
Abstract 

SAWYER, RICHARD K.  Page Pinning Improves Performance of Generational 

Garbage Collection.  (Under the direction of Dr. Edward F. Gehringer). 

 

 Garbage collection became widely used with the growing popularity of the Java 

programming language.  For garbage-collected programs, memory latency is an important 

performance factor.  Thus, a reduction in the cache miss rate will boost performance.  In 

most programs, the majority of references are to newly allocated objects (the nursery).  This 

work evaluates a page-mapping strategy that pins the nursery in a portion of the L2 cache.  

Pinning maps nursery pages in a way that prevents conflict misses for them, but increases the 

number of conflict misses for other objects.  Cache performance is measured by the miss-rate 

improvement and speedup obtained by pinning on the SPECjvm98 and the DaCapo 

benchmarks. 

Pinning is shown to produce a lower global miss rate than competing virtual-memory 

mapping strategies, such as page coloring and bin hopping.  This improvement in miss rate 

shortens overall execution time for practically every benchmark and every configuration.  

Pinning greatly reduces average pause time and variability of pause times for nursery 

collections. 
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Chapter 1 

 

Introduction 
 

 

Memory management has long been a challenge for programmers.  Programming 

languages like FORTRAN, C, and C++ require the programmer to allocate and de-allocate 

memory.  Garbage collection was introduced in Lisp (1959), in order to automate 

reclamation of memory that was no longer in use.  But it was not until Java exploded on the 

programming scene in 1995 that garbage collection hit the programming mainstream.   

In a garbage-collected program, program execution is broken into two phases, the 

mutator phase and the garbage collection phase.  In the mutator phase, the program is 

modifying the data to accomplish the overall program goal.  The garbage-collection phase 

accomplishes the task specifically related to automatic memory management: to free memory 

that is no longer in use. 

 Although garbage collection simplifies memory management, there are overheads.  

One overhead is pause time, which occurs when the mutator phase is halted for garbage 

collection.  This takes time away from the meaningful work of the program, increases the 



 

 

 

2 

program’s instruction count, and potentially causes a program to miss a real-time deadline.  

Real-time programs typically do not use garbage collection because of this pause time. 

Pause time can be tackled by reducing cache misses.  When a cache miss occurs the 

processor is stalled to wait for main memory.  The amount of time the processor waits to 

access main memory is known as memory latency.  Given the growing gap between 

processor speed and memory speed, many strategies have been developed to hide memory 

latency and improve cache performance.   

Two frequently proposed strategies, page coloring and bin hopping, deal with 

memory latency by modifying the virtual page mapping.  Page coloring takes advantage of 

spatial locality of virtual addresses by mapping consecutive virtual pages to consecutive 

physical page frames, so that they do not conflict in the cache.  Bin hopping takes advantage 

of temporal locality by mapping the most recently mapped virtual pages to consecutive 

physical page frames, so that they do not conflict in the cache. 

A new page-mapping strategy to improve cache performance is pinning.  Pinning can 

be used in generational garbage collectors where new objects are allocated to the nursery 

space (also called the youngest generation) in the heap.  Generational-copying garbage 

collectors do more frequent collections on the small nursery space and a full heap collection 

only when necessary.  Pinning maps nursery pages in a way that prevents conflict misses in 

the L2 cache, but increases the number of conflict misses for other objects.  With pinning, all 

accesses to nursery objects hit in the L2 cache, except for misses due to replacements that 

occur because of context switches (cold misses can be avoided in caches that have the ability 

to allocate memory in cache, without fetching from main memory).  The cost of such a 
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strategy is low; pinning only requires a software change to the virtual-page mapping 

functions of the operating system. 

The goal of this thesis is to evaluate whether pinning boosts cache performance for 

generational garbage-collected programs.  These experiments study the miss-rate 

improvement and speedup obtained by pinning on a set of Java programs represented by the 

SPECjvm98 and the DaCapo benchmarks. 
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Chapter 2 

 

Background 
 

 

This chapter introduces concepts and terminology used in this research.  Memory 

allocation is discussed in section 2.1.  Section 2.2 discusses basic garbage collection 

terminology.  Section 2.3 discusses virtual page mapping and explains the concepts of page 

coloring and bin hopping. 

