
ABSTRACT 

BRENZOVICH, JOSEPH A.  Fabric Defect Detection using a GA Tuned Wavelet Filter 

(under the direction of Warren J. Jasper and Jeffrey A. Joines) 

 The purpose of this research project is to show that a computerized system based on 

image processing software is capable of identifying defects in woven fabrics.  Current defect 

detection is carried out through use of visual inspection of fabric rolls after the rolls have 

been doffed from the production machinery, which adds a substantial lag between defect 

creation and detection.  Existing methods for automatic defect detection rely on methods that 

suffer from substantial analysis time or a low percentage of detection.  The method described 

in this thesis represents a quick and accurate approach to automatic defect detection and is 

capable of identifying defects such as lines, tears, and spots.  Utilizing a Genetic Algorithm 

(GA) as the primary means of solving the wavelet filter equations with respect to a fabric 

image proved adequate in the construction of a wavelet filter that was capable of removing 

large amounts of the fabric texture from the image, thus allowing defect segmentation 

algorithms to run more effectively.  Although a real-time system is not developed, 

suggestions for constructing such a system are presented.  This work provides a foundation 

for the development of a real-time automated defect detector based on the algorithms and 

methodologies employed in this work.   
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1.0 Introduction 

 The production of first quality fabric is the foremost goal of the modern textile 

industry.  First quality fabric is totally free of major defects and virtually free of minor 

structural or surface defects.  Second quality fabric, which is fabric that may contain a few 

major defects and/or several minor structural or surface defects, represents a loss in revenue 

for a manufacturer since the product will now sell for only 45%-65% the price of first quality 

fabric [Chan and Pang 2000], while using the same amount of production resources.  Because 

production speeds are faster than ever, manufacturers must be able to identify defects, locate 

their source, and make the necessary corrections in less time so as to reduce the amount of 

second quality fabric.  This in turn places a greater strain on the inspection departments of 

the manufacturers.   

 Typical textile mills employ humans to inspect and grade the fabric in the production 

facility.  The job is monotonous, as it requires the employee to sit at an inspection frame and 

watch as fabric that is 5-9ft wide passes over the board at speeds ranging from 8-20 yards a 

minute, all the while visually scanning that wide area of fabric for possible defects.  The 

average human inspection department is only able to find 60%-75% of existing defects [Chan 

and Pang 2000], which translates into a substantial amount of second quality shipped and or 

returned.  This alone leads to a considerable reduction in production efficiency, as most 

customers will only accept a certain percentage of second quality fabric in their order, 

meaning that the production facility must spend time producing re-work to be able to meet 

the customer demands.  In an effort to improve the efficiency of inspection departments and 

subsequently reduce the costs of production, textile manufacturers have begun turning to 

automated inspection systems.   
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 An automated inspection system usually consists of a computer based vision system.  

Because they are computer based, these systems do not suffer the drawbacks of human visual 

inspection, such as fatigue, boredom, or inattentiveness.  Automated systems are able to 

inspect fabric in a continuous manner without pause.  Most of these automated systems are 

off-line or off-loom systems; they inspect rolls of fabric that have already been removed from 

the production machinery.  Should any defects be found that are mechanical in nature (i.e., 

missing ends or oil spots), the lag time that exists between actual production and inspection 

translates into more fabric that is produced on the machine that is causing these defects.  

Therefore, to be more efficient, inspection systems must be implemented on-loom.   

 The advantages of an on-loom inspection system are numerous.  Perhaps the most 

valuable asset to an on-loom system is that if it identifies a defect that is mechanical in 

nature, it would be possible to shut down the loom and correct the problem before any more 

off-quality fabric is produced, which translates into substantial savings for the manufacturer.  

Should the defect be non-mechanical in nature (yarn defects), the system can still flag the 

defect on a report so that the manufacturer and subsequently the customer is aware of its 

presence.   

 However, there are several disadvantages to such a system.  First, instead of utilizing 

three or four inspection frames, an on-loom inspection system would be needed for each 

loom in the facility.  Secondly, cost is an issue because there needs to be one inspection 

system per loom rather than three or four systems per facility.  Thirdly, the environment in a 

weaving mill contains large amounts of dust, lint, and other particulate matter which can 

interfere with the image gathering equipment.  Finally, the looms themselves create lots of 
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excessive vibration which could decrease image quality by adding varying levels of 

blurriness to the captured images.   

 Considerable research has been conducted to find feasible algorithms on which to 

base an automated inspection system.  The algorithms that have been studied include Fourier 

analysis, Gabor filters, and wavelet filters.  While the first two have been shown to be 

effective methods with which to detect the presence of defects, they are computationally 

expensive algorithms, which could necessitate a slower production speed to ensure a feasible 

system.  A system based on wavelet filters, which are compact in nature and computationally 

efficient, would allow defect detection to occur at current industry production speeds of 

approximately 1000 picks per minute.  The only drawback to such a system stems from the 

complexity of the filter construction, which in turn is dependent on the complexity of the 

fabric texture under inspection.  The system must first be trained to recognize the fabric 

texture, as the quality of the training phase determines the quality of defect detection.   

 The hypothesis for this work is that given an efficient and effective method to derive 

the optimal wavelet filter for a given texture, a significant level of defect detection can be 

achieved.  The subject of this study is “fabric defect detection using a GA tuned wavelet 

filter”.   
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2.0 Literature Review 

2.1 Defect Detection 

2.1.1 Introduction to Defect Detection 

 In today’s textile industry, production speeds are faster than ever before.  

Manufacturers of woven and knitted products are able to produce more product in less time 

owing to substantial improvements in the technology driving the processes.  Because of this 

increased throughput, manufacturers are spending more time on quality assurance of the 

outgoing product, which in turn places a greater strain on the human element.  Therefore, it is 

highly important that a manufacturer be able to accurately gage quality during production in 

order to lower costs associated with quality inspection and to increase profits by producing 

less off quality [Sari-Sarraf and Goddard 1999].   

 Most textile production facilities employ human inspectors to serve as quality 

assurance associates.  These inspectors sit in front of an inspection frame and observe the 

fabric as it passes over the board at speeds ranging from 8-20 meters per minute [Baykut et. 

al. 2000; Kumar and Pang 2002; Özdemir et. al. 1997].  Due to the monotonous nature of this 

position, it is not uncommon for the associate to miss defects that appear on or in the fabric 

structure; furthermore, a human inspector is not capable of viewing the inspection frame in 

its entirety at any given time due to the size of the fabric itself (most looms produce fabric 

between 60 and 108 inches wide) [Baykut et. al. 2000; Kumar and Pang 2002; Özdemir et. al. 

1997].  Studies suggest that on average, human visual inspection is capable of catching 

approximately 60%-75% of all significant defects present in the fabric [Chan and Pang 
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2000].  Because the price of second quality fabric is a meager 45%-65% of that the first 

quality price, it is crucial for the manufacturer to find ways to improve the detection rate of 

their inspection departments [Chan and Pang 2000].   

 A defect with respect to the textile industry is defined as a flaw in or on the structure 

of the fabric [Kumar and Pang 2002; Chan and Pang 2000; Kumar and Pang 2000; Sari-

Sarraf and Goddard 1999].  There are currently over 50 categories of defects known to the 

weaving process alone.  Most of these defects appear only in the direction of motion on the 

loom (the warp direction) or across the width of the fabric (the pick direction) [Sari-Sarraf 

and Goddard 1999].  Most defects are yarn related, such as mispicks, end outs, or broken 

yarns.  Other defects are caused by slubs, or waste, becoming trapped in the fabric structure 

as it is created.  Additional defects are mostly machine related, and manifest themselves in 

the forms of structural failures (tears or holes) or machine residue (oil spots or dirt) [Sari-

Sarraf and Goddard 1999].  Coupled with the size and speed of the fabric as it passes over the 

inspection frame, the wide range of defects serve to add complexity to visual inspection and 

increase the probability of missed defects [Baykut et. al. 2000; Chan and Pang 2000; Sari-

Sarraf and Goddard 1999; Yang et. al. 2002].   

 Because of the high percentage of defects that human visual inspection misses, a 

more accurate and efficient method for defect detection is needed.  Therefore, the textile 

industry has been moving towards automated inspection [Baykut et. al. 2000; Kumar and 

Pang 2002; Chan and Pang 2000; Kumar and Pang 2000; Sari-Sarraf and Goddard 1999; 

Yang et. al. 2002].  Automated fabric inspection can provide the industry with higher 

standards of accuracy than human inspectors, thus saving the manufacturer money in lost 

goods and production time.  However, most of these automated systems are only available in 
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the form of off-line or off-loom processes that inspect fabric rolls that have been removed 

from the production line.  The most precise and accurate, and therefore efficient, form of 

inspection is an on-loom system that can monitor the fabric as it is being produced [Sari-

Sarraf and Goddard 1999].   

 Most of the on-loom systems are based on texture recognition.  This allows the 

system to identify defects by looking for deviations from the fabric’s normal texture [Baykut 

et. al. 2000; Kumar and Pang 2002; Chan and Pang 2000; Sari-Sarraf and Goddard 1999].  

These approaches use a variety of methods to capture the texture information of the fabric 

and subsequently identify any defects.  These methods include Fourier analysis, Gabor 

filters, Markov Random fields, and wavelet transforms.   

2.1.2 Fourier Analysis 

 One proposed method to automate defect detection involves using Fourier analysis to 

compare the power spectrum plot of an image containing a defect with that of a defect free 

image.  This comparison focuses on shifts in the normalized intensity between one plot and 

the other, which could signify the presence of a defect.   

 Chan and Pang [2000] studied warp or fill direction defects by comparing the 

spectrum plots from images with no defect and those containing defects.  Their work showed 

that a missing or broken yarn in either direction could be detected by an upward shift in the 

normalized magnitude of the associated spectrum plot.  This upward shift occurs because 

more light is being transmitted through the fabric owing to the open space left by the missing 

yarn.   

 Furthermore, the presence of a double pick or warp yarn could be detected by a 

downward shift in the spectrum from the original image to the defect image.  Consequently, 
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tears or holes in the fabric, and any other two dimensional defects could be detected in either 

the warp or pick direction.  However, detection of any one-dimensional defects is solely 

dependent on the orientation of the analysis; i.e. the warp or pick direction.   

 Another study on Fourier analysis for defect detection was done by Tsai and Huang 

[2003], who focused on detecting surface defects of various textured materials.  Their work 

showed that by taking a small circular sample from the Fourier spectrum image and setting 

the frequency components at the center and outside the circle to zero, the repetitive global 

texture would be eliminated which would serve to emphasize any defects that were present.  

From these reconstructed images, a feature extractor (i.e., a thresholding method) could then 

be employed to highlight any defects that may be present.   

 Fourier analysis is suitable for defect detection when the defect distorts the material 

on a global scale, and therefore no spatial information is required.  However, this analysis 

suffers from its lack of any spatial information from the original image, since it captures only 

frequency information.  To be able to identify the placement of localized defects with respect 

to the original image, additional algorithms would be needed, thereby negating the need for 

Fourier analysis [Kumar and Pang 2000].  Furthermore, Fourier analysis is a computationally 

expensive method, with a computational time proportional to 2N2 log2 N for two-dimensional 

transforms [Chan and Pang 2000], such as those previously discussed.   

2.1.3 Gabor Filters 

 Another method used as the basis for automated defect detection systems is the Gabor 

Filter.  Gabor filters have recently received a great deal of attention in the field of computer 

vision and defect detection.  This has been motivated by a theory proposed by Campbell and 

Robson [1968] which states that the human visual cortex decomposes images captured by the 
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retina into several filtered images, each containing varying intensities over a narrow band of 

frequency and orientation.  The neurons in the brain are individually tuned to a particular 

combination of frequency and orientation, which denotes a channel.  These channels, 

therefore, closely resemble Gabor functions.  Because of this, researchers have suggested that 

computer vision systems utilize these functions to more closely mimic the texture recognition 

abilities of mammalian brains [Kumar and Pang 2000].   

 Kumar and Pang [2000] have studied the usage of real Gabor functions in defect 

detection.  They did not study imaginary Gabor functions, since these functions serve to 

enhance edge detection, which, in a complex textural environment, serve only to emphasize 

the edges to the point of washing out the background texture.  The real Gabor functions serve 

as blob detectors, which can be employed to enhance changes in a repeating texture.   

 Kumar and Pang utilized a bank consisting of 16 different Gabor filters, each of a 

different size and orientation, as their construct for defect detection.  By supplying the filter 

algorithm with details on the defects contained in the fabric (size, orientation, etc.), the filter 

construct could be considered a supervised defect segmentation algorithm.  They showed that 

this system was effective for identifying defects of varying sizes and orientations when the 

filter bank was customized to the structure type of the given defect [Kumar and Pang 2000].   

 Another study by Kumar and Pang [2002] built upon their previous work to construct 

an unsupervised defect segmentation system.  In this new system, a filter bank consisting of 

18 Gabor filters at 3 scales and 6 orientations was used.  Each of these filters was tuned to a 

narrow frequency and orientation range.  Fabric images were passed through the filter bank, 

which served as a spatial mask, and the resulting magnitude information was collected.   
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 The system would then apply a non-linear function to the magnitude information to 

rectify the multi-channel filter response [Kumar and Pang 2002].  The non-linear function 

used served to convert negative amplitudes to positive amplitudes, both of which are outputs 

of a Gabor filter.  Once the image data has been rectified in this manner, it is compared to 

previously analyzed data whose source was a defect free fabric image.  This allows for the 

filtering of background texture and the subsequent revealing of defects.   

 Kumar and Pang [2002] then applied a data fusion scheme to the filtered data to 

combine all image data into one composite image.  Once this was complete, a thresholding 

algorithm was applied to generate a binary image for defect segmentation.  They found that 

this system was effective at detecting different classes of defects when the filter bank was 

oriented in a manner similar to that of the defect in question.  Since different defects appear 

in different sizes and orientations, the filter bank must have a component or components of 

similar sizes and orientations to effectively segment those defects.   

 Gabor filters serve as proven blob detectors.  However, the filter itself must be in a 

similar orientation as that of the defect in question for effective defect segmentation.  The 

methods discussed previously deal with multi-filter systems composed of numerous Gabor 

filters, each of a different size and orientation.  Because of the complexity added to the 

system by these additional filters, the system as a whole suffers a severe computational 

penalty in return for its ability to accurately and effectively identify defects in a fabric image.  

Therefore, systems that do not rely on multiple filter constructs would serve as more efficient 

methods for defect detection.   
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2.1.4 Markov Random Fields 

 The theory behind Markov Random Fields (MRF) as it relates to image analysis 

states that the brightness level of a pixel is dependent on the brightness levels of neighboring 

pixels, providing that the image is not random noise [Baykut et. al. 2000].  Therefore, the 

MRF model attempts to derive the relationship between the brightness levels of pixels and 

their neighbors as a means of capturing the texture information contained in that image.   

 Baykut et. al. [2000] applied the MRF model to defect segmentation of fabric images.  

Their procedure consisted of first obtaining fabric images that were defect free.  Next, the 

MRF model was applied to that image such that the image could be quantified in terms of the 

model; in essence, statistics that describe that particular texture in terms of the MRF model 

were gathered.  The training phase of the algorithm was then complete.   

 Because their model had quantified the texture of a fabric, Baykut et. al. [2000] could 

then apply this filter to images of the same fabric and search for defects.  The new image 

would be subdivided into several square windows and the filter construct would be applied to 

each window.  From this, a probability statistic for each window could be calculated and 

compared with the statistic from the original training texture.  Should these probabilities 

disagree at some confidence level, it could be concluded that the window in question 

contained a defect [Baykut et. al. 2000].   

 The MRF model has been shown to be an excellent tool for identifying the 

approximate location of a defect by comparing the texture in a small window of the unknown 

image to the texture of the training image.  Though this method has been shown to be 

effective in detecting defects, it gives little spatial information concerning location and defect 

type.  To be able to perform defect segmentation on the filtered image, a feature extractor 
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would be required.  Methods that combine defect detection and segmentation into one filter 

would be more efficient than the MRF model.   

2.1.5 Wavelet Transforms 

 A wavelet function is a compact, finite duration orthonormal signal that forms a basis 

for the signal subspace [Jasper et. al. 1996].  Wavelet based multi-resolution analysis (MRA) 

decomposes a signal into low and high frequency information and can be used in texture 

analysis since it decomposes the texture across several different scales, which serves to 

greatly improve analysis.  The texture can now be inspected at various scales such that a 

feature vector comprised of significant features at each scale can be created and used as a 

base for defect classification [Jasper et. al. 1996].   

 Yang et. al. [2002] used adaptive wavelets combined with a discriminative feature 

extractor to perform defect segmentation.  The design of the wavelet was incorporated with 

the design of the detector parameters to result in a high detection rate.  Because they were 

using undecimated wavelet transforms to perform the analysis, the images were subjected to 

a single pass of the filter construct.  The proposed detection method involves several passes 

through the detection algorithm that consists of the feature extractor (based on the adaptive 

wavelet filter) followed by the defect detector (a Euclidean distance based detector).  These 

passes were necessary to obtain the optimal settings on the wavelet filter, and served as a 

training phase for the system.   

