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ABSTRACT 

AN EVALUATION OF MULTIPLE ENDMEMBER SPECTRAL MIXTURE 

ANALYSIS APPLIED TO LANDSAT 8 OLI IMAGES FOR MAPPING LAND 

COVER IN SOUTHERN AFRICA’S SAVANNA 

Fernando F. Caixeta 

May 14, 2016 

Mapping land cover in southern Africa’s savannas using traditional pixel based remote 

sensing techniques can be very challenging due to the heterogeneity of its vegetation 

structure and the spectral difficulty in separating similar land covers across various land 

uses. In order to overcome these complications, a Multiple Endmember Spectral Mixture 

Analysis (MESMA) provides a potential remote sensing approach to quantify spectral 

variation in the physical environment at a subpixel level. The MESMA approach was 

applied in the study area of the Mayuni Conservancy, in Namibia. Results show that 

32.3% of the study area is covered by photosynthetic vegetation (PV), 32.0% by non-

photosynthetic vegetation (NPV), 25.2% by bare soil (B) and 10.6% by shade. Post-

classification validation shows that MESMA presented a moderate performance in 

estimating the proportions of land cover types in the study area. However the validation 

process is limited to the available resources and carries great subjectivity. It is concluded 

that future research on the matter should include a more consistent investigation on the 

endmember selection methodology and expand the study area inside of the same 

ecosystem. 
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INTRODUCTION 

Occupying vast areas between the equatorial forests and the mid-latitude deserts, 

savannas have ecological characteristics, neither those of a forest, nor those of a 

grassland. The unique character of this kind of vegetation is given by strong and complex 

interactions between woody and herbaceous plants. Indeed, in no other major terrestrial 

biome is primary production so equitably shared between trees and grasses (Scholes and 

Walker 2004). Tropical savannas cover about 1.6 million hectares, which represents one 

eighth of Earth’s land surface. They cover more than half of the area of Africa and 

Australia, 45% of South America, and 10% of India and Southeast Asia, containing a 

large and rapidly growing proportion of the world’s human population and the majority 

of its rangelands and livestock. At the same time, savannas are among the most 

remarkable vegetation types, where contrasting plant species thrive, side by side, in co-

dominance relationships (Scholes and Archer 1997). 

At the global scale, tropical savannas play a major role in land-atmosphere energy 

balance. The arid and semi-arid savanna systems in southern Africa are important 

contributors to biomass productivity and biodiversity, containing some of the largest 

wildlife habitats, and offering a basis for the development of economic activities (Stott 

1991). Savannas are heterogeneous in structure and present diverse systems that differ 

functionally from each other. The morphology of savanna vegetation varies from dense 

shrubland and woodland to open grassland with little shrub cover, as well as intermediate 

gradients of plant density (Sankaran et al. 2005). These savanna systems are undergoing
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large-scale structural and functional changes, as a result of increasing anthropogenic 

pressure, changing land use, altered fire regimes andclimatic shifts (Adeel, De 

Kalbermatten, and Assessment 2005). Such changes are affecting biogeochemical 

processes as well as the availability of habitat-related key structural resources, such as 

foraging grounds and migration routes (Blaum, Rossmanith, and Jeltsch 2007). 

 The understanding of spatio-temporal variation in savannas’ ecological processes 

is fundamental to decision-making concerning land use/cover aiming to promote long-

term sustainability of these dynamic and fragile systems. This understanding is dependent 

on the ability to quantitatively characterize and monitor savanna attributes, like the 

density and condition of vegetation cover (Guerschman et al. 2009). To understand these 

ecological mechanisms at a regional scale, it is necessary that information about the land 

cover of the area be collected and measured. Since remote sensing techniques and 

practices are focused on detecting phenomena occurring in Earth’s surface, they provide 

a very efficient toolkit to perform the proposed task. In the past few decades, new 

satellites and sensors began to operate, increasing the application possibilities of these 

devices (Sande, Jong and Roo 2003; Toutin 2004; Kulkarni et al. 2006; Eitel et al. 2007; 

Smith and Pain 2009; Ehlers et al. 2010; Lim et al. 2010; Kruse and Perry 2013; Shang et 

al 2015). The technological advance in this field is accompanied by the popularization of 

remote sensing and a large increment of available data. 

 Remote-sensing-based characterization of land cover in semi-arid savanna 

systems is challenging for several reasons: a high soil background leading to 

minimization of the spectral contribution of plants; lack of a strong red edge and reduced 

absorption in visible wavelengths due to evolutionary adaptation of semi-arid vegetation; 
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and the potential for non-linear mixing in arid and semi-arid areas due to multiple 

scattering and high spectral variability within individuals of similar species (Okin et al. 

2001). Also, the heterogeneity of savannas can lead to a mixing of diverse vegetation 

cover types within a single pixel, resulting in spectral signatures that are difficult to 

classify (Jung et al. 2006). Besides those issues, mapping land cover in savannas can be 

problematic due to mixing among different land cover categories or dominance of 

transitional classes including shrublands or herbaceous vegetation (Herold et al. 2008). 

Such difficulties are not exclusive of African savannas, being a problem for South 

American ones as well. Spectral similarities between cropland, pasture and natural 

savanna vegetation, and a high spectral heterogeneity within each land cover type, 

complicate the differentiation of land use/cover in the Brazilian Cerrado (Müller et al. 

2015). 

