamentally the same but has 

the advantage that each of the three parameters has its own physical meaning, which is 
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important to the users (planners) because the parameter tuning process can be easily 

visualized. Therefore, formula (2.11) has been used to represent S-curve in this thesis. For 

example, the ramp up time depends upon both b and c in (2.8), while in (2.11) it is 

determined by ∆t only.  

Figure 2.15 shows how the shape of S-curve is affected by tuning HYL parameter a: the S-

curve is stretched vertically as the HYL parameter is increasing. Figure 2.16 shows how the 

shape of S-curve is affected by slope parameter c: the S-curve is stretched horizontally as the 

absolute value of c is decreasing. As the slope is approaching zero, the S-curve tends to 

become a straight line. Figure 2.17 shows how the shape of S-curve is affected by ramp up 

time parameter ∆t: the S-curve moving from the left to the right as ∆t is increasing. 
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Figure 2.15 S-curve shapes affected by HYL parameter 
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a = 100, delta t = 0
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Figure 2.16 S-curve shapes affected by slope parameter 
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Figure 2.17 S-curve shapes affected by ramp up time parameter 



 

 

36 

2.6.2 Problem formulation 

Bottom-up aggregation involves two elements: 

1) Aggregate the historical load and HYL of the neighborhood small areas or sub-

regions to obtain the historical load and HYL of the sub-region in the upper level.  

2) Fit the historical load data of a small area or sub-region given the HYL using S-curve, 

which can be modeled as an optimization problem: 

            Min:          ( )∑
=

−
−

∆−
H

t

e
thae

H

ttc

1

2

)(
1 )(

 

                                         s.t.                         c ≤ 0,                             (2.12) 

where H is the length of historical load, and h(t) is the historical load of the tth year. 

This step is to tune the slope and shift the curve horizontally to find the best match 

with the historical load.  

2.7 Top-Down Allocation: Multi-objective Optimization 

Compared with the decision making process introduced in section 1.2, bottom-up 

aggregation simulates regional planners’ forecasting process, while top-down allocation is 

like distributing the corporation forecast load growth to sub-regions in lower levels, and even 

down to the small areas in the bottom level (Figure 2.18). There are several goals during this 

process: 

1) Generated S-curves should match the correspondent historical load. 

2) The sum of future forecasted loads of neighborhood small areas or sub-regions in a 

given lower level should match the future forecasted load of the correspondent sub-

region in the upper level. 
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3) Since the development period of regions with the same size is similar, the slope of 

small areas of sub-regions in the same level should be close. 

4) The load in the farthest forecast year should be close to HYL. 

 

Figure 2.18 Top-down allocation 

The corporation forecast load of the future years will be used in the top level to drive top-

down allocation. To achieve the above goals, a multi-objective optimization approach is 

applied, where the first two are put into objectives, and the latter two are put into constraints: 

1) Minimize historical load mismatch Fi: 

( )∑
=

−
−=

∆−
H

t

i

e

ii thea
H

F
ittic

1

2

)(
1 )(

, i = 1, 2, …, K                        (2.13) 

where K is the number of neighbors in one neighborhood in a given level. 

2) Minimize future load mismatch G: 

∑ ∑
+= =

− 




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=
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                             (2.14) 
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where N is the total number of years including the historical years, and f(t) is the 

forecasted load of correspondent sub-region in the upper level. 

3) Slope boundary: maxmin CcC i ≤≤ , where maxC and 
minC  represent the upper bound 

and lower bound of the slope. 

4) Ramp up time boundary: maxmin ttt i ∆≤∆≤∆ . 