 The training method that Yang et. al. [2002] utilized to minimize the detection error 

of the feature extractor and detector combination was couched as an unconstrained 

optimization problem over the set of coefficients that define the wavelet filter and the 

Euclidean distance detector.  As described in Yang et. al. [2002], a loss function (i.e. the 
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empirical cost for the total set of training samples) based on the measure of incorrect 

detection was formulated to serve as the basis for the optimization.  By minimizing the 

empirical cost, the optimal set of coefficients for both the feature extractor and the defect 

detector were obtained.  The results gathered by Yang et. al. suggest that the adaptive 

wavelet construct serves as a better feature extractor than other wavelet types (Haar, 

Daubechies, and other standard forms).  Their results further suggest that an adaptive wavelet 

with 3-scale wavelet features achieved the best results (maximum detection error rate of 

6.5%).  Though these results were comparable to those gathered using the standard wavelet 

forms, the adaptive wavelet achieves the same level of performance with fewer scales of 

wavelet features, yielding computational savings.   

 Sari-Sarraf and Goddard [1999] performed a similar study to that of Yang et. al. 

[2002] by studying the effectiveness of a wavelet based defect detection system.  In their 

study, Sari-Sarraf and Goddard based the wavelet portion of the detection system on 

Daubechies’ D2 filter [Press et. al. 1992] because it closely matched the plain weave patterns 

of the fabrics under study.  Their work proposed the creation of four two-dimensional kernels 

comprised of a high pass (HP) and a low pass (LP) filter:  LP(LP)t, HP(LP)t, LP(HP)t, and 

HP(HP)t (as seen in Figure 2.1).  These filter combinations, when populated with the 

appropriate lattice coefficients, would result in a near zero response to a defect free fabric 

image and a non-zero response to an image containing a defect.  This attenuation of the 

background texture would result in the accentuation of any defects since a defect does not 

represent part of the regularly repeating fabric pattern.  By adding a defect segmentation 

algorithm, the accentuated defect would become computationally obvious, resulting in a 
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desirable detection rate of 89% on 26 different defects tested [Sari-Sarraf and Goddard 

1999].   

 

LL HL 
LH HH 

 
Figure 2.1: Filter Quadrant Design 

 

 In another similar study, Jasper et. al. [1996] again utilized discrete wavelet functions 

as the basis for the filter construct.  However, they proposed the derivation of the optimal set 

of wavelet coefficients directly from the fabric image rather than using a pre-defined filter 

setup (i.e. Daubechies coefficients).  Given a set of flawless fabric images, Jasper et. al. 

argues that because of the regular repeating nature of textile textures, designing an optimal 

wavelet filter for each image can be done by minimizing a quadratic cost function that is 

subject to orthogonality constraints.  It is necessary to determine the optimal coefficients for 

each new texture because wavelet filters will respond to different textures in different 

manners, showing that there is not a general filter setup that will prove effective for all 

textures.   

 Because the wavelet filter has been optimized to the particular texture it will work 

with, the filter itself now represents the texture information of that fabric and can 

subsequently be used to characterize defects on that fabric [Jasper et. al. 1996].  Jasper et. al. 

go further to show that when the number of coefficients that make up the filter are equal to or 

close to the pixel count of the fabric repeat unit, there is significant reduction in false 

detection.   
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 Wavelet filters show great promise for use in defect detection because wavelets 

represent frequency and spatial information together.  While frequency information is 

adequate to identify the presence of a defect in an image, the spatial information is absolutely 

necessary to go further and identify the placement of the defect.   

2.1.6 Conclusions 

 To satisfy the needs required by a robust defect detection system, the detection 

algorithm must be able to supply both frequency and spatial information.  While frequency 

information is sufficient to identify the presence of a defect, spatial information is needed to 

effectively identify the location of that defect.  It has been shown that Fourier analysis suffers 

from its lack of spatial information due to the nature of the Fourier transform [Jasper et. al. 

1996; Kumar and Pang 2000; Sari-Sarraf and Goddard 1999].  On the other hand, Gabor 

filters, while containing both frequency and spatial information, suffer from a severe 

computational penalty due to the need for multiple filter elements in the overall construct to 

be able to account for various defect sizes and orientations.  The MRF model suffers a 

similar computational penalty in that it requires a feature extraction algorithm to actually 

segment the defect from the background texture.  However, the complexity of the equations 

that characterize a wavelet filter is such that an efficient search algorithm is needed to drive 

the search for the optimal wavelet coefficients.   

2.2 Genetic Algorithms 

 Many problems that arise in industrial applications lack a reasonably fast solution 

algorithm.  Typically, these problems require an optimization problem to be solved which 

represents different degrees of complexity and computational difficulty.  While it is possible 
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to determine and construct efficient algorithms with which to solve these optimization 

problems, these solution algorithms do not guarantee the global optimal value as their result 

[Michalewicz 1996].  Because these problems occur in an environment that demands the best 

possible solution, a solution algorithm that is reasonably fast, efficient, and can guarantee the 

optimal solution value is required.   

 In recent years, much attention has been given to evolutionary computing, a field that 

utilizes principles of Darwinian evolution and heredity to solve difficult problems.  The 

reason for the attention stems from the fact that these principles of evolution create a class of 

problem solving algorithms that can be applied to a wide range of problems.  One such class 

of problem solvers is the Genetic Algorithm (GA).  Michalewicz [1996] defines GA’s as 

“…stochastic algorithms whose search methods model some natural phenomena: genetic 

inheritance and Darwinian strife for survival”.   

 Simply put, a GA is a model of nature; the algorithm behaves as nature would.  A GA 

manages a population of individuals (possible solutions); it begins with an initial set of 

individuals, breeding and killing them.  In natural terms, consider a set of wild animals.  

More often than not, the smartest and fastest of those animals, therefore the best of that 

population, are the ones to survive and procreate, thereby creating smarter and faster animals.  

Periodically, however, one of the dumb and slow animals will survive to procreate with the 

smart and fast animals.  Additionally, nature sometimes adds a random mutation to the 

population, causing that individual to be smarter or dumber, faster or slower.  Similarly, a 

GA performs these same functions on its virtual population, encouraging the production of a 

diverse population to find the best solution possible [Michalewicz 1996].   
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2.2.1 Genetic Algorithm Methodology 

 As discussed previously, GAs model the natural phenomena of evolution and apply 

those methodologies towards solving problems.  Evolution, as it relates to problem solving, is 

the progression of the solution set towards convergence to the “optimal” solution.  “Optimal” 

solutions in terms of GAs are the best solution found by the GA.  As the solution set 

“evolves”, areas of infeasible solutions are identified so that the algorithm does not waste 

time searching for a solution in the infeasible domain.  By the same token, areas of promise 

are identified so that they can be exploited; meaning a more extensive search for the 

“optimal” solution takes place.  This raises two key attributes possessed by GA’s: global 

exploration and local exploitation.   

 There are two trains of thought when dealing with a searching algorithm for complex 

problems, those being global exploration and local exploitation.  Global exploration is the 

tendency of the algorithm to examine a very diverse range of points in the solution space, 

never dwelling very long in one particular area.  Local exploitation refers to the tendency of 

the algorithm to search a small area of the solution space, focusing more on that particular 

area than on the rest of the space [Michalewicz 1996].  Therefore, an algorithm that can 

balance global exploration with local exploitation will serve as a very efficient search 

algorithm since it will be able to search through a large area of the solution space, pausing to 

search further only into those areas that show promise.   

 Genetic algorithms represent a balance of the two above algorithms.  Furthermore, a 

GA can be tuned to perform more exploration or more exploitation.  For example, altering 

the genetic operators, which are functions that alter the composition of the child solution 

points, will alter how the GA performs [Michalewicz 1996, Houck et. al. 1996].  The 
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operators employed by GA’s are crossover and mutation, as well as selection.  These 

operators represent two of the fundamental issues in applying a GA (operators and selection), 

of which the others are representation, termination, initialization, and evaluation.   

2.2.2 GA Representation 

 The representation of a GA refers to how the solution vectors are represented inside 

the GA.  For the classical GA model, the solutions are represented in binary.  For example, in 

a binary GA, the solutions would be represented by [0010110100, 1101001010, …], where 

the first binary string is variable x1, the second is x2, and so on and so forth.  This form of the 

GA can handle floating point numbers, but must convert them into binary to operate on them.  

Because of this transformation, some floating point problems cannot be effectively solved 

using a classical GA representation.  To remedy this, another GA representation can be used, 

such as the float GA.  In this representation, the solution vectors are represented with floating 

point numbers, thus eliminating the need for any number system transformations and thereby 

increasing the effectiveness of the GA.   

2.2.3 Genetic Operators 

 As stated previously, there are two operators employed by a GA are crossover and 

mutation.  Crossover is a genetic operator that combines two parent vectors to produce child 

vectors.  In the classical GA representation, simple crossover is the only form that is 

employed.  Simple crossover crosses the parent vectors after the kth position, where k is a 

random number in the domain {1..n}, where n is the size of the vectors in question.  The GA 

applies this operator based on a probability of crossover, which is set by the user.  This 
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crossover operator has been shown to improve the stability of the search and is capable of 

reducing the standard deviation of the best solutions found [Michalewicz 1996].   

 A floating point GA representation employs three different crossover algorithms: 

simple, arithmetical, and heuristic.  Simple crossover is applied in the same manner as for the 

classical representation.  The only difference between the two applications is that one 

operates on a binary bit string while the other operates on floating point variables.  

Arithmetical crossover is a linear combination of two parent vectors, and results in the 

creation of two child vectors.  Given parent vectors x1 and x2, the resulting offspring are x'1 = 

a · x1 + (1 – a) · x2 and x'2 = a · x2 + (1 – a) · x1, where a ∈  [0..1].  Arithmetical crossover, 

like simple crossover, has been shown to improve search stability while reducing the 

standard deviation of the best solutions found [Michalewicz 1996].  The last crossover type is 

heuristic crossover, which is a unique crossover method because it is the only operator that 

uses the values of the objective function to direct the search.  It produces a single offspring, 

and it may not produce an offspring at all.  This method, given parent vectors x1 and x2, 

produces a child vector x3 such that x3 = r · (x2 – x1) + x2 where r is a random number 

between 0 and 1,and parent vector x2 is better than or equal to parent x1 according to the 

objective function.  Because of the affine combination, it is possible that this method can 

produce an infeasible point outside the bounds on the variables, in which case a new r is 

generated along with a new child.  This continues for a limit of w, after which no offspring 

will be produced by this method.  Heuristic crossover aids the precision of the search by 

directing the search in the most promising direction and applying fine local tuning to areas of 

promise [Michalewicz 1996].   
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 In general, the mutation operator requires a single parent vector and produces a single 

child vector.  The classical GA representation applies only binary mutation.  This mutation 

algorithm moves through the bit strings that represent the solution variables and flips bits 

according to a probability of mutation, which is defined by the user.  Typically, this 

probability ranges between 0.001 and 0.005.   

 The four types of mutation operators for a floating point GA representation are 

uniform, boundary, non-uniform, and multi-non-uniform.  Uniform mutation produces a 

child vector by making a change to a single component (variable) of the parent vector.  This 

method replaces the ith component of the parent with a random number between the range of 

the upper and lower bounds for that variable (i.e., xi = unif(ai, bi), where ai and bi are the 

lower and upper bounds, respectively).  This mutation method allows the solution vectors to 

move freely inside of the search space, which is important in the early stages of solution 

evolution [Michalewicz 1996, Houck et. al. 1996].   

 Boundary mutation sets the ith component of the parent vector equal to the value of 

either the upper or lower bound for that variable with equal probability.  This mutation 

operator is designed more for problems in which the optimal solution lies along the 

boundaries of the solution space; however, this operator performs extremely well in the 

presence of constraints [Michalewicz 1996, Houck et. al. 1996].   

 Non-uniform mutation replaces the ith component of the parent vector with a non-

uniform random number.  This number is generated by Equation 2.1 and is based upon the 

current generation number and the maximum number of generations for the run, as well as a 

shape parameter that is set by the user.  This mutation operator aids the search by adding a 

fine tuning capability to the system [Michalewicz 1996].  Multi-non-uniform mutation is the 
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same as non-uniform, but instead of changing a single component of the parent vector, this 

operator changes all components [Houck et. al. 1996].   

 

 

(2.1) 

 

 
 

r1,r2 = a uniform random number between (0,1) 

G = the current generation 

Gmax = the maximum number of generations 

b = a shape parameter 

 

2.2.4 GA Selection Routine 

 The selection routine determines how the GA selects which solution vectors to 

include in the intermediate population where the crossover and mutation operators are 

applied.  There are many different types of selection methods and ranking methods [Houck 

et. al. 1996].  Classical GAs use roulette wheel selection scheme which is based on the 

probability of selecting a solution directly on the fitness of that solution.  Therefore, if the 

best solution in a set is four times better than the next best solution, the GA will have more 

selective pressure placed on it than if the best solution was only twice as good as the next 

solution in the ranking.  This selection method limits the GA to maximization since the 

evaluation function used must map the solutions to an ordered set on the positive real 

numbers.   
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 A tournament selection scheme randomly chooses k solutions from the population 

and evaluates them based on their fitness.  The best individual is selected from this 

tournament which is repeated n times, where n is the population size.  The GA will 

experience more selective pressure the higher the k because the probability of entering the 

best solution from the set into the tournament increases as n increases.   

 Other selection routines are based on ranking methods.  These methods rank the 

individuals in the population from 1 to n (where n is the population size) according to their 

fitness which is defined by the evaluation function.  One commonly used ranking method is 

the normalized geometric.  As with all other ranking methods, the individuals are ranked as 

described previously.  Then, the probability that a solution vector will be selected for the 

intermediate population is based upon a normalized geometric function, which has a discrete 

point for each solution vector present in the population (Equation 2.2).   

 

P[Selecting the ith individual] = q'(1-q)r-1 
(2.2) 

q = the probability of selecting the best individual 

r = the rank of the individual, where 1 is the best 

P = the population size 

q' = q/(1-(1-q)P) 

 

 The amount of selective pressure placed on the GA to select the best solutions can be 

adjusted by altering the probability of selecting the best individual.  A higher setting results 

in more selective pressure.  In this way, it can be seen that if the best solution is two times 

better than the next best solution, the probability of selecting the best solution will be 
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identical to the case where the best solution is only one and a half times better than the next 

solution in the ranking.   

2.2.5 Termination 

 The fourth issue associated with applying a GA is the termination criteria.  First, the 

maximum number of generations can be set by the user, which acts as a cutoff point for the 

GA.  If the maximum is set too low, the GA could be forced to return a sub-optimal solution 

because it was not allowed to run long enough to converge to a better solution.  Conversely, 

if the maximum is set too high, the GA may spend several generations attempting to find a 

better solution when the current best solution satisfies the user’s requirements.  Secondly, the 

tolerance setting affects when the GA will stop.  This setting can stop the GA before reaching 

the maximum number of generations if the best solution found is within the user-defined 

tolerance, meaning that the “optimal” solution has been found.   

2.2.6 Initialization 

 The fifth issue is the initialization scheme that is applied.  One option is to seed the 

initial population of the GA with previously found solutions in an attempt to search for better 

solutions.  The remaining population members are then generated randomly.  Another option, 

which is more commonly used, is to initialize all individuals in the population randomly.   

2.2.7 Evaluation Function 

 Finally, the last issue associated with applying a GA is the evaluation function.  This 

function is utilized by the GA to determine the fitness of the solutions generated as they 

apply to the problem at hand.  While the GA will generate solutions that fall between the 

bounds as defined by the user, the evaluation function may further constrain the problem.  In 



 23

this way, it is possible for the GA to generate solutions that do fall within the user defined 

bounds but are infeasible due to the constraints added by the evaluation function.   

 To counteract this occurrence, several things can be done.  First, these infeasible 

solutions could be simply ignored in hopes that they will be forced out of the population in 

subsequent generations.  Second, infeasible solutions could be immediately removed from 

the population.  Both of these methods do not prevent or discourage the GA from generating 

infeasible solutions in future generations, and therefore represent an ineffective way of 

combating infeasible solutions.  A penalty method, on the other hand, is designed to penalize 

infeasible solutions in an effort to force the GA to view these solutions as unfit, and therefore 

remove them from the population.  This would also serve to discourage the GA from 

searching infeasible regions of the solution space.   

 The purpose of penalty methods is to alter the fitness value of a particular solution 

depending on its feasibility.  Infeasible solutions are penalized each generation according to 

the user defined penalty settings.  Doing this allows the GA to force out these infeasible 

solutions much faster than under normal conditions.  These penalty methods can also be 

dynamic, meaning that they are able to adjust the value of the penalty term during a GA run.  

Bean’s penalty method, for example, tracks the number of consecutive generations that have 

included infeasible solutions.  Should that count exceed some user-defined threshold, the 

penalty term is increased by a user-defined amount.  In the same manner, if the solutions 

become feasible, the penalty is reduced by a user-defined amount.  This ability to 

dynamically alter the penalty term based on the feasibility of the solutions forces the GA to 

spend more time searching the feasible areas of the solution space [Houck et. al. 1996].   
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2.2.8 Hybridized Genetic Algorithms 

 There are some problems that exist for which the basic GA is not capable of finding 

very good solutions.  These problems represent very complex solution spaces that impede the 

GA in its search for good solutions.  Though GAs have been shown to be very good global 

explorers [Michalewicz 1996], they suffer from poor local exploitation.  Even though the GA 

does utilize past information to direct its search [Jasper et. al. 2002], the solutions it generates 

are done so randomly, which limits its local exploitation abilities.   

