
ABSTRACT

FEMAL, MARK E.:Non-Uniform Power Distribution in Data Centers for Safely

Overprovisioning Circuit Capacity and Boosting Throughput. (Under the direction of As-

sistant Professor Vincent W. Freeh).

Management of power in data centers is driven by the need to not exceed circuit

capacity. Such techniques are evolving from ad hoc methods based on maximum node

power usage to systematic methods that employ power-scalable components. These com-

ponents allow for dynamically controlling power consumption with an accompanying effect

on performance. Because the incremental performance gain from operating in a higher

performance state is less than the increase in power, it is possible to overprovision the

hardware infrastructure to increase throughput and yet still remain below an aggregate

power limit. In overprovisioning, if each component operates at maximum power the limit

would be exceeded with disastrous results. However, safe overprovisioning regulates power

consumption locally to meet the global power budget. This research work presents PICLE,

the Power Infrastructure Controller for Limited Environments. This framework is designed

for boosting throughput through intelligent monitoring of server clusters by load-balancing

available aggregate power under a set of operating constraints. The solution is useful for

data centers that cannot expand the number of power circuits or seek effective usage of the

available power budget due to power fluctuations. The framework is also ideally suited for

environments with a heterogeneous workload and hence, a non-uniform power allocation

requirement. Synthetic benchmarks indicate overprovisioning throughput gains of nearly

6% from a staticly assigned, power managed environment and over 30% from an unmanaged

environment. In addition, based on a representative workload for a two minute period, a

non-uniform power allocation scheme is shown to increase throughput by over 16% versus

a uniform power allocation mechanism.
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Chapter 1

Introduction

The tremendous increase in computer performance has come with an even greater

increase in power usage. As a result, power consumption is a primary concern. According to

Eric Schmidt, CEO of Google, what matters most to Google “is not speed but power—low

power, because data centers can consume as much electricity as a city” [48]. This does not

imply speed is not important for computing centers, but more and more installations find

themselves operating within power limitations. Such limits exist due to either a limited

power supply or a heat dissipation and removal capability. In addition, reducing the me-

tered energy or associated power and cooling infrastructure costs might be a high priority.

Regardless of the reason, a power constraint limits performance.

1.1 Motivation

The primary motivation of this research work is to increase throughput given de-

fined power limits by increasing parallelism. High performance clusters such as BlueGene/L

[1] make use of low-power, modest clock rate processors to provide more efficient perfor-

mance with respect to energy consumption. A similar approach is taken with frequency

scalable CPUs and off-the-shelf hardware in the creation of PICLE, the Power Infrastruc-

ture Controller for Limited Environments. Because the CPU is a dominant power consumer

in many servers, it is consequently the initial focus in PICLE. In addition to the CPU’s



2

power consumption characteristics, there is a manufacturer commitment towards power con-

servation as exhibited in the ACPI Specification [37] and through Dynamic Voltage Scaling

(DVS).

With DVS, it is well established the relationship of CPU frequency (F) and voltage

(V) is given by [52]:

CPU Power = A · C · V 2 · F

Where A is the activity factor for how frequently gates switch and C is the total capacitance

at the gate outputs. Using this relationship and knowing F α V , decreasing the CPU

frequency causes a quadratic reduction in power. If performance is proportional to power,

a reduction in performance has an accompanying effect on power. When transitioning

from the highest to the lowest performance state, the power reduction typically grows more

quickly than the performance reduction. If the aggregate power limit in a cluster does not

change, one can increase the number of nodes when the cumulative power reduction on all

nodes is sufficient to support another node. This power and performance relationship is

further explored in Chapter 2.

1.2 Power and Overprovisioning

Many large data centers have a goal of managing instantaneous power consump-

tion. Although energy conservation is important, the physical infrastructure of data centers

is typically partitioned into a set of circuits. These circuits, allocated per rack, provide a

maximium quantity of available power. As a result, data center personnel assign equipment

to racks (provisioning) conservatively. Such management methods under utilize available

power; however, exceeding the circuit power capacity causes disruption in service. To avoid

this negative effect, managing instantaneous power consumption is often more important

than reducing energy consumption [43].

Complicating the delicate balance of maintaining a safe upper bound on power

consumption, significant variation occurs based on the state of connected equipment. A

server that boots needs near its maximum rated amount of power. In contrast, lightly

loaded and idle systems draw significantly less. An analysis of work performed and power

consumed facilitates safe overprovisioning (adding more equipment to racks than otherwise

possible given power circuit capacity). This benefit offers sites the ability to maintain peak
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performance within defined power limits.

The general concept of overprovisioning is not new in industry. For instance,

equipment exists to monitor aggregate power usage on a circuit. In addition, such equipment

handles disruptions by ensuring all connected devices are not powered on simultaneously

[7]. This hardware provides a means of reacting to power failures and monitoring circuit

health. By monitoring aggregate usage over time, additional nodes can be added to a circuit

by administrators. However, this equipment is not an effective solution to ensure the power

consumption of each node is adequately controlled with respect to the aggregate limit. This

requirement warrants the design of a framework for controlling power in an intelligent,

concerted fashion.

1.3 Contributions

This research makes several contributions. First, it introduces the idea of power

load balancing and motivates its necessity. Second, it establishes the need for and creates

a global power allocation mechanism to assign power non-uniformly in order to achieve

efficient application throughput. Third, it creates an implementation to control power

consumption within defined limits. Finally, it substantiates fine-grain task throttling as a

means of reducing power consumption with no hardware support. All of these contributions

are shown to be an efficient means of achieving power allocation for data centers with

minimal operating system modification. The system is effective for both homogeneous and

heterogenous architectures and it operates automatically, within proscribed constraints,

with minimal tuning.

With PICLE, a measured overprovisioning result reflects at least a 6% gain in

throughput while still remaining below an aggregate power limit. This performance gain

accounts for a static analysis done to ensure cluster nodes operate at the best gear (i.e.,

manual human intervention). In unmanaged environments, using the same test, the benefit

is in excess of 30%. In addition, utilizing a representative workload for a two minute

period, a non-uniform power allocation scheme is shown to increase throughput by over

16% versus a uniform power allocation mechanism. A uniform power allocation solution

is only applicable for environments with workloads that are equally distributed (or can be

made so with task migration).
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The remainder of this thesis is organized as follows. Chapter 1 contains an intro-

duction to PICLE and the problems it solves. In Chapter 2, the power allocation problem

and the strategy for overprovisioning is further refined. Chapter 3 presents related work

and differentiates this thesis from prior knowledge. Chapter 4 presents the PICLE design

overview and policy to solve the power allocation problem. Chapter 5 discusses the mech-

anism and how it accomplishes the goals discussed in the allocation strategy. Chapter 6

illustrates the measured results and Chapter 7 outlines conclusions and future work.
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Chapter 2

Power Limits

Many data center operators utilize manually intensive methods that are prone

to error to avoid exceeding circuit capacity. A conservative power management approach

ensures the maximum power consumption of all nodes never exceeds the global limit, G.

In such a cluster, this conservative approach dictates determining the maximum power

a single node might consume, Lmax. Data center personnel then subsequently deploy as

many similarly configured nodes as possible (i.e., n = b G
Lmax

c). In general, the maximum

power consumption of a node is much more than its average power consumption, Lavg.

Therefore, the conservative approach under utilizes power and artificially lowers the limit

to n · Lavg < G.

One can more aggressively deploy nodes; however, unsupervised overprovisioning

methods risk exceeding the global limit. Exceeding the limit will likely trigger a reaction

that reduces power consumption. This reaction could be as drastic as a circuit breaker

tripping or less severe such as requiring other manual intervention in the recovery process.

Both of these situations are undesirable, but are typically the normal plan of action in many

environments.

There are several high-level goals to power limit management and overprovision-

ing. First, any solution must function transparently with existing applications. Additional

application hints, as demonstrated in [6, 67] to save energy, might provide additional cluster

throughput gains or better power limit management. A solution that requires modifications

to applications to function is too restrictive. Second, any solution must also impose minimal
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processing overhead. Operating system modification and stability must be considered with

the additional intent to provide flexible policies outside the kernel as needed. Finally, any

solution must be easy to deploy, administer, and operate transparently with minimal con-

figuration or runtime adjustment. The runtime characteristics of available power, aggregate

usage, and other circuit metrics should be exposed to provide an administrative view useful

for provisioning or other decisions. For instance, a history of power utilization can be used

to determine the best time to perform maintenance to power infrastructure.

The aforementioned goals are complementary to energy conservation techniques.

The need to manage energy in data centers is important and can play a role in assigning

node power limits. However, in order to increase throughput a different policy is employed

and explored in this thesis. The same flexible PICLE mechanism, as discussed in Chapter

5, is useful in environments with a greater emphasis on energy conservation.

2.1 Allocation Strategy

Power allocation is approached from a central notion of two power limits. First,

a global limit exists as a result of technical or business reasons. The technical restriction

is due to either a limited circuit capacity or an inability to dissipate heat. The business

justification stems from reducing energy and infrastructure expenditures or as a result of

site limits (i.e., inability to add circuits in a high-rise office complex). The second power

limit, the local limit, is a node specific limit. These power limit abstractions are not specific

to servers, but cover any network enabled device connected to the same power circuit.

Figure 2.1 depicts the general strategy to overprovision circuits using power limits.

In a given interval, the total power available to all nodes is constrained by a limit of

450 watts. Each node on the left executes unconstrained and consumes 150 watts while

completing 1/3 of the total work target (each node operates at 100% of its capacity). In

contrast, the overprovisioned nodes on the right are restricted to 1/4 of the power limit so

consume 25% less power per node. If these nodes execute with a 10% penalty in original

work contribution, a reasonable expectation, these nodes provide a realized throughput

benefit of 20%. This example is presented for illustrative purposes, but it provides the

incentive to manage limits and overprovision power circuits.

If L denotes the power limit (expressed in watts) of a node in a given performance
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450 W Limit

150 W

150 W

150 W

100%

1/3 Work
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112.5 W

112.5 W

112.5 W

112.5 W

120%

3/10 Work

3/10 Work

3/10 Work

3/10 Work

benefit

target
work work

target

performed
work

Figure 2.1: Managing power to a 450 watt limit based on a 10% reduction in original work
and 25% reduction in node power.

gear, the total number of nodes on a power circuit with all nodes in the same gear is

n = bG
L c. If a node uses all of the power limit L in time t, the energy in joules is J = L · t.

The work performed in t, as a function of energy consumed, is then represented by the

function W (J). As a consequence, total throughput of all nodes is Wtotal = W (J) · n. The

energy efficiency per node, i.e., the useful work per unit watt over time t is, E = W (J)
J . The

overall efficiency of n nodes is Etotal = Wtotal
J ·n = E. Thus, the efficiency for a single node is

useful to model a similarly configured cluster.

Modeling theoretical power usage with L is simplified above for clarity. In prac-

tice, with varying workloads and heterogeneous components the maximum, minimum, and

average system power usage differs significantly. In addition, with multiple nodes and a

non-uniform power allocation requirement it is possible for these nodes to be in different

power states. However, a general relationship between L and W (J) provides the impetus

for increasing overall throughput in t. In general, as different gears are chosen to affect L,

there is a work benefit when ∆L > ∆W (J). With migratable workloads, the most effective

solution is to evenly distribute G dynamically (power fluctuations change G), as indicated

above, using an intelligent controller designed to not exceed L. Such a controller might

also turn off some nodes for greater efficiency. In other environments that cannot migrate

work, task demand and resulting power consumption is irregular so an adaptive solution to

intelligently control power is needed.
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Figure 2.2: Ideal relationship of work performed with a provided power limit in a fixed time
interval.

The previous relationship between work and the local power limit is idealized

in Figure 2.2. As L increases from 0 to X, the associated work performed also increases

from 0 to Y. However, this increase in throughput at a higher power consumption state is

typically less than the change in energy needed. This figure also implies the overprovisioning

relationship is only relevant when d
dJ W (J) < 1 when considering the slope of the tangent

at point (X, Y).