To sum up, each allocation unit can be formulated as: 

Min:                                         GMFM
K

i

i 2

1

1 +∑
=

   

s.t.                           
maxmin CcC i ≤≤ , 

                      
maxmin ttt i ∆≤∆≤∆ ,                                                              

where M1 and M2 are the penalty factors for historical load mismatch and upper level future 

forecasted load mismatch respectively. In practice, M1 is set to be much larger than M2 to 

make the resulting forecast fit the historical load. 
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3 Human-Machine Co-construct Intelligence 

3.1 Motivation 

Although the automated computer program is convenient for users, the results lack common 

judgment. For instance, it may produce a higher load density of residential customers than 

industrial customers, which is intuitively incorrect to a distribution planner. Since there are 

many such rules based on planners’ experience, it’s neither efficient nor feasible to input all 

of them as constraints into the program. As an enhancement, a human expert is integrated 

into the problem solving loop to provide heuristics and insights to correct or confirm the 

results from the computer. The iterative calibration process, in which human and machine 

work together and negotiate with each other to come up with a solution, is named as human 

machine co-construct intelligence (HMCCI). Figure 3.1 shows a semi-automated program 

structure with the HMCCI framework implemented in the HYL module and the overall 

procedure illustrated.  

Through the further development and use of practical analytical multi-objective planning 

techniques, analysts can begin to interact with all participants in the planning and 

management process and can enlighten any who would argue that electric resources policy 

evaluation and analyses should not be political. Analysts, utility company managers and 

planners have to work in a political environment. They need to understand the process of 

decision-making, what information is most useful to that process, and how it can best be 

presented. Knowledge of these facts in a particular planning situation might largely dictate 
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the particular approach to objective identification and quantification and to plan selection that 

is most appropriate. 

The method deemed most appropriate for a particular situation will depend not only on the 

physical scale of the situation itself but also on the decision-makers, the decision-making 

process, and the responsibilities accepted by the analysts, the participants and the decision-

makers. 

Finally, because that the decisions being made at the current time are only part of a sequence 

of decisions that will be made on into the future. No one can predict with certainty what 

future generations will consider as being important or what they will want to do, but 

spending some time trying to guess is not an idle exercise. It pays to plan ahead, as best one 

can, and ask ourselves if the decisions being considered today will be those we think our 

descendants would have wanted us to make. This kind of thinking gets us into issues of 

adaptive management and sustainability 

In the HYL module, distribution planners can critique the HYL density of each customer 

class based on their planning experience, e.g., the load density of industrial land should be 

much higher than that of residential land. Planners can also revise the land use data to his/her 

knowledge of the place he is familiar with. As an overall procedure, planners can add 

scenarios by adjusting the land use data and horizon year load of some particular small areas 

to meet the expected load growth. In the following two sections of this chapter, methods of 

using HMCCI to determine HYL and added scenarios will be discussed. 
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Figure 3.1 A semi-automated hierarchical trending method with HMCCI framework 
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3.2 Determining Load Densities Using Greedy HMCCI 

3.2.1 Greedy Selection Procedure 

As discussed in Section 2.4, load densities are calculated as intermediate results using current 

land use information and base year load, and HYL can be determined based on these load 

densities and future land use information. An optimization problem is formulated to calculate 

the load densities. Table 3.1 shows the resulting load densities when different amounts (from 

100% to 99.0%) of the small areas are taken into consideration. Notice that all of these 

densities are equally reasonable to a computer running the optimization problem formulated 

in Section 2.4. However, an experienced distribution planner can understand the extensive 

physical meanings about these numbers and help the computer to select a more suitable set of 

load densities, or critique the current solutions to pursue better ones. 

Table 3.1 Load densities for selection procedure 

Land Use Information Load Density (kW/acre) 

Index Land Use Type 

Current 

Acreage 

Future 

Acreage 100.0% 99.8% 99.5% 99.0% 

1 Industrial / Business 2490 4820 45.57 37.26 31.24 28.55 

2 Extractive 1060 394 0.00 0.00 0.00 0.00 

3 Commercial (Retail & Services) 4025 6204 34.30 39.29 37.60 40.41 

4 Institutional / Government 2791 2733 45.89 26.71 24.04 22.25 

5 Rural Residential 358 5553 31.54 4.55 9.92 11.74 

6 Low Density Residential 16696 17446 2.64 4.81 6.26 6.58 

7 Medium Density Residential 894 1607 36.62 35.49 31.21 32.84 

8 High Density Residential 2525 3137 30.78 26.93 25.86 25.77 

9 Communication / Utilities 695 673 13.53 15.68 15.89 4.83 

10 Transportation 15372 16174 10.45 8.80 6.08 4.56 

11 Agriculture / Vacant 66699 47679 0.00 0.00 0.00 0.00 

12 Parks / Outdoor Recreation 5697 6802 0.00 0.27 0.65 0.96 

13 Natural / Woodland / Water / Other 47490 50689 0.00 0.00 0.00 0.00 
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A greedy algorithm tries to find a local minimum at each stage of the problem with the hope 

