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ABSTRACT

BAYESIAN APPROACH ON SHORT TIME-COURSE DATA OF
PROTEIN PHOSPHORYLATION, CAUSAL INFERENCE FOR

ORDINAL OUTCOME AND CAUSAL ANALYSIS OF DIETARY
AND PHYSICAL ACTIVITY IN T2DM USING NHANES DATA

You Wu

August 7, 2017

This dissertation contains three different projects in proteomics and causal

inferences. In the first project, I apply a Bayesian hierarchical model to assess the

stability of phosphorylated proteins under short-time cold ischemia. This study pro-

vides inference on the stability of these phosphorylated proteins, which is valuable

when using these proteins as biomarkers for a disease. in the second project, I per-

form a comparative study of different confounding-adjusted to estimate the treatment

effect when the outcome variable is ordinal using observational data. The adjusted U-

statistics method is compared with other methods such as ordinal logistic regression,

propensity score based stratification and matching. In the third project, I perform

a causal analysis of the combination of dietary information and physical activity in

type 2 diabetes across different ethnic groups: White, African American and Mexican

American. Such information may contribute to a better understanding of type 2 dia-

betes variation between ethnic groups, and a better understanding of type 2 diabetes

among different ethnic groups and between female and male.
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CHAPTER 1

INTRODUCTION

1.1 Bayesian Approach on Protein Phosphorylation Study

Phosphorylated proteins provide insight into tumor etiology and are used as diagnos-

tic, prognostic and therapeutic markers of complex diseases. However, pre-analytic

variations, such as freezing delay after biopsy acquisition, often occur in real hospital

settings and potentially lead to inaccurate results. The objective of the first project is

to develop statistical methodology to assess the stability of phosphorylated proteins

under short-time cold ischemia. We consider a hierarchical model to determine if

phosphorylation abundance of a protein at a particular phosphorylation site remains

constant or not during cold ischemia. When phosphorylation levels vary across time,

we estimate the direction of the changes in each protein based on the maximum over-

all posterior probability and on the pairwise posterior probabilities, respectively. We

analyze a dataset of ovarian tumor tissues that suffered cold-ischemia shock before the

proteomic profiling. Gajadhar et al. (2015) applied independent clusterings for each

patient because of the high heterogeneity across patients, while our proposed model

shares information allowing conclusions for the entire sample population. Using the

proposed model, 15 out of 32 proteins show significant changes during one-hour cold

ischemia. Through simulation studies we conclude that our proposed methodology

has a higher accuracy for detecting changes compared to an order restricted inference

method. Our approach provides inference on the stability of these phosphorylated

proteins, which is valuable when using these proteins as biomarkers for a disease.

1



This work is published The details of the work are presented in Chapter 2.

1.2 Comparative Study for Ordinal Outcomes using Observational

Data

Ordinal outcomes are frequently observed in the clinical studies, and also in the social

and economic sciences. The commonly used methods for analyzing ordinal outcome

include the parametric statistical methods (e.g., ordinal logistic regression model) and

the non-parametric statistics (e.g., the Mann-Whitney U test statistic). However, the

ordinal logistic regression model may be less robust when the model is misspecified,

and the classic Mann-Whitney U test does not have control of the confounding covari-

ates which may result in seriously biased estimates in the observational studies. The

propensity score based methods, such as matching, stratification, and inverse proba-

bility weighting method, have been applied to assess treatment effect with control of

confounding covariates. However, these methods usually assign the ordinal outcome

variables to numerical scores in the analysis, thus losing information about the nature

of ordinal variables. Glen, Kong and Datta (2017) propose an adjusted U-statistic to

estimate the treatment with control of the confounding covariates by using the inverse

probability weighting, which weights each subject into its study population, and the

weight for a subject is obtained from the propensity score. In this second project,

we provide a comparative study of different methods for estimating treatment effects

for ordinal outcome variables using observational data. We compare the adjusted U-

statistics method (i.e. the weighted Mann-Whitney U statistics) with other popular

used methods such as ordinal logistic regression, propensity score based stratification

and matching. Extensive simulation studies are carried out to compare the perfor-

mance of these methods under different situations, and pros and cons are presented.

A case study is constructed to assess the effect of physical activity on diabetic status

2



with controlling the confounding of the sociodemographic characteristics and dietary

information. This project is presented in Chapter 3.

1.3 Causal Analysis of T2DM using Path Analysis

Type 2 diabetes mellitus (T2DM) has become a major public health problem world-

wide and one of the major causes of mortality in the United States outstripping

cancer, HIV/AIDS, and cardiovascular disease. Enormous economic and psychoso-

cial consequences are also associated with T2DM (Menke et al., 2015; Zimmet et

al., 2016; Wang et al., 2016). It is important to examine the relationship between

diet and type 2 diabetes because food intake is considered as the crucial variable in

the control of T2DM. The second important component of T2DM control is phys-

ical activity. The National Health and Nutrition Examination Survey (NHANES)

continuous database includes physical activity and detailed information on dietary

components. These data have not been previously analyzed and may offer important

insights into dietary variability, physical activity and the management of T2DM. The

objective of the third project in this dissertation is to analyze the causal paths that

predict type 2 diabetes using data on demographics, dietary, BMI and physical activ-

ity. The analytical model is path analysis (i.e., causal structural equations) to explore

the relationships between variables that are clearly causal and outcomes (i.e., type 2

diabetes status). Via the causal analysis, the causal importance of these variables on

type 2 diabetes can be quantitatively examined. This work is presented in Chapter

4.

3



CHAPTER 2

PROFILING THE EFFECTS OF SHORT TIME-COURSE COLD

ISCHEMIA ON TUMOR PROTEIN PHOSPHORYLATION USING

A BAYESIAN APPROACH1

2.1 Introduction

Protein tyrosine phosphorylation is considered to be a fundamental mechanism for

regulating many cellular functions. In this specific phosphorylation, a phosphate

group is added to the amino acid tyrosine on a protein. Disorders of tyrosine phos-

phorylation are believed to lead to many serious human diseases (Hunter, 2009). For

example, protein tyrosine phosphorylation is tightly regulated in normal cells, but

tyrosine kinases, whose activity controls tyrosine phosphorylation, are found to be

mutated or over-expressed in many human malignancies (Paul and Mukhopadhyay,

2004). Accurate and robust assessment of tyrosine phosphorylation in tumor biopsy

samples is thus necessary for understanding intracellular signaling networks and for

developing targeted therapies for cancer patients (Bonnas et al., 2012; Gajadhar et

al., 2015).

However, there may exist pre-analytic variations due to inconsistencies during

sample collection and processing in a clinical laboratory. One of these sources of

variations is cold ischemia. Also known as freezing delay time, cold ischemia is the

1Reproduce with permission from “Profiling the effects of short time-course cold ischemia on
tumor protein phosphorylation using a Bayesian approach” by You Wu, Jeremy Gaskins, Maiying
Kong and Susmita Datta, 2017. Biometrics. doi:10.1111/biom.12742. Copyright c© 2017, The
International Biometric Society.

4



time between tissue specimen excision and the freezing of the sample. Although it

has been shown that global protein levels do not change up to one hour cold ischemia,

significant changes are observed in phosphorylated proteins at the phosphorylation

sites. Some of the phosphorylation sites even have rapid changes during the first 5

minutes of cold ischemia (Mertins et al., 2014; Gajadhar et al., 2015). The dynamic

nature of protein phosphorylation in tissue specimens may be due to the fact that the

kinases and phosphatases controlling the signaling pathways of phosphorylation are

still active ex vivo after tissue excision (Espina et al., 2008). Therefore, the fidelity

of a protein phosphorylation abundance, which is the relative intensity value used to

measure protein phosphorylation magnitude, cannot be guaranteed in excised tumor

tissues that undergo cold ischemia. Subsequently, the targeted therapeutic strategies

and clinical decisions based on phosphorylation studies may not be accurate. To

ensure trustworthy results, it is necessary to examine whether the phosphorylation

level of a specific protein at a specific site is affected by short time cold ischemia.

This may determine the suitability of that phosphorylated protein to be considered

as a stable biomarker for a disease.

Although some phosphorylated proteins have been observed to be affected by

short time cold ischemia in the literature, few of those studies comprehensively exam-

ine the stability of phosphorylation over an entire sample population (Gajadhar et al.,

2015; Espina et al., 2008; Gündisch et al., 2013). As mentioned by Montana, Berk

and Ebbels (2011), most metabolomic experiments only produce short time-course

data with less than 10 time points, and the classical time series analysis cannot be

applied. Gajadhar et al. (2015) examined the cold ischemia induced changes in

phosphorylation by applying an affinity propagation clustering analysis to an ovarian

tumor dataset from 5 patients. However, due to the high level of heterogeneity across

patients, an independent clustering was formed for each patient, and it is challenging

to draw conclusions for the entire population. In this article, we construct a novel

5



hierarchical Bayesian model to examine whether the phosphorylation of each protein

at a particular site stays stable or not under cold ischemia shock. When the phos-

phorylation levels at a particular site vary across time points, we further estimate

the direction of the changes based on whether their abundances are increasing or

decreasing between two adjacent time points. By utilizing random effects to capture

the dependence between the observed phosphorylation abundances across different

time points and different phosphorylated proteins, we develop a model that shares

information across patients and allows us to draw conclusions for the entire sample

population.

Our proposed Bayesian model is presented in Section 2.2. We also briefly describe

an existing method proposed by Peddada et al. (2003) which can potentially be used

to analyze this short time course data. The work of Peddada et al. (2003) is based

on order restricted inference (ORI) for the analysis of a short time-course microarray

data. In Section 2.3, we apply our proposed method and the competitor ORI ap-

proach to examine the stability of each phosphorylated protein under one hour cold

ischemia shock using an ovarian tumor dataset from Gajadhar et al. (2015). We

further verify our method using a simulation study in Section 2.4 and provide some

concluding remarks in Section 2.5.

2.2 Methods

2.2.1 Hierarchical Bayesian model

Suppose that there are N patients in the study. We consider J common phosphory-

lated proteins, and each protein has only one phosphotyrosine (pTyr) site. For each

patient the abundance of phosphorylation at the jth pTyr site (j = 1, . . . , J) is mea-

sured at T common time points. At the tth time point (t = 1, . . . , T ), At represents

the number of minutes of freezing delay after sample excision (i.e., minutes of cold
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ischemia). The abundance of phosphorylation at the jth pTyr site at the tth time

point for the ith patient is denoted as Yijt (i = 1, . . . , N ; j = 1, . . . , J ; t = 1, . . . , T ).

The unknown true population mean of the response profile at the jth pTyr site is

expressed as µj = (µj1, µj2, . . . , µjT )
′
.

Our primary goal is to examine the stability of each phosphorylated protein

and then further classify the detected unstable proteins according to their changes in

phosphorylation abundance between two adjacent time points. We characterize the

changes for each site into c = 2T−1 + 1 classes. The null profile is set as C0 = {µj ∈

RT : µj1 = µj2 = · · · = µjT}, indicating that there is no change in phosphorylation

abundance under cold ischemia shock over time. Each of the remaining classes has the

form Cr = {µj ∈ RT : µj1�µj2� · · ·�µjT} (r = 1, . . . , 2T−1), where � is either < or

>. Our primary objective is to learn if j ∈ C0 versus any of the other classifications.

The secondary objective is to learn which Cr is the most probable class for sites not

in the null profile.

To model the changes of phosphorylation during one hour of cold ischemia, we

consider a hierarchical random effect model of the following form:

Yijt = µjt + γi + ηij + δit + εijt. (2.1)

The main quantity of interest µjt represents the mean abundance of phosphoryla-

tion at the jth pTyr site and the tth time point. Because the measurements for

each patient across multiple sites and multiple time points are dependent, appro-

priate techniques are required to make an efficient and valid inference. The overall

variation across patients is explained by γi (i = 1, . . . , N). Variation across differ-

ent pTyr sites within the ith patient is explained by the site-specific random effect

ηi = (ηi1, ηi2, . . . , ηiJ)
′
. The patient-specific temporal effect is captured by the ran-

dom effect δi = (δi1, δi2, . . . , δiT )
′
, representing the time effect for the ith subject. The

7



random error εijt is assumed to be normally distributed with mean 0 and variance

σ2.

In this work, a Bayesian approach is considered for the inference. Due to

normality of the random errors, the data is distributed as Yijt ∼ N(µjt + γi + ηij +

δit, σ
2). The overall effect from the ith patient, γi, is modeled by a normal distribution

with mean 0 and variance σ2
γ. The site-specific random effect within the ith patient

is modeled by ηij ∼ N(0, σ2
η) (j = 1, . . . , J). The distribution of the temporal effects

is δi ∼ MVN(0, σ2
δR(ρ)). We assume an auto-regressive correlation structure for

R(ρ) with corr(δit, δit′) = ρ|At−At′ |/s, although other choices are possible. Here, ρ

represents the correlation between responses s minutes apart, and we use the value

of s = 10 minutes throughout. Recall that At represents the number of minutes of

cold ischemia.

Our primary goal is to determine if there are overall changes in the abundance

at the jth site, that is, if j ∈ C0 or if j is in one of the other profiles. To that end,

we introduce the random variable Zj ∼ Bernoulli(θ) to indicate whether there is

variation in phosphorylation abundance at the jth pTyr site during cold ischemia. The

parameter θ represents the overall proportion of sites with ischemia-induced changes.

The prior distribution of the trajectory µjt is set as µjt|(µ∗j , Zj) ∼ N(µ∗j , Zjσ
2
µ), where

µ∗j ∼ N(µ0, σ
2
µ∗) gives the average value across all the T time points. If Zj = 0, the

µjts are equal to µ∗j across all the time points, i.e., the jth pTyr site is classified to

the null profile C0. If Zj = 1, µjt varies across time, and the jth site is impacted

by cold ischemia. A site with Zj = 1 is classified to one of the candidate profiles

C1, . . . , Cc−1 based on the inequality directions in µj across all the time points. The

prior distribution of the overall mean µ0 is set as normal distribution with mean 0

and standard deviation 100.

Conjugate prior distributions for the error variance σ2 and fixed effect variance

components σ2
µ and σ2

µ∗ are set as inverse-gamma distribution with both shape and
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scale parameters at 0.1. Since we expect that the overall patient effect γi, patient-

specific temporal effect δit and site-specific effect ηij have smaller impact on the

response compared to µj, the prior distributions for the standard deviations σγ, ση,

and σδ are set as half-Cauchy distributions with medians (equivalent to the scale

parameter) of 0.1. The half-Cauchy is a common prior for the standard deviation of

a regression coefficient or shrinkage effect as it has a non-zero density at 0 (unlike

inverse-gamma distribution) allowing a small value for the variance term. Further,

the heavy tail of the half-Cauchy prior protects from over-shrinkage by allowing large

values when the effect is highly influential (Gelman, 2006; Carvalho, Polson and Scott,

2010). The correlation parameter ρ is given a uniform distribution from 0 to 1 as a

prior distribution. The prior for θ, the population proportion of sites impacted by

cold ischemia, is taken to be Beta(1, 1) (i.e., Uniform[0, 1]).