2.1 Memory Allocation 
 

Memory can be allocated according to three strategies: static, stack, and heap.  Static 

memory allocation occurs at compile time; this memory remains accessible from the 

beginning to the end of program execution.  Static memory contains such items as global 

variables and constants.  The other two kinds of memory allocation are performed during run 

time.  Stack memory typically contains local variables, such as function parameters and 

return values that are allocated on a procedure call and deallocated on a return.  The third 

type of memory allocation, the one studied here, is the heap.  The heap consists of 

dynamically allocated objects, whose size and number is unknown at compile time. 
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2.2 Garbage Collectors 
 

This section describes the basics of garbage collection.  There are three classic 

garbage-collection strategies, as classified by Jones and Lins [12]; reference counting, mark-

sweep, and copying. 

2.2.1 Reference Counting 

 

Reference counting tracks the number of pointers referencing a heap object.  For 

example, in a doubly-linked list an item in the middle of the list would typically have a 

reference count of two.  When an object is allocated on the heap, the reference count is set to 

one.  The reference count is incremented and decremented as a program is executed, so that 

garbage collection is distributed throughout the mutator phase.  If the reference count is zero, 

the object is free in the heap.  An advantage of this strategy is that an object can be 

immediately reclaimed when it becomes garbage.  In other words, the heap space used by 

that object can be re-used without delay once the reference count reaches zero.  The 

disadvantage is that every time a pointer is created or overwritten the reference count must be 

updated, increasing the overhead of every pointer manipulation.  Pause time is dispersed 

throughout the mutator phase, but cyclic data requires special attention. 

2.2.2 Mark-sweep 

 

Mark-sweep garbage collection is split into two phases called ☺ “mark” and “sweep”.  

A bit is associated with each object to indicate that the object is alive.  During the mark 

phase, all objects reachable from the roots (live data) are marked.  Once an object is marked, 

it is not traversed again.  After all live data is marked, the sweep phase begins.  During the 

sweep phase, all unmarked objects are placed back on the free list.  Allocation of objects 
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continues until no more space is available on the heap.  This garbage-collection strategy 

handles cyclic data without special code.  The cost of this strategy is a long pause time every 

time heap space is exhausted. 

2.2.3 Copying 

 

Copying garbage collection strategies divide the heap into two semispaces called 

tospace and fromspace.  As the semispace names suggest, objects come from the fromspace  

and go to the tospace during collection.  Specifically, objects are allocated at the top of 

tospace.  Similarly to mark-sweep, garbage collection begins when tospace is exhausted. 

 

 

Figure 1:  In a copying garbage collector, the live data is copied from the tospace to the fromspace, and then 

the roles are swapped until the next collection. 
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During collection, the roles of tospace and fromspace are reversed.  The collector searches 

for live data in the fromspace and then copies it to the tospace.  Once all live data is copied, 

the mutator phase resumes.  The advantage of copying is that it allows object allocation to be 

faster than other garbage collection methods [12].  All live data is compacted at the bottom of 

the tospace, preventing the heap from becoming fragmented.  New objects are allocated by 

incrementing the free-space pointer within tospace.  The free-space pointer will be pointing 

to the end of the tospace when the heap is exhausted.  The disadvantage of copying, however, 

is that the amount of address space required is doubled.  This causes increased page faults 

because both semispaces must be touched during any garbage collection. 

2.2.4 Generational-Copy 

 

Generational-copy collectors are based on the assumption that objects die young [20, 

15].  Kim and Hsu found that 65% to 99% of objects were short-lived in Java programs [15].  

Kim and Hsu defined the lifetime of an object as the total number of data references between 

the first and last reference to an object.  Short-lived objects have a lifetime less than 1 million 

references. 

In the generational-copy strategy, the heap is divided into two or more generations.  

New objects are allocated in the young generation and are promoted to an older generation 

the longer they survive.  The advantage of generational-copy collection is that pause times 

are decreased because shorter collections are performed on the small young generation, and 

full heap collections are done much less frequently — only when necessary.  A benefit of 

generational copying over (non-generational) copying is that the long-lived objects are not 

copied repeatedly between semispaces; once the old object is promoted to old space it will 

not be touched during nursery collections.  When an object in old space points to an object in 
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the nursery, that pointer becomes part of the root set when calculating live data during a 

nursery collection. 

 

Figure 2:  In a generational-copying garbage collector, allocation occurs in the nursery.  During a nursery 

collection, live data is copied to an older generation. 