 Local Improvement Procedures (LIPs) are searching techniques that can quickly 

converge to the local optimum in a small region of the search space [Jasper et. al. 2002].  

Therefore, these techniques are very strong local exploitation searches when the starting 

point supplied to the algorithm is in the same region of the search space as a local optimum.  

However, these searches are poor global searchers since they are designed to quickly 

converge to a local optimum rather than explore the search space as a whole.   

 In terms of GA’s, hybridizing involves redefining another search method into GA 

terms and combining it with the GA search algorithm.  Though the GA represents a very 

powerful global search routine, it is not always capable of truly converging to the precise 

local optimum or basin of attraction even though it may extensively search the surrounding 

area.  Simply put, the GA is very good at identifying the approximate location of these 

solutions, but somewhat lacking when it comes to converging to them.  By adding a search 

method that is capable of converging to these solutions, the GA can now converge to the 

“optimal” solution.  For example, a gradient descent search is a capable search algorithm for 

converging to a solution when it is supplied with a good starting point (the approximate 

location of the solution).  By itself, this search method struggles when it does not start near 
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the best solution.  Because the GA is capable of approximating the location of the best 

solution in a very complex solution space, adding a gradient descent search to the GA to 

form a hybrid results in an algorithm that can find the approximate location of the optimal 

solution and then zero in on the solution itself [Jasper et. al. 2002].   

 Coupling a LIP and its local exploitation abilities with a GA and its global searching 

abilities, the hybrid algorithm that results proves to be a very capable searcher when faced 

with a complex search space.  Now that the GA hybrid can better exploit the areas 

surrounding the solutions it generates, the algorithm can effectively “learn”, meaning that it 

is better able to judge the promise of the areas in the search space that it visits, thereby 

allowing it to focus more attention on areas that could hold the “optimal” solution.  These 

hybrid algorithms have been successfully applied to complicated problems and have been 

shown to outperform other search methods [Houck et. al. 1996, 1997; Joines and Kay 2002; 

Chu and Beasley 1995; Renders and Flasse 1996].   

2.2.9 Conclusions 

 Genetic algorithms serve as a powerful tool to solve difficult and complex 

optimization problems.  They offer a wide range of internal settings that aid in tailoring the 

search to the problem at hand.  By adjusting the settings for the selection routines, the 

selective pressure on the solution vectors can be adjusted to suit the needs to the search.  

Furthermore, by adjusting the termination generation counter and/or the tolerance, the speed 

of the search can be tailored to the requirements of the search (i.e. how close to the optimal 

solution is acceptable?).  In addition, adjusting the settings for the mutation and crossover 

operators allows the user to customize the GA in terms of global exploration versus local 

exploitation, which is important based on the complexity of the solution space.  Finally, 
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should the problem prove too complex for a simple GA to solve, hybridizing it with a local 

searcher combines the strengths of both algorithms and aids in overcoming the deficiencies 

in both routines [Jasper et. al. 2002].  Overall, GA’s offer an effective and efficient search 

method for complicated problems.   
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3.0 Research Approach 

 Woven and knitted fabrics exhibit textures that are comprised of repeating patterns.  

This research aims to show that using a wavelet filter, the textural pattern can be filtered out, 

revealing any underlying defects in the structure or on the surface of the fabric.  Since 

inspection procedures in textile production facilities generally require a trained human 

operator to detect fabric defects at slow production speeds, there is a significant need for an 

online automated process that can correctly identify fabric defects with a comparable level of 

competence to that of the human operator.   

3.1 Objectives 

 The main objective of this study is to show that a computerized system based on 

image processing software is capable of identifying defects in woven or knitted fabrics.  

Specifically, the project objectives are as follows: 

1. Determine wavelet filter coefficients for simple cases using a GA, 

2. Determine wavelet filter coefficients for real fabric images using a GA, 

3. Create a thresholding algorithm to convert filtered images to black and white, and 

4. Identify different classes of defects that can be detected 

3.2 Approach 

 There are two main parts to this study.  The first part is the creation of a genetic 

algorithm methodology that is capable of determining the optimal set of wavelet coefficients 

that will satisfy the non-convex constraints for a specific texture.  Simple cases for which the 

optimal solution was known were found as a preliminary screening method for the GA.  
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Subsequent GA attempts were always tested on these simple known cases before any other 

testing was performed.  Further testing would only begin after the GA could successfully and 

repeatedly determine the known set of wavelet coefficients for these known cases.  The 

second part of experimentation was to devise and code algorithms that were able to identify 

defects in real fabric samples.  Multiple classes and types of defects were tested using these 

methods and comparison between the algorithms were made.   

3.3 Software 

 All optimizations performed during this study were done using The Mathworks 

Matlab® version 6.1.0.450 release 12.1 and version 2.1 of the optimization toolbox for 

Matlab®.  Version 5 of the Genetic Algorithm toolbox [Houck et al 1996] was used to create 

the GA.   

3.4 Image Gathering 

 The fabric images were gathered using a custom image gathering system.  This was 

constructed beginning with a Pulnix TM-1020 8-bit continuous capture grayscale camera.  

The camera is capable of capturing 15 frames per second at a resolution of 1018x1000 pixels.  

The camera was controlled by an EDT PDVa Camera Capture Card, which allowed for 

image capture under Microsoft Windows or Redhat Linux.  To achieve the image quality 

necessary for defect detection, the images were backlit so that the yarns would show up dark, 

with spaces between them light.  Backlighting was achieved using a CCS Green LED array 

light source.  The green LED source was chosen because the camera was most sensitive to 

light in the green section of the spectrum.  The light source was powered using a CCS PTU-
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3012 pulsing power source.  This power source is capable of strobing the light source using 

either an internal counter or external control.   

3.5 External Light Control 

 The strobing aspect of the power supply was controlled externally.  Because with 

internal strobing the light source is strobed continuously, it is difficult to sync the camera 

shutter with a strobe.  Controlling the strobe externally allows for the resolution of timing 

issues, resulting in well lit images.  The power supply was connected to the computer via a 

STCB-25-3 cable, available from CCS Inc.  This cable connected to a high current digital I/O 

card in the computer.  The high current model of the DIO card was necessary due to power 

requirements over the cable to the power supply.  In accordance with the specifications sent 

by the manufacturer, one of the DIO output channels was connected to the STCB cable (see 

Figure 3.1).   
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Figure 3.1:  STCP-25-3 Cable Connection Diagram 
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4.0 Experimentation 

 It has been shown that wavelet filters might offer the flexibility and capability of 

performing fabric defect detection.  As stated in Section 2.1.5, the following optimization 

problem (see Equation 4.1) can be solved in order to determine the best set of wavelet 

coefficients necessary for the wavelet filter [Jasper et. al. 1996].  However, this nonlinear, 

non-convex optimization problem is extremely difficult to solve.   

 

 
 

(4.1) 
 
 

 

The objective function (J) to be minimized was the 2-norm of the high frequency component 

of the image where n is the number of coefficients, c is a vector of wavelet coefficients 

contained in the solution set, and P is the array of the pixel values from the image.  Genetic 

algorithms have been shown to perform well on a variety of difficult problems, such as the 

one shown in Equation 4.1.   

4.1 Simple Float GA 

 Therefore, for the first attempt, a simple genetic algorithm (GA) using a float 

representation was used to determine the set of coefficients for the wavelet filter.  This phase 

performed a directed random search on the solution space utilizing no additional algorithms 

(i.e., no local search) other than a very simple penalty to aid in phasing out infeasible 

solutions.  Each solution set (i.e., set of wavelet coefficients) was subjected to two 
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evaluations; one determined the fitness of the solution set, while the other validated the 

coefficients that make up the set.  The second evaluation function is needed because there 

exist constraints on the values of the coefficients (as seen in Equation 4.1), and the GA may 

produce infeasible solutions, so the number of coefficients determined the number of 

constraints.  These constraints were necessary to satisfy orthogonality requirements, as the 

values of all of these constraint equations should equal zero for valid coefficients.  In our 

experimentation, constraint values below 10-6 were considered zero, and therefore were 

considered satisfied.  Since the GA cannot handle the constraints directly, the constrained 

optimization problem in Equation 4.1 is turned into an unconstrained problem by adding the 

constraints into the objective function as seen in Equation 4.2.   

 

(4.2) 

 

In essence, the GA minimized the sum of the squares of the product of the coefficients and 

the pixel values.  Because of how the P array was set up (see Appendix 9.5), the GA 

minimized the J value for quadrant 4 in the filtered image.  The λ term represented the simple 

penalty term which was applied to the constraint violation term, C(c), which was the vector 

of the constraint equations, of which there were n/2, where n was the number of coefficients 

in the solution set.  If all constraints were satisfied, then this vector would be zero.   

 To assist in the solution search, the GA utilized both mutation and crossover 

operators.  In the first GA phase, multi-non-uniform, non-uniform, and uniform mutation 

were used, as well as arithmetic, heuristic and simple crossover algorithms [Houck et al 

1996].  Table 4.1 details the number of times each operator was applied, or the value used for 

( )cCcPPcJ TTT λ+= ***min
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that setting.  Note that for Multi-non-uniform (MNU) and Non-uniform (NU) mutation, there 

are two extra settings needed (see Section 2.2.3): the maximum number of generations and a 

shape parameter to determine the degree of non-uniformity to apply (3 for MNU and 6 for 

NU) [Houck et al 1996].  Also, heuristic crossover needs one additional setting, that being 

the number of retries it will undergo if it produces an infeasible child solution vector; the 

value used for this study was 3.   

 Once the GA and the necessary objective function files were developed, trial runs 

were begun to test the effectiveness of the simple GA.  Initial experimentation began by 

minimizing some simple known cases (for example, a 2x2 and 4x4 black and white 

checkerboard image).  These images were constructed by alternating 2x2 or 4x4 black and 

white pixel blocks as shown in Figure 4.1 (a) and (b), respectively.   

 

Table 4.1: Genetic Algorithm Settings 

Simple Crossover 2 

Heuristic Crossover 2 

Arithmetical Crossover 2 

Boundary Mutation 4 

Multi-non-uniform Mutation 6 

Non-uniform Mutation 6 

Uniform Mutation 4 

Population Size 100 

Normalized Geometric 0.08 
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(a) 2x2 (b) 4x4 

 
Figure 4.1: Synthetic Images used in Experimentation 

 
 
 
 Due to the simplicity of these designs, the global optimum solution (i.e., the J value 

and coefficients {c}) was known, and therefore these images were used to validate the ability 

of the GA to obtain the optimal solution.  The 2x2 case required a set of four wavelet 

coefficients and the 4x4 case required a set of eight coefficients, one coefficient per pixel in 

the repeat unit of the image.  These images will be shown in Section 4.3 owing to the fact 

that every GA methodology was able to find the optimal solution.  During these preliminary 

runs, it was noted that while this simple approach GA could find the optimal solution for the 

2x2 case, it struggled with the somewhat more complex 4x4 case.  Even after subjecting the 

GA to longer runs of 16,000 generations, it was still unable to adequately minimize the J 

value every time.  Furthermore, when this simple GA was tested on a real fabric image, the 

GA was unable to adequately minimize the J value for this complex image.  Even after 

running for a great length of time (40,000 generations), an adequate defect filter could not be 

obtained.  This lead to the second GA iteration which incorporated a better penalty term to 

force out infeasible solutions from the search.   
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4.2 Float GA with dynamic penalty 

 One problem with the simple GA approach was the static penalty term λ, whose value 

was difficult to determine in order to perform effectively.  If λ was too small, then the GA 

never converged to the feasible domain while too large a penalty term forced the GA to 

prematurely converge to a suboptimal solution.  Therefore, the second attempt with the GA 

included a dynamic penalty term (i.e., λ would change during the course of the run) to the 

objective function.  This was done such that the infeasible solutions could be eventually 

forced out while still allowing the GA to search.  This new penalty term, based on the Bean’s 

penalty method, increases in value over successive generations if infeasible solutions still 

exist in the set, and decreases in value if more feasible solutions are found.  The logic behind 

this scheme was to allow the GA to skirt along the boundary of the feasible domain.  The 

settings for this new penalty method allowed the GA to search infeasible regions for 15 

generations before increasing the penalty term, which was added onto the objective function 

value.  Since the GA was trying to minimize the objective value, a larger penalty term would 

force the GA to find solutions that were much more feasible.  The formula for this penalty 

method is shown in Equation 4.3.   

 

if best value has been infeasible for k generations 
if best value has been feasible for k generations 
otherwise                (4.3) 

 
 

As with the previous GA attempt, experimentation began with the simple cases.  

Once again, the optimal solution was found for the 2x2 case, but not for the 4x4 case, despite 

long runs (> 40,000 generations).  At this time it was determined that the current GA 
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approach was inadequate in finding valid solutions for the problem and a newer more 

sophisticated method was needed.  Therefore, the current GA was hybridized with a gradient 

search to form a better global searcher.   

4.3 Float GA with Gradient Search 

 Because of the inability of the prior versions of the GA to handle the more complex 

images, a gradient search algorithm was added to the methodology by hybridizing the GA.  

Though the objective function itself would still be minimizing the sum of squares, the 

coefficient search would no longer be driven solely by the output of the GA.  Once the GA 

generated a set of coefficients {c} for the image, a gradient descent search was performed to 

look for better solutions in the space immediately surrounding the current solution set.  

Consequently, this new method would gain the strengths of both the GA’s global search 

ability and the gradient descent’s local exploitation ability to quickly zero in on the local 

optimal solution.  Also, the gradient search method (Multidimensional constrained nonlinear 

minimization) forced the point back to the feasible domain if it was an infeasible point.   

 In addition, the objective function was re-written to improve computational 

efficiency.  This new formulation applied the original wavelet coefficient matrices to the 

image data directly, and then calculated the sum of the squares of the pixel values.  This was 

done due to the difficulty associated with determining the gradients of the previous objective 

function as defined in Jasper et. al. [1996] and shown in Equation 4.1.  The resulting formula 

for the new objective function is shown in Equation 4.4.   
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(4.4) 

 

 

F represents the filtered image, W is the wavelet filter (see Appendix 9.6), U is the unfiltered 

image, and n and m represent the size of the image.   

 As with previous GA attempts, experimentation began by testing the simple synthetic 

cases as shown in Figures 4.2 and 4.3.  In addition to the normal 2x2 synthetic image, two 

additional images were created to study the effect of shifting on the transformed image (i.e. – 

a one pixel shift down and a one pixel shift right).  This was done to determine if the 

resulting filter would be shift invariant since for a real fabric image, capturing an image at 

exactly the same position would be nearly impossible.   

 

  
(a) 2x2 Synthetic Image (b) 2x2 Shifted Down 1 Pixel 

 
Figure 4.2: 2x2 Synthetic Images Used to test Hybrid GA 
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Figure 4.3: 2x2 Synthetic Shifted Right 1 Pixel 

 
 
 

The wavelet filter produced by the coefficients {c} determined by the GA was then 

applied to these images.  The results of this are shown below in Figure 4.4.  The first image 

shows the result of the filtered normal 2x2 synthetic image.  Because the GA was able to 

accurately capture the texture information in the form of the filter coefficients, the texture has 

been filtered out of quadrants two, three, and four, resulting in black quadrants.  Any defects 

that had been present in those quadrants would show up as obvious flaws to the solid black 

background.  The second image shows the filtered synthetic image that has been shifted 

down one pixel.  Note again that quadrants two and four are black.  Because the original 

image was shifted down one pixel, due to the properties of the filter and the simplistic repeat 

of the image, the compressed image shifted to quadrant 3.  However, because quadrant one 

was still numerically equal across its space, it was concluded that any defects would still 

show up in the washed out quadrants (one, two, and four for this image).  When the original 

image was shifted to the right by one pixel, a similar effect to down shifting was seen.  The 

compressed image shifted to quadrant two, quadrant one turned white, and the other two 

quadrants remained black.   
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Figure 4.4: Transformed normal and down shifted synthetic images 

 
 
 
 To validate the method used here to another wavelet methodology, these same images 

were also subjected to a filter created using the standard Daubechies coefficients for a 4 pixel 

repeat unit [Press et. al. 1992].  The transformed image based on this filter is shown in Figure 

4.5.  Note the major difference between the gray levels of this image compared to the images 

filtered using the GA method.  Though the Daubechies filter coefficients were considered to 

be a good baseline for comparison, they were not suitable for use in fabric defect detection.  

