
ABSTRACT
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The theory of Gröbner bases plays a fundamental role in solving and reasoning

with polynomial equations (ideals). This thesis will review and prove matching upper and

lower degree bounds of Gröbner bases for zero-dimensional ideals and prove that this degree

is also obtained in the generic case. With n being the number of variables and d the degree

of the generators, for the lexicographic monomial ordering this degree is dn, for graded

monomial orderings it is n(d− 1) + 1.
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Chapter 1

Introduction

In many contexts mathematical questions can be naturally formulated using poly-

nomial systems. Their solution often can be given by standard algorithms of polynomial

algebra and algebraic geometry, for example ideal membership tests and consistency and

finiteness tests for the set of common roots.

Many of these algorithms use Gröbner bases, which are nice representations of

polynomial ideals. They were introduced by Bruno Buchberger ([1], translated in [2]),

who named them in honor of his supervisor Wolfgang Gröbner. For an overview consult

[3] or [4]. In general, Gröbner bases are very hard to compute. Ernst Mayr and Albert

Meyer were able to show in [5], that the membership problem for ideals is exponential space

hard. On the other hand Klaus Kühnle and Ernst Mayr developed in [6] an exponential

space algorithm for the computation of Gröbner bases. The complexity of this algorithm

heavily depends on a good upper degree bound for Gröbner bases. This entails the question,

whether better upper degree bounds for certain classes of ideals exist.

In this thesis the class of zero-dimensional ideals will be considered. For these

ideals much better bounds are known, depending on the monomial ordering. The upper

bounds by Daniel Lazard ([7] and [8], translated in [9]) and matching lower bounds for

graded monomial orderings will be stated and proved. Additionally the generic case will

be analyzed, which, to the knowledge of the author, wasn’t explicitely mentioned before,

although the result is an immediate application of Marc Chardin’s multivariate subresultant

introduced in [10]. Also the well-known bounds for the lexicographic monomial ordering

will be treated.
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Following several applications, basic notations together with common problem

statements will be introduced and motivated in the first chapter. The examples will raise

questions that cannot be answered in this chapter. Therefore the examples will be continued

throughout a large part of the thesis. Claims regarding ideal theory and Gröbner bases that

are stated in this chapter, will be stated rigorously with proof or citation in chapter 2.

The second chapter will give an introduction to Gröbner bases, their computation

and some of their properties. The state of the art of degree bounds for Gröbner bases will be

summarized, but only proofs for the zero-dimensional case will be given. This also includes

the earlier mentioned generic case.

1.1 Motivating Example: Optimization

A well known and very useful method in optimization theory is linear program-

ming. The aim is to optimize a linear cost function with respect to a set of constraints which

are formulated as linear equations or inequalities. This problem is solved by the simplex

algorithm by George Dantzig, which is efficient for most inputs, but needs exponential time

in degenerate cases. Newer algorithms known as the ellipsoid method by Leonid Khachiyan

and the inner point method by Nardendra Karmarkar always run in polynomial time and

the latter is also more efficient in practice.

But sometimes linear equations don’t suffice in order to model a problem. A

standard approach would be to use gradient and Newton methods to optimize continous

functions without constraints or penalty, barrier methods and sequential linear program-

ming in order to optimize funtions with constraints. These numerical methods are fast, but

they only find local optima in general, not the overall best solution.

Using Gröbner bases, however, one can compute the global optimum of a polyno-

mial function with respect to polynomial constraints. Concerning the focus of this thesis

only a very simple example will be discussed. For a better treatment see [11].

Example 1. Find the point (x, y) inside the unit cirle around (1, 0) which maximizes

f(x, y) := x− 3y.

Solution: The constraint can be written as

h(x, y) := x2 + y2 − 1 ≤ 0.
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Optimization theory provides necessary optimality conditions, known as Karush-Kuhn-

Tucker conditions:

0 = ∂xf(x, y) + λ∂xh(x, y) = 1 + 2λx

0 = ∂yf(x, y) + λ∂yh(x, y) = −3 + 2λy

0 = λh(x, y) = λx2 + λy2 − λ

(1.1)

Ignoring the additional condition λ > 0 leaves the problem of solving a system of polynomi-

als in several variables. This easily can be done using Gröbner bases as will be demonstrated

later. The solutions then will be evaluated in order to find the global maximum.

1.2 Motivating Example: Automatic Theorem Proving

Another broad application field for Gröbner bases is automatic theorem proving.

Basically one formulates the premises and the claim as polynomial equations. Then an

algebraical method is desirable which checks whether the claim follows from the premises.

Especially suited for this approach are geometric problems. Here one can easily describe

points by coordinates and the geometric construction by polynomials. This will be demon-

strated following a small example. But be aware that not all examples will work as nicely

as the one described here. For more on the possible problems and how to overcome them

consult [12], Chapter 6, §3-4.

Example 2. In figure 1.1 an equilateral triangle ABC with the center M of its circumcirle

and the line from A to the median D of BC is depicted. This example shall prove the

well-known fact that M lies on the median line AD.

Therefore the configuration has to be modeled by polynomial equations. In order

to reduce the number of variables, the coordinate system was chosen with origin A and

x-axis through B (without loss of generality). Note that the only free variable is called u.

All other variables x1, . . . x6 will depend on u. Since there are six dependend variables, one

would expect six equations to determine them.

The point C is the third point of the equilateral triangle. So its distances to A

and B must equal the distance between A and B. This gives

f1 := x2
1 + x2

2 − u2 = 0

f2 := (x1 − u)2 + x2
2 − u2 = 0.
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Figure 1.1: Equilateral triangle ABC with cirumcirle center M and one median line.

M is the center of the circumcircle, so its distances to A, B and C must match, which is

described by

f3 := x2
3 + x2

4 − (x3 − u)2 − x2
4 = 0

f4 := x2
3 + x2

4 − (x3 − x1)2 − (x4 − x2)2 = 0.

Finally D is the median of BC, so

f5 := x5 −
1
2

(x1 + u) = 0

f6 := x6 −
1
2
x2 = 0.

These six polynomials fully describe the geometric construction. This means every assign-

ment of u, x1, . . . , x6 such that fi(u, x1, . . . , x6) = 0 is a valid configuration. The claim is

now that for all these configurations M lies on the line AD, which is captured by

h := x3x6 − x4x5 = 0.

So the proof boils down to showing that f1 = . . . = f6 = 0 implies h = 0. The next chapter

will reveal how to do this.
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Chapter 2

Gröbner Bases

In the first chapter, the use of polynomial ideals was motivated by examples.

Several important non-trivial questions arose naturally during their treatment.

This chapter will first give an overview of the theory of Gröbner bases which can

be used to answer the questions from chapter 1. Also definition and characterizations of

the ideal dimension will be given. This is motivated by the focus on zero-dimensional ideals

in chapter 3.

2.1 Ideals

In this section the foundations of ideal theory will be given. This establishes a

language to speak about the problems of chapter 1. Therefore the examples will be continued

until finally resolved.

A ring (with one) is a set R with two distinguished elements 0 and 1 and two

operators acting on it called addition

+ : R×R −→ R

and multiplication

· : R×R −→ R.
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(R,+, 0) has to be an abelian group, i.e. ∀a, b, c ∈ R

(a+ b) + c = a+ (b+ c) (associativity)

a+ b = b+ a (commutativity)

a+ 0 = a (identity)

a+ (−a) = 0 for some − a ∈ R (existence of inverse).

Furthermore (R, ·, 1) has to be a monoid, i.e. ∀a, b, c ∈ R

(a · b) · c = a · (b · c) (associativity)

a · 1 = a = 1 · a (identity).

Finally, addition and multiplication have to interact nicely:

a · (b+ c) = (a · b) + (a · c) (distributivity)

(a+ b) · c = (a · c) + (b · c) (distributivity)

A ring is called commutative, if ∀a, b ∈ R

a · b = b · a.

As usually ab denotes a · b and parenthesis may be omitted if not neccessary (following

the PEMDAS order of evaluation). Well known rings are the integers (Z,+, ·, 0, 1) and the

polynomials over a field (K[x1, . . . , xn],+, ·, 0, 1). Furthermore every field constitutes a ring.

The ring of polynomials over K in the indeterminates x1, . . . , xn is denoted by

K[x0, . . . , xn]. The following grading of polynomials will be used. The (total) degree of a

monomial is defined as the sum of the exponents of the variables that occur in the monomial.

The degree of a polynomial is the maximum of the degrees of the monomials of its terms.

A polynomial is called homogeneous if all terms have the same degree.

One can homogenize a polynomial f ∈ K[x1, . . . , xn] by introducing a new variable

x0 and defining
hf := x

deg(f)
0 f

(
x1

x0
, . . . ,

xn
x0

)
.

Then hf is a homogeneous polynomial in K[x0, . . . , xn] with

f(x1, . . . , xn) = hf(1, x1, . . . , xn).
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Of special interest are the subsets which are closed under polynomial combinations,

called ideals. In formulas, I ⊂ R is an ideal if ∀a, b ∈ I, r ∈ R

a+ b ∈ R

r · a ∈ R.

For given polynomials f1, . . . , fs,

〈f1, . . . , fs〉 :=

{
s∑
i=1

aifi : ai ∈ K[x1, . . . , xn]

}

represents the smallest ideal containing these polynomials. Furthermore {f1, . . . , fs} is

called an (ideal) basis of the ideal I = 〈f1, . . . , fs〉.
As already seen in the introduction, the set of common roots of polynomials

f1, . . . , fs is of natural interest. This set is called (algebraic) variety (generated by f1, . . . , fs)

and will be written as

V(f1, . . . , fs) := {x ∈ Kn : fi(x) = 0 for i = 1, . . . , s}

An immediate observation is that polynomial combinations of f1, . . . , fs also vanish

on this variety, i.e.

∀p ∈ V(f1, . . . , fs), f ∈ 〈f1, . . . , fs〉 : f(p) = 0.

Example 3. Consider again the system of polynomials (1.1). Let

f1 := 1 + 2λx

f2 := −3 + 2λy

f3 := λx2 + λy2 − λ.

The ideal I = 〈f1, f2, f3〉 contains e.g. the polynomial

h = 3x+ y.

You can see this from the equation

h = yf1 − xf2.
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But you might guess that it is not always easy to see whether a polynomial is contained in

a given ideal. So an algorithm to test ideal membership would be of great help. That will

be one of the topics in the next sections.

Consider the points (x, y, λ) = (0, 0, 0) respectively
(
−1√
10
, 3√

10
, 5√

10

)
. For the first

point one obtains

f1(0, 0, 0) = 1,

so (0, 0, 0) /∈ V(f1, f2, f3). The second point gives

f1

(
−1√
10
,

3√
10
,

5√
10

)
= f2

(
−1√

10
,

3√
10
,

5√
10

)
= f3

(
−1√
10
,

3√
10
,

5√
10

)
= 0.

Thus
(
−1√
10
, 3√

10
, 5√

10

)
∈ V(f1, f2, f3). Sometimes one can guess a few solutions, but in

general it is hard - especially to find all of them. This encourages to analyze ideals in more

detail in the next chapter.

For computations it is really hard to deal with infinite sets. A finite description

is always necessary. Therefore Hilbert’s Basis Theorem is of great importance for all ideal

algorithms.

Theorem 4 (Hilbert’s Basis Theorem). If R is noetherian, i.e. every ideal in R has a

finite basis, so is R[x1, . . . , xn]. Especially, K[x1, . . . , xn] is noetherian.

Proof. See [13] (Theorem 1.2) and note that any field is noetherian since it only has trivial

ideals.

Another way to construct an ideal is the set of polynomials that vanish on a (not

neccessarily finite) given set V ⊂ Kn

I(V ) := {f ∈ K[x1, . . . , xn] : f(x1, . . . , xn) = 0 ∀(x1, . . . , xn) ∈ V }.

Conversely define a subset of Kn, called (algebraic) variety, as the set of common root of a

(not neccessarily finite) given set of polynomials F

V(F ) := {x ∈ Kn : f(x) = 0 ∀f ∈ F}.

From an abstract point of view, I maps from the subsets of Kn to the ideals of K[x1, . . . , xn]

(actually to the radical ideals, see Hilbert’s Nullstellensatz, theorem 5) and V maps from

the subsets of K[x1, . . . , xn] to the set of varieties in Kn.
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It is easily verified that I and V are inclusion reversing, i.e. ∀V,W ⊂ Kn, F,G ⊂
K[x1, . . . , xn]

V ⊂ W ⇒ I(V ) ⊃ I(W )

F ⊂ G ⇒ V(F ) ⊃ V(G)

Finally, Hilbert’s Nullstellensatz connects the ideals I and I(V(I)). But two more

concepts are necessary for this theorem.

Given an ideal I of a ring R, the set

√
I := {f ∈ R : ∃d ∈ N such that fd ∈ I}

is an ideal called the radical of I. Obviously,
√
I contains I and

√√
I =

√
I. An ideal

I =
√
I is called radical.

A field K is called algebraically closed if every polynomial over K can be written

as product of linear terms. The most important example of an algebraically closed field are

the complex numbers C.

Theorem 5 (Hilbert’s Nullstellensatz). If K is algebraically closed and I ⊂ K[x1, . . . , xn]

an ideal, then

I(V(I)) =
√
I

Proof. See [12] (Chapter 4, Theorem 1.2).

The same theory can be established in the projective space

Pn := {(x0 : . . . : xn) ⊂ Cn+1 \ {0} : xi 6= 0 for some i}.

Here the notation (x0 : . . . : xn) stands for the equivalence class of all points (αx0, . . . , αxn)

for α ∈ C\{0}, which can be interpreted as line through the origin in Cn+1. There are only

very little well defined functions on Pn, e.g. polynomials and homogeneous polynomials are

not well defined - even for degree 1. But the roots of homogeneous polynomials fi can be

expressed in terms of these equivalence classes since

fi(x0, . . . , xn) = 0⇒ fi(αx0, . . . , αxn) = αdeg(fi)fi(x0, . . . , xn) = 0.
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Every polynomial f can be decomposited into homogeneous components

f =
deg(f)∑
i=0

f=i

where f=i is homogeneous of degree i. A set I is called homogeneous, if f ∈ F implies

f=i ∈ F for all i.

So one can consider the projective variety in Pn of an homogeneous set F

VP(F ) := {x ∈ Pn : f(x) = 0 ∀f ∈ F}.

There is an equivalent version of of Nullstellensatz in the projective setting, but only a

(slightly) weaker version will be needed.

Theorem 6 (Projective Weak Nullstellensatz). Let K be an algebraically closed field and

J a homogeneous ideal in K[x0, . . . , xn]. Then VP(J) = ∅ if and only if 〈x0, . . . , xn〉 ⊂
√
J .

Proof. See [12] (Chapter 8, Theorem 3.8).

2.2 Gröbner Bases

Building upon the foundations of the last section, it is possible to provide solutions

for the examples 3 and 2. The key is the concept of Gröbner bases. They will provide

algorithms for ideal membership tests and variable elimination.

The first part of the chapter is dedicated to example 2. Missing for the solution

is a decision procedure for the radical ideal membership problem, i.e. given a polynomial

f one has to determine whether f ∈
√
I. But before that the simple ideal membership will

be treated.

The ring of polynomials in one variable is a principal ring, i.e. all ideals can be

generated by only one ring element, namely, given f1, . . . , fs ∈ K[x],

〈f1, . . . , fs〉 = 〈gcd(f1, . . . , fs)〉 .

Then ideal membership for a polynomial f ∈ K[x] can be tested by dividing f by the greatest

common divisor gcd(f1, . . . , fs). f is contained in the ideal if and only if the remainder is

0.



11

For several variables, this approach doesn’t work quite the same, but it can be

adopted. The first module is a division algorithm that is able to handle several polynomials.