 

2.3 Virtual Page Mapping 
 

 

Virtual memory allows each process to have a full range of addresses, even though 

the processes share only one physical address space in main memory, e.g. 2
32

–1.  Most 

virtual memories are paged.  Paged virtual memory divides the address space into page-sized 

blocks.  Each virtual page is then mapped to a page frame in physical memory.  Virtual 

memory simplifies the task of the programmer in two ways: (1) the programmer does not 

have to worry about collisions with other processes’ objects in main memory, and (2) it 

automates the process of swapping information between main memory and secondary 

storage.   
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2.3.1 Page Coloring 

 

Page coloring improves cache performance by mapping consecutive virtual pages to 

consecutive physical page frames. Mapping in this manner takes advantage of the spatial 

locality of memory accesses and thus can reduce conflict misses in the cache.  Page frames 

are grouped by color.  The number of colors is determined by dividing the cache size by the 

page size.  For example, if a direct-mapped cache is 512KB and the page size is 4KB, there 

are 128 colors.  Page coloring uses bit selection to choose the color of a particular virtual 

memory page.  A page frame is then selected from the pool of available page frames with the 

same color.  

 

Figure 3:  This shows the bit selection for a 512KB direct-mapped cache with a block size of 64 bytes.  It 

also shows the bit selection for page coloring given a page size of 4KB. 

 

2.3.2 Bin Hopping 

 

Bin hopping takes advantage of temporal locality by mapping the most recently 

mapped virtual pages to consecutive physical page frames, so that they do not conflict in the 

cache.  Page frames are divided into groups or bins.  Each bin is a collection of page frames 

that map to a page-sized chunk of the cache.  The number of bins is the cache size divided by 

the page size.  On a page fault, the selection of a page frame is determined by incrementing 

the bin count.  The bin count wraps around to zero when the final bin is reached. 

   cache line number 

page offset 

(cache) tag block offset 

color 

0 5 6 11 12 18 31 
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2.4 Summary 
 

The three basic memory allocation strategies are static, stack, and heap.  The memory 

allocation strategy discussed in this thesis is the heap.  Garbage collection is a method to 

automate heap management.  The three primary garbage collection methods are reference 

counting, mark-sweep, and copying.  This thesis investigates a variation of copying known as 

generational-copying collection.  This thesis also studies the interaction of virtual memory 

and the cache during garbage collection.  The two main virtual page mapping strategies, page 

coloring and bin hopping, are compared to our pinning strategy.
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Chapter 3 

 

Related Work 
 

 

The pinning strategy discussed in this thesis was first studied by Reddy [17] and 

Krishnakumar [16].  These first studies demonstrated that pinning can provide cache miss-

rate improvement for IBM Smalltalk programs.  This thesis extends their work by studying 

the effects of the pinning strategy with Java, a more widely used language, using the 

SPECjvm98 suite, and the more memory-intensive DaCapo benchmarks.  Also measured in 

this thesis, is speedup using a cycle-accurate simulator to observe the performance 

improvement provided by pinning. 

Wilson, Lam, and Moher [21] investigated the effects of generational copying 

garbage collection in Scheme 48, a modified version of Scheme.  They found that direct-

mapped caches outperformed set-associative caches when the cache size was near the size of 

the nursery.  For caches sizes larger than the nursery, set-associative outperformed direct-

mapped.  They found that the majority of misses in a cache larger than the young generation 

were conflict misses.  This thesis expands upon concepts in Wilson, Lam, and Moher by 

pinning the youngest generation in the L2 cache. 
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Boehm [4] also had the goal of reducing cache misses of garbage collected programs. 

Boehm reduced cache misses for a non-copying collector using two strategies  “prefetch-on-

grey” and “lazy sweeping”.  The former strategy prefetches data during the mark phase to 

improve cache performance.  The latter strategy postpones the sweep phase until allocation 

time, so that when reallocation occurs the allocated block is already in the cache because it 

was just accessed during the sweep.   

Similar to Boehm, Reinhold [18] used a non-copying collector in his research. 

Reinhold found that caches perform best with infrequent garbage collection.  However, his 

studies only included direct-mapped caches, which now are almost extinct.   

Chilimbi and Larus [5] studied a real-time profiling technique to improve locality of 

heap objects in order to reduce the cache miss rate and improve execution time.  Their 

researched focused on longer-lived objects.  Although this thesis concentrates on the short-

lived young generation objects, it is possible to use their strategy in conjunction with pinning. 

Diwan, Tarditi, and Moss [8] examined the effect of generational garbage collection 

on various cache structures.  Their studies used the Standard ML of New Jersey compiler.  

They found that the best performance was achieved when the cache had a subblock 

placement (write-validate [13]) coupled with a write-allocate policy. 