2.1.1 Local Power Limit

The locally assigned power limit for each cluster participant (i.e., server, router,

switch, etc.) is regarded as a mutual decision based on global constraints. Given the global

limit, each node is responsible for the suballocation of power at a fine-grain level. There

are several goals to local power allocation. First, as the demand for power exceeds the

local limit, no task starves as those with higher priority become favored. Second, operating

system changes must be simple and flexible so they are viable to implement across multiple
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architectures. In addition, service constraints should be enforced locally to ensure adequate

task progress is made as access to resources becomes limited. Finally, a solution to manage

consumption can utilize the inherent power and performance scaling features available in

devices. In addition, a robust solution might use these capabilities to complement a general

strategy to manage to a limit even without such features.

Thus, each participant operates within a derived maximum local power limit and

attempts to never exceed this limit within the defined time interval, t. It should be free to

choose where to set its own target usage, which differs from actual measured usage, based

on need, priority, or other relevant measures. If all participants know the target usage of

all nodes, the ability exists to account for power need in a global allocation mechanism and

reassign local limits for t + 1.

2.1.2 Global Power Limit

As each cluster node manages power consumption with respect to its target, it is

possible for a global power allocation mechanism to account for each node’s power need

based on the relative difference between its target usage and current local power limit.

This allows flexible policies to be deployed and facilitates a simple interface for global

power allocation. To allocate power globally, the global limit itself is either assigned by

administrative personnel or is dynamically provided by intelligent devices on the network.

For instance, smart racks or uninterruptible power supplies might supply the information

for autonomic operation.

There are several additional goals to managing power globally. The first goal is to

ensure that no node starves. Second, nodes must release and receive power according to the

defined mechanism fairly. The notion of fairness implies all nodes are well behaved. The

final goal is to ensure that as global power decreases below aggregate need, the mechanism

allocates available power effectively. Such allocation necessitates ensuring no node power

allocation falls beneath the minimum needed to handle its processing requirements. This

involves ensuring that excess power not utilized, yet potentially allocated to other nodes, is

redistributed fairly to power deficient nodes.
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2.2 Measurement Fluctuation

Managing a local power limit is subject to measurement capability and the error

due to minute fluctuations. As instantaneous fluctuations occur in a node due to device

power consumption, an optimistic strategy in software is to manage average power con-

sumption for a small time interval. In addition, cost-effective measurement hardware is

typically limited to a response time often in the range of one second. High-end measure-

ment solutions are cost prohibitive and onboard sensors do not exist on most nonmobile

computing devices. Such sensors, if added to servers and other devices, would likely still

provide a limited resolution.

As power fluctuations occur due to both resource demand and measurement lim-

itations, it is constructive to set bounds to ensure power limits are not exceeded. It is

also not useful to utilize true power as a point in time indicator. To this end, hardware

measurement solutions use root mean square (RMS) power to determine true power (i.e.,

measured power using watt meters) in subsecond granularity. The measurement then re-

ported by hardware reflects several thousand samples taken over the course of a second.

So an internal means in hardware exists to remove a degree of fluctuation in very small

time intervals. This abstraction is also useful to extend into upper layers of a power limit

management solution and is further discussed in in Chapter 4.
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Chapter 3

Related Work

The case for a closer relationship between the operating system and power man-

agement is explored in [64, 24]. Flinn and Satyanarayanan use goal-oriented feedback to

manage battery life in portable systems [31, 29, 30]. A similar approach of using feedback is

useful in PICLE to manage power consumption below a local power limit. Dynamic voltage

scaling to reduce power consumption was explored in [28, 33, 56, 59, 39, 9]. In [41], forecast

methods are used on a single node to minimize power consumption. Unlike this work, PI-

CLE automatically changes the forecast model based on the efficiency of past predictions

and seeks to boost throughput given available power.

A vast amount of research has been done for energy conservation (EC) on mobile

platforms [69, 5, 36, 23, 44]. In addition, while analyzing energy efficiency and operating

points in [50], the most energy efficient gear is determined to not always be the lower

performance point. The role of EC is consistent with the general goal of efficient power

allocation. Power represents the instantaneous energy used at a specific point in time and

energy is power usage in a defined interval. The PICLE strategy uses a notion of a node

power target. This power target could be derived from an EC policy; however, it is not a

necessary condition.

The case for a Super Dense Server (SDS) was explored in [27]. Dense servers offer

higher deployment density and lower power consumption. Using industry benchmarks, it is

shown that such dense computing techniques outperform CPU-bound electronic commerce

workloads by a factor of 2 for nearly the same space and power budget as traditional
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servers. In addition, results are similarly favorable compared to virtualizing a high-end

server to handle scaled-down workloads.

As tasks execute and power usage subsequently increases, a solution must exist

to throttle tasks to avoid exceeding the limit. Several different options exist for enforcing

restrictions on tasks. First, all tasks can be slowed equally, but this negatively impacts

aggregate performance. Second, groups of tasks can be slowed, but even this technique can

penalize some tasks. Finally, each process can be slowed to reduce power consumption.

This latter option offers the most flexibility and is a design choice in PICLE (in addition to

using DVS). Resource containers are a common approach to limiting access to devices [10].

In addition, the concept of resource principals are shareable across all cluster nodes using

resource containers on each node and a resource manager, as in [8]. Energy containers are

proposed and used in [12, 66] to regulate temperature. Task monitoring is also proposed

in [68, 47] to analyze utilization and perform a device shutdown when idle for both disks

and network cards. Workload monitoring and the observer architecture are proposed in

[13]. This framework is also used to estimate idle periods for dynamic power management.

Additional work in [21] detects idle periods in disks using an adaptive learning tree and

idle period clustering algorithm. All of this research complements the strategy in PICLE

to perform task restrictions to manage power usage below a local power limit.

In server farms, both disk and memory energy consumption is important. DRAM

based power management is explored in [22] using memory bank reference tracking in the

operating system scheduler. Those banks not being used are subsequently transitioned to

lower power states. For disk management, one study of four energy conservation schemes

concludes by stating reducing spindle speed is the only option for clusters [17]. DRPM is a

scheme to modulate the speed of the disk dynamically to save energy [34, 35] rather than

stopping disk rotation (the latter is useful in mobile systems). Both memory and disk power

management should be included in a comprehensive solution to manage power limits.

Power management in commercial servers is important for web servers [15, 43].

Much of this work relies on load balancers to distribute work or simulators to quantify the

benefit. An investigation of load balancing was done in [57, 58] to turn cluster nodes on or

off based on load. Additional research has also been done by Elnozahy et al. [26, 25] for

developing mechanisms for energy-efficient clusters using combinations of Individual Voltage

Scaling (IVS), Coordinated Voltage Scaling (CVS), and Vary-On/Vary-Off (VOVO) policies.

Although the VOVO policy is not considered in PICLE, its importance is less significant
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given an inability to migrate work. In [19], an economic approach is chosen to determine

the minimal number of servers required to handle a workload. Unlike [19], PICLE uses a

decentralized algorithm and seeks to increase throughput. In [63], Sharma et al. applies

real-time techniques to web servers in order to conserve energy and maintain QoS. Managing

to service metrics is an instance of a target power policy in PICLE once a power limit is

defined.

Research such as in [16] focus on uniform workload distribution with migratable

loads. This work has a contribution towards long and medium-term trends in the man-

agement of power limits for PICLE. The approach of estimating power consumption using

performance counters is taken in [11, 40, 32] and is complementary to the PICLE notion

of target power assignment. In addition, using program counters to lower a node’s power

need is useful in the context of identifying intra-node performance bottlenecks. Identifying

such occurrences may provide the opportunity for an additional power reduction in other

power-scalable components with no loss in throughput.

Besides general program counter data, a correlation of instructions per cycle (IPC)

and power is shown effective in [45, 46]. In a high performance processor, a dominant

part of power consumption is due to exploiting instruction level parallelism (ILP). As the

ILP increases, the processor becomes busier and there is a subsequent increase in power.

However, as the main pipeline stalls this leads to a lower IPC and clock-gating, which

reduces power consumption. A similar exploration of IPC and performance is done in

[20, 65, 55, 53, 54, 60]. In addition, IPC is utilized in [38] for an architectural simulator

for both dynamic energy efficiency and temperature management. In [42], Kotla et al. uses

IPC as a means of predicting future performance to schedule frequency changes in a server

cluster. A workload forecasting method is employed in PICLE; however, IPC is used solely

to identify higher power consuming tasks. In addition, rather than seeking to just satisfy

workload for the next predicted period, PICLE advocates increasing power to nodes to

boost aggregate throughput.
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Chapter 4

Theory and Design Overview

The general design approach to power distribution is encapsulated in the producer-

consumer model. The power producers are regarded as the suppliers of power to various

components. The producer at the local level, such as a server power supply, may in fact

be a consumer at the global level but the approach is conveniently generalized in a hierar-

chical manner. Thus, each device in the overall system fits in a hierarchy. The policies for

each power-managed device must be flexible enough to adapt to the unique demands for

services from that device. The interface between devices is through its budget and aggre-

gated at upper levels as applicable. The units of budget allocation align with measurement

methodology (watts).

4.1 Power Limit Policy

Global power allocation must be able to identify two main events. First, if a

node needs less power than currently allocated a means must exist to reclaim power it was

previously allocated. Second, as a node becomes power deficient, an additional signal is

needed to ensure more power is allocated given the global limit. Knowledge of the last local

power limit assigned for a node is not sufficient to recognize these events.

To ensure adequate power allocation during the two previously mentioned events,

the power limit management policy presented in this thesis expects a node to provide
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an idea of how much power it believes it needs to all other nodes. This is not its local

limit, as it is controlled with respect to the global power available. The power need is

determined by a node based on whatever policy it deems appropriate to include overall

demand, delay characteristics in an application, or other measures. Utilizing power usage

directly to quantify need would not be as effective as usage tends to fluctuate to such a

degree that decisions become unnecessarily more complex in global allocation. It is better

to ensure global allocation allows for coarse-grain adjustments if needed.

This notion of local node power need is easily quantifiable based on information

useful to manage power limits. As discussed earlier, in the context of measurement fluctu-

ation, utilizing average power in small time intervals is an adequate solution to managing

instantaneous power, P . To ensure such fluctuations can track a desired average usage, a

power target, T , is used as a means of codifying a local node goal for interval t. To ensure an

adequate bound on T , quantifying error on a per node basis is needed and is subsequently

termed as burst, B.

Intuitively, B is the additional quantity of power above T a node can utilize.

However, it is not regarded as the long-term average power consumption target. The burst

value might be changed by a node to reflect a trend in usage. For instance, on an idle

system, B might be very small (little deviation exists) yet on a very busy system with

highly variable power usage, this value might be large. Since both target and burst are

useful in managing actual power usage to a local limit, need is easily expressed as T + B

without any additional knowledge. If all nodes provide these values, the global allocation

policy can determine a desired minimum power need for the entire circuit.

Figure 4.1 represents the power usage of a single node over two time intervals. The

instantaneous usage fluctuates for both intervals, but for t+1 a local limit policy decreases

the power target. As a result, this is the signal in global reassignment to reclaim all or a

portion of the excess power this node had in interval t. To ensure a local node power limit

increases, the policy in reassignment is to always allocate available power to ensure sufficient

global reserve, but also allocate a portion above the need for each node. Thus, power need

can increase up to the point it reaches the assigned local limit. In this case, in the next time

interval this condition is detected in global allocation and a subsequent increase in the local

power limit is done if sufficient reserve exists. Maintaining a clear separation between T +B

and L provides additional flexibility in a power management mechanism. For instance, it

might be desirable to broadcast an immediate new burst value to a subset of hosts based
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Figure 4.1: Policy for managing local limits by dividing time into discrete inverals and
inferring local node need from its target and burst.

on their current values. By maintaining separation, such a condition is globally detected

and enforced.