This is necessary since most ideals in K[x1, . . . , xn] are not principal. To accomplish this,

one has to decide on an order of the monomials (for one variable there is only one ”good”

ordering).

A (total) monomial ordering ≺ will be called admissible if for all monomials m,n, p

m ≺ n ⇒ pm ≺ pn

1 ≺ m

The first premise ensures that the ordering is compatible with multiplication, the second

renders it a well-ordering, i.e. every non-empty set of monomials has a smallest element.

Both are crucial for the Buchberger algorithm that will be presented soon. If the monomial

also fulfills

deg(m) < deg(n)⇒ m ≺ n

it is called degree compatible. Here, as in the rest of the thesis, the degree deg(m) is the

total degree, i.e. the sum of the exponents of all variables that occur in m.

Mainly the following monomial orderings will be treated. As notation, multiindices

α = (α1, . . . , αn) ⊂ Nn
0 will be used for writing monomials

xα := xα1
1 · · ·x

αn
n

The lexicographic ordering ≺lex is given by

xα ≺lex x
β :⇐⇒ βi = αi and αk < β for some k and each 1 ≤ i < k.

The reverse lexicographic ordering is

xα ≺revlex x
β :⇐⇒ βi = αi and αk > β for some k and each k < i ≤ n.

Finally, the graded reverse lexicographic ordering is defined as

xα ≺grevlex x
β :⇐⇒ deg(xα) < deg(xβ) or

(
deg(xα) = deg(xβ) and xα ≺revlex x

β
)
.
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Example 7. For the better understanding of the above definitions, an excerpt of each

ordering (with x1 > x2 > x3) in the ring K[x1, x2, x3] is given.

≺=≺lex: 1 ≺ x3 ≺ x2
3 ≺ . . . ≺ x2 ≺ x2x3 ≺ x2x

2
3 ≺ . . . ≺ x1 ≺ x1x3 ≺ x1x

2
3 ≺ . . .

≺=≺revlex: . . . ≺ x2
1x3 ≺ x1x3 ≺ x3 ≺ . . . ≺ x2

1x2 ≺ x1x2 ≺ x2 ≺ . . . ≺ x2
1 ≺ x1 ≺ 1

≺=≺grevlex: 1 ≺ x3 ≺ x2 ≺ x1 ≺ x2
3 ≺ x2x3 ≺ x1x3 ≺ x2

2 ≺ x1x2 ≺ x2
1 ≺ x3

1 ≺ . . .

Obviously ≺revlex is not admissible. ≺lex and ≺grevlex, however, are admissible monomial

orderings. Both will be used recurrently in this thesis. Furthermore the graded reverse

lexicographic ordering is degree compatible while the lexicographic ordering is not.

Now all that is missing for the division algorithm is some notation. Given a

polynomial f , the largest monomial of f with respect to some monomial ordering ≺ with

nonzero coefficient is called the leading monomial of f and denoted by LM≺(f). Its co-

efficient, the leading coefficient, is written as LC≺(f) and the leading term of f is simply

LT≺(f) := LC≺(f)·LM≺(f). Usually the monomial ordering will be fixed and the subscripts

will be omitted.

In order to divide a polynomial f by a polynomial g, the leading monomial of f

must be divisible by the leading monomial of g. The basic idea for the division algorithm

is to just try this with all given divisor polynomials. If nothing works, the leading term is

declared as remainder and one continues with the next biggest term.

However, the result of the algorithm is not as expressive as one might expect or

wish.

Example 8. This shall be illustrated with example 3 and the lexicographic monomial

ordering with x � y � λ. The ideal I was generated by

f1 := 2xλ+ 1

f2 := 2yλ− 3

f3 := x2λ+ y2λ− λ.

Obviously f3 is contained in the ideal I. So one could expect to get a zero remainder of

division. Consider the following two calls of DIVIDE:
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Algorithm 1 DIVIDE

Procedure DIVIDE(h, (f1, . . . , fs))

Input: Polynomials h, f1, . . . , fs

Output: Representation h =
∑s

i=1 aifi + r

1: ĥ← h, r ← 0, ai ← 0 ∀i = 1, . . . , s

2: while ĥ 6= 0 do

3: Let i ∈ {1, . . . , s} be minimal such that LM(fi) | LM(ĥ).

4: if such i exists then

5: ai ← ai + LT(bh)
LT(fi)

6: ĥ← ĥ− LT(bh)
LT(fi)

fi

7: else

8: r ← LT(ĥ)

9: ĥ← ĥ− LT(ĥ)

10: end if

11: end while

12: return h =
∑s

i=1 aifi + r

EndProcedure

Division algorithm for multiple variables and polynomials
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DIVIDE(f3, (f3, f2, f1)): This call returns after the first pass with the representa-

tion

f3 = 1 · f3 + 0 · f2 + 0 · f1 + 0

DIVIDE(f3, (f1, f2, f3)): According to the algorithm ĥ := f3 is first divided by f1,

yielding

a1 ←
x2λ

2xλ
=
x

2

ĥ ← ĥ− x

2
f1 = −x

2
+ y2λ− λ

Since the leading monomial LM(ĥ) = x is not divisible by any leading monomial of f1, f2, f3,

the next step is

r ← − x

2

ĥ ← ĥ+
x

2
= y2λ− λ

Now ĥ’s leading monomial is divisible by f2’s, which results in

a2 ←
y2λ

2yλ
=
y

2

ĥ ← ĥ− y

2
f2 =

3
2
y − λ

Finally the remaining terms of ĥ cannot be divided further such that they will be added to

r. This gives the representation

f3 =
x

2
f1 +

y

2
f2 + (−x

2
+

3
2
y − λ).

From the example it is clear that the remainder of the division depends on the

order of the divisors f1, . . . , fs, whereas the ideal 〈f1, . . . , fs〉 is independent of the order of

the generators. From a remainder r = DIVIDE(h, (f1, . . . , fs)) = 0, one can deduce that

the polynomial h is in the ideal I = 〈f1, . . . , fs〉. But in the current form the contrary

is not true, as was exposed by the second call of DIVIDE: a nonzero remainder does not

necessarily imply that h /∈ I.

This flaw will be overcome by choosing a special ideal basis. It should be required

that the leading monomial of every polynomial that is contained in the ideal is divisible by
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at least one of the leading monomials of the basis polynomials. This alone already fixes the

algorithm. To see this, consider h ∈ I and note that

ĥ = h−
s∑
i=1

aifi − r

Since r = 0 in the beginning, ĥ will be in the ideal and therefore its leading monomial is

divisible by one of the monomials in the basis. Therefore r = 0 will remain true throughout

the algorithm as ĥ will always be in the ideal.

A basis G = {g1, . . . , gt} of an ideal I fulfilling this property is called Gröbner

basis. In other words,

∀h ∈ I : LM(gi) | LM(h) for some i ∈ {1, . . . , t}

Theorem 9. If G is a Gröbner basis, the remainder of the division algorithm

nf(f) := DIVIDE(f,G)

is unique (i.e. does not depend on the order of the emelents of G). It is called normal

form of f (with respect to G/with respect to ≺) and no term of nf(f) is divisible by an

element of LM(G). Furthermore nf : K[x1, . . . , xn] −→ K[x1, . . . , xn] is linear and for all

f1, f2 ∈ K[x1, . . . , xn]

nf(f1) = nf(f2)⇐⇒ f1 − f2 ∈ 〈G〉 .

Finally, A := {nf(f) : f ∈ K[x1, . . . , xn]} with

+ : A×A −→ A, (f1, f2) 7→ f1 + f2

· : A×A −→ A, (f1, f2) 7→ nf(f1f2)

is a ring generated by the monomials not contained in 〈LM(I)〉 and is isomorphic to

K[x1, . . . , xn]/I.

Proof. For the first part see [12] (Chapter 2, Proposition 6.1, Corollary 6.2 and Exercise

6.12).

For A ∼= K[x1, . . . , xn]/I note that, by the first part of the theorem, every equiv-

alence class of K[x1, . . . , xn]/I contains exactly one normal form. The addition and multi-

plication on A are defined to mimic the behaviour on K[x1, . . . , xn]/I.
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In some places the notation nfG(f) will be used to emphasize the dependence on

G. Usually this will be clear from the context.

For the computation of a Gröbner basis the Buchberger algorithm can be used.

It takes as input an arbitrary basis and outputs a Gröbner basis. It works iteratively and

improves the basis in every round in the sense that strictly more leading monomials of the

ideal will be divisible by one of the basis monomials. The new polynomials are obtained by

eliminating the leading terms of two polynomials in the basis, the so-called S-polynomials:

S(f, g) :=
LT(g)

gcd(LM(f),LM(g))
f − LT(f)

gcd(LM(f),LM(g))
g

Algorithm 2 BUCHBERGER

Procedure BUCHBERGER(f1, . . . , fs)

Input: Polynomials F = {f1, . . . , fs}
Output: Gröbner basis G = {g1, . . . , gt} of I = 〈f1, . . . , fs〉.
1: G← F

2: while ∃f, g ∈ G : nfG(S(f, g) 6= 0 do

3: G← G ∪ {nfG(S(f, g))}
4: end while

EndProcedure

Buchberger algorithm for the computation of a Gröbner basis

Theorem 10. The Buchberger algorithm (algorithm 2) always terminates and outputs a

Gröbner basis G = {g1, . . . , gt} of the ideal I = 〈f1, . . . , fs〉.

Proof. See [12] (Chapter 2, Theorem 7.2). Note that neither the choice of the pair f, g ∈ G
nor the order of the polynomials in G for the division affect finiteness and correctness of

the algorithm (but its efficiency might vary).

Example 11. Returning to example 3 with the lexicographic ordering, one would need a

Gröbner basis of the ideal I generated by

f1 = 2xλ+ 1

f2 = 2yλ− 3

f3 = x2λ+ y2λ− λ.
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in order to properly use the division algorithm. First consider the S-polynomial of f1 and

f3:

S(f1, f2) =
2yλ
λ
f1 −

2xλ
λ
f2 = 6x+ 2y

Division of S(f1, f3) by G = (f1, f2, f3) doesn’t change the polynomial, so

f4 := nfG(S(f1, f2)) = 6x+ 2y.

Now f4 is added to G. Continue with

S(f1, f3) = x− 2y2λ+ 2λ.

This time the polynomial can be divided which results in

f5 := nfG(S(f1, f3)) = −10
3
y + 2λ

After inserting f5 in G, the leading term of f5 can be eliminated again, this time combining

it with f2:

f6 := nfG(S(f2, f5)) = −4λ2 + 10

A final check yields that G = {f1, . . . , f6} is a Gröbner basis of I with respect to the

lexicographic ordering.

A closer look at these polynomials yield a nice surprise. f6 depends only on λ, such

that its solutions can be computed with an ordinary solver for one-variable polynomials.

Then one obtains the values of y and x by substituting into f5 and f4 and crosschecking

whether the other polynomials also vanish. The generalization of this phenomenon is known

as the elimination theorem.

Theorem 12 (Elimination Theorem). Let I be an ideal in K[x1, . . . , xn] and G be its

Gröbner basis with respect to the lexicographic monomial ordering with x1 � . . . � xn.

Then

G ∩K[xk, . . . , xn]

is the Gröbner basis of the ideal I ∩ K[xk, . . . , xn] (with respect to the to K[xk, . . . , xn]

restricted monomial ordering).
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Proof. See [12] (Chapter 3, Theorem 1.2).

Even better suited for the calculation of the variety is given by the rational uni-

variate representation [14] or the geometric resolution [15], although technical limitations

apply in both cases.

Gröbner bases are by no means unique, even for a fixed monomial ordering. Given

a Gröbner basis G, you can add polynomials which belong to the ideal I and again obtain

a Gröbner basis. You may even replace a polynomial g ∈ G by f + g for some f ∈ I as

long as f + g and g have the same leading monomial. These two properties can be used to

calculate a normal form of Gröbner bases.

Theorem 13. Every ideal I in K[x1, . . . , xn] has a unique reduced Gröbner basis G, which

is characterized by

1. I = 〈G〉.

2. LC(g) = 1 for all g ∈ G.

3. For all g ∈ G, no term of g lies in 〈LM(G \ {g})〉.

Proof. See [12] (Chapter 2, Theorem 7.6).

Luckily, the Buchberger algorithm or more advanced algorithms are implemented

in many computer algebra packages, for example in Singular and Maple. For the computa-

tions in this thesis, Singular [16] was used.

Example 14. As second example for the usefulness of Gröbner bases consider example 2

again. Here the graded reverse lexicographic monomial ordering with u � x5 � x6 � x3 �
x2 � x1 � x4 will be used. Usually, this yields to much smaller Gröbner bases (especially

lower degree) than the lexicographic ordering. Rigorous differerences regarding the degree

of occurring polynomials will be established in the end of the chapter.
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A Gröbner basis of I = 〈f1, . . . , f6〉 is G = {g1, . . . , g8} with

g1 := 2x6 − x2

g2 := u− 2x5 + x1

g3 := 2x5x1 − x3x1 − x2
1 − x2x4

g4 := x2
2 − 2x3x1 + x2

1 − 2x2x4

g5 := 2x5x3 − 2x3x1 − x2x4

g6 := 4x2
5 − 4x3x1 − x2

1 − 4x2x4

g7 := x3x
2
1 − 2x5x2x4 + 2x2x1x4

g8 := x2
3x1 − 2x5x2x4 + x3x2x4 + x2x1x4

The hypothesis to prove was formulated as

h = x3x6 − x4x5.

So one first can check whether h ∈ I. This would imply that h = 0 for all configurations

that fulfill the conditions f1 = 0, . . . , f6 = 0. But

nf(h) =
1
2
x3x2 − x5x4.

Theorem 9 implies that h /∈ I. However it turns out that

nf(h3) = 0.

This means h3 = 0 and therefore also h = 0 for all configurations in V(f1, . . . , f6). This

proves the claim that the cirumcirle center M lies on the median line AD.

In general the radical ideal membership (i.e. is h ∈
√
I?) can be solved by the

so-called Rabinovic trick (consult [12], Chapter 4, Proposition 2.8).

2.3 Ideal Dimension

Example 15. In figure 2.1a you see a circle which is the set V1 := V(x2 + y2 − 1). This

would clearly be called one-dimensional, whether as a subset of R2 as it is drawed in the

figure or as subset of a higher space. One would also expect, that translations, isometric

mappings and many other functions preserve the dimension of a variety.
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Figure 2.1: Examples intuitively clear variety dimensions.

Figure 2.1b is the cone defined by V2 := V(x2 + y2 − z2) and intuitively two-

dimensional. As in the first example, the dimension equals the number of variables minus

the number of equations. But that’s not necessarily true for varieties generated by several

equations.

This is illustrated by figure 2.1c, which is V3 := V((x−y)(x−1), (x−y)(y−0.5)).

This variety is the union of the line y = x and the point (1, 0.5). The line has clearly

dimension 1, the point dimension 0. Therefore one would define the dimension of V3 as the

maximum of both, namely 1.

For many varieties one can define a dimension quite intuitively when looking at

them. But it’s hard to draw higher dimensional varieties and furthermore a rigorous defi-

nition is desirable when one wishes to analyze related properties and maybe even compute

it automatically. Mathematicians have found many equivalent ways to do so. The most

intuitive notion is probably this.

For a variety V , let its dimension dim(V ) be the largest dimension of a subspace

H ⊂ Kn such that the projection of V onto H is contained in no proper subvariety of H.

Now turning to ideals, one defines the dimension dim(I) of an ideal I to be the

dimension of the corresponding variety dim(V(I)).

But this definition is not very useful for proofs and algorithms. Therefore alge-

braic equivalences were studied. The following notation will be used: Let F be a set of
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polynomials. Then

F≤s := {f ∈ F : deg(f) ≤ s}.