One of the key aspects to consider while assessing land cover is the ‘greenness’ of 

the area’s vegetation. In remote sensing, green vegetation traditionally has been 

quantified based on vegetation indices (VIs), with the Normalized Difference Vegetation 

Index (NDVI) being the most common VI (Nagler et al. 2003). Although VIs have been 

used with this purpose, they have been criticized for only providing a proxy of plant 

cover, not an estimate of total vegetation cover (Yang, Weisberg, and Bristow 2012). In 

fact, these indices measure vegetation productivity but do not represent its structural 

characteristics. To improve upon the limitation of VIs, some studies have adopted an 

alternative technique called Spectral Mixture Analysis (SMA), which is less affected by 

soil background effects (Garcia-Haro, Gilabert and Melia 1996). The technique provides 

subpixel abundance estimates based on the assumption that the spectral signature of a 
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pixel is a linear, proportion-weighted combination of endmembers (Asner and Lobell 

2000). In comparison to traditional pixel-based classification methods, the SMA 

approach determine and report the actual proportion of the pure and homogeneous 

materials within the pixel instead to assign a pixel to a single class (Jensen 2014). In this 

sense SMA techniques are capable of providing a more nuanced quantification of land 

cover classes in relation to pixel-based classification methods. Since the accuracy of 

SMA-derived land cover estimates are highly dependent on endmember purity, this 

model may fail to account for natural variability in the reflectance of endmembers. 

Multiple endmember spectral mixture analysis (MESMA) addresses this issue by 

allowing both the type and number of endmember models to vary on a per-pixel basis 

(Roberts et al. 1998). 

 MESMA has been widely utilized with hyperspectral images for deriving land 

cover estimates in several ecosystems, including xeric ones (Okin et al. 2001; Asner and 

Heidebrecht 2002; Franke et al. 2009; Somers et al. 2009; Somers et al 2010 and Blanco 

et al 2014). Although hyperspectral data provides detailed reflectance information for 

land cover mapping using MESMA, their utility is restricted due to limited spatial 

coverage and data, especially over southern African savannas. In contrast, multispectral 

remote-sensing products at medium spatial resolutions provide synoptic spatial extent and 

repeated coverage, but lack spectral sensitivity and ideal bands in the Short Wave 

Infrared (SWIR) band, where differentiation of non-photosynthetic vegetation (e.g. 

dormant grasses) from soil is most effective (Mishra, Crews, and Okin 2014). Indeed, 

there is a tradeoff between spectral and spatial resolutions among hyperspectral and 

multispectral data. Scenes of images with hyperspectral character have a smaller spatial 
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extent, while multispectral data is capable to cover the same area in a repeated and 

consistent manner. Despite the spectral disadvantage of multispectral images, MESMA 

has been successfully applied to this kind of data, especially concerning Landsat imagery 

(Powell et al. 2007; Somers et al. 2010; Fernández-Manso, Quintano and Roberts 2012; 

Wu, Deng and Jia 2014; Nogueira et al. 2015; Robertson, King and Davies 2015). 

 Identifying remote sensing techniques that more accurately quantify savanna land 

cover is of great importance due to the unique ecologic characteristics of these areas and 

their vast distribution across the globe. The current improvements in remote sensing 

products and techniques provide new tools to accomplish this task. This study addresses 

the following overarching question: Is MESMA adequate for generating land-cover maps 

in southern Africa’s savanna using multispectral images. The hypothesis is that the 

results obtained with MESMA are effective in depicting the fractional land cover of the 

study area in a subpixel level.
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OBJECTIVE 

 The objective of this research is to obtain fractional images by applying MESMA 

to Landsat 8 OLI imagery in order to assess the proportions of photosynthetic vegetation 

(PV), non-photosynthetic vegetation (NPV) and bare soil (B) in the study area. PV and 

NPV are represented by woodlands/shrublands and grasslands, respectively. Fractional 

images are outputs of MESMA and are formed by pixels that contain information about 

the areal proportions of pure homogeneous materials, also known as endmembers, with 

one image for each endmember spectrum (Jensen 2014). The data collection took place in 

the dry season of 2014 in southern Africa, when the grasses were senescent and trees and 

shrubs were green (Scholes and Archer 1997). 
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LITERATURE REVIEW 

Savanna dynamics 

 The prevailing ecological usage of the term savanna denotes communities or 

landscapes with a continuous grass layer and scattered trees. This combination of 

contrasting vegetation physiognomies, together with an accentuated difference between 

dry and wet seasons in tropical and subtropical regions, distinguishes savanna’s function 

and structure from those observed in forests, grasslands and deserts. The savanna’s 

vegetation patterns are driven by many environmental factors such as herbivory, fire, 

climate, and soils, as well as by anthropic activities. The spatial arrangement and relative 

abundance of grasses and woody plants in these areas are dictated by complex and 

dynamic interactions among environmental and anthropogenic factors. In this sense, 

natural factors interact with each other and with anthropogenic elements, making it 

difficult to identify, isolate or quantify the key determinants of the vegetation structure 

(Sholes and Archer 1997). In this section, some of the influential factors that drive the 

structure of savannas’ vegetation are explored to bring some light on the elements that 

contribute to the dynamics of savanna systems. 

 Dwelling within African savannas are some of the largest and most spectacular 

megafauna, which functions as a major driver of savanna’s structure. Large herbivores 

disturb plant communities at many levels, varying from major effects resulting in 

noticeable changes to plant community composition and structure, to plant-herbivore 

interactions leading to stable subclimaxes when fauna and flora coexist in relative 
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balance. In a deeper manner, the herbivore’s influence manifests by co-evolutionary 

relationships, such as those concerning plants’ defense systems that may employ thorns, 

poisons or phenological strategies, such as irregular or infrequent fruiting (Cumming 

1982). For African savannas, the scholars agree that there is a tendency for grazers to 

enhance woody cover and browsers and mixed feeders to depress it in local or regional 

contexts, but those effects seem inconspicuous on a continental scale (Sankaran et al. 

2005). 

