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ABSTRACT 

MAINTAINABILITY ANALYSIS OF MINING TRUCKS WITH DATA 

ANALYTICS 

Abdulgani Kahraman 

April 24, 2018 

The mining industry is one of the biggest industries in need of a large budget, and 

current changes in global economic challenges force the industry to reduce its 

production expenses. One of the biggest expenditures is maintenance. Thanks to 

the data mining techniques, available historical records of machines’ alarms and 

signals might be used to predict machine failures. This is crucial because repairing 

machines after failures is not as efficient as utilizing predictive maintenance. 

In this case study, the reasons for failures seem to be related to the order of signals 

or alarms, called events, which come from trucks. The trucks ran twenty-four hours 

a day, seven days a week, and drivers worked twelve-hour shifts during a nine-

month period. Sequential pattern mining was implemented as a data mining 

methodology to discover which failures might be connected to groups of events, 

and SQL was used for analyzing the data.  

According to results, there are several sequential patterns in alarms and signals 

before machine breakdowns occur. Furthermore, the results are shown differently 

depending on shifts’ sizes. Before breakdowns occur in the last five shifts a hundred 

percent detection rates are observed. However, in the last three shifts it is observed 

less than a hundred-percentage detection rate. 
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1 INTRODUCTION 
 
In this study, first, the basic mining techniques’ information related to the mining industry 

is mentioned. Second, recent technological developments and big data developments in the 

mining industry are presented. Third, the maintenance costs for big vehicles and how these 

maintenance expenses might be reduced, thanks to data mining, is considered. Lastly, as a 

case study, sequential pattern mining is used as a methodology on the dataset for predictive 

maintenance and results are shared. 

1.1 Recent Technological Developments in Mining Industry  
 
Since early civilization, individuals have utilized mining strategies to extract minerals from 

the soil. The citizens of ancient civilizations were all interested in mining. In the past, 

mining was slow-going and unsafe. As time has progressed, society has created more 

secure and exact strategies for finding and revealing substances found in the soil. 

In the beginning, diggers employed primitive devices for burrowing. Mining shafts were 

burrowed out by hand, and the entire process was exceptionally long. Inevitably, 

individuals started using fire to clear burrows and reach more prominent profundities at a 

quicker rate. Amid the 1600s, diggers began utilizing explosives to break up expansive 

rocks. Motorized mining apparatuses, such as drills, would not be invented for a few more 

decades, and it was not until the Industrial Revolution began in the 1700s that mineworkers 

started improving the explosives they operated and created more progressive mining gear, 

such as drills, lifts and steam-powered pumps (www.generalkinematics.com, 2015). 



 
 

 
 

2 

In today’s technologically-advanced society, mining strategies are continuously 

progressing. For instance, improving surface mining procedures, diggers are presently able 

to extricate over 85 percent of minerals and 98 percent of metallic minerals without digging 

a shaft or imperiling the lives of workers (www.generalkinematics.com, 2015). Newly-

developed machines utilized for grinding and crushing can extricate minerals from the soil 

with less energy than ever before. 

Miners still use several techniques, such as explosives, trucks, drills and bulldozers, 

particularly if they must dig deep into the soil. In any case, innovations have permitted 

mineworkers in uncovering minerals with more exactness and less harm to the 

encompassing environment. More proficient apparatuses can be utilized to decrease energy 

consumption and increase the sum of minerals or metals gathered from the shaft. 

Mining has made the world more modern compared to the past, but the threats of mining 

have resulted in the deaths of numerous laborers. As innovation progresses, mining 

procedures have indeed become more precise and productive. In the future, with 

technological developments, it is possible to mine for materials with fully automatic 

machines thanks to the Industry 4.0 system. 

Figure 1 shows several mining techniques which are separated mainly into two categories: 

underground mining and surface mining. While underground mining contains drift, slope, 

and shaft mining, surface-mining methods involve area, contour, mountaintop removal, 

and auger which are in Figure 1 (www.uky.edu, n.d.). Moreover, there are different kinds 

of machines in the mining fields, and these machines are expensive vehicles and keeping 

these vehicles in working conditions is vital for companies. Nowadays, thanks to the 

monitoring systems, companies can follow and record these machines’ statuses in every 
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moment, and it provides opportunities to take precautions before machine breakdowns 

occur. 

 

Figure 1 - Some recent mining techniques (www.uky.edu, n.d.) 

1.1.1 Vehicle Health Monitoring System in Mining Industry 
 
With technological developments companies try to record and follow their vehicles. Big 

vehicle production companies have their own monitoring systems for watching and taking 

control of their big vehicles, and these systems present a lot of advantages for mining 

companies (Viger, 2017). The Monitoring System is a recent technology for big and 

expensive vehicles, which are consistently worked for numerous hours. When the vehicles 

break down, it takes serious costs to repair them. Furthermore, since repairing these big 

machines take a significant amount of time, this completely influences the machine’s 

availability. Hence, mining machines, especially large ones, are required to reduce the 

number of failures and enable operations without intrusion (Murakami, Saigo, Ohkura, 

Okawa & Taninaga, 2002). In order for machines to continuously work, it is essential to 
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identify any problems and changes in status by physical examination early on that will 

signal the maintenance staff to take reasonable measures without waiting for total failures 

of valuable equipment. 

Vehicle Health Monitoring System (VHMS) is one example of monitoring systems 

available to mining companies, and it is suitable to integrate with existing systems. With 

Internet of Things (IoT) every company has an opportunity to collect data, and they can 

analyze this data to set more efficient work schedules. Particularly, it is extremely crucial 

for companies which have big vehicles, because these kinds of vehicles need expensive 

maintenance. As a result of this, analyzing their past records and taking several precautions 

are vital not only for companies but also for employees because these precautions can 

provide safer workplaces. Currently, many companies have their own databases which 

were created by several monitoring systems and IoT. 
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Figure 2- Antennas on the mining trucks [www.highservice.com, n.d.] 

 
This figure shows the location of antennas, radars and cameras. The last few decades of 

technological developments gave a priceless opportunity for companies. Currently, 

companies can benefit from technological devices with more affordable prices and it is 

possible to follow every step in the workplace. Now, expensive vehicles can be equipped 

with high-tech devices such as antennas, GPS, etc., and companies can remotely watch 

these vehicles and collect every signal and alarm from them and take crucial actions before 

harmful breakdowns occur. For these big trucks, left and right-side mirrors are not enough 

for seeing around the trucks, so several cameras are attached to the trucks. Radar and 

antennas provide location information and prevent accidents in the mining fields. 

Furthermore, there are several chips and sensors on various parts of the trucks which send 
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data to the main monitoring data center, so that companies have enough data about their 

trucks’ conditions. 

1.2 Big Data in Mining Industry 
 
Big data is advanced data made by the action of computers, portable phones, implanted 

frameworks and other organized gadgets. Such information became more predominant as 

innovations such as radio frequency identification (RFID) and telematics progressed 

(Rouse, 2014). Moreover, machine information has increased utilization of the Internet of 

Things(IoT), and other big data management technologies that have been developed. 

Big data, where different sensors and equipment create more structured data about their 

operations, performances or conditions, and can be used to complete various analyses, such 

as process optimization, improved maintenance or machine-to machine communication 

(Fekete, 2015).  

This thesis proposes plan maintenance and shows the importance of big data and the 

analysis of data. Big data is an inevitable reality for every industry, including the mining 

industry because prices of ores are very changeable and machines, which are used for 

mining, are expensive to maintain. For this reason, collecting records of production and 

machine status are vital for mining companies to make more efficient production plans. 

Therefore, it is crucial for companies’ futures to record and analyze this data and arrange 

their maintenance and production techniques. Furthermore, almost every big mining 

company is using machine data, and they save all useful information for their future 

operations. 

https://www.techtarget.com/contributor/Margaret-Rouse


 
 

 
 

7 

Today, thanks to big data and IoT, companies could collect every transaction and details 

such as drivers’ names, vehicles’ location, status, weight, speed and so on for each 

production step. Moreover, this data can be analyzed, and used to make better and more 

productive work schedules and create less risky work places. 

1.3 Maintenance 

There is an increasing pressure on companies, urged by worldwide competition, to 

streamline operations involving item and item-related manufacturing system design, item 

manufacturing and system maintenance. Maintenance activities are ordinarily performed 

first by integration of maintenance and process engineering functions, then by application 

of machines and hardware, and finally, through proactive actions on those machines and 

equipment including preventive and predictive maintenance (Bastos, Lopes, & Pires, 

2012). In literature, it is possible to find three nonspecific sorts of maintenance: Corrective 

Maintenance, Preventive Maintenance, and Predictive Maintenance. 

1.3.1 Corrective Maintenance 

Corrective Maintenance(CM) actions are not schedulable, and this makes them harder to 

plan for and costlier to perform. It is usually not the preferred maintenance because it 

occurs suddenly and costs valuable money and time (Adolfsson & Dahlström, 2011). 