Theorem 16. Let K be algebraically closed and I be an ideal in K[x1, . . . , xn]. Then dim(I)

can be calculated as follows.

1. dim(I) = deg(HPI) where HPI is the Hilbert polynomial of I, defined as

HPI(s) = dimK(K[x1, . . . , xn]≤s/I≤s) for sufficiently large s.

2. dim(I) equals the cardinality of the biggest set S ⊂ {x1, . . . , xn} such that

I ∩K[S] = {0}.

Proof. See [12] (Chapter 9, Proposition 3.6, Definition 3.7, Theorem 3.8, Corollary 5.4 and

Proposition 5.5).

Theorem 17. Let K be algebraically closed and I be an ideal in K[x1, . . . , xn]. If ≺ is a

graded monomial ordering, then additionally

3. dim(I) = deg(HP〈LM(I)〉).

4. dim(I) is the maximum dimension of a subspace H of V(〈LM(I)〉) of the form

H = {(a1, . . . , an) ∈ Kn : ai = 0 ∀i ∈ S} for some S ⊂ {1, . . . , n}.

Proof. See [12] (Chapter 9, Theorem 3.8 and Proposition 5.5).

These definitions of the dimension of a variety shall be illustrated in the following

example. There will be no rigorous proof but explanations of the diverse notions of the

dimension.

Example 18. This example studies the variety of figure 2.1c. This variety is corresponding

to the ideal I = 〈(x− y)(x− 1), (x− y)(y − 0.5)〉. In order to check the various formulas of

the dimension, a lexicographic monomial ordering (for 2.) and a graded monomial ordering

(for 3. and 4.) will be needed. The Gröbner basis with respect to ≺lex respectively ≺grevlex

(with x � y for both) are

Glex := {2xy − x− 2y2 + y, x2 − xy − x+ y}
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Ggrevlex := {2xy − 2y2 − x+ y, x2 − 3xy + 2y2}

Please note, that the example must be considered over the algebraically closure of R, which

is C. Thus the variety under consideration is

V(I) = {(a, a) : a ∈ C} ∪ {(1, 0.5)}.

The only subspace of C2 of dimension 2 is C2. But since V(I) itself is a proper subvariety

of C2, the dimension of the variety is not 2. However the projection of V (I) into the one-

dimensional subspace H = {(a, 0) : a ∈ C} is the whole subspace H and therefore no proper

subset. Thus the dimension of I is 1. This will be checked with the various formulas given

in theorem 16 and 17.

1. In order to find the Hilbert polynomial, one has to determine the dimensions of

dimC(C[x, y]≤s/I≤s). One basis for C[x, y]≤s is given by the monomials of degree

at most s. Thus the dimension of this linear space is
(
s+2
2

)
. The basis for I≤s is

slightly more complicated. According to the division algorithm, the two monomials

of Ggrevlex form a basis of I≤2. For s > 2, the dimension of I≤s is the dimension of

I≤s−1 plus the dimension of the space generated by the parts of the generators with

degree 2 (2xy − 2y2 and x2 − 3xy + 2y2) multiplied with monomials of degree s− 2.

A basis for this linear space is given by

m(x2 − xy) for m monomial, deg(m) = s− 2

n(xy − y2) for n monomial,deg(n) = 2, x - n.

The condition x - n is necessary since only so the system is linearly independent.

Otherwise one would obtain the same polynomial for m = y
xn. So the dimension of

I≤s for s ≥ 2 is

dimC(I≤s) = 2 +
s∑
i=3

((s− 1) + 1) = 2 +
1
2
s(s+ 1)− 3 =

1
2

(s2 + s− 2).

This yields the Hilbert polynomial

HPI(s) = dimC(C[x, y]≤s)− dimC(I≤s) =
(
s+ 2

2

)
− 1

2
(s2 + s− 2) = s+ 2,

which has degree 1. So the ideal dimension dim(I) = 1.
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2. Obviously, I ∩ C[x, y] 6= {0}. So the dimension cannot be 2. On the other hand, by

the elimination theorem 12, I ∩C[y] = {0} since Glex ∩C[y] = ∅. Thus the dimension

of I must be 1.

3. The leading monomials of I with respect to ≺grevlex are the multiples of xy and x2.

Thus LM(I)≤1 is empty. There are
(
s+2
2

)
monomials in 2 variables of degree at most

s. So, for s ≥ 2, there are
(
s
2

)
multiples of x2 of degree at most s. Additionally there

are all monomials of the form xyα with α = 1, . . . , s− 1. So for s ≥ 2

dimC(LM(I)≤s) =
(
s

2

)
+ s− 1 =

1
2

(s2 + s− 2)

HP〈LM(I)〉(s) = dimC(C[x, y]≤s)− dimC(LM(I)≤s) =
(
s+ 2

2

)
− 1

2
(s2 + s− 2) = s+ 2

Finally, dim(I) = deg(HP〈LM(I)〉(s)) = 1.

4. V(LM(I)) = V(xy, x2) = {(0, a) : a ∈ C}. In this case, V(I) is a subspace of C2 with

dimension 1. Therefore also dim(I) = 1.

The special focus of this thesis is on zero-dimensional ideals. Hence it is suggesting

to study in which cases an ideal has dimension 0. Of course one could use the definitions

of theorems 16 and 17 directly. But it turns out, that one can this special case allows even

more characterizations.

Theorem 19. Let K be algebraically closed, I an ideal in K[x1, . . . , xn] and ≺ an admis-

sible monomial ordering. Then dim(I) = 0 if and only if one of the following equivalent

conditions holds:

1. V(I) is a finite set.

2. xmii ∈ LM(I) for all i = 1, . . . , n and some mi ≥ 0. Thus, if G is a Gröbner basis for

I, it contains elements gi with LM(I) = xmii .

3. K[x1, . . . , xn]/I is finite-dimensional.

Proof. See [12] (Chapter 5, Theorem 3.6). Note that the Hilbert polynomial has degree 0

if and only if K[x1, . . . , xn]/I is finite-dimensional.
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Example 20. The ideal I considered in example 3 is zero-dimensional. This shall be

checked using the conditions provided in 19. For the sake of simplicity, the following,

smaller Gröbner basis (but also with respect to the lexicographic monomial ordering for

x � y � λ)

G := {2λ2 − 5, 5y − 3λ, 3x+ y}

will be used instead of the Gröbner basis calculated in example 11.

1. The first polynomial in G has the roots λ1 =
√

5
2 and λ2 = −

√
5
2 . Plugging these

into the other polynomials immediately gives

V(I) =

{(
− 1√

10
,

3√
10
,

√
5
2

)
,

(
1√
10
,− 3√

10
,−
√

5
2

)}
,

which is obviously finite.

2. The leading monomials of the Gröbner basis G are

LM(2λ2 − 5) = λ2

LM(5y − 3λ) = y

LM(3x+ y) = x

3. A basis of K[x1, . . . , xn]/I is given by the factor classes of the monomials that are not

reducible, i.e. the monomials not divisible by the leading monomials of a Gröbner

basis. In this case these are {1, λ} such that dimC(K[x1, . . . , xn]/I) = 2 <∞.

Finally, one can give similar definitions for homogeneous ideals and projective

varieties and connect them to the affine case. In the following F=d denotes all homogeneous

elements of degree d contained in the set F and the zero element, i.e.

S=d := {f ∈ S : deg(f) = d or f = 0}

Then the (projective) dimension dimP(J) can be defined as

dimP(J) = deg(HP P
J )

where HP P
J is the projective Hilbert polynomial of J

HP P
J (s) = dimK(K[x0, . . . , xn]=s/J=s) for sufficiently large s.
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Theorem 21. Let K be algebraically closed, J a homogeneous ideal in K[x0, . . . , xn]. If J

is the homogenization of I, i.e. J =
〈
hf : f ∈ I

〉
, then dim(I) = dimP(J).

Proof. See [12] (Chapter 9, Definition 3.10, Theorem 3.12, Corollary 5.4 and Proposition

5.5).

Note that speaking of homogeneous ideals, usually the projective dimension will

be meant unless something else is stated explicitely.
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Chapter 3

Degree Bounds

3.1 General

As powerful as Gröbner bases are, their computation is usually very expensive. In

[5], Ernst Mayr and Albert Meyer were able to show that all algorithms which solve the

ideal membership problem for arbitrary bases require space exponential in the size of the

input in the worst case. Once a Gröbner basis is computed, the division algorithm easily

solves the ideal membership problem. Therefore the Gröbner basis computation must be

the hard part.

But why is it sufficient to worry about the degrees of the polynomials? Of course

these contribute to the size, but so do the coefficients and the number of Gröbner basis

polynomials. Klaus Kühnle and Ernst Mayr presented in [6] an algorithm that computes

Gröbner bases using only exponential space. Their argument heavily relies on the upper

degree bound by Thomas Dubé:

Theorem 22 (Dubé, 1990). Let I = 〈f1, . . . , fs〉 in K[x1, . . . , xn] with maximal degree of

the generators d = max{deg(f1), . . . ,deg(fs)}. Then for any admissible monomial ordering,

there is a Gröbner basis with polynomials that have degrees bounded by

d

(
d2

2
+ d

)2n−1

.

Proof. See [17] (Corollary 8.3).

With the same reasoning as in [6] one could derive a more efficient algorithm if one
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could prove a better upper degree bound. However, in general it is not possible to improve

the degree bound qualitatively. This was shown by Michael Möller and Fernando Mora:

Theorem 23 (Möller, Mora, 1984, Mayr, Meyer, 1982). There is a family of ideals Kn of

polynomials in 14(n+ 1) variables with degrees bounded by d+ 2 such that, with respect to

any degree compatible monomial ordering, every Gröbner basis of Jn contains a polynomial

of degree at least
d2n

2
+ 4.

Proof. See [18] (Proposition 3.4) and note that for degree compatible orderings every

Gröbner basis is also a H-basis. The construction relies on an example given by Ernst

Mayr and Albert Meyer in [5].

Therefore the best one can do is to search for certain classes of ideals that allow

better upper degree bounds. It will be shown that Gröbner bases for zero-dimensional ideals

behave much better. Herefore different monomial orderings will be considered and matching

upper and lower degree bounds will be given.

3.2 Zero-dimensional Ideals, Lexicographic Ordering

Usually one desires to have good upper degree bounds. Those limit the complexity

of the studied object, in this case Gröbner bases. As mentioned in section 3.1, these can

determine the effort needed to compute Gröbner bases even explicitely.

Additionally, lower bounds can be very useful as well. They can tell, whether it is

possible to further improve existing upper bounds. As soon as the upper and lower bounds

match, these are optimal for this class of ideals. Then, if even better upper bounds are

necessary, the only remaining possibility is to restrict the class of ideals further.

As in section 3.1, bounds of the following type will be of interest: Given arbitrary

polynomials f1, . . . , fs ∈ K[x1, . . . , xn] of degrees d1, . . . , ds, how can the degrees of the

polynomials in a Gröbner basis for the ideal I = 〈f1, . . . , fs〉 be bounded, in terms of the

number of variables n and the degrees of the generators d1, . . . , ds? From now on throughout

the rest of the thesis, d1 ≤ . . . ≤ ds will be assumed.

Usually bounds are already considered to be matching if their growth is similar,

e.g. exponential or polynomial of the same degree. For zero-dimensional ideals, however,
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the situation is especially beautiful because exactly matching upper and lower bounds are

known.

This section will provide and prove lower and upper bounds for the lexicographic

monomial ordering. Additionally the usual behaviour of randomly chosen polynomials will

be studied, a notion that will have to be formalized first. The graded reverse lexicographic

ordering will be treated in the next section.

3.2.1 Lower Bound

First consider an example for which the degrees in the Gröbner basis are large

compared to the generators.

Example 24. This example is well-known. In a slightly different form it was stated in [18]

(Proposition 2.2). For an arbitrary n ≥ 1, let Kn ⊂ K[x1, . . . , xn] be the ideal generated by

f1 := x1 + xd12

f2 := x2 + xd23

...

fn−1 := xn−1 + xdn−1
n

fn := xdn1

So deg(fk) = dk. Consider the lexicographic monomial ordering with x1 � . . . � xn. Now

one can form the S-polynomial of f1 and fn

S(f1, fn) = xdn−1
1 xd12

This polynomial is reducible with respect to f1:

S(f1, fn)−
(
xdn−2

1 xd12 − x
dn−3
1 x2d1

2 + . . .± x(dn−1)d1
2

)
f1 = ±xd1dn2

Similarily, reducing the result with respect to f2 gives ±xd1d2dn3 . Inductively, one obtains a

new polynomial (the sign can be chosen arbitrarily)

g := xd1···dnn ∈ Kn.
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The system of polynomials

f1 = x1 + xd12

f2 = x2 + xd23

...

fn−1 = xn−1 + xdn−1
n

g = xd1···dnn

still generates the same ideal and is a Gröbner basis. This can be easily checked with the

following criterion.

Proposition 25. Let I be an ideal in K[x1, . . . , xn] and G a basis for I. If

gcd(LM(g),LM(h)) = 1 for all g, h ∈ G, g 6= h

then G is a Gröbner basis for I.

Proof. See [12] (Chapter 2, Theorem 9.3 and Proposition 9.4).

On the other hand, by the elimination theorem 12, G ∩ K[xn] is a Gröbner basis

of I ∩K[xn]. Since this is also true for every other Gröbner basis of I, every Gröbner basis

of I must either contain the polynomial g or several multiples of g whose greatest common

divisor is g.

Finally, it’s easy to see that the conditions of theorem 19 are satisfied (look at the

condition for Gröbner bases in 2.) such that dim(Kn) = 0.

The example can be summarized as follows.

Theorem 26 (Folklore). There is a family of ideals Kn ⊂ K[x1, . . . , xn] generated by

polynomials f1, . . . , fn of degrees d1, . . . , dn such that every lexicographic Gröbner basis for

Kn contains a polynomial of degree d1 · · · dn.

If all polynomials f1, . . . , fn have the same degree d, the maximal degree in the

Gröbner basis of Kn will be dn and therefore exponential in the number of variables. Here

the question arises, whether this is exceptional or the ”usual case” and whether even worse

growth can occur. The rest of the section shall answer both questions.
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3.2.2 Upper Bound

Intuitively the lexicographic monomial ordering allows really large degrees in the

Gröbner basis since there are monomials with high degree that are very small in this or-

dering. In fact, the upper bound that will be provided holds not only for the lexicographic

monomial ordering but for any admissible monomial ordering. Since it matches the lower

bound given by theorem 26, one can say that the lexicographic monomial ordering consti-

tutes the worst case. For the proof the well-known Bézout theorem is needed.

Theorem 27 (Bézout’s Theorem). Let f1, . . . , fs be polynomials of degrees d1 < . . . < ds

in K[x1, . . . , xn] and I = 〈f1, . . . , fs〉. If I is zero-dimensional then

dimK(K[x1, . . . , xn]/I) ≤ d1 · · · dn.

The bound is exact for s = n if and only if the system

in(f1) = 0

...

in(fn) = 0

has no solutions. Here in(fi) is the sum of all terms of fi of degree di, which is sometimes

called initial of fi.

Proof. A well-known version of Bézout’s theorem states that for n = s the number of

projective solutions (counting multiplicities) of a system of homogeneous polynomials over

an algebraically closed field is exactly the product of the degrees of the polynomials if it is

finite (see [19], Chapter IV, §2, Example 1).

Note that for s < n either dim(I) > 0 or V(I) = ∅, so there is nothing to prove.

For s > n and dim(I) = 0, one can pick n polynomials in I of degrees d1 ≥ . . . ≥ dn that

induce a zero-dimensional variety (analogous to [20], Proof of Lemma to Proposition 5.4.1).

The number of solutions of f1, . . . , fs is, of course, at most the number of solutions of these

n polynomials.