 Savannas are classified as flammable ecosystems and are the most frequently burnt 

environments in the world, with fires occurring from several times a decade to twice a 

year. These areas present higher primary productivity and greater aridity when compared 

to other kinds of vegetation, which leads to the buildup of high quantities of dry fuel and, 

consequently, to high fire frequencies and intensities. In such habitats fires tend to 

consume the herbaceous surface biomass but leave the dominant trees untouched (Bond 

and Keeley 2005). McNaughton (1983) observed a decline in herb and grass biodiversity 

in both fire-protected areas and repeatedly burnt ones, in the Serengeti, indicating that 

fire is a major factor in savannas’ ecology. The same study points out that fire also has a 

direct and substantial effect on the recruitment of seedlings into the community, 

indicating that burning has an effect beyond the simple removal of plant cover. The 

phenomenon also influences how animal effects interact with burning to increase 

seedling density levels. In this sense, hoof-prints made in moist soil, which function as 

recruitment sites, presented significantly higher germination rates in burnt areas when 

compared to their surroundings. 
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 The climate in tropical savannas is characterized by the alternating of warm dry 

seasons with hot wet seasons. The responsive behavior of savannas’ flora to climate is 

strongly related to rain regimes, with deciduous trees achieving full leaf expansion within 

weeks of the beginning of the rainy season, while C4 grasses reach the peak leaf area 

several months after the start of the wet season. In arid environments of unpredictable 

nature and dominated by minor rainfall occurrences, the opportunistic strategy of grasses 

is favored, whereas in unremittingly moist environments, overtopping strategy is favored. 

In this sense, for savanna environments, there is a greater advantage for trees over grasses 

in the moister regions. So, it is noticeable that the structure of African savannas is 

affected by climate, especially regarding rainfall and moisture availability (Scholes and 

Archer 1997). 

 Soil texture and fertility are important drivers of savanna vegetation structure, since 

they are key determinants of the availability of water and nutrients, affecting the tree-

grass-shrub proportion. Trees favor areas where the soil has a low water-holding 

capacity, such as sandy ones, since in these soils the water availability is greater in their 

deeper layers, where tree rooting depth is advantageous. Contrariwise, shallow soils over 

impervious layers and water retaining clays are not favorable to trees, instead trending to 

grass dominance. Such a dynamic takes place, mainly, because trees have deeper roots 

than grasses, being able to reach the water supply in such conditions. Fertile soils, in turn, 

support vigorous grass growth. In such environments, extensive grassland patches can 

occur, suggesting a robust constancy of their state. However, these areas can be invaded 

by trees when tree propagules are present and the grass cover is reduced. Low fertility 

soils are rarely treeless, suggesting a very weak or absent meta-stable grassland state, 
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while fertile clayey soils were relatively treeless in precolonial times. Thus, soil acts as 

one of the main elements on resource partitioning patterns, accounting, largely, for 

primary production rates (Scholes and Archer 1997). 

 The structure of savanna’s vegetation is, in fact, driven by the interaction of a 

diversity of stresses and disturbances, acting differentially on trees and grasses and 

varying complexly through time and space, creating shifting ecotones that can make 

remote-sensing based assessments difficult for these areas. Moreover, the characteristics 

of these environmental drivers are affected by human activities. Anthropogenic factors 

contributed to events such as a dramatic increase of fire rates since pre-historic times and 

the overgrazing caused by the introduction of livestock (Scholes and Archer 1997). 

 Such dynamics contributes to the formation of a very heterogeneous landscape,  

which makes that the mixing of different types of vegetation within a single pixel a 

frequent occurrence (Jung et al. 2006). In this regard, traditional pixel based classification 

approaches are limited in quantifying the land cover types in these environments, since 

these methods assign one single class for each pixel (Jensen 2014), not accounting for the 

mixing factor. Simple SMA address this problem by providing subpixel fractional 

estimates of land cover classes (Jensen 2014), but only considers a single endmember for 

each land cover type for the analysis, not incorporating the natural spectral variability of 

endmembers. MESMA improves on this limitation by permitting the variation of the 

number and types of endmember on a per-pixel basis (Roberts et al. 1998).  

The Multiple Endmember Spectral Mixture Analysis (MESMA) 

 MESMA has been evaluated for many uses and, today, this approach is by far the 

most widely used SMA technique (Somers et al. 2011). This methodology has been 
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successfully tested in natural (Fernández-Manso, Quintano and Roberts 2012), urban 

(Wu, Deng and Jia 2014), rural (Nogueira et al. 2015) and even in extraterrestrial 

environments (Combe et al. 2008). 

 Exploration of MESMA techniques suggested the potential robustness of such an 

approach back in the late 1990s (Roberts et al. 1998). This study took place in the Santa 

Monica Mountains and the aim of the research was to examine the use of MESMA for 

mapping chaparral in the mentioned area. The authors were able to map sixteen classes of 

vegetation in the region. Although the obtained results were not validated in the field, the 

authors conclude that MESMA provides a better discrimination between vegetation types 

and suggested that regionally specific spectral libraries represented a fruitful direction for 

further research. 

 Somers et al. (2011) summarize the available methods and results of the application 

of SMA and states five basic principles to mitigate endmember variability: the use of 

multiple endmembers for each component in an iterative mixture analysis cycle; the 

selection of a subset of stable spectral features; the spectral weighting of bands; spectral 

signal transformations; and the use of radiative transfer models in a mixture analysis. 

Covering a wide range of SMA research, the study highlights good practices to be 

applied in SMA procedures. The authors emphasize that although SMA has been proven 

effective in obtaining physically meaningful abundance data, the fractional estimate 

accuracies provided by this method are prone to residual spectral error. The use of fixed 

endmember spectra, as in SMA, implies that variation in endmembers spectral signatures, 

caused by spatial and temporal variability in the condition of scene components and 

differential illumination conditions, is not accounted by this methodology. In an attempt 



 

12 

 

to reduce the errors related to endmember variability, MESMA permits multiple 

endmembers for each component and, thereby, refutes the inherent fixed endmember 

restriction of SMA. 

