
Abstract

VIJAYCHAND , SHUBHA,. Time Step Control in Transient Analysis. (Under
the direction of Michael B. Steer)

The time-step control algorithm has a dramatic impact on the accuracy
and simulation time in transient circuit simulation. A new time-step control
algorithm is presented based on a novel estimation of the truncation error. The
new truncation error estimation uses difference between Backward Euler and
Trapezoidal numerical integration techniques. The results of this technique are
compared with The traditional SPICE-like approach implemented in fREEDA.
Results for the solution of a Soliton line and Mesfet circuit are presented.
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Chapter 1

Introduction

1.1 Motivation

The accuracy and speed of a simulation is dependant on the accuracy of the

models, the error injected by the simulator algorithms and the circuit itself. If

the models do not accurately reflect the physical effects that are important to

the circuit the answer will be wrong. Similarly, if the model does not match

the physical device because the model parameters are badly chosen, again, the

answer will be in error. However, even if the model does a good job of repro-

ducing the important characteristic of the device, the simulator itself can inject

error into this solution.

These errors, if not well controlled can result in significant error. The cir-

cuit itself can either magnify errors made by the simulator and the models.

Conversely, it can be very tolerant of such errors. Circuits that can be very

sensitive to simulator errors include oscillators and charge storage circuits such

as switched-capacitor circuits.

The earlier implementation of transient analysis in the object-oriented cir-

cuit simulator fREEDA did not have error control or test for convergence. The

1



CHAPTER 1. INTRODUCTION 2

aim of the project reported here was implementation of an error control tech-

nique in fREEDA.

Two types of error control techniques were implemented and the results com-

pared. The new time step algorithm developed was seen to be faster with high

accuracy as compared to the other transient algorithms.

fREEDA is a circuit simulator that has the capability to support many types

of elements, like electrical, electromagnetic and thermal. It supports various

types of analyses such as dc, transient and harmonic balance. The greatest

difference between fREEDA and other modern commercial simulators is that

it uses an object-oriented approach for analyzing circuits. Elements, be they

electrical thermal or electromagnetic, can be considered as objects and all these

elements are linked or connected to each other at nodes and by edges. This

structure maps smoothly on to the concept of classes. Hence the concepts of

OO (Object-oriented) programming maps cleanly onto circuit simulation. This

makes the process of transient analysis for fREEDA relatively straightforward

as the elements and sources need not be polled for breakpoints. The value of

the derivatives are also stored which eliminates the need to recalculate when a

solution fails.

1.2 Thesis Overview

Chapter 2 deals with local truncation error and time step control in SPICE. It

also gives a brief overview about fREEDA, the circuit simulator in the anal-

ysis types have been implemented and some of its features that simplifies the
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analysis routine.

Chapter 3 deals with the transient analysis algorithms. The SPICE like

algorithm and the new time step algorithm are explained in detail accompanied

by the formulae

Chapter 4 presents some results of testing the analysis types using the Non-

linear Transmission Line(NLTL) and a mesfet circuit. A comparison between

the analysis types, their merits and demerits has been discussed.

Chapter 5 presents the conclusions and the future research in this area.



Chapter 2

Literature Review

2.1 Introduction

The accuracy of a simulation is dependant on three factors, the accuracy of the

models, the error injected by the simulator algorithms and the circuit itself.

Errors due to the models are present when the models do not accurately reflect

the physical effects that are important to the circuit behaviour. The choice of

model parameters also have an important effect on the accuracy of the solution.

These errors need to be minimised.

2.2 Time Step Algorithm in SPICE

2.2.1 Introduction

SPICE has become the standard computer program for electrical circuit sim-

ulation. Its practical use is however limited by nonconvergence failures, time

step control errors and numerical integration failures. Because of these failures

results are either difficult to obtain or contain inaccuracies.

4



CHAPTER 2. LITERATURE REVIEW 5

2.2.2 Description and Formulae

Transient analysis in SPICE computes the time response of a circuit for any

arbitrary input signal. Using numerical integration methods it solves the circuit

equations at time intervals whose size depends on the circuit activity, i.e. on

the rate of transitions of voltages or currents. This is known as dynamic time

step control and ensures accuracy and convergence for circuits with large and

rapid voltages and current transitions. During times of low circuit activity the

time step will be increased to reduce simulation time.

Sinusoidal signals are characterized by a permanent change of the derivative

dv/dt or di/dt. This forces SPICE to continously change the time step. Failure

mechanisms within the time step control algorithm may therefore introduce

significant error during transient analysis of sinusoidal sigals

2.3 Error Control Techniques

2.3.1 Introduction

The most wide spread method of nonlinear circuit analysis is time-domain analy-

sis using numerical integration to determine the circuit response at one instance

of time given the circuit’s response at a previous instance of time. This section

reviews some of the numerical integration methods.

Consider the following diffrential equation

x′ = f(x, t) (2.1)

where x is the unknown function, t is the time and f(x, t) is a given function.

In the case of fREEDA f(x, t) is the state variable at a given instant of time say
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t0, x is the value of the state variable at t1 = t0 + t , where t is the time step.

The different integration methods predict different values of x. Backward Euler

tends to overdamp the solution where as Trapezoidal tends to underdamp.

The task of an error correcting algorithm is to minimize the error by finding

an optimum time step.

The equivalent integral function of (2.1) is

x(t1) = x(t0) +
∫ t1

t0

f(x, t)dt (2.2)

where t0 and t1 are two time points as defined above. The difference between

the two gives the time step which is very small and the integral equation can

be discretized as

x(t1) ≈ x(t0) + x′(t1 − t0) (2.3)

x1 ≈ x(t1) (2.4)

and x0 = x(t0). Which gives

x1 = x0 + hx
′

(2.5)

where h=t1−t0 is the size of the timestep. Therefore the generic expression is

xn = xn−1 + hx
′

(2.6)

This indicates that the future value can be computed based on the current
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value. The different integration methods differ in the method used to estimate

x
′
. The generic integration formula used by the different integration formulae

can be reduced to

x′n = axn + bn−1 (2.7)

where a is a constant and bn−1 depends on the previous values of x.

2.3.2 Backward Euler

This is the simplest implicit method. From Equation (2.7)

and setting x
′
= x

′
n in

xn = xn−1 + hx
′
n, (2.8)

the coefficients of the generic integration formula are

a =
1
h

(2.9)

bn−1 =
−1
h

xn−1 (2.10)

It is a first order differential method as the value of the state variable at any

instant depends only on the value of the state variable at the previous instant.

2.3.3 Trapezoidal

From Equation (2.7) and setting

x
′
= (x

′
+ x

′
n−1)/2, (2.11)
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The discretized numerical integration becomes

xn = xn−1 + h/2(x
′
n−1 + x

′
n) (2.12)

Now the coefficients of the generic integration formulae are

a =
2
h

(2.13)

bn−1 = − 2
h

xn−1 − x
′
n−1 (2.14)

This a second order differential method as the value of the state variable at

any instant depends on the value of the state variables at previous two instances.

2.3.4 Gear

The Gear integration method is different from the traditional integration meth-

ods. It estimates the value of the function at time tn+1 with the information

from the present solution point and past solution points, The previous solution

points that are used determines the order of the Gear method. The formula for

the Gear-2-method is

xn+1 =
4
3
xn − 1

3
xn−1 +

2h

3
x
′
n+1 (2.15)

2.3.5 Stability and Accuracy

Due to the difference in the integration formulas, each method will produce a

different result when used to discretize a given function. The performance of a
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method is determined by its accuracy and stability. Since the numerical inte-

gration solution is only an approximation to the exact solution, a finite amount

of error may be introduced at each time point. This error is known as the local

truncation error (LTE). How the LTE accumulates over a large number of time

points is a measure of the stability of an integration method. If a method is un-

stable it will diverge from the exact solution over a large number of timepoints.

The accuracy and stability of an integration method depends on the func-

tion it is applied to. The accuracy is also determined by the time step used.

Decreasing the step size of any integration method improves the accuracy of the

solution. It forces the simulator to solve more points which consequently results

in longer simulation time. Decreasing the time step also increases the chance of

stepping into or close to a model discontinuity and failing to converge.

The Gear integration method tends to be the most stable because of its av-

eraging formula. It however yields extremely poor estimates of future solution

values on highly nonlinear circuits. This averaging formula is the reason for a

failure mechanism called Gear Overshoot ( [1]). For switching waveforms and

piecewise linear waveforms, the Gear method may overshoot the correct value.

Trapezoidal integration suffers from a failure mechanism called trapezoidal

overshoot. Trapezoidal oscillation occurs when the integration step size is too

large to follow the curvature of a given function. The result is a predicted so-

lution that appears to oscillate around the correct solution from one time point

solution to the next.

All integration methods suffer from a failure mechanism called accumulated

error. It usually occurs in periodic circuits and long transient simulations. If

the overestimate/underestimate errors do not cancel each other out, the accu-
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mulated error tends to increase with each new time point.

2.4 Predictors

The Backward Euler and Trapezoidal discretization formulae use the derivative

at the next point. But at the beginning of the analysis this value is not known

and cannot be reasonably extimated. Therefore in order to start the calcula-

tions an approximate value must be computed. This is done in various ways,

the simplest being the result of the previous step. This is used in the imple-

mentation.

Another possibility for initialising analysis at the next time step is to use

Forward Euler formula.

The formula is

x′(t0) =
x1 − x0

h
(2.16)

or

x1 = x0 + hx
′
0 (2.17)

Once the predicted value is inserted into the corrector (say Backward Euler

or Trapezoidal), iteration is performed to correct the mismatch. This iteration

is usually performed using Newton’s iteration.

Predictors are however not absolutely necessary, a better prediction will re-

sult in fewer iterations. Since predictors are very simple to use , their application

is highly desirable. They also help in estimating the errors committed and in
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controlling the step size h.

2.5 Local Truncation Error

The LTE-Timestep control algorithm is the default time step control algorithm

in most SPICE versions. The LTE-algorithm uses a formula that predicts the

magnitude of the error computed in the numerical integration calculations of

the previous time point. The time step is therefore adjusted by evaluating the

error generated in the numerical integration routine.

Using the SPICE parameters RELTOL and ABSTOL an upper bound E for

the LTE can be defined as

E = RELTOL.max(|x′n+1|, |x
′
n|) + ABSTOL (2.18)

where x
′
n+1 and x

′
n represent the current of capacitors or the voltage across

inductors. RELTOL is the relative error tolerance within which voltages and

device currents are required to converge. ABSTOL is called the absolute current

tolerance, it represents the smallest current that can be monitored. These are

user defined parameters and determine how accurately SPICE calculates the

solution. ABSTOL and RELTOL can have direct impact on convergence and

simulation time and have to be chosen carefully.

An important measure of the accuracy of a numerical integration method

is the local truncation error, LTE, evaluated at each time point tn. The local

truncation error at tn is an estimate of the difference between the value com-

puted by the simulator and the exact solution of the function at this time point.

When the trapezoidal method is used
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LTEESTIM =
∣∣∣∣
TRTOL

12
h3x

′′′
n

∣∣∣∣ (2.19)

where x
′′′
n is the third derivative of the state variable x computed at the time

point tn, h is the time step used and TRTOL is a user defined constant which

underestimates the LTEESTIM value. The third derivative is approximated by

divided difference formulae.

If x is the charge of a capacitor the estimated LTE for the capacitor current

(x
′
) is given by

LTEESTIM =
∣∣∣∣
TRTOL

6
h2x

′′′
n

∣∣∣∣ (2.20)

Equation 2.19 is used in the LTE-time step control algorithm to calculate an

upper limit for LTE. A weighted summation of the LTE’s at all previous time

points yields a global error “e”.