By dehomogenizing, i.e. setting one of the variables to 1 (usually x0), the solutions

at infinity disappear. Those solutions have a zero in the coordinate that is dehomogenized.
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In other words they are the common solutions of the initials

in(f1) = 0

...

in(fs) = 0

So the number of affine solutions may be less but not more than the number of projective

solutions. Finally, the number of solutions counting multiplicity equals the dimension of

the factor ring K[x1, . . . , xn]/I (see [21], Chapter 4, Corollary 2.5).

Example 28. Consider the affine system

f1 = x2 + y

f2 = y2 + x3

The system of initials is

in(f1) = x2 = 0

in(f2) = x3 = 0.

This has the projective solution (x : y) = (0 : 1) with multiplicity 2.

The affine solutions of f1 = f2 = 0 are (x, y) = (0, 0) with multiplicity 3 and

(−1,−1) with multiplicity 1. Here the multiplicities can be explained by solving f1 for y

and substituting in f2.

So the number of affine solutions counting multiplicities is 4, which is smaller than

deg(f1) deg(f2) = 6. However there are 2 solutions at infinity. Counting those, the number

of solutions equals the product of the degrees.

A strategy used to prove an upper degree bound for Gröbner bases is to prove

an upper degree bound for normal forms. Then all polynomials in the reduced Gröbner

basis have degrees bounded by the degrees of the normal forms. This approach was used

by Daniel Lazard in [7] (Theorem 2). It will be verified in the following proposition and

reused in the next section.

Proposition 29. Let I be an ideal in K[x1, . . . , xn]. For a fixed monomial ordering, assume

that all normal forms have degrees bounded by d. Then the reduced Gröbner basis G for I

contains only polynomials of degrees bounded by d+ 1.
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Proof. By assumption, all monomials xα of degree at least d+1 have normal forms of lower

degree. Since xα � LM(nf(xα)) by the division algorithm, one has xα ∈ LM(I).

Let G be the reduced Gröbner basis for I. By theorem 13, all monomials of

polynomials in G except the leading monomials are not contained in LM(I) and therefore

their degrees are bounded by d.

Furthermore no leading monomial of a polynomial in G is divisible by another

monomial in LM(G) (which generates LM(I)) such that the degrees of the leading mono-

mials are bounded by d+ 1.

Theorem 30 (Folklore). Let I ⊂ K[x1, . . . , xn] be an zero-dimensional ideal generated by

polynomials f1, . . . , fs of degree d1, . . . , ds. Then there is a lexicographic Gröbner basis for

I which contains only polynomials of degrees bounded by d1 · · · dn.

Proof. Consider the ring of normal forms A := {nf(f) : f ∈ K[x1, . . . , xn]} as defined in

theorem 9. By Bézout’s theorem (27),

dimK(A) = dimK(K[x1, . . . , xn]/I) ≤ d1 · · · dn.

Let xα be any monomial in A. Then neither xα nor any of its divisors xβ | xα are contained in

〈LM(I)〉 and thus xβ ∈ A. Since every monomial of degree d1 · · · dn has at least d1 · · · dn+1

divisors (counting xα) and all monomials are linearly independent, deg(xα) < d1 · · · dn.

Finally proposition 29 yields the desired upper degree bound.

3.2.3 Generic Degree

For the further studies of the lexicographic monomial ordering, a rigorous definition

of the ”usual case” is needed. This notion is supposed to capture what happens almost surely

for randomly chosen polynomials. One of the problems is the definition of random. Since the

degrees of polynomials are fixed, only the coefficients have to be chosen randomly, preferedly

uniformly distributed. But the field K is usually infinite. This challenges the quality of all

kinds of sample methods and disallows using this approach for a formal definition.

Since the objects of studies are polynomial equations, it turned out to be natural

to use themselves for this definition. Consider polynomials f1, . . . , fs whose coefficients are
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coefficients, i.e.

fi :=
∑
α∈Zn≥0

|α|≤di

ui,αx
α ∈ R[x1, . . . , xn]

where

R := Z[ui,α : i = 1, . . . , s, α ∈ Zn≥0, |α| ≤ di]

is the ring of the coefficients. The ideal generated by those polynomials will be called

I = 〈f1, . . . , fs〉. Choosing specific polynomials of degrees d1, . . . , ds with coefficients in K

is equivalent to choosing a homomorphism fromR[x1, . . . , xn] to K[x1, . . . , xn] that preserves

x1, . . . , xn. These homomorphisms are called specializations.

A property is said to hold generically respectively to be generic if for any tuple of

degrees d1, . . . , ds there is a polynomial 0 6= h ∈ R that fulfills:

For all specializations ψ : R[x1, . . . , xn] −→ K[x1, . . . , xn], the property holds for

ψ(f1), . . . , ψ(fs) whenever ψ(h) 6= 0.

This means, that only the solutions h are allowed to be exceptions. Since h is not

the zero-polynomial, h most likely won’t vanish on a randomly chosen point.

Example 31 ([21] Chapter 3, Exercise 5.1). A polynomial in one variable of degree 2 has

generically two distinct solutions. To see this let

f := ax2 + bx+ c

such a polynomial and ψ be a specialization. It is well-known, that ψ(f) has two solutions

over C if a 6= 0. They are distinct if the discriminant b2 − 4ac does not vanish. Together,

ψ(f) has two distinct solutions if

h := a(b2 − 4ac) 6= 0.

Instead of only giving degree bounds for the generic case, it is possible to de-

scribe the form of the lexicographic Gröbner basis in much greater detail (as usually,

x1 � . . . � xn). This is accomplished by the so-called shape lemma. For the proof multi-

variate resultants are needed. This only applies to the situation s = n.
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Theorem 32. Let K be an algebraically closed field. For fixed degrees d1, . . . , dn consider

homogeneous polynomials

Fi =
∑
α∈Zn≥0

|α|=di

ui,αx
α ∈ S[x0, . . . , xn]

for i = 0, . . . , n and

S := Z[ui,α : i = 0, . . . , n, α ∈ Zn≥0, |α| = di].

Then there is a polynomial Res(F0, . . . , Fn) ∈ S, called resultant, such that for all special-

izations ψ : S[x0, . . . , xn]→ K[x0, . . . , xn] the following holds:

ψ(Res(F0, . . . , Fn)) = 0 ⇐⇒ ψ(F0)(p) = . . . = ψ(Fn)(p) = 0 for some 0 6= p ∈ Cn

Proof. See [22] (Chapter 3.1).

For linear homogeneous polynomials, i.e. d0 = . . . = dn = 1, this polynomial is the

determinant of the coefficient matrix of the linear system. In the case of two homogeneous

polynomials in two variables this resultant equals the well-known Sylverster resultant.

Theorem 33 (Shape Lemma). Let K be an algebraically closed field and for i = 1, . . . , n

define

fi :=
∑
α∈Zn≥0

|α|≤di

ui,αx
α ∈ R[x1, . . . , xn]

where

R := Z[ui,α : i = 1, . . . , n, α ∈ Zn≥0, |α| ≤ di].

Let ψ : R[x1, . . . , xn] −→ K[x1, . . . , xn] denote a specialization and assume that I =

〈ψ(f1), . . . , ψ(fn)〉 is an zero-dimensional ideal in K[x1, . . . , xn]. Then the reduced Gröbner

basis of I generically consists of n polynomials of the form

g1 = x1 + g̃1(xn)

...

gn−1 = xn−1 + g̃n−1(xn)

gn = xd1···dnn + g̃n(xn)

where g̃1, . . . , g̃n are polynomials in xn of degree less than d1 · · · dn.
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Proof. It is to show that there is a polynomial h ∈ R such that whenever ψ(h) 6= 0, the

Gröbner basis of I has the stated form.

Bézout’s Theorem 27 and theorem 32 imply that

m := dim(K[x1, . . . , xn]/I) = d1 · · · dn

whenever

ψ(Res(in(f1), . . . , in(fn))) 6= 0.

Following the hints of [21], Chapter 3, Exercise 5.6, the following fact from multiplicity

theory will be used. Since the projective extension theorem shall be used, all notions have

to be formulated for homogeneous polynomials.

If the affine tangent space to an affine variety V in a point p is of the same

dimension as the variety, then p is a nonsingular point, i.e. the multiplicity of p is 1

([19], Chapter 1.4, Theorem 3). This will be needed in the following context. The variety

V ⊂ K[x0, . . . , xn] is generated by homogeneous polynomials F1, . . . , Fn ∈ K[x0, . . . , xn]

with only finitely many common roots in Pn, i.e. dimP(V ) = 0 and the affine dimension

dim(V ) = 1. So in order to show that some p ∈ V has multiplicity 1, one has to show that

the affine tangent space in p has dimension 1. The tangent space Tp at p is defined as the

set of lines through p that are tangent to V . This can be written as (see [19], beginning of

Chapter 1.3)

Tp =

{
q ∈ Kn+1 :

n∑
k=0

∂Fi
∂xk

(p)(qk − pk) = 0 for i = 1, . . . , n

}
.

Obviously, this vector space has dimension 1 if and only if

∇Fi(p) =
(
∂Fi
∂x0

(p), . . . ,
∂Fi
∂xn

(p)
)
, i = 1, . . . , n

are linearly independent.

This will be applied to the homogenizations hf1, . . . ,
hfn ∈ R[x1, . . . , xn]. Let M

be the number of coefficients ui,α of f1, . . . , fn and define the variety

W := {(ci,α, p, a1, . . . , an) ∈ KM × Pn × Pn−1 :ψc(hf1)(p) = . . . = ψc(hfn)(p) = 0 and

a1∇ψc(hf1)(p) + . . .+ an∇ψc(hfn)(p) = 0}.
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Here ψc stands for the specialization homomorphism defined by ψ(ui,α) = ci,α for i =

1, . . . , n and α ∈ Zn≥0, |α| ≤ di. W can be viewed as projective in p and (a1 : . . . : an) since

all defining equations are homogeneous in p and homogeneous in (a1 : . . . : an).

Consider the projection π : KM × Pn × Pn−1 −→ KM applied to the variety

W . The element c ∈ π(W ) represents all polynomial systems ψc(hf1), . . . , ψc(hfn) that

have at least one common root p ∈ Pn with multiplicity more than one. To see this,

note that a1, . . . , an are chosen from Pn−1 and therefore form a nontrivial relation of

∇ψc(hf1)(p), . . . ,∇ψc(hfn)(p). The Extension Theorem (see [12], Chapter 8, Theorem 5.6)

says that the a projection from V1 × V2 to V1 of a variety is a variety, if the ground field is

algebraically closed and V2 is projective. One can view π as two projections

KM × Pn × Pn−1 −→ KM × Pn −→ KM .

Thus W is a variety. So it remains to show that W 6= KM . It is easy to see that

Fi :=
di∏
k=1

(xi − kx0)

for i = 1, . . . , n− 1 and

Fn :=
dn∏
k=1

xn − kx0 −
n−1∑
l=1

(dn + 1)
l∏

j=1

(dj + 1)

xl


has exactly d1 · · · dn distinct solutions, namely

(1 : a1 : . . . : an) for ai ∈ {1, . . . , di} (i = 1, . . . , n− 1)

and an = ãn +
∑n−1

l=1 ai(dn + 1)
∏l
j=1(dj + 1), ãn ∈ {1, . . . , dn}. By Bézout’s theorem 27 all

these solutions must have multiplicity 1. This proves that π(W ) 6= KM .

Similarily one can define

W ′ := {(ci,α, p, q0, . . . , qn−1) ∈ KM × Pn × Pn−1 :ψc(hf1)(p) = . . . = ψc(hfn)(p) = 0 and

ψc(hf1)(p+ q) = . . . = ψc(hfn)(p+ q) = 0}

for q := (q0 : . . . : qn−1 : 0). Note that ψc(hfi)(p + q) is homogeneous in q since each

polynomial ψc(hfi)(q0, . . . , qn−1, 0) only contains terms without xn coordinate of degree

deg(ψc(hfi)). Then π(W ′) just represents the systems which have at least two different
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roots with the same xn coordinate. The same example F1, . . . , Fn given above also shows

that π(W ′) 6= KM since the xn coordinates of all d1 · · · dn solutions are different.

Since π(W ) and π(W ′) are proper subvarieties, one can choose nonzero polynomials

h1 ∈ I(π(W )) and h2 ∈ I(π(W ′)). Then h1, h2 ∈ R. Let

h := Res(in(f1), . . . , in(fn)) · h1 · h2 ∈ R.

Then ψ(h) 6= 0 implies, that ψ(f1), . . . , ψ(fn) have no common roots at infinity, all their

roots have multiplicity 1, and the roots have different xn coordinates. Again by Bézout’s

theorem, there must be exactly d1 · · · dn different common roots. Thus this is a generic

situation.

Assume now that ψ(h) 6= 0 and consider the ideal I = 〈ψ(f1), . . . , ψ(fn)〉 and

the factor ring K[x1, . . . , xn]/I. For d := dim(K[x1, . . . , xn]/I) = d1 · · · dn, the equiva-

lence classes [1], [xn], . . . , [xd−1
n ] must be linearly independent. Otherwise there would be a

polynomial

f := cd−1x
d−1
n + . . .+ c1xn + c0 ∈ I

Let p1,n . . . pd,n be the d distinct xn-coordinates of the points in V(I). Then f(pi,n) = 0 for

i = 1, . . . , d. Viewed as equations for the d coefficients ci, these d linear equations constitute

a homogeneous system whose coefficient matrix is a Vandermonde matrix in the pi,n which

are pairwisely distinct. Since this matrix is non-singular, there is only the trivial solution

f = 0. Because dim(K[x1, . . . , xn]/I) = d, the classes [1], [xn], . . . , [xd−1
n ] form a basis of

K[x1, . . . , xn]/I.

So one can express [x1], . . . , [xn−1], [xdn] in this basis yielding

[x1]− g̃1([xn]) = 0

...

[xn−1]− g̃n−1([xn]) = 0

[xn]m − g̃n([xn]) = 0.

Replacing the equivalence classes [xi] by the variables xi one obtains polynomials g1, . . . , gn

of the claimed form. Since they vanish on the equivalence classes, they are contained in I.

Thus V(I) ⊂ V(g1, . . . , gn). But gn has exactly d roots since K is algebraically closed and

g1, . . . , gn−1 give exactly one solution p ∈ V(g1, . . . , gn) for every root of gn. Thus

|V(g1, . . . , gn)| = d = |V(I)|
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and therefore V(I) = V(g1, . . . , gn). By Hilbert’s Nullstellensatz (theorem 5)

√
I =

√
〈g1, . . . , gn〉.

Since both I and 〈g1, . . . , gn〉 have no multiple roots, they are radical (see [21], Chapter 4,

Corollary 2.6) and thus

I = 〈g1, . . . , gn〉

Proposition 25 finally shows that {g1, . . . , gn} is a Gröbner basis of I.

So one can summarize the results for the lexicographic ordering of zero-dimensional

ideals as follows: for an ideal generated by f1, . . . , fs of degree d1, . . . , ds, only polynomials

of degree at most d1 · · · dn are necessary for the lexicographic Gröbner basis. On the other

hand, generically (i.e. usually) for n = s at least one polynomial of the same degree is

necessary. If all generators have the same degree d, the degree bound can be written as dn.

Note that n = s is no real restriction for the statement in the generic case since

the dimension of 〈f1, . . . , fs〉 is generically max(n− s, 0), which is only zero if n = s.

3.3 Zero-dimensional Ideals, Graded Orderings

Graded monomial orderings and especially the graded reverse lexicographic mono-

mial ordering are known to be computationally more efficient. This highly correlates to the

results presented in this section. The last section showed that the degrees in lexicographic

Gröbner bases grow exponentially in the number of variables, even for zero-dimensional

ideals. In the same setting, this exponential growth can be avoided by using a graded

monomial ordering.

