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ABSTRACT

ALGEBRAIC PROPERTIES OF NEURAL CODES

Katie C. Christensen

May 22, 2019

The neural rings and ideals as algebraic tools for analyzing the intrinsic struc-

ture of neural codes were introduced by C. Curto, V. Itskov, A. Veliz-Cuba, and N.

Youngs in 2013. Since then they have been investigated in several papers, including

the 2017 paper by S. Güntürkün, J. Jeffries, and J. Sun, in which the notion of

polarization of neural ideals was introduced. We extend their ideas by introducing

the polarization of motifs and neural codes, and show that these notions have very

nice properties which allow the studying of the intrinsic structure of neural codes

of length n via the square-free monomial ideals in 2n variables. As a result, we can

obtain minimal prime ideals in 2n variables which do not come from the polarization

of any motifs of length n. For this reason, we introduce the notions for a partial

code, including partial motifs and inactive neurons. With these notions, we are able

to relate those non-polar primes back to the original neural code. Additionally, we

reformulate an existing theorem and provide a shorter, simpler proof. We also give

intrinsic characterizations of neural rings and the homomorphisms between them.

We characterize monomial code maps as the composition of basic monomial code

maps. This work is based on two theorems, introduced by C. Curto and N. Youngs

in 2015, and the notions of a trunk and a monomial map between two neural codes,

introduced by R. A. Jeffs in 2018.
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CHAPTER 1

INTRODUCTION

The field of neural codes is born from striving to better understand how the

brain creates a spatial map of its surroundings. Beginning in 1971, John O’Keefe

and his student Jonathan Dostrovsky discovered a specific class of neurons in the

hippocampus called place cells, as they were very active in response to changes in

the spatial surroundings such as changes in color or shape or the introduction or

removal of items [22]. These active regions are aptly named place fields and are

roughly analogous to the receptive fields of sensory neurons. Our brain, however,

creates its cognitive map only from the information it receives from its neurons, and

therein lies the importance of place cells. When a particular group of these cells

fire together, it reveals something about the external stimulus space, and this may

help us understand how the brain analyzes its neural information [10].

The algebraic study of neural codes began in 2013 with the pioneering paper

by Carina Curto, Vladimir Itskov, Alan Veliz-Cuba, and Nora Youngs, where the

main algebraic objects of study were introduced: the neural ring, which encodes

the underlying stimulus space in its structure, and the related neural ideal, which

defines the space itself. These algebraic objects help to yield a minimal description

of the receptive field structure called the canonical form of the neural ideal [11].

This area of mathematics has been very active ever since, and some important de-

velopments have emerged in the last few years. For example, several important

papers have appeared since 2017 studying the convexity and obstructions to con-

vexity of the neural codes, among them [3, 8, 9, 13, 20, 23]. These deal with the
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visual representation of the receptive fields formed in the brain. Also in 2017, the

operation called polarization was introduced for neural ideals by Sema Güntürkün,

Jack Jeffries, and Jeffrey Sun in [15]. This operation redefines the neural ideals

as square-free monomial ideals, which are very well studied and known for their

nice behavior in commutative algebra. Polarization of the neural ideal preserves

the intrinsic structure of the neural code while taking advantage of the existing

results we have from square-free monomial ideal theory. Explained more in chapter

3, there are some cases where polarization of the neural code might reveal a hidden

structure in the neurons, and it is hopeful that this may tell us even more about

how the brain analyzes its neural information.

In some cases, there is missing neural information, and discussed more in

chapter 4, this led us to introduce the notions for a partial code, including the

concept of an inactive neuron, which is a neuron that participates in brain activity,

but its state is unknown. We have recently found out that this is related to firing

rules in neural computing. As described in [1], a subset of firing or non-firing

neurons may depend on already active neurons (that is, having a state of 0 or 1).

Even more complicated is that some of these neurons have an undefined output.

In fact, it is the variability of the synapses that give the neuron its adaptability.

“...such complexity needs eventually to be introduced into some models,” [1]. While

neurophysiologists still have to confirm if such things exists in a real brain, rather

than simply in a neural network, it seems quite natural that they will.

Another important development in the algebraic study of neural codes is the

introduction of various maps between neural codes and neural rings. In 2015, Carina

Curto and Nora Youngs related the maps between neural codes to the homomor-

phisms between corresponding neural rings [12]; in 2016, R. Amzi Jeffs, Mohamed

Omar, and Nora Youngs focused on neural ring homomorphisms that preserve the

neural ideal [19]; in 2018, R. Amzi Jeffs introduced morphisms of neural codes,

2



which preserve the trunk of a neural code [18]. In each of these papers, the struc-

tural properties of neural codes and neural rings are studied, and morphisms are

the natural mathematical tools for that purpose. In fact, the image of a neural code

under a monomial morphism may be the “mirror neural code” on the set of mirror

neurons. Mirror neurons are a special class of brain cells discovered in the late

1980s which help may explain why humans are so unique as a species. As described

in the abstract of the 2009 paper by Lindsay Oberman and V. S. Ramachandran,

“We suggest that mirror neurons are endowed with the precise properties allowing

for complex remapping from one domain into another, which may lead to behaviors

which arguably distinguish humans from all the other animals, namely our abilities

to interact socially, understand others thoughts and emotions, communicate using

complex language, and the ability to reflect on ourselves,” [21]. The authors con-

tinue to suggest that “...perhaps the mirror neuron system serves to connect our

own representations with those of others across multiple domains and more gen-

erally mapping one dimension onto another in order to abstract what is common

to them,” [21]. This may be the “neuroscientific” definition of the mathematical

notion of morphisms between neural codes.

The organization of this dissertation is as follows. In Chapter 2, we recount

some useful results from some of the papers mentioned above, including [11], as

well as some results from standard references, including [2, 6, 14]. We introduce

the basic notations and definitions of working within the class of neural codes as

well as some of the properties we encounter. In Chapter 3, we recount some useful

results from [15], and we introduce some new results, including the polarization of

the neural code. We analyze in detail the difference between the polarization of the

neural code and the formal polarization of the neural code, along with an illustrative

example of the difference between them. In Chapter 4, we introduce the notions and

properties of a partial code. The notions in this chapter may give us a way to study
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the neural code when we are missing some neural information. Additionally with

these notions, we give a new, simpler proof of an existing result from [15]. In Chapter

5, we give the intrinsic characterizations of neural rings and the homomorphisms

between them. As an extension of the work done in [12], [18], and [19], we also give

the characterization of monomial code maps as the composition of basic monomial

code maps. In Chapter 6, we give our conclusions and recommendations for future

work. Note that much of Chapters 3 and 4 appear in our recent paper [4], while

much of Chapter 5 appears in our recent paper [5], although we have extended

several notions and included several additional proofs.
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CHAPTER 2

PRELIMINARIES

As we use techniques from Algebraic Geometry and Commutative Algebra

to analyze the properties of neural codes, we first briefly review some notation and

existing results needed throughout this dissertation. In particular, since the state

of a neuron can be considered as binary, we use elements in the field F2 = {0,1},

where 0 is considered as “off” or not firing, and 1 is considered as “on” or firing.

We denote the set of n neurons as [n] = {1,2, . . . , n}.

2.1 The Neural Ring and Neural Ideal

Definition 2.1. ( [11]) We define the element w = w1⋯wn ∈ Fn2 to be a code-

word (shortly word) of length n, which tracks the state of n neurons. We define a

nonempty set of words C ⊆ Fn2 to be a neural code (shortly code) of length n.

Let F2[X1, . . . ,Xn] to be the polynomial ring in n variables X1, . . . ,Xn over

F2. For any word w ∈ Fn2 , there is a natural evaluation map evw ∶ F2[X1, . . . ,Xn] →

F2 by setting Xi = wi. The following definition, relating ideals of this polynomial

ring to the varieties of those ideals, is illustrated by Figure 2.1.

Definition 2.2. ([6], [11]) For an ideal I ∈ F2[X1, . . . ,Xn], the variety of I is

V(I) = {w ∈ Fn2 ∶ f(w) = 0 for all f ∈ I}.

For a variety V ⊆ Fn2 , the ideal of V is

I(V ) = {f ∈ F2[X1, . . . ,Xn] ∶ f(w) = 0 for all w ∈ V }.

5



Figure 2.1: Relationship Between Varieties and Ideals.

ALGEBRAIC GEOMETRY

Varieties V

as subsets of Fn2

COMMUTATIVE ALGEBRA

Ideals I of the

polynomial ring

F2[X1, . . . ,Xn]

V ↦ I(V )

I ↦ V(I)

Note that for any variety V ⊆ Fn2 , we have I(V ) ⊇ B, where B = (X2
1 −

X1, . . . ,X2
n−Xn) is the Boolean ideal of F2[X1, . . . ,Xn]. Moreover, we have I(V ) = B

if and only if V = Fn2 [11]. Thus we have the following result, in which the second

part is called Hilbert’s Nullstellensatz for F2 [14].

Theorem 2.3. ([11], [14]) For every variety V ⊆ Fn2 , we have

V(I(V )) = V.

For every ideal I ⊆ F2[X1, . . . ,Xn], we have

I(V(I)) = I + B.

Because we can treat neural codes as varieties in Fn2 , we have the following

definition of the neural ring.

Definition 2.4. ([11]) Let C ⊆ Fn2 be a neural code. We define the ideal I(C) by

I(C) = {f ∈ F2[X1, . . . ,Xn] ∶ f(w) = 0 for all w ∈ C}.

The neural ring RC is defined to be the quotient ring

RC = F2[X1, . . . ,Xn]
I(C) = F2[x1, . . . , xn],

where xi =Xi+I(C) for i ∈ [n]. We say the elements of F2[x1, . . . , xn] are polynomial

expressions, which behave like polynomials but can be simplified according to the

relations given in I(C).

6



In particular, notice that V(I(C)) = C and I(V(I(C))) = I(C), which follow

by Theorem 2.3. As previously stated, I(C) ⊇ B irrespective of C, however, we

would like to analyze the ideal generated by only non-Boolean relations in I(C).

This ideal, denoted by JC, is a more convenient object to study for various purposes

and why the term neural ideal is used to refer to JC rather than I(C) [11]. The

ideal JC is generated by the polynomials in the following definition.

Definition 2.5. ([11], [14]) For a word w ∈ Fn2 , we define the Lagrange polynomial

of w, denoted Lw ∈ F2[X1, . . . ,Xn], in the following way:

Lw = ∏
wi=1

Xi ∏
wj=0

(1 −Xj).

Notice that this polynomial is similar to an indicator function as Lw(w) = 1,

but for any other word u ∈ Fn2 , Lw(u) = 0. Notice also that, since the indices are

always disjoint, we avoid capturing the Boolean relations of F2[X1, . . . ,Xn].

Definition 2.6. ([11, page 1582]) For a neural code C ⊆ Fn2 , we define the neural

ideal of C, denoted JC ∈ F2[X1, . . . ,Xn], in the following way:

JC = ({Lw ∶ w ∉ C}).

It is important to note that, since JC is generated by the Lagrange polyno-

mials which are not in the code, JC consists of polynomials that will vanish for all

words in the code C, and hence JC is the ideal of the variety C. Hence we have the

following proposition, also following from Theorem 2.3.

Proposition 2.7. ([11, Lemma 3.2]) The neural ideal of a code C has the following

properties:

V(JC) = C

I(C) = JC + B

7



2.2 The Receptive Field Structure of the Neural Code

The canonical form of the neural ideal is an important notion as it provides

the minimal description of the receptive field (RF) structure of the stimulus space.

The RF structure represents where the place cells are firing in the brain [11].