A recursive form of the global error “e” at time point tn+1 can be written as

e(tn+1) = a.e(tn) + LTEn+1 (2.21)

where the constant a is the amplification factor of the integration method

used. (a < 1, otherwise the global error increases over the simulation time

(accumulated error) and the system is unstable). The magnitude of the LTE is

determined by the time step h. As mentioned in the earlier section the accuracy

of the numerical integration generally improves when the time step is reduced,

but when simulating sinusoidal circuits like oscillators the trapezoidal method

introduces a frequency error 4f in addition to the amplitude error LTE.
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2.6 fREEDA

2.6.1 Introduction

The rapid rate of innovation of microwave and millimeter wave systems requires

the development of an easily extensible and modifiable computer aided engineer-

ing (CAE) environment. While great strides have been made in the flexibility of

commercial CAE tools, these sometimes prove inadequate in modeling advanced

systems. As with virtually all aspects of electronic engineering the abstraction

level of RF and microwave theory and techniques has increased dramatically. In

particular, large systems are being designed with attention given to the inter-

action of components at many levels. One of the most significant developments

relevant to computer aided engineering is the rise of object oriented (OO) de-

sign practice [10]. While it is normal to think of OO-specific programming

languages as being the main technology for implementing OO design, good OO

practice can be implemented in more conventional programming languages such

as C. However OO-specific languages foster code reuse and have constructs that

facilitate object manipulation. The OO abstraction is well suited to modeling

electronic systems, for example, circuit elements are already viewed as discrete

objects and at the same time as an integral part of a (circuit) continuum. The

OO view is a unifying concept that maps extremely well onto the way humans

perceive the world around them.

Non-OO circuit simulators always become complicated with many layers of

special cases. Referring to circuit elements again, traditional simulation im-

plementations have many if-then like statements and individually identify every

element in many places for special handling. An integral part of the various high

performance computing initiatives is the separation of the core components em-
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bodying numerical methods from the modeling and solver formulation process

with the result that numerical techniques developed by computer scientists and

mathematicians can be formulated using formal correctness procedures. The

circuit abstraction is adapted so that highly reliable and efficient pre-developed

libraries can be used. C++ was once considered slow for scientific applications.

Advances in compilers and programming techniques, however, have made this

language attractive and in some benchmarks C++ outperforms Fortran. Several

OO numerical libraries have been developed . Of great importance to the work

described here is the incorporation of the standard template library (STL). The

STL is a C++ library of container classes, algorithms, and iterators; it provides

many of the basic algorithms and data structures of computer science. The

STL is a generic library, meaning that its components are heavily parameter-

ized: almost every component in the STL is a template. The current ISO/ANSI

C++ standard has not been fully implemented and C++ compilers support a

variable subset of the standard. The biggest areas of noncompliance being the

templates and the standard library. The goal in design was to obtain speed in

development, to use off the shelf advanced numerical techniques, and to allow

easy expansion and testing of new models and numerical methods. The circuit

simulator implementing these ideas is fREEDA. fREEDA is the first circuit sim-

ulator to use recent OO techniques. The design intent was to to combine the

advantages of previous OO circuit simulators with these new developments as

well as expanding capability. fREEDA uses C++ libraries and some written in

C or Fortran.
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2.6.2 Support Libraries

Solution of Sparse Linear Systems

Sparse 1.3 2 is a flexible package of subroutines written in C used to numerically

solve large sparse systems of linear equations. The package is able to handle

arbitrary real and complex square matrix equations. Besides being able to solve

linear systems, it is also able to quickly solve transposed systems, find deter-

minants, and estimate errors due to ill-conditioning in the system of equations

and instability in the computations. Sparse also provides a test program that is

able to read matrix equation from a file, solve it, and print useful information

(such as condition number of the matrix) about the equation and its solution.

Sparse was originally written for use in circuit simulators and is well adapted

to handling nodal- and modified-nodal admittance matrices.

SuperLU is used in the wavelet and time marching transient analyses. It

contains a set of subroutines to numerically solve a sparse linear system Ax =

b. It uses Gaussian elimination with partial pivoting (GEPP). The columns

of A may be pre-ordered before factorization; the pre-ordering for sparsity is

completely separate from the factorization. SuperLU is implemented in ANSI

C. It provides support for both real and complex matrices, in both single and

double precision.

Vectors and Matrices

Most of the vector and matrix handling in fREEDA uses MV++4. This is a

small set of vector and simple matrix classes for numerical computing written

in C++. It is not intended as a general vector container class but rather de-

signed specifically for optimized numerical computations on RISC and pipelined
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architectures which are used in most new computer architectures. The various

MV++ classes form the building blocks of larger user-level libraries. The MV++

package includes interfaces to the computational kernels of the Basic Linear Al-

gebra Subprograms package (BLAS) which includes scalar updates, vector sums,

and dot products. The idea is to utilize vendor-supplied, or optimized BLAS

routines that are fine-tuned for particular platforms.

The Matrixtemplate Library (MTL5) is a high-performance generic compo-

nent library that provides comprehensive linear algebra functionality for a wide

variety of matrix formats. It is used in the wavelet and time marching tran-

sient analyses. As with the STL, MTL uses a five-fold approach, consisting of

generic functions, containers, iterators, adaptors, and function objects, all de-

veloped specifically for high performance numerical linear algebra. Within this

framework, MTL provides generic algorithms corresponding to the mathemat-

ical operations that define linear algebra. Similarly, the containers, adaptors,

and iterators are used to represent and to manipulate matrices and vectors.

Solution of Non-Linear systems

Nonlinear systems of equations in fREEDA are solved using the NNES6 library.

This package is written in Fortran and provides Newton and quasi- Newton

methods with many options including the use of analytic Jacobian or forward,

backwards or central differences to approximate it, different quasi- Newton Ja-

cobian updates, or two globally convergent methods, etc. This library is used

through an interface class (NLSInterface), so it is possible to install a different

routine to solve nonlinear systems if desired by just replacing the interface (four

different nonlinear solvers have already been used). The Fortran routine NLEQ1
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(Numerical solution of nonlinear (NL) equations (EQ)7) can also be used as a

compile option.

Fourier Transform

Fourier transformation is implemented in fREEDA using the FFTW8 library.

FFTW is a C subroutine library for computing the Discrete Fourier Transform

(DFT) in one or more dimensions, of both real and complex data, and of arbi-

trary input size. Benchmarks, performed on a variety of platforms show that

FFTW’s performance is typically superior to that of other publicly available

FFT software. Moreover, FFTW’s performance is portable: the program per-

forms well on most computer architectures without modification.

Automatic Differentiation

Most nonlinear computations require the evaluation of first and higher deriva-

tives of vector functions with m components in n real or complex variables.

Often these functions are defined by sequential evaluation procedures involving

many intermediate variables. By eliminating the intermediate variables symbol-

ically, it is theoretically always possible to express the m dependent variables

directly in terms of the n independent variables. Typically, however, the attempt

results in unwieldy algebraic formulae, if it can be completed at all. Symbolic

differentiation of the resulting formulae will usually exacerbate this problem of

expression swell and often entails the repeated evaluation of common expres-

sions.

An obvious way to avoid such redundant calculations is to apply an op-

timizing compiler to the source code that can be generated from the sym-
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bolic representation of the derivatives in question. Given a code for a function

F : <n → <m, automatic differentiation (AD) uses the chain rule successively

to compute the derivative matrix. AD has two basic modes, forward mode and

reverse mode. The difference between these two is the way the chain rule is used

to propagate the derivatives.

A versatile implementation of the AD technique is Adol-C 9, a software pack-

age written in C and C++. The numerical values of derivative vectors (required

to fill a Jacobian for solving non-linear elements using Newton’s method) are

obtained free of truncation errors at a small multiple of the run time required

to evaluate the original function with little additional memory required. It is

important to note that AD is not numerical differentiation and the same accu-

racy achieved by evaluating analytically developed derivatives is obtained. The

eval() method of the nonlinear element class is executed at initialization time

and so the operations to calculate the currents and voltages of each element

are recorded by Adol-C in a tape which is actually an internal buffer. After

that, each time that the values or the derivatives of the nonlinear elements are

required, an Adol-C function is called and the values are calculated using the

tapes. This implementation is efficient because the taping process is done only

once (this almost doubles the speed of the calculation compared to the case

where the functions are taped each time they are needed). When the Jacobian

is needed, the corresponding Adol-C function is called using the same tape. In

the case of Harmonic Balance simulations, the program has been tested with

large circuits with many tones, and the function or Jacobian evaluation times are

always very small compared with the time required to solve the matrix equa-

tion (typically some form of Newton’s method) that uses the Jacobian. The
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conclusion is that there is little detriment to the performance of the program

introduced by using automatic differentiation. However the advantage in terms

of rapid model development is significant. The majority of the development

time in implementing models in simulators, is in the manual development of the

derivative equations. Unfortunately the determination of derivatives using nu-

merical differences is not sufficiently accurate for any but the simplest circuits

and in any event, is computationally intensive. With Adol-C full ‘analytic’

accuracy is obtained and the implementation of new analysis is dramati-

cally simplified. From experience the average time to develop and implement

a transistor model is an order of magnitude less than deriving and coding the

derivatives manually. Note that time differentiation, time delay and transfor-

mations are left outside the automatic differentiation block. The calculation

speed achieved is approximately ten times faster than the speed achieved by

including time differentiation, time delay and transformations inside the block.



Chapter 3

Time Step Control in
fREEDA

3.1 Fixed Time Step Algorithm

3.1.1 Introduction

The fixed time-step marching Algorithm in fREEDA is state-variable based and

is considerably faster than the convolution based transient analysis scheme. The

time-marching techniques are more efficient than the conventional SPICE anal-

ysis as will be shown in the next section. This technique was implemented by

Dr Carlos E. Christofferson in fREEDA.

As shown in [9] the speed of the convolution based transient approach lim-

its the use of this technique for nearly all transient circuit simulations. The

simulation of a Non Linear Transmission Line takes about 5 hours of computer

time using convolution based analysis as compared to 10 minutes using the

state-variable based transient analysis.

20
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3.1.2 Description and Formula

The formulation of the system equations begins with partitioning the network

into linear and nonlinear subnetworks. The nonlinear elements are replaced by

variable voltage or current sources. For each nonlinear element one terminal

is taken as the reference and the element is replaced by a set of sources con-

nected to the reference terminal. Both voltage and current sources are valid

replacements for the nonlinear elements but current sources are more conve-

nient because they yield a smaller modified nodal admittance matrix (MNAM).

The basic idea is to convert the differenatial equations in an algebraic system

of nonlinear equations using time marching integration methods.

The MNAM formulation of a linear subcircuit begins with the definition

of two matrices G and C of equal size nm. Where nm is the number of non

reference nodes in the circuit. A vector s of size nm is also defined. The contri-

butions of the fixed sources and the non linear elements which are dependant

on the time are entered in this vector. All conductors and frequency indepen-

dant MNAM stamps arising in the formulation are entered in G. The values

of capacitors and inductors and other values that are associated with dynamic

elements are stored in C. The linear system obtained is

Gu(t) + C
du
dt

= s(t) (3.1)

where u is the vector of nodal voltages and required currents. The vector s

consists of an independant component sf and a component sv that depends on

the state variable.
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s(t) = sf (t) + sv(t) (3.2)

The vector sf vector is due to independant sources in the circuit, where as

sv is the contribution of the currents injected into the circuit by the nonlinear

network.

The non linear subcircuit is represented as

vNL(xn) = u[xn,x
′
n, ....,x(m)

n ,xD,n] (3.3)

iNL(xn) = w [xn,x
′
n, ....,x(m)

n ,xD,n] (3.4)

where xn = x(tn),x
′
n = x

′
(tn), (xD,n)i , and tn is the current time.

If T is the incident matrix whose size is determined by the number of state

variables, then by discretizing the above

Gun + Cu
′
n = sf,n + TT iNL(xn) (3.5)

The approximation of the time marching integration is applied by using gen-

eral integration representation of a variable for u.

u
′
n = aun + bn−1 (3.6)

where, bn−1 is a vector of the same dimension as un. Substituting the value
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of u
′
n in the above equation (3.5),

Gun + C[aun + bn−1] = sf,n + TT iNL(xn) (3.7)

Solving for the nodal voltages

un = [G + aC]−1[sf,n −TT iNL(xn)] (3.8)

The error function f(t) = vL(t)− vNL(t) = 0

vL(t) = Tu(t), then

therefore f(t)=Tu(t)-vNL(t)

Discretizing the above equation and replacing the value of the nodal voltages

un, we have the following

f(xn) = ssv,n + MsviNL(xn)− vNL(xn) = 0 (3.9)

where ssv,n and Msv are defined as

ssv,n = T[G + aC]−1[sf,n −Cbn−1] (3.10)

Msv = T[G + aC]−1TT (3.11)

The error function is however not minimized to arrive at an optimal solution.
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3.1.3 Merits and Demerits

The major disadvantage of this technique is the absence of any error reduction

technique. The analysis computes the values of the matrices at various time

points as specified by the netlist. The technique informs the user when the

solution has failed to converge but does not attempt to correct it. The method

might not be accurate and depends heavily on the time-step specified in the

netlist. The accuracy of this technique is user dependant and relies on the user

to identify an incorrect solution and make modifications in the netlist to rectify

the error.