The Standard ML of New Jersey compiler was also used by Cooper, Nettles, and 

Subramanian [6]. Their goal was to reduce page faults by modifying the page-fault handler. 

Ideally, pages that no longer contained useful information during garbage collection were not 

written back to secondary storage.  The goal of this thesis, however, is to reduce cache 

misses.  
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The main goal of the research discussed above and the goal of this thesis is the same: 

to reduce cache misses during garbage collection and improve overall program execution 

time.  There are many published strategies [4, 5, 8, 18, 21] to reach this goal.  This thesis 

applies a strategy (pinning), first studied by Reddy and Krishnakumar, to Java programs. 
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Chapter 4 

 

Experimental Methodology 
 

 

 The goal of pinning is to decrease garbage collection pause time and program 

execution time.  This is accomplished by pinning the youngest generation of the heap in the 

L2 cache to decrease the number of cache misses during garbage collection.  A portion of the 

cache is reserved, and only the youngest generation is allowed to map to the page frames that 

map to the reserved portion of the cache.  Reddy [17] found that it was best to reserve 25% of 

the cache.  Therefore, all of our experiments reserve 25% of the L2 cache for the nursery.  

The identity of the reserved page frames depends upon the size of the cache and the cache 

line size.  Consider that the first page frame maps to the lowest-numbered sets in the cache, 

beginning with set 0.  The second page frame maps to sets adjacent to the first page frame, 

and so forth, until the last set is reached.  After that, the next page frame again maps to the 

lowest-numbered sets in the cache.  The page frames that map to the first quarter of the cache 

are the reserved frames (in these experiments). 

 Let us define a bucket as a collection of contiguous page frames that map to the 

reserved portion of the cache.  Page frames in a particular bucket share a certain bit pattern.  
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For example in figure 2, page frames in bucket 15 have all ones in bits 8 to 11.  Our strategy 

reserves the page frames in a particular bucket; and only maps virtual pages containing the 

youngest generation to these reserved page frames.  The pinning strategy requires just one 

bucket; therefore the page fault handler can choose which bucket to pin for a particular 

process.  For example, in figure 2 bucket 0 or bucket 15 could be pinned. 

 
Figure 4:  Pinning for a 1MB direct-mapped cache with 32-byte lines, to reserve a 256KB nursery in the cache. Here 

the first 8192 lines are reserved for the nursery. Each bucket is formed by taking the first 64 page frames 

(8192 lines) of each 1 MB region (= size of the cache). Only one bucket is chosen to contain new space. The 

choice of bucket is left to the memory allocator and page-fault handler. 

 

 In the Jikes research virtual machine (RVM), the address range of each heap space is 

determined at compile time.  Using the GenCopy collector, the nursery space occupied the 

virtual address range of 0x74C00000 to 0x7FFFFFFF.  In our experiments, the nursery size 

was restricted using two MMTk command-line parameters, X:gc:fixedNursery and  

X:gc:boundedNursery, so that the nursery was not allowed to exceed a size equal to ¼ of the 

L2 cache size.  In order to simulate pinning, we extended Dynamic SimpleScalar (DSS) to 
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include virtual-to-physical address translation.  When the executable (Jikes) invokes the 

mmap system call, a virtual page is added to the page table.  If that virtual page lies within 

the nursery address range, then that page is mapped within a reserved page bucket.  

Otherwise, the page is mapped to a page frame outside the bucket. 

4.1 Simulator 
 

Dynamic SimpleScalar version 1.0.1 [9] was used in this experiment, primarily 

because it supports just-in-time compilers such as Jikes RVM.  The functional cache 

simulator (sim-cache) was used to calculate miss-rate improvements, and the cycle-based 

simulator (sim-outorder) was used to calculate speedup.  We made several modifications to 

the simulator:  (1) A virtual-to-physical page mapping was added, (2) unsupported system 

calls were implemented (rmdir, mkdir, nanosleep, and dirents64), (3) in sim-cache 

the L2 cache was replaced with a single-pass cache simulator [10], and (4) several additional 

counters were added to measure cache statistics for each phase and for each heap space.  By 

default, DSS passes the virtual addresses to the cache without translating them to physical 

addresses; this is sufficient for most experiments.  Our experiments were dependent on the 

virtual page mapping, which required physical address translation.  Virtual addresses are 

translated to physical addresses and the physical address is passed to the cache simulator. 