This was due to the fact that the desired filtered images needed to have all or nearly all of the 

texture washed out in quadrants two, three, and four (or whichever quadrants that do not 

contain the compressed original image).  The Daubechies filtered image clearly shows that 

significant amounts of texture remained in the all four quadrants making it ineffective as a 

defect detector as seen in Figure 4.8.   
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Figure 4.5: Daubechies Transform of Synthetic Image 

 
 
 
 The next step was to apply the determined filter to a synthetic image containing 

different defects to verify that those defects would indeed be visible.  The first defect tested 

was a simple horizontal line defect, simulated by turning the pixels of image lines 15 and 18 

to gray level 150 (the original image contained only levels 1 and 255) as seen in Figure 4.6 

(a) and (b).  Testing for shift invariance was also performed on this defect.  The second 

defect tested was a cross defect, simulated by adding in a vertical and horizontal line of gray 

pixels (gray level 150) into the center of the image, seen in Figure 4.6.  The GA-wavelet 

transforms of these images are shown in Figure 4.7, while the Daubechies transform of the 

cross defect is shown in Figure 4.8.   
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(a) Horizontal Line Defect (b) Cross Defect 

 
Figure 4.6: Synthetic Images containing Defects 

 
 
 

  
(a) Horizontal Line Defect (b) Cross Defect 

 
Figure 4.7: Transforms of Defect Images 

 
 
 

 

Figure 4.8: Cross Defect using Daubechies wavelet coefficients 
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 The GA-wavelet filtered images shown in Figure 4.7 constitute a significant finding.  

The defect seen in the first image was of a horizontal nature, and therefore was seen in the 

third quadrant of the filtered image.  The cross defect in the second image had both 

horizontal and vertical components which caused it to show up in both quadrants two 

(vertical) and three (horizontal).  The intersection between both components was visible in 

quadrant four.  These findings suggest that horizontal defects would appear best in quadrant 

three; vertical defects in quadrant 2; and two dimensional defects in quadrant four.   

 Next, to test the shift invariance, the horizontal line defect image was shifted down by 

a pixel.  The transformed image for the down shifted horizontal line defect (as seen in Figure 

4.9) initially appeared identical to the transform of the shifted down defect free image (as 

seen in Figure 4.4).  When the image matrix for the defective image was viewed numerically, 

the defect was readily apparent as there was a significant difference between the values of 

neighboring pixels, signifying a non-uniform shade.  By normalizing each quadrant to a 255 

gray level scale, the defect became visually apparent as shown in Figure 4.9.  The filtered 

image of the down shifted horizontal defect showed that the defect appeared in quadrant one.  

As discussed above for the simple 2x2 case, a one pixel shift down caused the compressed 

image to switch from quadrant one to quadrant three, which explains why the defect 

appeared in quadrant one here.   
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Figure 4.9: Transform Image of Horizontal Line Defect 

 
 
 

 Before experimentation continued, some time was spent analyzing the thought 

processes that resulted in the current GA setup.  It was realized that an incorrect assumption 

had been made.  The current setup at the time was using one set of wavelet coefficients to 

define the corresponding filter construct, which filtered in both the horizontal and vertical 

directions.  However, the assumption that this filtering method would suit fabric images was 

incorrect; while it matched fine with simple test cases due to their symmetry, real fabric 

images are not truly symmetrical due to small variations in yarn structure, hairiness, and 

random noise.   

 The analysis determined that by utilizing a set of coefficients each for the horizontal 

and vertical directions, the GA could then optimize each coefficient set independently, which 

would result in a better wavelet filter construct.  Therefore, the filtering process equation, 

shown in Equation 4.4, was modified as shown in Equation 4.5.   
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In the new equation, W1 is the wavelet filter constructed with the first set of wavelet 

coefficients, and W2 is the filter constructed with the second set of wavelet coefficients.  As 

shown, the sum of the squares is still applied in the same manner as before but now the GA 

solves for two sets of coefficients {c1}and {c2}.   

 Several trials were run utilizing the new combination of searches and the new 

objective function on real fabric images, and it was noted that each generation was requiring 

upwards of 5 minutes.  Since each run of the GA required 400 or more generations, this 

translated into an arduous task.  This long amount of time was partly due to the complexity of 

the filter necessary to adequately capture the texture information of the fabric, and also in 

part to the intricacy of the gradients which were being constructed from equations having 16 

variables each (2 sets of 8 coefficients each for real fabric images).  To help alleviate the load 

to the computer, the gradients were calculated ahead of time with respect to the coefficient 

variables.  The gradients were then supplied directly to the gradient search in the GA for 

evaluation, eliminating the time spent determining them by perturbation in the gradient 

search algorithm.   

 Because of the time savings incurred from the predetermined gradients, longer runs of 

the GA were performed.  These longer runs ran in the same amount of time as with the 

previous settings, and had the advantage of producing images more closely suited to 

achieving the goals of the project (i.e., real fabric defect detection).   
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Figure 4.10: Plain weave no defect, with defect 

 
 
 
 The images shown in Figure 4.10 were taken from a sample of a plain weave that 

contained numerous tears throughout its length.  Both images are 64x64 pixel subsets of the 

original capture.  The difference in apparent gray level is only due to image scaling; 

numerically, the background textures are identical.  A set of wavelet coefficients were 

determined using this GA methodology on the images in Figure 4.10 to create a wavelet 

filter.  Two sets of coefficients were used as shown in Equation 4.5.  Both sets of coefficients 

contained 8 values, one value for each pixel in the repeat unit of the fabric image (Figure 

4.10).  The corresponding filter was then applied to the images as seen in Figure 4.11.  

However, not enough of the texture was being washed out by the filter to accurately identify 

the presence of any defects.   
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Figure 4.11: Transform of Plain weave images, without and with defect 

 

4.4 Float GA with Entropy 

While the results of the GA with gradient search were definitively better than those 

found previously, the filter construct was still not capable of filtering out enough of the 

texture to allow for reliable defect detection on real fabrics.  Because of this, there was a 

need for a different method of image processing instead of using the sum of squares; one 

such objective was entropy.  Entropy, in terms of image processing, is the measure of the 

number of bits per pixel needed to represent an image.  The formula, also known as 

Shannon’s entropy, is shown in Equation 4.6.   

 

 

(4.6) 

 

In this equation, n is the number of gray levels in the image; in the case of this study, n was 

256 since all images used were 8-bit grayscale images.  The term d(i) is the normalized 

frequency of occurrence for each gray level, where each probability is between zero and one, 
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and the sum of all probabilities is one.  For example, an image that contained 256 different 

gray levels would have an entropy value of 8 (28 = 256), whereas an image that contained 

only 128 different gray levels would have an entropy of 7 (27 = 128) [Leung et al 2001].   

 To increase the computational efficiency of the entropy formula for use in this study, 

the equation was re-written as shown in Equation 4.7.  As in the method shown by Equation 

4.6, this method uses a frequency of occurrence array; in this case, the array has not been 

normalized, so the counts contained in the array represent actual frequency of occurrence 

data rather probability data.  However, after the frequency distribution has been constructed, 

all non-zero elements are removed since they have no bearing on the calculation, and the 

result is the Bin term shown in Equation 4.7.  The reworked entropy formula proves to be 

more computationally efficient since it ignores the non-zero elements of the frequency 

distribution and does not require an extra step to convert the frequency distribution into a 

probability distribution.   

 

 

(4.7) 

 

 

 To aid in understanding entropy, the data in Table 4.2 will be used to perform a 

sample entropy calculation.  The first step was to find the range of the data (i.e., the values 

range from 0 to 8 resulting in a range of 9) and then divide that range into 256 increments.  

Next, each pixel value is sorted into the appropriate bin, and the count of that bin is increased 

by one as seen in Equation 4.8, term BinWithZeros.  Next, all non-zero elements of the bin 
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array are arranged into a row (Bin), the length is calculated, and the entropy calculation 

performed.  The intermediate and final results are shown.   

 

Table 4.2: Example Image Data 

2 3 0 2 
8 3 7 0 
2 5 7 3 
1 4 2 7 

 
 

 

 

(4.8) 

 
 

 The fourth and final attempt during experimentation resulted in the use of entropy as 

the evaluation function and the problem in Equation 4.9 was minimized.  Note that the same 

orthogonal constraints have to be satisfied.  This method, when applied to an image, returned 

the number of bits necessary to represent the image.  Unfiltered images are in 8-bit grayscale, 

meaning that they require 8 bits of image data per pixel to store the corresponding gray level.  

Since this method determined the number of different grayscale levels present in the image, it 

was decided that this would serve as an excellent method to evaluate images.   

 

 
(4.9) 

 

 Even though it was deemed impossible to continue supplying a predetermined 

gradient to the GA with this new method, doing so proved unnecessary, since the 

[ ] 813113412 == Τ LengthBin

7806.2=Entropy
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generational time was faster than before (i.e., the entropy calculation was quick).  While the 

exact reasons for this are still unclear, speculation pins it to the simplicity of the function 

itself, which consists of few lines of code.  Contrasted with the previous method used, which 

required very long equation evaluations to calculate the gradient, the entropy method is much 

simpler from a computational point of view, as it primarily focuses on grouping data before 

performing the simple entropy calculation and therefore determining the gradient numerically 

fast.   

 The filtered image of the plain weave with defect shown in Figure 4.10 using entropy 

can be seen in Figure 4.12.  Because of the similarities between this new image and the 

previous filtered image shown in Figure 4.11, there was still not enough of the background 

texture being filtered out.  The cause was related to the high zoom level used to capture the 

previous set of images.  Therefore, a new set of images were captured for experimentation 

using a lower zoom level and are shown in Figure 4.13.   
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Figure 4.12: Entropy Transform of Plain weave with defect 
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(a) Without Defect (b) With Defect 

 
Figure 4.13: New Plain weave images 

 
 
 
 The images in Figure 4.14 were the filtered results of the images in Figure 4.13, 

which represented another set of images on woven fabrics.  After comparing the new images 

shown in Figure 4.14 to those previously collected and shown in Figure 4.11, it was readily 

apparent that because of the lower magnification used during image capture, the filter created 

by the GA was much more capable of filtering out the background texture of the images.  

This can be seen clearly in Figure 4.14 since the gray levels seen in the fourth quadrant are 

much more uniform than before.  Remember, the entropy values of only the fourth quadrant 

are optimized.  The other quadrants just use the same coefficients, and for symmetric images, 

that was enough.   
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Figure 4.14: Transform of weave images, without and with defect 

 
 

 During this phase of experimentation, it was hypothesized that if a set of coefficients 

can adequately filter the fourth quadrant, additional sets of coefficients can be found to 

adequately filter the second and third quadrants as well.  Therefore, the necessary changes 

were made to the objective functions (new sets were created to handle optimizations on the 

other quadrants) and the optimizations were run.  Three separate optimization problems have 

to be solved (i.e., a filter for each of the three quadrants has to be found).  As shown in 

Figure 4.14, there is a significant improvement in the uniformity of quadrants two and three 

under this new optimization scheme.   

 Now that the GA was capable of finding adequate filter coefficients for quadrants 

two, three, and four of all images, it was deemed time to attempt the filtering process using 

much larger images, ones that would encompass a much greater area of fabric and allow for 

better defect detection.   

 The image shown in Figure 4.15 is the full fabric image from which the test images 

shown in Figure 4.13 were taken.  This full image encompassed an area of 512 by 512 pixels, 

which was substantially larger than anything attempted prior (largest image previously was 
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64 by 64).  This also allowed for a greater amount of defect detection, as the image 

encompassed the full area of the backlighting source used.  The resulting filtered image 

confirmed that the results given by the entropy method were of a high enough quality to 

attempt defect detection.  The reason for this can be seen by the fairly uniform background 

and pronounced defect in each of the quadrants of Figure 4.16.  The methods used for defect 

detection and their results will be discussed in a later section.   
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Figure 4.15: Full Plain weave image 
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Figure 4.16: Transform of Full weave image 

 
 
 
 Experimentation with the entropy method has demonstrated promising results.  Not 

only was the GA able to reduce the entropy of the images by at least one bit, but the resulting 

range of pixel values allows for the setting of a threshold value.  This allows the image to be 

converted into a strict black and white image for defect detection, something that was not 

possible before with sum of squares.  The reason for this new capability stemmed from the 

way that the data was represented with entropy.  Looking at a histogram of the pixel value 

distributions on an unfiltered image (see Figure 4.17) it was readily apparent that no 

threshold value could be set due to the erratic and non-normal distribution.  However, when 

viewing the same histogram populated with pixel values from the filtered image (see Figure 

4.18) it was shown that the distribution was normalized, with the upper or lower tails of the 
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curve representing potential defect pixels.  These tails represented potential defect pixels due 

to the nature of the wavelet filter.  Because defects would represent a significant deviation 

from the normal texture of a fabric image, defects would be emphasized in the resulting 

filtered image.  The emphasis placed on these pixels would result in large departures from the 

population mean, placing those values in either the upper or lower tail of the population 

distribution.  By setting a threshold value near one of these tails (for example, a threshold 

value of 200 since a high percentage of the data falls below 200) and thresholding 

accordingly, the resulting image clearly shows where the defects lay.  Further image 

processing algorithms could be performed on the resulting images to further enhance the 

defect detection as shown in later sections.   
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Figure 4.17: Histogram of pixel values in full weave image 
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Figure 4.18: Histogram of pixel values in quadrant 4 of filtered image (weave) 

 

4.5 Image Normalization 

 Though all of the defect detection methods that will be described later run solely on 

the numerical values of the images, it was important to be able to show what some of the 

images looked like visually.  Due to the nature of the wavelet transform, it was possible for 

the resulting filtered image to contain values outside the range that is normal for an 8-bit gray 

scale image (0 to 255).  In addition to that, the values contained in each of the four quadrants 

sometimes were very different relative to one another.   

 Because of these properties, simple image scaling was not adequate to provide a 

satisfying visual representation of the filtered data.  Therefore, a normalization method was 

required that operated on each quadrant independent of the others.  This algorithm worked by 

first finding the lowest value in the quadrant in question.  After subtracting that value from 
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all pixels in the quadrant, the maximum value in the quadrant was found.  Finally, each pixel 

was divided by a scale factor, which was the dividend of the maximum value and the 

maximum 8-bit gray value, 255.  This algorithm performed the aforementioned operations on 

each quadrant separately.  The resulting images can now be compared to other normalized 

images since all are shown on the same scale.  Furthermore, comparisons between quadrants 

in the same image can be made.   

 An example of an un-normalized image is shown in Figure 4.19.  Upon viewing that 

image, it was easy to see that some sort of normalization was needed because the data in 

quadrants two, three, and four was not visible due to the low values contained in the first 

quadrant relative to the other quadrants.  By using the normalization algorithm, the image 

shown in Figure 4.20 was produced, making it much easier to view the visually represented 

data from the previously washed out quadrants.   
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Figure 4.19: Filtered Weave image, no normalization 
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Figure 4.20: Filtered Weave image with normalization 

 
 

4.6 Thresholding 

 The thresholding algorithm, while simple in nature, was a critical part of defect 

detection.  While any defects present in the original images were now readily apparent to the 

naked eye in the filtered images, detecting them computationally was another matter.  

Because of the nature of the entropy function in terms of resulting gray level variances, it 

was possible to identify a threshold point from the gray level distribution (similar to Figure 

4.18).  This threshold point served as a cutoff point for the image processing, meaning that 

any pixel with a gray level below the threshold point (or above, for reverse thresholding) 

would be turned black, and any above would be turned white.  Therefore, the resulting image 

would consist of only black and white pixels, with the idea being that pixels representing a 

defect would be turned white, and all others black.   
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 Figure 4.21 illustrates how reverse thresholding works.  The image before 

thresholding (Figure 4.21a) was the fourth quadrant of a filtered image.  Because the defect 

shown in the image was darker than the rest of the image, reverse thresholding had to be 

used.  In that particular instance, a threshold value of 105 was used, meaning that any pixel 

darker than gray level 105 was turned white and all others black.  The resulting image is 

shown in Figure 4.21b.  The oil stain stands out in the image.   
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(a) Before Thresholding (b) After Thresholding 

 
Figure 4.21: Quadrant 4 Image before and after Thresholding 

 
 
 

 Though the threshold value for the filtered images was inherently large (above 200) 

for normal thresholding and relatively small (below 150) for reverse thresholding, random 

noise and other naturally occurring inconsistencies in the fabric allowed for some non-defect 

pixels to fall above or below the threshold point, resulting in additional white pixel blocks in 

the thresholded image (as seen in Figure 4.21b).  Before any defect detection could take 

place, these non-defect pixel blocks needed to be identified and removed.   
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4.7 Noise Removal 

 Upon viewing numerous thresholded images, with and without defects, it was noticed 

that noise blocks tended to be small in comparison with true defect blocks.  Therefore, the 

algorithm for removing noise needed to be able to determine the size of the block to decide 

whether or not to erase it.  Figure 4.22 depicts the flow of the noise removal process.   
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Figure 4.22: Flow Chart of the Noise Removal Process 
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 The noise removal process was broken into three separate algorithms.  The first 

algorithm constructed was a pixel block counter that was capable of searching the image for 

white pixels.  Once a white pixel had been identified (a value of 255), a noise counting 

routine was used to determine the size of the pixel block.  This routine worked by making 

recursive function calls, passing the location of all eight neighbors to the original pixel 

(Figure 4.23), one at a time.  Once the routine had counted a pixel, it changed the pixel value 

to 254 such that the counter would not visit that pixel anymore.  This was done because the 

counting routine only looked for white pixels (i.e., those having a gray level of 255).  Once 

no more white pixels could be found in the current block, the routine would exit and return 

the number of pixels that made up the block in question.   
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Figure 4.23: Neighbors of a Pixel 

 
 
 Next, the main noise removing routine would compare the size of the block to the 

predetermined size criteria.  That size criteria was made to be variable to allow for reusability 

in any number of cases.  If the size of the pixel block was greater than the set size criterion, 

then the block would be ignored, and the routine would continue searching for white pixel 

blocks.  Otherwise, the routine would call its other child algorithm, the noise eraser.   