2.2.2 Estimation and inference of profile classification

Markov chain Monte Carlo (MCMC) sampling is applied to obtain a posterior sample

of size M . For each phosphorylation site j, denote the mth sample of the posterior

trajectory µj as µ
(m)
j (m = 1, . . . ,M). First, we consider testing H0j : Zj = 0 vs.

H1j : Zj = 1 to examine whether the jth site is impacted by cold ischemia. P (Zj =

1|Y ) is estimated by the proportion of MCMC iterations with Z
(m)
j = 1. The jth site

is classified to the alternative profiles if P̂ (Zj = 1|Y ) is greater than 0.5, which is the

Bayes decision rule corresponding to the 0− 1 loss function L(Zj, Ẑj) = I(Zj 6= Ẑj).

If we choose to penalize Type I and Type II errors differently, the 0.5 threshold can

be adjusted. Placing a non-degenerate prior on θ, the overall probability of changes,

guarantees an automatic multiplicity correction over our tests based on Zj (Scott and

Berger, 2010). This approach allows us to maintain the false discovery rate when we

consider whether µj varies across T time points (i.e., Zj = 1) over a potentially large

number of sites J .
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If H0j : Zj = 0 is rejected, our secondary objective is to estimate the changes

in direction of the unstable phosphorylated proteins. To estimate the profile of the

jth site, we consider two competing estimators: the maximum a posteriori (MAP)

estimator and maximum pairwise (MPW) estimator. Both estimators are formed

conditionally on the conclusions for H0j vs. H1j. If the posterior probability P (Zj =

0|Y ) is larger than the threshold value (typically, 0.5), then the jth site maintains a

membership in the null profile C0, indicating no change in phosphorylation abundance

during cold ischemia. Otherwise, we reject H0j, conclude that the jth pTyr site varies

across T time points, and classify the jth site to its most likely profile. Using the MAP

estimator, we place the jth pTyr site that rejects H0j to the profile that maximizes the

estimated posterior probability P̂ (µj ∈ Cr|Y ) (r = 1, . . . , c − 1), which is the profile

with the majority votes among the M MCMC iterations, arg max
r

∑
m I(µ

(m)
j ∈ Cr).

For the MPW estimator, the pTyr site that rejects H0j is classified to one of

the candidate profiles (C1, . . . , Cc−1) by estimating the direction of change between

adjacent measurements pairwise. Choosing the inequality between a pair of values

µj,t−1 and µjt is based on choosing the larger of P̂ (µj,t−1 < µjt|Y ) and P̂ (µj,t−1 >

µjt|Y ). The sequence of pairwise-estimated inequalities is used to determine the class

of the phosphorylated protein.

In general, one would expect that the MAP estimator produces more accurate

classification as it takes the full vector µj into consideration. However, the MAP

estimator is based on the number of iterations that µj visits each of the 2T−1 non-

null profiles Cr during the MCMC run. When T is large relative to the length of

the MCMC chain, even the most probable profiles are visited infrequently, and the

estimated posterior probabilities P̂ (µj ∈ Cr|Y ) may have large variabilities relative

to the differences between the more likely profiles. Conversely, the marginal pairwise

probabilities P̂ (µj,t−1 < µjt|Y ) and P̂ (µj,t−1 > µjt|Y ) typically have small variabili-

ties. Therefore, the MPW estimator may provide preferable classification for a large
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T . This issue is similar in spirit to choosing between the MAP and median model esti-

mators in Bayesian variable selection (see e.g., George and McCulloch, 1993; Barbieri

and Berger, 2004).

To describe the confidence in classification, we form a credible set Cj,1−α for

each site j where P̂ (µj ∈ Cj,1−α|Y ) ≥ 1 − α. For the MAP estimator, the profiles

that are included in the 100(1− α)% credible set are determined by their estimated

posterior probabilities. For each phosphorylated protein, we sort P̂ (µj ∈ C0|Y ),

P̂ (µj ∈ C1|Y ), . . ., P̂ (µj ∈ Cc−1|Y ) in decreasing order. Then the top candidate

profiles are included in the credible set until their cumulative posterior probability

is greater than 100(1 − α)% . For the MPW estimator, a similar procedure can be

performed using the product of the posterior probabilities between each of the two

adjacent time points to approximate the posterior probability of each profile.

2.2.3 ORI method

As a comparison to our proposed methodology, we also apply an order restricted

inference (ORI) algorithm developed by Peddada et al. (2003). This ORI method is

one of the most commonly used methods developed for analyzing short time-course

microarray data. It can also be applied to this phosphorylation abundance data. We

briefly describe the method here. The sample mean vector of the jth pTyr site is

denoted as Ȳj = (Ȳj1, . . . , ȲjT )′.

First, a collection of the candidate profiles C1, . . . , Cp is specified. The collec-

tion may or may not be the full set of 2T−1 possible non-zero profiles. Second, for

each candidate profile, point estimation follows the procedures proposed by Hwang

and Peddada (1994), which use an isotonic regression estimator for the general or-

dering cases. For each profile, the nodal parameter is the key for the estimation

procedure. The nodal parameters in each profile are defined as the parameters which

are linked to all the other parameters, where the two parameters are linked if the in-
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equalities between them are pre-specified. For example, in the case that T = 4, nodal

parameters are µ1, µ2, µ3 and µ4 in the candidate profile C = {µ1 < µ2 < µ3 < µ4};

in the candidate profile C = {µ1 < µ2 < µ3 > µ4}, µ3 is the only nodal parameter

(see Table A1.1 in the Appendix for the details when T = 4). For the nodal parame-

ters, an ordered sequence of parameters can be formed as µj(1) ≤ µj(2) ≤ . . . ≤ µj(T ),

where one may arbitrarily assign an inequality between the two parameters if their

relationship is unknown. Based on the ordered sequence, the estimate of the nodal

parameter µjt is found using the following formula:

µ̂jt = µ̂j(s) = min
r≥s

max
q≤s

∑r
k=q nj(k)Ȳj(k)∑r

k=q nj(k)

,

where Ȳj(k) is the sample mean based on nj(k) observations. For a non-nodal pa-

rameter, say µjt′ , the largest sub-profile with µjt′ as a nodal parameter needs to be

identified, then µjt′ is estimated by using the formula above for the nodal parameters

and the data corresponding to the sub-profile. For the parameters in a profile without

any nodal parameters, the largest sub-profile with at least one nodal parameter needs

to be identified, and the parameters in the sub-profile can be estimated using the

methods for the profiles with nodal parameters. The procedure is repeated until all

of the parameters are estimated. Once a parameter is estimated, the estimate of this

parameter should be used in the estimation of the other unknown parameters.

Hypothesis testing for H0 : µj ∈ C0 vs. H1 : µj ∈ ∪pk=1Ck (equivalent to our

test of H0 : Zj = 0 vs. H1 : Zj = 1) is performed using a bootstrap approach. In each

bootstrap step, the maximum difference of two linked parameters is calculated for

each candidate profile. Then the largest maximum difference among the p candidate

profiles can be obtained for each bootstrap sample. The hypothesis test is performed

based on the bootstrap distribution of the largest maximum difference. If H0 is

rejected, the site is classified to the profile with the largest maximum difference. Full
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details can be found in Peddada et al. (2003).

2.3 Application to an ovarian tumor dataset

2.3.1 The ovarian tumor data

The ovarian tumor data from Gajadhar et al. (2015) is used to illustrate our proposed

methodology. Ovarian tumor tissues were collected from N = 5 patients. Tumor spec-

imens were collected across T = 4 time points at 0, 5, 30 and 60 minutes of freezing

delay after the surgical removal. After protein extraction, digestion and phospho-

tyrosine peptides enrichment, the peptides are separated using a mass-spectrometry

based analysis. The phosphotyrosine peptides and proteins are identified and quan-

tified subsequently.

Only the phosphorylated proteins with one phosphotyrosine position are con-

sidered in the study. The values of phosphorylation abundance are relative intensities

determined by iTRAQ quantification. For relative quantification of the four time

points, peptide samples were chemically labeled with different iTRAQ reagents and

then mixed into a single sample. These tags get covalently attached to the amine

groups of the N termini of peptides and lysine side chains. The mixed sample then

get fragmented in the mass spectrometer and reporter ions at defined masses (includ-

ing the masses of the pTyr sites) get released. Ratios of these reporter ions to one

another are treated as relative abundance, and the intensity of the masses at the initial

time point is treated at the reference abundance (Gajadhar et al., 2015). In order to

find the general characteristics of the phosphorylated sites, only the phosphorylated

proteins that are common to all patients are included in the following analysis. After

excluding the proteins with multiple phosphotyrosine positions, J = 32 common pTyr

sites are used in the analysis.
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2.3.2 Results

The sampling procedure for our Bayesian methods is implemented using WinBUGS

(Spiegelhalter et al., 1999) and R (R Core Team, 2014). Copies of the WinBUGS and

R codes can be found in the online supplementary materials. Running the MCMC

sampling procedure for 50,000 iterations with a burn-in of 5000 and thinning rate of 5

takes 3.02 minutes. The hypothesis H0j : Zj = 0 is rejected if P̂ (Zj = 1|Y ) > 0.5, and

both MAP and MPW estimators are used to classify each phosphorylated protein.

The testing and classification results based on these two Bayesian estimators are

exactly the same.

Figure 2.1 shows the estimated trajectories with 95% credible intervals (CI)

(1st and 3rd columns) and MPW estimators (2nd and 4th columns) of six representa-

tive phosphorylated proteins. The gray lines represent the observed phosphorylation

abundance of each patient. The boxes in the MPW plots represent the posterior

probabilities of an equal, decreasing, or increasing trend of phosphorylation abun-

dance between each pair of adjacent time points, and the shaded box indicates the

MPW-chosen classification. For example, both phosphorylation sites of DYRK1A

and CDK1 are classified to the null profile C0 with P̂ (Z = 0|Y ) = 0.98 and 0.95, re-

spectively. Sites of FYB, MAPK7, GAB1 and MAPK14 are classified to the non-null

profiles.

Figure 2.1 also shows that some phosphorylation sites have similar phosphory-

lation trajectories across all five patients (DYRK1A and MAPK7), while some other

sites (CDK1 and MAPK14) have greater heterogeneities across patients. For exam-

ple, the flat trajectory seen in phosphorylated protein CDK1 may be partly due to

the conflicting effects of the patient-dependent variations. The plots of estimated

profiles and MPW estimator for all phosphorylated proteins can be found in Figures

A1-A4 in the Appendix.

Detailed classification results from the Bayesian model are shown in Table
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2.1 with the probabilities of being classified to the null profile (4th column) and the

posterior probabilities of being classified to the corresponding profiles based the MAP

estimator (5th column). The profiles included in the 75% credible set are reported

in the last column in Table 2.1. Recall the site’s trajectory is estimated to be one

of the profiles in this set with at least 75% posterior probability. 17 pTyr sites were

classified to the null profile, indicating that the phosphorylation abundance does not

change during one-hour cold ischemia based on both estimators. The pTyr sites of

DOK1, INPP5D and MPZL1 show an increasing trend (C1), while the sites of CDKL5,

EPHA2, FYB and PRKCD show a decreasing trend during one hour cold ischemia

(C8). Some of our classification results are consistent with the clustering results in

Gajadhar et al. (2015). For example, ANXA2 and FLNA were classified to the null

profile C0 based on our proposed model, and they were also classified to the cluster

with minimal quantitative fluctuations in Gajadhar et al. (2015). MAPK14 showed

a rapid increase in phosphorylation within 5 minutes cold ischemia in Gajadhar et al.

(2015), and it was classified to the candidate profile C3 with similar characterization

based on our Bayesian model. However, the conclusions in Gajadhar et al. (2015) are

based on a single sample, while our conclusions are based on all samples and should

be more robust.

Table 2.2 shows the posterior median and 95% credible interval (CI) for each

model parameter. The estimated standard deviations for the patient and site-specific

components, σγ and ση , are quite small, indicating the impact of our half-Cauchy

shrinkage prior. Conversely, the standard deviation of the temporal effect σδ is much

larger (roughly 60% of the standard deviation for error), while the correlation is low

(ρ = 0.13). Thus, variation across T time points is the key driver of the covariance

structure, not the variation across patients or sites. By including the within patient

temporal effect and site-specific effect, we are able to cohesively distinguish between

the roles of protein trajectory µjt and the patient trajectory δit, while Gajadhar et al.
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(2015) performs patient-specific analysis which potentially confounds the two sources

of variation.

Classification was also done using the ORI method. Detailed results of ORI

profiling with p-values for the test of H0 : µj ∈ C0 versus H1 : µj ∈ ∪c−1
k=1Ck can be

found in Table A1.2 in the Appendix. Table 2.3 compares the classifications from the

Bayesian approach to those from the ORI method. Of the 17 pTyr sites classified

to the null profile by the Bayesian method, the ORI method classifies 14 of these to

the null profile and 3 to the non-null profiles. There is one profile which the ORI

method classifies to the null profile, however, the Bayesian method classifies to the

non-null profile. In total, 23 pTyr sites (71%) were classified to the same profiles

using both methods. The total computation time using the ORI method was 26.4

minutes, almost seven times longer than our Bayesian method.

2.4 Simulation Study

To verify our approach and compare the results with the ORI method, we conduct

a simulation study with varying sample sizes and number of time points. In each

simulation, N subjects are generated, and each subject is observed at T time points

and J pTyr sites. We assign the true profile for each of the J pTyr sites as follows.

When T = 4, the 20% of sites are assigned to the null profile C0, then 5% to profile C1,

and similarly, 10%, 10%, 5%, 15%, 5%, 15% and 15% of sites are assigned to profiles

C2 to C8, respectively. The trajectories µjts are randomly sampled from the sequence

from -3 to 5 with increments 0.5 according to these pre-specified profiles. Data are

generated based on model (2.1) with the error variance σ2 set to 0.45. The variance

components σ2
η, σ

2
γ, and σ2

δ are all set as 0.1. The temporal correlation coefficient

ρ is set as 0.5. 200 simulated datasets are generated and analyzed using both ORI

algorithm and our Bayesian model.
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2.4.1 Assessing the effect of sample size

The first simulation study is run with N = 5, J = 35, T = 4, and the time points

are chosen as 0, 5, 30, and 60 minutes, which is similar to the setting of ovarian

tumor data. Another simulation study is carried out with an increased sample size

of N = 20. We draw 200 simulated datasets for each simulation setting. To evaluate

the performance of our procedure, we consider the following four quantities: Type I

error rate, Type II error rate, the overall correct classification proportion, and the

accuracy of trajectory estimation. To measure the accuracy of the estimation for µ,

we use a sum of squared error (SSE) loss function L(µ, µ̂) =
∑J

j=1

∑T
t=1(µ̂jt − µjt)2,

based on the posterior mean of µ̂jt. All accuracy measurements are averaged over 200

simulated datasets.