This strategy in limit assignment accomodates a variety of different policies. For

instance, if energy conservation or controlling heat is a priority, the derivation of the power

target could reflect an assignment indicative of such a requirement. However, for simplic-

ity, the remaining discussion is restricted to managing instantaneous power and increasing

throughput. Because energy is power integrated over time, managing energy is merely man-

aging average power. Similarly, heat generation is a function of energy consumption and

can be dealt with in a similar manner.

4.2 Component Introduction

There are two primary autonomic managers within PICLE. First, the Local Power

Agent (LPA) uses feedback about power consumption to ensure the power of an individual

node remains below a defined local limit. The LPA regulates system power consumption

of a cluster node by changing the frequency and voltage setting of the microprocessor. In
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addition, for those systems without this capability and to complement the strategy of using

DVS, a fine-grain task throttling component exists to ensure consumption can be restricted.

This Task Governor (TG) utilizes runtime behavior to throttle tasks according to priority

and power consumption. Through the usage of TG and DVS, adjustments at runtime can

instantaneously reduce power consumption, albeit with some reduction in performance.

The second autonomic manager in PICLE is referred to as the Global Power Agent

(GPA). Its duty is to assign the local node power limit, based on the known global limit,

in order to achieve efficient utilization across all nodes. It collects data, projects future

performance, then in a non-uniform fashion allocates the available power in order to balance

system throughput. This allocation mechanism accounts for the service constraints that

exist across all nodes. In addition, a sufficient and administratively controlled reserve exists

for activities such as adding additional cluster nodes.

4.3 Managing Power to a Local Limit

The calculated, locally assigned power limit, L, for each participant in the network

is regarded as a mutual decision based on all node and global constraints (i.e., power

reserve). Using its assigned limit, a node is responsible for the suballocation of power at a

fine-grain level. A node attempts to manage its actual power usage given L, an output from

the GPA. To ensure any minimum service constraints are met, Lmin represents the power

needed to guarantee a minimum service level. In addition, Lmax is the maximum quantity

of power a node can use due to technical limitations (i.e., maximum node consumption

possible given connected devices) or to limit over consumption for business reasons. Thus,

the local node power relationship is governed by:

Lmin ≤ T + B ≤ L ≤ Lmax.

At the node architectural level, each device in a node has an interface to re-

lay or provide information related to power draw, available gears (i.e., DVS performance

states), as well as minimum and maximum power required directly to the power manage-

ment mechanism. Although elements of this are available in laptop systems using the ACPI

specification [37], future development of consistent interfaces to hardware should promote

similar hardware sensors and functionality for servers using the same methods.
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4.3.1 Feedback Control

A system level power feedback controller ensures a node manages consumption

with respect to its power target, T . The local power limit is regarded as an upper bound

on instantaneous power usage. For energy constrained sources such as batteries in laptops,

feedback is a useful technique to set a target and subsequently manage consumption [49].

For other devices that seek to manage average consumption within small intervals, it is also

useful by utilizing a circular sampling window of size w. As measurements are taken of

usage, P , the error from the target is ε = T − P .

The value for ε does not properly capture the notion of time. A deficit of 10

watts for a 3 second interval has a larger impact than the same deficit in just 1 second.

Thus, the controller calculates energy, in joules j, based on the power usage measurement

interval, j = t · ε. The previous error is then used in a Proportional-Integral-Derivative

(PID) controller [62]. In a PID algorithm, the proportional control provides the uplift, the

derivative helps eliminate overshoot from the target, and the integral corrects steady-state

error (i.e. ε does not change from t to t + 1). However, as a result of eliminating steady-

state error, the justification for w is observed as the need arises to bound the integral from

excessive aggregation (i.e., T is consistently larger than P ). Thus, with instantaneous error

known and gain constants G1, G2, and G3, the energy surplus or deficit per second is

e = G1 · jt + G2 ·
∫ t

t−w
j dt + G3 · (jt − jt−1).

It is now useful to use e as an indicator to control the overall performance of the

system. Based on a predefined threshold, if it is exceeded and e < 0 (implies excessive

usage with respect to T ) the system performance can be decreased. The inverse condi-

tion, e > 0, implies system performance can be increased as power usage differs from the

target significantly enough to warrant additional power consumption. Smaller thresholds

are preferred when comparing e and the deviation from T . This facilitates a tight bound

on T , but there are inherent limitations in hardware that prevent excessive state changing

from having a measurable effect. In addition, although L is the upper bound there are

delays to which new measurements provide effective information in future decisions. This is

discussed in greater detail in measurement fluctuation and may manifest itself in increased

and undesired utilization above L before local performance (and power) can be decreased.
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4.3.2 Resource Consumption Throttling

It is important to recall an assigned power limit accounts for a margin of error

above the target. The impact to an LPA is to ensure T + B does not exceed L. To

accomplish this objective, access to power consuming devices must be limited to ensure

consumption is managed appropriately. As the local power limit constrains performance,

access to a resource must also preserve task constraints. PICLE accomplishes this in the

LPA for the CPU using the Task Governor (TG). The objective of the TG is to ensure

that as power need exceeds L, local allocation is managed effectively by reducing the CPU

time that some tasks desire. This objective for the TG is complementary to using DVS;

however, the current PICLE implementation only uses the TG in systems without DVS or

clock throttling.

Without a TG, it is less likely power usage can be managed as close to, but

less than L. Program behavior can be very bursty with regards to computation. This

activity is likely to cause a similar effect in power consumption. An overly aggressive policy

of never changing to a higher performance gear, if L might be exceeded, does not favor

overprovisioning methodology. The approach with the TG is optimistic, as appropriate

reaction is taken after first determining P > L. There are certainly means to mitigate

this risk for more conservative environments. One such policy in PICLE is to increase the

per node B, as applicable, to provide a larger safety margin. A similar methodology for all

cluster nodes supports increases to the global reserve, R.

To keep in line with the original goals of transparency and no modifications to

applications, the TG makes use of two important concepts, task interval i and task skip s.

This allows tasks to be temporarily descheduled from the CPU run queue after a period of

execution, i, and later rescheduled after a specified quantity of time, s. This is done in the

operating system dynamically as tasks execute, but the assignment of i and s is left to an

external component from the LPA.

In the LPA, where power usage data is collected, it is possible to use the TG to

throttle tasks to a ratio of their original CPU utilization. To illustrate this feature, in a

simple scenario with one runnable task (i.e., it utilizes a majority of the CPU discounting

operating system overhead) in time period t, if i = s = 1 in t + 1 this task is throttled

to 50% of its original utilization. The ratio of s to i + s is subsequently referred to as the

reducibility factor f . In this example of f = 0.50, this reduction in CPU time may or may
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not correspond to an exact 50% reduction in CPU power. It depends on the task instruction

mix and the work performed in t + 1. If the solution were static, such an assignment may

hold and never warrant future adjustment. However, tasks go through phases in their

execution so this necessitates a dynamic solution to ensure a tight bound on L is enforced.

The preceeding example is oversimplified, as it is rarely the case just one task executes.

Thus, the estimate needed for task throttling is a bit more complex. In addition, having an

infinite number of values for f further complicates an assignment for any given task (both

in degrading and recoverying from different values of f needed to ensure L). These two

problems are further addressed in chapter 5.

For this to work in practice, a mechanism must also exist to prioritize tasks for

throttling. In addition, it is important to provide a task CPU utilization minimum to ensure

its service level constraint is met. The first precondition in TG is met by utilizing the

inherent, user or administratively defined task priorities rather than adding an additional

abstraction to what already works well within the operating system. In addition to inter-

priority classification, intra-priority distinction is made to first throttle those tasks shown

to be higher power consumers. This identification is handled by calculating instructions

per cycle (IPC) for all tasks and throttling those with a higher IPC first. If the work a

task performs does not change, even after task throttling it is not likely to reduce its IPC.

This is a result of an equal reduction in both the instructions that execute and the cycles

allocated to a task if the work is constant. Thus, a task with the higher power consumption

(with no change in demand) will continue to receive less CPU resource time until it reaches

its minimum. In addition, if a higher priority task is the cause for higher power usage,

low priority tasks suffer first but do not starve due to a practical lower bound used in the

absence of a task specific utilization minimum. A final point to consider is task time slice

times can differ signficantly, so just using IPC and any static encoding for reduction is not

satisfactory to determining the effect on power usage. Accounting for run lengths for each

task and the impact of f in t + 1 is necessary to ensure total reduction in CPU time is

accomplished.

For the TG to be effective, the degree of aggregate throttling must be indicative of

the error from L. This error, expressed in units of time t, is calculated as ω = (P−L
P ) ·t. The

goal of the TG is then to reduce task resource time to ensure the per task time reduction,

k, does not cause the utilization minimum for that task to be violated and the
∑m

i=1 ki = ω

where m ≤ n. PICLE currently has no mechanism to ensure this local condition holds;
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however, the global allocation scheme does provide a mechanism to ensure Lmin holds.

Thus, a sample policy is to dynamically calculate Lmin for t + 1 based on determining all

per task resource utilization minimums (or the global starvation threshold minimum). The

global allocation mechanism does not regard Lmin as a static quantity for each iteration of

local power limit assignment.

4.4 Global Limit Allocation for Clusters

With more than one node, power can be allocated to nodes non-uniformly. A

uniform allocation is best only when the workload (and application performance) is identical

on each node. PICLE dynamically and non-uniformly allocates power among nodes in order

to increase the aggregate performance of all nodes given irregular workloads. To make this

work in practice, time must be divided into discrete processing intervals and synchronization

is needed. At time t, the data for past intervals is evaluated for the next interval. From this

information, a forecast of expected work is calculated on each node. Given this knowledge, a

prediction is made of expected need for each node and is then used in the next reallocation.

Each node’s expected need is weighed in conjunction with the expected aggregate workload.

The global power limit itself is known and quantifiable based on circuit capacity.

Considering a given quantity of power to keep in reserve as R ≥ 0, the allocation problem

is to calculate L for each node i such that
n∑

i=1

Li + R ≤ G.

Furthermore, given knowledge of the workload demand for each node, increase the efficiency

in allocating available power for each node given the contribution of its work with respect to

the aggregate cluster demand, D =
∑n

i=1 Wi(Li). This problem is not solvable because work

performed for a given power limit changes dynamically and is not known a priori. Therefore,

PICLE first allocates as much of the available power as possible to keep G−∑n
i=1 Li small.

Second, an estimate is performed for the contribution of each node with respect to satisfying

Dt+1. This estimate ensures nodes with greater need have a higher priority. Finally, a

reassignment of all node local power limits is done for t + 1.

On successive iterations of the global power mechanism, the node surplus or deficit

is given by S+L−(T+B). The value S reflects the aggressiveness of global redistribution and
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L is a calculated output of the global allocation algorithm. A higher S value manifests itself

in assigning more of the available power after first assigning all node L values. Intuitively, if

L−(T +B) = 0, the node is effectively utilizing its allocation; likewise, if L−(T +B) < 0 the

node is using less power than desired so excess node power is available for reallocation. The

quantity S provides the ability for a node to increase consumption in subsequent iterations

if T or B increases.

Based on the estimate of aggregate global power need, if it is less than but close to

G, the predicted aggregate power need is used for the next interval. However, if the global

power limit is exceeded a reduction in one or more node power limits is needed. Selected

nodes lose power based on its expected change in workload and its associated contribution

to Dt+1,
∆Wi(Li)

∆G . In addition to insufficient allocation, if less power is needed than available,

nodes receive an additional allocation of power as a result of S > 0.

4.4.1 Preconditions

In order for the global allocation model to function, the following preconditions

must be satisfied. First, a mechanism is required to manipulate hardware power consump-

tion. This is accomplished using DVS or clock throttling. Second, a means of controlling

power locally at each node must exist. This condition is met in PICLE using an LPA.