Corrective maintenance is used when a system or machine fails. It includes repair and 

replacement of failed parts to make machines active again. 

1.3.2 Preventive Maintenance 
 
Preventive Maintenance (PM) aims at maintaining equipment in satisfactory operating 

conditions, and is fulfilled by providing for systematic control, detection, and correction of 
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incipient failures, before they cause great defects and usually a PM’s planning is created 

according to equipment manufacturers’ advices (www.revolvy.com, n.d.).  

Preventive maintenance is routine and tends to follow planned schedules to prevent 

equipment and machinery breakdowns. The work is preemptively carried out on equipment 

in order to avoid its breakdown. Despite the benefits of this maintenance, it is not efficient 

for companies because it costs valuable money and time and does not allow for the use of 

parts of machines that are capable of working. Even when machines do not work, they may 

still contain parts that can last their full lifetimes, but preventive maintenance does not 

calculate for these situations. 

1.3.3 Predictive Maintenance 

Predictive Maintenance (PDM) has a significant difference from the other maintenance 

types. During regular operation to reduce failures, PDM directly monitors the status and 

performance of equipment and provides an opportunity to take precautions before machine 

failures (www.emaint.com, 2017). Although PDM is more complex compared to the 

others, it provides several advantages thanks to monitoring. PDM reduces maintenance 

cost, unnecessary preventative maintenance, unplanned maintenance and provides more 

efficient work.  

This next figure shows three main maintenance types and their definitions. Predictive 

maintenance is the most efficient maintenance. However, corrective maintenance is the 

costliest maintenance type. 
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Figure 3- Type of maintenance 

 
1.3.4 The Cost of Maintenance in Mining Industry 
 
Currently, in every industry, mechanization is used for more effective production, and 

some of the most expensive equipment belongs to the mining industry. For example, 

according to the United States Census the largest absolute increase in the mining industry’s 

capital investments occurred from 2006 to 2015 (up $75.4 billion or 75.9 percent) (US 

Census Bureau., 2017). The Electric Power Research Institute (EPRI) has calculated 

comparative maintenance costs for different maintenance techniques in US dollars per 

horsepower (HP) per year. Researchers found that a preventive (scheduled) maintenance 

strategy is the most expensive to run at $24.00 per HP. A corrective (reactive) maintenance 

strategy is the second most costly at $17.00 per HP but has the additional cost of 

compromising safety. Maintaining a 750 HP motor with a scheduled maintenance strategy 

would cost approximately $18,000 per year, while a reactive maintenance strategy would 

cost $12,750 a year, according to the EPRI study (www.ni.com, 2015). For example, 

according to Caterpillar (CAT), mining trucks have between 2000 and 5000 HP 

(www.cat.com, n.d.). When companies calculate this maintenance cost for a mining truck 
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according to the HP calculation, it becomes apparent how costly expenses can become for 

the companies. The next figure provides an example that shows the percentage of 

maintenance costs in pit mines for the US. 

 

Figure 4- Breakdown of direct mining costs in large open pit mines in the US (Fekete, 2015) 

 
According to Fekete, explanation of this figure: “A mining site’s cost structure consists of 

three main parts: maintenance, labor and consumables. Figure 4 shows that maintenance 

related costs account for about one-third of total operational costs (Campbell & Reyes-

Picknell, 2006), which makes maintenance the largest controllable cost. It includes items 

such as replacement parts, human resources, supplies and other items (Lewis & Steinberg, 

2001). Though it demonstrates the expenditures of North American open pit mines, other 

locations and mine types show similar proportions. Mining companies can focus on 

improving maintenance processes with advanced technologies (such as big data and 

connected machines), as this area is the largest contributor for their operational 

expenditures. “(Fekete, 2015). 

1.3.5 Predictive Maintenance and Cost 
 
After industrial revolution, companies focus on more profit, less expenses and safer 

workplaces. For this reason, maintenance, which is one of the biggest expenses for 
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companies, has become more significant. Furthermore, researchers have begun to discover 

more efficient maintenance techniques, and currently predictive maintenance has become 

more crucial for companies. Many of these crucial reasons for improving mining 

equipment reliability and maintainability are summarized as follows: (Peng & Vayenas, 

2014). 

 to maximize profit 

 to reduce the cost of poor reliability/maintainability 

 to reduce the use of mining equipment services in an unplanned manner because of 

short notice 

 to provide more accurate short-term forecasts for equipment operating hours 

 to overcome challenges imposed by global competition 

 to take advantage of lessons learned from other industrial sectors such as aerospace, 

defense, and nuclear power generation 

 to improve workplace safety  

Bastos claims that 99 percent of machine failures are identified by a few pointers and 

fulfilling organizations’ requirements leads to heavy expenses in maintenance systems, and 

maintenance, considered non-value adding, which is continuously evaluated for cost 

reduction, keeping the machines in excellent working condition (Bastos, Lopes & Pires, 

2014). The main goal of predictive maintenance is to find the optimal time for needed 

maintenance before harmful events may occur and reduce maintenance cost.  

Most of the failures do not happen instantaneously, and more often than not there are a few 

sorts of degradation processes or indications of transitions from typical states to failures. 

Subsequently, the genuine conditions and their trends ought to be surveyed and anticipated 
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amid the degradation handle, and fitting maintenance actions ought to be taken some time 

before a breakdown occurs. This is the fundamental target of predictive maintenance.  
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2 BIG DATA ANALYTICS AND PREDICTIVE MAINTENANCE IN THE 
MINING INDUSTRY: A LITERATURE REVIEW 

 

Machinery diagnostics and maintenance are tremendous and diverse, primarily due to a 

wide variety of production systems. Dozens of papers on this subject, which include 

theories and applicable methods, show up each year in academic journals, conferences and 

technical reports. In this section, several papers are summarized. 

Like other companies, information technology is crucial for mining companies and 

recently, mining companies have collected huge data by using new high-tech devices such 

as GPS, monitoring systems, and fleet management systems, etc. As a result of this, 

currently, companies can analyze these datasets (Yildirim & Dessureault, 2007). 

“Big Data in the Mining Industry” was a paper was written by Fekete (2015). In the article, 

Fekete discusses the challenges of the mining industry, such as, the fast dropping prices of 

commodities and the technological developments that have forced companies to update 

their structures. Thanks to the Internet of Things (IoT), several mining companies now 

have the opportunity to collect big datasets to improve operations and efficiency. 

Furthermore, huge maintenance expenses force mining companies to make more 

reasonable maintenance schedules. According to Fekete, after interviewing with some 

mining companies from Australia, it was concluded that predictive maintenance, Big Data, 

IoT and Data Analytics create safe workplaces, provide efficient maintenance and decrease 

maintenance expenditures (Fekete, 2015). 

Cartella et al. (2014) defines a different approach for predictive maintenance, called 

Hidden Semi-Markov Models (HSMMs), and they discuss the theoretical formalization of 
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the model, as well as a few experiments performed using both simulated and factual 

information with the aim of technique approval. In this paper, all performed tests are able 

to accurately appraise the current state of the machinery and viably foresee a predefined 

event with generally low normal absolute error. According to these research results, the 

model’s appropriateness to real-world settings can be advantageous, particularly where, in 

real-time, the Remaining Useful Lifetime (RUL) of a machine can be calculated, and 

results show that HSMM would be beneficial for condition monitoring and gauging useful 

lifetime applications (Cartella, Lemeire, Dimiccoli & Sahli, 2014). 

Sihong Peng et al. (2014) presents a study about the implementation of genetic algorithms 

on Underground Mining Equipment as a case study for predictive maintenance. They 

assumed that failures of mining equipment caused by an array of factors followed the 

biological evolution theory. A software was created for predictive maintenance according 

to their dataset and according to their opinion, these failures follow the natural 

advancement theory. They used several case studies to focus on practical investigations of 

a Load Haul Dump (LHD) vehicle with two different terms: three and six months. 

According to their prediction case studies, a factual test is carried out to look at the 

similitude between the anticipated data set with the real-life data set in the same period. 

This research aims at comparing real data to the prediction of this software and analyzes 

how successful genetic algorithms would be successful for prediction of maintenance. As 

a result, these two different time interval studies are investigated, and they did not show 

major impacts of chronological sequence in their prediction results (Peng et al. 2014). 

A recent case study named “Earthmoving trucks condition level prediction using neural 

networks” from Greece by Marinelli et al. (2014) presents an artificial neural network 
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(ANN) model that predicts earthmoving trucks’ condition levels using basic predictors. 

The results are compared to the respective predictive accuracy of the statistical method of 

discriminant analysis (DA). In this research, it is created an ANN-based predictive model, 

and used the capacity, age, kilometers travelled and maintenance level of trucks, which 

were collected from 126 earthmoving trucks. As a result, data processing identifies 

specifically a connection between kilometers travelled and maintenance level with the 

earthmoving trucks’ condition grade. Furthermore, they found that the predictive 

performance of the proposed ANN model is very high for the validation process, and 

similar findings from the application of DA to the same data set using the same predictors. 