Table 2.4 shows the simulation results of the two scenarios introduced above

with N = 5 and N = 20. For the simulation with N = 5, the overall mean proportion

of correct classification using the ORI method is 68.3%, compared to 94.1% from our

Bayesian model using both the MAP and MPW estimators, corresponding to roughly

9 additional correctly assigned sites. The probabilities of making a Type I error

P (µj ∈ ∪c−1
k=1Ĉk|µj ∈ C0) in our proposed model and ORI methods are 4% and 5%,

respectively. The Type II error rates P (µj ∈ Ĉ0|µj ∈ ∪c−1
k=1Ck) are around 0.2% for

both the MAP and MPW estimators, compared to 0.4% based on the ORI method,

indicating that all methods have high power in this scenario. The measurement for the

accuracy of the estimated trajectory (lower SSE corresponds to a greater accuracy)

is 18.5 for the Bayesian model compared to 54.1 for the ORI method, indicating that

our model more accurately estimates the trajectory µj than the ORI method.

For the simulation with increased sample size with N = 20, the mean of

the correct classification proportions of pTyr sites using the ORI method is 71.2%

compared to 99.5% using both the estimators of our Bayesian model. Both of our

proposed model and the ORI method accurately assign sites to the null, while our
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Bayesian model does better in distinguishing the non-null profiles. In this scenario,

our Bayesian model also performs better for estimating the trajectory than the ORI

method.

We also construct the 75% credible sets in both the simulation settings. The

proportions that the true profile is included in the 75% credible set are 98.5% and

99.9% for N = 5 and 20, respectively. Thus, we have confidence that in the rare case

when the estimated profile is incorrect, the true classification is almost always in the

credible set.

2.4.2 Assessing the effect of the signal-to-noise ratio and number of time points

We conduct additional simulation studies to examine the performance of our model

under different signal-to-noise ratios and different numbers of time points. In the

following simulation scenarios, we let N = 20 and J = 35 and consider three settings

for T : T = 4, 5, and 8. For T = 4, each site is assigned to one of the 9 candidate

profiles as in the previous section. However, as T increases, the number of candidate

profiles increases exponentially. This is particularly challenging for the ORI method

because its algorithm involves a recursive estimation scheme for each profile under

consideration. To that end, we apply the ORI method to a restricted set of profiles,

which are known to contain the set of true profiles. For T = 5, 11 out of 17 candidate

profiles (including the null) are selected, representing 65% of the total number of

possible profiles. For T = 8, the restricted set contains 15 out of 129 profiles, roughly

12% of all possible profiles. Table A1.3 in the Appendix reports the selected profiles

and the percentage of the true assignment for the cases when T = 5 and 8.

In addition to examining the impact of T on accuracy, we also consider changes

to the signal-to-noise ratio (i.e., effect size). For the largest effect size, µjt are drawn

uniformly from the sequence from -3 to 5 with an increment of 0.1, subject to the

profile membership. The medium effect size draws µjt from the sequence from -1.5
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to 2.5 with an increment of 0.05, and the smallest effect size uses -0.75 to 1.25 with

an increment of 0.025. The ORI method is applied to find the best profile among

the selected set of the candidate profiles. To determine the accuracy without any

additional knowledge of the restricted profile set, the MAP and MPW classifications

are found as before. To compare against the ORI estimator that uses the selected

profile set, we develop corresponding versions of the MAP and MPW estimators that

use this extra knowledge. For the MAP estimator, we choose the candidate profile

which has the maximum among Pr(µj ∈ Cr|Y ) among r in the selected profile set.

For the MPW estimator, we choose the profile from among the selected set with the

maximum value of
∏T−1

t=1 Pr(µjt�tµj,t+1|Y ), where �t is the tth inequality in Cr.

Figure 2.2 shows the boxplots of the correct classification rates under the

different simulation scenarios. In the T = 4 case, the mean correct classification rates

of both the MAP and MPW methods are higher than the ORI method under all

effect sizes. As the number of time points increases and/or the effect size decreases,

correct classification becomes more challenging, and the accuracy deteriorates for all

methods. However, across all scenarios the Bayesian methods that use the selected

set of profiles consistently beat (often by a large margin) the ORI in accuracy. In

fact, even without using the extra information on the restricted set of profiles, our

Bayesian classification is often more accurate than the ORI (e.g., for all the effect

sizes for T = 4 and 5, and for the large effect size for T = 8). Comparing the two

estimators, we find that the MAP and MPW estimators are roughly equivalent for the

small number of time points, and the MPW estimator is slightly better for the larger

number of time points, which is consistent with the intuition discussed in Section

2.2.2. See Table 2.5 for detailed results of each simulation scenario. Figure 2.3 shows

the boxplots of the accuracy of the estimated trajectories measured by SSE. In all

cases, the Bayesian model performs better than the ORI method in estimating the

trajectory µjt.
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2.5 Discussion and Conclusion

In this project we develop a Bayesian methodology to examine the stability of tyrosine

phosphorylated proteins undergoing cold ischemia and to characterize the direction

of changes in the unstable ones. From the ovarian tumor data, 15 out of 32 phospho-

rylated proteins show significant changes during one-hour cold ischemia based on our

Bayesian model, indicating that any scientific results related to these phosphorylated

proteins may be altered by a short freezing delay after the tumor specimen excision.

A number of phosphorylated proteins that we identified as fluctuating in phos-

phorylation abundance under cold ischemia shock have been found to be medically

important for therapy development or biomarker discovery in the literature. For ex-

ample, DOK1 has been identified as a candidate tumor suppressor gene for various

human malignancies (Lee et al., 2007; Berger et al., 2010) and works in a signal trans-

duction pathway downstream of receptor tyrosine kinases (Némorin et al., 2001). This

phosphorylated protein shows an increasing trend in phosphorylation abundances un-

dergoing one hour cold ischemia shock in our study. GAB1, which serves in a different

signaling pathway, was classified to the profile with an increase in phosphorylation

abundance during the first 30 minute cold ischemia and a decrease during the next 30

minute cold ischemia based on our Bayesian model; it was also classified to the cluster

characterized by a rapid increase in phosphorylation within 5 minutes of cold ischemia

in Gajadhar et al. (2015). It has been found that GAB1 is usually over-expressed

in cancer cells and may be used as a target for cancer therapy, especially for triple

negative breast cancer patients (Chen et al., 2015; Gu and Neel, 2003). Similarly,

EPHA2 has been found to be over-expressed in various cancers, particularly a high

level of EPHA2 is detected in malignant cancer-derived cell lines and advanced forms

of cancer (Tandon, Vemula and Mittal, 2011). EPHA2 displayed a decreasing trend

in phosphorylation abundance during one hour cold ischemia based on our approach
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and was also classified to the gradually decreased cluster in Gajadhar et al. (2015). It

should be noted that PEAK1 may require a more careful sample collection protocol

compared to the other phosphorylated proteins classified to the null profile. While

the most probable explanation is that PEAK1 is not impacted by freezing delay, the

non-null profile C6 = {µ ∈ R4 : µ1 > µ2 < µ3 > µ4} is contained in the credible set,

so the potential impact of cold ischemia should not be totally discounted.

Based on the simulation studies, our Bayesian model is more efficient for the

classification of short time-course data than the ORI algorithm. Both our Bayesian

model and the ORI method have high correct classification rates for the null profile

C0. However, our Bayesian model has a much higher accuracy in correctly classifying

the non-null profiles than the ORI method. The Bayesian approach performs well

even in the cases with more time points and small effect sizes. In addition to the

improved accuracy, the computation speed of our Bayesian approach is much faster

than the ORI method. In the simulation study with T = 8, it takes approximately 6

hours per dataset to use the ORI method on the subset of 15/129 profiles, whereas

the Bayesian approach which considers all profiles requires only a third of the time.

Since the primary focus is whether the protein phosphorylation status has

changed during one-hour cold ischemia, we only consider complete equality or a se-

quence of strict inequalities between each pair of time points. If the changes in

phosphorylation abundance under a certain threshold need to be considered as equal,

some extensions of our model can be considered. Wu et al. (2007) provides a similar

approach using a 3-stage Markov model using the relationships <, > and = between

two time points. However, they do not consider the role of the site or temporal de-

pendence. As a simple ad hoc version, one might extend our method to allow the

profiles with relationships <, > and = by choosing a cut-off value for approximate

equality either through biological considerations or a default value. The pair µjt and

µj,t+1 would be considered to be approximately equal if |µjt − µj,t+1| < ε, increasing
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if µjt + ε < µj,t+1, and decreasing if µjt− ε > µj,t+1, where ε is a pre-specified positive

value. A MAP or MPW estimator from the set of 3T−1 profiles can be found.

A key concern for an analysis with few patients is the validity of the normality

assumption. A Q-Q plot and histogram of the standardized residuals (Yijt − µ̂jt −

γ̂i − δ̂it − η̂ij) can be found in Figure 2.4. The Q-Q plot indicates that the normal-

ity assumption is reasonably satisfied in our analysis of the ovarian tumor data. If

normality was found to be suspect, a transformation of the data (e.g., logarithm or

Box-Cox) or a thicker-tailed or skewed distribution for εijt, such as the t-distribution

or skewed normal distribution, could easily be incorporated.

The phosphotyrosine signaling networks can be affected by cold ischemia shock

for many phosphorylated proteins, even in a short time period. Our study shows that

nearly half of the selected phosphorylated proteins experience a dramatic change

during one-hour cold ischemia, which underscores the necessity of freezing the tissue

sample immediately after excision. Because the phosphorylation changes of some

pTyr sites classified to C0 may be dramatically different among patients (see MAPK14

in Figure 2.1), these sites may require further attention. The current work provides

an efficient method to detect unstable phosphorylated proteins under short-time cold

ischemia shock and profile the direction of their changes. Thus, the results obtained

from our method may provide valuable guidance on developing sample collection

protocols and further analytical strategies.

2.6 Tables and Figures
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Table 2.2: Posterior median and 95% CI for each model parameter

Posterior Median 95% CI
σ 0.173 (0.164, 0.185)
µ0 1.002 (0.929, 1.078)
σµ 0.278 (0.228, 0.347)
σµ∗ 0.104 (0.080, 0.141)
σγ 0.017 (0.002, 0.076)
ση 0.003 (0.000, 0.017)
σδ 0.107 (0.076, 0.161)
ρ 0.131 (0.005, 0.504)
θ 0.487 (0.309, 0.673)

Table 2.3: Comparison of classifications from the ORI and MAP estimators for the
human tumor data.

ORI Method
C0 C1 C2 C3 C4 C5 C6 C7 C8

Bayesian Approach
(MAP)

C0 14 0 1 0 0 0 2 0 0
C1 0 1 2 0 0 0 0 0 0
C2 0 0 2 0 0 0 0 0 0
C3 0 0 0 1 0 0 0 0 0
C4 0 0 0 0 0 0 0 0 1
C5 0 0 0 0 0 0 1 0 0
C6 1 0 0 0 0 0 0 0 0
C7 0 0 0 0 0 0 0 1 1
C8 0 0 0 0 0 0 0 0 4

Table 2.4: Simulation results from Section 2.4.1. 200 simulated datasets with J = 35
and T = 4 were used in both the simulation settings. In each simulation, 8 pTyr
sites were assigned to the null profile C0 and 27 pTyr sites were assigned to the
other candidate profiles. The quantities reported in this table are averaged across
200 simulated datasets. The accuracy of the estimated trajectory is measured by the
sum of squared errors (SSE), and a lower value indicates a higher accuracy.

N = 5 N = 20
Bayesian

ORI
Bayesian

ORI
MAP MPW MAP MPW

Correct classification (overall) 94.1% 94.1% 68.3% 99.5% 99.5% 71.2%

Type I error rate: Pr(µj ∈ ∪c−1
k=1Ĉk|µj ∈ C0) 4.0% 4.0% 5.0% 0.6% 0.6% 0.0%

Type II error rate: Pr(µj ∈ Ĉ0|µj ∈ ∪c−1
k=1Ck) 0.2% 0.2% 0.4% 0.0% 0.0% 0.4%

Trajectory Accuracy:
∑J

j=1

∑T
t=1(µ̂jt − µjt)2 18.5 18.5 54.1 4.3 4.3 38.5
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Table 2.5: Simulation results from section 2.4.2. The correct classification rates
is formed under different T and different effect sizes. For each simulation study,
N = 20, J = 35 and 200 simulated datasets were used. The accuracy of the estimated
trajectory is measured by the sum of squared errors.

T = 4 T = 5 T = 8
All Possible CPs All Possible CPs Selected CPs All Possible CPs Selected CPs

MAP MPW ORI MAP MPW MAP MPW ORI MAP MPW MAP MPW ORI

Correct classification (overall)
Large Effect Size 94.8% 94.9% 68.6% 91.4% 91.6% 95.0% 95.1% 77.4% 83.6% 84.3% 97.1% 97.3% 72.5%

Medium Effect Size 87.3% 87.5% 63.4% 80.9% 81.5% 89.0% 89.3% 73.1% 66.6% 68.1% 92.9% 93.5% 70.1%
Small Effect Size 71.5% 71.8% 41.6% 61.2% 63.3% 75.4% 76.0% 56.2% 45.8% 49.1% 82.6% 85.7% 64.6%

Type I Errors
Large Effect Size 0.6% 0.6% 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%

Medium Effect Size 4.2% 4.2% 0.0% 1.3% 1.3% 1.3% 1.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%
Small Effect Size 28.3% 28.3% 0.0% 14.3% 14.3% 14.3% 14.3% 0.0% 1.4% 1.4% 1.4% 1.4% 0.1%

Type II Error
Large Effect Size 0.0% 0.0% 1.9% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2%

Medium Effect Size 1.0% 1.0% 12.9% 0.3% 0.3% 0.3% 0.3% 2.2% 0.0% 0.0% 0.0% 0.0% 0.2%
Small Effect Size 3.4% 3.4% 59.7% 1.8% 1.8% 1.8% 1.8% 29.2% 0.1% 0.1% 0.1% 0.1% 3.6%

Trajectory Accuracy
Large Effect Size 4.2 33.8 5.6 21.2 8.6 147.5

Medium Effect Size 4.2 13.7 5.6 9.9 8.5 42.6
Small Effect Size 4.3 15.8 5.9 11.6 8.3 17.5
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Figure 2.1: Estimated trajectory with 95% credible interval (1st and 3rd columns)
and MPW estimators (2nd and 4th columns) for six representative phosphorylated
proteins. The gray lines represent the observed phosphorylation abundance of each
of the five patients. The boxes of MPW plots represent the posterior probabilities
between each of two adjacent time points, and the shaded box indicates the MPW-
selected classifications.
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Figure 2.2: Boxplots of simulation results from Section 2.4.2. The correct classifica-
tion proportions shown are calculated based on 200 simulated datasets for each case.
For T = 4, all the possible candidate profiles are considered. For T = 5 and 8, the
ORI method is not used when considering all possible profiles due to the limitation
of computation speed.
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Figure 2.3: Boxplots of sum of squared error (SSE) measuring the accuracy of tra-
jectory estimation. A lower value indicates higher accuracy.
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CHAPTER 3