3.3.1 Lower Bound

But the first look will be into a lower degree bound, again. As in the last chapter,

this will match the upper bound provided later.

Example 34. In order to establish a lower degree bound, consider the ideal Ln generated
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by

f1 := x1x
d1−1
2 + xd12

f2 := x2x
d2−1
3 + xd23

...

fn−1 := xn−1x
dn−1−1
n + xdn−1

n

fn := xdn1

For an arbitrary graded monomial ordering ≺ with x1 ≺ . . . ≺ xn, a Gröbner basis of Ln is

given by

g1 := f1 = x1x
d1−1
2 + xd12

g2 := f2 = x2x
d2−1
3 + xd23

...

gn−1 := fn−1 = xn−1x
dn−1−1
n + xdn−1

n

gn := fn = xdn1

gn+1 := nf(S(gn, g1)) = nf(xdn−1
1 xd12 ) = xd1+dn−1

2

gn+2 := nf(S(gn+1, g2)) = nf(xd1+dn−2
2 xd23 ) = xd1+d2+dn−2

3

...

g2n−1 := nf(S(g2n−2, gn−1)) = nf(xd1+...+dn−2+dn−(n−1)
n−1 xdn−1

n ) = xd1+...+dn−(n−1)
n

The key that leads to this observation is that all occurring polynomials only depend on two

variables. Thus the relative order of their terms is the same for all considered monomial

orderings. {g1, . . . , g2n−1} obviously generates the ideal Ln since it contains the genera-

tors f1, . . . , fn and since g1, . . . , g2n−1 ∈ Ln. Furthermore one can verify that the Buch-

berger algorithm 2 would not add any more polynomials to this set. By the correctness

of the algorithm (theorem 10) it must therefore be a Gröbner basis. Thus the monomial

x
d1+...+dn−(n−2)
n /∈ LM(Ln) whereas some polynomial of at least degree d1 + . . .+dn−(n−1)

must be element of every Gröbner basis of Ln.

Finally, dim(Ln) = 0 due to the leading monomials of gn, . . . g2n−1 and theorem

19.

This example proves the following theorem.
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Theorem 35 (Folklore). There is a family of ideals Ln ⊂ K[x1, . . . , xn] generated by poly-

nomials f1, . . . , fn of degrees d1, . . . , dn such that every Gröbner basis for Ln with respect

to any fixed graded monomial ordering contains a polynomial of degree
∑n

i=1 (di − 1) + 1.

3.3.2 Upper Bound

This section closely follows the expositions of Daniel Lazard in [7] and [8]. The

citation won’t be included at each single lemma, although also proofs of lemmas are taken

from these sources.

The proof of the matching upper degree bound is much more involved. First a

short outline shall be given. The proof is of algebraic nature as it works with properties of

the factor ring K[x0, . . . , xn]/J of a homogeneous ideal J . In a first step it will be proved

that for any zero-dimensional homogeneous ideal J there is a z0 ∈ K[x0, . . . , xn]/J such

that every element of the factor ring with sufficiently large degree d is a multiple of z0.

An equivalence class y of K[x0, . . . , xn]/J is said to be homogeneous of degree d or

y ∈ (K[x0, . . . , xn]/J)=d if y contains a polynomial that is homogeneous of the same degree.

Since all y ∈ K[x0, . . . , xn]/J can be decomposed to

y =
d∑
i=1

y=i

whereby y=i ∈ (K[x0, . . . , xn]/J)=i for i = 1, . . . , n, one can call the minimal such d the

degree of y. [f ] will denote the equivalence class that contains f .

In a second step, the smallest degree d is determined for which this statement

holds. Then one can dehomogenize the ideal and obtain a degree bound on the normal

forms. Finally, proposition 29 can be applied to establish the degree bound for the reduced

Gröbner basis.

The first step requires a structure theorem for radical ideals. It proves that every

radical ideal is the intersection of prime ideals. An ideal I in a ring R is called prime if

{0} ( I ( R and

fg ∈ I ⇒ f ∈ I or g ∈ I.

Example 36. The ideal I := 〈x1x2〉 ⊂ C[x1, x2] is not prime since x1x2 ∈ I but neither

x1 ∈ I not x2 ∈ I. On the other hand it is radical since f ∈
√
I implies fd = x1x2g for
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some d ∈ N and g ∈ C[x1, x2]. But x1x2 | fd implies x1x2 | f and thus f ∈ I. Now I can

be written as

I = 〈x1〉 ∩ 〈x2〉 .

〈x1〉 is a prime ideal since fg ∈ 〈x1〉 implies x1 | fg and therefore x1 | f (i.e. f ∈ 〈x1〉) or

x1 | g (i.e. g ∈ 〈x1〉) because x1 is not the product of two polynomials. The same reasoning

yields that 〈x2〉 is prime.

Of course this example was quite trivial. The generalization of this situation,

however, is not. It is summarized in the following theorem.

Theorem 37 (Prime Decomposition). Let K be algebraically closed and J be a radical ideal

in K[x0, . . . , xn]. Then

J = p1 ∩ . . . ∩ pr

for some r ≥ 0 and prime ideals p1, . . . , pr with pi 6⊆ pj for 1 ≤ i 6= j ≤ r.

Proof. See [12] (Chapter 4, Theorem 6.5).

Now it will be proved that for some z0 every element of K[x0, . . . , xn]/J of suf-

ficiently large degree is a multiple of z0. The precise statement is given by the following

lemma.

Lemma 38. Let K be algebraically closed and J ⊂ K[x0, . . . , xn] be a homogeneous zero-

dimensional ideal. Then there is an element z0 of K[x0, . . . , xn]/J such that the multiplica-

tion map

mz0 : (K[x0, . . . , xn]/J)=d−1 −→ (K[x0, . . . , xn]/J)=d, y 7→ y · z0

is a bijection for sufficiently large degrees d.

Proof. The strategy is to choose z0 such that it is contained in only one prime ideal, namely

m := 〈[x0], . . . , [xn]〉 ⊂ K[x0, . . . , xn]/J.

Let p 6= m be a prime ideal of K[x0, . . . , xn]/J . Then J ( p + J ( K[x0, . . . , xn]. Since m is

a maximal ideal, m 6⊆ p =
√

p. Therefore VP(p + J) 6= ∅ by the projective Nullstellensatz

(theorem 6). So one can choose p ∈ VP(p + J). Then p is contained in the ideal

L(p) := 〈pi[xj ]− pj [xi] : 0 ≤ i ≤ j ≤ n〉 ⊂ K[x0, . . . , xn]/J
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since VP(p + J) ⊃ VP(L(p) + J) = {p} and L(p) is prime. The latter is a consequence of

K[x0, . . . , xn]/L(p) being isomorphic to K[x] and the theorem that J is prime if and only if

K[x0, . . . , xn]/J is integral. The isomorphism can be constructed from the representation

L(p) =
〈
pi
pk

[xk]− [xi] : 0 ≤ i ≤ n
〉

(3.1)

for pk 6= 0 (since p ∈ Pn, at least one coordinate is nonzero).

Now it is time to choose z0 ∈ (K[x0, . . . , xn]/J)=1. By the above consideration,

z0 /∈ p for any prime ideal p 6= m can be achieved by choosing z0 /∈ L(p)∩(K[x0, . . . , xn]/J)=1

for all p ∈ VP(J). For every p, at least one coordinate pk must be non-zero. But (3.1) implies

L(p)=1 =

α0[x0] + . . .+ αn[xn] : αi ∈ K, αk =
n∑
i=0
i 6=k

αi
pi
pk

 .

Because J ( p+J ⊂ L(p)+J ( m+J , L(p)=1 is a proper subspace of (K[x0, . . . , xn]/J)=1 =

m=1 for every p ∈ VP(J). Now J being zero-dimensional implies that VP(J) is finite by

theorem 19 such that ⋃
p∈VP(J)

L(p)=1 ( (K[x0, . . . , xn]/J)=1.

Here the fact that K is infinite (since algebraically closed) is used.

Thus it is possible to choose z0 ∈ (K[x0, . . . , xn]/J)=1 such that z0 /∈ L(p) for all

p ∈ VP(J). By the prime decomposition theorem 37√
〈z0〉+ J = p1 ∩ . . . ∩ pr

for some prime ideals pi of K[x0, . . . , xn]. So pi/J are prime ideals of K[x0, . . . , xn]/J . Since

z0 ∈
√
〈z0〉+ J/J ⊂ pi/J

was chosen such that m is the only prime ideal that contains z,

pi/J = m

for all i and thus √
〈z0〉+ J/J = m

respectively

md = m · · ·m︸ ︷︷ ︸
d times

⊂ 〈z0〉 for some d > 0.
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Since md contains all homogeneous elements of K[x0, . . . , xn]/J of degree at least d, mz is

surjective for this sufficiently large d. Furthermore, by theorem 21,

deg(HPJ) = dim(J) = 0

and therefore dimK(K[x0, . . . , xn]/J)=d−1 = dimK(K[x0, . . . , xn]/J)=d is constant for suffi-

ciently large d. This means mz0 is bijective.

Example 39. To reproduce this strategy in an example, consider the ring C[x0, x1, x2] with

the homogeneous ideal J generated by

f1 :=x2
0

f2 :=x0x1 − x1x2

f3 :=x2
1 − x1x2.

Its graded reverse lexicographic Gröbner basis is given by

g1 :=x2
0

g2 :=x0x1 − x1x2

g3 :=x2
1 − x1x2

g4 :=x1x
2
2.

It is easy to see that the only point in the projective variety VP(J) is p = (0 : 0 : 1).

According to the lemma one has to choose

z0 /∈ L(p) = 〈[x0], [x1]〉

of degree 1, e.g. z0 := [x2] 6= 0 in C[x0, x1, x2]/J . Since x2
0, x0x1, x

2
1 ∈ LM(G), each

monomial of degree at least 2 is equivalent to a multiple of x2 modulo J . For d ≥ 3,

dim(C[x0, x1, x2]/J)=d = 2 and thus the map mx2 is bijective for d ≥ 4.

The next step is to conclude that mz0 is bijective for all degrees

d ≥
n+1∑
i=1

(di − 1) + 1
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if the ideal J is generated by homogeneous polynomials f1, . . . , fs of degrees d1 ≤ . . . ≤ ds

(if s < n + 1, let di = 1 for s < i ≤ n + 1). This part of the proof will be presented using

the Koszul complex.

The Koszul complex is a formalization of ideas going back to Cayley. It is a way

to describe and analyze dependencies among polynomials. As any complex, it is a sequence

of linear maps (or their representation matrices) such that the composition of two adjacent

matrices is the zero-map.

Start with generators f1, . . . , fs of an ideal in R[x0, . . . , xn] for a noetherian integral

domain R, i.e. a notherian ring without zerodivisors and with 0 6= 1 being distinct additively

and multiplicatively neutral elements. Remember that any field is noetherian since it has

only trivial ideals and, by Hilberts Basis Theorem 4, any polynomial ring over a field is

noetherian, too. The first map expresses that these polynomials generate an ideal. It is

defined as

δ1 : R[x0, . . . , xn]s −→ R[x0, . . . , xn], (a1, . . . , as) 7→
s∑
i=1

aifi.

So the image of δ1 is exactly the ideal 〈f1, . . . , fs〉. But δ1 is (for s > 1) not surjective. In

other words, there are relations

s∑
i=1

aifi = 0, not all ai = 0.

Which are these relations, also called syzygies? Assume you do not know the polynomials

f1, . . . , fs. Then it is still possible to come up with some syzygies, e.g. f2f1 − f1f2 = 0.

This corresponds to the choice

(a1, . . . , as) = (f2,−f1, 0, . . . , 0).

Obviously, there are more relations of the same kind. For i < j, let ai = fj , aj = −fi and

ak = 0 for all k 6= i, j. Note, that for i > j you would get the same relations, just multiplied

with −1. It turns out, that these
(
s
2

)
syzygies are basically all. Of course, polynomial

combinations of these syzygies are syzygies again. And for special choices of f1, . . . , fs there

might be more, as well. But beyond that, there are no more syzygies of f1, . . . , fs. Therefore

one can describe them by a linear map

δ2 : R[x0, . . . , xn](
s
2) −→ R[x0, . . . , xn]s.
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Here it is convenient to introduce bases of Λ2 = R[x0, . . . , xn](
s
2) and Λ1 = R[x0, . . . , xn]s

and define δ2 on the bases. The basis of Λ1 will simply be e1, . . . , es where ei is the vector

of zeros with a 1 in the i-th row. So, letting Λ0 = R[x0, . . . , xn], δ1 can be described as the

linear map defined by

δ1 : Λ1 −→ Λ0, ei 7→ fi.

The basis of Λ2 will be denoted by ei ∧ ej for i < j. Then the dependencies of f1, . . . , fs

are described by

δ2 : Λ2 −→ Λ1, ei ∧ ej 7→ fiej − fjei for i < j.

To further simplify the notation, it is common to define ei ∧ ei := 0 and, for i < j,

ej ∧ ei := −ei ∧ ej . This is consistent with the definition of δ2 (without the restriction

i < j), since

δ2(ej ∧ ei) = fjei − fiej = −(fiej − fjei) = −δ2(ei ∧ ej) = δ2(−ei ∧ ej)

and

δ2(ei ∧ ei) = fiei − fiei = 0 = δ2(0).

If s > 2, one would face the same problem again: the map δ2 is never injective, since there

are relations between the syzygies, e.g.

δ2(f3e1 ∧ e2 − f2e1 ∧ e3 + f1e2 ∧ e3) = 0.

So one can define another map that captures these relations. Since this process can go on

over s levels, a general definition of the maps shall be given now. In level r, each basis

relation involves r of the s polynomials where the order is unimportant. So there are
(
s
r

)
basis elements which will be denoted by ei1 ∧ . . . ∧ eir with i1 ≤ . . . ≤ ir. Again, for an

easier notation, one consideres vectors ei1 ∧ . . . ∧ eir as basis vectors of

R[x0, . . . , xn] · (R[x0, . . . , xn]s)r.

This vector space is considered modulo the relations

c · (v1 ∧ . . . ∧ vr) = (c · v1) ∧ v2 ∧ . . . ∧ vr = . . . = v1 ∧ . . . ∧ vr−1 ∧ (c · vr)

v1 ∧ . . . ∧ (v′i + v′′i ) ∧ . . . ∧ vr = (v1 ∧ . . . ∧ v′i ∧ . . . ∧ vr) + (v1 ∧ . . . ∧ v′′i ∧ . . . ∧ vr)
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for all v1, . . . , vr, v′i, v
′′
i ∈ R[x0, . . . , xn]s, c ∈ R and

v1 ∧ . . . ∧ vr = 0 for all v1, . . . , vr ∈ R[x0, . . . , xn]s linearly dependent.

A structure with the first two relations is called tensor product, together with the third one

it is called wedge product and denoted by

(R[x0, . . . , xn]s)∧r = R[x0, . . . , xn]s ∧ . . . ∧R[x0, . . . , xn]s︸ ︷︷ ︸
r times

.

So let now Λr := (R[x0, . . . , xn]s)∧r, r = 1, . . . , s, and Λ0 := R[x0, . . . , xn]. Then the maps

of the Koszul complex are defined as the linear extensions of

δr : Λr −→ Λr−1, ei1 ∧ . . . ∧ eir 7→
r∑

k=1

(−1)k+1fikei1 ∧ . . . ∧ eik−1
∧ eik+1

∧ . . . ∧ eir .

It is easily checked that δr ◦ δr+1 = 0. Such a complex Λ is typically written as

Λ : Λs
δs−→ Λs−1

δs−1−→ . . .
δ2−→ Λ1

δ1−→ Λ0. (3.2)

If the degree of h · ei1 ∧ eir is assigned to deg(h) + di1 + . . .+ dir , δr is degree-preserving in

the sense that

deg(δr(y)) ≤ deg(y) for all y ∈ Λr.