Definition 2.8. ( [7], [11]) For a stimulus space X ⊆ Rd (d ≥ 1) on n neurons,

we denote by Ui ⊆ X the receptive field where the neuron i fires, for i ∈ [n]. If

U = U1, . . . , Un, we say U is an RF cover of X. We define a visual realization of the

code C to be an ordered pair VR(C) = (X,U), such that the code C = Code(X,U).

Note that the RF cover U = U1, . . . , Un of X covers all the receptive fields

Ui ⊆ X, although it may not cover X completely. Additionally, we follow the

convention that each receptive field is convex, although the space X need not be.

Definition 2.9. ([7]) Let X ⊆ Rd and U = U1, . . . , Un be an RF cover of X. The

atom of the pair (X,U), corresponding to the set of neurons α ⊆ [n], is the set

AX,Uα = ( ∩
i∈α
Ui) ∖ ( ∪

j∉α
Uj).

We will write shortly AUα instead of AX,Uα when there is no confusion what X

is. Also note that

AX,UØ = ( ∩
i∈Ø
Ui) ∖ ( ∪

j∉Ø
Uj) =X ∖ ( n∪

i=1
Ui).

Proposition 2.10. If α,β ⊆ [n] are distinct, and at least one of the atoms AUα and

AUβ is nonempty, then AUα ≠ AUβ .

Proof. Without loss of generality, suppose io ∈ α and io ∉ β. Such an io exists since

α ≠ β. Then

AUα = ( ∩
i∈α∖{io}

Ui ∩Uio) ∖ ( ∪
j∈cα

Uj),

AUβ = ( ∩
i∈β
Ui) ∖ ( ∪

j∈cβ∖{io}
Uj ∪Uio).

8



Here c denotes the complement in [n]. From these two formulas, we can see that

every element of AUα (if there is one) belongs to Uio , while no element of AUβ (if there

is one) belongs to Uio . Hence if at least one of the atoms AUα and AUβ is nonempty,

these two atoms are different.

Definition 2.11. Let X ⊆ Rd, U = U1, . . . , Un be an RF cover of X, and α ⊆ [n].

For each nonempty atom AUα of the pair (X,U), we define the word of this atom as

w = w1⋯wn, where wi = 1 if i ∈ α and wi = 0 otherwise. The code of the pair (X,U)

is the set Code(X,U) of words from the nonempty atoms of (X,U).

In other words, the atoms of the stimulus space X are each of the distinct

regions of X, as illustrated by examples in Figure 2.2, and the words of those atoms

represent all the neurons firing in that region, as illustrated in Figure 2.3.

For any stimulus space, an element of the canonical form is a general La-

grange polynomial, called a pseudo-monomial. In general, we can identify each

neuron i with an indeterminate Xi for each i ∈ [n].

Definition 2.12. ( [11, page 1585]) A polynomial f ∈ F2[X1, . . . ,Xn] is called a

pseudo-monomial if it has the form

f =∏
i∈σ
Xi∏

j∈τ
(1 −Xj)

for some disjoint σ, τ ⊆ [n] = {1,2, . . . , n}.

Definition 2.13. ([11, page 1585]) Let I ⊆ F2[X1, . . . ,Xn] be an ideal and f ∈ I

a pseudo-monomial. We say that f is a minimal pseudo-monomial of I if there

does not exist another pseudo-monomial g ∈ I such that deg(g) < deg(f) and g∣f

in F2[X1, . . . ,Xn]. We say that I is a pseudo-monomial ideal if it can be generated

by a finite set of pseudo-monomials.

Notice that if f is a pseudo-monomial, and if g ∈ F2[X1, . . . ,Xn] divides f ,

then g is necessarily a pseudo-monomial and has the form g = ∏
i∈σ′

Xi ∏
j∈τ ′

(1 −Xj),

where σ′ ⊆ σ and τ ′ ⊆ τ .

9



Figure 2.2: Examples of RF structures and Atoms.

Example 1:

X
U1

U2

U3

AUØ AU1 AU1,2 AU2 AU2,3

U = U1, U2, U3

Here:

AU3 = AU1,3 = AU1,2,3 = Ø

Example 2:

X

U1

U2

U3

AU1 AU1,2 AU2 AU2,3 AU3

X = U1 ∪U2 ∪U3

U = U1, U2, U3

Here:

AUØ = AU1,3 = AU1,2,3 = Ø

Example 3:

X
U1

U2=U3

AUØ AU1 AU1,2,3 A
U
2,3

U = U1, U2, U3

Here:

AU2 = AU3 = Ø

Example 4:

X

U1

U2

U3=Ø

AU1 AU1,2

X = U1 ∪U2 ∪U3

U = U1, U2, U3

Here:

AUØ = AU2 = AU3 = Ø

AU1,3 = AU2,3 = AU1,2,3 = Ø
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Figure 2.3: Examples of Atoms and RF structures.

Example 1:

X
U1

U2

U3

U = U1, U2, U3

C(U) = {000,100,110,010,011}

Example 2:

X

U1

U2

U3

X = U1 ∪U2 ∪U3

U = U1, U2, U3

C(U) = {100,110,010,011,001}

Example 3:

X
U1

U2=U3 U = U1, U2, U3

C(U) = {000,100,111,011}

Example 4:

X

U1

U2

U3=Ø X = U1 ∪U2 ∪U3

U = U1, U2, U3

C(U) = {100,110}

11



Definition 2.14. ([11, page 1585]) Let I ∈ F2[X1, . . . ,Xn] be a pseudo-monomial

ideal. We define the canonical form of I, denoted CF (I), to be the (finite) set

consisting of all minimal pseudo-monomials of I.

2.3 Properties of the Neural Code

In Algebraic Geometry, a motif (or motive) can be used to group together

similarly behaved cohomology theories. Since we know that we can infer something

about the surrounding environment when particular neurons fire at the same time

[10], we group together similarly behaved neurons and also call them motifs. These

motifs serve as the essence of the neural code, much like the motif in algebraic

geometry serves as the essence of a variety, and we use them as the building blocks

in the definitions and properties that follow.

Definition 2.15. ( [11]) We define the set M = {0,1,∗}. We say the sequence

a = a1⋯an ∈Mn is a motif of length n. For any motif a ∈Mn, we define the variety

of a, denoted Va, to be the set of all words obtained by replacing the stars of a by

zeros and ones. We say that a is a motif of the code C, and write a ∈ Mot(C), if

Va ⊆ C.

Definition 2.16. ([11]) We define a partial order on M such that 0 < ∗ and 1 < ∗.

For two motifs a,b ∈Mn, we say that a ≤ b if ai ≤ bi for each i. We say that a motif

a is a maximal motif of the code C, and write a ∈ MaxMot(C), if for any other motif

b ∈ Mot(C), a ≤ b implies a = b.

Remark 2.17. ([11])

(i) Notice that for a,b ∈Mn, we have a ≤ b⇔ Va ⊆ Vb.

(ii) For any a ∈ Mot(C), there exists some b ∈ MaxMot(C) such that a ≤ b.

12



(iii) We have C1 = C2 if and only if MaxMot(C1) = MaxMot(C2) for any two codes

C1 and C2.

(iv) C = Ø if and only if MaxMot(C) = Ø.

(v) We define the complement of the code C to be the code D = Fn2 ∖ C, denoted

D = c C. We can now write the neural code C and its neural ideal JC in the

following way:

C = ∪{Va ∶ a ∈ MaxMot(C)}, (2.1)

JC = ({La ∶ a ∈ MaxMot(D)}). (2.2)

However, for proper subsets M ⊂ MaxMot(C) and N ⊂ MaxMot(D), it can

happen that we still have C = ∪{Va ∶ a ∈ M} and JC = ({La ∶ a ∈ N}), as we

will see in the next example. Either way, since any subset of C is a subvariety

in Fn2 , we say the code is the union of its maximal motivic subvarieties.

Proposition 2.18. ([11, Lemma 5.7]) Let C ⊆ Fn2 be a neural code with complement

D = c C and neural ideal JC. Then we have

CF (JC) = {La ∶ a ∈ MaxMot(D)}.

Example 2.19. For the code C = {000,001,011,111} ⊆ F3
2, we have MaxMot(C) =

{00∗,0∗1,∗11}. Clearly Equation 2.1 holds, but we also have C = V00∗ ∪ V∗11.

Similarly, since D = {100,101,110,010}, then we have MaxMot(D) = {10∗,1∗

0,∗10}. By Proposition 2.18, we have

CF (JC) = {L10∗, L1∗0, L∗10}

= {X1(1 −X2),X1(1 −X2),X2(1 −X3)}.

The canonical form is unique and is clearly a generating set of the neural ideal, i.e.,

Equation 2.2 holds; however, CF (JC) is not necessarily a unique minimal generating

set for JC, and in this case, it is not even a minimal generating set, since each
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pseudo-monomial in CF (JC) can be generated by the other two. For example,

JC = (L10∗, L∗10) since

X1(1 −X3) = (1 −X3) ⋅ [X1(1 −X2)] +X1 ⋅ [X2(1 −X3)].

Since the previous example is on three neurons, it is simple to calculate the

maximal motifs of the code and the maximal motifs of its complement. In general,

however, it is much more tedious to do that. We will see more details in Chapter 3

which concern this process for large n.

Naturally, the next important property we examine is that of the prime ideal.

In Algebraic Geometry, it is important to investigate the prime ideals p that contain

a polynomial ideal I, as the varieties of p are the “irreducible subvarieties” of the

variety V(I). More importantly are the minimal prime ideals of I, since then, the

varieties of p correspond to the maximal irreducible subvarieties of V(I).

It turns out that all this is closely related to the motifs of a neural code.

Considering that we want to investigate the prime ideals and minimal prime ideals

of a neural code, we define those in terms of the motifs and maximal motifs of a

code. Let Min(JC) denote the set of all minimal primes of the neural ideal.

Definition 2.20. ([11, page 1594]) For a code C and a motif a ∈ Mot(C), we define

a (motivic) prime ideal of a, denoted pa ⊆ F2[X1, . . . ,Xn], in the following way:

pa = ({Xi ∶ ai = 0} ∪ {1 −Xj ∶ aj = 1}). (2.3)

Note that Va ⊆ Vb ⇔ pb ⊆ pa [11, Lemma 5.2]. The next proposition follows

from Theorem 2.3.

Proposition 2.21. ([11, page 1594]) Let a ∈Mn. We have

V(pa) = Va,

I(Va) = pa + B.
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Proposition 2.22. ([11, Lemma 5.1, Lemma 5.3, and Corollary 5.5]) Let C ∈ Fn2
be a neural code, a ∈Mn a motif, and Min(JC) the set of all minimal primes of JC.

Then we have

a ∈ Mot(C) ⇔ pa ⊇ JC (2.4)

a ∈ MaxMot(C) ⇔ pa ∈ Min(JC). (2.5)

Moreover,

Min(JC) = {pa ∶ a ∈ MaxMot(C)}. (2.6)

One well-known theorem of Emmy Noether (1882-1935) says that every ideal

in a Noetherian commutative ring has a unique “irredundant primary decomposi-

tion”, i.e., it can be written (in a certain unique way) as an intersection of primary

ideals containing it [2]. Recall that a commutative ring is Noetherian if every prime

ideal of the ring is finitely generated, and an ideal I in a commutative ring R is

called primary if for every a, b ∈ R, we have ab ∈ I ⇒ a ∈ I or bn ∈ I for some

n ≥ 1 [2]. Since F2[X1, . . . ,Xn] is a Noetherian ring, the neural ideal JC has a

unique irredundant primary decomposition.