 Powell et al. (2007) published an article about mapping urban land cover using 

MESMA in Manaus, Brazil, with Landsat Enhanced Thematic Mapper (ETM+) imagery. 

For this research, a specific regional spectral library was built to apply MESMA. The 

application of such methodology is justified by the fact that most urban land-use classes 

are not spectrally distinct. The results’ accuracy was evaluated by comparing them with 

high resolution, geocoded images mosaicked from an aerial survey. The obtained results 

point a systematic over-estimation of the vegetation fraction in the reference data, 

occurring, mostly, in high shaded areas. Despite the observed discrepancies, the authors 

consider that the used techniques adequately characterized the diversity of materials that 

comprise land cover within a diverse urban area. 

 Using Resoursesat-1 LISS-III imagery, a study evaluates the ability MESMA to 

identify dissimilar graze conditions in an area inserted in São Paulo State, Brazil 

(Nogueira et al. 2015).  Via field survey, the authors classified the pasture areas in three 

types: well-managed, moderately degraded and degraded. The in-situ data was used to 

validate the obtained results. The outcomes of this research show that MESMA was 

effective in differentiating the well-managed pasture from the other ones, which didn’t 

present signifying dissimilarities to each other. 

 Developing a spatially constrained MESMA method, with which multiple 

endmembers for each class are automatically derived within a predefined neighborhood, 

Wu, Deng and Jia (2014) aim to quantify urban impervious surfaces in a subpixel level in 
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Columbus, Ohio. Using Landsat ETM+ imagery as input data, and black and white 

digital orthophotographs for validation, the researchers concluded that MESMA is able to 

provide adequate results for mapping fractional urban impervious surface distribution. 

The obtained results suggest that spatially constrained MESMA is able to yield adequate 

estimates for their study area. 

 A research assessing land cover change and anthropogenic disturbance in wetlands 

applying spectral mixture analysis (SMA), using Landsat Thematic Mapper (TM) scenes 

from 1984 to 2010, aims to determine if SMA applied to temporal multispectral data can 

be used to identify and monitor the mentioned phenomena in and around wetlands 

(Robertson, King and Davies 2015). The study took place in eastern Ontario region, 

Canada, where wetlands are common. The results were validated both by comparison 

with field data and through interviews with local experts. In conclusion, the authors 

consider that the SMA application is successful but, also, emphasizes that the results 

could be refined by implementing MESMA instead. 

 The work of Fernández-Manso, Quintano and Roberts (2012) examines three areas 

of surface coal extraction around the world (Spain, United States of America and 

Australia), using MESMA applied to Landsat TM data. The obtained results were 

validated using fine resolution orthophotographs as reference data and showed a 

significant improvement in the accuracy of detection of affected areas when compared 

with SMA and NDVI. The outcomes lead to the authors concluding that the MESMA-

based approach is effective in mapping surface coal mining active affected areas. 

 The concepts of MESMA are not only used in research about Earth’s surface. Using 

Multiple-Endmember Linear Spectral Unmixing Model (MELSIUM), a modification of 
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MESMA, Combe et al. (2008), investigate the mineralogical composition of the Martian 

surface. For this research, the scientists used a spectral library composed of 24 spectra of 

minerals, covering the mineral families that might be found on the surface of Mars. The 

obtained results show that the application of MELSIUM provides good first order results 

in a variety of mineralogical contexts, and, therefore, can be confidently used on a wider 

scale to analyze the surface of the Red Planet. 

 The vast literature about MESMA applied to multispectral imagery demonstrates 

the relevance of the subject. Despite that, it is still necessary to proceed with further 

investigation on the matter, since the MESMA potentialities are still to be totally 

comprehended.
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STUDY AREA 

 Measuring 134 square kilometers, the study area is the Mayuni Conservancy, a 

smaller, bounded communal area just east of the Kwando River in the Zambezi Region of 

Namibia. The Kwando River flood plain, located along the western border of Mayuni 

Conservancy, present a broad soil moisture gradient and increased saturation in water 

pixels, creating difficulties in selecting endmembers of interest. Thus, the plain was 

excluded from the analysis in order to minimize spectral confusion during the 

endmember selection process. 

 The Mayuni Conservancy is located inside the Mudumu North Complex, a joint 

management area that embraces state and community conservation initiatives. Covering 

approximately 3,400 square kilometers, the complex is formed of a cluster of resource 

management areas and was established with the objective of managing the area’s fauna 

and flora by guiding the development of tourism and natural resource use for social, 

cultural and economic benefits (NACSO 2012). The Mudumu North Complex is located 

in northeast Namibia, bordered by Zambia and Angola to the north and Botswana to the 

south and is a multifunctional landscape that includes protected areas and communal 

lands. The dominant land uses are smallholder agriculture in nutrient-poor, communal 

areas and livestock farming. The ecologically diverse savanna is represented by a 

gradient of tree to grass cover (Campos-Bescós et al. 2013). 

 The study area also falls centrally within the Kavango-Zambezi Trans-Frontier 

Conservation Area (KAZA), a vast ecosystem sprawling across Namibia, Zambia, 
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Botswana, Angola and Zimbabwe (Shapiro et al. 2015). Being the world’s largest trans-

frontier conservation area, KAZA has been designed to enhance the region’s international 

profile and stimulate the eco-tourism industry centered on its spectacular natural 

attractions (Scovronick, Gordon and Turpie 2007). Another very relevant ecological 

characteristic of the area is that it acts as a seasonal migration corridor for wildlife 

moving across political boundaries (Naidoo et al. 2012). Due to these characteristics, 

there is no doubt that the study area is relevant under an environmental and development 

perspective, being worthy of research about methodologies aiming to more accurately 

quantify the land cover/use that takes place in the region. Figure 1 below shows the study 

area relative to the larger KAZA region. 