INVESTIGATION OF DIFFERENT STATISTICAL METHODS

FOR ESTIMATING TREATMENT EFFECTS WHEN OUTCOME

VARIABLE IS ORDINAL AND CONFOUNDING EXISTS

3.1 Introduction

Ordinal categorical data has been quite commonly used in the clinical, social and

economic sciences (Agresti, 1996). For example, the commonly used Likert scale

in social survey study is an ordinal categorical variable with five different categories:

“Strongly disagree”, “Disagree”, “Neither agree nor disagree”, “Agree” and “Strongly

agree”, to capture the attitude of a subject to a certain statement (Likert, 1932). The

ordinal measured variables are often used as the primary outcome variable in clinical

trials. For example, the World Health Organization (WHO) uses an ordinal outcome

with four categories as the primary outcome to examine the efficacy of antimalarial

drugs for uncomplicated malaria: 1) ETF (early treatment failure); 2) LCF (late

clinical failure); 3) LPF (late parasitological failure) and; 4) ACPR (adequate clinical

and parasitological response) (Whegang et al., 2010). In our case study, we examine

whether physical activity contributes to diabetes status, with adjustment for subject’s

demographic information and dietary information. The outcome variable is classified

as diabetes, pre-diabetes, metabolic syndrome and normal. Studies with ordinal

outcome variable are common, and it is important to use the analytical methods

which control the unbalanced covariates and have good statistical properties.
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When the data arise from a randomized control trial, the subjects are randomly

assigned to different groups, say treatment and comparator groups. It is generally

assumed that there are no confounding covariates, either measured or unmeasured

(Austin, 2011). The commonly used methods for analyzing ordinal outcome vari-

able include parametric statistic method such as the cumulative logit/probit meth-

ods (Agresti, 1996) and non-parametric method, such as the Mann-Whitney U test

statistics (Mann and Whitney, 1947). The cumulative logit/probit models link the

cumulative probability and linear combination covariates with different intercepts for

different levels of responses (Agresti and Kateri, 2016). The parametric approach pro-

vides a powerful tool if the model is correctly specified. The non-parametric method

such as the Mann-Whitney U test statistic is also a powerful way to examine the treat-

ment effects for the ordinal outcomes when there is no confounding variables (Mann

and Whitney, 1947; Grissom, 1994). However, when the data arise from natural set-

tings such as electronic clinical records or registry data, the treatment selection may

depend on the patients’ own characteristics. The covariates between treatment and

comparator group may not be balanced. The statistical methods without considering

the selection bias may result in biased estimates for treatment effect. Historically, re-

gression adjustment methods such as cumulative logit/probit model is often used to

account for the difference in baseline characteristics between treatment and compara-

tor groups. Recently, the propensity score based methods, such as inverse probability

weighting, stratification and matching, have been widely used to reduce the impact

from the unbalanced confounding covariates in observational data (Austin, 2011; Ab-

dia et al., 2017). These propensity score based methods are free of outcome-specific

model and thus are robust in estimation of the treatment effect. These methods may

be applied to compare treatment effect for ordinal outcome variable by assigning nu-

meric scores to the ordinal outcomes, thus loosing the ordinal nature of the ordinal

variables.
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In the literature, the superiority score has been considered as a measure for

treatment effect for ordinal outcome (Klotz, 1966; Ryu and Agresti, 2008; Agresti

and Kateri, 2016). The Mann-Whiteney U test statistic can be considered as a

superiority score although the confounding variables are not adjusted (Mann and

Whiteny, 1947). In order to address the confounding covariates in the observational

data, Glen, Kong and Datta (2017) developed an adjusted U-statistic to test the

equality of distributions across multiple groups when the confounding covariates exist.

Agresti and Kateri (2016) presented probit/logit model based methods to estimate

the superiority score. However, the parametric models such as probit/logit models

are prone to provide biased estimates if the model is misspecified. On the other hand,

the propensity score based methods such as stratification, matching, and weighting

may provide excellent way to estimate treatment effect with control of confounding

variables. The propensity score is also called balance score and the propensity score

based methods usually do not assume outcome regression models. In this project,

we investigate the confounding-adjusted to estimate the superiority score for ordinal

outcomes with control of confounding covariates.

This chapter is organized as following: In Section 3.2, we investigate the sta-

tistical methods for assessing treatment effects for ordinal outcome when confounding

variables exist. These methods include the cumulative logit model, propensity score

based matching and stratification, and the adjusted U-statistic. In Section 3.3, sim-

ulation studies are carried out to compare the performance of these methods. In

Section 3.4, a case study using the National Health and Nutrition Examination Sur-

vey (NHANES) data is carried out to examine the causal effect of physical activities

on diabetes status with adjustment of demographic and dietary information. The last

section is devoted to a discussion.
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3.2 Statistical Method

Suppose N subjects are included in the sample, and Xi, Yi, Ti, respectively, denotes

a vector of p confounding variables, the ordinal outcome variable, and the treatment

assignment for ith subject in the study. Here Yi is an outcome variable with C ordinal

categories (i.e., Yi ∈ {1, 2, . . . , C}), and Ti takes 1 if the ith subject is assigned to

treatment group, and takes 0 if the ith subject is assigned to comparator group. For

notational convenience, numeric numbers are assigned to the outcome variable Yi to

keep the ordering but without numeric meanings. For the ith subject, there are two

potential outcomes: the potential outcome under treatment Y
(1)
i and the potential

outcome under comparator group Y
(0)
i . The observed outcome is:

Yi = TiY
(1)
i + (1− Ti)Y (0)

i =


Y

(0)
i , if Ti = 0,

Y
(1)
i , if Ti = 1.

Here Y
(0)
i and Y

(1)
i are ordinal categorical variables with C categories, a higher cat-

egory indicates a better outcome. Here we assume that all confounding variables

are observed, and the assumptions on overlap and strong ignorability (Rosenbanm

and Robin, 1983) hold. For ordinal outcome variable, the stochastic superiority

score (Klotz, 1966) measures if the outcome under treatment is stochastically larger

than the outcome under comparator group. The superiority score is defined as

Pr(Y
(1)
i > Y

(0)
i ) + 1

2
Pr(Y

(1)
i = Y

(0)
i ). Under the null hypothesis that there is no

treatment effect, the superiority score equals to 0.5. In the following subsection 3.2.1,

we investigate the parametric method to estimate the superiority score. On Section

3.2.2 we apply the propensity score-based matching and stratification to the superior-

ity score, and in Section 3.2.3 we apply the adjusted Mann Whitney U test statistics

to assess the superiority score when the confounding covariates exist.
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3.2.1 Parametric method for estimating superiority score

The ordinal logistic regression (OLR) is also known as the cumulative logit model. It

is a widely used method to estimate the treatment effect for ordinal outcome variable.

The OLR assumes that the effect of the treatment (or covariates) is identical for all

C − 1 cumulative logits and a single parameter is used to describe the treatment

effect when the model fits data well (Agresti, 1996). The OLR model uses a set of

dichotomized logistic models as follows:

log
P (Y ≤ k|X,T )

P (Y > k|X,T )
= αk −Xδ − τT,

where k = 2, . . . , C. The parameters (α1, . . . , αk, δ, τ) can be estimated based on the

maximum likelihood estimation. Hypothesis testing for treatment effect is conducted

by the Wald test for testing the hypothesis that H0 : τ = 0 vs. H1 : τ 6= 0. The

cumulative logit model uses the proportional odds structure to interpret the treatment

effects. However, the superiority score can be approximated from the maximum

likelihood estimate of τ (Agresti and Kateri, 2016):

γ̂OLR ≈ exp(τ̂ /
√

2))

1+exp(τ̂ /
√

2)
.

The estimated variance of γ̂OLR is calculated based on delta-method: σ̂2
γ,OLR =

exp(
√

2τ̂)

2[1+exp(τ̂/
√

2)]4
· σ̂2

τ . The hypothesis testing for treatment effect is equivalent to test

H0 : γOLR = 0.5 vs. H1 : γOLR 6= 0.5. The test can be carried out using the Wald

statistic z = γ̂OLR−0.5
σ̂OLR

, where σ̂2
OLR is the estimated variance for γ̂OLR, and the p-value

is obtained from 2Φ(−|z|), where Φ is the cumulative density function of a standard

normal distribution.
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3.2.2 Propensity score based methods for estimating superiority score

The propensity score is the probability of receiving treatment conditional on observed

baseline covariates (Rosenbaum and Rubin, 1983), which can be written as:

ei(Xi) = Pr(Ti = 1|Xi),

where i = 1, . . . , N . Rosenbaum and Rubin (1983) proved that similar distributions

of propensity scores between treatment and comparator groups implies similar dis-

tributions of confounding covariates between treatment and comparator groups, thus

propensity score is also considered as a balancing score. The propensity score could

be estimated based on parametric model such as logistic regression model or machine

learning method such as generalized boosting method (Abdia et al., 2017). However,

in this project, the propensity score is estimated from the logistic regression model:

log
ei(Xi)

1− ei(Xi)
= log

{
Pr[T = 1|Xi]

1− Pr[T = 1|Xi]

}
= Xiβ (3.1)

The estimate of β is obtained by using the maximum likelihood method. Two propen-

sity score based methods are considered: propensity score-based matching (PSM) and

propensity score-based stratification.

1. Propensity score-based matching

Propensity score-based matching could be implemented by first obtaining the coun-

terfactual outcomes via matched samples of the treated and comparative subjects,

and then estimating the treatment effect by averaging the subject-level treatment ef-

fects over the N subjects (Rosenbaum & Rubin, 1983, 1985). The steps to implement

propensity score-based matching are as follows:

Step 1: Calculate propensity score for each subject ei = Pr(Ti = 1|Xi), where i =
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1, . . . , N ;

Step 2: For ith subject, if Ti = 1, then Y
(1)
i is observed, and Y

(0)
i is estimated from

a subject j in the comparator group such that the propensity score ej is the

closest one to ei. Similarly, for a subject in comparator group (i.e., Ti = 0), Y
(0)
i

is observed, and the counterfactual outcome Y
(1)
i is estimated from a subject in

the treatment group whose propensity score is the closest one to ei;

Step 3: The outcome (Y
(0)
i , Y

(1)
i ) for ith subject is thus able to be used to assess the

subject-level treatment effect for ith subject, that is, γ̂i = I(Y
(1)
i > Y

(0)
i ) +

1
2
I(Y

(1)
i = Y

(0)
i );

Step 4: The stochastic superiority score is thus calculated based on the entire matched

sample:

γ̂Mat =
1

N

N∑
i=1

γ̂i =
1

N

N∑
i=1

[I(Y
(1)
i > Y

(0)
i ) +

1

2
I(Y

(1)
i = Y

(0)
i )].

The variance of γ̂Mat can be estimated by:

σ̂2
γ,Mat = 1

N
(p̂1 + 1

4
p̂0 − γ̂2

Mat)

where p̂1 = 1
N

∑N
i=1 I(Y

(1)
i > Y

(0)
i ) and p̂0 = 1

N

∑N
i=1 I(Y

(1)
i = Y

(0)
i ) (see Ap-

pendix 2 for the detailed derivation of σ̂γ,Mat). The hypothesis test H0 : γMat =

0.5 vs. H1 : γMat 6= 0.5 is carried out by using the Wald test statistic z = γ̂Mat−0.5
σ̂γ,Mat

with p-value as 2Φ(−|z|), where Φ is the cumulative density function of a stan-

dard normal distribution.

2. Propensity score based stratification

The propensity score-based stratification methods is to divide subjects to several dif-

ferent strata based on their propensity scores. Within each stratum, the distributions
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of the covariates are considered similar for treated subjects and comparative subjects.

Thus, the treatment effect can be estimated within each stratum, and the treatment

effect over entire sample can be estimated by the average treatment effects across

different strata. The steps to carry out the propensity score-based stratification are

as follows:

Step 1: Estimate the propensity score êi = P̂ (Ti = 1|Xi) for i = 1, . . . , N ;

Step 2: Rank the subjects with respect to their propensity scores, and then stratify all

subjects to S strata (usually S = 5) based on the quantile of the propensity

scores;

Step 3: Examine the covariate balance based on the absolute standardized mean dif-

ference (ASMD) (McCaffrey et al., 2013). For pth covariate, the ASMD is

calculated by:

ASMDp =
∑S
s=1

ns
N
|X̄(1)
p,s−X̄

(0)
p,s |

sdp

where X̄
(1)
p,s and X̄

(0)
p,s are the mean of pth covariate in the treatment group and

comparative group, respectively. sdp is the standard deviation of pth covariate

in the entire sample, and ns is the sample size at the sth stratum. The pth

covariate is considered to be balanced if ASMDp ≤ 0.2;

Step 4: Let Xunbal denote the unbalanced covariates identified from step 3. For sth

stratum, the treatment effect is estimated from the ordinal logistic regression:

log
P (Y ≤ k|Xunbal, T )

P (Y > k|Xunbal, T )
= αk −Xunbalδ − τsT,

the parameters (αk, δi, τs) are estimated by the maximum likelihood method

based on the stratum-specific data (Ys, Ts, X
unbal
s )(s = 1, . . . , 5). According to

Agresti and Kateri (2016), the superiority score for sth stratum is estimated by

γ̂s ≈ exp(τ̂s/
√

2))

1+exp(τ̂s/
√

2)
, and its variance is estimated by σ̂2

γ,s = exp(−
√

2τ̂s)

2[1+exp(−τ̂s/
√

2)]4
· σ̂2

τs ;

37



Step 5: The overall superiority score is thus estimated by pooling all the stratum-specific

estimates across all strata, which is γ̂Strat =
∑S

s=1
ns
N
γ̂s. The variance of the

overall superiority score is then estimated by σ̂2
γ,Strat =

∑S
s=1(ns

N
)2σ̂2

γ,s;

Step 6: Hypothesis testing of H0 : γ̂Strat = 0.5 vs. H0 : γ̂Strat 6= 0.5 is carried out

by using the Wald test statistic z = γ̂Strat−0.5
σ̂γ,Strat

with p-value 2Φ(−|z|) as stated

before.

3.2.3 Adjusted Mann-Whitney U test statistic

The Mann-Whitney U statistic (Mann and Whitney, 1947) is powerful to examine

treatment effect between two groups when there is no confounding covariates. The

classic Mann-Whitney U statistics has the following form:

γU =
1

n1n0

∑
i∈{i:Ti=1}

∑
j∈{j:Tj=0}

K(Yi, Yj) (3.2)

where n1 and n0 are the numbers of subjects in treatment and comparator groups,

respectively. When the Wilcoxon kernel K(Yi, Yj) = I[Yi > Yj] + 1
2
I[Yi = Yj] is used,

this U statistic naturally reflects the stochastic superiority score. If the distributions

of outcome under treatment and comparator conditions are identical and there is no

confounding covariates, the superiority score equals 0.5. However, when there are

confounding covariates, two sample U statistics may not be appropriate to assess the

treatment any more.