The main advantage of this method is the speed of the solution. An approx-

imate solution can be found before doing a detailed analysis which has higher

accuracy.

3.2 SPICE-like Time Step Algorithm

3.2.1 Introduction

The SPICE-like time-step algorithm was implemented here for state-variable

based transient analysis. An error predictor corrector method is incorporated in

the analysis. The method is called the SPICE-like time step algorithm because

the error predictor and corrector algorithm is as used in Berkely SPICE3.

3.2.2 Description and Formulae

The analysis uses the same formula as does the fixed time step algorithm. Er-

ror check and convergence check routines is incorporated and the matrices are

recalculated when the time step is changed. The algorithm uses straight line
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Figure 3.1: SPICE like linear interpolation

extrapolation to calculate the value of the state variable at the next time step.

From Figure 3.1, the difference between the value of state variable at tn+1

and the derivative at tn is the error.

Convergence is achieved in DC and Transient solutions when

1. The nonlinear branch currents converge to within a tolerance of 0.1 per-

cent or 1 picoamp (1.0E-12 Amp), whichever is larger

2. The node voltages converge to within a tolerance of 0.1 percent or 1 mi-

crovolt (1.0E-6 Volt), whichever is larger.

The SPICE-like algorithm checks for convergence. The output of the non-

linear solver interface has to be less than 1 for convergence. A combination of

relative tolerance and absolute tolerance gives the error limit. The values of
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Msv matrix, non-linear voltages and currents have to be recalculated every time

the time step changes. These calculation do not take too much computation

time as the derivatives have already been calculated by the ADOL-C routine.

3.2.3 Merits and Demerits

The algorithm implementing the SPICE-like approach checks for error and

non-convergence and varies the time step and attempts to correct the same to

keep the truncation error within tolerance. The results using this method have

a high accuracy.

The main disadvantage of this method is its inability to follow curves. The

algorithm takes more time steps while following curves as the time step is re-

duced, as the straight line interpolation does not make an accurate guess for

the next time step.

3.2.4 Comments

The algorithm deviates in minor respects from the original SPICE3. The orig-

inal SPICE3 algorithm cuts the time step to 1/8th of its previous value when

the error is more than a combination of the relative error and the absolute er-

ror. The algorithm used in fREEDA cuts the time step by 1/2 when error

requirements are not met. The algorithm used here also does not check for DC

convergence. f uses state-variables to solve the matrices. The state-variables

are set by the model and can be either voltage, current or charge. Hence in

the current implementation a DC solution cannot be found prior to transient

analysis.



CHAPTER 3. TIME STEP CONTROL IN FREEDA 27

3.3 New Time Step Algorithm

3.3.1 Introduction

The new time step algorithm to uses the difference in the values of backward

euler and trapezoidal derivatives to predict the value of the state variables at the

next time point. This algorithm makes a better prediction than the conventional

SPICE like approach and therefore is able to follow curves with less time points.

3.3.2 Description and Formulae

The New Time Step Algorithm uses the value of the difference between deriva-

tives to predict the value of the state variable at the next time point. The two

different integration techniques give results which are close when the algorithm

approaches the solution. The figure illustrates this fact.

As in the SPICE like algorithm the values of the Msv vector and the values

of the non linear voltages and currents have to be recalculated when the time

step changes. As in the previous case these calculations do not take too much

computation as the derivatives have already been calculated by the ADOL-C

routine.

3.3.3 Merits and Demerits

The Algorithm checks for error and non-convergence and varies the time step

and attempts to correct the solution when the criteria are not met. The results

using this method have a high accuracy. The elements and voltage sources need

not be polled to check for break points. This considerably increases the speed

of simulation.

The main disadvantage of this method is problems faced while following
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Figure 3.2: New Time Step Algorithm



CHAPTER 3. TIME STEP CONTROL IN FREEDA 29

Figure 3.3: Flow Chart
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sharp changes in input. The time step reduces to its minimum value to incorpo-

rate these changes. However, this problem can be overcome by setting realistic

rise and fall times for square waves, impulse etc.

The algorithm cuts the time step by 1/2 when error limits or convergence

has not been satisfied. The time step increases by 2 when the solution has been

met for 3 consecutive time points. This reduces the number of time steps that

have to be discarded.

3.3.4 Comments

The New time step Algorithm does not use the derivatives stored in the ADOL-

C routine and calculates the values by calculating the derivatives of the state

variables. This is done so as to avoid error while calculating the first time step.

FREEDA sets the values of all state variables and its derivatives as zero. The

first time step is therefore calculated by extrapolation. The same routine is used

for all elements and sources. The elements and voltage sources are not polled

for break points which results in a considerable reduction in computation as

compared to traditional SPICE.



Chapter 4

Simulation and Results

The purpose of this chapter is to present some of the results the analysis types

implemented in fREEDA. The analysis was tested on a 47 diode soliton line

and a MESFET circuit. The results of the three analysis types are presented. A

comparison between the results on the basis of speed and accuracy are presented

in Sections 4.1.3 and 4.2.3.

4.1 Soliton Line

A nonlinear transmission line is regarded by many in the field as an extreme test

of the performance of circuit simulators. Nonlinear transmission lines (NLTLs)

find applications in a variety of high speed, wide bandwidth systems includ-

ing picosecond resolution sampling circuits, laser and switching diode drivers,

test waveform generators, and mm-wave sources. They have three fundamental

characteristics: nonlinearity, dispersion and dissipation. The NLTL consist of

coplanar waveguides (CPWs) periodically loaded with reverse biased Schottky

diodes. Diode-based NLTL used for pulse generation are extremely nonlinear

circuits and are being used to test the robustness of circuit simulators. The

31
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Figure 4.1: 47 diode soliton line

NLTL considered here was designed with a balance between the nonlinearity

of the loaded nonlinear elements and the dispersion of the periodic structure

which results in the formation of a stable soliton . The nonlinearity of NLTLs

is principally due to the voltage dependent capacitance of the diodes and the

dissipation is due to the conductor losses in the CPWs.

The NLTL was modeled using generic transmission lines with frequency-

dependent loss and Schottky diodes. Skin effect was taken into account in the

modelling of the transmission lines. The NLTL model is shown in Figure 4.3

and is excited by a 9 GHz sinusoid. The NLTL was designed for a 24 GHz initial

Bragg frequency, 225 GHz final Bragg frequency, 0.952097 tapering rule, and

120 ps total compression [9]. It contains 48 sections of CPW transmission lines

and 47 diodes. The drive is a 27 dBm sine wave with −3 V dc bias.

4.1.1 Results

The results of nonlinear transmission lines(NLTLs) are presented in this section

using three simulation algorithms.
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Figure 4.2: Voltage across diode D1 of soliton line with fixed time step Algorithm
at 9Ghz. The method does not check for error or convergence

• Fixed Time Step algorithm solves the entire circuit without any error cal-

culation or convergence check as described in Section 3.1.2. The simulated

results are as shown in Figure 4.2

• SPICE like Algorithm solves the entire circuit using linear interpolation as

described in Section 3.2.2. The simulated results are as shown in Figure

4.3

• New Time Step Algorithm solves the circuit using the algorithm described

in Section 3.3.2 The simulated results are shown in Figure 4.4
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Figure 4.3: Voltage across diode D1 of soliton line with SPICE-like time step
Algorithm. The value of state-variables are predicted using linear interpolation.
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Figure 4.4: Voltage diode D1 of soliton line with new time-step algorithm. The
value of state-variables are predicted using a combination of Backward Euler
and Trapezoidal derivatives

The new time step is considerably faster than the SPICE like representation.

The SPICE like analysis takes 1030 steps to reach the final stop time where as

the new time step analysis takes only 670 time steps to complete it, which is

about 34.95% reduction in computation time.

Method Number of time steps
Fixed time Step Algorithm 1000
SPICE like time step Algorithm 1030
New Time step Algorithm 670

Table 4.1: Results of Soliton Line
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Figure 4.5: Bunching of time points along curves are demonstrated. The SPICE-
like approach takes more time steps to solves curves as compared to the new
time-step approach.
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Figure 4.6: Bunching effect of time points .

4.2 MESFET

The MESFET implements the Materka-Kacprzac model for a MESFET. It re-

quires two state variables, but only one of them needs to be delayed.A MESFET

Amplifier is shown in the circuit.

4.2.1 Results

The results of the Materka-Kacprzac MESFET circuit is presented here using

three simulation algorithms

• Fixed Time Step Algorithm solves the entire circuit without any error

calculation or convergence check as described in Section 3.1.2.

The simulated results are shown in Figure 4.8
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Figure 4.7: MESFET Circuit

• SPICE like Algorithmsolves the entire circuit using linear interpolation as

described in Section 3.2.2. The simulated results are as shown in Figure 4.9

• New Time Step Algorithm solves the circuit using the algorithm described

in Section 3.3.2. The simulated results are shown in Figure 4.4.

The New time step algorithm is faster as compared to the SPICE like algo-

rithm. The New time step algorithm takes about 3338 time steps to reach the

final stop time whereas the SPICE like algorithm takes about 5009 time steps

to reach the final stop time which is about 33.33% reduction in computation

time.
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Figure 4.8: Output of the MESFET circuit with fixed time step analysis.

Method Number of time steps
Fixed time Step Algorithm 5000
SPICE like time step Algorithm 5009
New Time step Algorithm 3338

Table 4.2: Results of MESFET Circuit
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Figure 4.9: Output of a Mesfet circuit with SPICE like time step analysis.
Linear Interpolation is used to predict the values of state-variables.
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Figure 4.10: Output of a MESFET Circuit with New time step analysis. A
combination of Backward Euler and Trapezoidal derivatives are used to predict
the value of state variables
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4.3 Conclusions

The amount of time taken by either the new time step algorithm or the SPICE

like algorithm to compute the matrices is the same in both the cases. The

reduction in computation time is achieved by making a better estimate of the

values of the state variables at the next time step.

The two important sources of error i.e. the errors due to the models, errors

due to non ideal convergence and truncation error are taken into account during

the analysis.

4.4 Effect of Tolerance

Tolerance is one of the deciding factors while calculating the acceptable time

step during analysis. In the New time step algorithm error increases linearly

with increase in tolerance where as in the SPICE-like approach the behavior is

non-linear.

The linear behavior of the New Time Step Algorithm helps in making a bet-

ter estimate of the time step.
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Figure 4.12: Effect of error vs. tolerance using the New Time Step Algorithm.
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Figure 4.13: Effect of error vs. tolerance using the SPICE-like Algorithm.
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Chapter 5

Conclusions and Future
Research

5.1 Conclusions

As mentioned in Chapter 1 the difference between the derivatives of Backward

Euler and Trapezoidal is a good measure of error. Trapezoidal derivatives are

underdamped where as Backward Euler is overdamped. The exact solution lies

in between the two predicted values.

Circuits vary on how much they accumulate error. Circuits that tend to

be very sensitive to simulator errors include charge storage circuits such as

switched capacitor circuits and memories-chaotic circuits, such as oversampled

analog/digital convertors and autonomous circuits such as oscillators. Analog

circuits with long time constants tend to retain errors for a long time and sub-

sequent errors tend to accumulate.

47
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5.2 Future Research

• The analysis types have to be tested on other models such MOS and BJT

• The effect of change in tolerance on the results of the circuits such as oscilla-

tors etc have to be studied.



Appendix A

Source code

This section contains the C++ code of the SPICE like Algorithm.