of reaching a global optimum at the end. Although most of the time greedy algorithms fail to 

find the global optimum, they often produce a reasonably good approximation of the global 

optimum within a short time. Various greedy algorithms have been developed to solve NP-

complete problems. However, due to the partial information utilized in each stage, 

computerized greedy algorithms may even reach the worst solution sometimes. This is 

definitely undesirable to some critical applications including load forecasting, because a bad 

forecast may lead to a disaster in a city and create much damage to the society. In this section, 

a human expert is put into the loop of the greedy strategy to have an overall control of the 

results in order to avoid worst case scenarios, or to even improve the results from the purely 

computerized program. 

A greedy selection procedure can be described as following: 

1) Find out the agreed upon observations among all the candidate solution sets. 

Highlight the observations using the color green, and exclude them from the future 

decision making. 

2) Rank the significance of the remaining observations from more significant to less 

significant. If all of the remaining observations are similarly significant, just place 

them in any sequence. 

3) Starting from the first observation in the queue, find out the solution set with the most 

disagreement, if there is one, among all the solution sets, and mark the observation in 

this solution set using the color red. If there is no disagreement on the observation, 
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move to the next one, until all the observations have been checked or there is only 

one solution set with no red mark. The remaining one or more solution sets without 

red mark will be the preferred choices. 

The key argument here is that the good enough subset and the selected subset. Informally, a 

good enough subset is a subset of the search space in which the members satisfy some 

planning criteria set forth by the decision maker. Oftentimes, a good enough subset is easy to 

specify but difficult to obtain by the machine intelligence. In contrast, the selected subset is a 

subset in which the members are picked out by the human intelligence using certain 

evaluation analogies or metaphors as the outcome for the planning process. Every 

optimization problem can, in principle, be conceived as the goal of matching a selected 

subset with the good enough subset. Take Table 3.1 as an example: 

1) All the solution sets agree that land use types #1, #11, and #13 have zero load 

densities, which are highlighted in green. 

2) Suppose the remaining land use types are equally significant, so they are placed as 

they are numbered. 

3) The load density of land use type #4 calculated by 100% small areas is marked as red, 

because it is significantly higher than the others. 

4) The load density of land use type #5 calculated by 100% small areas is marked as red, 

because it is significantly higher than the others. 

5) The load density of land use type #5 calculated by 99.8% small areas is marked as red, 

because it is significantly lower than the others. 
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6) The load density of land use type #9 calculated by 99% small areas is marked as red, 

because it is significantly lower than the others. 

7) Therefore, load densities calculated by 99.5% small areas are selected as a reasonable 

solution set for further calculation of HYL. 

3.2.2 Greedy Critique Procedure 

Although the selection procedure allows a planner to select the best solution set in his/her 

mind among all the solution sets provided by the computer, it may still fail when none of the 

computer-provided solution sets are reasonable or when part of the solution sets have 

considerable drawbacks. A critique procedure can overcome such a failed scenario: 

1) Starting with a solution set, find out the agreement between the planner and the 

computer. Mark the corresponding variables using the color green, make them as 

constants, and exclude them from the optimizations. 

2) Among the remaining variables, find the most disagreed on variable, change its value, 

mark it as yellow, make is as a constant, and exclude it from the optimizations. 

3) Tune the remaining variables to minimize the mismatches. If the all of the resulting 

densities are colored by green or yellow, use them to compute HYL. Otherwise, go 

back to step (1). 

Since in each time the planner and the computer will at least agree on one observation of all 

the finite many observations, the process will converge into a solution within finite many 

steps. 
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Table 3.2 shows a mock critique process starting with the calculation of 99.5% small areas, 

where the agreed upon values are highlighted in green and the manually modified values are 

highlighted in yellow: 

1) The planner agrees with the load densities of land use type #2, #11, #12, and #13. 