These models reached above 92 percent accuracy for prediction of trucks’ condition level. 

As a result of that, the prediction decreases downtime, and its reverse influences 

earthmoving duration and cost, meanwhile increasing the maintenance and replacement 

policies’ impressiveness. This research shows that a sound condition level prediction for 

earthmoving trucks is achievable through the utilization of easy to collect data and provides 

a comparative evaluation of the results of two widely applied predictive methods 

(Marinelli, Lambropoulos, & Petroutsatou, 2014).  

A theoretical study by Chen et al. (2016), predicted faults from the data acquisition and 

fusion strategies, and it used the fault prediction method based on full-vector spectrum 

which belongs to Dr. Bently and Dr. Muszynska. According to this method, the uncertainty 

of the spectrum structure can be extracted by the designed data acquisition and fusion 

method. This method also shows that the reliability of the diagnosis on fault character was 

improved, and it gives the technical foundation for the prediction and diagnosis research 

of the fault characters (Chen, Han, Lei, Cui, & Guan, 2016). 
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Ullah et al. (2017) used one type of Machine Learning Methods for Predictive 

Maintenance. According to this paper, there were several reasons for increasing the internal 

temperature of electrical instruments, specifically contact issues, irregular loads, cracks in 

insulation, defective relays, terminal junctions and other similar issues. As a result of these 

reasons, they caused intrusive failures and potential damage to power equipment. In this 

paper, the authors explained the initial prevention mechanism for power substations using 

a computer-vision approach by taking advantage of infrared thermal images. This work 

included a total of 150 thermal pictures of different electrical equipment in 10 different 

substations in operating conditions, using 300 different hotspots. They used multilayer 

perceptron (MLP) to classify the thermal conditions of components of power substations 

into defect and non-defect classes. The performance of MLP reached 84 percent of 

accuracy with graph cut and this result showed the benefit of the proposed defect analysis 

approach (Ullah, Yang, Khan, Liu, Yang, Gao, & Sun, 2017).    
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3 SEQUENCE MINING METHODOLOGY FOR PREDICTIVE MAINTENANCE 

OF MINING TRUCKS 

With recent technological developments, collecting and analyzing big data is even vital for 

predictive maintenance in companies. There are several techniques for analyzing big data. 

In this thesis, sequential pattern mining techniques is used to make predictions about 

maintenance timing for mining trucks. The experimental results confirm that sequential 

pattern mining is suitable approach for discovering information relevant to machine 

failures.  

“Data mining is a process of discovering various models, summaries, and derived values 

from a given collection of data.” (Kantardzic, 2005). Data mining, which is one of the basic 

processes of Knowledge Discovery in Database (KDD), is the procedure of extracting 

hidden knowledge or patterns (non-trivial, implicit, previously unknown and potentially 

useful) from large information warehouses (Zhao & Bhowmick -2003). The next figure 

shows data mining’s main steps. 
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Figure 5- The Data Mining Process (Kantardzic, & Zurada, 2005) 

 
According to the steps in Figure 5, first state the problem which considers the reasons for 

machine failures. Second, data is collected for nine months from eleven mining trucks 

which belong to one mining company in North America. Afterwards, for more accuracy, 

the dataset must be cleaned, and must be eliminated from useless, duplicate data as a third 

step. Forth, for estimating model, which would be more useful for the dataset. Lastly, 

implement this technique and evaluate the results of the data mining process. 

3.1 Sequential Pattern Mining 

Sequential Pattern Mining is one of the most important mining techniques for analyzing 

big data. Sequential Pattern Mining (SPM) focuses on finding patterns that occur 

consecutively in a database or patterns which would be related to time or other values; the 

main aim is to discover related sequence patterns (Chueh, 2010). Implementation of SPM 

is very broad and can be used for efficient maintenance of vehicles, natural disasters, sales 

record analysis, marketing strategies, shopping sequences, medical treatments and DNA 

sequences, etc.; the subsequences and frequent relevant patterns from the given data can 
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also be found by SPM (Ubaidulla, Sushmitha, & Vanitha, 2017). The aim of pattern mining 

is to discover useful, recent and unforeseen patterns in databases.  A sequence database 

includes several sequences.  

For instance, consider the following database: 

Name Sequences 
Seq1 a,(b,c,d),(f,g) 
Seq2 (a,d),c,b,(a,b,f) 
Seq3 c,(a,d,e,f) 
Seq4 d,g,a,e,b,b 
Seq5 (c,e,g),(a,b) 

 

This database includes four sequences which are seq1, seq2, seq3, seq4 and seq5.  For this 

example, take into consideration that the symbols “a”, “b”, “c”, d”, “e”, “f”, “g” and “h” 

symbolize different items sold in a supermarket, and “a” could be an “almond”, “b” could 

be a “box of cereal”, etc. 

Now, a sequence is an ordered list of sets of items. For this example, suppose that each 

sequence shows what a customer bought in a supermarket. Consider the second sequence 

“seq2”. This sequence shows that the second customer bought items “a” and “d” together, 

then bought item “c”, then bought “b”, and then bought “a”, “b”, and “f” together. 

For the dataset, like this example, there are several failure codes and many alarms and 

signals which would be indicators named detection groups for these specific breakdowns’ 

codes. To try to discover several patterns called rules, and afterwards the results will be 

compared these patterns according to the counts for the last three and the five shifts before 

machine failures occur. The strength of a detection rate is measured by its support and 

confidence and calculation of these: (Lui Zhang-2000) 
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For example, an example of support, when consider two items A and B, and it can calculate 

the frequency of the item in the dataset. If consider a basket containing 7 items (3-oranges, 

4-lemons) then support of any precise value can be calculated by the rate of number of 

occurrences to the total number of items in the basket (i.e., support(oranges) = 3/7). 

An example of confidence, this explains how likely B is purchased when A is purchased. 

This defines association between two items. For example, when a person buys tea is more 

likely to buy sugar as well or vice versa. This is measured by the proportion of transactions 

with item X, in which item Y also appears. As a formulization: 

“The support of a rule, X → Y, is the percentage of transactions in T that contains X ∪ Y 

and can be seen as an estimate of the probability, Pr(X∪Y). The rule support thus 

determines how frequent the rule is applicable in the transaction set T. Let n be the number 

of transactions in T. Let n be the number of transactions in T. 

The support of the rule X → Y is calculated as follows: 

Support = 
𝐶𝑜𝑢𝑛𝑡(𝑋∪𝑌)

𝑛
 

Support is a useful measure because if it is too low, the rule may just occur due to chance. 

Furthermore, in a business environment, a rule covering too few cases (or transactions) 

may not be useful because it does not make business sense to act on such a rule (not 

profitable).  
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The confidence of a rule, X → Y, is the percentage of transactions in T that contain X also 

contain Y, and can be seen as an estimate of the conditional probability, Pr(Y | X). It is 

computed as follows: 

Confidence = 
𝐶𝑜𝑢𝑛𝑡(𝑋∪𝑌)

𝐶𝑜𝑢𝑛𝑡 𝑋
 

Confidence thus determines the predictability of the rule. If the confidence of a rule is too 

low, one cannot reliably infer or predict Y from X. A rule with low predictability is of 

limited use.” (Lui- Zhang 2000). 

3.2 Categories of Patterns  
 
Sequential patterns can be divided into three main categories: periodic patterns, statistically 

significant patterns, and approximate patterns. However, there are more varieties of models 

for sequential patterns in the literature (Esmaeili, & Fazekas, 2010). 

3.2.1 Periodic Patterns 
 
According to Slimani & Lazzez, the main purpose of this model is to discover occurrences 

of repeated patterns in data and to try to predict future characteristics of real situations; 

however, this model has several disadvantages, for example, misalignment might cause us 

to miss some interesting and crucial patterns. Experts have shown, as a solution for this 

restriction, a pattern might be filled partly to make the model more flexible. As an example, 

in the series ({a}{b}{c}{a}{b}{c}{a}{b}{c}), the pattern {a}{b}{c} is a periodic pattern 

because it is repeated with a period equal to three. Each status in the pattern shows the 

periodicity, and this previous pattern is called a full periodic pattern. As an example, in a 

sequence like this ({a}{b}{c}{b}{a}{c}{a}{b}{a}{a}{c}{b}), a pattern {a}*{b} where * 
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is a wide range of items, there is no full periodic pattern with length 3, and this is called a 

partial periodic pattern (Slimani & Lazzez, 2014). 

3.2.2 Approximate Patterns 
 
In the real world, there are noisy data in almost every big data, and it is necessary to reduce 

the effects of these kinds of data on results. Another different and more flexible method is 

approximate patterns, which has a specific calculation with a compatibility matrix:  

“For solving the problem of finding approximate patterns, the concept of compatibility 

matrix is introduced [4]. This matrix provides a probabilistic connection from observed 

values to the true values. Based on the compatibility matrix, real support of a pattern can 

be computed. Table 2 gives an example of the compatibility matrix. 