Third, a system to forecast and track workload on all nodes must exist. In addition, an

estimation of the expected change of workload for each node must be made with an impact

on power allocation performed. Finally, any available excess power must be allocated to

ensure the global limit is not exceeded, yet nodes receive an appropriate value of additional

power indicative of demand. Previous chapters have provided detail to the first two points,

the next two sections discuss the latter two requirements in greater detail.

4.4.2 Forecasting Workload

Given the unique characteristics of power and throughput that exist in a cluster

environment, the general trend of work completed, Waverage, is determined based on short-

term demand historical data. Using this same information, a predicted value of demand,

Wpredicted, can also be calculated and utilized to forecast demand for the next interval

d =
Wpredicted

Waverage



23

Given current node power need, an approximation is now possible for the next interval

using:

A = (T + B) · d + S

The value A is bounded by several technical constraints. First, node power con-

sumption cannot exceed Lmax. In addition, a fundamental (if a node is to make any

progress) or explicit service constraint establishes a lower power limit lower boundary, Lmin.

In instances where G ≥ ∑n
i=1 Ai, all node limits can be assigned successfully with no node

receiving less than its desired power limit. However, if this condition does not hold, some

nodes lose desired power as a result of successive iterations of the algorithm. This node

power loss depends on its power need with respect to all nodes. Any node receiving less

power should experience increased local demand if its need increases faster with respect to

other nodes in future intervals. This, in turn, may subsequently cause additional increases

in its local limit as the power allocation method begins to balance aggregate power based

on demand throughout the whole cluster.

4.4.3 Allocating Available Power

As previously discussed, to provide an upward momentum for nodes to continue to

increase their power limit a quantity of global power may exist due to meeting all estimated

obligations for all participants. In the previous discussion, S is simplified to represent

the additional per node allocation. However, this additional power is not a fixed quantity

allocated uniformly across all nodes. Instead, S is regarded as an administratively defined

per node upper bound whose actual calculated value is dependent on Wpredicted and the

aggregate workload, Wtotal =
∑n

i=1 Wpredictedi . If available power, after allocating all new

local limits, is denoted as p, then

p = G−R−
n∑

i=1

(Ti + Bi) · di.

With p known, a node specific allocation for S can be found based on its work

contribution, c = Wpredicted

Wtotal
. It then follows that the per node additional allocation is S = p·c

and this value is used in the approximation A (S is bounded by the administrative limit).

Intuitively, S is determined from the fractional amount of total available power after meeting

all power need (i.e.,
∑n

i=1 ci = 1). To further illustrate the determination of per node S
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values, consider an environment with two cluster nodes, an available power quantity of 20

watts, and an administrative threshold of 15 watts. If each were equally contributing to

aggregate workload, the resultant per node S values are 10. However, if one node is idle and

its contribution is zero while the other node remains busy, the busy node receives 15 watts

and the other receives none. This example is simplistic because from an implementation

standpoint, Wpredicted is restricted to nonzero values. This is to avoid dividing by zero in a

completely idle environment as well as ensuring a minimum additional allocation is given

to ensure short-term, upward mobility for T in the LPA for the next interval.
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Chapter 5

PICLE Implementation

The PICLE implementation presents a framework that allocates power globally

and manages local node power consumption based on an assigned limit. In this chapter,

the measurement prerequisites are discussed that enable PICLE to function and the two

core components are covered in greater depth.

5.1 Measurement Requisites

A hardware solution to measure power must exist for any power control mechanism

to function. This is accomplished in PICLE using both digital multimeters and watt meters.

Custom software in PICLE allows core components and other tools (the command-line tool

mclient) to obtain current power readings from a user-level daemon process (mlogger). In

mlogger, client reporting and measurement device reading are in separate threads. In addi-

tion, mlogger starts a new thread to handle each client and once connected, a client issues

as many requests (without reconnecting) as it needs to obtain power usage information.

The mlogger utilizes a vendor independent core API and it supports querying four different

meters. There are no timing delays imposed by mlogger so data is read by it, and able to

queried by clients, at the rate the connected meter can provide.
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5.2 Core Components

Two autonomic managers comprise the core framework. Starting at the lowest

level, interface drivers provide the intelligence to determine and manipulate the state of

devices in a cluster node. Each node aggregates multiple drivers into a cohesive entity

referred to as the Local Power Agent or LPA (lpagent). It is the inter-device mediator

responsible for determining the power consumption target, T , given a locally assigned power

limit, L. The LPA selects device gears to meet the power consumption target or uses the

Task Governor (TG) to perform task throttling. A message queue is used by the LPA

as a logical bridge to device drivers as well as for other external requestors, as further

discussed below. This message queue facilitates loosely coupled communication between

each device and the general LPA controller through standardized functions (i.e., shift up(),

shift down(), etc.).

The second major software component in PICLE is the Global Power Agent or also

referred to as the GPA (gpagent). The GPA is responsible for the coordination and inter-

change of relavent messages between nodes. It analyzes the state of the cluster and makes

appropriate requests to the LPA using the message queue and shared memory. Communi-

cation between multiple GPAs is done using a group string identifier specified on startup.

This identifier is subsequently referred to as a Power Management Group (PMG). The GPA

learns the state of all other nodes by broadcasting to and receiving data from all nodes in

its PMG. There is not a one-to-one correspondence between a PMG and subnet; however,

PICLE limits PMG nodes to the same broadcast network. In addition to receiving state

information of all other nodes, the GPA responds to other general requests. These mes-

sages include administrative control requests (i.e., assigning a new global limit) as well as

other message types. Both the GPA and LPA are implemented as separate, non-priviledged

daemon processes.

The interaction of both the LPA and GPA is depicted in Figure 5.1. The GPA

calculates and assigns the local power limit based on external information provided by all

nodes in the PMG (along with knowledge of G). The LPA is responsible for ensuring the

target power of an individual node is managed, subject to its GPA-assigned local limit.

Each of these components must run on each node in the cluster.
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Figure 5.1: Relationship of power management groups, agents, and power-managed devices.

5.3 Local Power Agent

The LPA may not have, nor be cognizant of, power-scalable devices. It simply

controls power consumption through the device interface layer given the exposed device’s

functionality. It is also the entity responsible for obtaining power usage data available from

external sources (i.e., directly from a meter or through ACPI). The long-term goal of the

LPA is to manage all devices, but the remaining discussion is confined to just the CPU

given the current progress in PICLE. The default gear for the CPU is fastest and has the

highest frequency and voltage setting. Because it is the default gear and all processors

have a top gear, this performance state is denoted as gear 0. All other gears have less

performance with lower frequency and voltage settings. Thus, the gear number increases

as the frequency and voltage decrease. Logical LPA components are shown in Figure 5.2.

Each of these is discussed in greater detail in the following sections.
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Figure 5.2: Logical entities and communication with the Local Power Agent.

5.3.1 Target Power Determination

The LPA derivation of T is flexible enough for different policies to be implemented

without disruption to the power limit mechanism, as discussed in Chapter 4. In PICLE,

the target power policy advocates overprovisioning so T = L − B. This is not always the

best option. For instance, a robust mechanism could reduce T , with potentially no loss in

overall performance, if task progress is limited by memory or I/O bound tasks. In such

a case a reduction in CPU performance is possible, with no likely performance impact, if

measured power usage, P , is consistently less than L. In addition, overprovisioning has the

potentially negative impact of always maximizing power, subject to other constraints (i.e.,

power reserve R, all node Lmax values, etc.). However, as the number of nodes increases

the global power allocation policy will make intelligent power adjustments as discussed in

Chapter 4.

The treatment of the local power limit is regarded as a soft upper bound on in-

stantaneous power usage. For instance, as the global power limit changes due to underlying

power disruption, it might take several seconds for the new local limits to become stable
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given the magnitude of change. Given the design of the feedback controller discussed in

Chapter 4, the sampling window size is 30 seconds. To prevent excessive gear switching and

allow stabilization, a minimum of 5 seconds between changes is enforced in the feedback

controller. This delay also helps mitigate the differing capabilities of CPUs (their subse-

quent ability to transition to different gears). In addition, the feedback threshold is set to

20 joules and is the value compared to e, the energy surplus or deficit that triggers gear

changes. These values are tuned according to empirical observation.

5.3.2 Feedback and CPU Task Throttling

As stated previously, the Task Governor (TG) could work in connection with,

or in isolation of, an DVS or clock throttling mechanism. The current implementation is

restricted to using the TG in the absence of any other CPU control capability. Control of

both DVS and task throttling is accomplished via startup options to lpagent.

5.4 Task Governor

For the TG to operate, task-level kernel data is required and an additional compo-

nent is needed to assign and regulate task CPU time. To support these two requirements,

two separate kernel modules are implemented whose interfaces are through /proc file system

entries. The first module facilitates the collection of performance counter data in a Per-

formance Monitoring Counters Module. The second module enacts task restrictions and is

referred to as the Resource Controller Module. Each of these modules exists and functions

in isolation of the other. The TG aggregates their respective functionality into a cohesive

entity for the LPA. The TG is discussed in greater detail after first providing the details

for the two aforementioned kernel modules.

5.4.1 Performance Monitoring Counters Module

To support the collection of task data, modifications to the linux scheduler are

needed in schedule(). These changes include calls into the Performance Monitoring Counters

Module (pmc) to support pre-task and post-task context switching functions. The pmc

module manages an internal memory buffer to store data. This data is retrieved by the TG
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based on the power usage sampling interval. The only processor event configured by the

TG is to monitor instructions (only AMD events [2] are currently supported). However,

the pmc buffer facilitates the collection of all relevant task information. This data includes

the processor ID, command name, process ID, user ID, task priority, time stamp counter,

and the task runtime. Task runtime is obtained using the Power Management (PM) Timer,

which provides good precision during frequency and voltage changes. As this kernel transient

buffer fills, if a threshold below its maximum size is reached the pmc module will send a

signal to the LPA to force a buffer read. In pmc, performance counters are reset prior to

starting a new task and read right after that task completes. Thus, kernel overhead is not

counted in task metrics; however, kernel threads assigned a process ID are dealt with just

like any other task at this layer.

5.4.2 Resource Controller Module

The Resource Controller Module (rcontrol) requires changes to the kernel task

structure to incorporate two additional fields to throttle tasks. In addition, scheduler

changes are done in sched fork() to initialize these values and in sched exit() to perform

cleanup. An additional kernel modification to support rcontrol is needed within the timer

core code in the function update process times(). This function is called from the timer

interrupt handler to normally charge one tick to the current process. Due to this modifica-

tion, rcontrol facilitates fine-grain throttling given its per tick check to determine if a task

should continue to execute.

The interface of rcontrol to TG is in millisecond precision. To limit processor time,

a task skip, s, and interval, i, are used to reduce the cpu time a task is eligible to execute.

Given available precision in rcontrol, s = 1 and i = 1 correspond to a 1 millisecond skip

and interval. These values are converted to jiffy 1 measurements to provide appropriate

reduction and accounting in the kernel scheduling process. As task restrictions are fed to

rcontrol from TG, a hash table is updated based on process ID. This table only contains

restrictions for throttled tasks so lookup overhead is minimal. In addition, the lookup is

only needed if a task has no currently assigned i value.

To throttle tasks while executing, a wait queue is utilized when a given task
1Basic measure of kernel time in the scheduler. It is related to HZ, the basic resolution of the operating

system.
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i expires (i.e., it is decremented per tick). Once this occurs, the task status is set to

TASK STOPPED and the scheduler is notified this task should be descheduled (it cannot

be rescheduled directly due to handling the timer interrupt). In order to wake a stopped

task, its task interval is set to the future time it is eligible to be runnable (i.e., current time

plus skip). A background kernel thread executes periodically whose execution delay is the

minimum of the smallest task skip not woken in the last processing interval or a default time-

out. As tasks are determined runnable by this background thread (i.e., by noting their time

stamp in i), their status is reset to TASK INTERRUPTIBLE. After all tasks in the wait

queue are examined, the standard kernel wait queue function wake up interruptible all() is

used to wakeup those tasks designated as interruptible. In PICLE, there are no special

provisions for real-time or other tasks that might require special handling.