 

Figure 1. Study area location. 
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MATERIALS AND METHODS 

Data 

 The Landsat platforms have been operational since 1972 and includes the currently 

working Landsat 8 satellite. This platform carries the Operational Land Imager (OLI) 

multispectral sensor. Landsat data has been extensively used to assess southern Africa’s 

savanna land cover (Tucker, Townshend and Goff 1985; Palmer and van Rooyen 1998; 

Dube and Pickup 2001; Scanlon et al. 2002; Munyati and Ratshibvumo 2011) and as 

input data for application of MESMA (Myint and Okin 2009; Somers et al. 2010; 

Michishita, Gong and Xu 2012; Mishra, Crews and Okin 2014; Wu, Deng and Jia 2014). 

 The data used for analysis in this study is a mosaic of orthorectified Landsat 8 OLI 

scenes. Prior to the mosaicking, each scene was atmospherically corrected by the Fast 

Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm 

(White et al. 2007). The resulting reflectance image was then subset to the study area 

perimeter. The 2014 imagery was acquired at the beginning of the dry season, during the 

month of May, which permitted the acquisition of cloud-free images, thus optimizing the 

amount of actual land-cover detected. Originally downloaded from GLOVIS (USGS) 

(http://golvis.usgs.gov), the OLI data includes the following specifications listed in Table 

1.
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Table 1 

Landsat 8 OLI sensor specifications (USGS 2015). 

Satellite: Landsat 8 

Temporal resolution: 16 days 

Sensor: Operational Land Imager (OLI) 

Number of bands: 9 

Band # Alias Bandwidth (μm) Spatial Resolution 

1 Coastal aerosol 0.43 - 0.45 30 meters 

2 Blue 0.45 - 0.51 30 meters 

3 Green 0.53 - 0.59 30 meters 

4 Red 0.64 - 0.67 30 meters 

5 Near Infrared (NIR) 0.85 - 0.88 30 meters 

6 Short Wave Infrared 1 (SWIR 1) 1.57 - 1.65 30 meters 

7 Short Wave Infrared 2 (SWIR 2) 2.11 - 2.29 30 meters 

8 Panchromatic 0.50 - 0.68 15 meters 

9 Cirrus 1.36 - 1.38 30 meters 

 

 The bands considered in this study were: 2 (blue), 3 (green), 4 (red), 5 (NIR), 6 

(SWIR 1) and 7 (SWIR 2). Bands 1 and 9 were not used because they were designed to 

detect phenomena occurring in the atmosphere instead of Earth’s surface. Band 8 

(Panchromatic) was not used. This band encompasses a wide range of wavelengths and it 

is used for spatial resolution enhancement only, and was deemed not useful to spectral 

characterization of features in the current approach. 



 

19 

 

 In addition, the area’s NDVI (Normalized Difference Vegetation Index) and NDBI 

(Normalized Difference Built-up Index) were calculated. While NDVI provides valuable 

information about vegetation biomass, NDBI is useful to assess the spatial distribution of 

built-up and barren areas (Jensen 2014). Since the study area is rural, this second index 

was chosen primarily for information about bare soil. Also, the difference between the 

indices (NDVI-NDBI) was calculated, in order to generate a layer that emphasizes the 

difference between barren and vegetated areas even more (Fasial and Shaker 2014). The 

formulas for NDVI and NDBI are described by equations (1) and (2), respectively. 

NDVI = ρnir - ρred

ρnir + ρred
      (1) 

where ρnir and ρred are the reflectance values in the NIR and red bands, respectively 

(Jensen 2014). 

NDBI = ρswir1 - ρnir

ρswir2 + ρnir
     (2) 

where ρswir1 and ρswir2 are, respectively, the reflectance values for the SWIR 1 and SWIR 

2 bands (Jensen 2014).   

 NDVI and NDBI values fluctuate between 1 and -1, reflecting, respectively the 

vegetation productivity and level of land bareness in a directly proportional manner. In 

turn, the image’s reflectance values vary from 0 to 7,141, due to the FLAASH calibration 

procedure. Therefore, the indices had to be rescaled according to the reflectance values. 

To do so, the NDVI and NDBI values were multiplied by a factor of 10,000. The data 

was then layer stacked in ENVI Classic software, in a 9 layers arrangement, as described 

in Table 2. 

Table 2 

Landsat 8 layered bands and indexes arrangement. 
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Layer number Layer name 

1 Landsat 8 OLI band 2 - Blue 

2 Landsat 8 OLI band 3 - Green 

3 Landsat 8 OLI band 4 - Red 

4 Landsat 8 OLI band 5 - NIR 

5 Landsat 8 OLI band 6 - SWIR 1 

6 Landsat 8 OLI band - SWIR 2 

7 Rescaled NDVI 

8 Rescaled NDBI 

9 Rescaled NDVI - NDBI 

 Also, high spatial resolution imagery from the Worldview-2 satellite was used as 

ancillary data. Specifically, the panchromatic band, which encompasses wavelengths 

between 450 and 800 nm, with a pixel size of 50 by 50 cm provided information to assist 

with the endmember selection process and for validation of MESMA results. 

The spectral mixing model 

 The energy recorded by a remote sensing detector is a function of the amount of 

energy reflected or emitted by the materials within the Instantaneous-Field-Of-View 

(IFOV).  Spectral Mixture Analysis (SMA) provides means to determine and report the 

actual proportion (or abundance) of pure endmembers materials within the pixel (Jensen 

2014). Endmember spectra represent a target class or cover type believed to be present at 

the subpixel level and can be collected from reference materials in a laboratory setting, 

measured in the field, simulated with radiative transfer modeling (Roth, Dennison and 



 

21 

 

Roberts 2012) or even identified in the data to be unmixed with the support of high 

spatial resolution data (Lu and Weng 2004). 