Proposition 2.23. ([11, Corollary 5.5]) Let C ⊆ Fn2 be a nonempty neural code.

Then

JC = ∩{pa ∶ a ∈ MaxMot(C)}

is the unique irredundant primary decomposition of JC.

Remark 2.24. Proposition 2.23 implies that the ideals in the decomposition of JC

are not only primary but actually prime. It also confirms that considering the code

as the union of its maximal motivic subvarieties is indeed the most natural approach

(from the point of view of Commutative Algebra), and hence Commutative Algebra

is the best suited tool for the analysis of JC. From the real-life point of view, this

means that we are considering maximal subcodes, where some neurons have fixed

states and the remaining neurons have variability.
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CHAPTER 3

POLARIZATION OF THE NEURAL CODE

3.1 Motivation

Since the neural ideal of a code is generated by Lagrange polynomials, and

since pseudo-monomials are precisely the Lagrange polynomials of motifs, we have

that the neural ideal is a pseudo-monomial ideal. However, the analysis of these

ideals is very complicated; for example, as we saw in Example 2.19, the set of

minimal pseudo-monomials was not a minimal generating set of the neural ideal.

Monomial ideals, on the other hand, are well studied in Commutative Algebra

and are known for their nice behavior. Recall that a polynomial of the form f =

Xa1
1 X

a2
2 ⋯Xan

n is called a monomial (resp. square-free monomial) if ai ∈ N0 (resp.

ai ∈ {0,1}) for each i, and an ideal is called a monomial ideal (resp. square-free

monomial ideal) if it can be generated by a finite set of monomials (resp. square-free

monomials). Below are just a few nice properties, as found in standard references,

including [2, 6].

• Theorem 1. Let I ⊆ F2[X1, . . . ,Xn] be an ideal. The following are equivalent:

(i) I is a monomial ideal;

(ii) for any f ∈ I, all the terms of f are in I.

• Theorem 2. Let I ⊆ F2[X1, . . . ,Xn] be a monomial ideal, and let M be a

set of monomials in I. Then M is a set of generators of I if and only if for
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each monomial f ∈ I, there exists g ∈ M such that g∣f .

• Theorem 3. Let I be a monomial ideal. Then there exists a unique minimal

set of monomial generators of I.

• Theorem 4. Let I be a square-free monomial ideal. Then I is a finite

intersection of prime monomial ideals.

This behavior found in monomial ideals and square-free monomial ideals

would make the analysis of the neural ideal very nice; however, in most cases,

these properties do not hold in pseudo-monomial ideals. The operation introduced

in [15] called polarization of pseudo-monomials gives us a way to redefine pseudo-

monomials in terms of square-free monomials, and thus we can take advantage of

the results we have from square-free monomial ideal theory for the analysis of the

neural code.

Definition 3.1. ([15, page 6]) For a pseudo-monomial of the form

f =∏
i∈σ
Xi∏

j∈τ
(1 −Xj) ∈ F2[X1, . . . ,Xn],

where σ, τ are two disjoint subsets of [n], we define its polarization fp to be the

square-free monomial

fp =∏
i∈σ
Xi∏

j∈τ
Yj ∈ F2[X1, . . . ,Xn, Y1, . . . , Yn].

Proposition 3.2. ( [15, Lemma 3.1]) Let f, g ∈ F2[X1, . . . ,Xn] be two pseudo-

monomials. Then

f ∣ g ⇔ fp ∣ gp. (3.1)

Definition 3.3. ([15, Definition 3.3]) Let J be a pseudo-monomial ideal in F2[X1, . . . ,Xn]

and let CF (J) = {f1, . . . , fl} be its canonical form. We define the polarization of J

to be the ideal

Jp = (fp1 , . . . , f
p
l ) ⊆ F2[X1, . . . ,Xn, Y1, . . . , Yn].
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Remark 3.4. The two previous definitions state that, instead of pseudo-monomial

ideals in n variables X1, . . . ,Xn, we may consider related square-free monomial

ideals in 2n variables which are denoted by X1, . . . ,Xn, Y1, . . . , Yn (rather than by

X1, . . . ,X2n). Because of this difference in the notation for variables, we should be

aware that, for example, a pseudo-monomial f ∈ F2[X1, . . . ,Xn, Y1, . . . , Yn] has the

form

f =∏
i∈σ
Xi∏

j∈τ
(1 −Xj)∏

k∈µ
Yk∏

l∈ν
(1 − Yl),

where σ, τ, µ, ν ⊆ [n] with σ ∩ τ = Ø and µ ∩ ν = Ø. Similarly, we have that a motif

a = b1⋯bnc1⋯cn ∈M2n will have the Lagrange polynomial La and the prime ideal pa

as follows, respectively:

La = ∏
bi=1

Xi∏
bj=0

(1 −Xj) ∏
ck=1

Yk∏
cl=0

(1 − Yl), (3.2)

pa = ({X1 ∶ bi = 0} ∪ {1 −Xj ∶ bj = 1} ∪ {Yk ∶ ck = 0} ∪ {1 − Yl ∶ cl = 1}).

The definitions of these notions with respect to F2n
2 are the same as the

ones with respect to Fn2 , so we only need to take into account the notation for the

variables. This works for other notions as well (such as the neural ideal, minimal

pseudo-monomials, etc.), while some notations, such as minimal primes, can be

given in a form that does not depend on the notation for the variables.

In this regard, we will have the following convention: if the length of motifs

and codes is denoted by n, then the associated rings and ideals will always be in n

variables X1, . . . ,Xn. If the length is denoted by 2n, then the associated rings and

ideals will always be in 2n variables X1, . . . ,Xn, Y1, . . . , Yn. For the lengths given by

concrete numbers, it will always be clear from the context if it is n or 2n.
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3.2 Polarization of the Neural Code

For a code C, we would next like to define the polarization of the neural code,

Cp. In particular, we would like to define it so that its neural ideal JCp consists

of monomials only. That is, every maximal motif in the complement of Cp should

have coordinates equal to 1 or ∗ only. In addition, we would like to have monomials

related to Cp be polarizations of the pseudo-monomials related to C, as described in

Remark 3.4, so it is natural to try to define the code Cp with length 2n. The most

important property we would like to hold is the preservation of maximal motifs over

polarization, i.e.,

MaxMot(Cp) = MaxMotp(C),

since that would naturally imply that all we must do to obtain Cp is polarize the

maximal motifs of C, i.e., Cp = ∪{Vap ∶ a ∈ MaxMot(C)}. We now face the question

of how to polarize the motifs of a neural code.

For a motif a = a1⋯an ∈ Mn, we want to define its polarization ap such that

ap ∈M2n, just as we want to define the polarized code with length 2n. We will see in

the next example what conclusions we can make about the polarization of a motif

by assuming only that we have the preservation of maximal motifs of the code over

polarization. Moreover, it follows that we have the preservation of minimal prime

ideals, proved later in Theorem 3.31.

Min(JCp) = Minp(JC). (P0)

Example 3.5. For C = {10} ⊆ F2
2, we have MaxMot(C) = {10} and hence Min(JC) =

{p10} = {(1 −X1,X2)}. Then by (P0), we have

Minp(JC) = {(X2,1 −X1)p} = {(X2, Y1)} = {p∗00∗}.

Thus, the motif 10 is associated to the polarized motif ∗00∗, and we have

10p = ∗00 ∗ . (P1)
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Now since D = c C = {00,01,11}, we have MaxMot(D) = {0∗,∗1} and Min(JD) =

{p0∗,p∗1} = {(X1), (1 −X2)}. Then similarly by (P0), we have

Minp(JD) = {(X1)p, (1 −X2)p} = {(X1), (Y2)} = {p0∗∗∗,p∗∗∗0}.

Thus, the motifs 0∗ and ∗1 are associated to the polarized motifs 0∗∗∗ and ∗∗∗0,

respectively, and hence,

0∗p = 0∗∗∗ and ∗1p = ∗∗∗0. (P2)

Note that, for a motif a ∈M2, its polarization ap ∈M4 should have the form:

ap = a1a
p

2 = b1b2 ∣ c1c2,

where each ai = bi ∣ ci is polarized coordinate-wise. Thus, (P1) and (P2) give that

10p = ∗0 ∣ 0∗
(P1)
Ô⇒ 1p = ∗ ∣ 0 and 0p = 0 ∣ ∗,

∗1p = ∗∗∣∗0 and 0∗p = 0∗∣∗∗
(P2)
Ô⇒ ∗p = ∗ ∣ ∗.

As we will see in Theorem 3.14, this reasoning can be generalized to motifs

for any length n, and hence, the definitions of the polarization of a motif and of the

neural code are as follows.

Definition 3.6. Let a = a1⋯an ∈Mn. We define its polarization ap ∈M2n, where

ap = a1⋯a p
n = b1⋯bn ∣ c1⋯cn,

in the following way:

if ai = 0, then bi = 0, ci = ∗;

if ai = 1, then bi = ∗, ci = 0;

if ai = ∗, then bi = ∗, ci = ∗.
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Schematically:

⋯ 0 ⋯ ↦ ⋯ 0 ⋯ ∣ ⋯ ∗⋯

⋯ 1 ⋯ ↦ ⋯∗⋯ ∣ ⋯ 0 ⋯

⋯∗⋯ ↦ ⋯∗⋯ ∣ ⋯ ∗⋯

Definition 3.7. For a code C ⊆ Fn2 , we define its polarization, denoted Cp ⊆ F2n
2 , by

Cp = ∪{Vap ∶ a ∈ MaxMot(C)}. (3.3)

Example 3.8. Continuing with Example 3.5, we can now determine Cp and Dp.

We have the following polarizations:

Cp = {10}p = V10p = V∗00∗

= {0000,1000,0001,1001},

Dp = {00,01,11}p = V0∗p ∪ V∗1p = V0∗∗∗ ∪ V∗∗∗0

= {0000,0100,0010,0001,0110,0101,

0011,0111,1000,1100,1010,1110}.

Notice in particular that Cp ∩ Dp = {0000} and Cp ∪ Dp = Fn2 ∖ {1111}. In general,

even though C and D are complements, Cp and Dp are not; in fact, Cp ∩Dp, as well

as the complement of Cp ∪Dp, can contain several words.

3.3 Properties of the Polarized Code

3.3.1 Preservation of Maximal Motifs

We have many nice properties that hold from our definition of the polariza-

tion of the neural code, the most important of which preserves the maximal motifs
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of a code over polarization for any length n, which will be proved in Theorem 3.14.

To prove this, we first introduce a few additional notions.

Definition 3.9. We say that a motif b ∈ M2n is a polar motif if there is a motif

a ∈Mn such that b = ap. If such a motif a exists, then it is unique, and we denote

a = bd as the depolarization of b.

Note that for any two motifs a,b ∈Mn, we have

apd = a for every a ∈Mn;

bdp = b for every polar motif b ∈M2n.

Proposition 3.10. Let a,b ∈Mn. Then

a ≤ b ⇔ ap ≤ bp.

Proof. Let a = a1⋯an,b = b1⋯bn ∈Mn, and suppose a ≤ b. For any i ∈ [n], if we have

(bp)i = 0, then bpn+i = ∗ and bi = 0. Hence ai = 0 and thus (ap)i = 0. If (bp)n+i = 0,

then bpi = ∗ and bi = 1. Hence ai = 1 and (ap)n+i = 0. Thus ap ≤ bp.

On the other hand, suppose ap ≤ bp. Then if, for i ∈ [n], bi = 0, then (bp)i = 0,

and hence (ap)i = 0, hence ai = 0. If bi = 1, then (bp)n+i = 0, and hence (ap)n+i = 0,

hence ai = 1. Thus a ≤ b.