2) The planner changes the load density of transportation from 6.08kW/acre to 

2.00kW/acre. 

3) Among the resulting load densities, the planner agrees on land use type #1, #7, #8, 

and #9. 

4) The planner changes the load density of the rural residential customers from 

11.56kW/acre to 7.64kW/acre. 

5) The planner agrees with none of the remaining resulting load densities. 

6) The planner changes the load density of the commercial customers from 46kW/acre 

to 38kW/acre. 

7) The planner is satisfied with all of the load densities. The load density results can be 

used in the HYL calculation. 

Planners and managers working toward improving the performance of, or the solution sets 

provided by, these complex systems must identify and evaluate alternative plans and 

management or operating policies, comparing their predicted performance with desired goals 

or objectives. This is achieved through the greedy critique procedure. 
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Table 3.2 Using critique procedure to calculate load densities 

Index Land Use Type 

Step 

1 

Step 

2 

Step 

3 

Step 

4 

Step 

5 

Step 

6 

Step 

7 

1 Industrial / Business 31.24 31.24 29.59 29.59 29.59 29.59 29.59 

2 Extractive 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 Commercial (Retail & Services) 37.60 37.60 44.79 44.79 46.00 38.00 38.00 

4 Institutional / Government 24.04 24.04 19.97 19.97 18.02 18.02 19.20 

5 Rural Residential 9.92 9.92 11.56 7.64 7.64 7.64 7.64 

6 Low Density Residential 6.26 6.26 7.64 7.64 7.73 7.73 7.73 

7 Medium Density Residential 31.21 31.21 34.88 34.88 34.88 34.88 34.88 

8 High Density Residential 25.86 25.86 27.85 27.85 27.85 27.85 27.85 

9 Communication / Utilities 15.89 15.89 17.05 17.05 17.05 17.05 17.05 

10 Transportation 6.08 2.00 2.00 2.00 2.00 2.00 2.00 

11 Agriculture / Vacant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

12 Parks / Outdoor Recreation 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

13 Natural / Woodland / Water / Other 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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3.3 Customized Scenarios 

Although well-tuned load densities can provide overall matching with the current load of 

most of the small areas, in a few small areas, which are treated as outliers, there may be some 

local rules that differ a lot from the calculated load densities. Even among the small areas 

used in the optimization problem, the variance of mismatches is still very large due to the 

local information that a computer program doesn’t have. Therefore, such information has to 

come from the local planners.  

Furthermore, because of the multitude of factors that determine demand, perfect forecasting 

of economic development and resulting demands is a utopian dream. Future demands are 

often dependent on future scenarios. An electric load demand scenario is a logical 

combination of basic parameters of the economy. An understanding of the functioning of the 

socio-economic system, based on the human expert knowledge developed through the 

assessment of past and present trends should be used to formulate a limited number of 

consistent scenarios. Therefore, integration of planners’ local knowledge is essential for a 

useful forecast. 

3.3.1 Revising Horizon Year Load 

As discussed in the last chapter, HYL can directly affect the forecast. Thus, a planner can 

manipulate the forecast through revising HYL. For example, a local data center is going to 

gradually increase the number of computers during the next several years, which will 

apparently increase the future load consumption. However, this information will not be 
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reflected by land use information, because land use is the same as before. Therefore, the 

computer program is not able to indentify such growth. In this case, the planner can simply 

increase the HYL to include the load growth introduced by an increased number of 

computers.  

Since HYL is calculated through land use data and base year load, land use data can affect 

the HYL as well. It is possible that errors exist in the land use data, which will lead to a 

wrong forecast if the error is significant. By looking at the forecast maps, a planner can tell 

by intuition whether the forecast is reasonable or not. For example, the forecast map may 

show that there is some load growth on a lake, which is a water body that has a zero load 

density. When checking the future land use data, the planner finds that some residential land 

use is misplaced on the lake. In this case, the planner can correct the land use data by erasing 

the residential land on the map. 