 The noise erasing routine was also a recursive function.  Starting with the initial pixel 

of value 254, the routine would branch out to all other 254-value pixels in the same block, 

turning them all black.  Once the block had been removed from the image, the function 
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returned, and the noise search continued until all other noise blocks had been identified and 

removed.   

Once searching was complete, the routine would go through the image and change all 

remaining 254-value pixels back to value 255 for any further processing that was required.  

The reason that this was done last was so that the noise counter would not visit the same 

pixel block twice during its successive row scans of the image since it was only searching for 

pixels of value 255.  The final result from these algorithms was an image that contained only 

pixel blocks of size greater than the predetermined cutoff.   

 An example of an image that required noise removal was depicted in Figure 4.21.  

The defect showed up as the large white pixel block in the center of the image surrounded by 

a fair amount of small pixel blocks representing noise.  Because of the small size of these 

pixel blocks, the noise removing algorithm could be run on this image with a fairly low 

noise-size setting; in this case, the setting was 15, meaning that any pixel blocks below 15 

pixels in size would be removed from the image.  The image that resulted from that noise 

removal procedure is shown in Figure 4.24.   
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Figure 4.24: Thresholded Image after Noise Removal 

 
 

4.8 Defect Segmentation 

 Now that the required preprocessing of the filtered images had been completed, 

defect segmentation could begin.  Because of the properties of the wavelet filter, linear 

defects of a vertical or horizontal nature would show up in quadrants two and three, 

respectively.  Examples of these types of defects would be mispicks, missing or broken ends, 

and other single yarn defects.  Other defects of a more planar nature would show up best in 

the fourth quadrant.  This defect class includes holes, tears, oil spots, and any other defect 

that is planar in nature.   

 Experimentation with defect detection began with quadrant four.  Fabric images 

containing tears and oil spots of varying degrees of severity were subjected to the filtering 

process.  Subsequently, those images were thresholded and subjected to the noise removal 

algorithm with a size criterion of 3 and 15 pixels, respectively.  The resulting images 

contained only the defect, so no further processing was needed as the defect had been both 
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identified and located.  An example of a tear defect is shown in Figure 4.25, and an example 

of a stain defect was shown in Figure 4.24.   
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Figure 4.25: Plain Weave defect, thresholded and cleaned 

 
 
 
 Defect detection in quadrants two and three consisted of analyzing images that 

contained mispicks.  Initially, the filtered images were subjected to the thresholding routine, 

but it was noticed that the pixel blocks that represented the mispick were of insufficient size 

to be adequately distinguished from noise in the image.  Increasing the threshold value did 

serve to reduce the amount of noise present and the size of the remaining noise blocks, but 

doing so also had an adverse effect on the size of the defect blocks.  An example of this 

phenomenon is shown in Figure 4.26.  The image shown was quadrant three of a filtered 

image containing a mispick.  As evident in the thresholded image of the mispick, it was 

impossible to set the size criterion for the noise removing algorithm so that only noise pixels 

would be removed since there was no significant size differential between defect pixel blocks 
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and noise pixel blocks.  Therefore, another method for detection in quadrants two and three 

had to be researched.   
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Figure 4.26: Filtered Mispick Image and resulting Thresholded Image 

 

4.9 Sobel Edge Detection 

 The first method that was investigated to find defects in quadrants two and three was 

the Sobel edge detector.  This method worked by performing a two dimensional gradient 

measurement on the image, which would emphasize areas of high gradient differential 

(Stanger 1991).  The detector was constructed by creating a convolution matrix, shown 

below in Figure 4.27, and applying it to all pixels in the image with the exception of those 

pixels located at the edge of the image.   
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Figure 4.27: Convolution Matrix 

 

 The application of this convolution matrix involved moving through the inner n-2*m-

2 pixels in the image, where n is the number of rows and m is the number of columns.  At 

each pixel in the aforementioned range, the convolution matrix was applied to all of the 

reference pixel’s neighbors, and the sum of the resulting values was calculated.  That sum 

was stored into the same row and column position as the reference pixel, only this time into a 

new array of identical size to the original image.  The resulting output image could then be 

thresholded in the same manner as described above.  The output of this detector did indeed 

emphasize areas of high gradient differential; however, due to the numerical noisiness of the 

original image, the detector also emphasized transitions that did not represent any sort of 

defect.   

 Because of these emphasized noise pixel blocks, there was no significant difference 

between the defect and the noise (shown in Figure 4.28), making the processes of 

thresholding and noise removal moot.  Further research into techniques to find linear 

inconsistencies in an image were researched, and one such method that showed promise was 

the Sliding Window technique.   
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Figure 4.28: Mispick defect after Sobel Edge Detection 

 

4.10 Sliding Window Technique 

 The final method that was used for defect detection in quadrants two and three was 

the Sliding Window technique.  This technique involves constructing two windows around 

the reference pixel and calculating the standard deviation of the pixel values in each window.  

The first window constructed was 17 pixels square (eight pixels on either side of the 

reference pixel) and the second window was 9 pixels square (four on either side).  As with 

the Sobel Edge Detector, the sliding window method worked with a subset of the pixels; only 

the inner n-16*m-16 pixels were operated on by this technique to account for the size of the 

window, where n is the number of rows and m the number of columns.  Once the standard 

deviations of the windows have been found, the ratio of the smaller window to the larger was 
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compared to a predefined threshold value.  If the resulting ratio was less than the threshold, 

the reference pixel was set to one (black); otherwise, it was set to 255 (white).   

 Though the resulting image contains a great deal of noise blocks (see Figure 4.29), it 

was noticed that the size difference between the noise and the defect blocks was great enough 

to perform noise removal with an appropriate noise size (size >= 120).  Once the noise blocks 

had been removed from the image, only blocks representing the mispick were still present as 

shown in Figure 4.30.  The vertical line components that show up in the right hand sides of 

both the original sliding window application and the subsequent noise filtered images were 

due to the high gradient shift seen on that side of the image.  These blocks represented no 

defects in the image, and therefore could be ignored.  Therefore, no further processing was 

required.   
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Figure 4.29: Mispick image after Sliding Window application 
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Figure 4.30: Sliding Window Image after Noise Removal 

 

4.11 Robustness 

 In order to determine the robustness of the GA in terms of finding the “optimal” 

solutions, a set of experiments were run utilizing two different fabric images, a plain weave 

(Figure 4.13) and a 3x1 twill (Figure 4.31).   
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Figure 4.31: Twill Image 
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Full optimization runs were performed for each fabric image, meaning that each of 

quadrants two, three, and four were optimized separately.  Ten full optimization runs were 

performed for each fabric image.  For each trial run, a different random seed was used (one 

trial run denotes a separate optimization on each quadrant) so that the results between runs 

could be compared.  Therefore, since all three quadrants were optimized with the same 

random seed and each run used a different random seed, this experiment tested the ability of 

the GA to find similar solutions using different starting points to determine the repeatability 

(robustness) of the optimization scheme.  The results of this experiment are detailed in 

Section 5.3.   
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5.0 Results and Discussion 

5.1 GA Development 

 The GA used during the course of this study underwent several phases of 

development before the final phase was deemed acceptable.  The capability of the GA at each 

phase of development was evaluated in two different ways.  First, the GA was given a simple 

two by two black and white checkerboard case to which the optimal solution was known (see 

Figure 4.1).  Because the solution to this problem was known, this evaluation served as a 

benchmark for all phases of GA development (see Table 5.1).  Furthermore, due to the 

symmetry of the problem, there were multiple permutations of the solution that were all 

deemed acceptable.  For example, terms one and two could be swapped with terms three and 

four, but the solution retains its validity due to the symmetry present in the image (See Table 

5.2).   

 

Table 5.1: Simple Case Evaluation Results 

GA Phase Solution Found Generations needed 

Simple Float GA Yes ≈1000 

Float GA with Penalty Yes <100 

Float GA with Gradient Search Yes <10 

Float GA with Entropy Yes 1 
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Table 5.2: Simple Case Solutions 

Solution Num. C1 C2 C3 C4 

1 2
1±  

2
1±  0 0 

2 0 0 2
1±  

2
1±  

3 2
1±  0 0 2

1±  

4 0 2
1±  

2
1±  0 

 
 

 As shown in Table 5.1, all phases of the GA were capable of finding the optimal 

solution to the simple test case.  However, it can be seen that subsequent phases of the GA 

required fewer generations to find that solution.  Table 5.2 shows the four different 

combinations of solution coefficients that yield the optimal solution.  The reason that there 

are four combinations results from the symmetry of the problem as well as the constraint 

equations that must be satisfied for the solution to be feasible.  These equations are given by 

Equation 5.1.  Note that any of the solution permutations shown in Table 5.2 solve Equation 

5.1.   

 

 
(5.1) 

 

 

 Secondly, real fabric images were used to test the capabilities of the GA.  In this case, 

since the optimal solution is unknown, the GA was tested for its ability to find a good 

solution, number of generations needed, and elapsed time (see Table 5.3).  In this case, a 

good solution is defined as one that is feasible (satisfies all constraint equations) and that the 

GA is unable to improve upon after 50 or more subsequent generations (denotes the location 
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of a local optimal solution since the GA is unable to improve upon the current best solution).  

The evaluations presented here represent time and efficiency statistics only; actual 

optimization capability was ignored at this point in the GA evaluation.   

 

Table 5.3: Real Fabric Evaluation Results 

GA Phase Solution Found # Generations Time Time/Gen. 

Simple Float No >40,000 16 hrs. 1.5 sec. 

Float with Penalty No >40,000 16 hrs. 1.5 sec. 

Float with Gradient Yes 500 42 hrs. 300 sec. 

Float with user Gradient Yes 400 16.6 hrs. 150 sec. 

Float with Entropy Yes 400 1 hr. 9 sec. 

 
 

 Clearly, subsequent phases of the GA exhibited tremendous improvements over 

previous phases.  The first improvement was incorporating a gradient descent search into the 

GA’s objective function.  This allowed the GA more local exploitation of promising areas in 

the solution space, thus allowing it to locate local optimal solutions.  As shown in Table 5.3, 

this represented a tremendous improvement over the first two phases of the GA because it 

was then possible to find a fitting solution to the problem at hand.  The first two phases of the 

GA were not equipped with any local improvement procedures, such as the gradient descent 

search, and this prevented those phases from being able to totally exploit promising areas in 

the solution space, which resulted in their long run time and inability to find a good solution.   

 Secondly, by supplying the objective function with a pre-calculated gradient, the run 

time was significantly improved.  During the third phase of GA development, the gradient 
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search was added; however, the search algorithm was not supplied with an analytic form of 

the objective function gradient, and therefore had to calculate that gradient itself.  The 

gradient search algorithm used a perturbation method to find the gradient.  This method 

involved perturbing the function at various points and evaluating the response, thus allowing 

the calculation of the gradient.  To improve the efficiency and speed of this search algorithm, 

the gradient was calculated symbolically ahead of time and supplied to the gradient search.  

Thus, time-savings were realized since the search algorithm simply had to plug in the 

wavelet coefficient values to the supplied gradient rather than having to solve for the gradient 

directly.   

 Finally, by using entropy as the objective function, a vast improvement was realized 

in the generational time and the number of generations required to find a local optimal 

solution.  The gradient search that was used in the third and fourth phases of GA 

development represented very complex calculations due to the form of the objective function 

being used.  That objective function was the sum of the squares of the pixel values after filter 

application (Equation 4.3), which resulted in a very complex gradient.  The new objective 

function based on entropy still evaluates the image after filter application (first line of 

Equation 4.3), but then applies the entropy calculation to it (Equation 4.6).  Trial runs 

showed that the new objective function was calculated faster than the previous functions, 

resulting in time savings during that phase of evaluation.   

 Based on these results alone, it was apparent that the first two phases of GA 

development represented algorithms that were incapable of solving for the wavelet 

coefficients for real fabric images.  The other three phases, however, were capable of finding 
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adequate solutions and needed further evaluation to determine which phase was the best in 

terms of coefficient optimization.   

 The other main step to evaluating the various phases of GA development with respect 

to optimization capability was to study the uniformity of the filtered images.  This was done 

by comparing histograms of pixel values in quadrant four generated from filtered images 

based on the different objective functions.  The histograms for the sum of squares objective 

function and the entropy objective function are shown in Figures 5.1 and 5.2, respectively.  

Both plots exhibit the same basic shape, which is characteristic of this type of optimization.  

However, the distribution of pixel values for the sum of squares objective function is flatter 

and more spread out along its base than is the plot for the entropy objective function.  

Because the histogram for entropy exhibits a tighter distribution than does sum of squares, it 

was determined that the entropy objective function was better able to optimize the filtered 

image with respect to background uniformity.  Furthermore, entropy as an objective function 

optimizes the coefficients based on the uniformity of the image, since a lower entropy value 

translates into a more uniform image; the sum of squares objective function is optimizing the 

image by minimizing pixel values and does nothing towards improving image uniformity.  

Combining these findings shows that entropy was able to filter out more of the fabric texture, 

resulting in a more uniform gray level in the filtered image.   
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Figure 5.1: Quadrant 4 histogram using Sum of Squares 
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Figure 5.2: Quadrant 4 histogram using Entropy 
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 Based on the findings from these evaluations of the GA development phases, it was 

determined that using entropy as the objective function was a better method for optimizing 

the wavelet filter coefficients with respect to texture removal.  Therefore, this method would 

serve as the evaluation function for the GA throughout the remainder of this study.   

5.2 Defect Segmentation 

5.2.1 Quadrant 4 Defect Segmentation 

 Due to the nature of wavelet filters and their application to real fabric images, defects 

that are two-dimensional in nature, such as spots, holes, or tears, are emphasized most in 

quadrant four.  This is due to the setup of the filter, which applies a high pass filter to 

quadrant four from both the horizontal and vertical directions.  Figure 5.3 illustrates such an 

occurrence.  Because the spot defect present represents a high frequency occurrence in both 

directions, it is visually apparent in quadrant four.  However, the image is still expressed in 

terms of an 8-bit grayscale image, which precludes the use of a feature extractor due to the 

similarities of neighboring pixels in the 256-color scheme.  This process begins with the use 

of a thresholding algorithm.   
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Figure 5.3: Quadrant four image with defect 

 

 The thresholding algorithm that was applied in this study was global thresholding.  

The algorithm is supplied with a thresholding point, and once applied, any pixel whose value 

is less than the threshold value is changed to black (gray level 0); any pixel above the setting 

is changed to white (gray level 255).  In this manner, the image is converted to a black and 

white binary image, meaning that only two gray levels are present.  Furthermore, for images 

such as that shown in Figure 5.3 where the defect is of a darker shade than the background, 

reverse thresholding is applied.  This method is identical to normal thresholding except that 

pixel values below the threshold setting are changed to white, and all others are changed to 

black.  The thresholding function constructed in this study can perform both actions.   

 Once thresholding is completed, the image has been converted to a binary image, 

which is suitable for feature extraction.  Figure 5.4 illustrates the results of the threshold 

algorithm after application to the image shown in Figure 5.3.  Again, reverse thresholding 

was applied since the defect was darker than the background.  The image in Figure 5.4 also 

contains a large amount of small white pixel blocks.  These pixel blocks represent noise, 
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which is a typical effect of global thresholding.  Before feature extraction can take place, 

these blocks must be removed from the image.   

 

0

0

0

0

0  

Figure 5.4: Quadrant four image after reverse thresholding 

 

 To remove the small white pixel blocks from the thresholded image, a noise removal 

algorithm was constructed.  As detailed in Section 4.7, this algorithm is comprised of two 

functions: a pixel counter and a shade changer.  The noise remover moves through the image 

and when it encounters a white pixel, it calls the pixel counter, which begins a series of 

recursive function calls that serve to map out the entire pixel block.  Upon completion of the 

mapping process, the pixel counter returns a count of the number of pixels contained in that 

block to the noise remover.  Should that number exceed a user-defined setting, the shade 

changer is called.  This algorithm functions as does the pixel counter, but instead of counting 

the white pixels it encounters in the block, the shade changer changes those white pixels to 

black pixels, effectively removing them from the image.  The end result of the noise removal 

algorithm is an image that contains only blocks of pixels larger than the user-defined size 
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setting.  Figure 5.5 shows the image depicted in Figure 5.4 after it has been subjected to noise 

removal.   
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Figure 5.5: Quadrant four image after noise removal 

 

 Because the image has been converted to a binary image, and all noise pixel blocks 

have been removed, a feature extractor can now be employed to classify any defect that may 

be present in the image.   