 

Table 2 Compatibility Matrix 

 For example, an observed I4 corresponds to a true occurrence of I1, I2, I3, and I4 with 

probability C(I1,I4)=0.05 , C(I2,I4)=0.10 , C(I3,I4)=0.10 , and C(I4,I4)=0.75 ,respectively. 

Compatibility matrix usually is given by some domain expert but there are some ways to 

obtain and justify the value of each entry in the matrix so that even with a certain degree 

of error contained in matrix, sequential pattern mining algorithm can still produce results 

of reasonable quality. 
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A new metric, namely match is defined to quantify the significance of a pattern. The 

combined effect of support and match may need to scan the entire sequence database many 

times. Similar to other data mining methods, to tackle this problem sampling-based 

algorithms can be used. 

Consequently, the number of scans through the entire database is minimized.” (Esmaeili, 

& Fazekas, 2010). 

3.2.3 Statistically Significant Patterns 

The calculation of support and confidence are crucial for sequential pattern mining, but 

just using these supporting values as a standardization measure might cause one to skip 

several important patterns; various data mining applications have tried to find a valid 

solution for this problem (Slimani & Lazzez, 2014). On the other side, according to 

Esmaeili & Gabor (2010), the number of occurrences (support) might be misleading, and 

there is no direct ratio between a repetitive number of patterns and a significance of 

patterns. Because of this, in several situations, many occurrences of an expected frequent 

pattern may not be as important as a few occurrences of an expected uncommon pattern, 

which is called surprising pattern instead of frequent pattern. In addition, the support 

threshold must be set very low to discover a small number of patterns with high information 

gain, and the information gain metric might be helpful to evaluate the degree of surprise of 

the pattern (Esmaeili, & Fazekas, 2010). 

The next step is deciding k most significant patterns, and this can be easily achieved by 

using a threshold value and the best k patterns that have an information gain greater than 

the specified threshold should be returned; however, the problem of the information gain 

value is difficult to define the location of the occurrences of the patterns (Slimani & Lazzez, 
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2014). In a statistically significant method, the calculation of info gains and dataset and 

other values are crucial to get better results. For example:  

Two input patterns’ sequences such as: 

S1=({a}{b}{c}{b}{a}{b}{d}{c}{a}{b}{b}{d}),and 

S2=({b}{c}{d}{b}{a}{b}{a}{b}{a}{b}{d}{c}), then the pattern {a}{b} has the same 

(three times occurred) information gain in the two sequences, it is dispersed in S1 but 

repeats consecutively in S2 (Slimani & Lazzez, 2014). 

3.3 Dataset Details 
 
 In this thesis, the data was collected for nine months by eleven mining trucks which belong 

to a mine in North America. The dataset was provided by a mining engineer, Mustafa 

Kahraman, who works with the mine. In this dataset, the trucks worked twenty-four hours 

a day, seven days a week and every shift represented a twelve-hour period. The dataset has 

more than three million rows and more than one hundred columns. This dataset included 

three main tables: status, production, and machine health status. 

First, the status table is where equipment statuses are recorded: fail status, standby, 

production etc. Second, the production table is where truck cycles are saved with all 

associated details: shift date, driver name, material type, speed, location and so on. Lastly, 

the machine health status table is created by the machine health information for selected 

trucks generated by chips and sensors which are connected to different parts of the trucks.  

3.3.1 Primary Features in Dataset and Summarization of General Processes 
 
These next tables show the short definitions of primary features for the dataset. Experts 

created all these definitions and designed the database. After showing these definitions, 
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these are next steps, making feature selection, select necessary parts of data, eliminate 

duplicate and missing values, and implement sequential pattern mining techniques. In all 

these processes, SQL Server Management Studio will be used as a tool. The next figures 

show some initial columns and short definitions of features for the dataset. In this thesis 

the main focused feature is that events column which is created by alarms and signals. 
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Figure 6- Definitions of Features 
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3.3.2 Preprocessing of Dataset and Features Selection 
 
Before analyzing the data, as preprocessing steps, first removed most of the features that 

were not going to be used in the analysis. Furthermore, there are Non-Applicable (N/A) 

values and missing values. These would not be useful for the analysis and removed this 

data. In addition, duplicate data was deleted before implementing data mining techniques.  

In making the decision to select table features, it was consulted an expert who worked in 

this mining company and is knowledgeable about these trucks and the database. According 

to the expert, there would be a lot of distinctive features which may have an impact on 

breakdowns of trucks, such as driver mistakes, overloading, locations, and so on.  

 

Furthermore, according to this expert, apart from these reasons there are several chips and 

sensors which record the trucks’ status, signals, changes and alarms. After receiving this 

information, it was decided to analyze more mechanical failures which may be indicative 

of alarms and signals, which are called events in the database. Other identifying features 

need more in-depth research, truck expertise, and workplace-specific knowledge.  

First, it will be used the Status Table which includes the shift number, time, date, reason 

number, category and so on. The category column shows the machine status and when it 

shows a breakdown status (when category equals 4), as an example to select one reason 

code, for example 1140, and a related time, date, and shift number. Afterwards, it will be 

combined this data with the events column from the Machine Health Status. Figure 6 is as 

an example of the Status Table: 
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Figure 7- An Example of Breakdowns on the Status Table 

 
As a next step, it will be selected related events’ column data from the Machine Health 

Status Table, which was collected from signals and chips before and during the same 

failures’ status. In this table, the events column is the most important column for the 

analyses because after selecting related events, it will be preprocessed this data in an 

attempt to discover some patterns. Figure 7 is as an example of the Machine Health Status 

table: 

 

Figure 8- An example of Events Column on the Machine Health Status Table 
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There are 35 different defined machine breakdown reasons in the dataset, and it will be 

implemented the same processes for three different failure codes which are related to more 

mechanical problems according to the expert. Next, it will be discovered several patterns 

between the same breakdown codes consecutively, and after that it will be discovered 

several patterns in the last three and five shifts’ events column data occurring before the 

shift in which machine failures occur for the same failure codes. After that, it will be 

analyzed how many times these patterns occurred and compare pattern numbers with the 

last three and five shifts, which would be related failures according to these patterns’ 

confidence calculation values.  

3.4 Implementation of the Sequential Pattern Mining 
 
Discovering unexpected and useful patterns in databases is the fundamental data mining 

task. In recent years, a trend in data mining has been to design algorithms for discovering 

patterns in sequential data. One of the most popular data mining techniques for finding 

patterns is sequential 

pattern mining. It consists of discovering interesting subsequence patterns in a set of 

sequences, where the remarkable subsequences can be measured in terms of various criteria 

such as their occurrence frequency, length, and so on (Viger, 2017). 

After deciding which sequential pattern mining technique would be a more appropriate 

technique for analyzing the alarms/signals, SQL Management Studio will be used as a tool, 

which has several functions to find patterns with T-SQL. It will be tried to discover some 

patterns within each breakdown reason after ordering them based on their date. For 

example, figure X shows the short part of event data between two 1140 failure codes, and 

it will be checked this data to find 2,3,4, or 5 groups of sequential patterns. Next, it will be 
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compared it with the last three and five shifts’ patterns. If there are any specific patterns in 

these last three shifts and five shifts, then it would be a reasonable indicator of this specific 

failure code. Additionally, the same processes will be implemented for four different 

breakdown codes. 

 

  

0701FFE0  OEM interface timeout                                                  

0201FFE0  OEM interface timeout                                                  

0B010009  PSC Event Number Changes                                               

0B010000  Active Event Number Changes                                            

0B011519  Tach Right Front - Zero while truck mov                                

2010006 Running without load                                                   

0B01000C  Propel Restricted                                                      

0B01000A  Drive Status Normal                                                    

2010005 Stopped without load                                                   

0B010014  Service BRK > 8mph                                                     

0B01FFE0  OEM Interface Timeout                                                  

0B01FFE1  OEM Interface Normal                                                   

0201FFE0  OEM interface timeout                                                  

0B010009  PSC Event Number Changes                                               

0B010000  Active Event Number Changes                                            

0B011519  Tach Right Front - Zero while truck mov                                

0B010014  Service BRK > 8mph                                                     

2010006 Running without load                                                   

2010005 Stopped without load                                                   

2010000 Dipper                                                                 

0B01000C  Propel Restricted                                                      

0B01000A  Drive Status Normal                                                    

 

Figure 9- Small part of event data columns after preprocessing for reason 1140 

 
Figure 8 shows a small part of the data which comes from the preprocessed data. The first 

column is the main column, named the event column, which shows codes for events. The 

second column, named def, illustrates definitions of events. In the event column, the rows 

Event Def 
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which are bold and red in color, illustrate a simple example of one pattern for this data. 