3.3.2 Adding New Business Information 

Back to the example of the data center extension example, if the increase in number of 

computers is going to take effect at the beginning of the following year, it is not suitable to 

model this by increasing the HYL, because there is suppose to be a jump in the middle of the 

original smooth S-curve. In this case, the planner can model the extension as a new business 

by adding the same land use that is equal to the original data center to the corresponding 

small areas. The extra load growth will be calculated separately and added to the top-down 

forecast results. 
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Redevelopment can be modeled as the combination of revising land use data and adding new 

business as well. Sometimes, old residential land may be redeveloped as commercial land. If 

future land use does not include such a redevelopment plan, the planner can subtract the 

residential land use from the future land use data, and add new commercial customers as new 

business to reflect the corresponding load growth. 
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4 Implementation and Results 

The whole algorithm has been implemented in Microsoft Office Excel 2003 Visual Basic for 

Applications with Solver add-in. This chapter is devoted to introducing the implementation, 

Graphical User Interface (GUI), and related results. 

4.1 Initialization 

Some basic information is necessary to initialize the tool, which is put into the 

“Initialization” worksheet as shown in Figure 4.1.  

In this worksheet, a planner needs to input the following information: 

1) Names of the utility company and the planner. These two names will not be used in 

the program, but are for documentation purpose. 

2) Temporal information that includes the base year, length of historical data, and 

forecast range. The first two will be used to generate the header of “Load History” 

worksheet (Figure 2.7).  

3) Spatial information. The planner should input the length of a bottom-level small area, 

on which the size of the small area in both square footage and acreage is calculated 

automatically. The planner should also fill in the number of land use types which will 

be used to generate the headers of “Current Land Use” (Figure 2.5) and “Future Land 

Use” worksheets (Figure 2.6). 
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4) Corporation forecast. The planner can use a common percentage as the approximate 

corporation forecast, or specify the load growth of each year. 

 

Figure 4.1 “Initialization” worksheet 

After completing the above information, the planner can click the “Next Step” button to 

generate the headers of “Load History”, “Current Land Use” and “Future Land Use” 
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worksheets. Then the planner should fill in the three tables following the pre-defined format. 

The “Clear Data” button is used to reset the whole tool. By clicking this button, all the data 

input by the user and calculated by the program will be cleared. 
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4.2 Weather Normalization 

Weather normalization is conducted after inputting the historical load, and current and future 

land use information. “Weather Normalization” is a stand-alone worksheet as shown in 

Figure 4.2. The data for calculation has been entered and hidden to the user. 

 

Figure 4.2 “Weather Normalization” worksheet 

As introduced in Section 2.2.2, weather normalization applies a multivariate regression 

approach to calculate the coefficient for each historical year. There are four functional 

buttons in the “Weather Normalization” worksheet: 

1) Clear Form: Delete all the data in this table. 

2) Reset Form: Copy the pre-entered hidden data to the table. 

3) Calculate Weather Normalization Parameters: Use multivariate regression to calculate 

the coefficient for each year. 
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4) Apply Weather Normalization Parameters: Multiply the raw historical load from the 

“Load History” worksheet by the corresponding coefficient and output the weather 

normalized load to the “All Data” worksheet as shown in Figure 4.3. 

 

Figure 4.3 “All Data” worksheet – weather normalized historical load 
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4.3 Horizon Year Load Solver 

The HYL of each small area is calculated in the “HYL Solver” worksheet as shown in Figure 

4.4. There are four functional buttons: 

1) Initialize HYL Solver: Copy necessary data, such as the base year load, and the 

current and future land use data to the present worksheet. Then calculate a statistical 

summary (e.g., current and future acreage of each land use type) and set up formulas 

to prepare for Solver’s optimization. Finally copy current and future land use data to 

the “All Data” worksheet. 

2) Calculate HYL: Run Solver twice to get the load densities as well as the HYL. All 

small areas are used for optimization the first time, and a user-determined percentage 

of small areas is used at the second time.  

3) Apply HYL: Copy calculated HYL to the “All Data” worksheet. 

4) Reset Form: Delete all the data and reset the form back to its original status. 

 

Figure 4.4 “HYL Solver” worksheet 
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4.4 Service Territory Map 

The “Service Territory” worksheet (Figure 4.5) has the following four functions: 

1) Show service territory map and detailed small area information, such as historical 

load, HYL, and current and future land use. 