In the presence of confounding covariates X, Glen, Kong and Datta (2017)

proposed an adjusted form of the U-statistic using the inverse probability weighting

to weight each subject into its study population. The weights are calculated based
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on the propensity scores. That is, the weight for ith observation is calculated as

w(xi, ti ;β) =


1

ei(Xi)
, if Ti = 1,

1
1−ei(Xi) , if Ti = 0.

(3.3)

Here, ei(Xi) is the propensity score estimated from Equation 3.1. The adjusted U-

statistic is defined as the following form:

γU =
1

n1

1

n0

∑
i∈{i:Ti=1}

∑
j∈{j:Tj=0}

{
w̃1(Xi, Ti; β̂)

}
×K(Yi, Yj)×

{
w̃0(Xj, Tj; β̂)

}

Here the Wilcox kernel K(Yi, Yj) is applied, and the weight for ith subject w̃t(Xi, Ti; β̂)

is a normalized weight which is obtained from

w̃t(Xi, Ti; β̂) =
w(Xi, Ti; β̂)

Ŵt(β̂)
, for Ti = t.

Here, w(Xi, Ti; β̂) is calculated based on the propensity score in Equation 3.3 and

Ŵt(β̂) is the averaged weight for group t:

Ŵt(β̂) =
1

nt

N∑
i=1

w(Xi, Ti; β̂) · I(Ti = t)

where t = 0, 1.

In Glen, Kong and Datta (2017), the asymptotic normality of the adjusted

U-statistics is given and a close form of the asymptotic variance is presented. The

hypothesis for testing H0 : γu = 0.5 vs. H1 : γu 6= 0.5 is thus able to be carried out.

Under the null hypothesis,

T =
γu − 0.5√

v̂
∼ N(0, 1)
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where v̂ is the asymptotic variance of γu and is estimated from the observed data.

The detailed formula of v̂ can be found in Glen, Kong and Datta (2017).

3.3 Simulation Study

Simulation studies are carried out to compare the performance of different methods

presented in Section 3.2. An ordinal outcome with four levels (say, 1, 2, 3, 4) is

considered. It should be noticed that the numeric numbers assigned to the outcome

are only for notational convenience, and these numeric numbers do not bear numerical

meanings. The treatment assignment variable T takes values 0 and 1, where T = 1

indicates treated subjects and T = 0 indicates comparative subjects. Three different

covariates X = (X.1, X.2, X.3)T are considered, where X.1 ∼ N(0, 1), X.2 = X∗.2 − 0.5,

where X∗.2 ∼ Bin(1, 0.5) and X.3 ∼ Uniform(−0.5, 0.5). The treatment assignment

T is generated based on the logistic regression model:

log P (T=1|X)
P (T=0|X)

= Xβ.

The covariate parameter β is set as as β = (1, 1, 1). Two scenarios are considered in

the simulation study. Scenario 1 assumes that the underlying outcome variable follows

an ordinal logistic regression, and scenario 2 assumes that the outcome variable follows

a cumulative Box-Cox model (Guerrero and Johnson, 1982). Since the ordinal logistic

regression is powerful when the underlying model is correctly specified and is sensitive

when the model is misspecified, we expect the ordinal logistic regression model have

the best performance among all the methods under scenario 1 and this advantages

disappears when the underlying model is misspecified.
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3.3.1 Scenario 1: Outcome follows an ordinal logistic model

In this simulation scenario the outcome variable was generated based on the ordinal

logistic regression model:

log
P (Y ≤ k|X,T )

P (Y > k|X,T )
= αk +Xδ + τT

where k = 1, 2, 3. We set the intercepts (α1, α2, α3) = (−1.39,−0.85,−0.62) so that

the probability of occurrence for the first level of the outcome as 0.2, i.e., Pr(Y =

1) = 0.2, and the probabilities for the second to fourth levels are roughly set as 0.1,

0.05, and 0.65, respectively, to match the percentages of outcomes in the case study

presented in next section. The covariate effect parameter δ is assigned as δ = (1, 1, 1).

The treatment effect parameter τ is considered to have values from sequence 0 to 0.6

with 0.05 increment.

We generated 1000 simulated data for each τ , and each simulated data in-

cludes 5000 observations. All the methods presented in Section 3.2 were applied to

estimate the treatment effect. The average of the rejection of the hypothesis test at a

significance level 0.05 for the 1000 simulated data is calculated. For comparison con-

venience, the estimated treatment effect parameter in the ordinal logistic regression

model is transformed to the superiority score using the approximation from Agresti

and Kateri (2016). Under the null hypothesis that there is no treatment effect, the

sizes of all methods are reported in Table 3.1. Only the ordinal logistic regression

and the adjusted U statistic have the size close to 0.05. The propensity score-based

matching, stratification and the classical Mann-Whitney test all have sizes much

larger than 0.05, thus not suitable for estimating treatment effect. For power calcu-

lation, we only consider the methods with a size close to 0.05 as the valid approach.

Thus, only the ordinal logistic regression and the adjusted U statistic are included in

the power analysis.
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Figure 3.1 shows the power curves of the ordinal logistic regression and the ad-

justed U statistics based on the simulated datasets from the ordinal logistic regression

model. As expected, the ordinal logistic regression shows higher power than the ad-

justed Mann-Whitney U test statistics. Table 3.2 summarizes the simulation results

in this scenario. The true superiority score γ is calculated as the average of the 1000

estimated superiority scores based on the 1000 simulated data. The superiority score

for each data set was calculated from γ = N−1
∑N

i=1[I(Y
(1)
i > Y

(0)
i )+ 1

2
I(Y

(1)
i = Y

(0)
i )],

where Y
(0)
i and Y

(0)
i are respectively the outcomes under control and treatment con-

ditions based on the underlying model. The approximated true superiority score is

calculated from the true value of τ , which is γapprox ≈ exp(τ/
√

2))

1+exp(τ/
√

2)
. The averaged

absolute bias of the estimated superiority score from the ordinal logistic regression

is 0.035, while the estimated superiority score from the adjusted U-statistic is 0.013.

The larger bias from the ordinal logistic regression may be due to the approximation

procedure when we transform the treatment effect parameter τ to the superiority

score γ. Since the U-statistic is essentially testing the superiority score, it has less

bias than the OLR model.

3.3.2 Scenario 2: Outcome follows a mixture cumulative Box-Cox model

In practice, we usually do not have enough priori information and do not know the

underlying model. In order to examine the performance of each method when the

underlying model is unknown, we consider the simulation scenario 2 in which the

simulated outcome variable is based on the mixture of Box-Cox distribution functions.

Here Xi and Ti were generated as Scenario 1. However, the outcome variable Yi was

generated from a mixture distribution of the following form:

Yi = Ti · F1(Xi, Ti) + (1− Ti) · F0(Xi, Ti)
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where F1(X,T ) = F (αk + Xδ + τT ;λ), F0(X,T ) = F (αk + Xδ; ;λ), and F belongs

the Box-Cox family distributions (Guerrero and Johnson, 1982) with the following

form:

F (x;λ) =


0, x < − 1

λ
, λ > 0

(1+λx)1/λ

(1+λx)1/λ+1
, 1 + λx > 0, λ 6= 0

1, x > − 1
λ
, λ < 0

In the simulation study, we set λ = 1 and set (α1, α2, α3) by calculating the prob-

abilities of occurrence at the four levels of the outcome as (0.2, 0.1, 0.05, 0.65) for

comparator group. The ordinal logistic regression model and the adjusted U-statistic

are included in the power analysis. The superiority score estimated by the ordinal

logistic regression model is approximated according to the transformation given by

Agresti and Kateri (2016).

Figure 3.2 shows the power curve of the ordinal logistic regression and the

adjusted U-statistic based on the simulated datasets from simulation Scenario 2. On

the contrary of Scenario 1, the adjusted U-statistic has a higher power than the ordinal

logistic regression when τ is small and the two methods are getting close when τ goes

large. However, in this scenario the test size of the ordinal logistic regression model

is 0.082 which is too liberal compared to 0.05. The simulation results in this scenario

is reported in Table 3.3. The true superiority score is calculated as described in

Section 3.3.1. The averaged absolute bias of the adjusted U-statistic is 0.012, which

is much lower than the bias based on OLR model of 0.069. Compared with the bias in

Scenario 1 where the underlying model is the OLR model, the bias of the OLR model

significantly increases when the underlying model is misspecified, while the adjusted

U-statistic keep a relatively small bias.
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3.4 NHANES data application

For illustration, we applied the adjusted U-statistic and the ordinal logistic regression

to estimate the treatment effect of physical activity on diabetic status with control

the confounding variables such as the sociodemographic characters and dietary infor-

mation based on the National Health and Nutrition Examination Survey (NHANES)

datasets.

The NHANES is a nationally survey conducted by the Centers for Disease Con-

trol and Prevention’s National Center for Health Statistics (CDC-NCHS). NHANES

collects both nutrition status and health conditions for the U.S. population. This

study uses two NHANES datasets (2011-2012 and 2013-2014) in the analysis. The

study population includes 7876 subjects from age 20 to 79 with complete 24-hour

dietary recall data, complete laboratory data for plasma fasting glucose, glycohe-

moglobin, cholesterol and triglycerides, complete examination data for body measure

and blood pressure, and complete questionnaire data for diabetes and physical activ-

ities.

The outcome variable in this study is defined as different status of diabetes

and it is categorized to four levels: diabetes, pre-diabetes, metabolic syndrome and

normal. Sociodemographic characteristics include gender, age, race, education and

income. The dietary information of NHANES participants are collected by two 24-

hour dietary recall interviews. The data of total nutrients intakes on the second time

interviews are used in this study. 65 nutrients variables are included in the analysis.

Physical activities is considered as the “treatment” variable and it is first categorized

to three groups: no exercise, moderate exercise and vigorous exercise. However, we

further categorize the physical activity into two leverls: subjects who have neither

vigorous exercise nor moderate exercise are treated as no exercise; vigorous exercise

and moderate exercise are combined to one group as having exercise in the analysis.
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Principal component analysis is performed to summarize the dietary infor-

mation and reduce the dimension of the dietary data. Components that had an

eigenvalue of less than 1.0 (Kaiser, 1960) and accounted for less than 1% of variance

were excluded. In the analysis, 65 variables were reduced to 13 principal components.

Factor loadings with absolute values greater than 0.2 are considered. Each of the

principal component is labeled by the nutrition variable with highest loadings. The

13 principal components are labeled as energy, beta carotene, long chain fatty acid,

vitamin K, vitamin D, cholesterol, moisture, caffeine (negative), caffeine (positive),

total sugar, short chain fatty acid, beta cryptoxanthin and alcohol.

Using the adjusted U statistics, the estimated superiority score is γ̂u = 0.516

(p = 0.011), which indicates that physical activity has significant protective effects on

diabetes. The ordinal logistic regression reports the estimates of treatment parameter

τ̂ = −0.156 (p = 0.010), and the approximated superiority score is γ̂OLR = 0.528,

which is similar to the results based on the adjusted U statistic.

The superiority measures γ̂ has the interpretation that at any particular values

for nutrition intakes, individuals with physical activities have approximately 52%

chance (51.6% based on the adjusted U-statistic and 52.8% based on the OLR model)

to have better diabetes status than the ones without physical activities.

3.5 Discussion and Conclusion

In this project, the causal parameter of the stochastic superiority score is consid-

ered to estimate the treatment effect for the ordinal outcomes. We investigated and

compared the performance of different methods for estimating the treatment effect

for the ordinal outcomes with control of the confounding covariates, including the

ordinal logistic regression, the adjusted U-statistic, and the propensity score based

stratification and matching. The power analyses in the simulation studies show that

the adjusted U-statistic is more powerful and robust to estimate the superiority score
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for the ordinal outcome.

The superiority score and its slight variation have also been studied under

different experimental conditions for ordinal outcomes. For example, Chen (2009)

considers to assess the treatment effect for the ordinal outcome when the noncompli-

ance to assigned treatment exists. The procedure provides and estimates the form of

the superiority score based on a function of the multinomial distributions of compliers

to treatment assignments using likelihood method. Some other causal parameters are

also proposed in the literatures for studying the treatment effect when the outcome is

ordinal. Huang et al. (2017) proposes a plug-in estimator of the fraction who benefits

when the outcome is ordinal based on the marginal distribution of the potential out-

comes. The fraction who benefit is defined as the proportion of the population whose

potential outcome in treatment group is better than the potential outcome in control

groups, that is, Pr(YT > Yc), where YT and Yc are the potential outcomes for treated

subjects and untreated subjects, respectively. Lu et al. (2016) considers two causal

parameters, the probabilities that the treatment is beneficial and strictly beneficial

for the subjects. These two estimators can actually be applied for any outcomes but

especially for the ordinal outcomes. Lu et al. (2016) provides the sharp bounds of

the two parameters using the marginal distributions of the potential outcomes free

from the joint distribution assumption of the potential outcomes.

The superiority of a particular method may depend on the data structure.

When the data satisfies the proportional odds assumption, the ordinal logistic regres-

sion is no doubt a powerful way to estimate the treatment effect for the ordinal out-

comes. However, when the model is misspecified, the ordinal logistic regression lacks

robustness and may result in serious biased estimation. The adjusted U-statistics is a

free of outcome-regression model and thus has higher robustness than the parametric

approaches when the underlying model is unknown, which is the most commonly sit-

uation in practice. Since the U-statistic is adjusted by individual reweighting of the
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data based on the propensity score, it is able to control the impact of the confounding

covariates.

3.6 Tables and Figures

Table 3.1: Sizes of the tests based on different methods for simulated data sets gen-
erated under simulation Scenario 1.

Methods Sizes
OLR 0.051
Matching 0.332
Stratification 0.262
Unadj. U Statistics 1.000
Adj. U Statistics 0.048
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Table 3.2: Summarized simulation results for Scenario 1, where outcome was gener-
ated from an ordinal logistic regression model.

τ True γ
Approximated

true γ
Ordinal Logistic Regression Adjusted U-Statistic

γ̂OLR
σγ̂OLR
*100

Empirical
σγ̂OLR ∗ 100

γ̂u
σγ̂u

*100
Empirical
σγ̂u ∗ 100

0.000 0.500 0.500 0.501 1.178 1.204 0.500 0.741 0.743
0.050 0.497 0.491 0.491 1.208 1.199 0.495 0.761 0.748
0.100 0.494 0.482 0.482 1.183 1.193 0.490 0.736 0.751
0.150 0.491 0.474 0.473 1.174 1.187 0.485 0.741 0.753
0.200 0.488 0.465 0.465 1.147 1.180 0.480 0.740 0.757
0.250 0.485 0.456 0.456 1.175 1.173 0.474 0.774 0.760
0.300 0.482 0.447 0.447 1.137 1.165 0.469 0.760 0.763
0.350 0.479 0.438 0.438 1.167 1.157 0.464 0.783 0.766
0.400 0.476 0.430 0.430 1.158 1.149 0.459 0.784 0.768
0.450 0.473 0.421 0.421 1.134 1.141 0.453 0.774 0.772
0.500 0.470 0.413 0.413 1.111 1.131 0.448 0.760 0.775
0.550 0.467 0.404 0.404 1.094 1.121 0.443 0.754 0.777
0.600 0.464 0.395 0.396 1.098 1.112 0.437 0.780 0.779

Table 3.3: Summarized simulation results for Scenario 2, where the outcome variable
was generated from a mixture of Box-Cox distributions.