 The understanding of the spectral mixing process is fundamental towards a more 

complex process knowns as Multiple Endmember Spectral Mixture Analysis (MESMA). 

The spectral mixing occurs according to what is described by equation (3): 

     ρ'λ=∑ (ρiλ×
n
i=1 fi) + Ɛλ     (3) 

where ρλ is the reflectance at wavelength, λ; ρiλ is the spectral reflectance of endmember 

i, and fi is the fractional cover of endmember i. The total number of endmembers is 

expressed by n and the model error is Ɛλ (Jensen 2014). By allowing the types and 

numbers of endmembers to vary, MESMA performs the best fractional breakdown 

possible per pixel (Roberts et al. 1998). The concept of spectral unmixing for an 

individual pixel and the application of equation (3) are depicted in Figure 2. 

 

Figure 2. Linear spectral mixing model for a single pixel and application of SMA 

equation (Jensen 2014, adapted) 
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Endmember selection 

 The selection of adequate endmembers is essential for any SMA method. Even 

though laboratory measurements of pure endmembers are considered to be the optimal 

approach to subpixel classifiers (Wu and Murray 2003) selecting endmembers from 

homogeneous land covers from satellite images is a viable alternative. Among the 

advantages of image derived endmembers, two deserve to be mentioned: firstly, 

endmembers selected from imagery contain the same systematic errors due to 

atmospheric correction as the image to be unmixed (Settle and Drake 1993); secondly, 

image endmembers represent responses from the selected material at the same scale as 

the original image (Myint and Okin 2009). So, due to these properties, the selection of 

endmembers from the image itself was used for analysis. 

 Endmembers are regarded as the extremes in the triangles in a scatterplot of the 

digital values of two bands as depicted in Figure 3(Lu and Weng 2004). In this sense, 

SMA works in a different manner than a minimum distance classifier, which uses the 

mean vectors of each class for assessing land cover instead of extreme values (Kruse and 

Perry 2013). 
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Figure 3. Scatterplot of hypothetical bands 1 and 2, showing endmembers A, B and C. 

 However, it is well recognized that adjacent bands are highly correlated (Lu and 

Weng 2004). This correlation may complicate the endmembers identification process, 

since the scatterplot of highly correlated bands assumes a nearly linear shape, instead of a 

polygonal one. In order to better identify the image’s endmembers it is necessary to 

reduce this correlation, which can be done by Principal Component Analysis (PCA) and 

Minimum Noise Fraction (MNF) transformation (Jensen 2014). 

 PCA is a technique that transforms the original remotely sensed data into a 

considerably smaller and easier to interpret set of uncorrelated variables that represent 

most of the information present in the original dataset. In such a context, principal 

components are extracted from the original data in a manner that the first principal 

component accounts for the maximum proportion of the original data’s variance, and 

subsequent orthogonal components account for the maximum proportion of the remaining 
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variance (Jensen 2014). The concept of PCA in a two-dimensional scatterplot of bands 

from remotely sensed data is illustrated in Figure 4. 

 

Figure 4. Representation of the spatial relationship between the first two principal 

components in a scatterplot of two hypothetical bands, where PC1 is the principal 

component 1 and PC2 is the principal component 2. 

 The Minimum Noise Fraction (MNF) rotation was performed in the Landsat image 

to be unmixed in order to locate optimal endmembers. MNF is a consecutive series of 

PCAs performed over the same data, and one of the most common transformations used 

to reduce correlation between bands of multispectral and hyperspectral remotely sensed 

data (Jensen 2014). The MNF transformation is processed in two steps: firstly, it de-

correlates and rescales the data’s noise, producing transformed data in which the noise 

has unit variance and no band-to-band correlations; secondly, MNF implements a 

standard PCA of the noise-whitened data. So, the MNF separates the noise from the 
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actual data by using only its coherent portions, improving the quality of fractional images 

(Lu and Weng 2004). The processing of MNF and subsequent steps were done by using 

the ENVI Spectral Hourglass Wizard toolset. 

  The first step of MNF processing was to select the layer stack in Table 2 as input 

data, considering the full scene as the spatial subset and all 9 bands as the spectral subset. 

Also, all values outside the study area were masked out, and thus, were not considered in 

the data processing. The obtained MNF’s outputs are ranked according to the amount of 

variance with the most variation represented by the first component (i.e. band), provided 

by a numeric variance measure. In this sense, the majority of the variance occurs in the 

first band and decreases with increasing band number. So the first few bands contain 

valuable information while the last ones are noise dominated. Therefore, the bands 

containing mostly noise were not used in the subsequent processes. (Green et al. 2013). 

The first 6 bands of MNF were selected to be used for the endmember selection since 

they presented the highest dimensionality among the MNF outputs. Figures 5 and 6 show, 

respectively, the plot of the obtained eigenvalues and the MNF output bands. 

 

Figure 5. MNF eigenvalues plot, where the vertical axis shows the eigenvalues and the 

horizontal axis show the eigenvalue number, which corresponds to MNF bands order. 
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Figure 6. MNF bands, where a) correspond to band 1, b) to band 2, and so on. 

 The next step was to calculate the Pixel Purity Index (PPI). The PPI input data is 

projected onto a randomly oriented vector passing through the mean of the data cloud. 

This method calculates a score based on the number of times each pixel is found to 

occupy a near-vertex position, in relation to the vector, through the repeated projections 

of the n-dimensional data. The output scores help to identify image endmembers since 

those pixels that hold pure spectra often display high PPI scores (Myint and Okin 2009). 

The PPI was calculated with 20,000 iterations and a threshold value of 2.50. Then, the 

10,000 PPI pixels with the highest values were plot in the n-D Visualizer (Figure 7). 
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Figure 7. N-dimensional visualizer, where the dots represent the pixels from PPI 

calculation and the axis correspond to the first 3 MNF bands. 