Corollary 3.11. For any code C ⊆ Fn2 , we have

Motp(C) ⊆ Mot(Cp).

Proof. Let a ∈ Mot(C) and let b ∈ MaxMot(C) such that a ≤ b. By the previous

proposition, we have ap ≤ bp. Since (by the definition of Cp) we have that bp ∈

Mot(Cp), we have ap ∈ Mot(Cp).

Proposition 3.12. For any code C ⊆ Fn2 ,

MaxMot(Cp) ⊆ {0,∗}2n.
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Proof. Suppose that there exists some motif b ∈ MaxMot(Cp) such that bα = 1 for

some α ∈ [2n]. Then for any word w ∈ Vb, we have wα = 1. Hence w ∈ Vap for some

a ∈ MaxMot(C), and by definition, (ap)α = ∗. But then the word w′, obtained by

replacing wα in w by 0, is also in Vap , and hence in Cp. Hence the motif b′, obtained

by replacing bα by ∗ would be a motif of Cp, contradicting the maximality of b.

Proposition 3.13. For any motif b ∈ MaxMot(Cp), there is no i ∈ [n] such that

bi = bi+n = 0.

Proof. Suppose to the contrary, and define the following sets:

A = {j ∈ [n] ∶ bj = bj+n = ∗};

B = {j ∈ [n] ∶ bj = 0, bj+n = ∗};

C = {j ∈ [n] ∶ bj = ∗, bj+n = 0};

D = {j ∈ [n] ∶ bj = bj+n = 0};

where i ∈ D by assumption, and the sets A,B,C,D form a partition of [n]. Let

w ∈ Vb be defined in the following way:

(∀j ∈ A)wj = wj+n = 1;

(∀j ∈ B)wj = 0,wj+n = 1;

(∀j ∈ C)wj = 1,wj+n = 0;

(∀j ∈D)wj = wj+n = 0;

Since w ∈ Cp, there is a motif a ∈ MaxMot(C) such that w ∈ Vap . Since ap is a polar
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motif, we have

(∀j ∈ A)(ap)j = (ap)j+n = ∗;

(∀j ∈ B)(ap)j = 0 or ∗, (ap)j+n = ∗;

(∀j ∈ C)(ap)j = ∗, (ap)j+n = 0 or ∗;

(∀j ∈D) at least one of (ap)j, (ap)j+n is ∗ .

Since D contains at least one element, these relationships imply that ap > b, con-

tradicting the maximality of b.

Theorem 3.14. For any code C ⊆ Fn2 , we have

MaxMotp(C) = MaxMot(Cp). (3.4)

Proof. Let b ∈ MaxMot(Cp). By Propositions 3.12 and 3.13, for each i ∈ [n], we

have one of the following three cases:

(1) bi = bi+n = ∗; (2) bi = 0, bi+n = ∗; (3) bi = ∗, bi+n = 0.

Let w ∈ Vb be a word defined in the following way for each case, respectively:

(1) wi = wi+n = 1; (2) wi = 0,wi+n = 1; (3) wi = 1,wi+n = 0.

Note that this word w ∈ Vap for some motif a ∈ MaxMot(C). Since ap is a polar

motif, it follows for each case, respectively, that:

(1) (ap)i = (ap)i+n = ∗; (2) (ap)i = 0, (ap)i+n = ∗; (3) (ap)i = ∗, (ap)i+n = 0,

and hence ap ≥ b. Since ap ∈ Mot(Cp) and b ∈ MaxMot(C), we have b = ap, and

hence MaxMotp(C) ⊇ MaxMot(Cp).

On the other hand, suppose a ∈ MaxMot(C) such that ap ∉ MaxMot(Cp).

By the definition of Cp, we have ap ∈ Mot(Cp), and hence there exists some b ∈
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MaxMot(Cp) such that ap < b. But, by the first part of the proof, there must

also exist some c ∈ MaxMot(C) such that b = cp, so by Proposition 3.10, since

ap < cp, we would have a < c, contradicting the maximality of both a and c. Hence

MaxMotp(C) ⊆ MaxMot(Cp).

3.3.2 Formal Polarization of the Neural Code

As we saw in Example 3.5, although the codes C andD are complements, their

polarizations Cp and Dp need not be. This presents an obstacle when considering

the polarization of the canonical form, which is defined in terms of the complement

of the code. If Cp and Dp are not complements, then what is the complement of Cp?

How do we find it? To answer these questions, we must first analyze the relationship

of disjoint motifs.

Definition 3.15. For a motif a = a1⋯an ∈Mn, we define a (read as “a-bar”) to be

the motif b = b1⋯bn ∈Mn which satisfies the following condition:

for i ∈ [n], if ai ≠ ∗, then bi = ai = 1 − ai.

Then for any motifs a,b ∈Mn, we have:

b = ap ⇔ a = b
d
. (3.5)

Moreover, for any code C ⊆ Fn2 and M ⊆ Mot(C), if we denote M = {a ∶ a ∈M}, then

Mot(C) = Mot(C), (3.6)

MaxMot(C) = MaxMot(C). (3.7)

Proposition 3.16. For any motif a ∈Mn, we have

Lpa = Lap .

Proof. This follows from Definitions 3.3, 3.6, 3.15, and Equation 3.2.
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Example 3.17. Let n = 4 and let a = 11∗0. Then by definition, La =X1X2(1−X4),

and hence Lpa =X1X2Y4. On the other side, we have

ap = 11∗0
p = 00∗1p = 00∗∗∣ ∗∗∗0 = 11∗∗∣ ∗∗∗1,

corresponding to the Lagrange polynomial X1X2Y4. Hence, Lpa = Lap .

Definition 3.18. We say that two motifs a,b ∈Mn are disjoint if there is an i ∈ [n]

such that ai = bi.

Definition 3.19. One the set M = {0,1,∗}, we introduce a commutative operation

of addition in the following way:

0 + 0 = 0 0 + ∗ = ∗

0 + 1 = 1 1 + ∗ = ∗

1 + 1 = 0 ∗ + ∗ = ∗

We can see the left column represents arithmetic in F2, while the right column

represents max-arithmetic. We then define the addition in Mn by adding motifs

coordinate-wise.

Remark 3.20. It is easy to verify that, with the above operation and the partial

order we defined before, Mn is a partially ordered monoid. The importance of this

operation lies in the fact that, for two motifs a,b ∈Mn, the sum a + b has at least

one coordinate equal to one (called a 1-component) if and only if the motifs a and

b are disjoint. Thus, we can recognize the disjointness of two motifs algebraically

by considering their sum.

Proposition 3.21. (The Disjointness Proposition) For a code C ⊆ Fn2 and its

complement D, let a ∈ Mot(C) and b ∈ Mn. Then b ∈ Mot(D) if and only if b is

disjoint with a.

Moreover, the maximal motifs of D are the motifs b that are maximal among

the motifs from Mn which are disjoint from all the maximal motifs of C.
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Proof. Easy to see.

Proposition 3.22. Let a,b ∈ Mn. If a + b has a 1-component, then a + b′ has a

1-component for any b′ ≤ b. In particular, for a code C ⊆ Fn2 and its complement

D, the maximal motifs of D are the maximal elements b ∈Mn such that each a +b

has a 1-component for each a ∈ MaxMot(C).

Proof. Easy to see.

Corollary 3.23. Let C ⊆ Fn2 . If b ∈ MaxMot(c(Cp)), then every bi different from ∗

is equal to 1.

Proof. The statement follows from the previous proposition as each 0 can be re-

placed with ∗, which results in a strictly bigger motif which is disjoint from all

maximal motifs of Cp.

Proposition 3.24. The motifs a and b from Mn are disjoint if and only if the

motifs ap and b
p

from M2n are disjoint.

Proof. Suppose that a and b are disjoint. We first consider the case ai = 1, bi = 0

for some i ∈ [n]. Then (ap)i = ∗ and (ap)n+i = 0, while (bp)i = ∗ and (bp)n+i = 1.

Hence ap and b
p

are disjoint. The case ai = 0,bi = 1 for some i ∈ [n] is similar.

On the other hand, suppose that ap and b
p

are disjoint. We first consider

the case (ap)i = 0, and (bp)i = 1 for some i ∈ [n]. Then ai = 0 and (bp)i = 0, hence

(b)i = 0. Hence bi = 1, so that a and b are disjoint. The case (ap)i = 1, (bp)i = 0 for

some i ∈ [n] is similar.

Proposition 3.25. For any two codes C,D ⊆ Fn2 , we have

D ⊆ cC ⇔ Dp ⊆ c(Cp). (3.8)
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Proof. The following equivalences follow from Proposition 3.10, Proposition 3.24,

Theorem 3.14, and Proposition 3.21, respectively.

D ⊆ cC ⇔ (∀a ∈ MaxMot(C))(∀b ∈ MaxMot(D)) a and b are disjoint

⇔ (∀a ∈ MaxMot(C))(∀b ∈ MaxMot(D)) ap and b
p

are disjoint

⇔ (∀c ∈ MaxMot(Cp))(∀d ∈ MaxMot(Dp)) c and d are disjoint

⇔ Dp ⊆ c(Cp).

Note that, in the previous proposition, equality on the left hand side is not

equivalent with the equality on the right hand side, as we are going to see in Example

3.33.

Corollary 3.26. For a code C ⊆ Fn2 and its complement D, we have

Cp ⊆
c

Dp.

Proof. Follows immediately from the previous proposition.

We are now faced with several questions. What set is exactly equal to the

complement of Dp? What is the difference between the sets Cp and the complement

of Dp? We begin to answer these questions by rewriting its notation in terms of the

initial code.

Definition 3.27. For a code C ⊆ Fn2 and its complement D, we define the formal

polarization of the code C, denoted C[p], by

C[p] =
c

Dp.

Proposition 3.28. For a code C ⊆ Fn2 and its complement D, we have

MaxMot(Cp) ⊆ MaxMot(C[p]), (3.9)

MaxMot(c(C[p])) = MaxMot(D)
p
⊆ MaxMot(c(Cp)). (3.10)
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Proof. By Theorem 3.14 and the previous definition, if is equivalent to show that

(∀a ∈ MaxMot(C))(∀b ∈ MaxMot(D)) ap and b
p

are disjoint, which follows from

Proposition 3.24.

For the second statement, let d ∈ MaxMot(c(C[p])) = MaxMot(Dp). Then

d = b
p

for some b ∈ MaxMot(D), and suppose e ∈ MaxMot(c(Cp)) such that d ≤ e,

i.e., b
p ≤ e and hence bp ≤ e. Since e is larger than or equal to a polar motif, e must

also be a polar motif. That is, for some f ∈ Mn, we have e = f
p
. Hence bp ≤ fp so

that b
p ≤ f

p = e. Then, since e is disjoint with all the maximal motifs of Cp, we have

by Proposition 3.24 that f is disjoint with all the maximal motifs of C and f ≥ b.

Now since b is one of the maximal motifs among those which are disjoint from all

the maximal motifs of C, we also have that f ≤ b. Thus, f = b and d = e.

Thus we have the relationship between the maximal motifs for the polariza-

tion Cp and the formal polarization C[p]. In particular, in Equation 3.10, we have

the relationship with respect to the complements, which help us characterize the

relationship between the canonical forms of Cp and C[p].

Theorem 3.29. For a code C ⊆ Fn2 , we have

CF (JpC) = CF p(JC) = CF (JC[p]) ⊆ CF (JCp).