Normally there are more than seven thousand rows of data after preprocessing between the 

same reason codes (code 1140). However, this example is a small part of this data and 

contains one pattern example. An example of finding a pattern for this small data result is 

illustrated in the next table. These patterns are a combination of common elements with 

varied sizes. These patterns occur in the same place and in the same shifts before the same 

failure code. 

Pattern Groups Pattern 
Size 

All 
Counts 

Last 3 
Shifts 

Confidence 
Percentage 

Sequences 
No 

Pattern 
Groups 

0201FFE0 ,0B010009  2 2 2 2 100% s1 

0201FFE0 ,0B010009 ,0B010000  3 2 2 2 100% s1 
0201FFE0 ,0B010009 ,0B010000 
,0B011519  4 2 2 2 100% s1 

 

Figure 10- An example of patterns for breakdown reason 1140 

 
In this table, the first column shows elements of patterns, the second column is a pattern 

size, meaning how many events are included in this pattern, and the third column belongs 

to the last three shifts before machine failure occurs. For the fourth column, it shows how 

many times this pattern occurred in the last five shifts before the machine failure. The fifth 

column shows how 

many times, this pattern is found between the same failure reasons. The sixth column is the 

confidence value which is calculated by dividing the last three or five shifts’ number of 

patterns by the “all count” pattern size. Lastly, the seventh column shows that all these 

patterns include common events which means they occurred in the same place in the 

dataset, and they have varied sizes and elements. It will be made sequential groups for 

them, as illustrated by the last column. After this process, a new table is to show which 
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sequence groups are related to which number of failures. The failure code 1140 occurred 

five times, and after finding patterns, it will be separated every group of sequence related 

to their common elements. It will be done the same process for four different breakdowns, 

after which will be illustrated the results according to their confidence values. 
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4 EXPERIMENTAL RESULTS: FREQUENT SEQUENCES 
 
In this section, it will be shared the pattern results with several graphical illustrations. It 

will be done the same processes for three different failure codes which are more related to 

mechanical breakdowns apart from other causes. Mechanical breakdowns have more 

expensive maintenance costs and are more related to alarms and signals which referred to 

as events in the dataset.  The codes are 1104,1140 and 1143. First of all, it will be shown 

the groups’ patterns data which are above a minimum of 70 percent confidence.  Next, it 

will be illustrated these results as graphs according to percentages. 

4.1 Results for Failure code 1104 
 
It will be separated each failure code result into two parts according to the last shift 

numbers, which are the last three and last five shifts. 

4.1.1 Pattern Results for Last 3 Shifts 
 
The next figure belongs to the last three shift patterns and is between two of the same 

failure codes called “all counts”. It was calculated these pattern groups’ confidence 

percentages and ordered them from largest to lowest values for 1104 breakdown codes. 
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Pattern Groups Pattern 
Size 

All 
Counts 

Last 
3Shifts 

Confidence 
Percentage 

Sequences 
No 

0E010004 ,3E010002 ,0E01FFE1 ,0E010009  4 2 2 100.00% s1 
0E010004,3E010002,0E01FFE1,0E010009,0E010008  5 2 2 100.00% s1 
0E010005,0E010004,3E010002,0E01FFE1,0E010009  5 2 2 100.00% s1 
3E010000,0E01FFE1,0E01000B,0E01000A,0E010000  5 2 2 100.00% s2 
3E010002 ,0E01000B ,0E01000A ,0E010009  4 2 2 100.00% s3 
3E010002,0E01000B,0E01000A,0E010009 ,0E010008  5 2 2 100.00% s3 
0E010006 ,0E01000B ,0E01000A ,0E010000  4 5 4 80.00% s4 
0E010006,0E01000B,0E01000A,0E010000 ,0E010001  5 5 4 80.00% s4 
0E010007,0E010006,0E01000B,0E01000A ,0E010000  5 5 4 80.00% s4 
0E010002 ,0E010003,0E010009 ,0E010008 ,0E010007  5 4 3 75.00% s5 
0E010003 ,0E010009 ,0E010008 ,0E010007  4 4 3 75.00% s5 
0E010003,0E010009 ,0E010008 ,0E010007 ,0E010006  5 4 3 75.00% s5 
0E010008 ,0E010007 ,0E010006 ,0E010005  4 4 3 75.00% s5 
0E010008,0E010007 ,0E010006 ,0E010005 ,0E010004  5 4 3 75.00% s5 

 

Figure 11- Patterns for failure code 1104, comparing last three shifts and confidence percentages 

 
After making groups for these patterns, it will be created a table for sequence groups which 

have a hundred percent confidence and related failure times. For example, groups of s1 

occurred before the third and seventh breakdown for 1104.  It will be shown this whole 

groups of sequences and their related order of failures in the next two figures. The first one 

will be illustrated it as a table, and second one will be as a graphical according to failure 

timing and sequence numbers. 
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 Table   

                     Graph 

Figure 12- Sequence group distributions according to breakdown orders for failure code 1104 in last three shifts 

   
In this table, it can be seen there are seven faults for reason 1104. Before failures occur, 

there are three different sequential pattern groups. S3 occurred before the second failure 

and s1, s2 before the third breakdown and s1, s3 before the seventh breakdown in last three 

shifts. It can be seen these information as a table and graph in Figure 12. 

When detection rate is calculated which equals by dividing counts of filled rows in the 

table by fault occurring times. For this example, detection rate equals the count of filled 

rows in the table which is 3 divided by total faults’ count (7), so it comes to a 43% detection 

rate. This percentage means that the system can detect 4 out of 10 breakdowns situations. 

For more accuracy, decreasing the confidence value to 70%, which might increase the 

detection rate. The next figure shows sequence groups between 70% and 100% and a 

distribution of these groups as a table and graph. 

 

 

Faults 
No 100% 
f1  
f2 s3 
f3 s1,s2 
f4  
f5  
f6  
f7 s1,s3 

Fault 
No     
f7       
f6     
f5     
f4     
f3       
f2      
f1     

  s1 s2 s3 
Sequence 

No 
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Faults 
No >70%  

Fault 
No       

f1    f7       
f2 s4,s5  f6       
f3 s4,s5  f5       
f4    f4       
f5    f3         
f6    f2         
f7    f1       

     s1 s2 s3 s4 s5 
Sequence 

No 

  Table      Graph 

Figure 13- Sequence group distributions according to breakdown orders for failure code 1104 in last three shifts 
above 70% 

 
From this table it can be seen s4 and s5 occurred before the second and third failures, and 

this did not change the detection rate. As it can be seen from Table in Figure 12; s1, s2 and 

s3 occurred before faults 1 and 2.  

The below graph of these patterns was created according to percentages of confidence. 

 

Figure 14- Graphical illustration of patterns and confidence for failure code 1104 in last three shifts 

For confidence values from 100% to 70%, the count of patterns slightly increased because 

when the confidence percentage threshold is decreased, it increased the number of patterns. 
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4.1.2 Pattern Results for Last 5 Shifts 
 
The next table belongs to the last five shift patterns and is between two of the same failure 

codes called “all counts”, and it is calculated these pattern groups’ confidence percentages 

and ordered them from largest to lowest values for 1104 breakdown codes. This time, 

obviously, there are more pattern groups because of the last shift size. When increasing the 

shift size, it increased the pattern counts. 

This table shows the pattern groups’ counts and confidence values for the last five shifts. 
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Pattern Groups Pattern 
Size 