τ True γ
Ordinal Logistic Regression Adjusted U-Statistic

γ̂OLR
σγ̂OLR
*100

Empirical
σγ̂OLR ∗ 100

γ̂u
σγ̂u

*100
Empirical
σγ̂u ∗ 100

0.000 0.500 0.492 1.358 1.379 0.500 0.626 0.639
0.050 0.503 0.506 1.387 1.392 0.505 0.623 0.636
0.100 0.507 0.522 1.409 1.404 0.511 0.628 0.633
0.150 0.510 0.537 1.469 1.414 0.516 0.645 0.631
0.200 0.514 0.553 1.453 1.422 0.522 0.620 0.629
0.250 0.517 0.570 1.499 1.427 0.527 0.644 0.626
0.300 0.521 0.587 1.445 1.430 0.533 0.609 0.624
0.350 0.524 0.603 1.523 1.431 0.538 0.640 0.623
0.400 0.528 0.621 1.509 1.428 0.543 0.627 0.621
0.450 0.531 0.638 1.485 1.423 0.548 0.632 0.619
0.500 0.534 0.655 1.448 1.416 0.553 0.625 0.618
0.550 0.537 0.673 1.485 1.403 0.558 0.633 0.617
0.600 0.541 0.690 1.432 1.388 0.563 0.631 0.616
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Figure 3.1: Power curves for different methods with data generated from ordinal
logistic regression models in simulation Scenario 1.
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Figure 3.2: Power curves for different methods in with data generated under simula-
tion Scenario 2.
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CHAPTER 4

CAUSAL ANALYSIS OF DIETARY INFORMATION AND

PHYSICAL ACTIVITY IN TYPE 2 DIABETES BY GENDER IN

WHITE, AFRICAN AMERICAN AND MEXICAN AMERICAN:

NATIONAL HEALTH AND NUTRITION EXAMINATION

SURVEYS 2011-2014

4.1 Introduction

Type 2 diabetes mellitus (T2DM) has become a major public health problem world-

wide and one of the major causes of mortality in the United States outstripping

cancer, HIV/AIDS, and cardiovascular disease. Enormous economic and psychoso-

cial consequences are also associated with T2DM (Menke et al., 2015, Zimmet et

al., 2016, American Diabetes Association, 2013 and Wang et al., 2016). The com-

plications leaded by diabetes occur in many parts of body and increase the risk of

ultimate death. Not only to the individual and their family, diabetes will also result

in huge economic burden on the health system and nation. Globally, around 422

million adults were suffering from diabetes in 2014, which is 8.4% of the adult pop-

ulation (World Health Organization, 2016). In the U.S., the prevalence of diabetes

has risen rapidly during the recent decades. In 1995, 3.3% of the U.S. population

were diagnosed with diabetes and the number increased to 5.61% in 2005 and then

7.14% in 2015. In 2015, 30.3 million people in the U.S. have diabetes (9.4% of the

U.S. population) of which 23.1 million has already been diagnosed as diabetes but
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7.2 million has not been aware of or reported having diabetes (Centers for Disease

Control and Prevention, 2017).

An analysis is performed by Menke et al. (2012) using the National Health

and Nutrition Examination Survey (NHANES) data, which shows that the total un-

adjusted prevalence (diagnosed plus undiagnosed) of diabetes was 12.3% in the US

population, and in 25.2% of those diabetes were undiagnosed (Menke et al., 2015).

Differences of diabetes distributions were also observed in different ethnicity groups.

The study of Menke et al. (2015) shows that the prevalence is much higher in non-

Hispanic black (19.1%) and in Mexican American (14.5%) compared to the prevalence

of total diabetes in non-Hispanic white (10.1%).

Among all the people with diabetes around the world, T2DM comprises ap-

proximately 90% of diabetic cases, and type 1 diabetes only accounts for about 10%

of cases of diabetes (World Health Organization, 1999). However, type 1 diabetes is

a different disease process characterized by total inability of the pancreas to produce

insulin. It is important to analyze the relationship between diet and type 2 diabetes

because food intake is the crucial variable in the control of T2DM. The second im-

portant component of T2DM control is physical activity. These two components are

two of the three major foundations of diabetes therapies, the third being medication.

The NHANES continuous database includes physical activity and detailed analysis

of dietary components. These data have not been previously analyzed and may offer

important insights into dietary variability, physical activity and the management of

T2DM. Multivariate causal model analysis of the combination of the dietary data,

measures of physical activity, BMI, across three major US ethnic groups may reveal

variation in these variables that underlies major features in type 2 diabetes. Such

information may contribute to a better understanding of type 2 diabetes variation

among ethnic groups, and a better understanding of type 2 diabetes between female

and male within each ethnic groups.
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The analytical model is path analysis (i.e., causal structural equations) to ex-

plore the relationships between variables that are clearly causal and outcomes (e.g.,

type 2 diabetes). Path analysis proposed by Wright (1921) is a method used to

determine whether a multivariate non-experimental dataset fits a particular causal

model or not. Although path analysis is not applied to establish the causal relation-

ship between variables, it is very powerful to examine and compare different complex

hypothesis causal models and to find the most consistent one to the data (Streiner,

2005). As a result, the causal importance of independent variables on the outcomes

can be quantitatively estimated.

In the present investigation, we apply path analysisi to examine the associ-

ation between physical activity and diet on diabetes outcome using the NHANES

data (2011-2014). Included T2DM patients are those who are taking only oral hy-

poglycemic agents (biguanides, sulfonylureas, thiazolidinedione-TZDs). Nelson et al.

(2002) described diet and physical activity situations of U.S. adults with T2DM from

NHANES III. However, analyses of the NHANES dietary data in a causal path model

that includes physical activity and predicts HbA1c has not been conducted previously.

The objective of this investigation is to analyze the causal paths that predict HbA1c

using data on demographics, dietary, BMI, physical activity.

4.2 Method

4.2.1 Data and Materials

NHANES 2011-2014 datasets are analyzed in this study. NHANES is a nationally sur-

vey conducted by the National Center for Health Statistics in the Centers for Disease

Control and Prevention (CDC-NCHS). It collects both of nutrition status and health

conditions for the U.S. population. This project combines two NHANES datasets of

study circles 2011-2012 and 2013-2014 in the analysis. The dietary information of
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NHANES participants are collected by two 24-hour dietary recall interviews. The

data of total nutrients intakes on the second time interviews are used in this study.

Totally, 65 nutrition intake variables are extracted from dietary dataset and

used to measure dietary information of subjects in this project. Subjects from 20

to 79 years old in non-Hispanic white, non-Hispanic black and Mexican American

are included in the study. Two dummy variables of non-Hispanic black and Mexican

American are used to stand for the three different ethnicities in the study population.

All the subjects included have a full record for demographic characteristics, physical

activity, BMI, HbA1c and all 65 nutrition intakes.

The variable of physical activity is defined using the physical activity question-

naire data. Subjects who reports either vigorous work activities or vigorous recre-

ational activities are defined as vigorous activity. Subjects who have moderate work

activities or moderate recreational activities are defined as moderate activity. The

final variable of physical activity used in the analysis is a dummy variable with 1

indicates subjects who have either vigorous activities or moderate activities.

Education includes five levels: less than 9th grade, 9-11th grade (including 12th

grade with no diploma), high school graduate/general educational development or

equivalent, some college or associate degree, and college graduate or above. Education

is treated as a continuous variable by assigning scores 1 to 5 to the five levels in order.

Higher score indicates higher education level.

Social economics status (SES) is measured by family monthly poverty level.

It is categorized to 3 levels based on monthly poverty level index: ≤ 1.30, between

1.30 and 1.85, and > 1.85. The monthly poverty level index is defined as the ratio

of monthly family income to the Department of Health and Human Services (HHS)

poverty guidelines specific to family size. Numeric scores 1 to 3 are assigned to the

three levels of SES. SES is treated as a continuous variable in the analysis where a

higher score indicates a higher income.
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4.2.2 Statistical Analysis

Path analysis is applied to determine the causal relationships between demographic

variables, physical activity and dietary information to the outcome variable which is

the diabetes status. Glycohemoglobin (HbA1c) level is used to measure the diabetes

status. Figure 1 shows the hypothesis causal model considered in this study. In the

assumed path diagram, Xs indicate the demographic variables or physical activity, and

Ns indicate the dietary information. For illustration, only two demographic variables

and two nutrition intake variables are drawn in Figure 4.1. The demographic variables

or physical activities (Xs) are considered as exogenous variables, where the variance

of these variables are not explained by the variables inside the assumed causal model.

The dietary variables (Ns), BMI and HbA1c are the endogenous variables where

part of their variances are explained by the other variables inside the causal model.

In the path diagram, double headed arrow indicates the correlation between two

variables which indicates that we assume there is no causal relationship between the

two variables but there is correlation between them. The single headed arrow indicates

the directional causal paths from one variable to another one. For all endogenous

variables, part of their variance are also possibly explained by the extraneous variables

(es), which are the variables outside the causal models.

In the hypothetical causal model, there are four different paths that the de-

mographic variables or physical activity can influence the outcome: (1) direct effect:

X → HbA1c; (2) indirect effect through dietary information: X → N → HbA1c; (3)

indirect effect through BMI: X → BMI → HbA1c; and (4) indirect effect through

dietary information and BMI: X → N → BMI → HbA1c. The total causal effects

of demographic variables or physical activity on the outcome will be the sum of the

effects from all the paths mentioned above.

All the data for continuous variables are standardized. A multivariate linear

regression by regressing the outcome on all the other variables (demographic variables,
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physical activity, dietary variables and BMI) is performed to identify the important

variables in the path analysis. In the path analysis, each direct path is examined

based on the Bonferroni adjusted p-values. Only significant paths are retained and

reported in later path analysis results. An indirect paths is considered significant if

the product of the path coefficients is greater than 0.1.

Path analysis is performed for the entire population first. The descriptive

statistics of all the variables included in the path analysis for the entire population

are reported in Table 4.1. In order to study the causality for each homogeneous

group, path analysis is also performed for each gender-specific subpopulation and

gender-ethnicity-specific subpopulation.

4.3 Results

2832 subjects are included in the analysis with age 48.1 ± 16.2 (mean±sd). 52.7%

of the participants are female, and 47.3% are male. The study population includes

three major ethnicities in the U.S.: 1573 (55.5%) non-Hispanic white, 814 (28.7%)

non-Hispanic Black and 445 (15.7%) Mexican Americans. 7 dietary variables are sig-

nificant from the multivariate linear regression of regressing HbA1c on all demographic

variables, physical activity, 65 dietary variables and BMI. The 7 significant dietary

variables are: protein, carbohydrate, total sugars, total fat, magnesium, moisture and

butanoic fatty acid, which are included in the path analysis. Table 4.1 reports the

descriptive statistics for the variables included in the path analysis by gender and

race.

Figure 4.2 shows the path diagram with significant paths for the entire study

population. Table 4.2 reports the estimated path coefficients of significant paths.

From Table 4.2, physical activity does not show significant direct causal effect on

HbA1c. However, physical activity indirectly affects HbA1c via BMI and magnesium

intake. Via BMI, physical activity has a negative effect of -0.043 on HbA1c, and via
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magnesium intake, the effect is -0.026. Physical activity thus has a negative causal

effect of -0.069 on HbA1c in total.

Age positively affects HbA1c with a total causal effect of 0.298, which includes

a direct effect of 0.282 and an indirect effect of 0.016 via BMI. Similarly, education

affects HbA1c through a direct effect of -0.087 and an indirect effect of -0.019 via

magnesium intake, which lead to a total causal effect of -0.106 on HbA1c. Social

economics status does not show any significant causal effect on HbA1c.

For the 7 dietary variables included in the path analysis, butanoic fatty acid

does not have significant causal relationship with HbA1c. Total sugars intake has

a direct negative effect of -0.081 on HbA1c. Protein, carbohydrate, total fat and

moisture all have an indirect effect on HbA1c through BMI, which are 0.030, -0.021,

0.024 and 0.026, respectively. Magnesium intake shows a relatively strong causal

effect of -0.161 on HbA1c, which includes a direct effect of -0.127 and an indirect

effect of -0.034 via BMI.

Gender plays an important role in the causal model. Although gender does

not affect HbA1c directly, gender has several different paths that indirectly affects

HbA1c through one or two mediate variables. The estimated effect of each path are

reported in Table 2. In summery, gender has a total causal effect of -0.107 on HbA1c

which indicates that female has higher HbA1c than male. In order to investigate

the difference in the causal structure for between male and female, a separate path

analysis is performed for male and female, respectively.

Table 4.3 and Table 4.4 report the estimated causal effects of each independent

variable on the outcome variable HbA1c for male and female, respectively. Figure 4.3

and Figure 4.3 are the path diagram with only significant paths for male and female,

respectively. Physical activity shows similar causal effects on HbA1c for both male

(-0.057) and female (-0.051). However, for male, physical activity affects HbA1c via

BMI, while for female, physical activity affects HbA1c through magnesium intake. For
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female, age has a direct effect of 0.293 on HbA1c. For male, age has a direct effects

of 0.245 on HbA1c, and also affects HbA1c via energy and carbohydrate intake with

a total effect of 0.295. Education and SES do not show significant causal effects on

HbA1c for male. However, SES has an indirect causal effect of -0.115 on HbA1c

through BMI, which indicates that female with a lower income is believed to have a

higher BMI, and then result in a higher HbA1c value.

Two dummy variables of Mexican American and Non-Hispanic black are used

in the analysis and Non-Hispanic White is used as a reference. According to the

results in Table 4.2, Mexican American shows a negative causal effect of -0.065 on

HbA1c, which comes from the indirect paths via magnesium intake. Non-Hispanic

black has a strong positive causal effect of 0.347 on HbA1c, which includes a direct

effect of 0.302 and an indirect effect of 0.045 through BMI. In order to study the

specific causal relationship for each homogeneous ethnicity group, separated path

analysis are constructed for each gender-race-specific subpopulation.

Table 4.5 reports the significant paths for Mexican American male and female.

Dietary variables in the path analysis for Mexican American male include total fat,

added vitamin B12, vitamin K and caffeine. Dietary variables included in the path

analysis for Mexican American female are: total sugars, total monounsaturated fatty

acids, lutein and zeaxanthin, magnesium, iron and selenium. Age has strong positive

direct effect of 0.385 for Mexican American male, compared to 0.322 for Mexican

American female. Education and SES do not show any significant causal effects on

HbA1c for Mexican American.

Table 4.6 reports the estimated causal effects of significant paths for non-

Hispanic black by gender. Since no dietary variables are significant in the multivariate

linear regression for non-Hispanic black male, the following path analysis is skipped.