Four additional system calls were implemented because they were needed for the 

DaCapo benchmarks to finish successfully.  And, LRU stack depths were measured to 

simulate the miss rate of direct-mapped through 16-way L2 cache configurations in a single 

run using the all-associativity algorithm from Hill and Smith [10]. 
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4.2 Virtual Machine 
 

The Jikes RVM version 2.4.0 [11] was chosen for this study because it is an widely 

used open-source research virtual machine whose memory management toolkit (MMTk) [3] 

provides a generational copying garbage collector.  It was configured to use the fast adaptive 

optimizing compiler and the generational copy collector.  It was instrumented to signal the 

beginning and end of each garbage-collection phase using a virtual page that had a unique 

madvise class to pass signals to the simulator.  Jikes timing is non-deterministic because 

the optimizing compiler is timer-based.  Therefore, the compiler replay option was used to 

limit the variability among executions of the same benchmark.  For compiler replay, the 

optimizing compiler decisions are not made at run time, instead the decisions are based on 

profile information.  The profile information consists of the dynamic call graph, the 

frequency of each edge for inlining decisions, and the adaptive compilation level for each 

method.  Each benchmark was run 7 times in a native PowerPC Linux environment, and the 

profile information from the run with the median execution time was used for our analysis.   

4.3 Benchmarks 
 

The DaCapo benchmarks [7] were chosen because they are readily available and 

stress the memory system.  Two of the DaCapo benchmarks, batik and chart, were not used 

because they were incompatible with Jikes at the time this research was performed. 

The SPECjvm98 benchmarks are commercially available benchmarks and add 

breadth to this study, showing the effect of pinning on a set of less memory-intensive 

benchmarks. 
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Table 1:  DaCapo benchmark description [7] 

Benchmark Description 

antlr parses one or more grammar files and generates a parser and lexical analyzer for 

each. 

batik renders a number of SVG files 

bloat performs a number of optimizations and analysis on Java bytecode files 

chart uses JFreeChart to plot a number of complex line graphs and renders them as PDF 

fop takes an XSL-FO file, parses it and formats it, generating a PDF file. 

hsqldb executes a JDBC-like in-memory benchmark, executing a number of transactions 

against a model of a banking application 

jython interprets a series of Python programs 

pmd analyzes a set of Java classes for a range of source code problems 

ps reads and interprets a PostScript file 

xalan transforms XML documents into HTML 

 

Table 2:  SPECjvm98 benchmark descriptions [19] 

Benchmark Description 

_201_compress Modified Lempel-Ziv method (LZW). Basically finds common substrings and 

replaces them with a variable size code. This is deterministic, and can be done on 

the fly. Thus, the decompression procedure needs no input table, but tracks the way 

the table was built. 

_202_jess JESS is the Java Expert Shell System is based on NASA's CLIPS expert shell 

system. In simplest terms, an expert shell system continuously applies a set of if-

then statements, called rules, to a set of data, called the fact list. The benchmark 

workload solves a set of puzzles commonly used with CLIPS. To increase run time 

the benchmark problem iteratively asserts a new set of facts representing the same 

puzzle but with different literals. The older sets of facts are not retracted. Thus the 

inference engine must search through progressively larger rule sets as execution 

proceeds. 

_205_raytrace A raytracer that works on a scene depicting a dinosaur, where two threads each 

renders the scene in the input file time-test model, which is 340KB in size. 

_209_db Performs multiple database functions on memory resident database.  Reads in a 1 

MB file which contains records with names, addresses and phone numbers of 

entities and a 19KB file called scr6 which contains a stream of operations to 

perform on the records in the file. The program loops and reads commands till it 

hits the `q' command. 

_213_javac This is the Java compiler from the JDK 1.0.2. As this is a commercial application, 

no source code is provided. 

_222_mpegaudio This is an application that decompresses audio files that conform to the ISO MPEG 

Layer-3 audio specification. As this is a commercial application only obfuscated 

class files are available. The workload consists of about 4MB of audio data. 

_227_mtrt This is a variant of _205_raytrace.  