5.4.3 Details of Operation

The pmc buffer is normally read based on the power usage polling interval in the

LPA. Given that a task is sometimes scheduled in excess of a hundred times per second

(number of context switches), measured data is accumulated efficiently using hashing by

the TG (the number of tasks is orders of magnitude smaller). With this aggregate data,

appropriate task throttling is now performed by creating a sorted array ordered first on

priority, then instructions per cycle (IPC). Next, the CPU time reduction, ω, is calculated

and if ω > 0, deficit handling is done. Otherwise, a time surplus exists and existing task

restrictions are removed or adjusted as needed. Since CPU time recovery is the inverse of

any task time restrictions put in place (i.e., proceeding in the opposite order with a similar

algorithm), only the reduction algorithm details are further discussed below.

Using ω and the sorted list of tasks, a step down algorithm is implemented until

ω ≤ 0. If a new task is about to be throttled (i.e., it has no current f), the value for

f is calculated based on the ratio of ω and its runtime, r, with respect to the power

polling interval (i.e., f = MAX(1, ω
r )). With f , a precomputed lookup table is accessed to

determine s and i. From this, a rate of throttling change, h, (h = f in the first iteration)

is found and used to project the amount of task drop (milliseconds) it is predicted to

experience, d = r · h. Thus, ω = ω − d and this process continues until ω is zero (with

this task or other tasks). If a sorted task is already throttled, its existing throttling level is

stepped down one reducibility factor at a time (h = ∆f). Note, as this step down algorithm
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iterates with the same task, its runtime is adjusted r = r−d. In addition, the step algorithm

facilitates a tight bound on any task utilization minimum constraint. For simplicity, TG

maintains a global minimum to prevent task starvation.

In the algorithm used by the TG, certain tasks may be excluded. For the purposes

of PICLE and obtaining results, those tasks owned by root along with PICLE tasks are

excluded. The relationship between i and s is important. Having an i too long might

not break a task into small enough increments to have an associated power reduction (if

it is, or part of, the cause for high power usage). Thus, this assignment is not as easy as

simply incrementing s or decreasing i independently. The dependence of these values and

the associated f is further discussed in Appendix A.

5.5 Global Power Agent

Each node’s GPA assigns the local power limit, L, based on information received

from all nodes (including itself). This limit is calculated using knowledge of the administra-

tively defined global limit, G. This global limit is assigned to all PMG nodes with a support

tool. For reliability and scalability, each node’s GPA is responsible for determining its re-

spective L. Although explicit trust exists for well-behaved nodes, this precondition should

be acceptable in most managed environments. All nodes in the PMG are synchronized by

periodic UDP broadcasts. Nodes are added or removed from the subnet with corresponding

changes done automatically to local power limits in the next time interval. Because the

algorithm is shared on all nodes, each must have a notion of the current state of all other

nodes. However, the only relevant output of the global allocation algorithm for the LPA is

L.

The logical components of the GPA are shown in Figure 5.3. All relevant LPA-

GPA shared data structures are contained in memory managed by the LPA. Thus, the

GPA is restartable with no immediate adverse impact; however, the state of the cluster still

depends on the data sent and received by the GPA. A GPA that restarts does not make any

local power limit changes while it relearns cluster state. The global allocation mechanism

considers its restart as either a new cluster addition or an update to the last state of the

node based on an administratively defined retention time. Network disruptions can hinder

the algorithm from proper operation. In such instances, there are likely other prerequisite
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Figure 5.3: Logical entities and communication with the Global Power Agent.

recovery steps and notification systems in place. Given a catastrophic network disruption,

the last known state of all cluster nodes is used during the retention period. So in this case,

reallocation of power is unlikely to significantly differ as the state of all nodes only changes

when new information is available. A more conservative policy is to transition nodes to

their lowest power consumption state. To account for several short-term failures, the value

for the power reserve, R, in global allocation can be increased.

5.5.1 Power Management Groups

To allow for multiple logical assignments and allocations on the same broadcast

subnet, a cluster identifier is configured for each GPA on daemon startup and is referred

to as the PMG. In normal operation, there is a one-to-one correspondence between the

physical power circuit and the PMG.

The cluster data structure to manage the PMG is an AVL tree, so tree operations

are bounded by O(lg n) where n is the number of PMG nodes (non-member broadcasts

are simply ignored). Another important facet of this structure is a consistent (i.e., sorted)

handling of processing in the allocation. A dedicated thread is responsible for receiving UDP

packets describing the state of other nodes in the PMG as well as reacting to administrative

requests (further explained below). This thread uses select() with a timeout to prune
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the tree based on the time stamp of the last broadcast received for a cluster node and a

predetermined maximum broadcast retention value.

In PICLE, the retention time is 30 seconds and the broadcast rate is once per

second. It is important to note the trade-off in retention time. Removing data too soon

might adversely impact the state of power allocation. For instance, a server may temporarily

lose network connectivity yet still remains powered and connected to the circuit. In addition,

having a retention time too large might impact efficient allocation. In normal maintenance

or to complement other policies (i.e., controlled shutdown if work is migrated to another

node), servers are intentionally removed from the power circuit and should therefore increase

the available power for other PMG participants. As a result, retention time should be

balanced to reflect an appropriate site policy.

5.5.2 Broadcast Messages

There are two types of broadcast messages sent to participants in a PMG. First,

broadcast utilization data packets are sent containing a node’s power and current workload

information. The power data consists of Lmin, Lmax, B, and T . The workload information

consists of the number of tasks running or runnable since the last broadcast. As the server

workload increases, this number subsequently increases. The preceding data metrics can be

easily modified or extended should the need arise.

In addition to broadcast data packets, administrative messages can be broadcast

to all PMG nodes. Such notifications consist of modifications to the overall power limit

as well as provisions for setting an immediate administrative limit for all nodes used by

a support tool. Membership in a PMG is further refined to be either active or passive.

In passive mode, broadcasts are sent and received as normal, but inbound administrative

messages are ignored. In active mode, the node responds to administrative messages. This

capability is exploited by a monitoring tool, as noted below.

Workload data is fed into a dynamic programming solution that updates the most

recent forecast for the next interval as new node data is received. The number of data

points kept for statistical significance is configured at compile-time. Empirically, ten data

points provide a reasonable short-term approximation and this is the minimum needed for

the GPA to begin local power limit management. The current implementation is focused

on short-term prediction, but a more comprehensive solution should account for hourly,
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daily, or longer trends. Multiple estimation models are used by the forecast algorithm

simultaneously. At the point the node forecast is needed for the next time interval, a

quick sort is done based on mean square error (MSE). The lowest MSE represents the best

forecast.

5.5.3 Linear Programming Solution to Global Allocation

The need to maximize the total power used in the cluster given the current and

forecasted workload under a set of constraints is actualized as a Linear Programming (LP)

solution. This is a multi-step process and is informally defined as follows:

1. Based on the broadcast data of all nodes, calculate the aggregate workload for the

entire cluster, Wtotal.

2. For each node, determine its contribution, c, to aggregate workload. Changes in c will

reflect a gain or loss of power from the prior interval.

3. Next, calculate the local power limit subject to all node Lmin, Lmax, B and T values.

4. For each node power limit, bound its value by the maximium approximate node power

value, A. This value accounts for all cluster demand and provides additional power

above T + B.

5. Finally, ensure a sufficient reserve, R, is kept and the global limit, G, is not exceeded.

The informal steps outlined above are translated into the LP model shown in

Figure 5.4. It is important to recognize this model is infeasible if
∑n

i=1 Lmini > G. One

policy to handle this occurrence is to perform a controlled shutdown of all or some nodes

based on quality of service constraints, minimizing lost revenue, or some other measure. In

PICLE, such an instance is not inherently addressed in the implementation.

The outputs from the LP model include the current total power consumption,

O ≤ G, as the solution to the objective function. In addition, the amount of power after

allocations are made and the minimum power needed to meet all node constraints is de-

termined,
∑n

i=1 Lmini . The critical output though is new local power limit for the LPA in

the next time interval. This is found by saving the offset for the node within the objective

function as the model is built at runtime. It is important to notice that A accounts for
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maximize:

∑n
i=1 Li

subject to:

Li ≥ Lmini

Li ≤ Lmaxi

Li ≤ Ai∑n
i=1 Li = G−R

Figure 5.4: LP model to maximize G and assign Li ∀i ∈ [1, n].

the relative power need for each node (either surplus or deficit). Thus, each nodes LPA

indirectly decreases or increases L by adjusting T or B. In addition, the upwards pres-

sure of both Wpredicted and the administratively assigned upper threshold set for S provide

additional power to nodes. For ease of reference, all notation in Figure 5.4 coincides with

variables discussed in Chapter 4.4.

Given the model in Figure 5.4, a linear programming solver [14] calculates the

outputs using the simplex method. All values are considered to be real, continuous values

within their respective bounds. The solver is embedded directly in the GPA (runs in-

process) and the model is built dynamically using current cluster data. Rather than add

additional constraints for Lmin and Lmax, lower and upper variable bounds on L are used

to limit the number of true constraints. This reduces the internal model size and solves the

problem more efficiently. There is no technical limit to the number of constraints (i.e., only

one additional solver constraint is needed for each node) and a timeout of 1 second is used

for generating suboptimal solutions.

5.6 Support Tools

Although the long-term intent of PICLE is to be totally autonomic in operation, it

currently utilizes two support tools to send some messages and monitor cluster activity. The

Agent Controller Tool (agentctl) provides a command-line interface to send messages to the
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Local and Global Power Agents. The Cluster Monitor Tool (dashboard) receives broadcast

data and monitors the state of the entire cluster. Each of these tools is now discussed in

greater detail.

5.6.1 Agent Controller

For administrative control of a given node, a tool exists to interface directly with

the LPA (as does the GPA) through shared memory or by using the message queue. For

remote requests, the tool communicates indirectly through the remote node’s GPA using

Remote Procedure Call (RPC). The RPC interfaces are platform independent and handle

argument marshalling and unmarshalling (i.e., host-to-network and network-to-host con-

versions). This tool faciliates setting an immediate and administrative local power limit for

all nodes. In addition, it is the only tool available for broadcasting the global power limit

to the Power Management Group (PMG).

5.6.2 Cluster Monitor

Similar to the handling of messages by the GPA, the distributed allocation al-

gorithm is also utlized in a console, curses-based monitoring tool (dashboard). This tool

utilizes the broadcast data to monitor the state of either a specific PMG or all nodes on

a subnet. Per the cluster participation modes previously discussed, dashboard listens in

passive mode. If it executes on the same node as a GPA, it automatically connects locally

to that GPA to receive broadcast data via a named pipe. Thus, the GPA monitors the

state of connected dashboard clients in addition to waiting for network requests in the same

thread. As broadcast data is received by the GPA, it is routed to every connected dashboard

client. If dashboard is run on a non-cluster server (i.e., a non-GPA managed node), it simply

listens on the broadcast port for data analogous to a GPA. This tool displays the current

state of the entire cluster and can ensure all nodes properly adhere to the power allocation

strategy.
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Chapter 6

Results

6.1 Architecture

To evalute PICLE, a cluster of ten servers was built using frequency scaling pro-

cessors. They were assembled using the following hardware: 40 GB Maxtor EIDE 7200

RPM disk drives, ASUS K8V motherboards (on-board 1Gb NIC), 1 GB of PC3200 DDR

SDRAM, and an AMD64 3000+ CPU. All nodes were interconnected on a dedicated 100

Mb switch. The entire cluster used the Linux 2.6 kernel. For frequency and voltage scaling,

the AMD PowerNow cpufreq module was used. Modifications were done to this module

to augment the ACPI device tables from the BIOS. These modifications, along with the

original settings, are illustrated in Table 6.1. The CPU power usage in this table is from [3].

Measured system power at each of these gears is discussed in greater detail in Appendix C.