For non-Hispanic black female, physical activity shows a significant effect of -0.073 on

HbA1c through magnesium intakes. Similarly, education also has a negative causal
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effect of -0.052 on HbA1c through magnesium intakes. Age shows a strong positive

direct effect of 0.340 on HbA1c for non-Hispanic black female. (See Table 4.6 for

estimated path coefficients and Figure 4.6 for the path diagram).

Table 4.7 reports the estimates of significant path coefficients for non-Hispanic

white by gender. For non-Hispanic white male, age has positive causal effect of 0.265

on HbA1c, which includes a direct effect of 0.227 and indirect effects through energy

intake, carbohydrate intake and BMI. For non-Hispanic white female, age only has

a direct effect of 0.273 on HbA1c. For white male, education shows a direct effect

of -0.115 on HbA1c, while education is not significant for white female. However,

physical activity causes reduction in BMI and hence results in an indirect effect on

HbA1c of -0.081 for white female, while no significant effect of physical activity is

observed for white male. Figures 4.7 and 4.8 are the path diagrams for non-Hispanic

white male and female, respectively.

4.4 Discussion and Conclusion

In our study, the variation among different homogeneous groups are observed. Based

on our analysis, males tend to have lower HbA1c level than females based on our

analysis (-0.107, see Table 4.2). The total effect of physical activity on HbA1c is

desired from several indirect paths through nutrition intake. Males have much higher

intakes of all nutrition components than females, especially for protein (0.557) and

total fat (0.447). Compared to males, females have a relatively higher BMI (-0.248),

apparently causing a higher HbA1c. This result can be explained by the different

body composition of female and male. The path model is also observed to vary

across different ethnicities is also observed. Consistent with the prevalence of T2DM

in the U.S. population, non-Hispanic blacks have a higher risk of T2DM compared to

non-Hispanic whites. However, Mexican-Americans have a lower risk of T2DM than

non-Hispanic white. Higher intake of magnesium in white, which is known to lead to
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lower HbA1c values, is one of the significant differences.

Total sugar intake is observed to have a direct beneficial effect (-0.081, see Table

4.2) of decreasing HbA1c. Our finding supports the negative association between

total sugar intake and the risk of T2DM observed from a prospective study of 36,787

non-diabetic men and women (Hodge et al., 2004). The observed effects of total

sugar intake on T2DM from current published studies are inconsistent. Janket et

al. (2003) reported that no definitive evidence was observed that total sugars intake

is associated with developing T2DM based on a prospective study of 38,480 initially

healthy postmenopausal women. Tsilas et al. (2017) performed a systematical review

and meta analysis of prospective cohort studies to assess the association between the

intakes of total sugar or certain sugar type and the risk of T2DM. No significant

effect was observed of the intakes of total sugars and fructose on the risk of T2DM.

However, intake of sucrose was observed to have beneficial effect of decreasing T2DM.

Higher intake of total fat is observed to result in higher HbA1c through BMI

(0.024, see Table 4.2) in our study. This strong positive effect is particularly observed

in males (0.342, see Table 4.3), while for females, total fat intake is not significant on

HbA1c. Our result supports the conclusion of a prospective study of 42,504 male that

total fat intake was associated with a higher risk of T2DM but was not independent

of BMI in men (Van Dam et al., 2002). Also, no association was observed between

total fat intake and the risk of T2DM in women based on another prospective study of

84,204 women (Salmeron et al., 2001). Although some studies reported no association

between total fat intake and T2DM, significant relationship of the intakes of certain

types of fat and T2DM were observed. Harding et al. (2004) conducted a prospective

study of 23,631 Caucasian men and women aged 40-78 years, and there study didn’t

find significant association between total fat intake and the risk of T2DM. However,

a higher ratio of dietary polyunsaturated fat to saturated fat was observed to have a

protective effect on the development of T2DM.
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In our study, intake of protein is found to have a positive effect on HbA1c

through BMI (0.03, see Table 4.2). This result is consistent with some previous

studies that intake of protein has positive relationship with the risk of T2DM (Malik

et al., 2016; Sluijs et al., 2010; Van Nielen et al., 2014; Shang et al., 2016). Based

on three large prospective cohort studies of US adults, Malik et al. (2016) also found

a positive association between total protein intake and the risk of T2DM, and this

positive association is observed to be largely due to the intake of animal protein. In

the contrast, they also observed a protective effect of intake of vegetable protein on

T2DM.

In our study, no direct effect of total carbohydrate intake on HbA1c is ob-

served. However, dietary carbohydrate is negatively associated with BMI (-0.10),

which further results in a lower effect (-0.021) on decreasing HbA1c (see Table 4.2).

Our finding of the negative effect of carbohydrate intake on BMI is consistent with

the literatures (Hodge et al., 2004). Merchant et al. (2009) reported that a low-

carbohydrate diet is associated with higher probability of being overweight or obese

among healthy adults. The association between carbohydrate intake and BMI or

T2DM is controversial. Total dietary carbohydrate intake does not have significant

effect on the risk of T2DM according to some researches. However, certain patterns of

carbohydrate consumption (e.g., percentage of total energy) have a significant effect

on BMI and HbA1c. Ma et al. (2005) reported no significant relationship between

total daily carbohydrate intake and BMI among 572 healthy adults in central Mas-

sachusetts. However, the percentages of calories from carbohydrate had a significant

positive effect on BMI. Meyer et al. (2000) reported that the total carbohydrate in-

take is associated with the risk of T2DM in a prospective cohort study of 35,988 Iowa

women (55-69 years old) who were initially free of diabetes. However, certain types

of carbohydrate, such as grains (especially whole grains), has significant protective

effect of T2DM (Meyer et al., 2000). Haimoto et al. (2008) compared the long-term
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effect of a carbohydrate-reduced diet to a conventional diet in T2DM patients in a

2-year follow up study. The conventional diet restricted energy intake by reducing

fat for T2DM, while the carbohydrate-reduced diet asked T2DM patients limiting

carbohydrate-rich foods to once or twice a day. They found that the carbohydrate-

reduced diet caused decreases in both HbA1c and BMI. Their results suggested that

restricting carbohydrate intake is more beneficial than restricting fat consumption in

the management of T2DM.

Our study reveal the importance of magnesium intake in decreasing the risk

of T2DM. Compared to the effect of protein, carbohydrate, total fat and moisture,

magnesium intake has a stronger effect on HbA1c. Higher intake of magnesium has a

better beneficial effect on decreasing BMI and HbA1c, further on decreasing the risk

of T2DM. This finding is consistent with several other publications. Van Dam et al.

(2006) found that high dietary magnesium intake is associated with a substantially

lower risk of T2DM in U.S. black women in an 8-year prospective study of 41,186

U.S. black women. This result is consistent with ours that magnesium intake has a

strong causal effect (-0.246) on decreasing HbA1c in non-Hispanic black females. The

association between magnesium intake and fasting insulin concentrations are investi-

gated among middle-aged women who were not diabetic (Fang et al., 2003). Higher

magnesium intake is associated with lower fasting insulin concentrations, indicating

higher insulin sensitivity. Lopez-Ridaura et al. (2004) observed a consistent inverse

association between magnesium intake and risk of T2DM based on two large prospec-

tive studies in men and women. Across all the subgroup study, classified by different

BMI, physical activity and family diabetes history, magnesium remained significant

protection against T2DM. A meta-analysis of prospective cohort studies (Dong et

al., 2011) supported the observations that magnesium intake has a significant in-

verse association with the risk of T2DM. Resnick et al. (1993) suggested that both

extracellular and intracellular magnesium deficiency is associated with chronic mild
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T2DM. A high prevalence of hypomagnesaemia and lower intracellular magnesium

concentrations were found in diabetic subjects (Barbagal and Dominguez, 2006). Hy-

pomagnesemia occurs among 13.5% to 47.7% among patients with T2DM compared

with 2.5% to 15% among the subjects without T2DM (Pham et al., 2007). Magne-

sium has a complex relationship with insulin and glucose. On one hand, insulin is a

hormone that regulates magnesium metabolism, and glucose is a physiologic deter-

minant of cellular magnesium (Barbagal and Dominguez, 2007). On the other hand,

magnesium is also a major determinant of insulin and glucose metabolism. It serves

as a a modulator of insulin action and insulin sensitivity (Barbagal and Dominguez,

2007).

Another significant dietary component based on our analysis is moisture intake.

It includes moisture present in all foods, beverages, and water consumed as a beverage.

A positive association between moisture intake and HbA1c is observed through BMI

(0.026, see Table 4.2). Our results supports the finding of Kant et al. (2009) that total

water intake was associated with increased BMI. However, the association between

total moisture intake and the risk of T2DM has not well-investigated because of the

limited research, but the effects of various contributors to the total moisture intake

on the risk of T2BM was examined in several studies. Roussel et al. (2011) reported

a negative association between daily water intake and the risk of hyperglycemia based

on a 9-year follow up study of 3,615 middle-aged French men and women. However,

Pan et al. (2012) did not observe significant association between the plain water intake

and the risk of T2DM based on a prospective study of 82,902 young and middle-aged

women. In a cross-sectional study of sample size 138, Carroll et al. (2015) found that

higher plain-water intake is associated with a lower T2DM risk score.

The relationship between BMI and T2DM has been well-investigated. BMI

is an crucial and modifiable risk factor for T2DM. Nguyen et al.(2010) showed a

clear association between BMI and diabetes in a large, representative sample of the
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US population using NHANES 1999-2006 data. The lowest prevalence of diabetes

was found in the normal weight group (BMI < 25.0), and the prevalence of diabetes

increased as obesity class increases. Our study shows strong direct effect of BMI

on increasing HbA1c across all subgroups. Some dietary intake factors(i.e., protein,

carbohydrate, total fat and moisture) affect HbA1c only through BMI (see Table

4.2 and Figure 4.2). In order to have a clear understanding of causal paths through

BMI, we also performed a path analysis that use two dummy variables (overweight

with BMI between 25 and 30 and obesity with BMI ≥ 30)) in the analysis instead

of the continuous variable BMI. The results indicate that all the causal effects on

HbA1c from independent variables through BMI are changed through obesity (see

Figure 4.9 for the path diagram). These findings agree with the previously published

results (Nguyen et al., 2010) that the prevalence of diabetes increases with increased

obesity. The indirect effect from physical activity through obesity to HbA1c but not

overweight also supports the finding that physical activity has a protective effect in

subjects with high BMI (Hu, et al., 2004).

This project performed multivariate causal analysis to investigate the causal

relationship between the two important components in T2DM therapies using the

NHANES 2011-2014 continuous database: physical activity and dietary. Analysis

was also carried out in homogeneous subgroups. Variability in causal structures are

observed across different subgroups, while the causal importance of some components

such as the intake of magnesium stay relatively stable. Magnesium intake is a signifi-

cant protective factor, decreasing HbA1c, especially in females. Our work provides an

insight understanding in possible causal association between physical activity, dietary

components and diabetes status (i.e., HbA1c).

4.5 Tables and Figures
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Table 4.2: Significant paths and summarized causal effects for each variable in the
path analysis for the entire population. Dietary variables in the path analysis include
protein, total sugars, total fat, magnesium, moisture and butanoic fatty acid. Only
significant direct effects and indirect effects no less than 0.01 are reported in the table.
For indirect effects, intermediate path coefficients are reported in 2nd to 4th columns
under the column title “r1, r2, r3”.

Paths
Intermediate Path Coefficients

Total Direct/Indirect Effects
r1 r2 r3

Physical Activity
Physical Activity ->BMI -0.202
Physical Activity ->Magnesium 0.205
Physical Activity ->Moisture 0.184
Physical Activity ->BMI ->HbA1c -0.202 0.214 -0.043
Physical Activity ->Magnesium ->HbA1c 0.205 -0.127 -0.026
Total effects on HbA1c -0.069
Age
Age ->HbA1c 0.282
Age ->BMI 0.074
Age ->Protein -0.086
Age ->Carbohydrate -0.124
Age ->Total Sugars -0.11
Age ->Total Fat -0.084
Age ->SFA 40 Butanoic -0.085
Age ->BMI ->HbA1c 0.074 0.214 0.016
Total effects on HbA1c 0.298
Education
Education ->HbA1c -0.087
Education ->Protein 0.074
Education ->Magnesium 0.152
Education ->Moisture 0.078
Education ->Magnesium ->HbA1c 0.152 -0.127 -0.019
Total effects on HbA1c -0.106
Gender
Gender ->BMI -0.248
Gender ->Protein 0.557
Gender ->Carbohydrate 0.442
Gender ->Total Sugars 0.27
Gender ->Total Fat 0.447
Gender ->Magnesium 0.373
Gender ->Moisture 0.261
Gender ->SFA 40 Butanoic 0.205
Gender ->BMI ->HbA1c -0.248 0.214 -0.053
Gender ->Total Sugars ->HbA1c 0.27 -0.081 -0.022
Gender ->Magnesium ->HbA1c 0.373 -0.127 -0.047
Gender ->Protein ->BMI ->HbA1c 0.557 0.139 0.214 0.017
Gender ->Total Fat ->BMI ->HbA1c 0.447 0.111 0.214 0.011
Gender ->Magnesium ->BMI ->HbA1c 0.373 -0.161 0.214 -0.013
Total effects on HbA1c -0.107
Mexican Americans
MexA ->Protein 0.295
MexA ->Magnesium 0.401
MexA ->Magnesium ->HbA1c 0.401 -0.127 -0.051
MexA ->Magnesium ->BMI ->HbA1c 0.401 -0.161 0.214 -0.014
Total effects on HbA1c -0.065
Non-Hispanic Black
NHB ->HbA1c 0.302
NHB ->BMI 0.209
NHB ->Moisture -0.359
NHB ->SFA 40 Butanoic -0.266
NHB ->BMI ->HbA1c 0.209 0.214 0.045
Total effects on HbA1c 0.347
Total Sugars
Total Sugars ->HbA1c -0.081
Protein
Protein ->BMI 0.139
Protein ->BMI ->HbA1c 0.139 0.214 0.030
Total effects on HbA1c 0.030
Carbohydrate
Carbohydrate ->BMI -0.1
Carbohydrate ->BMI ->HbA1c -0.100 0.214 -0.021
Total effects on HbA1c -0.021
Total Fat
Total Fat ->BMI 0.111
Total Fat ->BMI ->HbA1c 0.111 0.214 0.024
Total effects on HbA1c 0.024
Magnesium
Magnesium ->HbA1c -0.127
Magnesium ->BMI -0.161
Magnesium ->BMI ->HbA1c -0.161 0.214 -0.034
Total effects on HbA1c -0.161
Moisture
Moisture ->BMI 0.121
Moisture ->BMI ->HbA1c 0.121 0.214 0.026
Total effects on HbA1c 0.026
BMI
BMI ->HbA1c 0.214
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Table 4.3: Significant paths and summarized causal effects for each variable in the
path analysis for male. Dietary variables in the path analysis include energy, protein,
carbohydrate, total sugars, total fat and moisture. Only significant direct effects
and indirect effects no less than 0.01 are reported in the table. For indirect effects,
intermediate path coefficients are reported in 2nd to 4th columns under the column
title “r1, r2, r3”.