Proof. Let CF (JC) = {f1, . . . , fk}. By definition, JpC = (fp1 , . . . , f
p
k ), and recall that

fp1 , . . . , f
p
k are square-free monomials. By [17], Corollary 1.10, the set {fp1 , . . . , f

p
k}

contains a minimal subset S (with respect to inclusion) which generates JpC . By [17],

Corollary 1.8, if fpi ∉ S, then fpi ∣ fpj for some fpj ∈ S. Then by [15], Lemma

3.1, fi ∣ fj, contradicting minimality of the elements in the canonical form. Thus

S = {fp1 , . . . , f
p
k}, and hence CF (JpC) = CF p(JC).

For the center equality, let D = cC. Then we have the following equalities,
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which follow by Proposition 2.18, Proposition 3.16, and Equation 3.5:

CF p(JC) = {Lpa ∶ a ∈ MaxMot(D)}

= {Lap ∶ a ∈ MaxMot(D)}

= {Lb ∶ b
d ∈ MaxMot(D)}

= {Lb ∶ b ∈ MaxMot(Dp)}

= CF (JC[p]).

Finally, the inclusion in the statement follows from the previous proposition

and Proposition 2.18.

We also characterize the relationship between the minimal prime ideals of Cp

and C[p], but first we need an additional definition.

Definition 3.30. The prime ideals p ⊆ F2[X1, . . . ,Xn, Y1, . . . , Yn] such that p = pap

for some a ∈Mn are called polar motivic primes.

Note that pap = ppa since for any a = a1⋯an ∈ MaxMot(C), we have ap =

b1⋯bnc1⋯cn where

pap = ({Xi ∶ bi = 0} ∪ {Yj ∶ cj = 0})

= ({Xi ∶ ai = 0} ∪ {Yj ∶ aj = 1})p

= ppa.

Theorem 3.31. For a code C ⊆ Fn2 , we have

Min(JCp) = Minp(JC) ⊆ Min(JC[p]).

Proof. The inclusion in the statement follows from Proposition 3.28 and Equation

2.6 from Proposition 2.22. For the equality, by Proposition 2.22 and Theorem 3.14,
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we have

Min(JCp) = {pd ∶ d ∈ MaxMot(Cp)}

= {pap ∶ a ∈ MaxMot(C)}

= {pap ∶ pa ∈ Min(JC)}

= {ppa ∶ pa ∈ Min(JC)}.

Hence

Min(JCp) = Minp(JC).

Theorem 3.32. For any code C ⊆ Fn2 , the ideal JCp has the unique irredundant

primary decomposition, and it is obtained by polarizing the prime ideals from the

unique irredundant primary decomposition of JC.

Proof. By Proposition 2.23, the ideals JC and JCp have the following unique irre-

dundant primary decompositions, respectively,

JC = ∩ {pa ∶ a ∈ MaxMot(C)},

JCp = ∩ {pb ∶ b ∈ MaxMot(Cp)},

and hence, the statement follows from Theorem 3.14.

3.4 An Illustrative Example

Example 3.33. Consider the neural code C and its complement D in F3
2:

C = {000,100,110,001} and D = {001,010,101,111}.
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Then MaxMot(C) = {∗00,1∗0,011} and MaxMot(D) = {∗01,1∗1,010}, and by

Theorem 3.14, we have

MaxMot(Cp) = {∗00∗∗∗,∗∗00∗∗,0∗∗∗00}, (3.11)

MaxMot(Dp) = {∗∗1∗1∗,1∗1∗∗∗,∗1∗1∗1}. (3.12)

By Proposition 2.18, we have CF (JC[p]) = {X3Y2,X1X3,X2Y1Y3} = CF p(JC).

By Proposition 3.25, however, we know that Dp ⊆ c(Cp), and we use Propo-

sition 3.21 (The Disjointness Proposition) to find MaxMot(c(Cp)). Consider the

maximal motifs a1 = ∗00∗∗∗, a2 = ∗∗00∗∗, and a3 = 0∗∗∗00 of Cp, and define the

sets A1 = {2,3},A2 = {3,4},A3 = {1,5,6}, which represent the coordinates of those

motifs that are zeros, respectively. Choosing one element from each Ai, we form

the set of coordinates of some motif of c(Cp) that are ones, and then from all such

sets, we select those which are minimal with respect to inclusion. In that way, we

get the following sets, corresponding to the ones in the maximal motifs of c(Cp):

B1 = {3,5}, B2 = {1,3}, B3 = {2,4,6},

B4 = {3,6}, B5 = {2,4,5}, B6 = {1,2,4},

and hence,

MaxMot(c(Cp)) = {∗∗1∗1∗,1∗1∗∗∗,∗1∗1∗1,∗∗1∗∗1,∗1∗11∗,11∗1∗∗}.

Thus by Proposition 2.18

CF (JCp) = {X3Y2, X1X3, X2Y1Y3, X3Y3, X2Y1Y2, X1X2Y1},

illustrating that strict inclusion in Theorem 3.29 is possible: CF p(JC) ⊂ CF (JCp),

and in particular Cp ⊂ C[p]. Indeed, Cp has 29 words while C[p] has 35 words.

Since Proposition 3.28 also gives us MaxMot(Dp) = MaxMot(c(C[p])), we can

use the same technique to find the maximal motifs of C[p]:

MaxMot(C[p]) = {∗00∗∗∗,∗∗00∗∗∗,∗∗0∗∗0,00∗∗0∗,0∗∗00∗,0∗∗∗00}.
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Hence, by Proposition 2.22,

Min(JCp) = {(X2,X3), (X3, Y1), (X1, Y2, Y3)} = Minp(JC),

Min(JC[p]) = {(X2,X3), (X3, Y1), (X1, Y2, Y3), (X3, Y3), (X1,X2, Y2), (X1, Y1, Y2)},

and hence, Minp(JC) ⊂ Min(JC[p]).

Remark 3.34. Notice that each of the additional monomials in CF (JCp) all share

some index for the X and Y variables. That is, they are not coming from the

polarization of any pseudo-monomial.

Also notice that the additional motivic prime ideals in Min(JC[p]) are coming

from maximal motifs of C[p] which are not the polarization of any motifs from C.

That is, as a result of formal polarization, we have obtained some non-polar minimal

primes.
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CHAPTER 4

PARTIAL NEURAL CODES

As we saw in the illustrative example in the previous section, among the

minimal primes of JC[p] , in addition to all the minimal primes of JCp , we also have

three non-polar minimal primes, namely, p∗∗0∗∗0 = (X3, Y3), p00∗∗0∗ = (X1,X2, Y2),

and p0∗∗00∗ = (X1, Y1, Y2), as the motifs in ∗∗0∗∗0,00∗∗0∗,0∗∗00∗ ∈M6 are not the

polarization of any motif in M3. This begs the question: how are these non-polar

primes related to C? In particular, if we have some pa ∈ Min(JC[p]), then how is the

motif a ∈M2n related to C?

In this section, while trying to answer this question, we introduce the notions

of partial words, partial motifs, partial codes, and inactive neurons. We can think of

a partial word as a word where the state of some neurons is unknown. For example,

if a word of length 8 is given by w= 01 00 1, we say neurons 2, 3, 5, 6, and 8 are

active (firing or not firing), and the neurons 1, 4, and 7 are inactive.

Definition 4.1. For the set PW = {0,1, }, we say w ∈ PWn is a partial word of

length n, and a set of partial words C ⊆ PWn is a partial code of length n. For the set

PM = {0,1,∗, }, we say a ∈ PMn is a partial motif of length n. A neuron i is said

to be inactive if ai = for a ∈ PMn. We define a partial order on PM by declaring

that 0 < ∗ and 1 < ∗ (similar to the partial order on M with the addition that is

only comparable with itself). For two partial motifs a,b ∈ PMn, we say that a ≤ b

if ai ≤ bi for each i. For a partial code C ⊆ PWn, the sets of all partial motifs and

maximal partial motifs are denoted ParMot(C) and MaxParMot(C), respectively.
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Remark 4.2. (i) The set of all partial words is denoted by PWn
K , where K =

{i1, . . . , ik} ⊆ [n]is the set of inactive neurons. Similarly, the set of all partial

motifs is denoted by PMn
K . The sets PWn

K and PMn
K are naturally in a bijective

correspondence with the sets Fn−k2 and Mn−k, respectively.

(ii) In some cases, it is useful to deactivate a neuron or set of neurons. A

neuron is said to be deactivated if it becomes inactive. For a word (or partial word)

w or a motif (or partial motif) a, we denote respectively wK and aK as the partial

word and partial motif obtained by deactivating the neurons in K. If we deactivate

a set of neurons for every word in a code C, then we denote CK as the partial code

obtained by deactivating the neurons in K. The partial code CK is naturally in a

bijective correspondence with the code C ⊆ Fn−k2 , obtained by deleting the neurons

from K.

Proposition 4.3. Let K = {i1, . . . , ik} ⊆ [n]. For a code C ⊆ Fn2 , let w ∈ PWn
K and

suppose w ∉ CK . If the motif a is obtained from w by replacing each by ∗, then

a ∈ Mot(cC).

Proof. Easy to see.

Because we want to better understand the non-polar motifs of C[p], recall

Definition 3.6 which defines the polarization of a motif in Mn.

Definition 4.4. For a partial motif a = a1⋯an ∈ PMn, its polarization, denoted

ap = b1⋯bnc1⋯cn ∈ PM2n, is defined in the following way:

if ai = 0, then bi = 0, ci = ∗;

if ai = 1, then bi = ∗, ci = 0;

if ai = ∗, then bi = ∗, ci = ∗;

if ai = , then bi = , ci = .
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We say that a partial motif b ∈ PM2n is a partial polar motif if there is a partial

motif a ∈ PMn such that b = ap. If such a partial motif a exists, it is unique and we

denote a = bd as the depolarization of b.

Note that for any two partial motifs a,b ∈ PMn, we have

apd = a for every a ∈ PMn;

bdp = b for every polar partial motif b ∈ PM2n.

The next theorem is a reformulation of Theorem 5.1 from [15], and we give

a different, simpler proof.

Theorem 4.5. ([15, Theorem 5.1]) Let C ⊆ Fn2 be a neural code and c ∈ M2n be a

motif. Define the motif a = a1⋯anan+1⋯a2n by replacing all the ones in c by ∗. Let

K be the set of all such i ∈ [n] such that ai = ai+n = 0 and H = K ∪ {i + n ∶ i ∈ K}.

Then

pc ⊇ JC[p] ⇔ aH
d ∈ ParMot(CK).

Proof. Let D = c C. Recall that c(C[p]) = Dp, and hence MaxMot(c(C[p])) = {bp ∶ b ∈

MaxMot(D)}. We have:

pc ⊇ JC[p] ⇔ c ∈ Mot(C[p]) (Prop 2.22)

⇔ c and b
p

are disjoint (Prop 3.21)

⇔ c + b
p

has a 1-component. (Remark 3.20)

Since a ∈ {0,∗}2n and b
p ∈ {1,∗}2n, that is equivalent to showing a + b

p
has a one

1-component, i.e.,

a + b
p < ∗⋯ ∗ . (4.1)

The statement of the theorem follows if we justify the claim that a satisfies Equation

(4.1) if and only if aH
d ∈ ParMot(CK). Clearly, if a does not satisfy Equation (4.1),

then a and b
p

are not disjoint, and thus aK
d ∉ ParMot(CK). On the other hand,
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suppose Equation (4.1) holds but aH
d ∉ ParMot(CK). Then a ∉ Mot(C[p]), i.e.,

a ∈ Mot(Dp) ⊆ {1,∗}2n. But a ∈ {0,∗}2n, thus a = ∗⋯∗, contradicting that a

satisfies Equation (4.1).