If all polynomials f1, . . . , fs are homogeneous, one even gets

deg(δr(y)) = deg(y) or δr(y) = 0 for all y ∈ Λr.

In this case, one can consider the restriction of the complex to degree d. Remember that

(Λr)=d is the subspace of the homogeneous elements of degree d. Then the Koszul complex

in degree d is

Λ=d : (Λs)=d
δs−→ (Λs−1)=d

δs−1−→ . . .
δ2−→ (Λ1)=d

δ1−→ (Λ0)=d.

As mentioned before, the maps δr+1 only capture the syzygies of the basis vectors of Λr

that are common to all polynomials f1, . . . , fs. So what about specific syzygies? These are

the syzygies of the basis vectors of Λr that are not in the image of δr+1. Since many of

them only differ by syzygies in the image of δr+1, good representations are

Hr := ker(δr)/im(δr+1),
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the so-called homologies of the complex. Here δ0 : Λ0 −→ 0 and δs+1 : 0 −→ Λs are assumed

to allow the definition for r = 0, . . . , s. Finally, a complex is called exact, if all its homologies

are zero.

Example 40. Let’s pick up example 39 and consider the Koszul complex of the generating

polynomials. Since there are three polynomials, Λ0 = C[x0, x1, x2] and C[x0, x1, x2]-bases

of Λ1, Λ2 and Λ3 are {e1, e2, e3}, {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} respectively {e1 ∧ e2 ∧ e3}.
As mentioned above, δ1(Λ1) = 〈f1, f2, f3〉. Therefore the homology H0 is the factor ring

C[x0, x1, x2]/ 〈f1, f2, f3〉 for which {[x1], [x1x2], [xk2], [x0x
k
2] : k ≥ 0} is a basis.

H1 is defined as ker(δ1)/im(δ2). Here

im(δ2) = 〈x2
0e2 − (x0x1 − x1x2)e1,

x2
0e3 − (x2

1 − x1x2)e1,

(x0x1 − x1x2)e3 − (x2
1 − x1x2)e2〉 ⊂ Λ1

which does not contain any elements with terms whose coefficients have degree 0 or 1.

However

(x1 − x2)e2 + (−x0 + x2)e3 ∈ ker(δ1) ⊂ Λ1

So clearly H1 6= {0}, although no explicit representation shall be given here. Similarly H2

turns out to be nonzero. Only H3 = 0 since δ3, defined by

e1 ∧ e2 ∧ e3 −→ f1e2 ∧ e3 − f2e1 ∧ e3 + f3e1 ∧ e2

is injective.

A very important property in connection with the spaces Λr is a generalization of

the Hilbert basis theorem.

Lemma 41. Every submodule M of Λr is finitely generated if the ground ring R is noethe-

rian.

Proof. A module M is the analogon of vector spaces over a ring R. Formally, there is an

addition + : M×M −→M and a scalar multiplication · : R×M −→M such that (M,+, 0)
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is an abelian group and

a · (f + g) =a · f + c · g for all a ∈ R, f, g ∈M

(a+ b) · f =a · f + b · f for all a, b ∈ R, f ∈M

(ab) · f =a · (b · f) for all a, b ∈ R, f ∈M

1 · f =f for all f ∈M

By Hilbert’s basis theorem 4 and the assumption that R is notherian, ideals in

R[x0, . . . , xn] are finitely generated. Then, by [21], Chapter 5, Exercise 1.32, modules in

(R[x0, . . . , xn]s)r are finitely generated. Finally, Exercise 1.11 of [13] implies that modules

in Λr = (R[x0, . . . , xn]s)∧r are finitely generated.

For the proof of the upper degree bound, the Koszul complex in degree d of ho-

mogeneous polynomials f1, . . . , fs will be considered. The proof will be by induction on

the number of variables. This will be achieved by considerations modulo some homoge-

neous z ∈ R[x0, . . . , xn] of degree 1 and comparing these to the situation in R[x0, . . . , xn].

Therefore the complex

0 −→ R[x0, . . . , xn]=d−1
mz−→ R[x0, . . . , xn]=d −→ (R[x0, . . . , xn]/ 〈z〉)=d −→ 0 (3.3)

is introduced. mz denotes the multiplication with z which obviously increases the degree

by one, and R[x0, . . . , xn]=d −→ (R[x0, . . . , xn]/ 〈z〉)=d is the canonical homomorphism that

takes each element to its factor class. It is easily seen that this complex is always exact.

Here adding 0 −→ in front of the exact complex means that mz is injective since R is an

integral domain, the arrow −→ 0 in the end that the canonical homomorphism is surjective.

So this complex provides a mechanism to compare the rings R[x0, . . . , xn] and

R[x0, . . . , xn]/ 〈z〉. But how to apply this to the Koszul complex? The key to this question

is to form the tensor product of each term of the sequence (3.3) with the Koszul complex

Λ:

0 −→ (R[x0, . . . , xn]⊗ Λ)=d−1
mz⊗id−→ (R[x0, . . . , xn]⊗ Λ)=d −→

−→ (R[x0, . . . , xn]/ 〈z〉 ⊗ Λ)=d −→ 0 (3.4)

Note that each f ⊗ y ∈ R[x0, . . . , xn]⊗ Λr can be written as

f ⊗ y = 1⊗ (f · y)
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and for f ⊗ y, f̃ ⊗ ỹ ∈ R[x0, . . . , xn]⊗ Λr,

f ⊗ y = f̃ ⊗ ỹ ⇐⇒ f · y = f̃ · ỹ in Λr

such that R[x0, . . . , xn]⊗ Λ ≡ Λ. Therefore

mz ⊗ id : (R[x0, . . . , xn]⊗ Λ)=d−1 −→ (R[x0, . . . , xn]⊗ Λ)=d

is injective. Now the following lemma implies that the sequence of complexes (3.4) is exact.

Lemma 42. Consider an exact complex of modules over a ring

A : A3 −→ A2 −→ A1 −→ 0

and a module T over the same ring. Then

A⊗ T : A3 ⊗ T −→ A2 ⊗ T −→ A1 ⊗ T −→ 0

is also exact.

Proof. See [13] (Proposition A2.1).

Since (3.4) is an exact sequence of complexes, one can relate the homologies of

these complexes in an interesting way. As noted above, R[x0, . . . , xn]⊗Λ ≡ Λ such that the

first two complexes in the sequence are isomorphic to the Koszul complex in degree d − 1

respectively d. Their homologies shall be denoted by (Ht)=d−1 respectively (Ht)=d. The

third complex (R[x0, . . . , xn]/ 〈z〉 ⊗ Λ)=d, however, is the Koszul complex in degree d over

the factor ring R[x0, . . . , xn]/ 〈z〉 of the factor classes [f1], . . . , [ft]. Its homologies will be

denoted by (H̃t)=d.

It is easy to see that (3.4) induces maps from (Ht)=d−1 to (Ht)=d and from (Ht)=d

to (H̃t)=d. Surprisingly there is also an induced map from (H̃t)=d to (Ht−1)=d−1, whose

construction is given by the so-called Snake lemma (see [13], Appendix A3.7). This yields

a sequence

. . . −→ (H̃t+1)=d −→ (Ht)=d−1 −→ (Ht)=d −→ (H̃t)=d −→ (Ht−1)=d−1 −→ . . . (3.5)

which is exact by [13], Proposition A3.15.

Remember, that z is a homogeneous polynomial of degree 1. Therefore the factor

ring R[x0, . . . , xn]/ 〈z〉 is isomorphic to a polynomial ring in n variables which is easiest seen
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for the choice z := xn. The general case follows from a coordinate transformation. This will

be the key to the induction on the number of variables. Also note, that Koszul complexes

in different degrees are involved. So once (H̃t+1)=d = 0 and (Ht)=d = 0 are known, one can

conclude (Ht)=d−1 = 0.

The proof strategy from here is as follows. The first step is to conclude from

lemma 38, that modulo z0 (as in that lemma) the Koszul complex is exact in large degrees,

i.e. (H̃t)=d = 0 for z := z0 and sufficiently large d. Then one uses the complex (3.5)

and induction on the number of variables to show that (H̃t)=d = 0 for all d larger than a

constant (which will depend on the number of variables and the number of polynomials.

After dehomogenization, proposition 29 can be applied to establish the degree bound.

For this conclusion the context is an algebraically closed field R = K as in lemma

38. First remember that in the Koszul complex im(δ1) = 〈f1, . . . , fs〉 =: J . Therefore the

last homology of the complex is

H0 = ker(Λ0 −→ 0)/im(δ1) = Λ0/J = K[x0, . . . , xn]/J

which is the factor ring. z0 was chosen such that the multiplication mz0 in K[x0, . . . , xn]/J

is bijective in large degrees. So for large d, all elements of (K[x0, . . . , xn]/J)=d are multiples

of z0. Hence

(K[x0, . . . , xn]/ 〈J, z0〉)=d = 0

which is just the homology (H̃0)=d of the Koszul complex in K[x0, . . . , xn]/ 〈z0〉 (so here

z := z0 in the above notation).

Since K[x0, . . . , xn]/ 〈z0〉 is isomorphic to a polynomial ring in n variables, the

following lemma shows that (H̃r)=d, the homologies of the Koszul complex of f1, . . . , fs in

K[x0, . . . , xn]/ 〈z0〉, are zero for all r > 0:

Lemma 43. Let Λ be the Koszul complex of homogeneous polynomials f1, . . . , fs in the ring

R[x0, . . . , xn] and Hr = ker(δr)/im(δr+1) its homologies for r = 0, . . . , s. Then (H0)=d = 0

for sufficiently large d implies that (Hr)=d = 0 for sufficiently large d.

Proof. The strategy for this proof is to localize the ring at a prime ideal and find local

inverses for the mappings δr. From the fact that the localized homologies are zero, one can

conclude the same for large degrees for (Hr)=d.
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The assumption (H0)=d = R[x0, . . . , xn]/J = 0 for sufficiently large d implies
√
J = 〈x0, . . . , xn〉. For convenience define m := 〈x0, . . . , xn〉 (note that this is the same

ideal as in lemma 38, but in another ring). Now m is maximal, such that it is the only

prime ideal containing J .

Consider the localization Rp of R[x0, . . . , xn] with respect to a prime ideal p 6= m,

i.e.

Rp :=
{
f

g
: f ∈ R[x0, . . . , xn], g ∈ R[x0, . . . , xn] \ p

}
.

Since R and therefore R[x0, . . . , xn] are integral domains, also Rp is a ring. In this extension

all elements except those contained in p are units. This means p is the only maximal ideal.

Then Λ ⊗ Rp is the Koszul complex of the polynomials f1, . . . , fs in the ring Rp.

Since
√
J = m, J is not completely contained in p, i.e. there is a unit of Rp contained in

J ⊗Rp. This implies J ⊗Rp = Rp. Furthermore

Λ0 ⊗Rp = R[x0, . . . , xn]⊗Rp = Rp.

It follows that the map

δ1 ⊗ id : Λ1 ⊗Rp −→ Λ0 ⊗Rp

is surjective since im(δ1 ⊗ id) = J ⊗Rp. Therefore one can choose ε ∈ Λ1 ⊗Rp such that

(δ1 ⊗ id)(ε) = 1.

The homomorphisms defined by

εr : Λr −→ Λr+1, ei1 ∧ . . . ∧ eir 7→ ε ∧ ei1 ∧ . . . ∧ eir

will provide an inverse of δr+1⊗ id, restricted to the kernel of δr⊗ id. This will clearly imply

that ker(δr ⊗ id)/im(δr+1 ⊗ id), the homologies of Λ⊗Rp, are zero.

To see that δr+1 ⊗ id can be inverted, the following will be proved:

εr−1 ◦ (δr ⊗ id) + (δr+1 ⊗ id) ◦ εr = id (3.6)

Then x ∈ ker(δr ⊗ id) yields (δr+1 ⊗ id) ◦ εr(x) = x and thus x ∈ im(δr+1) as wished. So

it remains to verify (3.6). Since only homomorphisms are involved, a check on the basis
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elements suffices. Have a look at the first term first.

εr−1 ◦ (δr ⊗ id)(ei1 ∧ . . . ∧ eir) = εr−1

(
r∑

k=1

(−1)k+1fikei1 ∧ . . . ∧ eik−1
∧ eik+1

∧ . . . ∧ eir

)

=
r∑

k=1

(−1)k+1fikε ∧ ei1 ∧ . . . ∧ eik−1
∧ eik+1

∧ . . . ∧ eir

Now compare with the second term.

(δr+1 ⊗ id) ◦ εr(ei1 ∧ . . . ∧ eir) = (δr+1 ⊗ id)(ε ∧ ei1 ∧ . . . ∧ eir)

= ei1 ∧ . . . ∧ eir +
r∑

k=1

(−1)k+2fikε ∧ ei1 ∧ . . . ∧ eik−1
∧ eik+1

∧ . . . ∧ eir

So all terms on the left hand side of equation (3.6) except for ei1 ∧ . . .∧eir cancel out, which

yields exactly the identity map.

It was proved that for all prime ideals p 6= m, the homologies Hr of Λ fulfill

Hr ⊗Rp = ker(δr ⊗ id)/im(δr+1 ⊗ id) = 0.

Hence one can conclude that

∀y ∈ ker(δr)∃f ∈ R[x0, . . . , xn] \ p : fy ∈ im(δr+1).

Choose now the prime ideal p = 〈x0, . . . , xk−1, xk+1, . . . , xn〉. Consider a finite basis F of

the ideal ker(δr) which exists by lemma 41. Then for each y ∈ F there is an integer c ≥ 0

such that yxck ∈ im(δr+1). With C being the maximum of the values of c for all basis

elements y ∈ F and for all k = 0, . . . , n, one obtains

mCker(δr) = m · · ·m︸ ︷︷ ︸
C times

· ker(δr) ⊂ im(δr+1)

and therefore

(Hr)=d = ker(δr)=d = im(δr)=d

for all d ≥ C + max{deg(y) : y ∈ F}.

Applying this lemma one obtains (H̃r)=d = 0 whereby H̃r are the homologies of

the Koszul complex of f1, . . . , fs in K[x0, . . . , xn]/ 〈z0〉.
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Example 44. To verify this in example 39, one has to calculate the homologies H̃r modulo

z0 = x2 (z0 as in 40). For this exercise, C[x0, x1, x2]/ 〈x2〉 will be identified with C[x0, x1].

Then the polynomials have the form

f̃1 :=x2
0

f̃2 :=x0x1

f̃3 :=x2
1

Clearly J̃ =
〈
f̃1, f̃2, f̃3

〉
⊂ C[x0, x1] contains all monomials of degree ≥ 2. Therefore

H̃0 = C[x0, x1]/J̃ = {[1], [x0], [x1]}

and (H̃0)=d = 0 for d ≥ 2. Now consider H̃1 which is the factor module of

ker(δ1) = 〈x0e2 − x1e1, x0e3 − x1e2〉

and

im(δ2) =
〈
x2

0e2 − x0x1e1, x
2
0e3 − x2

1e1, x0x1e3 − x2
1e2
〉
.

Then a homogeneous element y of ker(δ1), i.e.

y = h1(x0e2 − x1e1) + h2(x0e3 − x1e2) for homogeneous h1, h2 ∈ C[x0, x1].

If deg(y) ≥ 5, h1 and h2 have degree at least 2 (e1, e2, e3 have degree 2). Since h1, h2 are

homogeneous, it suffices to check m(x0e2−x1e1),m(x0e3−x1e2) ∈ im(δ2) for all monomials

m ∈ C[x0, x1] of degree 2. E.g.

x2
1(x0e2 − x1e1) = x1(x2

0e3 − x2
1e1)− x0(x0x1e3 − x2

1e2).