6.2 Microbenchmarks

To quantify the efficiency and performance of PICLE, a series of low-level bench-

marks was performed. The first reflects the implementation cost of switching to different

gears. This cost was measured by first constructing a kernel module to utilize the cpufreq

notification mechanism to determine the internal kernel cost for state changes. This kernel

cost is discussed in greater detail in Appendix B. To measure the implementation cost,
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Gear Frequency (MHz) Voltage CPU Power
0 2000 1.5 89
1 1800 1.4 66
2 1600 1.35 added
3 1400 1.3 added
4 1200 1.2 added
5 1000 1.1 22
6 800 1.0 added

Table 6.1: Assignment of gear to frequency and voltage values for the CPU used in DVS.
All gears added to the default BIOS table are identified in the power column.

agentctl was used to control gear changes and the kernel time is subtracted from the total

time. The measured time values from the LPA ranged from 23 to 363 microseconds. A

change to a gear either either one above or below from the current gear was the most effi-

cient. This result supports the incremental model (discussed in Chapter 5) used to maintain

the power target in the LPA with DVS. Nevertheless, the maximum overhead imposed by

the LPA is negligible and in the worst case, represents only 6.5% of the total time cost to

switch gears using cpufreq. The cpufreq module handles the low-level architectural details

to control the frequency and voltage in the CPU.

There is additional overhead to connect and disconnect from shared memory, as

measured using agentctl. This ranged from 164 to 242 microseconds and the GPA only

incurs this cost once when first started. For the GPA, broadcast UDP packets sent by

each node are 152 bytes. This includes a fixed size 20 byte area for the PMG identifer,

adjustable at compile time if needed. In addition, packets contain extra argument type and

size information so low-level payload details can be verified for integrity and unpacked from

the buffer area. These packets incorporate all the relevant metrics discussed in Chapter 5.

In addition, current power usage and local power limit are also sent and provide a means

for the dashboard monitoring tool to maintain compliance and track trends.

The overall CPU time requirements for the system are minimal. Over the course

of a 10 minute period on a single node (samples taken every second), the CPU utilization

and memory used for the LPA and GPA was logged using top. Using this tool, measured

CPU utilization for both agents was negligible. In addition, the average virtual memory

required for the LPA was 170 kb and the GPA required 1.84 MB. The latter value is largely

due to the size of the linear programming solver library (1.39 MB).
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The kernel memory costs for the Resource Controller Module (rcontrol) and Per-

formance Monitoring Counters Module (pmc) were 396kb and 450kb, respectively. The pmc

module includes an internal 128kb buffer for logging task data. Using the LPA, the time to

transfer and process this buffer in the Task Governor was measured every second for a 10

minute period on an idle system. The average time calculated for this period was 9.8 mil-

liseconds. As this result and all previous microbenchmarks show, the processing overhead

to run PICLE is minimal. The next topic of exploration is an analysis of overprovisioning.

6.3 Overprovisioning Benefit

To examine the nature of the trade-off between throughput and power, a series of

synthetic CGI [18] programs were constructed and run using an Apache 2.0 web server. The

httperf [51] tool was used to generate a sustained workload using four cluster nodes config-

ured as request clients. A single web server was setup to handle requests and clients were

configured to overload the server based on a request timeout of five seconds. When the ag-

gregate number of errors for all clients exceeded five percent, the throughput was considered

maximized for that performance gear. For the time alloted for a benchmark (30 seconds),

the average system power consumption was calculated using multimeters. Extrapolations

based on single node measurements are used to show the benefit to overprovisioning.

An additional cluster node controlled the request clients and collected power read-

ings. All results notation depicts the highest performance gear (and highest power con-

sumption gear) as zero. A consistent theme emerges from the synthesized benchmarks.

The highest power consumption gear does not have the highest performance (i.e., through-

put) per unit power. To illustrate this difference in throughput with respect to power usage,

consider Figure 6.1. It shows the resultant increase in power from gear 1 to 0 is approx-

imately 12.57%; however, the throughput gain is only 6.25%. In contrast, the increase in

throughput from gear 6 to 5 is 25% with only a 6.19% increase in average power usage.

Table 6.2 depicts the raw data collected in this benchmark.

Using the data in the previous result, it is possible to show a reduction in the

CPU performance gear and an increase in the number of nodes can decrease aggregate

power consumption. This is shown by a simple example and the data in Table 6.2. If the

service requirement states the desired throughput is 36000 connections in 30 seconds with
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Figure 6.1: Power and performance trade-off in a CGI synthetic benchmark program (using
merge sort) run by Apache.

a client request timeout of 5 seconds, 5 cluster nodes meet this requirement running in gear

4. Assuming this cluster has work evenly distributed to each node, the total power usage is

approximately 5 · 97.66 = 488 watts. Four similarly configured servers (without managing

the power proactively) could also service this same load; however, the total power usage is

4 · 136.63 = 547 watts. This example illustrates a decrease of about 11% in total power

needed.

The preceding example uses an increase in nodes to show the benefit in conforming

to a lower power limit. In addition, this same data is used in Table 6.3 to reflect additional

gains in throughput. Extrapolation begins with four nodes and the gear represents a static

assignment done on all nodes. The indicated aggregate throughput and power values are

calculated using the respective values from Table 6.2 multiplied by the number of nodes.

Notice the greatest gain in work performed is at gear 3 and is nearly 13%. This gain is

despite the 70.25 watts of unused power due to under utilizing the global limit of 600 watts.

This unused power represents a loss in throughput without a more proactive means of power

allocation (i.e., PICLE).

The prior example helps motivate overprovisioning, but it does not reflect the
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Gear Throughput Change Power Change
0 10200 6.25% 136.63 12.57%
1 9600 14.29% 121.37 7.65%
2 8400 7.69% 112.74 6.41%
3 7800 8.33% 105.95 8.49%
4 7200 20.00% 97.66 6.66%
5 6000 25.00% 91.56 6.19%
6 4800 86.22

Table 6.2: Power and throughput details for the merge sort CGI. Power is measured in
watts and throughput is the total number of connections.

Nodes Gear Total Throughput Change Total Power Error
4 0 40800 546.52 53.48
4 1 38400 -0.06% 485.48 114.52
5 2 42000 0.03% 563.70 36.30
6 3 46800 12.82% 529.75 70.25
6 4 43200 5.56% 585.96 14.04
6 5 36000 -11.76% 549.36 50.64
6 6 28800 -41.67% 517.32 82.68

Table 6.3: Throughput gains with a 600 watt power limit and static gear assignment. Power
and throughput are extrapolated using the individual results from the proceeding table.

strict representation of all applications. Of the 10 benchmarks created, 9 exhibit the general

trend depicted in Figure 6.1. An exception to the high difference of power and throughput

at gear 0 was exhibited in one benchmark. The resulting power and throughput relationship

in Table 6.4 shows an even larger gain in throughput at lower power gears (i.e., 6 to 5)

than the preceeding example. However, the benefit of the reduced power gear 1 (from 0) is

not as pronounced 1. In this example, the benefit in throughput and power is nearly equal

until the lower gears starting at gear 4.

Another important result emerged from one benchmark and is shown in Figure

6.2. Note the minimal difference in throughput from gear 3 to 2. Unfortunately, there is

a 6.21% increase in power usage for this same transition (the raw data is not shown for

brevity). The data does reveal the lower bound overload threshold was just exceeded for

gear 3, but the upper bound prevented gear 2 from additional gains. With knowledge of
1Sort-based benchmarks used the same quantity and distribution of items in all algorithms.
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Gear Throughput Change Power Change
0 10800 12.5% 140.87 11.40%
1 9600 6.67% 126.45 6.87%
2 9000 7.14% 118.32 6.06%
3 8400 7.69% 111.56 8.23%
4 7800 18.18% 103.08 7.84%
5 6600 37.50% 95.59 6.91%
6 4800 89.41

Table 6.4: Power and throughput details for the insertion sort CGI. Power is measured in
watts and throughput is the total number of connections.

this result a power management policy should select the lower power gear.

6.4 Local Power Agent

The central idea of the LPA is to manage average power consumption for small

time intervals. This is done to show an aggregate throughput gain is possible by increasing

the number of nodes and ensuring average power is well utilized beneath the local power

limit. To verify the efficacy of the LPA, the merge sort CGI was used as a representative

benchmark to calculate two data sets. In the first, a 1500 watt limit is established and

extrapolation starts with 10 nodes. Starting with 10 nodes allows an interpolated point

to occur between each static gear assignment. These interpolated points are calculated by

finding a power target for the local controller such that T = G
n . With the 1500 watt limit,

each increase in n ensures a new controller power target exists between two consecutive

gears. In the second data set, a 550 watt limit is used and extrapolation starts at 3 nodes.

Table 6.5 depicts these two calculated data sets. Total throughput for this table is found

by subtracting the number of errors from the total number of connections. This was not

done in the previous overprovisioning examples for simplicity (PICLE was not used).

With the two data sets just constructed, throughput and power measurements were

taken while the LPA managed power according to the calculated power target values from

Table 6.5. A sustained load was applied for 30 seconds and throughput was considered

maximized based on a 5 second timeout using 4 cluster nodes as request clients. The

measured results of the LPA managing usage to the calculated power target are shown in
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Figure 6.2: Power and performance trade-off in a CGI synthetic benchmark program (using
a prime number generator) run by Apache.

Table 6.6. The last column labeled error is the node measured average power subtracted

from the ideal power target in Table 6.5. The total power and throughput are calculated

based on the single node value multiplied by the number of nodes.

Figures 6.3 and 6.4 illustrate the benefits of overprovisioning using the LPA. These

figures are created based on the data from Tables 6.5 and 6.6. There are two lines depicting

throughput, one for a single node and the other for the extrapolated aggregate value. As

expected, the individual throughput decreases as available power is reduced. The aggregate

throughput curve shows the performance of the cluster. As the power decrease crosses

a vertical bar, another node is supported within the power limit (this is the ideal power

target in Table 6.5). It is important to notice that in both Figure 6.3 and 6.4, the aggregate

throughput increases at some points even though the individual node performance decreases.

In Figure 6.3, throughput is highest with 12 nodes with an average power consumption of

about 136 watts. With Figure 6.4, throughput is highest with 5 nodes and an average

consumption of about 110 watts.

The raw data in Tables 6.5 and 6.6 show there is a 7.15% gain in throughput

between gears 0 and 1 for 11 nodes. In addition, there is a 6.69% gain in throughput
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Gear Nodes Total Throughput Total Power T = G
n

0 10 209150 1418.10 150.00
1 11 212256 1396.78 136.36
2 12 215184 1464.32 125.00
3 13 208169 1446.12 115.38
4 14 201306 1440.32 107.14
5 15 173415 1440.30 100.00
6 16 143072 1443.68 93.75
0 3 62745 425.43 183.33
1 4 77184 507.92 137.50
2 4 71728 476.96 137.50
3 4 64052 444.96 137.50
4 5 71895 514.40 110.00
5 5 57805 480.10 110.00
6 6 53652 541.38 91.67

Table 6.5: Fixed gear throughput, aggregate power, and target node power usage, G
n . The

first data set is with a global power limit of 1500 watts; the second set is with a limit of
550 watts.

between a staticly assigned gear 2 and the LPA using 12 nodes (after gear 2 there is no

resultant benefit to increasing the number of nodes). Additional consideration must be

taken for environments that do no proactive management of power. In such a case, only 10

nodes can exist under the limit (all nodes run at maximum power) so the throughput benefit

of the LPA using 12 nodes is 9.77%. Clearly, the benefits just mentioned are dependent

on the global power limit and the number of nodes. For instance, using the measured data

starting with 3 nodes the benefit from a statically assigned solution is approximately 5.91%

(4 nodes at gear 1). In addition, the gain from an unmanaged 3 node solution is 30.28% (5

LPA nodes).