A.1 C++ code of SPICE like Algorithm
#include "SVTran3.h" #include "TimeMNAM.h" #include
"TimeDomainSV.h" #include "NLSInterface.h" #include "Euler.h"
#include "Trapezoidal.h" #include MV_P"/mvblasd.h" extern int
superLU_print_enable ;

extern "C" { #include "../inout/ftvec.h" #include
"../inout/report.h"

}

void buildTIncidence(ElemFlag mask, Circuit*& my_circuit,
IntMatrix& T, ElementVector& elem_vec,
int& n_states, int& max_n_states);

// Static members
const unsigned SVTran3::n_par = 12;

// Element information
ItemInfo SVTran3::ainfo = {

"SVTran3",
"State- variable based time marching transient with variable time step ",
"Shubha Vijaychand",
DEFAULT_ADDRESS

};

// Parameter information
ParmInfo SVTran3::pinfo[] = {

{"tstop", "Stop time (s)", TR_DOUBLE, true},
{"tstep", "Time step (s)", TR_DOUBLE, true},
{"nst", "No save time (s)", TR_DOUBLE, false},
{"deriv", "Approximate derivatives or use automatic diff.", TR_INT, false},
{"msv", "Use Msv flag", TR_BOOLEAN, false},
{"im", "Integration method", TR_INT, false},
{"savenode", "Save node voltages", TR_BOOLEAN, false},
{"permc_spec", "Permutation ordering to factor Msv (0, 1 or 2)",
TR_INT, false},
{"out_steps", "Number of steps skipped for output simulation progress",
TR_INT, false},
{"gcomp", "Compensation network conductance (S)", TR_DOUBLE, false},
{"abstol", " absolute tolerance of the circuit", TR_DOUBLE, false},

49
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{"reltol", "relative tolerance of the circuit", TR_DOUBLE, false}

};

SVTran3::SVTran3() : Analysis(&ainfo, pinfo, n_par), ls_size(0),
superLU(false)

{
// Parameter stuff
paramvalue[0] = &(tf);
paramvalue[1] = &(h);
paramvalue[2] = &(nst = zero);
paramvalue[3] = &(deriv = 0);
paramvalue[4] = &(use_msv = true);
paramvalue[5] = &(int_method = 1);
paramvalue[6] = &(savenode = true);
paramvalue[7] = &(permc_spec = 2);
paramvalue[8] = &(out_steps = 200);
paramvalue[9] = &(gcomp = 1e-4);
paramvalue[10] = &(abstol = 0.05);
paramvalue[11]= &(reltol = 0.05);

}

SVTran3::~SVTran3() {
assert(!superLU);

}

void SVTran3::run(Circuit* cir) {
this->cir = cir;
char msg[80];

// Build time domain MNAM
ElemFlag mnam_mask(LINEAR);
TimeMNAM mnam(cir, mnam_mask);
// Supress the output in SuperLU
superLU_print_enable = 0;
// Build T matrix and nonlinear element vector
n_states = 0;
int max_n_states = 0;
ElemFlag mask(NONLINEAR);
buildTIncidence(mask, cir, T, elem_vec, n_states, max_n_states);
if (gcomp)

// Add the compensation resistors to the MNAM
for (int i = 0; i < n_states; i++) {
mnam.setMAdmittance(T(0,i), T(1,i) , gcomp);

}
// Setup simulation variables (use circular vectors)
ls_size = mnam.getDim();
list_size = int (((tf - nst) / h + 2)*50);
if (savenode)

cU = new CircVector(list_size, ls_size);
else

cU = new CircVector(51, ls_size);
cX = new CircVector(list_size, n_states);
cVnl = new CircVector(list_size, n_states);
cInl = new CircVector(list_size, n_states);
cTime = new CircVector(list_size, 1);
DenseVector x_v(n_states);
// debug
DenseVector f_v(n_states);
// debug
ssv = DenseVector(n_states);
DenseVector sf(ls_size);
vl1 = DenseVector(n_states);
itmp2 = DenseVector(n_states);
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tmp_v = DenseVector(ls_size);
rhs_v = DenseVector(ls_size);
c_v = DenseVector(ls_size);
r_v = DenseVector(ls_size);
rhs_p = &(rhs_v[0]);
r = &(r_v[0]);
c = &(c_v[0]);
// Choose an integration method and combine M and M’
LIntegMethod *l_im;
NLIntegMethod *nl_im;
if (int_method == 1) {

l_im = new LTrapezoidal(cU, &mnam);
nl_im = new NLTrapezoidal(cX,cTime, h);

}
else {

l_im = new LEuler(cU, &mnam);
nl_im = new NLEuler(cX, h);

}
// Create Matrix
SparseMatrix M(ls_size, ls_size, 6 * ls_size);

// decalaration of the variables used
double error;
// store the value of the timestep specified in the netlist
double net_timestep = h;
double prev_timestep = 0;

// Create the interface class
tdsv = new TimeDomainSV(nl_im, max_n_states);

// Setup nonlinear solver
NLSInterface* nlsi = new NLSInterface(this, n_states, deriv);

// Begin main loop
double residual = zero;
report(MESSAGE, "--- Starting transient simulation ...\n");
sepLine();
report(MESSAGE, "| Step \t| Time (s) \t| Residual (V)\t|");
sepLine();
double ctime = zero;
// Set zero initial conditions
DenseVector::iterator ii = x_v.begin();
DenseVector::iterator iend = x_v.end();
for (; ii != iend; ++ii)

*ii = zero;

// Build M = G + a C
l_im->buildMd(M, h);
// Factor M
superLUFactor(M);

// Create Msv if requested
if (use_msv)

buildMsv();

// NLEuler * euler = new NLEuler(cX , h);
// NLTrapezoidal* trap = new NLTrapezoidal(cX, h);

nt = 0;
double ctime1;
ctime1=0;
cX ->getCurrent()=zero;
cX ->advance();
cX ->getCurrent() =zero;
cX -> advance();
cTime ->getCurrent()[0]=-h;
cTime->advance();
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cTime ->getCurrent()[0]=zero;
cTime ->advance();
while (ctime <tf)
{

nt++;
error=0;

int changenstep=0;
int changestep=0;

do{

if (prev_timestep != h)
{

// euler ->changeStep(h);
//trap ->changeStep(h);
nl_im->changeStep(h);
freeSuperLU();

M = SparseMatrix (ls_size, ls_size, 6 * ls_size);
l_im ->buildMd(M,h);

// Factor M
superLUFactor(M);
// Create Msv if requested
if (use_msv)

buildMsv();
}

ctime1= ctime+h;
cTime->getCurrent()[0] = ctime1;

// Update time in interface class
tdsv->setTime(&(cX->getCurrent()[0]),

&(cVnl->getCurrent()[0]),
&(cInl->getCurrent()[0]),
nt, ctime1, h);

// Update compressed source vector
l_im->buildSf(sf, ctime1);
f1(sf, ssv);

// Solve the nonlinear equation (call the nonlinear solver).
double this_res;

if( prev_timestep > h)
{

for(int i=0; i< n_states; i++)
x_v[i]=cX->getPrevious(1)[i];

}

int RC= nlsi->solve(&(x_v[0]), this_res);
if(RC<0)

changenstep=1;
else
changenstep=0;
residual += this_res * this_res;

error = zero;

DoubleVector XP(n_states);
DoubleVector x1, x2, x3;

double t1, t2, t3;
DoubleVector diff;
double k,absdiff, reldiff, factor2;

// x1=xn-1 x2=xn, x3=xn+1

x1= cX-> getPrevious(2);
x2=cX-> getPrevious(1);
x3=cX-> getCurrent();
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// t1=tn-1 t2=tn t3=tn+1
t1=cTime-> getPrevious(2)[0];
t2=cTime-> getPrevious(1)[0];
t3=cTime-> getCurrent()[0];
k= (t3-t1) / ( t2 - t1);
// calculate the value at the next timestep by extrapolating
XP=0.;

XP+= x2;
XP -=x1;
XP *=k;
XP += x1;
diff= XP- x3;
absdiff= norm(diff);
factor2= norm(x3);

if(factor2< 1e-3)
{

error= absdiff;
if(error > abstol)
changestep=1;
else
changestep=0;

}
else

{
reldiff= norm(diff)/factor2;
error= reldiff;

cout<<"error "<<error;
if(error > reltol)

changestep=1;
else
changestep=0;

}

prev_timestep=h;
if (changestep || changenstep) {
if (h > 1e-13)

h *= 0.5;
}
else if(h<net_timestep)

h =2 *h;
//else if (h < net_timestep)

// h = min(h*2.0, net_timestep);
//h = ((2.0*h- net_timestep) < 0 ? 2.0*h : net_timestep);

} while(h<prev_timestep);
ctime= ctime1;

// Update the vectors with the results
updateVInl(&(x_v[0]));
updateU(sf);

// Update previous derivatives in integration method (if required)
nl_im->store();
l_im->store();
// Advance the circular lists for the next step.
cU->advance();
cX->advance();
cVnl->advance();
cInl->advance();
cTime->advance();
// Print table line
if (!(nt % out_steps))
{
sprintf(msg, "| %d \t| %g \t| %g\t|", nt, ctime, sqrt(residual));
report(MESSAGE, msg);

}
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}
residual = sqrt(residual);

sprintf(msg, "--- Residual: %g", residual);
sepLine();
newLine();
report(MESSAGE, msg);

doOutput();
// Erase allocated space
delete nlsi;
delete tdsv;
delete nl_im;
delete l_im;
freeSuperLU();
delete cInl;
delete cVnl;
delete cX;
delete cU;

return;
}

void SVTran3::superLUFactor(SparseMatrix& M) {
// Call freeSuperLU to release memory

assert(!superLU);
double *tmp_p = &(tmp_v[0]);

// Set source vector to zero since we are not interested in the result
// in this routine (Make this better later).
DenseVector::iterator ii = rhs_v.begin();
DenseVector::iterator iiend = rhs_v.end();
for (; ii != iiend; ++ii)

*ii = zero;

int nrhs = 1;
elem_val = new double[M.nnz()];
row_index = new int[M.nnz()];
col_pointer = new int[ls_size + 1];
// Until we find a better way, copy matrix into a separate structure
SparseMatrix::iterator i, iend;
SparseMatrix::OneD::iterator j, jend;
int count = 0;
int col_count = 0;
i = M.begin();
iend = M.end();
for (; i != iend; ++i) {

j = (*i).begin(); jend = (*i).end();
col_pointer[col_count++] = count;
for (; j != jend; ++j) {
elem_val[count] = (*j);
row_index[count] = j.row();
count++;

}
}
col_pointer[col_count] = count;
assert(count == M.nnz());
// char msg[80];
// sprintf(msg, "Matrix size = %d", ls_size);
//report(MESSAGE, msg);
//sprintf(msg, "Matrix nnz = %d", count);
//report(MESSAGE, msg);
dCreate_CompCol_Matrix(&A, ls_size, ls_size, M.nnz(),

elem_val, // elem_val pointer
row_index, // row_index pointer
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col_pointer, // col_pointer pointer
NC, _D, GE);

dCreate_Dense_Matrix(&B, ls_size, nrhs, rhs_p, ls_size, DN, _D, GE);
dCreate_Dense_Matrix(&X, ls_size, nrhs, tmp_p, ls_size, DN, _D, GE);
perm_r = new int[ls_size];
perm_c = new int[ls_size];

/*
* Get column permutation vector perm_c[], according to permc_spec:
* permc_spec = 0: use the natural ordering
* permc_spec = 1: use minimum degree ordering on structure of A’*A
* permc_spec = 2: use minimum degree ordering on structure of A’+A
*/
get_perm_c(permc_spec, &A, perm_c);

etree = new int[ls_size];
factor_param_t *ftp = NULL;
char fact, equed, trans, refact;
fact = ’E’;
equed = ’B’;
trans = ’N’;
refact = ’N’;
double recip_pivot_growth;
double rcond;
// These are vectors of 1 element (nrhs elements)
double ferr(0), berr(0);
mem_usage_t mem_usage;
int info;
dgssvx(&fact, &trans, &refact, &A, ftp, perm_c, perm_r, etree, &equed, r, c,

&L, &U, work, lwork, &B, &X, &recip_pivot_growth, &rcond,
&ferr, &berr, &mem_usage, &info);

// cout << "equed: " << equed << endl;
//cout << "recip_pivot_growth = " << recip_pivot_growth << endl;
//sprintf(msg, "1 / Condition number = %g", rcond);
//report(MESSAGE, msg);
//sprintf(msg, "info = %d", info);
//report(MESSAGE, msg);
//sprintf(msg, "ferr = %g", ferr);
//report(MESSAGE, msg);
//sprintf(msg, "berr = %g", berr);
//report(MESSAGE, msg);

if (info)
report(FATAL, "There was a problem factoring the MNAM.");