2) Allow user to edit future land use and HYL. 

3) Allow user to add new business or development. 

4) Allow user to select different accurate level to run engine. 

The territory should often coincide with an administrative unit (region, district, county etc.), 

because the administrative system usually requires an analysis of the functioning of the 

resources within its administrative boundaries. The system boundaries however, depend on 

its physical characteristics. They include the administrative area, but may extend over a 

larger area, depending upon the physical boundaries. 

As shown in Figure 4.5, the “Service Territory” worksheet is made of two blocks: the 

information board and the map. The map is drawn according to the coordinates of small areas, 

while the information board (Figure 4.6) includes the active functions and buttons. 
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Figure 4.5 “Service Territory” worksheet 

 

Figure 4.6 “Service Territory” worksheet – information board 

There are five buttons on the information board: 

1) Generate Map: Draw service territory map based on small area coordinates in “All 

Data” worksheet. 

2) Choose Area: Show the detailed information of the selected small area on the service 

territory map. 
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3) Change HYL: A planner can change future land use data and HYL which are the cells 

filled with the color white. The modified HYL will be copied to the “All Data” 

worksheet to update the old one. 

4) Add New Business: This row contains cells for new business land use, start year, and 

end year that are shown as white cells on the board. A planner can fill in the blanks 

with the corresponding new business information. 

5) Calculate NB load: A new business load will be fit into an S-curve based on the 

planner’s input, and then put into the “New Business Load” worksheet. 

Other than the five buttons, there are three check boxes on the information board as well. 

These boxes are used to select a forecast threshold, which is used to determine whether a 

small area’s load is considered as growth. If the mismatch between the HYL and the base 

year load is above the threshold, then the small area’s load can be considered as growth, and 

vice versa. Table 4.1 shows the approximate time under different forecast speed settings 

when the program is running on a computer with Intel Core 2 Duo 2.2GHz CPU and 2G 

RAM. 

Table 4.1 Computer run time under different forecast speed settings 

Check Box Threshold (kW) Amount of small areas Time (min) 

Fast Forecast 10 1024 50 

Medium Forecast 5 1280 60 

Slow Forecast 0 3460 110 

 

Notice that the faster forecast has less accurate results than the slower one, because the 

threshold of the faster forecast is higher than the slower ones. Increasing the load growth 

threshold is one approach to reduce run time, while another more significant approach is to 
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reduce the resolution of small areas, e.g., from 51.66 acres to 206.64 acres. Both of them will 

sacrifice the accuracy of the forecast.  

If a planner decides to delete some of the areas to increase the efficiency of the estimates, he 

or she of course needs some kind of procedure or criterion that indicates which areas best to 

delete. In reality, most decisions are made non-hierarchical, neither strictly bottom-up nor 

strictly top-down, as radically transformational, involving the development of partial and 

interim solutions which may ultimately play no role in the final decision. The process 

intrinsically involves the discovery of new insight. 
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4.5 Engine 

4.5.1 Bottom-Up Aggregation 

The small areas’ historical load and the HYL are aggregated from bottom level to top level, 

and the data of each level are stored in a different workbook called “Level id” (“id” is 

replaced by the level index) as shown in Figure 4.7, where the first column is the index of the 

small area, the last column is HYL, and the middle columns are the load of historical years. 

 

Figure 4.7 Temporary results of bottom-up aggregation 

The bottom-up S-curve fitting is implemented in a single “Bottom-Up Solver” worksheet as 

shown in Figure 4.8. For each small area, historical data are copied onto this worksheet to 

calculate the S-curve parameters. These parameters will be stored in temporary worksheets 

call “Curve id” ” (“id” is replaced by the level index). 
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Figure 4.8 “Bottom-Up Solver” worksheet 

4.5.2 Top-Down Allocation 

The top-down allocation is also implemented in a single worksheet named “Top-Down 

Solver” as shown in Figure 4.9. The upper level forecast data is copied from the 

corresponding “Level id” worksheet, and the initial value of the S-curves parameters are 

copied from the “Curve id” worksheet. After the Solver finishes the calculation for each sub-

region’s load allocation, the forecast results will be copied to the corresponding “Level id” 

worksheet. All the worksheets generated by the engine, including the “Bottom-Up Solver” 

worksheet, “Top-Down Solver” worksheet, “Level id” worksheets, and “Curve id” 

worksheets (other than “level1” worksheet), will be deleted after the top-down allocation is 

finished. 