All other checks are trivial or analogous. Therefore (H̃1)=d = 0 for d ≥ 5. Similar results

can be obtained for H̃2 and H̃3.

Since the homologies H̃r of the Koszul complex of f1, . . . , fs in K[x0, . . . , xn]/ 〈z0〉
are zero in high degrees, this Koszul complex fulfills the precondition for the following

lemma.

Lemma 45. If the homologies of the Koszul complex Λ in a ring R[x0, . . . , xn] with n+ 1

variables fulfill (Hr)=d = 0 for sufficiently large d, then



54

(a) (Hr)=d = 0 for all d if r ≥ s− n

(b) (Hr)=d = 0 for all d ≥ D(r, n) := d1 + . . .+ dr+n+1 − n+ 1 if r < s− n.

Proof. This proof is by induction on the number of variables. First assume n = 0. For part

(a) one only has to show that (Hs)=d = 0 for all d. But Hs = ker(δs) = 0 since Λs has only

one basis element, namely e1 ∧ . . . ∧ es and its image is not zero. To prove part (b) take

y ∈ ker(δr). Then xc0y ∈ ker(δr) for all c ≥ 0 and, by assumtion, xc0y ∈ im(δr+1) for some

c ≥ 0, i.e.

xc0y = δr+1(z) for some z ∈ Λr+1.

The basis elements of Λr+1 have the form ei1 ∧ . . .∧eir+1 and have degree at most d1 + . . .+

dr+1. Remember that d1 ≥ . . . ≥ ds was assumed. So if deg(y) ≥ d1 + . . .+ dr+1,

deg(z) = deg(δr+1(z)) = deg(xc0y) = c+ deg(y) ≥ c+ d1 + . . .+ dr+1

implies that the coefficients of z are of degree at least c. Since n = 0 and the coefficients

are homogeneous, they are powers of x0 and therefore divisible by xc0. Thus y ∈ im(δr+1).

Now consider the case n > 0. By assumption the homologies (Hr)=d of Λ in

R[x0, . . . , xn] are zero for large degrees d. Choose an arbitrary homogeneous 0 6= z ∈
R[x0, . . . , xn] of degree 1 and let Λ̃ denote the Koszul complex of the same polynomials

in R[x0, . . . , xn]/ 〈z〉. Then its homologies (H̃r)=d = 0 for large degrees d, too. Since

R[x0, . . . , xn]/ 〈z〉 ∼= R[x0, . . . , xn−1], one can apply the induction hypothesis and conclude

that

(H̃r+1)=d = 0 for

 all d if r + 1 ≥ s− (n− 1)⇐⇒ r ≥ s− n
d ≥ D(r + 1, n− 1) = d1 + . . .+ dr+n+1 − n+ 2 if r < s− n

(3.7)

The following part of the exact sequence (3.5) is the key.

(H̃r+1)=d −→ (Hr)=d−1 −→ (Hr)=d

Whenever

(H̃r+1)=d = (Hr)=d = 0,

also (Hr)=d−1 = 0. Since (Hr)=d = 0 for large d by assumption, equation (3.7) implies the

claim.
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The rest of the proof is very easy. It remains to dehomogenize, which will be done

in this theorem. As convenience, the whole strategy will be recapitulated.

Theorem 46 (Lazard, 1983). Let K be an algebraically closed field and I ⊂ K[x1, . . . , xn]

be a zero-dimensional ideal generated by polynomials f1, . . . , fs of degrees d1 < . . . < ds.

Then for every graded monomial ordering there is a Gröbner basis for I which contains only

polynomials of degrees bounded by

D := (d1 − 1) + . . .+ (dn+1 − 1) + 1

(with di := 1 for s < i ≤ n+ 1 if necessary).

Proof. Consider the homogenizations hf1, . . . ,
hfs ∈ K[x0, . . . , xn] of f1, . . . , fs (which have

the same degrees) and their ideal J :=
〈
hf1, . . . ,

hfs
〉
. Since dim(J) = dim(I) = 0, lemma

38 provides z0 ∈ K[x0, . . . , xn]/J homogeneous of degree 1 such that the multiplication

mz0 is a bijection in large degrees. Therefore the homology H̃0 of the Koszul complex of

[hf1], . . . , [hfs] ∈ K[x0, . . . , xn]/ 〈z0〉 is zero in large degrees. Then lemma 43 implies the same

for all H̃r (0 ≤ r ≤ s) and lemma 45 gives an explicit degree from which the homologies are

zero.

Especially (K[x0, . . . , xn]/J)=d = (H̃0)=d = 0 for d ≥ d1 + . . .+ dn+1− n+ 1 = D.

Since the sequence (part of (3.5))

(H0)=d−1 −→ (H0)=d −→ (H̃0)=d

is exact, the map (H0)=d−1 −→ (H0)=d, which is the multiplication mz0 , is surjective for

all d ≥ D. It is time to dehomogenize. This can be done before or after the multiplication

with z0. Since the order doesn’t matter, the diagramm

(K[x0, . . . , xn]/J)=D−1
mz0−→ (K[x0, . . . , xn]/J)=D

↓ ↓

(K[x1, . . . , xn]/I)≤D−1

mez0−→ (K[x1, . . . , xn]/I)≤D

is commutative (with h̃z0 = z0). Thus also mez0 is surjective for degrees D and larger. Since

(K[x1, . . . , xn]/I)≤D−1 ⊂ (K[x1, . . . , xn]/I)≤d for d ≥ D

and there is a surjection from the first to the second space,

(K[x1, . . . , xn]/I)≤D−1 = (K[x1, . . . , xn]/I)≤d for d ≥ D.
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So all normal forms have degree at most D − 1. Finally the claims follows by proposition

29.

3.3.3 Generic Degree

The rest of this chapter will be dedicated to the generic degree of Gröbner bases

with respect to a graded monomial ordering. It relies heavily on the multivariate subresul-

tant as introduced by Marc Chardin in [10]. Therefore this result will be explained first,

though not in its full generality.

To introduce subresultants, Chardin consideres the Koszul complex as introduced

in (3.2), but applied to n homogeneous polynomials with indeterminate coefficients in n+ 1

coordinate intederminates

Fi =
∑

α∈Zn+1
≥0

|α|=di

ui,αx
α ∈ S[x0, . . . , xn]

for i = 1, . . . , n and

S := Z[ui,α : i = 1, . . . , n, α ∈ Zn+1
≥0 , |α| = di].

Note that S is an noetherian integral domain. Since in some places it is convenient to talk

about dimensions, one has to consider the field of fractions

K :=
{
f

g
: f, g ∈ S, g 6= 0

}
.

First two basic facts about specializations are needed.

Lemma 47. Let V ⊂ S[x0, . . . , xn] be an S-vector space, ψ : S[x0, . . . , xn] −→ K[x0, . . . , xn]

a specialization and ϕ : V −→ V a linear map. Then

dimK(im(ϕ)⊗K) ≥ dimK(ψ(im(ϕ)))

and, if dimK(V) = dimK(V ),

dimK(ker(ϕ)⊗K) ≤ dimK(ψ(ker(ϕ))).



57

Proof. Consider a basis {ψ(ϕ(b1)), . . . , ψ(ϕ(br))} of ψ(im(ϕ))=d for any fixed d. Of course

ϕ(b1), . . . , ϕ(br) ∈ im(ϕ) ⊗ K. So all one has to prove is that these vectors are lin-

early independent over K. Assume {ϕ(b1), . . . , ϕ(br)} dependent over K. Then there are

a1, . . . , ar ∈ K, not all of them zero, such that

a1ϕ(b1) + . . .+ arϕ(br) = 0.

By multiplying with the common denominator of a1, . . . , ar, one can assume a1, . . . , ar ∈ S.

Assume the coefficients a1, . . . , ar have no common factor in S. Now specialize one variable

after the other. If, on specialization of a variable ui,α to ci,α, all coefficients a1, . . . , ar

vanish, they must be divisible by ui,α − ci,α. Divide all coefficients by the highest common

power of ui,α − ci,α and call the new coefficients a′1, . . . , a
′
r. Then

a′1ϕ(b1) + . . .+ a′rϕ(br) = 0

and on specialization of ui,α not all coefficients a′1, . . . , a
′
r vanish. Inductively one obtains a

relation

ã1ϕ(b1) + . . .+ ãrϕ(br) = 0 for some ã1, . . . ãr ∈ K, not all zero.

This contradicts the assumption that {ϕ(b1), . . . , ϕ(br)} is a basis. Therefore

dimK(im(ϕ)⊗K)=d ≥ dimK(ψ(im(ϕ))=d) (3.8)

Then the second inequality simply follow from

dimK(ker(ϕ)⊗K) + dimK(im(ϕ)⊗K) = dimK(V)

and

dimK(ψ(ker(ϕ))) + dimK(ψ(im(ϕ))) = dimK(V )

Actually the theory works as long as the number of polynomials is not larger than

the number of variables, but only the case of n polynomials in n+1 variables will be needed

in this thesis. The ideal of these polynomials will be denoted by J := 〈F1, . . . , Fn〉. This

ideal is well-studied. The following property will be needed:

Lemma 48. With definitions as above, J is a prime ideal.
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Proof. See [10], Proposition 3 and [23].

The goal is to derive an exact sequence from the Koszul complex and then decom-

pose it in order to define the subresultant using an alternating product of determinants.

First note that the homologies Hr of the Koszul complex of F1, . . . , Fn are zero for r > 0,

where the complex looks like

Λ : Λn
δn−→ Λn−1

δn−1−→ . . .
δ2−→ Λ1

δ1−→ Λ0,

Lemma 49. Let Λ = (Λr) be the Koszul complex of F1, . . . , Fn in S (as defined above) and

H0, . . . ,Hn its homologies. Then Hr = 0 for all 0 < r ≤ n.

Proof. See [10], Proposition 2 and [23].

So only H0 = S[x0, . . . , xn]/J is nonzero. Choose now a set S of monomials of

degree d that is a vector space basis of (H0 ⊗ K)=d. This is an important step. For every

degree d and set S (and of course for every tuple of degrees d1, . . . , dn of F1, . . . , Fn) one will

obtain a different subresultant. The dependence on the degrees will be implicit since they

are considered to be constant. So the subresultant polynomial will be denoted by ∆S ∈ S.

Note that the dimension of (H0⊗K)=d can only increase on specialization. To see

this, remember H0 = S[x0, . . . , xn]/im(δ1). On the one hand

dimK(K[x0, . . . , xn]=d) = dimK(K[x0, . . . , xn]=d).

On the other hand

dimK(im(δ1)⊗K)=d ≥ dimK(im(δ1)=d)

by lemma 47.

In order to obtain an exact complex, replace δ1 : (Λ1)=d −→ (Λ0)=d in the Koszul

complex by the induced

δ∗1 : (Λ1)=d −→ (Λ0/spanS(S))=d, y 7→ [δ1(y)].

Here

spanR(S) := {a1s1 + . . . aksk : k ∈ N, ai ∈ R, si ∈ S for i = 1, . . . , k}.

Writing the matrix of δ1 in the monomials basis of (Λ0/spanS(S))=d, one column being the

coefficients of the image of one basis vector, δ∗1 is represented by the submatrix corresponding
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to the rows of the monomials not contained in S. Since S is by definition a basis of the

homology H0⊗K = (Λ0⊗K)/(im(δ1)⊗K) in degree d, δ∗1 ⊗ id is surjective. It was already

noted before that δn is injective, so the complex

0 −→ (Λn ⊗K)=d
δn−→ (Λn−1 ⊗K)=d

δn−1−→ . . .
δ2−→ (Λ1)=d

δ∗1−→ (Λ0 ⊗K)=d/S=d −→ 0

is exact.

In order to define the subresultant, this complex will be decomposed. Fix bases Bi

for (Λi)=d for i = 1, . . . , n and B0 for (Λ0 ⊗K)=d/spanK(S). Consider first δ∗1 ⊗ id which is

surjective. So B1 can be decomposed into B′1 and B′′1 (i.e. B1 = B′1 ∪B′′1 and B′1 ∩B′′1 = ∅)
such that (δ∗1 ⊗ id)(B′1) is a basis for (Λ0 ⊗ K)=d/spanK(S). Therefore #B′1 = #B0. This

decomposition is usually not unique. Define B′0 = ∅ and B′′0 = B0 for the recursion following.

The same can be done recursively for δr⊗ id (r = 2, . . . , n). To obtain a surjective

mapping that agrees with δ∗r−1 ⊗ id, define

δ∗r : (Λr)=d −→ (Λr−1)=d/span(B′1), y 7→ [δr(y)].

Again there is a decomposition of Br into B′r and B′′r such that δ∗r (B
′
r) is a basis of the

linear space in (Λr−1 ⊗ K)=d/spanK(B′1) generated by the factor classes of B′′r−1. This

implies #B′r = #B′′r−1. Since δn ⊗ id is injective, B′n = Bn and B′′n = ∅.
The restricitons ϕr := δ∗r |spanS(B′r)

are injective linear maps since they are also

restrictions of the bijective maps

δ∗r ⊗ id|spanK(B′r)
: spanK(B′r) −→ spanK(B′′r−1)

to spanS(B′r) ⊂ spanK(B′r). So their determinants det(ϕr) are well-defined and non-zero.

If the dependence on S has to be underlined, ϕS1 := ϕ1 will be written. So one can define

∆S :=
n∏
i=1

det(ϕi)(−1)i+1
.

If S does not generate (H0⊗K)=d, one defines ∆S := 0. This is the multivariate subresultant

as defined by Chardin up to the sign which is not important for this proof. Its first important

property is

Lemma 50. With all definitions as above,

∆k :=
n∏
i=k

det(ϕi)(−1)i+k ∈ S

for k = 1, . . . , n and ∆S = ∆1 is independent of the chosen decomposition.
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Proof. See [24], Proposition 2 and Remark 2 following the theorem.

So the subresultant is a polynomial in the coefficients of the polynomials F1, . . . , Fn

and therefore can be used as criterion for a generic situation as introduced in section 3.2.3.

As already pointed out, it depends on the degrees of the polynomials F1, . . . , Fn, the degree

d to which the Koszul complex is restricted and the set S which has to be a basis of

(H0 ⊗K)=d.

There are two important properties of the subresultant. First it is possible to ex-

plicitely state polynomials of arbitrary degrees that are contained in the ideal J generated

by F1, . . . , Fn and therefore also in any specialization ψ(J ) (although they might specialize

to the zero-polynomial). Second will be an equivalence of the non-vanishing of the sub-

resultant and ψ(J ) + S generating all polynomials of degree d for any specialization ψ.

Both together will be used for the analysis of the generic Gröbner basis degree for graded

monomial orderings.

Theorem 51 (Chardin, 1995). Let F1, . . . , Fn, S, K and J be as defined above and di =

deg(Fi). If T is a set of

dimK((S[x0, . . . , xn]/J )=d ⊗K) + 1

monomials of degree d then ∑
xα∈T

εα,T∆T\{xα}x
α ∈ J

for some εα,T ∈ {−1, 1}.

Proof. If T doesn’t contain a basis of (H0⊗K)=d, the claim is trivial since all subresultants

are zero-polynomials.

For this lemma the determinant of ϕT\{x
α}

1 will be developed using the Laplace

expansion. Let

N=d :=
{
xαei : α ∈ Zn+1

≥0 , 1 ≤ i ≤ n,deg(xαei) = d, αj < dj∀j < i
}

and W=d := spanS(N=d) ⊂ (Λ1)=d. Consider the matrix M of the linear map

ϕ
T\{xα}
1 : W=d −→ (Λ0/spanS(T \ {xα}))=d, y 7→ [δ1(y)]
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with respect to the bases N=d of W=d and

B0 :=
{

[xα] /∈ T : α ∈ Zn+1
≥0 ,deg(xα) = d

}
of (Λ0/spanS(T ))=d. To see that ϕT\x

α

1 ⊗id is bijective, it suffices to consider a specialization,

namely ψ(Fi) := xdii . For d > max{di : i = 1, . . . , n} this is obvious from the construction

of N=d. Therefore N=d is a possible choice for B′1 in the decomposition of the complex.