All 
Counts 

Last 
5Shifts 

Confidence 
Percentage 

Sequences 
No 

0E010004,3E010002,0E01FFE1,0E010009  4 2 2 100% s1 
0E010004,3E010002,0E01FFE1,0E010009 ,0E010008  5 2 2 100% s1 
0E010005,0E010004,0E010000,0E010001 ,0E010002  5 2 2 100% s1 
0E010005,0E010004,0E010007,0E010006 ,3E010002  5 2 2 100% s1 
0E010005,0E010004,3E010002,0E01FFE1 ,0E010009  5 2 2 100% s1 
3E010000,0E01FFE1,0E01000B,0E01000A,0E010000  5 2 2 100% s2 
3E010002,0E01000B,0E01000A,0E010009  4 2 2 100% s3 
3E010002,0E01000B,0E01000A,0E010009,0E010008  5 2 2 100% s3 
0E010000,0E010001,3E010001  3 2 2 100% s4 
0E010001,3E010001  2 2 2 100% s4 
0E010002,0E010003,0E010009,0E010008 ,0E010007  5 4 4 100% s5 
0E010003,0E010009,0E010008,0E010007  4 4 4 100% s5 
0E010003 ,0E010009 ,0E010008,0E010007 ,0E010006  5 4 4 100% s5 
0E010008,0E01000B,0E01000A ,0E01FFE0  4 2 2 100% s6 
0E010009,0E010008,0E01000B,0E01000A,0E01FFE0  5 2 2 100% s6 
0E01000A,0E010009 ,0E010008 ,0E010007  4 2 2 100% s7 
0E01000A,0E010009,0E010008,0E01000B ,0E010000  5 2 2 100% s7 
0E01000B,0E01000A,0E010009,0E010008 ,0E010007  5 2 2 100% s7 
0E01FFE0 ,0E01000A  2 2 2 100% s8 
0E01FFE0,0E01FFE1,0E010009,0E010008,3E010002  5 2 2 100% s9 
0E01FFE0 ,3E010002 ,0E01FFE1  3 2 2 100% s10 
0E01FFE1 ,0E010008 ,0E010009 ,0E010000  4 2 2 100% s11 
0E01FFE1 ,0E01000A  2 2 2 100% s12 
3E010002 ,0E010002  2 2 2 100% s13 
3E010002 ,0E010002 ,0E010003  3 2 2 100% s13 
0E010009 ,0E010008 ,0E010007  3 8 7 88% s14 
0E010009 ,0E010008 ,0E010007 ,0E010006  4 7 6 86% s14 
0E010006 ,0E01000B ,0E01000A ,0E010000  4 5 4 80% s15 
0E010006,0E01000B,0E01000A,0E010000,0E010001  5 5 4 80% s15 
0E010007,0E010006,0E01000B,0E01000A,0E010000  5 5 4 80% s15 
0E010008 ,0E010007  2 9 7 78% s16 
0E010004 ,0E010000 ,0E010001  3 4 3 75% s17 
0E010006,0E010002,0E010003 ,0E010009 ,0E010008  5 4 3 75% s18 
0E010006 ,0E010009 ,0E010008 ,0E010005  4 4 3 75% s18 
0E010006,0E010009,0E010008 ,0E010005 ,0E010004  5 4 3 75% s18 
0E010007 ,0E010005  2 4 3 75% s19 
0E010008 ,0E010007 ,0E010006  3 8 6 75% s19 
0E010008 ,0E010007 ,0E010006 ,0E010005  4 4 3 75% s19 
0E010008,0E010007,0E010006 ,0E010005 ,0E010004  5 4 3 75% s19 
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0E010009,0E010008,0E010007 ,0E010006 ,0E010005  5 4 3 75% s19 
0E01000A ,0E010009 ,0E010008 ,0E01000B  4 4 3 75% s19 

 

Figure 15- Patterns for failure code 1104, comparing last five shifts and confidence percentages 
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After making groups for these patterns, it is created another table (Figure 16) for these 

sequence groups which have a hundred percent confidence and related failure times. For 

example, groups of s1 occurred before the third and seventh breakdown for 1104.  

Faults No 100% 

f1 
s8,s13 

f2 
s3,s4,s5,s10,s12,s13 

f3 
s1,s2,s5,s7,s12 

f4 
s8 

f5 
s4,s9,s11 

f6 
s6,s10,s11 

f7 
s1,s3,s6,s9 

 

Figure 16- Sequence group distributions according to breakdown orders for failure code 1104 in last five shifts 

In this table, it can be seen there are seven faults for reason code 1104. However, there are 

13 different sequential pattern groups because of shift sizes. Comparing the last three shift 

patterns, the number of patterns increased because this time it was used the last five shifts 

in the dataset. The next figure shows sequence group distributions as a graph. 

Fault 
No               
f7                   
f6                  
f5                  
f4                
f3                    
f2                     
f1                 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 
Sequence 

No 

 

Figure 17- Graphical representation of sequence group distributions according to breakdown orders for failure code 
1104 in last five shifts 
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When calculate the detection rate which equals by dividing counts of filled rows in the 

table by faults occurring times. For this example, the detection rate is equal to the count of 

filled rows in the table, which is 7 divided by all fault counts which is 7, so it comes to a 

100% detection rate. This percentage means that the system can detect 10 out of 10 

breakdown situations. 

The graph below shows all these patterns according to percentages of confidence: 

 

Figure 18- Graphical illustration of patterns and confidence for failure code 1104 in last five shifts 

 
As it can be seen before for the last 3 shifts, the same thing can be seen for the last 5 shifts 

as well. For confidence values 100% to 70%, the count of patterns slightly increased 

because when decreased the confidence percentages’ threshold, it increased the number of 

patterns. 

4.2 Results for Failure code 1140 
 
It will be separated each failure code result into two parts according to the last shift numbers 

which are the last three and last five shifts before related machine failures occur. 
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4.2.1 Pattern Results for Last 3 Shifts 
 
The next figure belongs to the last three shift patterns and is between two of the same 

failure codes called “all counts”, and it was calculated these pattern groups’ confidence 

percentages and ordered them from largest to lowest values for 1140 breakdown codes. 
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Pattern Groups Pattern 

Size 

All 

Counts 

Last 

3Shifts 

Confidence 

Percentage 

Sequences 
No 

0201FFE0,0B010009 2 2 2 100% s1 

0201FFE0,0B010009,0B010000 3 2 2 100% s1 

0201FFE0,0B010009,0B010000,0B011519 4 2 2 100% s1 

0201FFE1,16016465,0201FFE0,0B010009 4 2 2 100% s1 

0201FFE1,16016465,0201FFE0,0B010009,0B010000 5 2 2 100% s1 

16016464,0201FFE1,16016465,0201FFE0,0B010009 5 2 2 100% s1 

16016465,0201FFE0,0B010009 3 2 2 100% s1 

16016465,0201FFE0,0B010009,0B010000 4 2 2 100% s1 

16016465,0201FFE0,0B010009,0B010000,0B011519 5 2 2 100% s1 

0B010011,160169DD,16016A41 3 2 2 100% s2 

0B010011,160169DD,16016A41,160169DC 4 2 2 100% s2 

0B010011,160169DD,16016A41,160169DC,16016A40 5 2 2 100% s2 

160169DD,16016A41,160169DC 3 3 3 100% s2 

160169DD,16016A41,160169DC,16016A40 4 3 3 100% s2 

16016A41,160169DC 2 3 3 100% s2 

16016A41,160169DC,16016A40 3 3 3 100% s2 

2010000,0B01000C 2 2 2 100% s3 

16016465,160178B5,160178B4,16016464,2010006 5 2 2 100% s4 

0201FFE1,0201FFE0 2 4 3 75% s5 

160169DC,16016A40 2 4 3 75% s6 

 

Figure 19- Patterns for failure code 1140, comparing last three shifts and confidence percentages 
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Table           

Graph 

Figure 20- Sequence group 
distributions according to 

breakdown orders for failure 
code 1140 in last three shifts 

 

 

 

 

 

 

 

 

 

 

 

 

Fault No      

f6      

f5       

f4       

f3         

f2      

f1       

  s1 s2 s3 s4 Sequence No 
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After making groups for these patterns, it will be created a table for these sequence groups 

which have a hundred percent confidence and related failure times. For example, groups 

of s1 occurred before the third breakdown for 1140.  

          

 
In this table, it can be seen there are six faults for reason 1140. Before failures occur, there 

are four different sequential pattern groups. S2 occurred before the first failure and s1, s3, 

and s4 occurred before the third breakdown, s3 before the fourth breakdown, and s2 again 

occurred before the fifth breakdowns in last three shifts. It  can be seen these information 

as a table and graph in the Figure 20. 

When calculate detection rate which equals by dividing counts of filled rows in the table 

by faults occurring times. For this example, detection rate equals count of filled rows in 

the table which is 4 dividing by total faults’ counts (6), so it comes to a 66% detection rate. 

This percentage means that system can detect 6 out of 10 breakdowns situation. 

For more accuracy, decreased the confidence value to 70%, which might increase the 

detection rate. The next figure shows sequence groups between 70% and 100% and a 

distribution of these groups as a table and graph. 
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 FaultNo 
Seq 
Groups  Fault No         

 F1 s6  f6         

 F2    f5          

 F3 s5,s6  f4          

 F4 s5  f3           

 F5 s6  f2         

 F6    f1          

      s1 s2 s3 s4 s5 s6 Sequence No  
      Table                         Graph 

Figure 21- Sequence group distributions according to breakdown orders for failure code 1140 in last three shifts 
above 70% 

 
From this table it can be seen s5 and s6 occurred before the same failures, and it does not 

change the detection rate. As it can be seen from Figure 20’s Table; s1, s2, s3 and s4 

occurred before the same failure numbers.  

The graph below of these patterns is created according to percentages of confidence: 

 

Figure 22- Graphical illustration of patterns and confidence for failure code 1140 in last three shifts 

 
For confidence values from 100% to 60%, count of patterns slightly increased because 

when decreased confidence percentages’ threshold, it increased the number of patterns. 
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4.2.2 Pattern Results for Last 5 Shifts 
 
The next table belongs to the last five shift patterns and is between two of the same failure 

codes called “all counts”, and it was calculated these pattern groups’ confidence 

percentages and ordered them from largest to lowest values for 1140 breakdown codes. 