The previous benefits on overprovisioning must be put into perspective. The prior

mention of an unmanaged environment still implies a minimal amount of intervention and

monitoring. As mentioned in Chapter 1, many data centers utilize ad hoc methods to

manage power. As a result, the true benefit to deploying a solution such as PICLE might

be much larger for those environments using simple techniques to provision rack space ( i.e.

provision a rack such that 3
4 of the global limit is allocated).
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Nodes Total Throughput Total Power Node Power Error
11 224103 1498.09 136.19 1.91
12 229584 1498.68 124.89 1.32
13 216112 1464.32 112.64 35.68
14 210826 1477.84 105.56 22.16
15 182700 1500.00 100.00 0.00
16 141232 1478.88 92.43 21.12
4 81600 546.96 136.74 3.04
5 81745 547.70 109.54 2.30
6 63204 544.86 90.81 5.14

Table 6.6: Dynamic gear throughput and aggregate power using the LPA. The indicated
error is the difference between the measured average power and the power target.

6.5 Task Governor

The previous LPA results depict the use of different CPU gears to manage power

consumption. PICLE also utilizes the LPA’s Task Governor to manage power consumption

in the absence of gears. To evaluate this functionality, the cpuburn [61] program is used.

For the first test, a single program instance was executed at gear 0 for 750 seconds. In each

second, the power usage, local power limit, and task reducibility data was collected. The

local power limit was changed during the test with agentctl. The results of this test are

shown in Figure 6.5. The power limit and usage are shown using the Y axis on the left side.

In addition, the reducibility of the program is shown on the Y axis on the right side. As

reducibility is a measure between zero and one, this axis is scaled to show this measure as

well as power on the same graph.

The results in Figure 6.5 show a fairly tight bound between measured power usage

and the assigned local power limit. Within the Task Governor, a power usage reading 2%

above the assigned limit or 3% below was considered unacceptable. In such a condition, the

controller would either reduce or increase CPU time as needed. These percentage values

were arbitrarily chosen and would normally reflect a site-specific policy. The three apparant

power surges around 120, 340, and 650 seconds are not a result of incorrect task throttling.

The data shows a periodic task run by root executed briefly during those time periods. As

discussed in Chapter 5, root tasks are specifically excluded. This is partially due to the

absence of a more robust exclusion mechanism in the current implementation.

In Figure 6.5, even with the most drastic power change (cpuburn power usage is
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Figure 6.3: LPA performance with T = G
n and a global power limit of 1500 watts. Extrap-

olation starts with 10 nodes using single node power and throughput measured values.

provided in Appendix C) it still only takes a few seconds for usage and the reducibility

factor to stabilize. In normal operation, as the power limit fluctuates 10 to 20 watts, the

power usage stabilizes in 1 to 3 seconds. The high variation that is experienced around 190

and 520 seconds is a response to the interval and skip values used in the construction of the

reducibility lookup table (Appendix A). The degree of fluctuation exhibited is only due to

the TG changing between 3 different reducibility factors.

The previous result utilized one task to show the capability of the TG in main-

taining usage to a local node power limit. Figure 6.6 shows two cpuburn tasks at different

priorities. The priority was set on task startup using the nice command. The graph lay-

out is similar to the prior result. The higher priority task is started first. After about 40

seconds, the lower priority task is then started. Shortly thereafter, the local power limit

is changed to a lower value. The lower priority is immediately throttled (2 seconds) by a

reducibility factor of 0.5. The other higher priority task time is not impacted. Subsequent

power limit reductions occur with little impact on reducibility. As the limit reaches 120

watts, both the high and low priority tasks are simultaneously throttled but the higher

priority task gains CPU time as the power limit is shown to be stable. Around 180 seconds
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Figure 6.4: LPA performance with T = G
n and a global power limit of 550 watts. Extrapo-

lation starts with 3 nodes using single node power and throughput measured values.

the local power limit is reduced in such a fashion that the high priority task is throttled to

about 0.80. However, as subsequent increases in the power limit occur it is also the first

task to receive the benefit of increased CPU time.

The preceeding two examples avoid two deficiencies in the current implementation

of the Task Governor. First, task restrictions only take effect based on the last measurement

cycle that occurred. As a result, if a workload consists of numerous CPU intensive tasks

whose execution duration is on the order of several seconds the resulting fluctuation in

power can be significant. This is due to waiting up to 2 seconds for the reducibility impact

to be measured.

The second deficiency in the TG is due to a lack of a more robust facility for

exclusions. This problem is exhibited in the previous graphs as the spikes in power usage

occur due to a root-owned periodic task. A more comprehensive strategy for exclusions

helps mitigate this problem.

The next result quantifies the first deficiency mentioned previously in the TG. To

determine how the TG performs with a highly diverse set of tasks, the first 20 minutes of a

linux kernel compile was conducted twice (using gear 0). The first run was unconstrained
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Figure 6.5: Reducibility with one task during local power limit changes. The right side Y
axis is not to scale.

and the calculated average power was found to be about 114 watts. The second run used

the LPA and the TG with a local power limit set to 115 watts. The calculated average

power in this second run was found to be 112 watts. There were a significant number of

power usage points above the assigned limit (over 50%). This result highlights the inability

of the TG to effectively limit short, bursty tasks. Possible remedies for this deficiency are

discussed in Chapter 7.

Although the problems in the TG are worthy to recognize, the initial results in

task throttling based on CPU time are encouraging. A similar approach might also be

warranted for limiting access to other devices.

6.6 Global Power Agent

There is a corresonding cost, in time and increased node workload, to running the

global allocation algorithm. Measurements were taken on a single node to determine the

minimum, maximum, and average time to solve the allocation problem during a two minute
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Figure 6.6: Reducibility with two tasks during local power limit changes. The right side Y
axis is not to scale.

period with different time intervals (t divides 120). The single node results are shown in

Table 6.7. The table column headings reflect the time, in seconds, between processing

runs of the algorithm. The more often the algorithm executes, the busier a node becomes.

However, the execution runtime decreases due to cache behavior. Running the algorithm

more often allows quicker adjustments to node power limits to meet short-term demand.

Thus, shorter execution intervals help balance power more efficiently.

Intuitively, the general problem size grows as the number of nodes increases due

to the additional constraints. In Figure 6.7, the same measurement method as the prior

result was used but in addition, multiple nodes were configured with a GPA to broadcast

data. There is a slight variation that grows as the runtime interval increases, but times are

typically clustered near the same execution time. There is no reason to assume a cluster of

64 nodes is solvable in the 2 millisecond range, but the data supports lowering the interval

to make the allocation mechanism responsive.

To consider the precision of the short-term forecast method, a series of ten models

was constructed and workload data was fed into each of these models simultaneously. There

were two forecast model variants, one type relied on a weighted average and the other used
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Execution Interval (t)
5 10 15 20 30

Minimum 0.3 0.3 0.4 0.4 1.1
Average 1.9 3.5 4.8 6.5 9.2
Maximum 12.7 17.3 16.1 17.9 18.1

Table 6.7: Minimum, average and maximum time (milliseconds) to determine the LP solu-
tion on one node with different execution intervals (seconds).

a moving average based on a last specified number of values. The different models were

generated with either different weights or moving average window sizes. These models

were then simultaneously utilized for each inbound broadcast update for each node. To

determine the actual forecast for a node, a quick sort was performed to find the model with

the smallest error. This model was then used when calculating the new node local power

limit. Figure 6.8 shows Model 5, a weighted average with α = 0.9 (applied to the most

recent data point), was the most effective to classify prior workload and make a prediction

for the next interval. Three other models were selected during this benchmark, although

the total time they were used was small relative to Model 5. The workload used in this

test, and remaining results, was a gcc compiler run of the linux kernel. It is expected that

changing the global allocation interval impacts the estimation model; however, the same

model selection process still chooses the most applicable model dynamically.

Utilizing this same data, the effectiveness of the LPA in maintaining usage below

the local limit, L, on a single node is shown in Figure 6.9. For this and all other results,

Lmin = 90 and Lmax = 190. Notice as the global power limit, G, decreases and node work-

load exists, L subsequently decreases between 220 and 360 seconds. The measured power

usage exceeded L within three intervals due to a high power target, T , and accumulated

feedback error in the LPA. This is not a deficiency of the global allocation mechanism or

policy, but does represent the most severe conditions for the LPA (i.e., high demand with

low global and local power limits). It is also important to recognize L represents the next

interval limit while usage is a measure of the prior interval. In this and remaining tests the

power burst, B, was set to 5 watts. A more conservative policy might choose to increase

this value or adjust it automatically based on power usage trends.

In Figure 6.9, recovery in G occurred near t = 430 and the node power limit sub-

sequently increased for the next interval. This increase occurred very swiftly and continued
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Figure 6.7: Execution run times (microseconds) for solving the global allocation problem
with multiple nodes. The execution interval, t, varies from 5 to 30 seconds and divides 120.

to increase while the limit increased for the next few seconds. The global power limit re-

mained well above the local power limit until between t = 500 and t = 600. At about 600

seconds, a decrease in the global power limit again forced node power reductions for both

T and L. Because demand was high, an attempt is still made to boost throughput even

with little difference between G and L. Such a condition causes the global power limit to

be exceeded. In this and all other results, the global power reserve was R = 5. A site

with a more conservative requirement could make this higher and provide a larger buffer to

account for such conditions.

To maintain the power target, T , in the previous result, the CPU gear utilization

is shown in Table 6.8. The full spectrum of available gears was utilized with lower gears

used while idle. As previously discussed in Chapter 5, there was a minimum of 5 seconds

imposed between gear changes except if the current node usage temporarily exceeded L. In

such a condition, the controller was configured to immediately reduce the gear. As can be

seen from the data, the system rarely utilized gears 4 and 5. In addition, gear 1 was utilized

quite often due to switching between it and both 0 and 2.

To quantify the PICLE result with multiple servers, two cluster nodes were used
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starting with G = 400 watts (only two multimeters were available). This data from this test

is shown in Figure 6.10. The two lower curves reflect the workload demand on each node.

Both nodes start out idle, but as one node becomes busy its demand is closely followed by

the second node. Eventually, node workload demand is equal and then the node previously

busy first, has its demand reduced while the second node remains busy. Finally, demand on

both nodes decreases and both eventually become idle. During these changes in demand,

global power fluctuates, but the total power allocated never exceeds G. The Y scale on the

right for demand is purposefully scaled to ensure node demand is below all other lines for

clarity.

In Figure 6.10, even under high load the resultant aggregate local power limits of

both nodes follows any degredation in the global power limit. When Node 1 first enters

the cluster, at t = 20, it receives nearly the maximum allocation. Its limit subsequently

decreases even though it is idle and there is little demand on the other node. Notice from

about t = 100 to t = 180, the power limit for Node 2 is at Lmax while Node 1 is idle

with a limit of Lmin. As demand on both nodes rises to approximately the same level, the
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Figure 6.9: Single node effectiveness adherring to the local power limit during global power
changes.

node local power limits are balanced appropriately. This situation is later reversed when

the demand on Node 2 falls while Node 1 remains busy. Later, as both nodes become idle

and the global power supply increases, the local power limit on both nodes subsequently

increases to slightly below Lmax. The cumulative local power limit allocation remains well

below G, but this increase allows either node to quickly use power as needed and rapidly

react to processing requirements.

With non-uniform power allocation, it is possible to leverage the available power to

increase aggregate throughput. To illustrate this benefit, two cluster nodes were configured

with a fixed local power limit of L = 120 watts each. The value for G was also fixed at 245

watts (includes the 5 watt spare allocation) so each node had an equal power allocation.