Since ϕT\{x
α}

1 ⊗ id is bijective, its matrix is square and one can develop its deter-

minant along the row corresponding to [xα] using the Laplace expansion. This yields

det
(
φ
T\{xα}
1

)
=

∑
xβei∈N=d

σi,β,αc(i,β),α det(Mi,β)

for appropriate signs σi,β,α ∈ {−1,+1} and submatrices Mi,β of M , in which the row

corresponding to [xα] and the column corresponding to xβei are deleted. c(i,β),α is the

coefficient of [xα] in φ
T\{xα}
1 (xβei). Note that, for fixed T , Mi,β does not depend on the

choice of xα ∈ T , since Mi,β can also be viewed as the submatrix of the matrix of δ1 :

W=d −→ (Λ0)=d in which all rows corresponding to monomials not contained in T and the

column corresponding to xβei are deleted. Furthermore, the signs σi,β,α and σi,β,α0 in the

developments of φT\{x
α}

1 and φT\{x
α0}

1 only differ by a constant sign depending on T , α and

α0 (depending on whether the difference of their row indices is odd or even), which shall be

called εα,T ∈ {−1, 1}. Then∑
xα∈T

εα,T det
(
φ
T\{xα}
1

)
xα =

∑
xα∈T

∑
xβei∈N=d

εα,Tσi,β,αc(i,β),α det(Mi,β)xα

=
∑
xα∈T

∑
xβei∈N=d

σi,β,α0c(i,β),α det(Mi,β)xα
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Now one can extend the sum over α to all monomials of degree d. The additional terms

vanish since they correspond to expansions of determinants of matrices that contain one

row twice.

=
∑

α∈Zn+1
≥0

|α|=d

∑
xβei∈N=d

σi,β,α0c(i,β),α det(Mi,β)xα

=
∑

xβei∈N=d

σi,β,α0 det(Mi,β)
∑

α∈Zn+1
≥0

|α|=d

c(i,β),αx
α

=
∑

xβei∈N=d

σi,β,α0 det(Mi,β)
∑

α∈Zn+1
≥0

|α|=di

uα,ix
α+β

=
∑

xβei∈N=d

σi,β,α0 det(Mi,β)xβFi ∈ J

On the other hand, one can rewrite

J 3
∑
xα∈T

εα,T det
(
φ
T\{xα}
1

)
xα = ∆1

∑
xα∈T

εα,T∆T\{xα}x
α

By lemma 50, ∆1 and ∆T\{xα} are polynomials. But since their degree in the variables

x0, . . . , xn is zero and the ideal J is homogeneous, ∆1 /∈ J . According to lemma 48, J is

prime. Thus ∑
xα∈T

εα,T∆T\{xα}x
α ∈ J .

Corollary 52. Let F1, . . . , Fn, S, K and J be as defined above. If S is a set of

dimK((S[x0, . . . , xn]=d/J=d)⊗K)

monomials of degree d then for all monomials xβ of degree d that are not contained in S

gβ := ∆Sx
β +

∑
xα∈S

εα,S∪{xβ}∆S∪{xβ}\{xα}x
α ∈ J

for some εα,T ∈ {−1, 1}.

The second important property provides a tool to check whether ψ(J )+spanK(S)

contains all polynomials of degree d.
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Theorem 53 (Chardin, 1995). Let F1, . . . , Fn, S, K and J be as defined above. If S is a

set of

dimK((S[x0, . . . , xn]/J )=d ⊗K)

monomials of degree d, then the following holds for any specialization ψ : S[x0, . . . , xn] −→
K[x0, . . . , xn].

ψ(∆S) 6= 0⇐⇒ ψ(J )=d + spanK(S) = K[x0, . . . , xn]=d

Proof. First assume ψ(∆S) 6= 0. Then for all monomials xβ /∈ S of degree d the polynomial

gβ defined in corollary 52 specializes to a monomial ψ(gβ) that has a non-zero xβ coefficient.

Therefore all such xβ are equivalent to polynomials that only contain the monomials in S

modulo ψ(J ). So S generates (K[x1, . . . , xn]/ψ(J ))=d which implies ψ(J )=d+ spanK(S) =

K[x0, . . . , xn]=d.

On the other hand assume ψ(∆S) = 0. Recall that ∆S is independent of the

decomposition by lemma 50. Now consider the linear map

δ1 : (Λ1)=d −→ (Λ0)=d.

Choosing a minor M , i.e. the determinant of a submatrix of the matrix representation of

δ1, is equivalent to choosing an set S′ of monomials of degree d and considering the induced

map (Λ1)=d −→ (Λ0)=d/spanS(S′). If the minor is non-zero and of size dimK(J ⊗K)=d, S′

generates (H0 ⊗K)=d. Thus one can extend this minor to a decomposition of the complex

as seen before. This decomposition can be used to define ∆S′ . Therefore ∆S′ = M · ∆2

with ∆2 ∈ J (lemma 50) and ∆S′ divides the minor M .

Now ψ(∆S) = 0 implies that all minors M of δ1 that induce the same set S

specialize to zero. Thus ψ(δ∗1) is not surjective, i.e.

ψ(im(δ∗1)=d) 6= (K[x0, . . . , xn]/S)=d

⇒ ψ(J )=d + spanK(S) 6= K[x0, . . . , xn]=d.

This finishes the summary of Chardin’s paper. Now the multivariate subresultant

∆S will be used to study the generic degree of Gröbner bases for graded monomial orderings.
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Theorem 54. Let K be an algebraically closed field and for i = 1, . . . , n define

fi :=
∑
α∈Zn≥0

|α|≤di

ui,αx
α ∈ R[x1, . . . , xn]

where

R := Z[ui,α : i = 1, . . . , n, α ∈ Zn≥0, |α| ≤ di].

Let ψ : R[x1, . . . , xn] −→ K[x1, . . . , xn] denote a specialization and assume that the ideal

I = 〈ψ(f1), . . . , ψ(fn)〉 is zero-dimensional in K[x1, . . . , xn]. Then the reduced Gröbner basis

G of I generically fulfills

max{deg(g) : g ∈ G} = (d1 − 1) + . . .+ (dn − 1) + 1.

Proof. To apply the multivariate subresultant theory, it is necessary to consider the homog-

enizations Fi = hfi for i = 1, . . . , n. This homogenization shows that the rings R an S are

essentially the same, so one can view Fi as elements of S[x0, . . . , xn] and ψ as specialization

S[x0, . . . , xn] −→ K[x0, . . . , xn].

First consider the specialization defined by

ψ(F1) := x1x
d1−1
2 + xd12

ψ(F2) := x2x
d2−1
3 + xd23

...

ψ(Fn−1) := xn−1x
dn−1−1
n + xdn−1

n

ψ(Fn) := xdn1

Remember that this is the ideal from example 34, but over the ring K[x0, . . . , xn]. These

polynomials ψ(F1), . . . , ψ(Fn) generate an homogeneous zero-dimensional ideal ψ(J ). Let

D := (d1 − 1) + . . . + (dn − 1) and S be the set of all with respect to ψ(J ) irreducible

monomials of degree D. First the cardinality of S has to be checked. Since S is a basis of

(K[x0, . . . , xn]/ψ(J ))=D, it suffices to show

dimK((S ⊗ K)/(J ⊗K))=D = dimK(K[x0, . . . , xn]/ψ(J ))=D

or equivalently

dimK(J ⊗K)=D = dimK(ψ(J )=D).
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Lemma 47 implies

dimK(J ⊗K)=d ≥ dimK(ψ(J )=d) (3.9)

for any specialization since J is the image of δ1. For the opposite inequality, let J1 := 〈Fn〉
and, for k = 2, . . . , n, Jk := 〈Fn, F1, . . . , Fk−1〉. The idea is to prove by induction on k that

dimK(Jk ⊗K)=d = dimK(ψ(Jk)=d).

The claim is obvious for k = 1. So assume k > 1 and use Jk = Jk−1 + 〈Fk−1〉 and

ψ(Jk) = ψ(Jk−1) + ψ(〈Fk−1〉). The dimensions of these vector spaces can be calculated

using

dimK(Jk ⊗K)=d = dimK((Jk−1 ⊗K)=d + (〈Fk−1〉 ⊗ K)=d)

= dimK(Jk−1 ⊗K)=d + dimK(〈Fk−1〉 ⊗ K)=d (3.10)

− dimK(Jk−1 ⊗K)=d ∩ (〈Fk−1〉 ⊗ K)=d

respectively

dimK(ψ(Jk)=d) = dimK(ψ(Jk−1)=d + ψ(〈Fk−1〉)=d)

= dimK(ψ(Jk−1)=d) + dimK(ψ(〈Fk−1〉)=d) (3.11)

− dimK(ψ(Jk−1)=d ∩ ψ(〈Fk−1〉)=d).

All terms on the right-hand sides of (3.10) and (3.11) but the dimensions of the ideal

intersections are equal by induction hypothesis. For all ideals I, J , I · J ⊂ I ∩ J is true.

Now

ψ(Fk−1) · ψ(Jk−1) = ψ(Jk−1) ∩ 〈ψ(Fk−1)〉

is clear since Fk−1 contains the variable xk which is not contained in Fn, F1, . . . , Fk−2. Thus

dimK(ψ(Fk−1) · ψ(Jk−1))=d = dimK(ψ(Jk−1)=d ∩ 〈ψ(Fk−1)〉=d).

On the other hand,

dimK(ψ(Fk−1) · ψ(Jk−1))=d = dimK(Fk−1 · Jk−1 ⊗K)=d

and

dimK(Fk−1 · Jk−1 ⊗K)=d ≤ dimK(Jk−1 ⊗K)=d ∩ (〈Fk−1〉 ⊗ K)=d
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which imply, together with the former proved inequality (3.9),

dimK(Jk ⊗K)=d = dimK(ψ(Jk)=d).

So S has by definition the right cardinality and theorem 53 can be applied. Ac-

cording to example 34, where an explicit Gröbner basis was given, the only monomial

in S that is not divisible by x0, is xDn . Furthermore S contains all monomials xk0x
D−k
n

(k = 0, . . . , D). Now thoerem 53 implies that the specialization of the corresponding sub-

resultant ψ(∆S) 6= 0. Thus ∆S is not the zero-polynomial.

Assume ψ(∆S) 6= 0. This is obviously a generic situation. The polynomials ψ(gβ)

defined in corollary 52 are contained in ψ(J ). Consider their dehomogenizations by x0 = 1

and denote them by g′β. Then g′β ∈ I and LM(g′β) = xβ since this is the only monomial in S

whose degree doesn’t decrease on dehomogenization. Since specialization of J=D to ψ(J )

only could decrease the dimension as seen before,

dimK(S[x0, . . . , xn]/J )⊗K ≥ dimK(K[x0, . . . , xn]/ψ(J )).

Now theorem 53 implies that S generates K[x0, . . . , xn]/ψ(J ) which implies the opposite

inequality and therefore

#S = dimK(S[x0, . . . , xn]/J )⊗K = dimK(K[x0, . . . , xn]/ψ(J )).

So the monomials in S are independent modulo ψ(J ), i.e. 〈S〉 ∪ ψ(J ) = {0}. If xkn was

reducible with respect to ψ(J ) for some k ∈ {0, . . . , D}, there would be a polynomial

xkn −
∑

xkn 6=xα∈S

cαx
α ∈ ψ(J ) for some cα ∈ K

since all not in this polynomial appearing monomials can be expressed in terms of monomials

in S modulo ψ(J ). But the existence of this monomial contradicts the independence of the

monomials in S. Thus xDn , the smallest monomial of degree D, is irreducible with respect

to I. But I is zero-dimensional, so by theorem 19 any Gröbner basis contains a polynomial

with leading term xdn for some d > D. Together with theorem 46, one obtains d = D + 1

and the claim

max{deg(g) : g ∈ G} = D + 1 = (d1 − 1) + . . .+ (dn − 1) + 1.
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Example 55. Lastly an explicit example will be given, where S can easily be computed.

Consider the case of three polynomials in the degrees d1 = 3, d2 = 2, d3 = 2. Then the

specialization given in the theorem is

ψ(F1) := x1x
2
2 + x3

2

ψ(F2) := x2x3 + x2
3

ψ(F3) := x2
1

and a Gröbner basis is

g1 := x1x
2
2 + x3

2

g2 := x2x3 + x2
3

g3 := x2
1

g4 := x1x
3
3 − x4

3

g5 := x4
2

g6 := x5
3.

So the irreducible monomials in degree D = 4 are

S := {x4
0, x

3
0x1, x

3
0x2, x

3
0x3, x

2
0x1x2, x

2
0x

2
2, x

2
0x1x3, x

2
0x

2
3, x0x

3
2, x0x1x

2
3, x0x

3
3, x

4
3}.

Those monomials generate (K[x0, . . . , xn]/ψ(J ))=4 and thus, as seen in the last theorem,

(K[x0, . . . , xn]/(J ⊗K))=4.

3.4 Summary

First general upper and lower degree bounds due to Dubé and Möller, Mora (build-

ing on an example by Mayr, Meyer) were presented. Both upper and lower bounds were

essentially doubly exponentially with the degree of the generators in the base and the num-

ber of variables in the second exponent. This growth is immense and perhibits explicit

computations in the worst cases already for quite low numbers of variables even with fast

computers.

Henceforth a special case arising from applications was studied, namely if the poly-

nomial systems have only finitely many solutions, i.e. the generated ideals are of dimension

zero. Here two groups of monomial orderings were studied.
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For the lexicographic ordering upper and lower bound were proved to be singly

exponentially, again with the generator degree in the base and the number of variables in

the exponent. Moreover, upper and lower bound exactly match and are obtained in the

generic case. These results are folklore, the last one is commonly known as Shape Lemma.

Finally, graded monomial orderings were studies. Again matching upper and lower

bounds were proved, this time polynomially (roughly the product of number of variables

and the degree of the generators). As for the lexicographic ordering, the generic degree of

the Gröbner basis coincides with the upper bound. The upper bound was due to Lazard,

the lower bound folklore and the generic degree was not known to the author before.

So Gröbner bases for zero-dimensional ideals are much more well behaved than for

arbitrary dimensions. Since the ideals considered by Möller and Mora for the lower bound

are of very high dimension, the author ask whether there is an gradual transition. This

demands upper and lower degree bounds that depend on the ideal dimension as parameter.



69

Bibliography

[1] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-

ringes nach einem nulldimensionalen Polynomideal. PhD thesis, Universität Innsbruck,

1965.

[2] B. Buchberger. An algorithm for finding the basis elements in the residue class ring

modulo a zero dimensional polynomial ideal. Journal of Symbolic Computation, 41(3-

4):475–511, 2006.
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[4] B. Buchberger. Gröbner bases and systems theory. Multidimensional systems and

Signal processing, 12(3):223–251, 2001.

[5] E.W. Mayr and A.R. Meyer. The complexity of the word problems for commutative

semigroups and polynomial ideals. Advances in Mathematics, 46(3):305–329, 1982.
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[7] D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of algebraic

equations. In Proc. EUROCAL, volume 83, pages 146–156. Springer, 1983.

[8] D. Lazard. Resolution des systemes d’equations algebriques. Theor. Comp. Sciences,

15:77–110, 1981.

[9] D. Lazard. Solving systems of algebraic equations. ACM SIGSAM Bulletin, 35(3):11–

37, 2001.



70

[10] M. Chardin. Multivariate subresultants. Journal of Pure and Applied Algebra,

101(2):129–138, 1995.
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