_228_jack A Java parser generator that is based on the Purdue Compiler Construction Tool Set 

(PCCTS). This is an early version of what is now called JavaCC. See Looking for 

lex and yacc for Java? You don't know Jack - By Chuck McManis, Javaworld 

Magazine. The workload consists of a file named jack, which contains instructions 

for the generation of jack itself. This is fed to jack so that the parser generates itself 

multiple times. Because this is a commercial application, no source code is 

provided. 
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Chapter 5 

 

Results 
 

 

In the first analysis, the success of pinning can be measured by the improved cache 

miss rate.  Improvements in cache miss rate translate into faster run times, which is an 

obvious benefit.  Between miss rate and run time, miss rate is easier to measure.  Miss rate 

depends only on cache organization and the behavior of the application and not on a host of 

architectural factors, such as memory characteristics, bus contention, or instruction-level 

parallelism artifacts such as size of the reorder buffer.  Also, a single run of the simulator can 

be used to gather results for several different cache associativities [10], but run-times must be 

measured by separate runs for each cache organization.  Section 5.1 shows several results 

related to miss-rate improvement.  Pinning is compared to no pinning in section 5.1.1.  Then 

we show the improvement over competing page-mapping strategies, page coloring and bin 

hopping, in sections 5.1.2 and 5.1.3, respectively. 
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5.1 Miss-rate Improvement 
 

5.1.1 Pinning vs. no pinning 

 

Pinning improves the global miss rate relative to the base case which is no page-

placement strategy.  Our base case assumes no virtual address translation; i.e., the virtual 

address generated by DSS is used as the physical address.  This yields a conservative 

estimate of the improvement of pinning for the following reason: Two consecutive virtual 

pages are always mapped to two consecutive physical page frames, which means they will 

map to adjacent sets within the cache.  There is no possibility that adjacent virtual pages will 

map to the same cache sets, unless there are very few sets in the cache (i.e., a very small or 

highly associative L2 cache).  Otherwise, two adjacent virtual pages will never compete for 

the same cache set.  In real systems, however, it is possible that two adjacent virtual pages 

are mapped to physical memory in such a way that they compete for the same cache lines.  

The assumption that physical address = virtual address tends to underestimate the contention 

for L2 cache lines and thus show better performance for the base case than would be seen in 

a real system. 

The miss-rate improvement of pinning over no pinning is displayed in figure 5 on the 

next page.  In each graph, there is a separate column for each benchmark.  The last column in 

each graph shows the average global miss-rate improvement across all benchmarks.  In 

general, the average improvement decreases as the associativity of the L2 cache increases, 

the exception is the 512KB L2 cache. 
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Figure 5:  The pinning strategy improves average global miss rate compared to no pinning.    

                  * denotes an impartial run 
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5.1.2 Pinning vs. page coloring 

 

Pinning almost always improves global miss rate compared to page coloring 

(averaged over all benchmarks).  Page coloring outperforms pinning only in a highly 

associative (8-way or 16-way) 4MB L2 cache.  The results are shown in figure 6 on the 

following page.  The average global miss-rate improvement is greater than 20% in all 2-way 

set-associative L2 caches 1MB or larger.  Excluding the highly associative cases, pinning 

improves the global miss rate 7% to 26% for 4MB caches.  The global miss-rate 

improvement ranges from 3%–9% for 512KB L2 caches, 9%–21% for 1MB L2 caches, and 

4%–25% for 2MB L2 caches.  The miss-rate improvements translate to shorter program 

execution times, which are discussed further in section 5.2. 

5.1.3 Pinning vs. bin hopping 

 

Pinning also improves global miss rate compared to bin hopping in all but the 512KB 

direct-mapped L2 cache (figure 7).  The benefit of pinning generally decreases as the 

associativity of the L2 cache increases.  Typically, there are fewer total misses in more 

highly associative caches, so there is less room for improvement.  Excluding the direct-

mapped case, pinning improves the global miss rate 3.1% to 5.3% for 512KB caches.  The 

global miss-rate improvement ranges from 8.2%–20.0% for 1MB L2 caches, 2.8% to 14.9% 

for 2MB L2 caches, and 2.8% to 22.9% for 4MB caches.
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Figure 6:  The pinning strategy improves average global miss rate compared to page coloring in all but the 512KB 

direct-mapped L2 cache. 
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Figure 7:  The pinning strategy improves global miss rate compared to bin-hopping in all but the 512KB direct-

mapped L2 cache. 
* denotes an impartial run 
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5.2 Speedup 
 

5.2.1 Pinning vs. page coloring 

 

 

Today’s processor architectures allow instructions to complete out of order.  This 

means that a long cache miss will not delay the execution of all instructions in a program, 

only those instructions that depend on the data being fetched.  Therefore, it is not clear that 

an improvement in miss rate necessarily translates to a perceptible decrease in execution 

time.  We measured speedup using DSS’s sim-outorder simulator with an issue width of 4 

and a memory latency of 200 cycles.  This gives a realistic picture of the speedup yielded by 

the global miss-rate improvement due to pinning.  Pinning provides positive speedup across 

all cache configurations studied, as seen in figure 8.  Pinning provides the most speedup in 2-

way cache configurations where the average is 5%–7%, and even in the higher associativities 

the average is 2%–3%. 
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Figure 8:  The pinning strategy improves execution time for all cache configurations studied. 
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5.2.2 Speedup in a highly associative cache with long memory latency 