5.2.2 Quadrants 2 and 3 Defect Segmentation 

 Because the wavelet transform applies a low pass and a high pass filter to both 

quadrants two and three, defects that are linear in nature, such as mispicks or other yarn 

defects, will be emphasized in these quadrants depending on the orientation of the defect in 

question.  Vertical defects are emphasized the most in quadrant two since they represent a 

high frequency event in the vertical direction and since the wavelet transform applies the 

high pas filter in this same direction.  The transform applies the high pass filter to quadrant 

three in the horizontal direction, thus emphasizing the high frequency event that characterizes 
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a horizontal defect.  Figure 5.6 depicts a horizontal defect, a mispick that was shown in 

quadrant three of the filtered image.   
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Figure 5.6: Horizontal defect in quadrant three 

 

 Attempts at segmenting defects in these quadrants began with the method used for 

quadrant four defects, thresholding and noise removal.  However, because defects in these 

quadrants do not represent large deviations in gray scale values from those of the 

background, thresholding and noise removal proves incapable of segmenting those defects.  

Figure 5.7 shows such a defect after thresholding.  Noise removal could not be performed on 

this image since the pixels representing the defect were computationally indistinguishable 

from those of noise.  Therefore, other algorithms for segmenting defects in quadrants two and 

three needed to be found.   
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Figure 5.7: Horizontal defect after thresholding 

 

 The next attempt at segmenting these defects utilized a Sobel edge detector.  These 

detectors emphasize areas of high gradient differential; in other words, areas of large shifts in 

gray scale values.  Figure 5.8 depicts the mispick image after application of the Sobel 

algorithm.  While the outside areas of the image have been made more uniform, the area 

surrounding the defect and the area of the defect itself are virtually identical in nature.  This 

is due to the fact that there was enough texture information still present in the image that 

represented areas of high gradient differential, effectively masking the presence of any 

defects.  Furthermore, because the regular repeating pattern of the fabric structure is made up 

of several yarns crossing each other, there exists a prevalence of edges that confound the 

Sobel algorithm, making it unsuitable for defect segmentation in quadrants two and three.   
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Figure 5.8: Horizontal defect after Sobel edge detection 

 

 The next attempt for defect segmentation made use of the sliding window technique.  

This method constructs two windows around each reference pixel, one large and one small.  

It then calculates the variation present in both windows and then determines the ratio of 

variation in the smaller window to that in the larger window.  If this ratio is greater than a 

preset threshold, the reference pixel is changed to white; otherwise it is changed to black.  

The idea behind this algorithm is that if the reference pixel lies in an area that departs from 

the normal background of the image, the variation in the smaller window will be greater than 

that of the larger window since the larger window encompasses more of the normal 

background texture than does the smaller window.  This serves to lessen the variation in the 

larger window, which in turn increases the ratio of the two.  The mispick image after the 

sliding window algorithm has been applied is shown in Figure 5.9.  The presence of the 

smaller white blocks throughout the image represents noise that must be removed to allow 

the use of a feature extractor.  Figure 5.10 shows the image after the noise has been removed.   
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Figure 5.9: Horizontal defect after sliding window application 
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Figure 5.10: Horizontal defect after sliding window and cleaning 

 

 As shown in Figure 5.10 as compared to Figure 5.9, the image must undergo a 

significant level of noise removal due to the size of the noise blocks.  However, because the 

defect was present across the entire width of the image, the pixel blocks representing it were 

significantly larger than those of noise.  Therefore, noise removal can be successfully applied 

to this image without removing the defect itself.  Now that the image has been converted to a 
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binary image and all noise has been removed, a feature extractor can be used to identify the 

defect present in the image.   

5.3 Robustness 

 As detailed in Section 4.11, an experiment was run to determine the repeatability, or 

robustness, of the GA’s optimization scheme.  Table 5.4 lists the results from this 

experiment, giving the mean entropy value from all ten replications for each quadrant, as 

well as the standard deviation (Note: the data for quadrant two of the twill image was 

calculated from only 9 runs due to conflicts that arose in the GA for that specific random 

seed on that particular quadrant).   

 

Table 5.4: Robustness Experiment Results 

Fabric Quadrant Mean Standard Deviation 

Weave 2 5.9208 0.1092 

Weave 3 6.0158 0.1286 

Weave 4 5.9466 0.1297 

Twill 2 5.7401 0.1607 

Twill 3 5.8144 0.1707 

Twill 4 5.7530 0.1356 

 
 

These results show that the ±2σ interval around each mean is within ± 5.8 % of that mean 

(the smallest ±2σ interval was ± 3.6 % for quadrant 2 of the weave image).  This indicates 

that the system will generate similar solutions regardless of the random seed setting, 

signifying that the system is indeed robust.   
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6.0 Conclusions 

 Experimentation showed that a GA tuned wavelet filter was capable of removing 

texture information from a fabric image, thus expediting the effectiveness of defect 

segmentation algorithms applied to the filtered images.  Because the wavelet filter equations 

were couched as a non-convex, non-linear optimization problem, a hybrid GA was required 

to find the “optimal” solutions to these equations.  Hybridizing the GA with a gradient 

descent search allowed the GA to employ its substantial global searching capabilities in a 

manner that, when combined with the local exploitation ability provided by the gradient 

search, proved sufficient to find the “optimal” set of wavelet coefficients.  Furthermore, it 

was found that using a floating point GA representation as the basis for the optimization 

scheme proved better than a classical, or binary, GA representation since a floating-point 

representation operated on the floating-point coefficients without the need for a binary 

conversion, or discretization.   

 Image scaling and lighting were also shown to be critical factors to the fitness of a 

wavelet filter to its corresponding texture.  If the fabric image exhibited too high a zoom 

level, the resulting wavelet filter would be incapable of filtering out enough texture to allow 

for effective defect segmentation.  Accordingly, too low a zoom level resulted in a wavelet 

filter that removed not only the texture from the image, but also any defects present in that 

image due to the low contrast between defect and background texture.  It was concluded that 

achieving a zoom level that fit one unit of the fabric repeat into an eight by eight pixel block 

made for optimal results; the images used contained 64 repeat units (8 units by 8 units, or 

64x64 pixels).  Since eight pixels represented the edge of a repeat unit, the corresponding 

wavelet filter was defined by a set of eight wavelet coefficients, one per pixel in the repeat 
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unit.  In addition, the backlighting level was important since this factor had a direct impact on 

the contrast levels seen in the images.  Should the backlighting be too low, not enough 

contrast would exist in the images, thereby resulting in a wavelet filter that could not 

adequately map out the texture.  Furthermore, if the backlighting was too high, the texture 

would be washed out, again resulting in an inadequate wavelet filter.  It was found that the 

best backlighting level gave an image where the yarns would show up in the 1-50 gray level 

range (black), whereas the spaces between the yarns would appear in the 220-255 range 

(white).   

 Experimentation also revealed that because real fabric images lack true symmetry, a 

wavelet filter defined by a single coefficient set could not remove enough fabric texture.  

Because the wavelet transform was applied to both the rows and columns of the fabric image, 

it was possible to define the row and column filters separately, each with a different set of 

wavelet coefficients.  Each set was optimized for the direction of application, resulting in a 

level of filtering that was not possible with a universal coefficient set.   

 Because the wavelet transform applies a different combination of high and low pass 

filters to each of the four resulting quadrants, the size and orientation of the defects proved 

important.  It was found that two dimensional defects, such as holes, tears, spots, or stains 

were emphasized most in quadrant four.  Simple thresholding and noise removal proved 

sufficient to segment these defects for classification.  However, quadrants two and three 

presented difficulties.  Line defects, such as mispicks or broken ends, were emphasized in 

either quadrant two (vertical orientation) or quadrant three (horizontal orientation).  Because 

these defects did not represent a considerable deviation from the background texture, as 

would a two-dimensional defect, simple thresholding and noise removal were not capable of 
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defect segmentation.  It was found that application of the sliding window algorithm was 

needed to adequately segment this class of defects to allow for classification.   

 In summary, though a real-time automated system has not been constructed, the 

results of this study should provide a strong foundation upon which to carry out further 

research into the use of wavelet filters for automated inspection.   
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7.0 Recommendations for Future Research 

 This research showed that using a GA tuned wavelet filter for defect segmentation 

provided images suitable for feature classification, and therefore an apt method for online 

defect inspection.  Because technological advancements are the main driving force of image 

processing applications, the utilization of faster computers would decrease analysis time.  

The computer used during this research was based upon a 2.16 GHz processor running on a 

333 MHz front side bus (FSB) with an internal cache size of 256 Kb.  Processors and the 

associated platforms are already on the market and sport FSB speeds of 400 MHz, processor 

speeds above 2.16 GHz, and internal caches exceeding 512 Kb.  These processors also 

include more internal cache which has been shown to improve processor performance when 

running CPU intensive applications, such as image processing algorithms.   

 Aside from using better technology, the first recommendation would be to build the 

image processing algorithms using C rather than Matlab.  Because Matlab executes 

uncompiled code, significant time is lost during runtime to create the executable code.  By 

using the algorithms built in C, significant amounts of time will be saved, thus providing 

faster analysis times.  Matlab is still recommended as the medium for algorithm creation as it 

allows for quick and easy construction.  Furthermore, code written in Matlab can be easily 

translated into C, allowing for seamless transition from one language to the other.   

 The effective use of the system described in this research is dependent on the level of 

automation present.  While this research represents strides towards efficient defect detection, 

such a system is impossible to implement on-loom at such time due to a lack of automation.  

First, the program needs to be able to automatically capture fabric images for analysis.  This 

would need to be synchronized with the analysis routine to provide efficient image analysis.  
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Second, the wavelet filter and defect segmentation routines need to be automatically applied 

to all incoming images.  This would require that appropriate threshold settings and noise 

removal settings be determined automatically according to some set of decision criteria.  

Once complete, these program constructs could be tied together through use of a controller 

program that would oversee the collection of images as well as the analysis itself.  Finally, a 

feature classifier is required by the system to be able to identify what defects, if any, were 

present in a given image.   

 

 



 90

8.0 References 

Baykut, A., Atalay, A., Ercil, A., Guler, M.  Real-time defect inspection of textured surfaces.   
Real-time Imaging, 6:17-27, 2000.   

 

Baykut, A., Ozdemir, S., Meylani, R., Ercil, A., Ertuzun, A.  Comparative Evaluation of  
Texture Analysis Algorithms for Defect Inspection of Textile Products.  Bogazici  
University Research Report, FBE-IE-08/97-12, 1997.   

 

Chan, C. and Pang, G.  Fabric defect detection by fourier analysis.  IEEE Transactions on  
Industry Applications, 36(5):1267-1276, October 2000.   

 

Coifman, R. R. and Wickerhauser, M. V.  Entropy based algorithms for best basis selection.   
IEEE Transactions on Information Theory, 38(2 special issue pt II):713-718, 1992.   

 

Houck, C. R., Joines, J. A., Kay, M. G.  Empirical investigation of the benefits of partial  
lamarckianism.  Evolutionary Computation, 5(1):31-60, 1997.   

 

Houck, C. R., Joines, J. A., Kay, M. G.  Comparison of genetic algorithms, random restart,  
and two-opt switching for solving large location-allocation problems.  Computers &  
Operations Research, 23(6):587-596, 1996.   

 

Jasper, W. J., Garnier, S., Potlapalli, H.  Texture Characterization and defect detection using  
adaptive wavelets.  Optical Engineering, 35(11):3140-3149, 1996.   

 

Jasper, W. J., Joines, J. A., Brenzovich, J. A.  Fabric Defect Detection Using a GA Tuned  
Wavelet Filter.  2002.  

 

Joines, J. A. and Houck, C. R.  On the use of non-stationary penalty functions to solve  
nonlinear constrained optimization problems with GA’s.  Proceedings of the First  
IEEE Conference on Evolutionary Computation, 2:579-584, 1994.   

 

Joines, J. A., Houck, C. R., Kay, M. G.  A genetic algorithm for function optimization: A  
Matlab implementation.  Technical Report NCSU-IE Technical Report 95-09, North  
Carolina State University, 1996.   

 



 91

Joines, J. A. and Kay, M. G.  Utilizing Hybrid Genetic Algorithms.  Kluwer Academic  
Publishers, 2002.   

 

Kumar, A. and Pang, G.  Fabric defect segmentation using multichannel blob detectors.   
Optical Engineering, 39(12):3176-3190, December 2000.   

 

Kumar, A. and Pang, G.  Defect detection in textured materials using gabor filters.  IEEE  
Transactions on Industry Applications, 38(2):425-440, April 2002.   

 

Leung, L. W., King, B., Vohora, V.  Comparison of image data fusion techniques using  
entropy and INI.  22nd Asian Conference on Remote Sensing, November 2001.   

 

Leung, L. W., Lam, F. K., To, J. T. P.  Entropy-based multiscale image segmentation with  
edge refinement.  ICITA 2002 Conference Proceedings, 2002.   

 

Michalewicz, Z.  Genetic Algorithms + Data Structures = Evolution Programs.  AI Series.   
Springer-Verlag, New York, 3rd edition, 1996.   

 

Press, W., Teukolosky, W., Vetterling, W., Rlanner, B.  Numerical Recipes in C: the art of  
scientific computing.  Cambridge University Press, 2nd edition, 1992.   

 

Recknagel, R., Kowarschik, R., Notni, G.  High-resolution defect detection and noise  
reduction using wavelet methods for surface measurement.  Journal Of Optics A:  
Pure And Applied Optics, 2(6):538-545, November 2000.   

 

Renders, J. M. and Flasse, S.  Hybrid methods using genetic algorithms for global  
optimization.  IEEE Transactions on Systems, Man, and Cybernetics Part B:,  
26(2):243-258, April 1996.   

 

Sari-Sarraf, H. and Goddard, J. Jr.  Vision system for on-loom fabric inspection.  IEEE  
Transactions on Industry Applications, 36(6):1252-1259, November 1999.   

 

Stanger, V. J.  Edge-based combination algorithm applied to multiple restored images.   
Electronics Letters, 27(18):1638-1640, 1991.   

 



 92

Tsai, D. and Huang, T.  Automated surface inspection for statistical textures.  Image and  
Vision Computing, 21:307-323, 2003.   

 

Yang, X. Z., Pang, G., Yung, N.  Discriminative fabric defect detection using adaptive  
wavelets.  Optical Engineering, 41(12):3116-3126, December 2002.   

 



 93

9.0 Appendices 

 

 

 

 

9.1 System Usage Instructions 
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9.1.1 Image Gathering 

 Connect the camera to the PC via the camera link cable supplied by the image capture 

board manufacturer.  Connect the light source to the power supply and turn on the power 

supply.  Set the power supply to internal strobing; the light will appear to be constantly on 

even though it is being strobed continuously.  Log into the PC and open the PDVshow 

program (camera monitor program supplied by the board manufacturer).  Set the program for 

continuous image gathering; the program will gather images at a rate of 15 frames per 

second.  Center the camera over the light source and place the fabric sample on top of the 

light source.  Adjust the height of the camera over the fabric sample until approximately one 

fabric repeat unit fits into a 8x8 pixel square of the image.  If you cannot determine the size 

at this time due to focus problems or light issues, follow the next steps and try again.   

 To tune the light source and camera for optimal images, begin by turning the light 

intensity on the power supply to its highest setting.  Adjust the aperture setting on the camera 

lens until the gray levels near the center of the image are around 150-160.  If adjusting the 

lens aperture cannot get the gray levels down into this range, slowly decrease the light 

intensity until the gray levels are in the desired range.  Note that a lower aperture setting on 

the camera lens (more closed) will result in a greater depth of focus, which is desirable.  

Once the gray levels are in the desired range (150-160), adjust the focus level of the camera 

lens until the image appears sharp and crisp.   

 Next, set the camera monitor program to single image capture.  Notice that when the 

program is in continuous capture, images that appear darker or lighter than normal will 

occasionally appear (the images will flicker a bit).  This is normal and is due to the 

continuous strobing by the power supply.  Continue to grab single images until an image is 
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captured with gray levels in the desired range (150-160).  This may need to be done several 

times due to the flicker.  Once a good image is captured, save the image as a TIFF file.   

9.1.2 Image Conversion 

 Now that the image has been stored to a TIFF file, it needs to be converted into a 

Matlab M-file for training purposes.  Open the TIFF file in any viewing program and find a 

good 64x64 pixel region that is free of defects.  Note the row and column number of the 

region.  Compile the extract.c program (see Appendix 9.2) and run it.  Enter the starting row 

and number of rows (64 rows in this case) and the starting column and number of columns 

(64 columns in this case).  The program will output the selected region to a Matlab M-file 

named picture.m.  This step will need to be repeated again to convert the entire image to an 

M-file; for this, select a 512x512 pixel region (will usually contain some of the black image 

border around the light source).  You may rename the M-file(s) to a more descriptive name 

(i.e., weave2.m, twill1.m, etc.)  Move the M-file(s) into the directory containing the GA files 

and open Matlab.  NOTE: the M-file(s) MUST be moved into the GA directory BEFORE 

Matlab is opened; otherwise, the program will not be able to find the files.   

9.1.3 GA Training 

 Before the GA training phase can be started, some settings will need to be changed.  

Open the convert_pic2.m file.  Add a line of code for the new file into the if then structure.  

Assign the file a number other than those already in use.  Save the convert_pic2.m file.   