Example 4.6. In the context of Example 3.33, recall that C = {000,100,110,011}.

To illustrate the previous theorem, consider the following for a motif c ∈M6.

(i) Consider c = 00∗∗0∗. Then a = c, K = {2}, andH = {2,5} since a2 = a5 = 0.

Then

aH
d = 0 ∗∗ ∗d = 0 ∗ .

Thus CK = {0 0,1 0,0 1} = V∗ 0∪V0 ∗, and hence aH
d ∈ ParMot(CK) and pc ⊇ JC[p] .

In fact, we have that aH
d ∈ MaxParMot(CK) and pc ∈ Min(JC[p]).

(ii) Now consider c = 0∗0∗∗0. Then a = c, K = {3}, and H = {3,6} since

a3 = a6 = 0. Then

aH
d = 0∗ ∗∗ d = 0∗ .

Thus CK = {00 ,10 ,11 ,01 } = V∗∗ , and hence aH
d ∈ ParMot(CK) and pc ⊇ JC[p] .

Notice that aH
d ∉ MaxParMot(CK) and pc ∉ Min(JC[p]).

(iii) Lastly, consider c = 100∗0∗. Then a = ∗00∗0∗, K = {2}, and H = {2,5}

since a2 = a5 = 0. Then, as before,

aH
d = 0 ∗∗ ∗d = 0 ∗ .

Thus CK = {0 0,1 0,0 1} = V∗ 0∪V0 ∗, and hence aH
d ∈ ParMot(CK) and pc ⊇ JC[p] .

However, in this case, pc = (1 − X1,X2,X3, Y2) ∉ Min(JC[p]) even though aH
d ∈

MaxParMot(CK). Indeed, it was shown in Example 3.33 that (X2,X3) is a minimal

prime of JC[p] .

Thus we have similar conclusions about the relationship between partial mo-

tivic primes containing the neural ideal, as related to Equation 2.4, however, we

cannot say anything about the minimal motivic primes such as Equation 2.5 for

maximal partial motifs.
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CHAPTER 5

MORPHISMS OF NEURAL CODES

As much of this chapter focuses on the category of Neural Codes, we briefly

introduce some category theory. The concept of a category is basically a class of

objects (usually sets) and a class of morphisms between them (usually maps between

those sets) [16]. A category is called small if the class of objects is a set. However,

when there are too many objects in a class, we can assume that those objects form

their own class. In that way, we avoid certain paradoxes of set theory.

Definition 5.1. ([16]) A category C consists of:

1. A class ob C of objects (usually denoted A,B,C, etc.).

2. For each ordered pair of objects (A,B), a set HomC(A,B) (or simply Hom(A,B)

if C is clear) whose elements are called morphisms with domain A and

codomain B (or from A to B).

3. For each ordered triple of objects (A,B,C), a map (f, g) ↝ g○f of the product

set Hom(A,B) ×Hom(B,C) into Hom(A,C).

It is assumed that the objects and morphisms satisfy the following conditions:

C1. If (A,B) ≠ (C,D), then Hom(A,B) and Hom(C,D) are disjoint.

C2. (Associativity). If f ∈ Hom(A,B), g ∈ Hom(B,C), and h ∈ Hom(C,D), then

(h ○ g) ○ f = h ○ (g ○ f) = h ○ g ○ f .
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C3. (Unit). For every object A we have a unique element IdA ∈ Hom(A,A) such

that f ○ IdA = f for every f ∈ Hom(A,B) and IdA ○ g = g for every g ∈

Hom(B,A).

Definition 5.2. ([16]) An element f ∈ Hom(A,B) is called an isomorphism if there

exists a g ∈ Hom(B,A) such that f ○ g = IdB and g ○ f = IdA. It is clear that g is

uniquely determined by f , so we can denote it as f−1. This is also an isomorphism

and (f−1)−1 = f . If f and h are isomorphisms and f ○ h is defined, then f ○ h is an

isomorphism and (f ○ h)−1 = h−1 ○ f−1.

Definition 5.3. ([16]) If C and D are categories, a contravariant functor F from

C to D consists of

1. A map A↝ FA of ob C into ob D.

2. For every pair of objects (A,B) of C, a map f ↝ F (f) of HomC(A,B) into

HomD(FB,FA).

We require that these satisfy the following conditions:

F1. If g ○ f is defined in C, then F (g ○ f) = F (f) ○ F (g).

F2. F (IdA) = IdFA.

Definition 5.4. ([16]) A contravariant functor is called faithful (full) if for every

pair of objects A,B in C the map f ↝ F (f) of HomC(A,B) into HomD(FB,FA)

is injective (surjective).

Definition 5.5. ( [16]) We say that the categories C and D are isomorphic (or

equivalent) if there exist functors F ∶ C → D and G ∶ D → C such that GF = IdC

and FG = IdD.
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5.1 Morphisms Between Neural Rings

Recall from Chapter 2 that the neural ring of C ⊆ Fn2 is defined to be the ring

RC =
F2[X1, . . . ,Xn]

I(C) = F2[x1, . . . , xn],

where xi = Xi + I(C) for i ∈ [n]. We denote the image of f ∈ F2[X1, . . . ,Xn] under

the canonical map F2[X1, . . . ,Xn] → RC by f or f(x1, . . . , xn). In particular, the

image of the Lagrange polynomial Lw is denoted by Lw or Lw(x1, . . . , xn). For

A ⊆ C we denote by LA the polynomial ∑w∈ALw. It turns out that RC consists of

all LA, A ⊆ C, and that they are all distinct. Moreover, if we denote by P(C) the

power set of C, then the bijection RC → (P(C),△,∩), given by

LA ↦ A,

is a ring isomorphism. For the purpose of this chapter we call the ring (P(C),△,∩)

the neural ring of C.

Definition 5.6. ([18]) Let C ⊆ Fn2 be a code of length n and α ⊆ [n]. Then the

subset of C,

TkCα = {w = w1⋯wn ∈ C ∣ wi = 1 for all i ∈ α},

is called the trunk of C determined by α. In particular, TkCØ = C. If ∣α∣ = 1, TkCα is

called a simple trunk of C. We will write TkCi instead of TkC{i}.

Definition 5.7. The trunk of the RF cover U = U1, . . . , Un of X, corresponding to

α ⊆ [n], is the set

TkUα = ∩
i∈α
Ui.

Examples of the trunks of RF covers are given in Figure 5.1. Note that TkUØ =

∩
i∈Ø
Ui =X.

In the next theorem we give an intrinsic characterization of neural rings. The

inspiration for this theorem is coming from [12, Theorem 1.2], where neural rings

40



Figure 5.1: Examples of Trunks of RF Covers.

Example 1:

X
U1

U2

U3

TkUØ TkU1 TkU1,2 Tk
U
2 TkU3

U = U1, U2, U3

Here:

TkU1,3 = TkU1,2,3 = Ø

TkU3 = TkU2,3

Example 2:

X

U1

U2

U3

TkUØ TkU1 TkU1,2 Tk
U
2 TkU2,3 Tk

U
3

X = U1 ∪U2 ∪U3

U = U1, U2, U3

Here:

TkU1,3 = TkU1,2,3 = Ø

Example 3:

X
U1

U2=U3

TkUØ TkU1 TkU1,2 Tk
U
2

U = U1, U2, U3

Here:

TkU2 = TkU3 = TkU2,3
TkU1,2 = TkU1,3 = TkU1,2,3

Example 4:

X

U1

U2

U3=Ø

TkUØ TkU2

X = U1 ∪U2 ∪U3

U = U1, U2, U3

Here:

TkU3 = TkU1,3 = TkU2,3 = TkU1,2,3 = Ø

TkUØ = TkU1
TkU2 = TkU1,2
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on n neurons (as modules) were characterized in terms of the actions of the neural

ring of the full code. The part of our proof in which we construct the code C follows

the proof of Theorem 1.2 from [12].

Theorem 5.8. A non-zero commutative ring R is isomorphic to the neural ring

of some neural code C if and only if there is a nonempty subset S = {s1, . . . , sr} of

R and a sequence T = t1, . . . , tn (n ≥ 1) of elements of R such that the following

conditions hold:

(N1) Every element x ∈ R can be uniquely written as a sum x = sj1 +⋯+ sjp (p ≥ 0)

of distinct elements of S.

(N2) For any ti from T and any sj ∈ S, we have that tisj ∈ {0, sj}.

(N3) For any two distinct elements sj, sk ∈ S there is at least one element ti from

T such that exactly one of the elements tisj, tisk is equal to 0.

Moreover, given a non-zero commutative ring R with the properties (N1),

(N2), (N3) satisfied by its subset S and a sequence of its elements T , the code C and

the isomorphism φ ∶ R → P(C) can be selected in such a way that the elements of

S correspond to the words of C (as singletons) and the elements of T to the simple

trunks of C.

Proof. Let C be a neural code on n neurons, consisting of r codewords w1, . . . ,wr,

and let (P(C),△,∩) be its neural ring. Let sj = {wj} (j ∈ [r]), S = {s1, . . . , sr},

ti = TkCi (i ∈ [n]), T = t1, . . . , tn. Then for each X = {wj1 , . . . ,wjp} ∈ P(C) the

unique way to write X as a “sum” (i.e., symmetric difference) of elements sj is

X = {wj1} △ ⋅ ⋅ ⋅ △ {wjp}. Thus the condition (N1) holds for P(C). Also for each

i ∈ [n] and j ∈ [r] we have TkCi ∩ {wj} ∈ {Ø,{wj}}, so that the condition (N2)

holds for P(C). Finally, let {wj}, {wk} be two distinct elements of S. Let i be a
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coordinate on which one of wj, wk has 0 and the other one 1. Then exactly one of

TkCi ∩ {wj}, TkCi ∩ {wk} is Ø. Thus the condition (N3) holds for P(C).

Conversely, suppose that we have a non-zero commutative ring R which has

a subset S and a sequence of its elements T satisfying the conditions (N1), (N2),

and (N3).

Claim 1. No element of S is equal to 0.

Proof. Suppose 0 ∈ S. If S = {0}, then, by (N1), R = {0}, a contradiction. Suppose

S ≠ {0} and let s ≠ 0 be a non-zero element of S. Then s and s+ 0 are two different

ways to write an element of R as a sum of distinct elements of S, a contradiction.

Claim 1 is proved.

Claim 2. If 1 ∈ S, then S = {1}.

Proof. Suppose 1 ∈ S and S ≠ {1}. Let s ∈ S, s ≠ 1. Then, by (N3), there is a t

from the sequence T such that exactly one t1, ts is equal to 0. If t1 = 0, then, by

(N2) and (N3), ts = s. However, t1 = 0 implies t = 0, hence ts = 0. Hence s = 0,

contradicting Claim 1. The other option is that ts = 0. Then, by (N2) and (N3),

t1 = 1, hence t = 1, hence 0 = ts = s, again contradicting Claim 1. Claim 2 is proved.

Proof for the case S = {1}. Suppose S = {1}. Then R = {0,1}. Hence each ti is

either 0 or 1. We form a codeword w = w1⋯wn ∈ Fn2 in the following way: if

ti = 0, we put wi = 0, and if ti = 1, we put wi = 1. Let C = {w}. Then P(C) =

{Ø,{w} = C}. The map φ ∶ R → P(C), defined by φ(0) = Ø, φ(1) = C, is a ring

isomorphism. We also have φ(ti) = Ø = TkCi if ti = 0, and φ(ti) = C = TkCi if ti = 1.

The proof for the case S = {1} is finished.