 

Figure 4.9 “Top-Down Solver” worksheet 
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4.6 Forecast Results 

4.6.1 Result Display Setup 

A planner can select some particular years or all years within the forecast range to display 

forecast results in the “Result Display Setup” worksheet (Figure 4.10) by selecting one of the 

two check boxes. 

 

Figure 4.10 “Result Display Setup” worksheet 
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4.6.2 Final Forecast Results 

Final forecast results are presented in both data format and map format. Data format includes 

the incremental load (Figure 4.11) and the actual load (Figure 4.12). The incremental load is 

the load growth compared with the base year. If the growth is less than the threshold pre-

determined in the “Service Territory” worksheet, it is treated as equal to the threshold. The 

actual load is the sum of the incremental load and the base year load. 

 

Figure 4.11 “Forecast Incremental Load” worksheet 

 

Figure 4.12 “Forecast Actual Load” worksheet 
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The “Forecast Map” worksheet is shown in Figure 4.13. In the upper-left corner, which is 

shown in larger detail Figure 4.14, the planner can select which year to look at and whether 

to view the incremental or actual load map. For instance, Figure 4.15 and Figure 4.16 show 

the incremental load map and the actual load map of 2009’s forecast results respectively. In 

both maps, the darker the color code is, the more load or load growth the small area has. 

 

Figure 4.13 “Forecast Map” worksheet 
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Figure 4.14 Forecast map selection 

 

Figure 4.15 Forecast incremental load map (2010) 
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Figure 4.16 Forecast actual load map (2010) 
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5 Conclusion and Future Work 

5.1 Conclusion 

This thesis presents a tool for long-range spatial load forecasting. A hierarchical trending 

method has been investigated and implemented. An advanced feature, HMCCI, has been 

proposed to integrate human planners into the decision making process. The proposed 

method has been applied to several utilities and has received satisfactory results. Compared 

with most existing methods and tools in the literature and industry, the tool presented has the 

following advantages: 

1) Easy to set up. The required user inputs can be extracted easily from most utilities’ 

databases. 

2) Short run time. It takes less than two hours to get the results for a service territory 

with 3400 small areas. Moreover, the run time can be further reduced by selecting a 

higher load growth threshold. 

3) Short training period. It takes one business day to train the planners to understand the 

basic forecast concept, master the tool and produce forecast results. 

4) Planner-friendly. HMCCI can allow more planners’ involvement in order to get more 

reasonable results through several human-machine interaction cycles. Compared with 

other tools purely performed by the computer, this tool can bring in the planners’ 

years of experience and knowledge of local development to guarantee the quality of 

the forecast. 
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Compared with most simulation methods, which are very popular in the current industry 

market, but require a tremendous investment of time and money to train planners, set up, and 

make a run, the proposed method is much more time and money efficient. However, the 

proposed method may not be as detailed or accurate in its results as simulation method is.  
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5.2 Future Work 

Although the proposed tool has provided useful results for some utilities with limited budgets 

and resources for load forecasting, there are still several research topics that need to be 

further investigated in order to perfect the tool.  

The current neighborhood table is built based on total number of small areas without the 

consideration of geographical information. The grouping of the nearest small areas or the 

small areas with similar land use types might be helpful to the forecast. The investigation of 

different grouping methods is expected to be one way to improve the current work. 

In section 3.2.2, a simple greedy strategy is used to calculate load densities. Each time at 

least one type of land use is reduced, the whole procedure converges very fast. However, the 

accuracy of such an approach highly depends upon the skill of the planners. The proposed 

greedy strategy can be improved by adopting other more complicated greedy strategies, such 

as best first search, A* algorithm, etc. This will add more iterations to allow planners and 

computers to re-evaluate and revise what they’ve agreed on, so that even if the planners make 

a mistake, the computer has a chance to pick up on the error and give a warning.  
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