Next, the standard load was applied to one of the nodes and the LPA was used to manage

to the assigned local power limit. On both nodes, the GPA was configured to not change L

and the results are shown in Figure 6.11. In addition, this same graph shows the result of

using the GPA to manipulate the local node power limit for non-uniform allocation. The

total power allocated in both instances never exceeds G. In addition, the non-uniform power

allocation scheme uses more than or equal to the power of the uniform method. However,
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Gear Reference Count Total Time Time %
0 29 578,863 58.88
1 42 92,344 9.39
2 19 51,213 5.21
3 11 70,152 7.14
4 9 19,046 1.94
5 8 39,152 3.99
6 4 132,275 13.46

Table 6.8: LPA performance state utilization in both references and total time spent (mil-
liseconds) in each gear.

from the start of the run during non-uniform allocation, the busier node transitions to higher

gears and increases throughput as a result of being assigned a higher local power limit. The

local power limit for the other idle node was also forced to Lmin (which can’t occur in a

uniform allocation scheme). After 200 seconds for both uniform and non-uniform allocation

runs, the workload was terminated and the resultant throughput found. Throughput was

measured based on the number of completed processes completed. Based on the final values,

the non-uniform power allocation method provided a 16% gain in throughput.

The throughput gain in the previous result is dependent on the particular appli-

cation and the length of time needed to service normal demand. Long running processes,

such as web or database servers, would experience a boost in throughput based on the

relative workloads on each server. Data centers typically contain a hetereogenuos mix of

applications and hardware architectures. As certain cluster nodes become busy, it is often

the case that others are lightly loaded or idle. These inequities in workload can be leveraged

to overprovision circuits safely. If the workload is inherently uniform or made so with task

migration, PICLE is still useful in balancing available power uniformly across all nodes. A

data center could also include a mixture of servers (only some that are load balanced) on

the same circuit. This situation is also handled in the global allocation strategy proposed

in this thesis.
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Chapter 7

Future Work

This thesis investigates the potential of overprovisioning in data centers with a

focus on increasing throughput based on a defined global power limit. In addition, it pro-

poses a non-uniform, automatic distribution of power for server clusters based on forecasted

workload. Because the speed and performance of servers continues to increase, the addi-

tional power such servers consume must be accounted for in provisioning. Power can be

automatically controlled within defined limits. Effective control yields greater utilization

under a global limit as well as increases in application throughput. It is not always neces-

sary to run a server at maximum performance. As a result, safe overprovisioning can occur

by managing a cluster of servers to meet power limits.

PICLE is only a preliminary framework and represents an initial foray into the

realm of distributed and local power control. Consistent with the approach to make the

overall local mechanism perform in a “hands free” operation, additional adjustments to the

feedback controller might tune it more efficiently to adapt to the workload. In addition, a

more robust local power solution based on multiple power-scalable components should be

developed. This controller must account for the power usage and performance of multiple

devices (i.e. disk, cpu, etc.) and perform the appropriate changes as needed.

Additional work is also needed to ensure short-lived tasks are accounted for in a

more efficient implementation of the Resource Controller Module. For instance, it might be

useful to throttle all tasks initially or to provide an inheritance mechanism in the throttling

implementation. It may also be useful to modify this component to support differentiated
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or class-based service. This module should also be designed to throttle more than the CPU

as power consumption of all resources is further developed in the local controller.

Additional modifications to the Task Governor offer the ability to increase local

throughput by overprovisioning power at the local level. This is accomplished through

intelligent task monitoring and throttling those tasks which are shown to be higher power

consumers, subject to their performance minimums. This throttling is possible irregardless

of whether the local power limit is exceeded. Throttling increases CPU time to allow more

tasks to exist than otherwise possible, but must also be balanced with a potential increase

in power consumption. Such modifications should also be consistent with the notion of

utilizing existing operating system priorities.

The global allocation proposed in this thesis represents a novel solution to the

distribution of power for heterogeneous architectures and workloads. However, greater

focus is needed to address current shortfalls in initial node power on, synchronization of

broadcast data and timing irregularities, and simultaneous cluster node adjustments. These

changes will enable an even tighter bound on the global power limit. In addition, the short-

term forecast model proposed should be supplemented with additional medium or long-term

models. Such models could provide the ability to reserve power more efficiently than simply

reacting to short-term demand.

PICLE is an effective framework to handle safe overprovisioning based on power

limits. The additional throughput gains possible from a strategy to manage power limits can

increase the computational effectiveness of data centers that have non-migratable workloads,

suffer from the inability to expand their power infrastructure, or seek an effective solution

to transition from ad hoc management methods. The distributed and autonomic power

control policy proposed in this thesis not only yields gains in throughput, but also balances

power across a heterogeneous mix of applications and architectures.
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Appendix A

Task Governor Reducibility

Reducibility factors are used in the Task Governor (TG) to limit CPU time for

fine-grain task throttling. The following table is used in the determination of interval and

skip in the step algorithm discussed in Chapters 4 and 5. An increasing interval implies

a longer execution time before that task is interrupted and placed in the wait queue. In

contrast, an increasing skip value implies a longer time in the wait queue. The resolution

of both skip and interval is in milliseconds. Interval is accounted for across one or more

context switches and skip is not a guarantee a task will be executed immediately after the

specified value.

To codify an example using the table below, a task is running and it is determined

by the TG an 18% reduction in task CPU time is needed to meet the local power limit.

Based on this reduction, a lookup is performed and the first which exceeds this reduction is

used. The rate of throttling change is represented with h (see Chapter 5.4.3). In this first

lookup (no prior task reduction was done), h = f = 0.2, s = 1 and i = 4 so the impact

of reduction error (between target value and f) is to allocate less CPU time. A further

reduction to this task (i.e., a decrease in interval to i = 3) would account for a task time

impact change of h = ∆f = 0.20 − 0.25 = −0.05. Any target value above the highest

f assigns this top value s and i. In addition, any task time increase below the lowest f

removes any restrictions.

Based on the calculated value for h, task time reduction is performed in the TG

step algorithm. For additional details on the TG and the application of h, see Chapters

4.3.2 and 5.4.3.
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Skip (s) Interval (i) Reducibility Factor (f)
60 1 0.983607
40 1 0.975610
20 1 0.952381
12 1 0.923077
11 1 0.916667
10 1 0.909091
9 1 0.900000
8 1 0.888889
7 1 0.875000
6 1 0.857143
5 1 0.833333
4 1 0.800000
3 1 0.750000
2 1 0.666667
1 1 0.500000
1 2 0.333333
1 3 0.250000
1 4 0.200000
1 5 0.166667
1 6 0.142857
1 7 0.125000
1 8 0.111111
1 9 0.100000
1 10 0.090909
1 11 0.083333
1 12 0.076923
1 13 0.071429
1 14 0.066667
1 15 0.062500
1 20 0.050000
1 40 0.025000
1 60 0.016667

Table 7.1: Task Governor reducibility factors and their associated interval and skip values.
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Appendix B

AMD CPU Performance State Transitions

The AMD CPU performance state transition algorithm is defined in [4]. The

system BIOS normally contains the tables used to lookup performance states based on the

revision of a processor. The frequency-to-voltage relationships, designed for each processor,

are used in connection with the limitation that no direct frequency change can occur greater

than 200 MHz. In addition, portal core frequencies are defined based on a range of values

from the chip minimum core frequency (i.e., the first is double the minimum). A transition

from the minimum core frequency to a portal core frequency can occur in one step. Any

other changes utilize a step of 200 Mhz. The actual algorithm in the cpufreq software driver

has three phases. During the first phase the voltage is transitioned to the level required

to support frequency transitions. Second, the processor frequency is then changed to the

frequency associated with the requested new state. Finally, the voltage is transitioned to

the value specified with the requested performance state.

The first phase in the transition algorithm for the processor is further decomposed

into additional steps. First, to determine the voltage needed to support the transition, the

requested voltage is added to a ramp voltage offset (RVO). This is done if the requested

frequency is greater than the current performance state. Otherwise, the voltage in the

current performance state is added to the voltage indicated by the RVO. These values are

further subjected to a maximum specified voltage step (MVS). Each step increases voltage

to the minimum of MVS or the desired voltage plus the RVO. In addition, after each step

a voltage stablization time (VST) is enforced.
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Measured State Transition Times

Performance state transitioning costs were measured on one cluster node. For each

transition, a new frequency was provided to the cpufreq kernel module. This frequency

corresponds to an appropriate voltage and frequency pair in table 6.1. To measure the

time for a transition, this module’s notifier interface was used in an event timing kernel

module. Thus, prior to the transition the CPUFREQ PRECHANGE event was used to

time stamp a variable later used during the CPUFREQ POSTCHANGE event. The time

in the prechange event is subtracted from the postchange event time and this value was

reported to microsecond precision.

A total of 100 transitions for each performance state change were performed. The

average, minimum, and maximum were then calculated across all measured values. Thus,

approximately 4200 total transition times were collected and between each measurement,

a 5 second delay was imposed to ensure general system idleness. To remove ambiguity in

measurements, the PM Timer was used. This timing source is guaranteed to be indepen-

dent from microprocessor (and core clock) performance state changes. To minimize the

changes to the PowerNow cpufreq driver for exposing addition performance states, the por-

tal frequencies were adjusted. These changes do add additional overhead to the standard

algorithm; however, these costs are accounted for, as applicable, in the results presented in

this thesis.
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From (MHz) To (MHz) Average Minimum Maximum
2000 1800 355.55 340 375
2000 1600 554.66 536 573
2000 1400 850.63 836 868
2000 1200 1138.78 1122 1158
2000 1000 1954.74 1913 1990
2000 800 568.62 550 587
1800 2000 785.46 767 814
1800 1600 278.68 263 300
1800 1400 556.72 537 591
1800 1200 853.07 831 873
1800 1000 1522.51 1483 1556
1800 800 292.44 276 324
1600 2000 1436.75 1406 1470
1600 1800 566.70 551 588
1600 1400 279.47 264 295
1600 1200 555.84 538 574
1600 1000 1122.03 1087 1146
1600 800 289.90 274 310
1400 2000 2204.94 2185 2231
1400 1800 1218.49 1198 1263
1400 1600 279.32 262 299
1400 1200 279.61 264 302
1400 1000 746.02 725 783
1400 800 289.22 272 308
1200 2000 3415.02 3375 3524
1200 1800 2259.24 2242 2274
1200 1600 556.16 536 573
1200 1400 280.20 264 301
1200 1000 362.66 348 383
1200 800 575.44 556 593
1000 2000 5015.28 4969 5068
1000 1800 3597.30 3556 3645
1000 1600 853.51 826 881
1000 1400 564.01 542 593
1000 1200 280.72 265 302
1000 800 297.68 281 316
800 2000 5647.90 5602 5727
800 1800 3892.10 3870 3927
800 1600 289.13 273 316
800 1400 289.70 272 322
800 1200 1134.16 1092 1159
800 1000 2141.23 2107 2205

Table 7.2: Performance state kernel transition cost (microseconds) between different gears
for an AMD 3000+ CPU.
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Appendix C

AMD 3000+ CPU Power Consumption

System idle power was measured for a cluster node and is shown in the table

below. In addition, maximum power was approximated using cpuburn, a tool designed to

overheat and stress a CPU [61]. Although the aforementioned tool is useful to determine

an upper bound for power measurements, it is not endorsed by any manufacturer and may

not represent the true upper bound experienced across all applications.

For both system power measurement types (idle and with load), 100 readings

were taken with a 1 second delay between successive readings. All average, maximum, and

minimum values are in watts. The gear corresponds to the frequency and voltage settings

given in Table 6.1. Measured system idle power at each gear reflects reduced power usage

from the HLT instruction.

CPU System Idle Power System Maximum Power
Gear Average Minimum Maximum Average Minimum Maximum

0 87.28 86.81 88.00 158.88 156.20 160.37
1 84.48 84.17 85.57 135.80 133.67 136.48
2 82.95 82.46 83.58 128.38 121.73 125.11
3 81.86 81.38 82.64 112.62 111.58 113.81
4 79.76 79.44 80.45 100.84 100.01 101.40
5 78.07 77.76 78.55 91.89 91.38 92.56
6 75.96 75.71 76.38 85.52 85.07 86.03

Table 7.3: Measured system power at idle and with a CPU-intensive load (cpuburn).