From now on we assume that 1 ∉ S. Equivalently, ∣S∣ ≥ 2 (due to Claim 2

and the fact that 1 is representable as a sum of distinct elements of S).

Claim 3. For any two distinct elements sj, sk ∈ S, sjsk = 0.

Proof. Let sj, sk be two distinct elements of S. By (N3) there is an element ti from
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T such that exactly one of the elements tisj, tisk is 0. Say tisj = 0. Then, by (N2)

and (N3), tisk = sk. Now tisjsk = (tisj)sk = 0sk = 0, and tisjsk = sj(tisk) = sjsk.

Hence sjsk = 0. Claim 3 is proved.

Claim 4. For any element sj ∈ S, sjsj = sj.

Proof. Let 1 = sj1 + ⋅ ⋅ ⋅ + sjp (p ≥ 2) be the unique representation of 1 as a sum of

distinct elements of S. If p < ∣S∣, then there is an sj ∈ S not participating in the

representation of 1. Multiplying the representation of 1 by sj and using Claim 3,

we get sj = 0, contradicting to Claim 1. Hence p = ∣S∣, i.e., 1 = s1 +⋯ + sr. Now for

any j ∈ [r], when we multiply this representation of 1 by sj, we get (using Claim 3)

that sj = sjsj. Claim 4 is proved.

Claim 5. For any element sj ∈ S, sj + sj = 0.

Proof. Note that sj + sj ≠ sj, otherwise, by cancellation, sj = 0, contradicting Claim

1. Suppose that sj+sj = sj+sj1+⋯+sjp with p ≥ 1 and all sjµ (µ ∈ [p]) different than

sj. Cancelling sj we get sj = sj1 +⋯+ sjp , contradicting to (N1). Suppose now that

sj + sj = sj1 +⋯+ sjp with p ≥ 1 and all sjµ (µ ∈ [p]) different than sj. If we multiply

this equality by sj1 and use the claims 3 and 4, we get sj1 = 0, contradicting Claim

1. The only remaining option is sj + sj = 0. Claim 5 is proved.

Proof for the case S ≠ {1} (i.e., ∣S∣ ≥ 2). For every element s ∈ S we construct a

word w = w1⋯wn ∈ Fn2 in the following way: for i ∈ [n], if tis = 0 we put wi = 0,

otherwise (if tis = s) we put wi = 1. In that way we get r words w1, . . . ,wr from Fn2 ,

corresponding, respectively, to s1, . . . , sr. Let C = {w1, . . . ,wr}. For every x ∈ R, if

x = sj1 + ⋯ + sjp is the unique representation of x as a sum of distinct elements of

S, we define

S(x) = {sj1 , . . . , sjp} ⊆ R,

W (x) = {wj1 , . . . ,wjp} ⊆ C.
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Note that for any x, y ∈ R we have

S(x + y) = S(x) △ S(y)

due to Claim 5, and

S(xy) = S(x) ∩ S(y)

due to the claims 3 and 4. Hence

W (x + y) =W (x) △W (y), (5.1)

W (xy) =W (x) ∩W (y). (5.2)

Note also that if x = 0, S(x) = Ø, hence

W (0) = Ø,

and if x = 1, S(x) = S by the proof of Claim 4, hence

W (1) = C. (5.3)

Now we define a map φ ∶ R → C as φ(x) =W (x) for any x ∈ R. The relations (5.1),

(5.2), and (5.3) show that φ is a ring homomorphism. Also

φ(sj) = {wj} for every j ∈ [n].

It remains to find φ(ti) for each i ∈ [n]. Fix an i ∈ [n]. Let ti = sj1 +⋯ + sjp (p ≥ 0)

be the unique representation of the element ti as a sum of distinct element of S.

Multiplying this representation by sjµ (µ ∈ [p]) and using the claims 3 and 4 we

conclude that

tisjµ = sjµ (µ ∈ [p]). (5.4)

We claim that

tisj = 0 for any sj ∈ S ∖ {sj1 , . . . , sjp}. (5.5)
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Suppose to the contrary, i.e., tisj = sj for some sj ∈ S ∖ {sj1 , . . . , sjp}. Then, by

Claim 3, sj = tisj = (sj1 +⋯ + sjp)sj = 0, a contradiction. Thus

φ(ti) = {wj1 , . . . ,wjp},

which is precisely the set of all the words from C that have the i-th coordinate equal

to 1 (due to (5.4), (5.5), and the way the code C is constructed). Thus

φ(ti) = TkCi for all i ∈ [n].

Next we give an intrinsic characterization of homomorphisms between neural

rings.

Theorem 5.9. Let C,D be two codes. A map φ ∶ (P(D),△,∩) → (P(C),△,∩) is a

ring homomorphism if and only if the following three conditions hold:

(H1) φ({v1}) ∩ φ({v2}) = Ø for any v1,v2 ∈ D.

(H2) (∀B ⊆ D) φ(B) = ∪
v∈B

φ({v}).

(H3) φ(D) = C.

Proof. Suppose that φ ∶ (P(D),△,∩) → (P(C),△,∩) is a ring homomorphism. Then

for two distinct elements v1,v2 of D we have:

∅ = φ(Ø)

= φ({v1} ∩ {v2})

= φ({v1}) ∩ φ({v2}).

Thus (H1) holds.

We show (H2) by induction on ∣B∣. For ∣B∣ = 1 the statement is true. Suppose

that (H2) holds when ∣B∣ = k and suppose that ∣B∣ = k + 1. Let B = B′ ∪{w}, where
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∣B′∣ = k. Then

φ(B) = φ(B′ ∪ {w})

= φ(B′△{w})

= φ(B′) △ φ({w})

= ( ∪
v′∈B′ φ({v

′})△ φ({w})

= ( ∪
v′∈B′ φ({v

′}) ∪ φ({w})

= ∪
v∈B

φ({v}).

Thus (H2) holds.

Finally φ(D) = C as the identity element has to be mapped to the identity

element. Thus (H3) holds.

Conversely, suppose that φ ∶ (P(D),△,∩) → (P(C),△,∩) is a map satisfying

the conditions (H1), (H2), and (H3). Let B1,B2 ∈ P(D). We have:

φ(B1 △B2) = ∪
v∈B1△B2

φ({v})

= ∪
v∈B1

φ({v}) △ ∪
v∈B2

φ({v})

= φ(B1) △ φ(B2).

We used here the conditions (H1) nd (H2). In the same way we get h(B1 ∩B2) =

φ(B1) ∩ φ(B2). Finally the condition φ(D) = C is postulated. Thus φ is a ring

homomorphism.

Proposition 5.10. ([12, Theorem 1.1]) Let C,D be two codes. There is a bijective

correspondence between the set of code maps q ∶ C → D and the set of ring homo-

morphisms P(D) → P(C). It is given by associating to each code map q ∶ C → D

the homomorphism q−1 ∶ P(D) → P(C) and, conversely, by associating to each ring

homomorphism φ ∶ P(D → P(C) the unique code map q = φ∗ ∶ C → D such that

φ = q−1.
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We say that the code map q and the ring homomorphism q−1, and the ring

homomorphism φ and the code map φ∗, are associated to each other.

5.2 Monomial Morphisms Between Neural Rings

Definition 5.11. Let Codes be the set of all neural codes C ⊆ Fn2 of all lengths

n ≥ 2. We call any map q ∶ C → C′, where C,C′ ∈ Codes, a code map. The set Codes,

together with code maps as morphisms, forms a small category, which we denote

by Code.

Definition 5.12. ([12, Section 1.5]) The following maps between the objects of the

category Code are called basic linear monomial maps. Let C,C′ ∈ Codes where C′

is the image of C under each map, and i ∈ [n].

(1) aczC ∶ C → C′, “adding constant zero”, defined by w↦w0 for all w ∈ C;

(2) acoC ∶ C → C′, “adding constant one”, defined by w↦w1 for all w ∈ C;

(3) delC,i ∶ C → C′, “deleting the i-th neuron”, defined by w ↦ w1⋯ŵi⋯wn for all

w ∈ C (here the notation ŵi means that the i-th component of w is omitted);

(4) repC,i ∶ C → C′, “repeating the i-th neuron”, defined by w↦wwi for all w ∈ C;

(5) perC,σ ∶ C → C′, “permuting the indices”, defined by w ↦ wσ(1)⋯wσ(n) for all

w ∈ C, where σ ∈ Sn;

(6) injC′,C ∶ C → C′, “injecting the code into a bigger code”, defined by w ↦ w for

all w ∈ C, where C ⊆ C′.

We extend the previous definition and introduce the notion of basic monomial

maps by including all the basic linear monomial maps and adding one new map that

we call adding trunk neuron.
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Definition 5.13. The maps (1) - (6) and the following map (7) are called basic

monomial maps:

(7) atnC,α ∶ C → C′, “adding trunk neuron”, defined by

atnC,α(w) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w1, if w ∈ TkCα

w0, if w ∉ TkCα,

for all w ∈ C, where C ∈ Codes and α ⊆ [n].

Remark 5.14. We will write atnC,i instead of atnC,{i}. Note that

atnC,i = repC,i

and

atnC,Ø = acoC.

Also, if 1 = 11⋯1 ∉ C, then

atnC,[n] = aczC.

Proposition 5.15. Let C be a code on the neurons [n] = 1, . . . , n, and VR(C) =

(X,U) its visual realization. Let C,C′ ∈ Codes where C′ is the image of C under each

map, and i ∈ [n].

(i) For aczC, then one of its visual realizations is the pair VR(C′) = (X ′,U ′)

defined by: U ′
i = Ui, U ′

n+1 = Ø, U ′ = U ∪ U ′
n+1, and X ′ = X. In particular,

odim(C′) = odim(C).

(ii) For delC,i, then one of its visual realizations is the pair VR(C′) = (X ′,U ′)

defined by: U ′
j = Uj for j ≠ i, U ′ = U ∖ Ui, and X ′ = X. In particular,

odim(C′) ≤ odim(C).

(iii) For perC,σ, then one of its visual realizations is the pair VR(C′) = (X ′,U ′)

defined by: U ′
i = Uσ(i), U ′ = U , and X ′ =X. In particular, odim(C′) = odim(C).
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(iv) For atnC,α, then one of its visual realizations is the pair VR(C′) = (X ′,U ′)

defined by: U ′
i = Ui, U ′

n+1 = TkCα, U ′ = U ∪ U ′
n+1, and X ′ = X. In particular,

odim(C′) = odim(C).

If C is open-convexly realizable, then in each of the above four cases, C′ is open-

convexly realizable in the Euclidean space Rd of equal or smaller dimension.

Proof. The cases (i), (iii), and (iv) are clear. In case (ii), if Ui ⊆ ∪
j≠i
Uj, then U ′

j = Uj

for j ≠ i and X ′ =X in each of the cases X = ∪ U and X ⊃ ∪ U . If Ui ∖( ∪
j≠i
Uj) ≠ Ø,

we can clearly take X ′ = X if X ⊃ ∪ U . However, we can take X ′ = X in the

case X = ∪ U as well since we have 0 ∈ C′, and the atom A
(X,U)
i becomes A

(X′,U ′)
Ø

(corresponding to 0 ∈ C′).

Definition 5.16. Let C ∈ Codes. We say that the commutative ring (P(C),△,∩)

is the neural ring of C. We denote

NRings = {(P(C),△,∩) ∣ C ∈ Codes}

and call this set the set of all neural rings.

Definition 5.17. The set NRings, together with ring homomorphisms as mor-

phisms, forms a small category, which we denote by NRing.