 The axes in the n-dimensional visualizer can be set to represent any of the 6 

significant MNF bands. Similarly to what occurred in the before mentioned two-

dimensional scatterplot, the pixels at the extremities of the n-dimensional visualizer are 

expected to be the purest ones. The extreme pixels were selected by rotating the 

scatterplot and observing which pixels fell in extreme positions in successive band 

combinations. The selected pixels are depicted by the colored dots in the n-dimensional 

visualizer and represent candidate endmembers (Figure 7). Then, those pixels were 

exported to Regions of Interest (ROIs) files in order to identify their spatial location on 

the image to be unmixed. The generation of the ROIs was the last procedure performed 

using the ENVI Spectral Hourglass Wizard toolset. 
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 The next step was to identify which endmember candidates were pure pixels. To do 

so, the ROIs were overlaid on the Landsat data, which was geographically linked to the 

Worldview-2 image. In the Worldview-2 panchromatic image, it is possible to visually 

identify woodlands/shrublands (PV), grasslands (NPV) and bare soil (B), (Figure 8). 

Then each ROI was visited to check if they were, in fact, pure pixels (endmembers). 

Since the images were geographically linked, it was possible to identify the full content 

of the Landsat 8 OLI pixels in the Worldview-2 image (Figure 9).  

 

Figure 8. Worldview-2 image fragment showing the aspects of woodland/shrubland (PV), 

grassland (NPV) and bare soil (B). 
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Figure 9. Landsat 8 and Worldview-2 images geographically linked together. The red 

squares in the Worldview-2 images correspond to the content of the pixel in the crosshair 

on the Landsat 8 counterpart. 

 Through this process, spectral signatures of purest Landsat pixels were identified as 

the endmembers for use in the MESMA approach. A total of 10 endmembers were 

identified: 3 for PV, 3 for NPV and 4 for B. 

MESMA processing 

 The MESMA processing was done using VIPER Tools open software 

(www.vipertools.org) in ENVI Classic 5.3. This software package provides a collection 

of processing tools for multiband passive optical remote sensing data, including 

hyperspectral and multispectral imagery. The main components of VIPER Tools were 

designed for creation and management of spectral libraries, selection of optimal 

endmembers for SMA and calculation and interpretation of SMA and MESMA (Roberts, 

Halligan and Dennison 2007). 
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 The first step was to merge the obtained endmembers together in spectral libraries. 

One spectral library for each endmember type was created, resulting in one PV spectral 

library containing 3 endmembers, one NPV spectral library containing 3 endmembers, 

and one B library containing 4 endmembers. Figure 10 shows these spectral libraries. 

   PV 

 

       NPV 

 

    B 

 

Figure 10. Spectral libraries showing the spectral signatures of PV, NPV and B 

endmembers. 

 Two types of input data were used to run MESMA. The first one is the Landsat 8 

OLI image to be unmixed. The image’s scale factor was defined as 10,000, since it is a 

reflectance image. The second type of input data is composed of the spectral libraries 

representing endmembers. Also, a fourth shade endmember was taken into account. In 

this case it was a preset photometric endmember, which considers shade as zero 

reflectance values (Roberts, Halligan and Dennison 2007). With the 11 endmembers (10 

collected from the image representing land cover and a photometric one representing 

shade), a total number of 45 models were considered for the MESMA processing. The 

fractions’ constraints were set to a minimum of 0 and a maximum of 1, not allowing 

negative values or values bigger than one unit for endmember fractions. 

 In addition to fractional images, the Root Mean Squared Error (RMSE) of the best 

candidate model is calculated. This statistical measure indicates the model fit for each 

pixel, and it is calculated by the equation (4). 
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RMSE=√
∑ (εiλ)

2λ
k=1

N
⁄     (4) 

where Ɛiλ is the wavelength and N is the number of reference endmembers (Roberts et al. 

1997). In this sense, the magnitude of the RMSE between the modeled and observed 

reflectances provides a quantitative measurement of how well the estimated fractions and 

endmembers can reproduce the observed reflectance (Small 2004). 

 To validate the MESMA, its results were compared to the content observed in the 

Worldview-2 image. Then, scatterplots considering observed and calculated values were 

created in order to assess the relationships between these values. These scatterplots were 

generated for each one of the endmembers and provide a preliminary visualization of the 

correlation between the involved datasets. Also, the data depicted in these graphics was 

used to assess MESMA’s accuracy in a measurable manner. 

 In order to quantify the results’ accuracy, the Pearson’s correlation coefficient (r) 

was calculated taking into account the data contained in the above mentioned scatterplots. 

This coefficient represents the ratio of the joint variation of two variables to the total 

variation of the entire dataset. In r calculation, the numerator represents the extent to 

which an increase in one of the compared values affects the other in a proportional 

manner. In turn, the denominator represents the total variation in the dataset, calculated 

by multiplying the standard deviations of the two variables (Mitchel 2009). Therefore, r 

is calculated according to equation (5). 

 

  r = 
∑ xiyi - nx̅y̅

(n-1)SxSy

                    (5) 

 

 

where, x is the first variable, y is the second variable, n is the number of features, x̅ and y̅ 

are the variable’s means, and Sx and Sy are the standard deviations of the variables. 
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 The values of r vary between 1 (indicating a perfect direct relationship) and -1 (a 

perfect inverse relationship). A value of r that approaches these values indicates that 

almost all of the variation in the dataset is accounted for by the covariance of the two 

analyzed variables. An r value near 0 indicates that the covariance in the two variables is 

negligible compared to the variation for the total dataset (Mitchel 2009). 
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RESULTS 

 The MESMA was successfully applied to 92.9% of the study area. The unmapped 

areas are those where one or more spectral signature were not captured  by the constraints 

specified in the study’s methodology. The output of this analysis includes individual 

images that contain information about the proportion of endmembers for each pixel. For 

pixels where the current endmember parameters were successful, the obtained total 

proportions of PV, NPV and B were, respectively, 32.3%, 32.0% and 25.2%. The shade 

fraction represents 10.6% of the analyzed landscape. Figure 11 highlights the B, NPV, 

PV composite, where black inside the study area are regions where MESMA failed to 

extract fractional values.  The fractional percentage of each land cover of interest is 

highlighted in Figure 12, with the brighter pixels representing higher proportions of a 

given endmember and vice-versa.
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Figure 11. Resulting fraction image in a B, NPV,PV RGB composite. 
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Figure 12. Individual fraction images obtained from MESMA, where a) represents PV; 

b), NPV; c), B; and d) shade. 