NCformat *Ustore;
SCformat *Lstore;
Lstore = (SCformat *) L.Store;
Ustore = (NCformat *) U.Store;
// sprintf(msg, "No of nonzeros in factor L = %d", Lstore->nnz);
//report(MESSAGE, msg);
//sprintf(msg, "No of nonzeros in factor U = %d", Ustore->nnz);
//report(MESSAGE, msg);
//sprintf(msg, "No of nonzeros in L+U = %d",
// Lstore->nnz + Ustore->nnz - ls_size);

//report(MESSAGE, msg);
// sprintf(msg, "L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d",
// mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
// mem_usage.expansions);
//report(MESSAGE, msg);
fflush(stdout);

// This is not used anymore
Destroy_SuperMatrix_Store(&X);
superLU = true;

} void SVTran3::freeSuperLU() {
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assert(superLU);
// Free vectors
delete [] etree;
delete [] perm_c;
delete [] perm_r;
// Free supermatrix structures
Destroy_SuperMatrix_Store(&A);
Destroy_SuperMatrix_Store(&B);
// Free L and U matrices
if ( lwork >= 0 ) {

Destroy_SuperNode_Matrix(&L);
Destroy_CompCol_Matrix(&U);

}
delete [] col_pointer;
delete [] row_index;
delete [] elem_val;
superLU = false;

}

void SVTran3::f1(DenseVector& s1, DenseVector& v1l) {

assert(superLU);
// do diag(r)*B
ele_mult(s1, r_v, rhs_v);
StatInit(sp_ienv(1), sp_ienv(2));
// Solve using triangular solve for speed
char trans = ’N’;
int info;
dgstrs(&trans, &L, &U, perm_r, perm_c, &B, &info);
if (info)

cerr << "Warning: info = " << info << endl;

// Premultiply rhs by T’ (also premultiply by diag(c))
for (int k=0; k < n_states; k++) {

v1l[k] = zero;
if (T(0,k)) {
int tmpidx(T(0,k) - 1);
v1l[k] += rhs_p[tmpidx] * c[tmpidx];

}
if (T(1,k)) {
int tmpidx((T(1,k) - 1));
v1l[k] -= rhs_p[tmpidx] * c[tmpidx];

}
}
StatFree();
return;

}

void SVTran3::buildMsv() {
// This Msv is actually -Msv to avoid having to invert the currents sign
Msv = DenseMatrix(n_states, n_states);
// Clear input vector
DenseVector::iterator ii = tmp_v.begin();
DenseVector::iterator iend = tmp_v.end();
for (; ii != iend; ++ii)

*ii = zero;

for (int i=0; i < n_states; i++) {
// Build by columns
if (T(0,i))
tmp_v[T(0,i) - 1] -= one;

if (T(1,i))
tmp_v[T(1,i) - 1] += one;

// Solve linear system and reduce
f1(tmp_v, vl1);
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// Copy result to Msv column
for (int j=0; j < n_states; j++)
Msv(j,i) = vl1[j];

// Clear vector for next iteration
if (T(0,i))
tmp_v[T(0,i) - 1] = zero;

if (T(1,i))
tmp_v[T(1,i) - 1] = zero;

}
// print_all_matrix(Msv);
return;

}

void SVTran3::func_ev(double* X, double* F) {
// Evaluate first the time-domain elements.
updateVInl(X);
// Tell tdsv that the first evaluation is already completed.
tdsv->clearflag();
// get nonlinear current and voltages vector
DoubleVector& vnl = cVnl->getCurrent();
DoubleVector& inl = cInl->getCurrent();
if (use_msv) {

ExtVector itmp1(&(inl[0]), n_states);
ExtVector vtmp1(&(vnl[0]), n_states);
add(itmp1, scaled(vtmp1, -gcomp), itmp2);
mult(Msv, itmp1, vl1);

}
else {

// Calculate error function
DenseVector::iterator ii = tmp_v.begin();
DenseVector::iterator iend = tmp_v.end();
for (; ii != iend; ++ii)
*ii = zero;

for (int i=0; i < n_states; i++) {
double itmp = inl[i] - gcomp * vnl[i];
if (T(0,i))

tmp_v[T(0,i) - 1] -= itmp;
if (T(1,i))

tmp_v[T(1,i) - 1] += itmp;
}
f1(tmp_v, vl1);

}
for (int i=0; i < n_states; i++)

F[i] = ssv[i] + vl1[i] - vnl[i];
}

void SVTran3::jacobian(double* X, DoubleMatrix& J) {
// Set current state variable values.
for (int j=0; j < n_states; j++)

cX->getCurrent()[j] = X[j];

// Number of elements
int n_elem = elem_vec.size();
int i = 0;
DoubleMatrix& Ju = tdsv->getJu();
DoubleMatrix& Ji = tdsv->getJi();

if (use_msv) {
// Go through all the nonlinear elements
for (int k = 0; k < n_elem; k++) {
int cns = elem_vec[k]->getNumberOfStates();
// Set base index in interface object
tdsv->setIBase(i, cns);
// Call element evaluation
elem_vec[k]->deriv_svTran(tdsv);
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for (int l=0; l < n_states; l++)
for (int j=0; j < cns; j++) {
J(l, i+j) = zero;
for (int n=0; n < cns; n++)

J(l, i+j) += Msv(l, i+n) * (Ji(n, j)- gcomp * Ju(n,j)) ;
}

for (int j=0; j < cns; j++)
for (int n=0; n < cns; n++)
J(i+j, i+n) -= Ju(j, n);

i += cns;
}

}
else {

// Go through all the nonlinear elements
for (int k = 0; k < n_elem; k++) {
int cns = elem_vec[k]->getNumberOfStates();
// Set base index in interface object
tdsv->setIBase(i, cns);
// Call element evaluation
elem_vec[k]->deriv_svTran(tdsv);

for (int j=0; j < cns; j++) {
// Evaluate the linear contribution
DenseVector::iterator ii = tmp_v.begin();
DenseVector::iterator iend = tmp_v.end();
for (; ii != iend; ++ii)
*ii = zero;

for (int n=0; n < cns; n++) {
int ipn = i + n;
if (T(0,ipn))

tmp_v[T(0,ipn) - 1] -= (Ji(n, j) - gcomp * Ju(n,j));
if (T(1,ipn))

tmp_v[T(1,ipn) - 1] += (Ji(n, j) - gcomp * Ju(n,j));
}
f1(tmp_v, vl1);
for (int n=0; n < n_states; n++)
J(n, i+j) = vl1[n];

// add nonlinear contribution
for (int n=0; n < cns; n++) {
J(i+n, i+j) -= Ju(n, j);

}
}
i += cns;

}
}

}

void SVTran3::updateVInl(double* x_p) {
// Set current state variable values.
for (int j=0; j < n_states; j++)

cX->getCurrent()[j] = x_p[j];

// Number of elements
int n_elem = elem_vec.size();
int i = 0;
// Go through all the nonlinear elements
for (int k = 0; k < n_elem; k++) {

int cns = elem_vec[k]->getNumberOfStates();
// Set base index in interface object
tdsv->setIBase(i, cns);
// Call element evaluation
elem_vec[k]->svTran(tdsv);
i += cns;

}
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}

void SVTran3::updateU(DenseVector& s1) {
copy(s1, tmp_v);
DoubleVector& inl = cInl->getCurrent();
DoubleVector& vnl = cVnl->getCurrent();
for (int i=0; i < n_states; i++) {
double itmp = inl[i] - gcomp * vnl[i];

if (T(0,i))
tmp_v[T(0,i) - 1] -= itmp;

if (T(1,i))
tmp_v[T(1,i) - 1] += itmp;

}

assert(superLU);
// do diag(r)*B
ele_mult(tmp_v, r_v, rhs_v);
StatInit(sp_ienv(1), sp_ienv(2));
// Solve using triangular solve for speed
char trans = ’N’;
int info;
dgstrs(&trans, &L, &U, perm_r, perm_c, &B, &info);
if (info)

cerr << "Warning: info = " << info << endl;

ExtVector u_v(&(cU->getCurrent()[0]), ls_size);
ele_mult(rhs_v, c_v, u_v);

}

void SVTran3::doOutput() {
// First check if the result matrices contain any data
assert(cX);

report(MESSAGE, "--- Writing output vectors ...");
int out_size;
if(nt>list_size)
out_size= list_size-1;
else
out_size= nt-1;

// out_size = (nt < list_size) ? list_size - 1 : nt - 1;

// Allocate and copy global time vector
allocTimeV_P(out_size);
int tindex;
tindex=0;

for ( tindex = 0; tindex < out_size; tindex++)
TimeV_P[tindex] = cTime->getPrevious(out_size - tindex )[0];

// Temporary vectors
DoubleVector tmp_x(out_size);
DoubleVector tmp_i(out_size);
DoubleVector tmp_u(out_size);

// Now fill currents and port voltages of time domain devices.
int current_ns;
int n_elem = elem_vec.size(); // Number of elements
int i=0;
for (int k=0; k < n_elem; k++) {

current_ns = elem_vec[k]->getNumberOfStates();
for(int j=0; j< current_ns; j++) {

// For the current, decompensate while copying.
for (int tindex=0; tindex < out_size; tindex++) {
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tmp_x[tindex] = cX->getPrevious(out_size - tindex)[j+i];
tmp_i[tindex] = cInl->getPrevious(out_size - tindex)[j+i];
tmp_u[tindex] = cVnl->getPrevious(out_size - tindex)[j+i];
}
elem_vec[k]->getElemData()->setRealX(j, tmp_i);
elem_vec[k]->getElemData()->setRealI(j, tmp_i);
elem_vec[k]->getElemData()->setRealU(j, tmp_u);

}
i += current_ns;

}

if (savenode) {
// For each terminal, assign voltage vector
Terminal* term = NULL;
cir->setFirstTerminal();
while((term = cir->nextTerminal())) {
// Get MNAM index
if (term->getRC()) {

// Remember that MNAM indices begin at 1
i = term->getRC() - 1;
for (int tindex=0; tindex < out_size; tindex++)
tmp_u[tindex] = cU->getPrevious(out_size - tindex)[i];
}
else

// This is a reference terminal
tmp_u = zero;

// Set terminal vector
term->getTermData()->setRealV(tmp_u);

}
}

}
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A.2 Header File of SPICE like Algorithm
// This may look like C code, but it is really -*- C++ -*-
//
// time marching transient analysis with variable timestep
// Author:
// Shubha Vijaychand
//

#ifndef SVTran3_h #define SVTran3_h 1

#include "Analysis.h" #include "OFunction.h" #include
"CircVector.h" #include "CircDouble.h" #include "transim_mtl.h"
extern "C" { #undef _S #undef _C #include SUPERLU_P"/dsp_defs.h"
#include SUPERLU_P"/util.h"

}

// Main class definition follows
class SVTran3 : public Analysis, public OFunction { public:

SVTran3();

~SVTran3();

// (from Analysis)
// The main analysis routine.
virtual void run(Circuit* cir);

// (from OFunction)
// Evaluate error function vector F given X
virtual void func_ev(double* X, double* F);
// Evaluate Jacobian
virtual void jacobian(double* X, DoubleMatrix& J);

// Write output vectors
void doOutput();

private:

void superLUFactor(SparseMatrix& M);
void freeSuperLU();
void f1(DenseVector& s1, DenseVector& v1l);
void updateVInl(double* x_p);
void updateU(DenseVector& s1);
void buildMsv();

Circuit* cir;
int n_states;
IntMatrix T;
ElementVector elem_vec;
TimeDomainSV *tdsv;
int ls_size;
int nt;
int n_tsteps;
int list_size;

DenseVector ssv, vl1, itmp2, tmp_v, rhs_v, c_v, r_v;
CircVector *cU;
CircVector *cX;
CircVector *cVnl;
CircVector *cInl;
CircVector *cTime;
DenseMatrix Msv;

// SuperLU variables
SuperMatrix A, L, U, B, X;
int *perm_r;
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int *perm_c;
int *etree;
double *r, *c;
double *rhs_p;
void *work;
int lwork;
bool superLU;
double* elem_val;
int* row_index;
int* col_pointer;