Paths
Intermediate Path Coefficients

Total Direct/Indirect Effects
r1 r2 r3

Physical Activity
Physical Activity ->BMI -0.224
Physical Activity ->Moisture 0.239
Physical Activity ->BMI ->HbA1c -0.224 0.256 -0.057
Total effects on HbA1c -0.057
Age
Age ->HbA1c 0.245
Age ->Energy -0.136
Age ->Carbohydrate -0.135
Age ->Total Sugars -0.121
Age ->Energy ->HbA1c -0.136 -0.473 0.064
Age ->Carbohydrate ->HbA1c -0.135 0.223 -0.03
Age ->Energy ->BMI ->HbA1c -0.136 -0.452 0.256 0.016
Total effects on HbA1c 0.295
Mexican American
MexA ->Protein 0.321
MexA ->Protein ->BMI ->HbA1c 0.321 0.117 0.256 0.01
Non-Hispanic Black
NHB ->HbA1c 0.378
NHB ->Carbohydrate -0.239
NHB ->Total Sugars -0.233
NHB ->Moisture -0.375
NHB ->Carbohydrate ->HbA1c -0.239 0.223 -0.053
NHB ->Moisture ->BMI ->HbA1c -0.375 0.107 0.256 -0.01
Total effects on HbA1c 0.315
Energy
Energy ->HbA1c -0.473
Energy ->BMI -0.452
Energy ->BMI ->HbA1c -0.452 0.256 -0.116
Total effects on HbA1c -0.589
Protein
Protein ->BMI 0.117
Protein ->BMI ->HbA1c 0.117 0.256 0.030
Carbohydrate
Carbohydrate ->HbA1c 0.223
Carbohydrate ->BMI 0.075
Carbohydrate ->BMI ->HbA1c 0.075 0.256 0.019
Total effects on HbA1c 0.242
Total Fat
Total Fat ->HbA1c 0.271
Total Fat ->BMI 0.277
Total Fat ->BMI ->HbA1c 0.277 0.256 0.071
Total effects on HbA1c 0.342
Moisture
Moisture ->BMI 0.107
Moisture ->BMI ->HbA1c 0.107 0.256 0.027
BMI
BMI ->HbA1c 0.256
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Table 4.4: Significant paths and summarized causal effects for each variable in the
path analysis for female. Dietary variables in the path analysis include energy, protein,
carbohydrate, total sugars, total fat and moisture. Only significant direct effects
and indirect effects no less than 0.01 are reported in the table. For indirect effects,
intermediate path coefficients are reported in 2nd to 4th columns under the column
title “r1, r2, r3”.

Paths
Intermediate Path Coefficients

Total Direct/Indirect Effects
r1 r2 r3

Physical Activity
Physical Activity ->Magnesium 0.230
Physical Activity ->Magnesium ->HbA1c 0.230 -0.171 -0.039
Physical Activity ->Magnesium ->BMI ->HbA1c 0.230 -0.257 0.197 -0.012
Total effects on HbA1c -0.051
Age
Age ->HbA1c 0.293
Mexican American
MexA ->Phosphorus 0.244
MexA ->Magnesium 0.389
MexA ->Magnesium ->HbA1c 0.389 -0.171 -0.067
MexA ->Phosphorus ->BMI ->HbA1c 0.244 0.214 0.197 0.010
MexA ->Magnesium ->BMI ->HbA1c 0.389 -0.257 0.197 -0.020
Total effects on HbA1c -0.077
Non-Hispanic Black
NHB ->HbA1c 0.273
NHB ->BMI 0.382
NHB ->Moisture -0.338
NHB ->BMI ->HbA1c 0.382 0.197 0.075
Total effects on HbA1c 0.348
SES
SES ->BMI -0.096
SES ->BMI ->HbA1c -0.096 0.197 -0.019
Total effects on HbA1c -0.115
Phosphorus
Phosphorus ->BMI 0.214
Phosphorus ->BMI ->HbA1c 0.214 0.197 0.042
Magnesium
Magnesium ->HbA1c -0.171
Magnesium ->BMI -0.257
Magnesium ->BMI ->HbA1c -0.257 0.197 -0.050
Total effects on HbA1c -0.478
Moisture
Moisture ->BMI 0.134
Moisture ->BMI ->HbA1c 0.134 0.197 0.026
BMI
BMI ->HbA1c 0.197

Table 4.5: Significant paths and summarized causal effects for each variable in the
path analysis for Mexican American by gender. Only significant direct effects and
indirect effects no less than 0.01 are reported in the table.

Paths Estimates
Mexican American Male
Age ->HbA1c 0.385
Mexican American Female
Age ->HbA1c 0.322
Magnesium ->HbA1c -0.307
Magnesium ->BMI -0.357
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Table 4.6: Significant paths and summarized causal effects for each variable in the
path analysis for non-Hispanic black by gender. Only significant direct effects and
indirect effects no less than 0.01 are reported in the table.

Paths
Intermediate Path Coefficients

Total Direct/Indirect Effects
r1 r2

Non-Hispanic Black Male
- - -

Non-Hispanic Black Female
Age
Age ->HbA1c 0.340
Physical Activity
Physical Activity ->Magnesium 0.295
Physical Activity ->Magnesium ->HbA1c 0.295 -0.246 -0.073
Education
Education ->Magnesium 0.212
Education ->Magnesium ->HbA1c 0.212 -0.246 -0.052
Energy
Energy ->BMI 0.328
Energy ->BMI ->HbA1c 0.328 0.145 0.048
Carbohydrate
Carbohydrate ->BMI -0.489
Carbohydrate ->BMI ->HbA1c -0.489 0.145 -0.071
Phosphorus
Phosphorus ->HbA1c 0.297
Phosphorus ->BMI 0.312
Phosphorus ->BMI ->HbA1c 0.312 0.145 0.045
Magnesium
Magnesium ->HbA1c -0.246
BMI
BMI ->HbA1c 0.145
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Table 4.7: Significant paths and summarized causal effects for each variable in the
path analysis for non-Hispanic white by gender. Only significant direct effects and
indirect effects no less than 0.01 are reported in the table.

Paths
Intermediate Path Coefficients

Total Direct/Indirect Effects
r1 r2 r3

Non-Hispanic White Male
Age
Age ->HbA1c 0.227
Age ->Energy -0.149
Age ->Carbohydrate -0.168
Age ->Total Sugars -0.167
Age ->Energy ->HbA1c -0.149 -0.578 0.086
Age ->Energy ->BMI ->HbA1c -0.149 0.286 0.239 -0.01
Age ->Carbohydrate ->HbA1c -0.168 0.322 -0.054
Age ->Carbohydrate ->BMI ->HbA1c -0.168 -0.39 0.239 0.016
Total effects on HbA1c 0.265
Education
Education ->HbA1c -0.115
Energy
Energy ->HbA1c -0.578
Energy ->BMI 0.286
Energy ->BMI ->HbA1c 0.286 0.239 0.069
Total effects on HbA1c -0.509
Protein
Protein ->HbA1c 0.143
Carbohydrate
Carbohydrate ->HbA1c 0.322
Carbohydrate ->BMI -0.39
Carbohydrate ->BMI ->HbA1c -0.39 0.239 -0.093
Total Fat
Total Fat ->HbA1c 0.212
Thiamin (Vitamin B1)
Thiamin VitB1 ->BMI 0.122
Thiamin VitB1 ->BMI ->HbA1c 0.122 0.239 0.029
BMI
BMI ->HbA1c 0.239

Non-Hispanic White Female
Age
Age ->HbA1c 0.273
Physical Activity
Physical Activity ->BMI -0.356
Physical Activity ->BMI ->HbA1c -0.356 0.228 -0.081
Education
Education ->VitC 0.170
Education ->Alcohol 0.119
Alcohol
Alcohol ->BMI -0.193
Alcohol ->BMI ->HbA1c -0.193 0.228 -0.044
SFA 4:0 (Butanoic)
SFA 40 Butanoic ->BMI -0.136
SFA 40 Butanoic ->BMI ->HbA1c -0.136 0.228 -0.031
BMI
BMI ->HbA1c 0.228
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Figure 4.1: Hypothesis causal model (Adapted from Wright, 1934). X1 and X2

indicate demographic characteristics or physical activity. N1 and N2 are nutrition
intake variables, which reflect the dietary information.
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APPENDIX

Appendix 1

This section includes the additional figures and tables in Chapter 2.

Table A1.1: All possible candidate profiles with nodal parameters for T = 4. Nodal
parameters for ORI method are defined as the parameters linked to all the other pa-
rameters where the two parameters are considered as linked if the inequality between
them is pre-specified.

Candidate Profiles Nodal Parameters
C0 : µ1 = µ2 = µ3 = µ4 -
C1 : µ1 < µ2 < µ3 < µ4 µ1, µ2, µ3, µ4

C2 : µ1 < µ2 < µ3 > µ4 µ3

C3 : µ1 < µ2 > µ3 < µ4 None
C4 : µ1 < µ2 > µ3 > µ4 µ2

C5 : µ1 > µ2 < µ3 < µ4 µ2

C6 : µ1 > µ2 < µ3 > µ4 None
C7 : µ1 > µ2 > µ3 < µ4 µ3

C8 : µ1 > µ2 > µ3 > µ4 µ1, µ2, µ3, µ4
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Table A1.3: Selected profiles and the percentage of J = 35 sites assigned to each
profile for T = 5 and T = 8 in simulation study of Section 2.4.2.

Selected Profiles % Assigned to Profile
T = 5

C0 : µ1 = µ2 = µ3 = µ4 = µ5 20%
C1 : µ1 < µ2 < µ3 < µ4 < µ5 10%
C2 : µ1 < µ2 > µ3 > µ4 > µ5 10%
C3 : µ1 < µ2 < µ3 > µ4 > µ5 5%
C4 : µ1 < µ2 < µ3 < µ4 > µ5 10%
C5 : µ1 > µ2 < µ3 < µ4 < µ5 5%
C6 : µ1 > µ2 > µ3 < µ4 < µ5 5%
C7 : µ1 > µ2 > µ3 > µ4 < µ5 10%
C8 : µ1 > µ2 > µ3 > µ4 > µ5 10%
C9 : µ1 < µ2 < µ3 > µ4 < µ5 5%
C10 : µ1 < µ2 > µ3 < µ4 < µ5 10%

T = 8
C0 : µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = µ8 20%
C1 : µ1 < µ2 < µ3 < µ4 < µ5 < µ6 < µ7 < µ8 5%
C2 : µ1 < µ2 > µ3 < µ4 < µ5 < µ6 < µ7 < µ8 5%
C3 : µ1 < µ2 > µ3 < µ4 > µ5 < µ6 < µ7 < µ8 5%
C4 : µ1 < µ2 < µ3 < µ4 > µ5 > µ6 > µ7 > µ8 10%
C5 : µ1 < µ2 < µ3 < µ4 > µ5 < µ6 > µ7 > µ8 5%
C6 : µ1 < µ2 < µ3 < µ4 < µ5 < µ6 > µ7 > µ8 5%
C7 : µ1 < µ2 < µ3 < µ4 < µ5 < µ6 < µ7 > µ8 10%
C8 : µ1 > µ2 > µ3 < µ4 < µ5 > µ6 < µ7 < µ8 5%
C9 : µ1 > µ2 > µ3 < µ4 < µ5 < µ6 > µ7 < µ8 5%
C10 : µ1 > µ2 > µ3 > µ4 < µ5 < µ6 < µ7 < µ8 5%
C11 : µ1 > µ2 > µ3 > µ4 > µ5 < µ6 > µ7 < µ8 5%
C12 : µ1 < µ2 > µ3 > µ4 > µ5 > µ6 < µ7 > µ8 5%
C13 : µ1 > µ2 > µ3 > µ4 < µ5 > µ6 < µ7 < µ8 5%
C14 : µ1 > µ2 > µ3 > µ4 > µ5 > µ6 > µ7 > µ8 5%
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Figure A1.1: Estimated Trajectory with 95% credible interval (1st and 3rd columns)
and MPW estimators (2nd and 4th columns) of proteins 1-10. The colored lines
represent the observed phosphorylation abundance of each of the five patients. The
boxes of MPW plots represent the posterior probabilities between each of two adjacent
time points, and the shaded box indicates the MPW-selected classifications.
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Figure A1.2: Estimated Trajectory with 95% credible interval (1st and 3rd columns)
and MPW estimators (2nd and 4th columns) of proteins 11-20. The colored lines
represent the observed phosphorylation abundance of each of the five patients. The
boxes of MPW plots represent the posterior probabilities between each of two adjacent
time points, and the shaded box indicates the MPW-selected classifications.
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Figure A1.3: Estimated Trajectory with 95% credible interval (1st and 3rd columns)
and MPW estimators (2nd and 4th columns) of proteins 21-30. The colored lines
represent the observed phosphorylation abundance of each of the five patients. The
boxes of MPW plots represent the posterior probabilities between each of two adjacent
time points, and the shaded box indicates the MPW-selected classifications.
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Figure A1.4: Estimated Trajectory with 95% credible interval (1st and 3rd columns)
and MPW estimators (2nd and 4th columns) of proteins 31-32. The colored lines
represent the observed phosphorylation abundance of each of the five patients. The
boxes of MPW plots represent the posterior probabilities between each of two adjacent
time points, and the shaded box indicates the MPW-selected classifications.

98



Appendix 2

This section includes the derivation of the estimated variance of the superiority score

obtained from the propensity score-based matching in Chapter 3.

Let us denote I1i = I(Y
(1)
i > Y

(0)
i ) and I0i = I(Y

(1)
i = Y

(0)
i ). Then in the propensity

score-based matching method, the estimated superiority score can be expressed as:

γ̂Mat =
1

N

N∑
i=1

[I(Y
(1)
i > Y

(0)
i ) +

1

2
I(Y

(1)
i = Y

(0)
i )]

=
1

N

N∑
i=1

[I1i +
1

2
I0i]

Then the estimated variance for γ̂Mat is derived as follows.

σ̂γ,Mat = V ar(γ̂Mat)

= V ar(
1

N

N∑
i=1

[I1i +
1

2
I0i])

=
1

N2

N∑
i=1

V ar(I1i +
1

2
I0i)

=
1

N
V ar(I11 +

1

2
I01)

=
1

N
{E(I11 +

1

2
I01)2 − [E(I11 +

1

2
I01)]2}

=
1

N
{E(I11) +

1

4
E(I01)− [E(I11 +

1

2
I01)]2}

=
1

N
{ 1

N

N∑
i=1

I(Y
(1)
i > Y

(0)
i ) +

1

N

N∑
i=1

1

4
I(Y

(1)
i = Y

(0)
i )

− [
1

N

N∑
i=1

(I(Y
(1)
i > Y

(0)
i ) +

1

2
I(Y

(1)
i = Y

(0)
i ))]2}

=
1

N
(p̂1 +

1

4
p̂0 − γ̂2

Mat).

where p̂1 = 1
N

∑N
i=1 I(Y

(1)
i > Y

(0)
i ) and p̂0 = 1

N

∑N
i=1 I(Y

(1)
i = Y

(0)
i )
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