 Open the fconbean2cEq*.m file, where * is either 2, 3, or 4 (quadrant numbers).  You 

may change the number of generations (termOps = [400], where 400 is the maximum number 

of generations), the mutation settings (denoted by mOpts), or the crossover settings (xOpts).  
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It is recommended that these settings be left unchanged as they represent the optimal settings 

found during experimentation.  Since the image will have one repeat unit per 8x8 pixel block, 

you may leave the coefficient setting alone (evalOps, currently set to 16; two sets of 

coefficients, one coefficient per pixel in the repeat unit).   

 Once the desired settings have been changed, go to the Matlab command window and 

type in runAllQuads and press enter.  This script is setup to run an optimization on each of 

quadrants 2, 3, and 4.  After optimizing each quadrant, the script will save the coefficient 

data into individual MAT files, named q2.mat, q3.mat, and q4.mat.  These files may be 

uploaded at a later time by typing load ‘q*.mat’ in the command window, where the * is the 

quadrant number you wish to load.  Once the script has completed its run (takes roughly 3 

hours on the computer detailed in section 3.0 of this paper), you may begin the defect 

segmentation process.   

9.1.4 Applying the Wavelet filter 

 Make sure that the coefficients are all loaded into Matlab (if you did not shut down 

Matlab after the optimization runs, the coefficients are loaded; otherwise, load them with the 

command given above).  At this time, the composite filtered image must be constructed.  Run 

the setupPics script, which will do this for you.  Type in [p pn] = setupPics(q2, q3, q4, ##) in 

the Matlab command window, where p is the variable you wish to store the un-normalized 

composite image into, pn is the variable you wish to store the normalized composite image 

into, q2, q3, and q4 are the variables containing the coefficients for those quadrants (may be 

other names) and ## is the picture number for the image you wish to work with (check 

convert_pic2.m for the appropriate image number).  The script will create the wavelet filters 

for each quadrant, apply them to the image, and construct the composite image.  This 
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composite image contains the fully optimized version of each quadrant combined into one 

image (one image is normalized, the other is not).  The images are now ready for 

thresholding.  Because quadrant 4 requires a different thresholding algorithm than quadrants 

2 and 3, we will begin with quadrant 4.   

9.1.5 Quadrant 4 Defect Segmentation 

 Create a variable named q4 and set it equal to quadrant 4 of the composite image by 

typing q4 = pn(33:64, 33:64) into the Matlab command window.  Note that this command is 

for a 64x64 pixel image; should your image be a different size, replace 33 with half the 

picture size +1 and 64 with the max picture size (257:512 is for a 512x512 pixel image).  

Now that quadrant 4 has been isolated, it needs to be thresholded.  Run the thresholding 

program by typing thresh = thresholder(pic_name, tval, ttype) into the command window.  

The variable pic_name is the variable that quadrant 4 is stored in; tval is the threshold value 

you wish to use; ttype sets which type of thresholding to use, 0 for normal, 1 for reverse 

thresholding.  Normal thresholding will set all pixels whose value is larger than tval to white, 

and all other to black.  Reverse thresholding will do the opposite.  Look at the image by 

typing image(pic_name) into the command window, followed by colormap(gray).  Pic_name 

is the variable containing the thresholded image.  You may need to try different tval settings 

to achieve optimal thresholding.  Typically, values above 180 work for normal thresholding, 

and values below 70 work for reverse thresholding.   

 Now that the image has been thresholded, the noise must be removed.  Look at the 

image by typing image(pic_name) into the command window, followed by colormap(gray).  

Pic_name is the variable containing the thresholded image.  Setting the colormap to gray 

allows you to view the image in black and white.  Look at the noise in the image and 
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determine the approximate size of the noise pixel blocks.  Then, run the noise remover 

program.  Do this by typing cleaned = remove_noise(pic_name, nsize) into the command 

window, where pic_name is the variable containing the thresholded image and nsize the 

approximate size of the noise blocks (MUST be a positive integer).  The variable cleaned will 

contain the cleaned image once the program finishes running.  Again, you may need to adjust 

the nsize setting for optimal noise removal.   

 Now that the image has been thresholded and cleaned, nothing should remain other 

than the defect itself.  This concludes defect segmentation for quadrant 4.   

9.1.6 Quadrant 2 and 3 Defect Segmentation 

 Quadrants 2 and 3 use a different thresholding algorithm due to the nature of the 

defects that are emphasized in these quadrants.  Capture the appropriate quadrant as you did 

for quadrant 4, but this time, the row and column numbers will change for the different 

quadrants.  For example, on a 64x64 pixel image, quadrant 2 is (1:32, 33:64) and quadrant 3 

is (33:64, 1:32).  Adjust these numbers according to your image size.  These two quadrants 

utilize the sliding window method for thresholding.  Run the sliding window program by 

typing thresh = slidingWindow(pic_name), where pic_name is the variable containing the 

quadrant.  You may need to adjust the threshold setting for optimal thresholding.  This can be 

done by opening the slidingWindow.m file and changing the thresh variable setting.  A larger 

number will translate into a stricter thresholding, since the ratio of the larger window to the 

smaller window must be larger.  A smaller threshold setting will result in a weaker 

thresholding, since the ratio setting is smaller.   
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 Apply noise removal in the same way as for quadrant 4, only this time, the nsize 

setting may need to be larger since the sliding window thresholding method usually results in 

substantially larger blocks of noise (the setting was around 120 during experimentation).   
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9.2 Image Extraction Program 

#include <stdio.h> 
#include <fcntl.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <string.h> 
 
 
int main() 
{ 
  int numrows, numcols, sRow, sCol; 
  char infile[80]; 
  char str[80]; 
  unsigned char image[1018][1000]; 
  FILE *fd_out; 
  int fd; 
  int i, j; 
 
  printf("Enter a file name: "); 
  scanf("%s", infile); 
 
  printf("Enter the starting row and number of rows: "); 
  scanf("%d %d", &sRow, &numrows); 
 
  printf("Enter the starting col and number of cols: "); 
  scanf("%d %d", &sCol, &numcols); 
   
  fd = open(infile, O_RDONLY); 
  lseek(fd, 0x8, 0x0 ); 
 
  for ( i = 0; i < 1018; i++ ) { 
    read(fd, &image[i][0], 1000); 
  } 
 
  close(fd); 
 
  fd_out = fopen("picture.m", "w"); 
  strcpy(str, "global pic_image\n"); 
  fprintf(fd_out, "%s", str); 
  strcpy(str, "pic_image=[\n"); 
  fprintf(fd_out, "%s", str); 
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9.3 Genetic Algorithm Code 
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fconbean2cEq2.m 

global imatrix 
echo on 
% This script shows how to use the ga using a float representation.  
% You should see the demos for 
% more information as well. gademo1, gademo2, gademo3 
 
% Setting the seed to the same for binary 
%rand('seed',149) 
disp('Yes') 
% Crossover Operators 
xFns = 'arithXoverm heuristicXoverm simpleXoverm'; 
%xFns = 'simpleXoverm' 
xOpts = [2 0; 2 3; 2 0]; 
 
% Mutation Operators 
mFns = ['boundaryMutationm multiNonUnifMutationm nonUnifMutationm 
unifMutationm']; 
%mFns = ['unifMutationm'];% multiNonUnifMutationm nonUnifMutationm 
unifMutationm']; 
 
% Termination Operators 
termFns = 'maxGenTerm'; 
termOps = [400]; % 200 Generations 
 
mOpts = [4 0 0;6 termOps(1) 3;6 termOps(1) 6;4 0 0]; 
% Selection Function 
selectFn = 'normGeomSelectm'; 
selectOps = [0.08]; 
 
% Evaluation Function 
evalFn = 'grad2cE_evalQ2'; 
evalOps = [16]; 
imatrix = convert_pic2(13); 
%type grad2cE_evalQ3; 
 
% Bounds on the variables 
bounds = ones(evalOps(1),1)*[-1 1]; 
global penalty 
penalty = [5]; 
penaltyFN='penaltybean'; 
penaltyOps = [2.8 1.2 15];%[alph1 alpha2 Nf] 
% GA Options [psilon float/binar display] 
gaOpts=[1e-6 1 1]; 
 
% Generate an intialize population of size 20 
startPop = initializegam(100,bounds,evalFn,[evalOps penalty]); 
 
% Lets run the GA 
% Hit a return to continue 
%pause 
[xc endPop bestPop trace]=gac(bounds,evalFn,evalOps,startPop,gaOpts,... 
   
termFns,termOps,selectFn,selectOps,xFns,xOpts,mFns,mOpts,penaltyFN,penalty
Ops); 
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% x is the best solution found 
%xc{:} 
% Hit a return to continue 
a = xc{1}; 
 
bnd=ones(1,size(a,2)); 
options = optimset('LargeScale', 'off', 'Display', 'off'); 
options = optimset(options, 'GradObj','off','GradConstr','on'); %, 
'DerivativeCheck','on'); 
options = optimset(options, 'MaxIter',500,'MaxFunEvals',5000); 
 
[x, fval, exitflag, output] = fmincon('objfungrad2cEq2',a,[],[],[],[],-
bnd,bnd,'confungrad2c',options); 
 
if exitflag > 0 
    quad2c = x; 
    [c, ceq, dc, dceq] = confungrad2c(quad2c); 
    a; 
    ceq; 
else 
    xc{:}; 
    quad2c = xc{1}; 
end 
 
%pause 
 
echo off 
 



 104

fconbean2cEq3.m 

global imatrix 
echo on 
% This script shows how to use the ga using a float representation.  
% You should see the demos for 
% more information as well. gademo1, gademo2, gademo3 
 
% Setting the seed to the same for binary 
%rand('seed',149) 
disp('Yes') 
% Crossover Operators 
xFns = 'arithXoverm heuristicXoverm simpleXoverm'; 
%xFns = 'simpleXoverm' 
xOpts = [2 0; 2 3; 2 0]; 
 
% Mutation Operators 
mFns = ['boundaryMutationm multiNonUnifMutationm nonUnifMutationm 
unifMutationm']; 
%mFns = ['unifMutationm'];% multiNonUnifMutationm nonUnifMutationm 
unifMutationm']; 
 
% Termination Operators 
termFns = 'maxGenTerm'; 
termOps = [400]; % 200 Generations 
 
mOpts = [4 0 0;6 termOps(1) 3;6 termOps(1) 6;4 0 0]; 
% Selection Function 
selectFn = 'normGeomSelectm'; 
selectOps = [0.08]; 
 
% Evaluation Function 
evalFn = 'grad2cE_evalQ3'; 
evalOps = [16]; 
imatrix = convert_pic2(13); 
%type grad2cE_evalQ3; 
 
% Bounds on the variables 
bounds = ones(evalOps(1),1)*[-1 1]; 
global penalty 
penalty = [5]; 
penaltyFN='penaltybean'; 
penaltyOps = [2.8 1.2 15];%[alph1 alpha2 Nf] 
% GA Options [psilon float/binar display] 
gaOpts=[1e-6 1 1]; 
 
% Generate an intialize population of size 20 
startPop = initializegam(100,bounds,evalFn,[evalOps penalty]); 
 
% Lets run the GA 
% Hit a return to continue 
%pause 
[xc endPop bestPop trace]=gac(bounds,evalFn,evalOps,startPop,gaOpts,... 
    
termFns,termOps,selectFn,selectOps,xFns,xOpts,mFns,mOpts,penaltyFN,penalty
Ops); 
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% x is the best solution found 
%xc{:} 
% Hit a return to continue 
a = xc{1}; 
 
bnd=ones(1,size(a,2)); 
options = optimset('LargeScale', 'off', 'Display', 'off'); 
options = optimset(options, 'GradObj','off','GradConstr','on'); %, 
'DerivativeCheck','on'); 
options = optimset(options, 'MaxIter',500,'MaxFunEvals',5000); 
 
[x, fval, exitflag, output] = fmincon('objfungrad2cEq3',a,[],[],[],[],-
bnd,bnd,'confungrad2c',options); 
 
if exitflag > 0 
    quad3c = x; 
    [c, ceq, dc, dceq] = confungrad2c(quad3c); 
    a; 
    ceq; 
else 
    xc{:}; 
    quad3c = xc{1}; 
end 
 
echo off 
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fconbean2cEq4.m 

global imatrix 
echo on 
% This script shows how to use the ga using a float representation.  
% You should see the demos for 
% more information as well. gademo1, gademo2, gademo3 
 
% Setting the seed to the same for binary 
%rand('seed',149) 
disp('Yes') 
% Crossover Operators 
xFns = 'arithXoverm heuristicXoverm simpleXoverm'; 
%xFns = 'simpleXoverm' 
xOpts = [2 0; 2 3; 2 0]; 
 
% Mutation Operators 
mFns = ['boundaryMutationm multiNonUnifMutationm nonUnifMutationm 
unifMutationm']; 
%mFns = ['unifMutationm'];% multiNonUnifMutationm nonUnifMutationm 
unifMutationm']; 
 
% Termination Operators 
termFns = 'maxGenTerm'; 
termOps = [400]; % 200 Generations 
 
mOpts = [4 0 0;6 termOps(1) 3;6 termOps(1) 6;4 0 0]; 
% Selection Function 
selectFn = 'normGeomSelectm'; 
selectOps = [0.08]; 
 
% Evaluation Function 
evalFn = 'grad2cE_evalQ4'; 
evalOps = [16]; 
imatrix = convert_pic2(13); 
type grad2cE_evalQ4; 
 
% Bounds on the variables 
bounds = ones(evalOps(1),1)*[-1 1]; 
global penalty 
penalty = [5]; 
penaltyFN='penaltybean'; 
penaltyOps = [2.8 1.2 15];%[alph1 alpha2 Nf] 
% GA Options [psilon float/binar display] 
gaOpts=[1e-6 1 1]; 
 
% Generate an intialize population of size 20 
startPop = initializegam(100,bounds,evalFn,[evalOps penalty]); 
 
% Lets run the GA 
% Hit a return to continue 
%pause 
[xc endPop bestPop trace]=gac(bounds,evalFn,evalOps,startPop,gaOpts,... 
    
termFns,termOps,selectFn,selectOps,xFns,xOpts,mFns,mOpts,penaltyFN,penalty
Ops); 
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% x is the best solution found 
%xc{:} 
% Hit a return to continue 
a = xc{1}; 
 
bnd=ones(1,size(a,2)); 
options = optimset('LargeScale', 'off', 'Display', 'off'); 
options = optimset(options, 'GradObj','off','GradConstr','on'); %, 
'DerivativeCheck','on'); 
options = optimset(options, 'MaxIter',500,'MaxFunEvals',5000); 
 
[x, fval, exitflag, output] = fmincon('objfungrad2cEq4',a,[],[],[],[],-
bnd,bnd,'confungrad2c',options); 
 
if exitflag > 0 
    quad4c = x; 
    [c, ceq, dc, dceq] = confungrad2c(quad4c); 
    a; 
    ceq; 
else 
    xc{:}; 
    quad4c = xc{1}; 
end 
 
echo off 
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objfungrad2cEq2.m 

function [f] = objfungradjoe(c) 
global imatrix 
%imatrix = convert_pic2(13); 
 
psize = size(imatrix,1)/2; 
psize2 = size(c,2)/2; 
sum = 0; 
%c 
%pmatrix 
 
cmatrix1 = build_cmatrix(c(1:psize2),psize*2); 
cmatrix2 = build_cmatrix(c(psize2+1:end), psize*2); 
 
pic = cmatrix1*imatrix*cmatrix2'; 
 
q2 = pic(1:psize, psize+1:end); 
 
%f = svds(q3, 1); 
[row col] = size(q2); 
q2 = reshape(q2', 1, row*col); 
Hi = hist(q2,256); 
Hip = nonzeros(Hi); 
L = sumjoe(Hip); 
Entropy = ((-sumjoe(Hip .* log2(Hip)) / L) + log2(L)); 
 
f = Entropy; 
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objfungrad2cEq3.m 

function [f] = objfungradjoe(c) 
global imatrix 
%imatrix = convert_pic2(13); 
 
psize = size(imatrix,1)/2; 
psize2 = size(c,2)/2; 
sum = 0; 
%c 
%pmatrix 
 
cmatrix1 = build_cmatrix(c(1:psize2),psize*2); 
cmatrix2 = build_cmatrix(c(psize2+1:end), psize*2); 
 
pic = cmatrix1*imatrix*cmatrix2'; 
 
q3 = pic(psize+1:end, 1:psize); 
 
%f = svds(q3, 1); 
[row col] = size(q3); 
q3 = reshape(q3', 1, row*col); 
Hi = hist(q3,256); 
Hip = nonzeros(Hi); 
L = sumjoe(Hip); 
Entropy = ((-sumjoe(Hip .* log2(Hip)) / L) + log2(L)); 
 
f = Entropy; 
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objfungrad2cEq4.m 

function [f] = objfungradjoe(c) 
global imatrix 
%imatrix = convert_pic2(13); 
 
psize = size(imatrix,1)/2; 
psize2 = size(c,2)/2; 
sum = 0; 
%c 
%pmatrix 
 
cmatrix1 = build_cmatrix(c(1:psize2),psize*2); 
cmatrix2 = build_cmatrix(c(psize2+1:end), psize*2); 
 
pic = cmatrix1*imatrix*cmatrix2'; 
 
q4 = pic(psize+1:end, psize+1:end); 
 