// ------------------- Parameter-related variables
// Analysis information
static ItemInfo ainfo;
// Number of parameters of this element
static const unsigned n_par;
// Analysis parameters
double h, tf, nst,gcomp, abstol, reltol;
int deriv, int_method, permc_spec, out_steps;
bool use_msv, savenode;
// Parameter information
static ParmInfo pinfo[];

};

#endif

A.3 C++ code of New Time Step Algorithm
#include "SVTran4.h" #include "TimeMNAM.h" #include
"TimeDomainSV.h" #include "NLSInterface.h" #include "Euler.h"
#include "Trapezoidal.h" #include MV_P"/mvblasd.h" extern int
superLU_print_enable ;

extern "C" { #include "../inout/ftvec.h" #include
"../inout/report.h"

}

void buildTIncidence(ElemFlag mask, Circuit*& my_circuit,
IntMatrix& T, ElementVector& elem_vec,
int& n_states, int& max_n_states);

// Static members
const unsigned SVTran4::n_par = 13;

// Element information
ItemInfo SVTran4::ainfo = {

"SVTran4",
"State- variable based time marching transient with variable time step ",
"Shubha Vijaychand",
DEFAULT_ADDRESS

};
// Parameter information
ParmInfo SVTran4::pinfo[] = {

{"tstop", "Stop time (s)", TR_DOUBLE, true},
{"tstep", "Time step (s)", TR_DOUBLE, true},
{"nst", "No save time (s)", TR_DOUBLE, false},
{"deriv", "Approximate derivatives or use automatic diff.", TR_INT, false},
{"msv", "Use Msv flag", TR_BOOLEAN, false},
{"im", "Integration method", TR_INT, false},
{"savenode", "Save node voltages", TR_BOOLEAN, false},
{"permc_spec", "Permutation ordering to factor Msv (0, 1 or 2)",
TR_INT, false},
{"out_steps", "Number of steps skipped for output simulation progress",
TR_INT, false},
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{"gcomp", "Compensation network conductance (S)", TR_DOUBLE, false},
{"abstol", " absolute tolerance of the circuit", TR_DOUBLE, false},
{"reltol", "relative tolerance of the circuit", TR_DOUBLE, false},
{"tol", "tolerance of the circuit", TR_DOUBLE,false}

};

SVTran4::SVTran4() : Analysis(&ainfo, pinfo, n_par), ls_size(0),
superLU(false)

{
// Parameter stuff
paramvalue[0] = &(tf);
paramvalue[1] = &(h);
paramvalue[2] = &(nst = zero);
paramvalue[3] = &(deriv = 0);
paramvalue[4] = &(use_msv = true);
paramvalue[5] = &(int_method = 1);
paramvalue[6] = &(savenode = true);
paramvalue[7] = &(permc_spec = 2);
paramvalue[8] = &(out_steps = 200);
paramvalue[9] = &(gcomp = 1e-4);
paramvalue[10] = &(abstol = 0.05);
paramvalue[11]= &(reltol = 0.05);
paramvalue[12]= &(tol= 1.);

}

SVTran4::~SVTran4() {
assert(!superLU);

}

void SVTran4::run(Circuit* cir) {
this->cir = cir;
char msg[80];

// Build time domain MNAM
ElemFlag mnam_mask(LINEAR);
TimeMNAM mnam(cir, mnam_mask);
// Supress the output in SuperLU
superLU_print_enable = 0;
// Build T matrix and nonlinear element vector
n_states = 0;
int max_n_states = 0;
ElemFlag mask(NONLINEAR);
buildTIncidence(mask, cir, T, elem_vec, n_states, max_n_states);

if (gcomp)
// Add the compensation resistors to the MNAM
for (int i = 0; i < n_states; i++) {
mnam.setMAdmittance(T(0,i), T(1,i) , gcomp);

}
// Setup simulation variables (use circular vectors)
ls_size = mnam.getDim();
list_size = int (((tf - nst) / h + 2)*50);
if (savenode)

cU = new CircVector(list_size, ls_size);
else

cU = new CircVector(51, ls_size);
cX = new CircVector(list_size, n_states);
cVnl = new CircVector(list_size, n_states);
cInl = new CircVector(list_size, n_states);
cTime = new CircVector(list_size, 1);
DenseVector x_v(n_states);
// debug
DenseVector f_v(n_states);
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// debug
ssv = DenseVector(n_states);
DenseVector sf(ls_size);
vl1 = DenseVector(n_states);
itmp2 = DenseVector(n_states);
tmp_v = DenseVector(ls_size);
rhs_v = DenseVector(ls_size);
c_v = DenseVector(ls_size);
r_v = DenseVector(ls_size);
rhs_p = &(rhs_v[0]);
r = &(r_v[0]);
c = &(c_v[0]);
// Choose an integration method and combine M and M’
LIntegMethod *l_im;
NLIntegMethod *nl_im;
if (int_method == 1) {

l_im = new LTrapezoidal(cU, &mnam);
nl_im = new NLTrapezoidal(cX,cTime, h);

}
else {

l_im = new LEuler(cU, &mnam);
nl_im = new NLEuler(cX,cTime, h);

}
// Create Matrix
SparseMatrix M(ls_size, ls_size, 6 * ls_size);

// decalaration of the variables used
double error;
// store the value of the timestep specified in the netlist
double net_timestep = h;
double prev_timestep = 0;

// Create the interface class
tdsv = new TimeDomainSV(nl_im, max_n_states);

// Setup nonlinear solver
NLSInterface* nlsi = new NLSInterface(this, n_states, deriv);

// Begin main loop
double residual = zero;
report(MESSAGE, "--- Starting transient simulation ...\n");
sepLine();
report(MESSAGE, "| Step \t| Time (s) \t| Residual (V)\t|");
sepLine();
double ctime = zero;

// Set zero initial conditions
DenseVector::iterator ii = x_v.begin();
DenseVector::iterator iend = x_v.end();
for (; ii != iend; ++ii)

*ii = zero;

// Build M = G + a C
l_im->buildMd(M, h);
// Factor M
superLUFactor(M);

// Create Msv if requested
if (use_msv)

buildMsv();

NLEuler * euler = new NLEuler(cX , h);
NLTrapezoidal* trap = new NLTrapezoidal(cX, h);

nt = 0;
DoubleVector xdot1(n_states);
DoubleVector xdot2(n_states);
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DoubleVector XP(n_states);
DoubleVector x1, x2, x3;
double t1, t2, t3;
DoubleVector diff;
double k,absdiff, reldiff, factor2;
double factor,error_prev,error_temp;
error_prev=0;
double ctime1;
ctime1=0;
cX ->getCurrent()=zero;
cX ->advance();
cX ->getCurrent() =zero;
cX -> advance();
cTime ->getCurrent()[0]=-h;
cTime->advance();
cTime ->getCurrent()[0]=zero;
cTime ->advance();

int counter = 0;
while (ctime <tf)

{
nt++;
error=0;
int changenstep=0;
int changestep=0;
double ooh;
do{

if (prev_timestep != h)
{

ooh = one / h;
euler ->changeStep(h);
trap ->changeStep(h);
nl_im->changeStep(h);
freeSuperLU();
M = SparseMatrix (ls_size, ls_size, 6 * ls_size);
l_im ->buildMd(M,h);
// Factor M
superLUFactor(M);
// Create Msv if requested
if (use_msv)

buildMsv();
}

ctime1= ctime+h;
cTime->getCurrent()[0] = ctime1;
// Update time in interface class
tdsv->setTime(&(cX->getCurrent()[0]),

&(cVnl->getCurrent()[0]),
&(cInl->getCurrent()[0]),
nt, ctime1, h);

// Update compressed source vector
l_im->buildSf(sf, ctime1);
f1(sf, ssv);

// Solve the nonlinear equation (call the nonlinear solver).
double this_res;
if( prev_timestep > h)
{

for(int i=0; i< n_states; i++)
x_v[i]=cX->getPrevious(1)[i];

}

int RC= nlsi->solve(&(x_v[0]), this_res);
if(RC<0)
changenstep=1;



APPENDIX A. SOURCE CODE 66

else
changenstep=0;

residual += this_res * this_res;
error = zero;

// x1=xn-1 x2=xn, x3=xn+1

if(nt==1)
{

x1= cX-> getPrevious(2);
x2= cX-> getPrevious(1);
x3= cX-> getCurrent();

// t1=tn-1 t2=tn t3=tn+1
t1=cTime-> getPrevious(2)[0];
t2=cTime-> getPrevious(1)[0];
t3=cTime-> getCurrent()[0];
k= (t3-t1) / ( t2 - t1);
// calculate the value at the next timestep by extrapolating

XP = x2;
XP -= x1;
XP *= k;
XP += x1;
XP -= x3;
absdiff= norm(XP);
factor2= norm(x3);

//xdot1 = x3;
// xdot1 -= x2;
// xdot1 *= ooh;
xdot2 = x3;
xdot2 -= x2;
xdot2 *= ooh;

if(factor2< 1e-3) {
error = absdiff;
if(error > abstol)

changestep=1;
else

changestep=0;
}

else {
reldiff= absdiff / factor2;
error= reldiff;
if(error > reltol)

changestep=1;
else

changestep=0;
}
}

else
{

diff = cX->getCurrent();
diff -= cX->getPrevious(1);
diff *= ooh;
double nbed = norm(diff);
diff -= xdot1;
double ndiff = norm(diff);
error = ndiff / nbed;
if(error>tol)

changestep=1;
else

changestep=0;
}

prev_timestep=h;
if (changestep || changenstep) {
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if (h > 1e-13) {
counter = 5;

h *= 0.5 ;
}

}
else if(h<net_timestep) {
if (counter == 0)

h = 3 * h;
//else
counter--;

}
//else if (h < net_timestep)
// h = min(h*2.0, net_timestep);
//h = ((2.0*h- net_timestep) < 0 ? 2.0*h : net_timestep);

} while(h<prev_timestep);
ctime= ctime1;
// Update the vectors with the results
updateVInl(&(x_v[0]));

updateU(sf);

// Calculate trapezoidal derivatives
// cout<<"xdot1 before deravative calucalation"<<xdot1;
// cout<<"xdot2 before deravative calculation"<<xdot2;
xdot2 = xdot1;
xdot1 =cX->getCurrent();
xdot1 -=cX->getPrevious(1);
xdot1 *= 2. * ooh;
xdot1 -= xdot2;
// cout<<"xdot1 after deravative calucalation"<<xdot1;
//cout<<"xdot2 after deravative calculation"<<xdot2;

// Update previous derivatives in integration method
nl_im->store();
l_im->store();
// Advance the circular lists for the next step.
cU->advance();
cX->advance();
cVnl->advance();
cInl->advance();
cTime->advance();
// Print table line
if (!(nt % out_steps))

{
sprintf(msg, "| %d \t| %g \t| %g\t|", nt, ctime, sqrt(residual));
report(MESSAGE, msg);

}
}

residual = sqrt(residual);

sprintf(msg, "--- Residual: %g", residual);
sepLine();
newLine();
report(MESSAGE, msg);

doOutput();
// Erase allocated space
delete nlsi;
delete tdsv;
delete nl_im;
delete l_im;
freeSuperLU();
delete cInl;
delete cVnl;
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delete cX;
delete cU;
return;

}

void SVTran4::superLUFactor(SparseMatrix& M) {
// Call freeSuperLU to release memory

assert(!superLU);
double *tmp_p = &(tmp_v[0]);

// Set source vector to zero since we are not interested in the result
// in this routine (Make this better later).
DenseVector::iterator ii = rhs_v.begin();
DenseVector::iterator iiend = rhs_v.end();
for (; ii != iiend; ++ii)

*ii = zero;

int nrhs = 1;
elem_val = new double[M.nnz()];
row_index = new int[M.nnz()];
col_pointer = new int[ls_size + 1];
// Until we find a better way, copy matrix into a separate structure
SparseMatrix::iterator i, iend;
SparseMatrix::OneD::iterator j, jend;
int count = 0;
int col_count = 0;
i = M.begin();
iend = M.end();
for (; i != iend; ++i) {

j = (*i).begin(); jend = (*i).end();
col_pointer[col_count++] = count;
for (; j != jend; ++j) {
elem_val[count] = (*j);
row_index[count] = j.row();
count++;