This time, obviously, there are more pattern groups because of the last shift size. When 

increased the shift size, it increased the pattern counts. 

This table shows the pattern groups’ counts and confidence values for the last five shifts. 
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Pattern Groups Pattern 
Size 

All 
Counts 

Last 
5Shifts 

Confidence 
Percentage 

Sequences 
No 

0201FFE0 ,0B010009  2 2 2 100% s1 
0201FFE0 ,0B010009 ,0B010000  3 2 2 100% s1 
0201FFE0 ,0B010009 ,0B010000 ,0B011519  4 2 2 100% s1 
0201FFE1 ,16016465,0201FFE0 ,0B010009  4 2 2 100% s1 
0201FFE1,16016465,0201FFE0,0B010009,0B010000  5 2 2 100% s1 
16016464,0201FFE1,16016465,0201FFE0,0B010009  5 2 2 100% s1 
16016465,0201FFE0 ,0B010009  3 2 2 100% s1 
16016465,0201FFE0 ,0B010009 ,0B010000  4 2 2 100% s1 
16016465,0201FFE0,0B010009,0B010000 ,0B011519  5 2 2 100% s1 
0B010011 ,160169DD ,16016A41  3 2 2 100% s2 
0B010011 ,160169DD ,16016A41 ,160169DC  4 2 2 100% s2 
0B010011 ,160169DD ,16016A41 ,160169DC ,16016A40  5 2 2 100% s2 
160169DD ,16016A41 ,160169DC  3 3 3 100% s2 
160169DD ,16016A41 ,160169DC ,16016A40  4 3 3 100% s2 
16016A41 ,160169DC  2 3 3 100% s2 
16016A41 ,160169DC ,16016A40  3 3 3 100% s2 
2010000,0B01000C  2 2 2 100% s3 
16016465,160178B5,160178B4,16016464,2010006 5 2 2 100% s4 
0201000A,0B01000C,2010002,2010004,0B010014  5 4 4 100% s5 
0201FFE1 ,0201FFE0  2 4 4 100% s6 
070108CC ,160178B5  2 2 2 100% s7 
070108CC ,160178B5 ,160178B4  3 2 2 100% s7 
070108CD ,070108CC ,160178B5  3 2 2 100% s7 
070108CD ,070108CC ,160178B5 ,160178B4  4 2 2 100% s7 
0B011519 ,0B010000  2 2 2 100% s8 
0B010009 ,0B011519 ,0B010000  2 2 2 100% s8 
0B01000A ,0B010009 ,0B011519 ,0B010000  4 2 2 100% s8 
0B011519 ,0B01000C ,0B01000A  3 2 2 100% s9 
0B010009 ,0B011519 ,0B01000C  3 2 2 100% s9 
0B010009 ,0B011519 ,0B01000C ,0B01000A  4 2 2 100% s9 
0B01000A ,160165F4  2 2 2 100% s10 
0B01000A ,160165F4 ,1601607C  3 2 2 100% s10 
2010006,16016465,2010000,160178B5 ,2010005 5 2 2 100% s11 
160178B5 ,160178B4 ,2010005,2010006 4 2 2 100% s12 
3E010000 ,0B010002  2 4 5 80% s13 

160169DC ,16016A40  2 3 4 75% s14 

160178B4 ,2010005,2010006 3 3 4 75% s15 

2010005,0B010009 ,0B0114B5  3 3 4 75% s16 

3E010000 ,0B010002 ,0201FFE1  3 3 4 75% s17 
Figure 23- Patterns for failure code 1140, comparing last five shifts and confidence percentages 
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After making groups for these patterns, it is created another table for these sequence groups 

which have a hundred percent confidence and related failure times. For example, groups 

of s1 occurred before the third breakdown for 1140.  

Faults No 100% 

F1 s2,s5,s7,s10 

F2 s7 

F3 s1,s3,s4,s6,s9,s11,s12 

F4 s3,s6,s8,s9 

F5 s2,s5 

F6 s5,s10 
 

Figure 24- Sequence group distributions according to breakdown orders for failure code 1140 in last five shifts 

 
In this table, it can be seen there are six faults for reason code 1140. However, there are 12 

different sequential pattern groups because of shift sizes. Comparing the last three shifts 

patterns, the number of patterns increased because this time it was used the last five shifts 

dataset. Next figure shows sequence group distributions as a graph. 

Fault 
No              
f6                
f5                
f4                  
f3                     
f2               
f1                  

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 
Sequence 

No 

 

Figure 25- Graphical representation of sequence group distributions according to breakdown orders for failure code 
1140 in last five shifts 
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When calculate detection rate which equals dividing counts of filled rows in the table by 

faults occurring times. For this example, detection rate equals count of filled rows in the 

table which is 6 dividing by all faults’ counts which is 6, so it equals 100% detection rate. 

This percentage means that system can detect 10 out of 10 breakdowns situation. 

The graph below shows all these patterns according to percentages of confidence: 

 

Figure 26- Graphical illustration of patterns and confidence for failure code 1140 in last five shifts 

For confidence values 100% to 60%, the count of patterns slightly increased because when 

decreased confidence percentages’ threshold, it increased number of patterns. 

4.3 Results for Failure code 1143 
 
It will be separated each failure code result into two parts according to the last shift numbers 

which are the last three and last five shifts. 

4.3.1 Pattern Results for Last 3 Shifts 
 
The next figure belongs to the last three shift patterns and is between two of the same 

failure codes called “all counts”, and it was calculated these pattern groups’ confidence 

percentages and ordered them from largest to lowest values for 1143 breakdown codes. 
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Pattern Groups Pattern 
Size 

All 
Counts 

Last 
3Shifts 

Confidence 
Percentage 

Sequences 
No 

05010ADD ,05010ADC  2 2 2 100% S1 

050114B4 ,050114B9 ,050114B8  3 2 2 100% S2 

050114B4 ,050114B9 ,050114B8 ,5010905 4 2 2 100% S2 

050114B4,050114B9,050114B8,5010905,5010904 5 2 2 100% S2 

050114B8 ,5010905 2 2 2 100% S2 

050114B8 ,5010905,5010904 3 2 2 100% S2 

050114B9 ,050114B8 ,5010905 3 2 2 100% S2 

050114B9 ,050114B8 ,5010905,5010904 4 2 2 100% S2 

050116CA ,050114B5  2 2 2 100% S3 

050119A0 ,050116CB  2 2 2 100% S4 

050119A0 ,050116CB ,050116CA  3 2 2 100% S4 

050119A1 ,050119A0 ,050116CB  3 2 2 100% S4 

050119A1 ,050119A0 ,050116CB ,050116CA  4 2 2 100% S4 

3E010002 ,3E010001 ,3E010002  3 2 2 100% S5 

050114B4 ,050114B9  2 3 2 67% s6 

050117B8 ,3E010002  2 3 2 67% s7 

050117B9 ,050117B8 ,3E010002  3 3 2 67% s7 

0501199C ,050119CF  2 3 2 67% s8 

0501199C ,050119CF ,050119CE  3 3 2 67% s8 

050119CE ,3E010002  2 3 2 67% s9 

 

Figure 27- Patterns for failure code 1143 with comparing last three shifts and confidence percentages 

 
After making groups for these patterns, it will be created a table for these sequence groups 

which have a hundred percent confidence and related faults time. For example, groups of 

s1 occurred before the fifth and ninth breakdowns for 1143.  
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In this table (Figure 28), it can be seen there are 17 faults for reason 1143. Before failures 

occur, there are four different sequential pattern groups. S3 occurred before the second 

failure, s1 occurred before the fifth, s4 occurred before the sixth, s2 and s3 occurred before 

the eighth, s1 again occurred before the ninth, and lastly s5 occurred before the twelfth and 

fourteenth breakdown and within the last three shifts. This is provided in the table and 

graph in Figure 28. 

It was calculated the detection rate by dividing counts of filled rows in the table by the fault 

occurring times. For this example, the detection rate is equal to the count of filled rows in 
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the table, which is 7 divided by all fault counts (17), so it comes to about 41% detection 

rate. This percentage means that system can detect 4 out of 10 breakdown situations. 

For more accuracy, decreased the confidence value to 60%, and it might be also increased 

the detection rate. The next figure shows sequence groups between 60% and 100% and the 

distribution of these groups as a table and graph are illustrated in the next figure. 

Increasing accuracy is crucial because it means catching more failures’ patterns before 

machine breakdowns occur. However, for more accuracy it is necessary to have more wide 

and clean dataset. Nine months and 11 trucks information would not be enough for making 

exact decision, but this thesis would be a good example for predictive maintenance. 