 

In the future, memory latencies, measured in terms of processor cycles, will be 

greater.  Furthermore, the trend toward greater associativity in L2 caches can be expected to 

continue.  The processor of a few years will have memory latencies of 400 cycles, and quite 

possibly L2 associativities of 32.  We simulate a 4MB 32-way set associative cache using a 

FIFO replacement policy instead of LRU.  FIFO is chosen because it is not practical to use 

LRU placement in a more highly associative cache.  Figure 9 shows that pinning continues to 

provide a modest speedup even as caches grow in size and become more associative. 

 

Figure 9:  If the trend towards large highly associative caches and high miss penalty continues, pinning could still 

provide a performance improvement. 
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5.3 Heap Size 
 

Pinning requires the nursery size to be restricted to a fraction of the L2 cache size.  

By default the garbage collector allows the size of the nursery to grow and shrink using the 

technique described by Appel [1].  Restricting nursery size causes the number of garbage 

collections to increase. As this happens, the number of objects promoted to old space also 

increases because new objects have less time to die before being promoted.  The increase in 

the heap high-water mark is nominal (figure 10).  The maximum heap size is unaffected for 

the benchmarks bloat and ps with a 1MB or 2MB L2 cache.  The maximum heap size is 

reduced for the fop benchmark in a 1MB or 2MB cache and the antlr benchmark in a 2MB 

cache. 

 

Figure 10:  Restricting the nursery size for pinning can increase the number of promoted objects and potentially 

increase the maximum size of the heap during execution, but these graphs show that this change is nominal. 
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5.4 Garbage-Collection Pause Times 
 

An important benefit of pinning is that it reduces the pause time in nursery 

collections.  This reduction is a combination of two factors:  restricting the nursery size and 

eliminating L2 cache misses within the nursery space.  Restricting the nursery size limits the 

amount of data traversed at each nursery collection.  Pinning the nursery in the L2 cache 

eliminates cache misses to the nursery objects accessed.  The pause time is measured in 

cycles directly proportional to time using the out-of-order simulator.  Figure 11 below shows 

that pause times are greatly reduced by 56% to 92% when using the pinning strategy.  

Histograms of the pause times for each benchmark are in Appendix A. 

 

Figure 11:  An important benefit of pinning is that it reduces the pause time for nursery collections. 
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As previously stated, eliminating misses in the L2 cache is one factor reducing pause 

times.  The other factor is that the nursery is smaller.  In figure 12, the nursery size is 

restricted for both the base case (page coloring) and the pinning case.  This allows us to 

isolate the effect of eliminating misses in the L2 cache.  The pause time is reduced 4% to 

17% due to the elimination of misses.  Thus, reducing nursery size is the biggest factor in 

reducing pause time.  If it were not for pinning, then the overall runtime would be increased 

by limiting nursery size. 

 

 

Figure 12:  The decrease in pause time contributable to pinning the nursery in L2 cache. 
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 Real-time programs typically do not use garbage collection because pause times are 

unpredictable.  A benefit of pinning is that it reduces the variance of pause times.  Thus, 

pinning aids programs with real-time deadlines because the pause time is less variable.  

Figure 13 shows that pinning reduces the variance in pause time by 95% to 99%.  The greater 

variability, however, is in the old-generation collection.  This is the first step in reducing 

variance, but it does not solve the entire problem. 

 

Figure 13:  Pinning reduces the variance of nursery pause times.  This especially beneficial for real-time programs. 

 

5.5 Fraction of cache reserved 
 

Pinning implies that part of the L2 cache is reserved for the nursery.  In these 

experiments we tried to determine how much of the cache should be reserved. We considered 

three fractions: 12.5%, 25%, and 50%.  The best fraction has the most miss-rate 

improvement.  Figures 14, 15, and 16 demonstrate that the optimal fraction varies with cache 
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size and associativity.  For direct-mapped caches 12.5% is the optimal fraction. 12.5% is also 

the optimal fraction for 2-way and 4-way caches 1MB or larger. A 25% portion is best for 