}
}
col_pointer[col_count] = count;
assert(count == M.nnz());
// char msg[80];
// sprintf(msg, "Matrix size = %d", ls_size);
//report(MESSAGE, msg);
//sprintf(msg, "Matrix nnz = %d", count);
//report(MESSAGE, msg);
dCreate_CompCol_Matrix(&A, ls_size, ls_size, M.nnz(),

elem_val, // elem_val pointer
row_index, // row_index pointer
col_pointer, // col_pointer pointer
NC, _D, GE);

dCreate_Dense_Matrix(&B, ls_size, nrhs, rhs_p, ls_size, DN, _D, GE);
dCreate_Dense_Matrix(&X, ls_size, nrhs, tmp_p, ls_size, DN, _D, GE);
perm_r = new int[ls_size];
perm_c = new int[ls_size];

/*
* Get column permutation vector perm_c[], according to permc_spec:
* permc_spec = 0: use the natural ordering
* permc_spec = 1: use minimum degree ordering on structure of A’*A
* permc_spec = 2: use minimum degree ordering on structure of A’+A
*/
get_perm_c(permc_spec, &A, perm_c);

etree = new int[ls_size];
factor_param_t *ftp = NULL;
char fact, equed, trans, refact;
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fact = ’E’;
equed = ’B’;
trans = ’N’;
refact = ’N’;
double recip_pivot_growth;
double rcond;
// These are vectors of 1 element (nrhs elements)
double ferr(0), berr(0);
mem_usage_t mem_usage;
int info;
dgssvx(&fact, &trans, &refact, &A, ftp, perm_c, perm_r, etree, &equed, r, c,

&L, &U, work, lwork, &B, &X, &recip_pivot_growth, &rcond,
&ferr, &berr, &mem_usage, &info);

// cout << "equed: " << equed << endl;
//cout << "recip_pivot_growth = " << recip_pivot_growth << endl;
//sprintf(msg, "1 / Condition number = %g", rcond);
//report(MESSAGE, msg);
//sprintf(msg, "info = %d", info);
//report(MESSAGE, msg);
//sprintf(msg, "ferr = %g", ferr);
//report(MESSAGE, msg);
//sprintf(msg, "berr = %g", berr);
//report(MESSAGE, msg);

if (info)
report(FATAL, "There was a problem factoring the MNAM.");

NCformat *Ustore;
SCformat *Lstore;
Lstore = (SCformat *) L.Store;
Ustore = (NCformat *) U.Store;
// sprintf(msg, "No of nonzeros in factor L = %d", Lstore->nnz);
//report(MESSAGE, msg);
//sprintf(msg, "No of nonzeros in factor U = %d", Ustore->nnz);
//report(MESSAGE, msg);
//sprintf(msg, "No of nonzeros in L+U = %d",
// Lstore->nnz + Ustore->nnz - ls_size);

//report(MESSAGE, msg);
// sprintf(msg, "L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d",
// mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
// mem_usage.expansions);
//report(MESSAGE, msg);
fflush(stdout);

// This is not used anymore
Destroy_SuperMatrix_Store(&X);
superLU = true;

} void SVTran4::freeSuperLU() {

assert(superLU);
// Free vectors
delete [] etree;
delete [] perm_c;
delete [] perm_r;
// Free supermatrix structures
Destroy_SuperMatrix_Store(&A);
Destroy_SuperMatrix_Store(&B);
// Free L and U matrices
if ( lwork >= 0 ) {

Destroy_SuperNode_Matrix(&L);
Destroy_CompCol_Matrix(&U);

}
delete [] col_pointer;
delete [] row_index;
delete [] elem_val;
superLU = false;
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}

void SVTran4::f1(DenseVector& s1, DenseVector& v1l) {

assert(superLU);
// do diag(r)*B
ele_mult(s1, r_v, rhs_v);
StatInit(sp_ienv(1), sp_ienv(2));
// Solve using triangular solve for speed
char trans = ’N’;
int info;
dgstrs(&trans, &L, &U, perm_r, perm_c, &B, &info);
if (info)

cerr << "Warning: info = " << info << endl;

// Premultiply rhs by T’ (also premultiply by diag(c))
for (int k=0; k < n_states; k++) {

v1l[k] = zero;
if (T(0,k)) {
int tmpidx(T(0,k) - 1);
v1l[k] += rhs_p[tmpidx] * c[tmpidx];

}
if (T(1,k)) {
int tmpidx((T(1,k) - 1));
v1l[k] -= rhs_p[tmpidx] * c[tmpidx];

}
}
StatFree();
return;

}

void SVTran4::buildMsv() {
// This Msv is actually -Msv to avoid having to invert the currents sign
Msv = DenseMatrix(n_states, n_states);
// Clear input vector
DenseVector::iterator ii = tmp_v.begin();
DenseVector::iterator iend = tmp_v.end();
for (; ii != iend; ++ii)

*ii = zero;

for (int i=0; i < n_states; i++) {
// Build by columns
if (T(0,i))
tmp_v[T(0,i) - 1] -= one;

if (T(1,i))
tmp_v[T(1,i) - 1] += one;

// Solve linear system and reduce
f1(tmp_v, vl1);
// Copy result to Msv column
for (int j=0; j < n_states; j++)
Msv(j,i) = vl1[j];

// Clear vector for next iteration
if (T(0,i))
tmp_v[T(0,i) - 1] = zero;

if (T(1,i))
tmp_v[T(1,i) - 1] = zero;

}
// print_all_matrix(Msv);
return;

}

void SVTran4::func_ev(double* X, double* F) {
// Evaluate first the time-domain elements.
updateVInl(X);
// Tell tdsv that the first evaluation is already completed.
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tdsv->clearflag();
// get nonlinear current and voltages vector
DoubleVector& vnl = cVnl->getCurrent();
DoubleVector& inl = cInl->getCurrent();
if (use_msv) {

ExtVector itmp1(&(inl[0]), n_states);
ExtVector vtmp1(&(vnl[0]), n_states);
add(itmp1, scaled(vtmp1, -gcomp), itmp2);
mult(Msv, itmp2, vl1);

}
else {

// Calculate error function
DenseVector::iterator ii = tmp_v.begin();
DenseVector::iterator iend = tmp_v.end();
for (; ii != iend; ++ii)
*ii = zero;

for (int i=0; i < n_states; i++) {
double itmp = inl[i] - gcomp * vnl[i];
if (T(0,i))

tmp_v[T(0,i) - 1] -= itmp;
if (T(1,i))

tmp_v[T(1,i) - 1] += itmp;
}
f1(tmp_v, vl1);

}
for (int i=0; i < n_states; i++)

F[i] = ssv[i] + vl1[i] - vnl[i];
}

void SVTran4::jacobian(double* X, DoubleMatrix& J) {
// Set current state variable values.
for (int j=0; j < n_states; j++)

cX->getCurrent()[j] = X[j];

// Number of elements
int n_elem = elem_vec.size();
int i = 0;
DoubleMatrix& Ju = tdsv->getJu();
DoubleMatrix& Ji = tdsv->getJi();

if (use_msv) {
// Go through all the nonlinear elements
for (int k = 0; k < n_elem; k++) {
int cns = elem_vec[k]->getNumberOfStates();
// Set base index in interface object
tdsv->setIBase(i, cns);
// Call element evaluation
elem_vec[k]->deriv_svTran(tdsv);

for (int l=0; l < n_states; l++)
for (int j=0; j < cns; j++) {
J(l, i+j) = zero;
for (int n=0; n < cns; n++)

J(l, i+j) += Msv(l, i+n) * (Ji(n, j)- gcomp * Ju(n,j));
}

for (int j=0; j < cns; j++)
for (int n=0; n < cns; n++)
J(i+j, i+n) -= Ju(j, n);

i += cns;
}

}
else {

// Go through all the nonlinear elements
for (int k = 0; k < n_elem; k++) {
int cns = elem_vec[k]->getNumberOfStates();
// Set base index in interface object
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tdsv->setIBase(i, cns);
// Call element evaluation
elem_vec[k]->deriv_svTran(tdsv);

for (int j=0; j < cns; j++) {
// Evaluate the linear contribution
DenseVector::iterator ii = tmp_v.begin();
DenseVector::iterator iend = tmp_v.end();
for (; ii != iend; ++ii)
*ii = zero;

for (int n=0; n < cns; n++) {
int ipn = i + n;
if (T(0,ipn))

tmp_v[T(0,ipn) - 1] -= (Ji(n, j)- gcomp * Ju(n,j));
if (T(1,ipn))

tmp_v[T(1,ipn) - 1] += (Ji(n, j)- gcomp * Ju(n,j));
}
f1(tmp_v, vl1);
for (int n=0; n < n_states; n++)
J(n, i+j) = vl1[n];

// add nonlinear contribution
for (int n=0; n < cns; n++) {
J(i+n, i+j) -= Ju(n, j);

}
}
i += cns;

}
}

}

void SVTran4::updateVInl(double* x_p) {
// Set current state variable values.
for (int j=0; j < n_states; j++)

cX->getCurrent()[j] = x_p[j];

// Number of elements
int n_elem = elem_vec.size();
int i = 0;
// Go through all the nonlinear elements
for (int k = 0; k < n_elem; k++) {

int cns = elem_vec[k]->getNumberOfStates();
// Set base index in interface object
tdsv->setIBase(i, cns);
// Call element evaluation
elem_vec[k]->svTran(tdsv);
i += cns;

}
}

void SVTran4::updateU(DenseVector& s1) {
copy(s1, tmp_v);
DoubleVector& inl = cInl->getCurrent();
DoubleVector& vnl = cVnl->getCurrent();
for (int i=0; i < n_states; i++) {
double itmp = inl[i] - gcomp * vnl[i];
if (T(0,i))
tmp_v[T(0,i) - 1] -= itmp;

if (T(1,i))
tmp_v[T(1,i) - 1] += itmp;

}

assert(superLU);
// do diag(r)*B
ele_mult(tmp_v, r_v, rhs_v);
StatInit(sp_ienv(1), sp_ienv(2));
// Solve using triangular solve for speed
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char trans = ’N’;
int info;
dgstrs(&trans, &L, &U, perm_r, perm_c, &B, &info);
if (info)

cerr << "Warning: info = " << info << endl;

ExtVector u_v(&(cU->getCurrent()[0]), ls_size);
ele_mult(rhs_v, c_v, u_v);

}

void SVTran4::doOutput() {
// First check if the result matrices contain any data
assert(cX);

report(MESSAGE, "--- Writing output vectors ...");
int out_size;
if(nt>list_size)
out_size= list_size-1;
else
out_size= nt-1;

// out_size = (nt < list_size) ? list_size - 1 : nt - 1;

// Allocate and copy global time vector
allocTimeV_P(out_size);
int tindex;
tindex=0;

for ( tindex = 0; tindex < out_size; tindex++)
TimeV_P[tindex] = cTime->getPrevious(out_size - tindex )[0];

// Temporary vectors
DoubleVector tmp_x(out_size);
DoubleVector tmp_i(out_size);
DoubleVector tmp_u(out_size);

// Now fill currents and port voltages of time domain devices.
int current_ns;
int n_elem = elem_vec.size(); // Number of elements
int i=0;
for (int k=0; k < n_elem; k++) {

current_ns = elem_vec[k]->getNumberOfStates();
for(int j=0; j< current_ns; j++) {

// For the current, decompensate while copying.
for (int tindex=0; tindex < out_size; tindex++) {

tmp_x[tindex] = cX->getPrevious(out_size - tindex)[j+i];
tmp_i[tindex] = cInl->getPrevious(out_size - tindex)[j+i];
tmp_u[tindex] = cVnl->getPrevious(out_size - tindex)[j+i];
}
elem_vec[k]->getElemData()->setRealX(j, tmp_i);
elem_vec[k]->getElemData()->setRealI(j, tmp_i);
elem_vec[k]->getElemData()->setRealU(j, tmp_u);

}
i += current_ns;

}

if (savenode) {
// For each terminal, assign voltage vector
Terminal* term = NULL;
cir->setFirstTerminal();
while((term = cir->nextTerminal())) {
// Get MNAM index
if (term->getRC()) {