Proposition 5.18. Consider the categories Code and NRing. If to each code

C ∈ Codes we associate its neural ring F (C) = (P(C),△,∩) and to each code map

q ∶ C → D the homomorphism of neural rings F (q) = q−1 ∶ P(D) → P(C), then in

this way we obtain a functor F ∶ Code→NRing, which is an isomorphism of these

categories.

Proof. It is easy to verify that F is a functor between these categories. The fact

that F is an isomorphism follows easily from Proposition 5.10.
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Definition 5.19. ([12, Section 1.5]) A map q ∶ C → C′, where C,C′ ∈ Codes, is called

a linear monomial map if the inverse image under q of every simple trunk of D is

either a simple trunk of C, or the empty set, or C.

Theorem 5.20. ([12, Theorem 1.4]) A map q ∶ C → C′, where C,C′ ∈ Codes, is a

linear monomial map if and only if it is the a composition of finitely many basic

linear monomial maps.

Definition 5.21. ([18, Definition 2.6]) A map q ∶ C → C′, where C,C′ ∈ Codes, is

called a monomial map if the inverse image under q of every simple trunk of D is

either a trunk of C, or the empty set, or C.

Proposition 5.22. (a) Every linear monomial map is a monomial map.

(b) Every basic monomial map is a monomial map.

(c) A composition of two monomial maps is a monomial map.

(d) For any code C the identity map IdC ∶ C → C is a monomial map.

Proof. (a) Follows from the definitions.

(b) Basic linear monomial maps are linear monomial maps by [12], hence

monomial maps. Consider the map f = atnC,α ∶ C → C′ = atnC,α(C), where C is a

code on n neurons. We have f−1(TkC
′
i ) = TkCi . Also f−1(TkC

′
n+1) = TkCα.

(c) and (d): easy to see.

We now extend Theorem 5.20 (which is [12, Theorem 1.4]) to the case of

monomial maps. Our proof follows the proof of Theorem 1.4 from [12].

Theorem 5.23. A map q ∶ C → C′, where C,C′ ∈ Codes, is a monomial map if and

only if it is the a composition of finitely many basic monomial maps.

Proof. The forward direction follows from Proposition 5.22. On the other side, let

C be a code of length m, C′ a code of length n, and let q ∶ C → C′ be a monomial
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map. We introduce the codes C0,C1, . . . ,Cn in the following way: C0 = C and, for

i = 1, . . . , n, we have

Ci = {uv1⋯vi ∣ u ∈ C,v = v1⋯vn = q(u)}.

We also introduce the code maps qi ∶ Ci−1 → Ci (i ∈ [n]) in the following way:

qi(uv1⋯vi−1) = uv1v2⋯vi−1vi,

where u ∈ C and v = q(u). Since q−1(TkC
′
i ) is either TkCα, or Ø, or C, we have that qi

is, respectively, either atnCi−1,α, or aczCi−1 , or acoCi−1 = atnCi−1,Ø. We also introduce

the code Cn+1 in the following way:

Cn+1 = {vu ∣ u ∈ C,v = q(u)}.

Let σ ∈ Sm+n be the permutation defined by σ(i) = i + n for i = 1, . . . ,m, and

σ(i) = i −m for i =m + 1,m + 2, . . . ,m + n. Let qn+1 ∶ Cn → Cn+1 be defined as

qn+1 = perCn,σ.

Now for i ∈ [m] we introduce the codes Cn+1+i in the following way:

Cn+1+i = {vu1⋯um−i ∣ u = u1⋯um ∈ C,v = q(u)}.

We also introduce the code maps qn+1+i ∶ Cn+i → Cn+1+i (i ∈ [m]) in the following

way:

qn+1+i = delCn+i,n+m+1−i.

Finally, we denote Cn+m+2 = D and introduce the code map qn+m+2 ∶ Cn+m+1 → Cn+m+2

defined by

qn+m+2 = injCn+m+2,Cn+m+1 .

We have that

q = qn+m+2 ○ qn+m+1 ○ ⋯ ○ q1

and each of the maps q1, q2, . . . , qn+m+2 is a basic monomial map.
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Corollary 5.24. Every surjective monomial morphism q ∶ C → D is a composition

of finitely many basic monomial maps of the following four types: acz, per, del, atn.

Proof. By the Proof of Theorem 5.23, either q = qr ○qr−1○⋯○q1, or q = qr+1○qr ○⋯○q1

for some r, where q1, . . . , qr are of the types acz, per, del, atn, and qr+1 is of the type

inj. Since q is surjective, only the former holds.

The following theorem is a major result from Jeffs paper [18, Theorem 1.4],

and it becomes a simple corollary with our characterization of monomial maps in

Theorem 5.23.

Corollary 5.25. ([18, Theorem 1.4]) If C is a convexly realizable code and D is the

image of C under a monomial map, then D is convexly realizable, and odim(D) =

odim(C).

Proof. Follows from Proposition 5.15 and Corollary 5.24.

We also give a different proof of Proposition 2.11 from [18].

Corollary 5.26. Consider the partial order on neural codes defined by: u =

u1⋯un ≤ v = v1⋯vn if ui = 1 implies vi = 1. Let q ∶ D → D be a monomial map. Then

for any u,v ∈ C if u ≤ v, then q(u) ≤ q(v).

Proof. This is clear if q is one of the maps acz, per, del. If q = atnCα, then for u ≤ v in

C, we have u ∈ TkCα implies v ∈ TkCα. Hence atnCα(u) ≤ atnCα(v). Now the statement

holds if q = atnCα, and the corollary follows from Theorem 5.23.

Proposition 5.27. (a) The set Codes, together with linear monomial maps as

morphisms, forms a small category (which we denote Code lm).

(b) ([18]) The set Codes, together with linear monomial maps as morphisms,

forms a small category (which we denote Code m).

Proof. The proof of (b) given in [18] works for (a) in a similar way.
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Definition 5.28. Let C,D be two neural codes. A map φ ∶ P(D) → P(C) is called a

linear monomial homomorphism (resp. monomial homomorphism) if the associated

code map q = φ∗ ∶ C → D is a linear monomial map (resp. monomial map).

Proposition 5.29. (a) The set NRings, together with linear monomial homomor-

phisms as morphisms, forms a small category (which we denote NRing lm).

(b) ([18]) The set NRings, together with monomial homomorphisms as mor-

phisms, forms a small category (which we denote NRing m).

Proof. The proof of (b) given in [18] works for (a) in a similar way.

Proposition 5.30. (a) Consider the categories Code lm and NRing lm. If to

each code C ∈ Codes we associate its neural ring F (C) = (P(C),△,∩) and to each

linear monomial map q ∶ C → D the linear monomial homomorphism of neural rings

F (q) = q−1 ∶ P(D) → P(C), then in that way we obtain a functor F ∶ Code lm →

NRing lm, which is an isomorphism of these categories.

(b) ([18]) Consider the categories Code m and NRing m. If to each code

C ∈ Codes we associate its neural ring F (C) = (P(C),△,∩) and to each monomial

map q ∶ C → D the monomial homomorphism of neural rings F (q) = q−1 ∶ P(D) →

P(C), then in that way we obtain a functor F ∶ Code m→NRing m, which is an

isomorphism of these categories.

Proof. The proof of (b) given in [18] works for (a) in a similar way.
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CHAPTER 6

CONCLUSIONS

The algebraic study of neural codes began in 2013 when the notions of the

neural ring and neural ideal were introduced in [11] as algebraic tools for analyzing

the intrinsic structure of neural codes. Neural codes consist of neural words, which

are the brain’s reaction to external stimuli, represented by sequences of zeros and

ones corresponding to the state of an active neuron. The goal of the algebraic

theory of neural codes is to understand how the brain deals with them, and in

particular, how it stores them, processes them, infers from them properties of the

stimulus space and receptive field structure, etc. In this dissertation, we introduced

several new notions and investigated the properties of them, advancing in that

way the algebraic theory of neural codes as well as reproving some already known

statements in a more efficient way.

In Chapter 3, the first new notion that we introduced is the polarization of

neural codes. The polarization of monomial ideals is well known in Commutative

Algebra as a way to linearize an ideal, and the polarization of pseudo-monomial

ideals was introduced in [15] to deal in an easier way with the neural ideals of neural

codes. Our idea was to polarize the neural code itself (which was the first instance

where some object which is not an ideal was polarized), and then found and analyzed

the neural ideal of the polarized code. We found that the comparison of these ideals

revealed that we can polarize the neural code in two ways, called polarization and

formal polarization of neural codes, both having very nice properties. Each of them

allows more efficient procedures for dealing with the neural code since we established

55



straight forward ways for going from code objects to polarized code objects, and

vice-versa. Since the polarized code objects are in terms of square-free monomial

ideals, they are very easy to handle.

In Chapter 4, we introduced several new notions: partial word, partial motif,

partial code, and inactive neuron. Initially, we weren’t sure if they corresponded to

some real life notions related to brain functioning, or if they were just a convenient

and intuitive terminology that made our proofs clearer. After recently finding out

that these things do indeed exists in the theory of neural networks (imitations of

the brain), and although neurophysiologists still have to confirm it, it seems quite

natural that they will.

In Chapter 5, we dealt with the monomial morphisms of neural codes. We

introduced the basic monomial morphism called “adding trunk neuron” and proved

that any monomial morphism can be decomposed into a sequence of basic monomial

morphisms. We found that there is a similarity between the images of neural codes

under a monomial morphism and the codes on mirror neurons, which have real-life

applications including imitation, action understanding, language, empathy, self-

representation, autism, etc [21]. We also found that similar maps to “adding trunk

neuron” are used in the theory of neural networks [1]. Additionally, we formulated

and proved a simple intrinsic characterization of neural rings.

Although we have made the above advances in the algebraic theory of neural

codes, there is still much to be studied and discovered. The following are just a

few of the questions that have arisen from our work thus far that need further

collaboration and research.

Question 1. For a code C on n neurons, we would like to better understand the

difference between the polarization Cp and the formal polarization C[p]. As Cp ⊆ C[p],

what can we say about the words form F2n
2 that are in C[p] but not in Cp?

Question 2. As a particular case of Question 1, if a motif a ∈ M2n is a non-polar
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motif with pa ∈ Min(JC[p]), how is this motif a related to C?

Question 3. Since the notions for a partial code appear to have connection to

neural networks and the “artificial brain” as suggested in [1], we are motivated to

investigate some reactions to the states of other neurons in its network. Which

of these reactions lead to monomial morphisms? Do we need to introduce a new

notion of morphism which would encompass more of these reactions?

Question 4. As a precondition for Question 3, we would like to thoroughly describe

the connection between monomial morphisms of neural codes and the behavior of

neurons in real life (in particular, for basic monomial morphisms).

Question 5. What other statements can be proved using the notions of partial

words, partial motifs, partial codes, and inactive neurons?

Question 6. What is the best way to visually realize the receptive field of neurons:

by convex sets exclusively? by open, closed, or neither? by connected, but not

necessarily convex nor open or closed? What is the real life justification for any of

those choices?

Question 7. Prove Conjecture 2 from [13]: if C is open-convexly realizable and

odim(C) = 2, then the minimal convex embedding dimension of C is 2.

Question 8. Can we find an algebraic feature (called an “algebraic signature” in

the literature) of a neural code that can tell us if the code is open-convexly or

closed-convexly realizable?

The so-called max-intersection-complete codes are open-convexly realizable

[9], and it was indeed shown that codes of this type have an algebraic signature [23].

However, that algebraic signature is quite sophisticated, but the polarization of

neural ideals was used in the proof. We hope that the polarization of neural codes

will play a role in our attempts to answer the more general above question.
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