%f = svds(q3, 1); 
[row col] = size(q4); 
q4 = reshape(q4', 1, row*col); 
Hi = hist(q4,256); 
Hip = nonzeros(Hi); 
L = sumjoe(Hip); 
Entropy = ((-sumjoe(Hip .* log2(Hip)) / L) + log2(L)); 
 
f = Entropy; 
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confungrad2c.m 

function [c, ceq, dc, dceq] = confungradjoe(coeff) 
 
constr1 = zeros(1,size(coeff, 2)/4); 
dconstr1 = zeros(size(coeff, 2)/2,size(coeff, 2)/4); 
 
constr2 = zeros(1,size(coeff, 2)/4); 
dconstr2 = zeros(size(coeff, 2)/2,size(coeff, 2)/4); 
 
constr = zeros(1,size(coeff,2)/2); 
dconstr = zeros(size(coeff,2),size(coeff,2)/2); 
 
for j = 1:size(coeff, 2)/4, 
   for i = 1:size(coeff, 2)/2-2*(j-1), 
      constr1(j) = constr1(j) + (coeff(i)*coeff(i+2*(j-1))); 
      constr2(j) = constr2(j) + 
(coeff(i+size(coeff,2)/2)*coeff(i+size(coeff,2)/2+2*(j-1))); 
   end 
end 
 
constr1(1) = constr1(1) - 1; 
constr2(1) = constr2(1) - 1; 
 
for i = 1:size(constr1,2), 
    constr(i) = constr1(i); 
    constr(i+size(constr2,2)) = constr2(i); 
end 
 
%constr = [coeff(1)^2+coeff(2)^2+coeff(3)^2+coeff(4)^2-1  

coeff(1)*coeff(3)+coeff(2)*coeff(4)]; 
coeff; 
c = []; 
ceq = constr; 
 
for k = 1:size(coeff, 2)/2, 
   for j = 1:size(coeff, 2)/4, 
      if (k+2*(j-1) > size(coeff, 2)/2) & (k-2*(j-1) > 0) 
          dconstr1(k, j) = coeff(k-2*(j-1)); 
          dconstr2(k, j) = coeff(k-2*(j-1)+size(coeff,2)/2);     
      elseif (k-2*(j-1) < 1) & (k+2*(j-1) <= size(coeff, 2)/2) 
          dconstr1(k, j) = coeff(k+2*(j-1)); 
          dconstr2(k, j) = coeff(k+2*(j-1)+size(coeff,2)/2); 
      elseif (k-2*(j-1) > 0) & (k+2*(j-1) <= size(coeff, 2)/2) 
          dconstr1(k, j) = coeff(k+2*(j-1)) + coeff(k-2*(j-1)); 
          dconstr2(k, j) = coeff(k+2*(j-1)+size(coeff,2)/2) + coeff(k- 

2*(j-1)+size(coeff,2)/2); 
      else 
          dconstr1(k, j) = 0; 
          dconstr2(k, j) = 0; 
      end 
   end 
end 
 
for i = 1:size(coeff,2)/2, 
    for j = 1:size(coeff,2)/4, 
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        dconstr(i,j) = dconstr1(i,j); 
        dconstr(i+size(coeff,2)/2, j+size(coeff,2)/4) = dconstr2(i,j); 
    end 
end 
 
%dconstr = [2*coeff(1) coeff(3); 2*coeff(2) coeff(4); 2*coeff(3) coeff(1);  

2*coeff(4) coeff(2)]; %coeff(3) coeff(4) coeff(1) coeff(2)]; 
 
dc = []; 
dceq = dconstr; 
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9.4 Defect Segmentation Utility Code 
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build_cmatrix.m 

function [cmatrix] = build_cmatrix(coeff, picsize) 
%global picture 
%picture; 
%picsize = size(pic_image, 1); 
cmatrix = zeros(picsize, picsize); 
%pmatrixtemp = zeros(picsize, numcoeff); 
for i = 1:(picsize)/2, 
   for j = 1:size(coeff,2), 
      cmatrix(i, mod(j-1+(i-1)*2,picsize)+1) = coeff(j); 
   end 
end 
for j = 1:picsize, 
   cmatrix((picsize/2)+1,j) = cmatrix(picsize/2,picsize+1-j); 
   if(mod(j,2)==1) 
      cmatrix((picsize/2)+1,j) = -cmatrix((picsize/2)+1,j); 
   end 
end 
for i = 1:(picsize/2)-1, 
   for j = 1:size(coeff,2), 
      cmatrix(i+(picsize/2)+1,mod(j-1+(i-1)*2,picsize)+1) =  

coeff(size(coeff,2)-j+1); 
      if(mod(j,2)==1) 
         cmatrix(i+(picsize/2)+1,mod(j-1+(i-1)*2,picsize)+1) = - 

cmatrix(i+(picsize/2)+1,mod(j-1+(i-1)*2,picsize)+1); 
      end 
   end 
end 
 



 115

convert_pic.m 

function [pmatrix] = convert_pic(numcoeff, pic_image) 
%global pic_image 
%picture; 
picsize = size(pic_image, 1); 
pmatrix = zeros(picsize/2, numcoeff); 
%pmatrixtemp = zeros(picsize, numcoeff); 
%for i = 1:(picsize/2), 
%   for j = 1:numcoeff, 
%      pmatrix(i, j) = pic_image(mod(2*(i-1)+(j-1), picsize)+1); 
%   end 
%end 
 
for i = 1:(picsize/2), 
   for j = 1:numcoeff, 
      pos = i*2-j+1; 
      if(pos < 1) 
          pos = pos + picsize; 
      end 
      %pmatrix(i+picsize/2,j) = pic_image(pos); 
      pmatrix(i,j) = pic_image(pos); 
      if(mod(j,2)==0) 
          %pmatrix(i+picsize/2,j) = -pmatrix(i+picsize/2,j); 
          pmatrix(i,j) = -pmatrix(i,j); 
      end 
   end 
end 
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convert_pic2.m 

function [squareimage] = convert_pic2(filenum) 
%global picture 
%picture; 
 
if filenum == 1 
    weave1; 
elseif filenum == 2 
    weave2; 
elseif filenum == 3 
    weave3; 
elseif filenum == 4 
    weave4; 
elseif filenum == 5 
    weave5; 
elseif filenum == 6 
    weave5d; 
elseif filenum == 7 
    weaveBig; 
elseif filenum == 8 
    twill1; 
elseif filenum == 9 
    twill1d; 
elseif filenum == 10 
    twill1d2; 
elseif filenum == 11 
    twill1d3; 
elseif filenum == 12 
    twill1Big; 
elseif filenum == 13 
    twill1s; 
elseif filenum == 14 
    general4; 
elseif filenum == 22 
    general2; 
elseif filenum == 23 
    general2defect; 
elseif filenum == 24 
    i2x2d1; 
elseif filenum == 25 
    i2x2r1; 
elseif filenum == 26 
    i2x2hdef; 
elseif filenum == 27 
    i2x2d1hdef; 
elseif filenum == 28 
    i2x2r1hdef; 
elseif filenum == 29 
    i2x2cdef; 
elseif filenum == 30 
    i2x2d1cdef; 
elseif filenum == 31 
    i2x2r1cdef; 
else 
    weave1defect; 
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end 
 
picsize = size(pic_image, 1); 
rownum = sqrt(picsize); 
squareimage = zeros(rownum, rownum); 
for i=1:rownum, 
   for j=1:rownum, 
      squareimage(i, j) = pic_image((i-1)*rownum + j); 
   end 
end 
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edgeDetect.m 

function [sobel] = edgeDetect(opic) 
 
[row col] = size(opic); 
xval   = [-1  0  1 1  1  0 -1 -1]; 
yval   = [-1 -1 -1 0  1  1  1  0]; 
sobArr = [ 1  2  1 0 -1 -2 -1  0]; 
sobel = ones(row, col); 
 
for i = 2:row-1, 
    for j = 2:col-1, 
        sum = 0; 
        for k = 1:8, 
            sum = sum + sobArr(k)*opic(i+yval(k),j+xval(k)); 
        end 
        sobel(i,j) = sum; 
    end 
end 
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find_minMax.m 

function [minX, maxX] = find_minMax(myArray) 
 
minX = 1000; 
maxX = -1000; 
 
for i = 1:size(myArray, 1), 
    for j = 1:size(myArray, 2), 
        if myArray(i,j) > maxX 
            maxX = myArray(i,j); 
        end 
        if myArray(i,j) < minX 
            minX = myArray(i,j); 
        end 
    end 
end 
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noise_count.m 

function [nimage] = noise_count(image, i, j)  
 
   global fcount; 
   %image 
   %i 
   %j 
   if(image(i,j) ~= 255)  
       nimage = image; 
       return; 
   end 
   image(i,j) = 254; 
   fcount = fcount + 1; 
   if (fcount >= 20) 
    nimage = image; 
       return; 
   end 
   image = noise_count(image, i-1, j-1); 
   image = noise_count(image, i-1, j); 
   image = noise_count(image, i-1, j+1); 
   image = noise_count(image, i, j-1); 
   image = noise_count(image, i, j+1); 
   image = noise_count(image, i+1, j-1); 
   image = noise_count(image, i+1, j); 
   image = noise_count(image, i+1, j+1); 
    
   nimage = image; 
   return; 
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noise_erase.m 

function [nimage] = noise_erase(image, i, j) 
 
   if(image(i,j) ~= 254)  
       nimage = image; 
       return;  
   end 
   image(i,j) = 1; 
   image = noise_erase(image, i-1, j-1); 
   image = noise_erase(image, i-1, j); 
   image = noise_erase(image, i-1, j+1); 
   image = noise_erase(image, i, j-1); 
   image = noise_erase(image, i, j+1); 
   image = noise_erase(image, i+1, j-1); 
   image = noise_erase(image, i+1, j); 
   image = noise_erase(image, i+1, j+1); 
   nimage = image; 
   return; 
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normPic.m 

function [pic] = normPic(image) 
 
iSize = size(image,2); 
pic = zeros(iSize, iSize); 
%first quadrant 
[minX maxX] = find_minMax(image(1:iSize/2, 1:iSize/2)); 
for i = 1:iSize/2, 
    for j = 1:iSize/2, 
        pic(i,j) = image(i,j)-minX; 
    end 
end 
%[minX maxX] = find_minMax(pic(1:iSize/2, 1:iSize/2)) 
scaleFactor = (maxX-minX) / 255; 
for i = 1:iSize/2, 
    for j = 1:iSize/2, 
        pic(i,j) = pic(i,j)/scaleFactor; 
    end 
end 
 
%second quadrant 
[minX maxX] = find_minMax(image(1:iSize/2, (iSize/2)+1:iSize)); 
for i = 1:iSize/2, 
    for j = (iSize/2)+1:iSize, 
        pic(i,j) = image(i,j)-minX; 
    end 
end 
%[minX maxX] = find_minMax(pic(1:iSize/2, (iSize/2)+1:iSize)) 
scaleFactor = (maxX-minX) / 255; 
for i = 1:iSize/2, 
    for j = (iSize/2)+1:iSize, 
        pic(i,j) = pic(i,j)/scaleFactor; 
    end 
end 
 
%third quadrant 
[minX maxX] = find_minMax(image((iSize/2)+1:iSize, 1:iSize/2)); 
for i = (iSize/2)+1:iSize, 
    for j = 1:iSize/2, 
        pic(i,j) = image(i,j)-minX; 
    end 
end 
%[minX maxX] = find_minMax(pic((iSize/2)+1:iSize, 1:iSize/2)) 
scaleFactor = (maxX-minX) / 255; 
for i = (iSize/2)+1:iSize, 
    for j = 1:iSize/2, 
        pic(i,j) = pic(i,j)/scaleFactor; 
    end 
end 
 
%fourth quadrant 
[minX maxX] = find_minMax(image((iSize/2)+1:iSize, (iSize/2)+1:iSize)); 
for i = (iSize/2)+1:iSize, 
    for j = (iSize/2)+1:iSize, 
        pic(i,j) = image(i,j)-minX; 
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    end 
end 
%[minX maxX] = find_minMax(pic((iSize/2)+1:iSize, (iSize/2)+1:iSize)) 
scaleFactor = (maxX-minX) / 255; 
for i = (iSize/2)+1:iSize, 
    for j = (iSize/2)+1:iSize, 
        pic(i,j) = pic(i,j)/scaleFactor; 
    end 
end 
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remove_noise.m 

function [cleaned] = remove_noise(image, pnum) 
    
   global fcount; 
   [row col] = size(image); 
   for i = 1:row, 
       image(i,1) = 1; 
       image(i,row) = 1; 
       image(1,i) = 1; 
       image(row,i) = 1; 
   end 
   set(0,'RecursionLimit',1000) 
   for i = 2:row-1, 
      for j = 2:col-1, 
         fcount = 0; 
   if(image(i,j) == 255)  
            image = noise_count(image, i, j); 
            pixel_count = fcount; 
            %sprintf('count %d, %d = %d',i,j,pixel_count) 
   if(pixel_count <= pnum) 
               image = noise_erase(image, i, j); 
               %sprintf('erase %d, %d = %d',i,j,pixel_count) 
            end 
         end 
      end 
   end 
 
   for i = 1:row, 
      for j = 1:col, 
         if(image(i,j) == 254) 
            image(i,j) = 255; 
         end 
      end 
   end 
   cleaned = image; 
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runAllQuads.m 

    fconbean2cEq2 
    save 'q2.mat' quad2c 
 
    fconbean2cEq3 
    save 'q3.mat' quad3c 
 
    fconbean2cEq4 
    save 'q4.mat' quad4c 
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setupPics.m 

function [p, pn] = setupPics(c2,c3,c4, picnum) 
global imatrix 
imatrix = convert_pic2(picnum); 
%imatrix = picnum; 
psize = size(imatrix,1); 
psize2 = size(c2,2)/2; 
 
p = zeros(psize,psize); 
pn = p; 
cmatrix1 = build_cmatrix(c2(1:psize2),psize); 
cmatrix2 = build_cmatrix(c2(psize2+1:psize2*2),psize); 
cmatrix3 = build_cmatrix(c3(1:psize2),psize); 
cmatrix4 = build_cmatrix(c3(psize2+1:psize2*2),psize); 
cmatrix5 = build_cmatrix(c4(1:psize2),psize); 
cmatrix6 = build_cmatrix(c4(psize2+1:psize2*2),psize); 
 
o2 = cmatrix1*imatrix*cmatrix2'; 
o3 = cmatrix3*imatrix*cmatrix4'; 
o4 = cmatrix5*imatrix*cmatrix6'; 
 
o2n = normPic(o2); 
o3n = normPic(o3); 
o4n = normPic(o4); 
 
for i = 1:psize/2, 
    for j = 1:psize/2, 
        %original output 
        p(i,j) = o4(i,j);                                     %q1 
        p(i,j+psize/2) = o2(i,j+psize/2);                     %q2 
        p(i+psize/2,j) = o3(i+psize/2,j);                     %q3 
        p(i+psize/2,j+psize/2) = o4(i+psize/2,j+psize/2);     %q4 
        %normalized output 
        pn(i,j) = o4n(i,j);                                   %q1 
        pn(i,j+psize/2) = o2n(i,j+psize/2);                   %q2 
        pn(i+psize/2,j) = o3n(i+psize/2,j);                   %q3 
        pn(i+psize/2,j+psize/2) = o4n(i+psize/2,j+psize/2);   %q4 
    end 
end 
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slidingWindow.m 

function [SLW] = slidingWindow(pic) 
 
[row col] = size(pic); 
SLW = ones(row, col); 
arrA = zeros(289,1); 
arrB = zeros(81,1); 
stdA = 0; 
stdB = 0; 
thresh = 1.2; 
 
for i = 9:row-8, 
    for j = 9:col-8, 
        qB = pic((i-8):(i+8),(j-8):(j+8)); 
        qA = pic((i-4):(i+4),(j-4):(j+4)); 
        stdB = std(reshape(qB,1,289)); 
        stdA = std(reshape(qA,1,81)); 
        if (stdB/stdA) <= thresh 
            SLW(i,j) = 1; 
        else 
            SLW(i,j) = 255; 
        end 
    end 
end 
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sumjoe.m 

function [total] = sumjoe(myvec) 
 
total = 0; 
for i=1:size(myvec,1), 
    total = total + myvec(i); 
end 
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thresholder.m 

function [thresh] = thresholder(opic,tval,ttype) 
%ttype is 0 for normal thresholding, 1 for reverse thresholding 
 
[row col] = size(opic); 
thresh1 = zeros(row,col); 
for i = 1:row, 
    for j = 1:col, 
        if(xor((opic(i,j) <= tval), ttype)) 
            thresh1(i,j) = 1; 
        else 
            thresh1(i,j) = 255; 
        end 
    end 
end 
thresh = thresh1; 
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writePic.m 

function [] = writePic(filename, data) 
 
fid = fopen(filename, 'w'); 
fprintf(fid, 'pic_image=[\n'); 
for i = 1:size(data,1), 
    for j = 1:size(data,2), 
        fprintf(fid, '%d\n', data(i,j)); 
    end 
end 
fprintf(fid, '];\n'); 
fclose(fid); 
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9.5: P-matrix Definition 
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9.6: Wavelet Filter Matrix Definition 
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