// Remember that MNAM indices begin at 1
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i = term->getRC() - 1;
for (int tindex=0; tindex < out_size; tindex++)
tmp_u[tindex] = cU->getPrevious(out_size - tindex)[i];
}
else

// This is a reference terminal
tmp_u = zero;

// Set terminal vector
term->getTermData()->setRealV(tmp_u);

}
}

}
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A.4 Header File of New Time Step Algorithm
// This may look like C code, but it is really -*- C++ -*-
//
// time marching transient analysis with variable timestep
// Author:
// Shubha Vijaychand
//

#ifndef SVTran4_h #define SVTran4_h 1

#include "Analysis.h" #include "OFunction.h" #include
"CircVector.h" #include "CircDouble.h" #include "transim_mtl.h"
extern "C" { #undef _S #undef _C #include SUPERLU_P"/dsp_defs.h"
#include SUPERLU_P"/util.h"

}

// Main class definition follows
class SVTran4 : public Analysis, public OFunction { public:

SVTran4();

~SVTran4();

// (from Analysis)
// The main analysis routine.
virtual void run(Circuit* cir);

// (from OFunction)
// Evaluate error function vector F given X
virtual void func_ev(double* X, double* F);
// Evaluate Jacobian
virtual void jacobian(double* X, DoubleMatrix& J);

// Write output vectors
void doOutput();

private:

void superLUFactor(SparseMatrix& M);
void freeSuperLU();
void f1(DenseVector& s1, DenseVector& v1l);
void updateVInl(double* x_p);
void updateU(DenseVector& s1);
void buildMsv();

Circuit* cir;
int n_states;
IntMatrix T;
ElementVector elem_vec;
TimeDomainSV *tdsv;
int ls_size;
int nt;
int n_tsteps;
int list_size;

DenseVector ssv, vl1,itmp2, tmp_v, rhs_v, c_v, r_v;
CircVector *cU;
CircVector *cX;
CircVector *cVnl;
CircVector *cInl;
CircVector *cTime;
DenseMatrix Msv;

// SuperLU variables
SuperMatrix A, L, U, B, X;
int *perm_r;
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int *perm_c;
int *etree;
double *r, *c;
double *rhs_p;
void *work;
int lwork;
bool superLU;
double* elem_val;
int* row_index;
int* col_pointer;

// ------------------- Parameter-related variables
// Analysis information
static ItemInfo ainfo;
// Number of parameters of this element
static const unsigned n_par;
// Analysis parameters
double h, tf, nst,gcomp, abstol, reltol,tol;
int deriv, int_method, permc_spec, out_steps;
bool use_msv, savenode;
// Parameter information
static ParmInfo pinfo[];

};

#endif

A.5 Euler Deratives
#include "Euler.h"

NLEuler::NLEuler(CircVector*& cX,CircVector*& cTime, double& h) {
this->cX = cX;
this->cTime=cTime;
a = one / h;
a2 = a * a;

}

NLEuler::NLEuler(CircVector*& cX, double& h) {
this->cX = cX;
this->cTime=NULL;
a = one / h;
a2 = a * a;

}

double NLEuler::derivX(const int& index) {
return (cX->getCurrent()[index] - cX->getPrevious(1)[index]) * a;

}

double NLEuler::deriv2X(const int& index) {
return (cX->getCurrent()[index] - 2. * cX->getPrevious(1)[index]

+ cX->getPrevious(2)[index]) * a2;
}

double NLEuler::getdx_dtFactor() {
return a;

}

double NLEuler::getd2x_dt2Factor() {
return a2;

}

double NLEuler::delayX(const int& index, const double& t) {
if(cTime==NULL)
{
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// First, find where to interpolate
double delta_step = t * a;
int time_idx = int(delta_step);
delta_step -= double(time_idx);

const double& v2 = cX->getPrevious(time_idx)(index);
const double& v1 = cX->getPrevious(time_idx + 1)(index);
// Interpolate between v1 and v2
return v2 + (v1 - v2) * delta_step;

} else
{
double time_delay = cTime-> getCurrent()(0) ;
//define some temporary variables
double prev_temp, temp ;
int time_idx;
int i=1;
do

{
temp=cTime->getPrevious(i)(0);
if(temp-time_delay>0)
prev_temp=temp;
i++;

}
while(temp-time_delay>0);
time_idx = i;
double delta_step=t/(temp-prev_temp);
delta_step -=int(delta_step);
const double& v2 = cX->getPrevious(time_idx)(index);

const double& v1 = cX->getPrevious(time_idx + 1)(index);
// Interpolate between v1 and v2

return v2 + (v1 - v2) * delta_step;
}

}

double NLEuler::getDelayXFactor(const double& t) {
if(cTime==NULL)

{
// First, find where to interpolate
double delta_step = t * a;
int time_idx = int(delta_step);
delta_step -= double(time_idx);
if (time_idx)

return zero;
else

return one - delta_step;
}

else
{

// First, find where to interpolate
double time_delay= cTime->getCurrent()(0) ;

//define some temporary variables
double prev_temp, temp ;
int time_idx;
int i=1;
do

{
temp=cTime->getPrevious(i)(0);
if(temp-time_delay>0)
prev_temp=temp;
i++;

}
while(temp-time_delay>0);
time_idx= i;
double delta_step=t/(temp-prev_temp);
delta_step -= int(delta_step);
if (time_idx)
return zero;
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else
return one- delta_step;
}

}

void NLEuler::getNSamples(int &nx, int &ndx) {
nx = 1;
ndx = 0;

}

double NLEuler::deriv(double* x, double * dx) {
return a * (x[0] - x[1]);

}

void NLEuler::changeStep(const double& h) {
a = one / h;
a2 = a * a;

}

LEuler::LEuler(CircVector*& cU, TimeMNAM* mnam) {
this->cU = cU;
this->mnam = mnam;

size = mnam->getDim();
s2 = DenseVector(size);
a = zero;

}

void LEuler::buildMd(SparseMatrix& M, const double& h) {
a = one/h;
mnam->getMatrices(M1, M1p);
copy(M1, M);
add(scaled(M1p, a), M);

}

void LEuler::buildSf(DenseVector& s1, const double& ctime) {
assert(a);
mnam->getSource(ctime, s2);
ExtVector u_n(&(cU->getPrevious(1)[0]), size);
// cout << cU->getPrevious(1) << endl;
mult(M1p, scaled(u_n, a), s2, s1);

}

void LEuler::changeStep(const double& h) {
a = one / h;

}
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A.6 Trapezoidal Derivatives
#include "Trapezoidal.h"

NLTrapezoidal::NLTrapezoidal(CircVector*& cX,CircVector*& cTime,
double& h) {

this->cX = cX;
this->cTime=cTime;
a = 2. / h;
a2 = a * a;
da = 2. * a;
xpn = DoubleVector(cX->getCurrent().size(), zero);
xsn = DoubleVector(cX->getCurrent().size(), zero);

}

NLTrapezoidal::NLTrapezoidal(CircVector*& cX, double& h) {
this->cX = cX;
this->cTime=NULL;
a = 2. / h;
a2 = a * a;
da = 2. * a;
xpn = DoubleVector(cX->getCurrent().size(), zero);
xsn = DoubleVector(cX->getCurrent().size(), zero);

}

double NLTrapezoidal::derivX(const int& index) {
return (cX->getCurrent()[index] - cX->getPrevious(1)[index]) * a

- xpn[index];
}

double NLTrapezoidal::deriv2X(const int& index) {
return (cX->getCurrent()[index] - cX->getPrevious(1)[index]) * a2

- da * xpn[index] - xsn[index];
}

double NLTrapezoidal::getdx_dtFactor() {
return a;

}

double NLTrapezoidal::getd2x_dt2Factor() {
return a2;

}
//this is the new delay routine for the Non linear trapezoidal technique

double NLTrapezoidal::delayX(const int& index, const double& t) {
// first we need to find the where in the circular matrix the state variable required is stored

//double time_delay;
if(cTime==NULL)

{
double delta_step = t * a / 2.;
int time_idx = int(delta_step);
delta_step -= double(time_idx);
const double& v2 = cX->getPrevious(time_idx)(index);
const double& v1 = cX->getPrevious(time_idx + 1)(index);
// Interpolate between v1 and v2
return v2 + (v1 - v2) * delta_step;

}
else {

double time_delay = cTime-> getCurrent()(0) ;
//define some temporary variables
double prev_temp, temp ;
int time_idx;
int i=1;
do

{
temp=cTime->getPrevious(i)(0);
if(temp-time_delay>0)
prev_temp=temp;
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i++;
}

while(temp-time_delay>0);
time_idx = i;
double delta_step=t/(temp-prev_temp);
delta_step -=int(delta_step);
const double& v2 = cX->getPrevious(time_idx)(index);

const double& v1 = cX->getPrevious(time_idx + 1)(index);
// Interpolate between v1 and v2

return v2 + (v1 - v2) * delta_step;
} }

/*
double NLTrapezoidal::delayX(const int& index, const double& t)
{

// First, find where to interpolate

double delta_step = t * a / 2.;
int time_idx = int(delta_step);
delta_step -= double(time_idx);
const double& v2 = cX->getPrevious(time_idx)(index);
const double& v1 = cX->getPrevious(time_idx + 1)(index);

// Interpolate between v1 and v2
return v2 + (v1 - v2) * delta_step;

}
*/

double NLTrapezoidal::getDelayXFactor(const double& t) {
if(cTime==NULL)

{
// First, find where to interpolate
double delta_step = t * a / 2.;
int time_idx = int(delta_step);
delta_step -= double(time_idx);
if (time_idx)

return zero;
else

return one - delta_step;
} else {
// First, find where to interpolate
double time_delay= cTime->getCurrent()(0) ;

//define some temporary variables
double prev_temp, temp ;
int time_idx;
int i=1;
do

{
temp=cTime->getPrevious(i)(0);
if(temp-time_delay>0)
prev_temp=temp;
i++;

}
while(temp-time_delay>0);
time_idx= i;
double delta_step=t/(temp-prev_temp);
delta_step -= int(delta_step);
if (time_idx)
return zero;

else
return one- delta_step;

} }

/* double NLTrapezoidal::getDelayXFactor(const double& t) {
// First, find where to interpolate
double delta_step = t * a / 2.;
int time_idx = int(delta_step);
delta_step -= double(time_idx);
if (time_idx)
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return zero;
else

return one - delta_step;
} */ void NLTrapezoidal::changeStep(const double& h) {

a = 2. / h;
a2 = a * a;
da = 2. * a;

}

void NLTrapezoidal::getNSamples(int &nx, int &ndx) {
nx = 1;
ndx = 1;

}

double NLTrapezoidal::deriv(double* x, double* dx) {
return a * (x[0] - x[1]) - dx[1];

}

void NLTrapezoidal::store() {
// Update previous derivative vectors
int iend = xpn.size();
for (int i=0; i < iend; i++) {

xsn[i] = (cX->getCurrent()[i] - cX->getPrevious(1)[i]) * a2
- da * xpn[i] - xsn[i];

xpn[i] = a * (cX->getCurrent()[i] - cX->getPrevious(1)[i]) - xpn[i];
}
return;

}

LTrapezoidal::LTrapezoidal(CircVector*& cU, TimeMNAM* mnam) {
this->cU = cU;
this->mnam = mnam;

size = mnam->getDim();
s2 = DenseVector(size);
upn = DenseVector(size, zero);
tmp1v = DenseVector(size);
a = zero;

}

void LTrapezoidal::buildMd(SparseMatrix& M, const double& h) {
a = 2. / h;
mnam->getMatrices(M1, M1p);
copy(M1, M);
add(scaled(M1p, a), M);

}

void LTrapezoidal::buildSf(DenseVector& s1, const double& ctime) {
assert(a);
mnam->getSource(ctime, s2);
ExtVector u_n(&(cU->getPrevious(1)[0]), size);
add(upn, scaled(u_n, a), tmp1v);
// cout << cU->getPrevious(1) << endl;
mult(M1p, tmp1v, s2, s1);

}

void LTrapezoidal::store() {
// Update previous derivative vector
for (int i=0; i < size; i++) {

upn[i] = a * (cU->getCurrent()[i] - cU->getPrevious(1)[i]) - upn[i];
}
return;

}
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