512KB set-associative caches and 8-way or 16-way 1MB caches.  For the remaining highly-

associative large L2 caches (4-way to 16-way and 2MB to 4MB), it is best to reserve 50% of 

the cache for the nursery space.  In the previous sections we reserved 25% of the L2 cache 

for pinning, but the results from this section show that 25% is not always the best choice.   
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Figure 14:  Global miss-rate improvement when pinning nursery in 12.5% of the L2 cache. 
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Figure 15:  Global miss-rate improvement when pinning nursery in 25% of the L2 cache. 
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Figure 16:  Global miss-rate improvement when pinning nursery in 50% of the L2 cache. 
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Chapter 6 

 

Conclusion 
 

 

Pinning is a page-mapping strategy that improves the cache miss rate of generational-

garbage collectors.  Our strategy eliminates L2 cache misses to nursery objects in a 

generational garbage collector by pinning the nursery to 25% of the L2 cache.  We measured 

the global cache miss rates across a range of Java benchmarks from both the SPECjvm98 and 

DaCapo benchmark suites.  Pinning is shown to outperform the competing virtual-memory 

mapping strategies of page coloring and bin hopping in reducing global miss rate. 

 Improvement in miss rate shortens overall execution time for practically every 

benchmark and every configuration.  We measured the speedup of pinning using a cycle-

accurate simulator.  On an out-of-order processor with issue width 4, pinning provides a 

speedup of 5–7% for 2-way caches, 2–4% for 4-way caches, and 1–4% for 8-way caches.  

We also measured the speedup in execution time for memory configurations of the future.  

Pinning provides an average speedup of 2% for a large highly associative cache, 4MB 32-

way L2 cache, and an L2 miss penalty of 400 cycles.  These improvements are small, but 

they can be realized by a small change to software and seem likely to persist in future 
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generations of processor architectures.  Moreover, any strategy that relies on a copying 

collector in the youngest generation (e.g., ulterior reference counting [2]) is amenable to 

improvement through this technique. 

Pinning also reduces average pause time and variability of pause times.  The 

reduction in the mean and variance of pause time is due to two factors: restricting the young 

generation size and eliminating L2 cache misses to young generation address space.  It 

reduces the average nursery pause time by 56% to 92%, and decreases the variability of 

pause times by 95% to 99%.  A shorter more predictable pause time is an important 

consideration especially for programs with real-time deadlines. 

Future work includes examining the pinning strategy on a real system, such as a 

modified Linux kernel.  It would also be useful to measure speedup for cache configurations 

where 12.5% or 50% of the L2 cache can provide greater improvement. 
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Appendix A 

A.1  Pause time histograms (1MB L2 cache) 

 

Figure A.1:  Histrogram of pause time (1MB L2 cache, antlr benchmark)  

 

Figure A.2:  Histrogram of pause time (1MB L2 cache, bloat benchmark) 
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Figure A.3:  Histrogram of pause time (1MB L2 cache, fop benchmark)  

 

Figure A.4:  Histrogram of pause time (1MB L2 cache, hsqldb benchmark) 
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Figure A.5:  Histrogram of pause time (1MB L2 cache, jython benchmark) 

 

Figure A.6:  Histrogram of pause time (1MB L2 cache, pmd benchmark) 
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Figure A.7:  Histrogram of pause time (1MB L2 cache, ps benchmark) 

A.2  Pause time histograms (2MB L2 cache) 

 
Figure A.8:  Histrogram of pause time (2MB L2 cache, antlr benchmark) 
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Figure A.9:  Histrogram of pause time (2MB L2 cache, bloat benchmark) 

  
Figure A.10:  Histrogram of pause time (2MB L2 cache, fop benchmark) 
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Figure A.11:  Histrogram of pause time (2MB L2 cache, hsqldb benchmark) 

  
Figure A.12:  Histrogram of pause time (2MB L2 cache, jython benchmark) 
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Figure A.13:  Histrogram of pause time (2MB L2 cache, pmd benchmark) 

  
Figure A.14:  Histrogram of pause time (2MB L2 cache, ps benchmark) 
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Appendix B 

 
Figure B.1:  Comparing global miss-rate improvement for 12.5%,25%, and 50% (direct-mapped) 



 

 

 

48 

 

Figure B.2:  Comparing global miss-rate improvement for 12.5%,25%, and 50% (2-way) 
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Figure B.3:  Comparing global miss-rate improvement for 12.5%,25%, and 50% (4-way) 
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Figure B.4:  Comparing global miss-rate improvement for 12.5%,25%, and 50% (8-way) 
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Figure B.5:  Comparing global miss-rate improvement for 12.5%,25%, and 50% (16-way) 

 