FaultNo 
Above 

60%  

Fault 
No           

F1    f17           
F2 s8,s9  f16           
F3    f15           
F4 s7,s8  f14           
F5    f13           
F6 s7  f12           
F7    f11            
F8 s6  f10           
F9    f9           

F10    f8            
F11 s9  f7           
F12    f6            
F13    f5           
F14    f4             
F15    f3           
F16    f2             
f17    f1           

   
  s1 s2 s3 s4 s5 s6 s7 s8 s9 

Sequence 
No 

          Table                                                   Graph 

Figure 28- Sequence group distributions according to breakdown orders for failure code 1143 in last three shifts 
above 60% confidence 
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From this table it can be seen s7 and s8 occurred before the fourth breakdown, and s9 

occurred before the eleventh breakdown. These fault numbers are different from the table 

in Figure 28 and increased the detection rate.  The detection rate is equal to the count of 

filled rows in the table (9) totally, after decreasing confidence, it increased the filled rows 

and divided the fault counts (17), so coming to about 52% detection rate. This percentage 

means that the system can detect 5 out of 10 breakdown situations. 

 

 

 

The graph below shows these all patterns according to percentages of confidence: 

 

Figure 29- Graphical illustration of patterns and confidence for failure code 1143 in last three shifts 

 
As it can be seen before for last 3 shifts, same thing can be seen for last 5 shifts as well. 

For confidence values from 100% to 60%, count of patterns slightly increased because 

when decreased confidence percentages’ threshold, it increased the number of patterns. 
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4.3.2 Pattern Results for Last 5 Shifts 
 
The next table belongs to the last five shift patterns and is between two of the same failure 

codes called “all counts”, and it was calculated these pattern groups’ confidence 

percentages and ordered them from largest to lowest values for 1143 breakdown codes. 

This time, obviously, there are more pattern groups because of the last shift size. When 

increased the shift size, it increased the pattern counts. 

This table shows the pattern groups’ counts and confidence values for the last five shifts. 
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Pattern Groups Pattern 
Size 

All 
Counts 

Last 
5Shifts 

Confidence 
Percentage 

Sequences 
No 

05010ADD ,05010ADC  2 2 2 100% s1 
050114B4 ,050114B9  2 3 3 100% s2 
050114B4 ,050114B9 ,050114B8  3 2 2 100% s2 
050114B4 ,050114B9 ,050114B8 ,5010905 4 2 2 100% s2 
050114B4 ,050114B9 ,050114B8 ,5010905,5010904 5 2 2 100% s2 
050114B5 ,050114B4 ,050114B9  3 2 2 100% s2 
050114B8 ,5010905 2 2 2 100% s2 
050114B8 ,5010905,5010904 3 2 2 100% s2 
050114B9 ,050114B8 ,5010905 3 2 2 100% s2 
050114B9 ,050114B8 ,5010905,5010904 4 2 2 100% s2 
050116CA ,050114B5  2 2 2 100% s3 
050119A0 ,050116CB  2 2 2 100% s4 
050119A0 ,050116CB ,050116CA  3 2 2 100% s4 
050119A1 ,050119A0 ,050116CB  3 2 2 100% s4 
050119A1 ,050119A0 ,050116CB ,050116CA  4 2 2 100% s4 
050119CA,050116CB ,050116CA ,050119CD ,050119D1  5 2 2 100% s4 
0501199B ,0501199A ,3E010002  3 2 2 100% s5 
050114B5 ,050114B9 ,050114B7 ,050114B6  4 2 2 100% s6 
050114B5 ,050114B9 ,050114B7 ,050114B6 ,050114B4  5 2 2 100% s6 
050114B9 ,050114B7 ,050114B6 ,050114B4  4 2 2 100% s6 
0501199C ,5010249 2 3 3 100% s7 
0501199C ,5010249,5010248 3 3 3 100% s7 
0501199C ,5010249,5010248,050114B9  4 2 2 100% s7 
0501199C ,5010249,5010248,050114B9 ,050114B8  5 2 2 100% s7 
0501199D ,0501199C ,5010249 3 2 2 100% s7 
0501199D ,0501199C ,5010249,5010248 4 2 2 100% s7 
050119CE ,050119CB  2 2 2 100% s8 
050119CF ,050119CE ,050119CB  3 2 2 100% s8 
3E010001 ,050119CB ,050119CA ,0501177F  4 2 2 100% s9 
3E010001 ,050119CB ,050119CA ,0501177F ,0501177E  5 2 2 100% s9 
3E010002 ,3E010001 ,3E010002  3 4 4 100% s10 
3E010002 ,3E010001 ,3E010000 ,0501177F  4 2 2 100% s11 
3E010002 ,3E010001 ,3E010000 ,0501177F ,0501177E  5 2 2 100% s11 
5010248,050114B9 ,050114B8  3 2 2 100% s12 
5010249,5010248,050114B9 ,050114B8  4 2 2 100% s12 
050114B9 ,050114B7 ,050114B6  3 3 4 75% s13 

0501015A ,050119CB  2 3 4 75% s14 

 

Figure 30- Patterns for failure code 1143, comparing last five shifts and confidence percentages 
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After making groups for these patterns, it was created another table for these sequence 

groups which have a hundred percent confidence and related failure times. For example, 

groups of s1 occurred before the fifth and ninth breakdown for 1143.  

Faults 

No 
100% 

F1 s7 

F2 s3,s6,s7,s12 

F3 s7,s12 

F4 s8 

F5 s1,s5 

F6 s4,s5 

F7   

F8 s2,s3 

F9 s1 

F10 s8 

F11 s11 

F12 s9,s10 

F13 s9 

F14 s10 

F15   

F16 s10 

F17 s10 

 

Figure 31- Sequence group distributions according to breakdown orders for failure code 1143 in last five shifts 

 
In this table, it can be seen there are 17 faults for reason code 1104. However, there are 12 

different sequential pattern groups because of shift sizes. Comparing the last three shifts 

patterns, the number of patterns increased, because this time it was used the last five shifts 

dataset. Next figure shows sequence group distributions as a graph. 
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Fault 
No              
f17               
f16               
f15              
f14               
f13               
f12                
f11               
f10               
f9               
f8                
f7              
f6                
f5                
f4               
f3                
f2                  
f1               

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 
Sequence 

No 

 

Figure 32- Graphical representation of sequence group distributions according to breakdown orders for failure code 
1143 in last five shifts 

 

When calculate detection rate which equals dividing counts of filled rows in the table by 

faults occurring times. For this example, detection rate equals count of filled rows in the 

table which is 15 dividing by all faults’ counts which is 17, so it equals about 90% detection 

rate. This percentage means that system can detect 9 out of 10 breakdowns situation. 
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The graph below shows all these patterns according to percentages of confidence: 

 

Figure 33- Graphical illustration of patterns and confidence for failure code 1143 in last five shifts 

 
For confidence values 100% to 70% count of patterns slightly increased because when 

decrease confidence percentages’ threshold, it increases number of patterns. 
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5 CONCLUSION 
 
Nowadays, with the increasing presence of technological devices, every company tries to 

follow their vehicles, especially those that have expensive prices and maintenance costs. 

The mining industry has several expensive vehicles, and companies record their statuses 

regularly. In this study, there is one big dataset belonging to one North American mining 

company. The dataset includes records from eleven trucks for nine months, coming to more 

than three million rows, and more than a hundred columns.  

It is focused on the sequences of alarms and signals, which might be related to reasons for 

breakdowns. However, there are several other features which may have an impact on the 

breakdown of machines, such as driver mistakes, machine loading status, speed, or road 

conditions. For example, there are several threshold speed limits for mining trucks 

depending on road slopes, and the dataset does not show these kinds of thresholds. Another 

example is the various loading rules for these mining trucks. When trucks are loaded more 

than load limits allow, it may have an impact on the machine’s health status, but there are 

not this kind of information and did not calculate for those factors. These features need 

more in-depth research and expert knowledge for a future research project. 

In this thesis, it was selected three various kinds of breakdown codes which cause more 

expensive maintenance costs and mechanical failures. Mechanical breakdown reasons are 

more related to alarms and signals than other machine failures’ reasons. It was selected 

three of them, but for more accurate results, it must implement more than three breakdown 

reasons. According to the three machine failure codes, there are specific relationships 

between events and breakdown codes. First, it was discovered several patterns between 
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two same failure codes and counted them. Afterwards, it was discovered various patterns 

in the last three and five shifts before breakdowns occur. Lastly, it was calculated 

confidence values for the last three and five shifts and illustrated them in tables and graphs. 

The results showed that when  implement the sequential pattern algorithm before machine 

failures, it is possible to discover several patterns which may indicate breakdowns. 

However, for more accurate results, it is necessary to have cleaner and larger datasets, and 

additionally, time records beyond nine months. Despite these missing values, results 

indicate a detection rate of more than 90% in the last five shift events, which shows several 

specific and identifiable groups of patterns before machine breakdowns occur. However, 

the results do not show high detection rates for the last three shifts’ alarms and signals 

before machine breakdowns occur. For future work, a more wide and clean dataset would 

be more accurate in discovering mining trucks failure reasons. 
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