Accuracy Assessment 

 Visually, the distribution of the results is coherent to what is observed in the high 

resolution Worldview-2 image. When the fractional images are overlaid on top of 

Worldview-2 data it is possible to notice that higher values of PV occur where shrubs and 

trees are the main type of land cover. The NPV correspond to those areas with 

predominant grass cover, as we can see in the eastern part of the study area. For the B 
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fractional image there are brighter pixels in those areas where the vegetation was 

removed by anthropic activities. The distribution of the shade fraction is the most 

homogeneous of all, but presents some slightly high values in the western part of Mayuni, 

near the flood plain, and somewhat low values where the NPV fraction is higher. 

 A 2.2% average RMSE was calculated for the study area output. The total range of 

the RMSE encompasses values between 0% and 9.4% throughout the image. The RMSE 

image is shown in Figure 13. 

 

Figure 13. Image showing the RMSE distribution across the mapped area. 

 The obtained RMSE values were higher for PV areas, indicating that the PV 

fractional estimates are less consistent with the observed reflectance when compared to 

the other endmembers. In turn, lower RMSE values are associated with NPV, suggesting 

that the models used to map this land cover presented a better fit. 
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 To quantitatively examine the accuracy of the MESMA output, the fractional data 

was converted into a polygonal vector, with each pixel representing one square polygon 

of the vector. Then, 30 polygons were randomly selected. Inside each polygon, 20 

random sample points were generated, totaling 600 points for the whole study area. The 

values PV, NPV, B or shade were attributed to each point according to the class they fell 

on the Worldview-2 imagery. Due to the number of points per pixel, the validation 

fractions obtained from the sample points vary in a 5% basis. Figure 14 outlines the 

process of generating the 20 sample points inside one polygon plotted on the Worldview-

2 data. 

 

Figure 14. Sample points distributed inside an area that represents a single fractional 

image's pixel, where red, green, blue and yellow dots are B, NPV, PV and shade sample 

points, respectively. 

 After sample point creation, scatterplots for each endmember were generated to 

compare the MESMA outputs to the validation proportional values. Figure 15 depicts the 

above mentioned scatterplot for each endmember accounted in this study. 
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Figure 15. Scatterplots depicting the relationship between the results obtained with 

MESMA and those generated in the validation process, with 1:1 line as a reference of 

perfect positive correlation. 

 Results shown in Figure 15 indicate that the B fractions calculated by MESMA are 

underestimated when compared to the validation data. For the shade values, which are 

comprehensibly low for both datasets, MESMA presents values higher than those 

measured in the Worldview-2 image. The scatterplots representing vegetation are more 

dispersed than the others and, so, the visual analysis doesn’t suggest a general and 
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systematic estimation error. However, this dispersive characteristic is indicative of a lack 

of correlation between calculated and observed values. 

 The obtained r values were 0.42 for PV, 0.43 for NPV, 0.52 for B and 0.06 for 

shade, indicating a moderate correlation for PV, NPV and B, and almost null for the 

shade fraction. These results suggest that MESMA was slightly more effective in 

estimating the proportion of bare soil on the landscape when compared to the estimates 

relative to vegetated areas. Also, the algorithm performed very poorly in estimating the 

shade fraction. 

 The obtained MAE values were 0.23 for PV, 0.27 for NPV, 0.15 for B and 0.08 

for shade. Since in this study these values can vary from 0 to 1, the MAEs calculated are 

relatively low, suggesting a reasonable proximity between the MESMA results and the 

data extracted from Worldview-2 data. For the shade fraction, the values are much lower, 

reaching a maximum of 0.39, so the MAE value of 0.08 obtained for shade is relatively 

lower than the values obtained for the vegetated areas, but higher than those obtained for 

the bare soil regions. Although the calculated correlation is weaker than anticipated, its 

positive character indicates that MESMA successfully assesses, in some degree, the 

fractions of PV, NPV, B and shade in the study area. So, considering the complexity and 

heterogeneity of the landscape analyzed in this study, it is accurate to say that MESMA 

provided reasonable results.
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DISCUSSION 

The results visually portray the proportions of PV, NPV and B in the study area, 

with patterns observed in the MESMA output associated to landscape patterns identified 

in the Worldview-2 data.   The thesis’ objective of obtaining fractional images by 

applying MESMA to Landsat 8 OLI data was accomplished. The analysis points out that 

the majority of the mapped area is vegetated and that the fractions of PV and NPV are 

almost equal (32.3% and 32.0%, respectively), followed by B (25.2%). As expected, the 

shade fraction was low, corresponding to 10.6% in the analyzed landscape. The 

proportions are distributed in 92.9% of the study area, where MESMA was successfully 

applied. It is noticeable that MESMA failed to map some particular areas. For instance, 

the paved roads were not mapped. This occurrence is expected, since asphalt 

endmembers were not considered in the study. Also, MESMA failed to map some areas 

dominated by bare soil, especially those associated with human settlements. The results 

show that the approach used in this study provides a promising technique for subpixel 

quantification of land cover types in southern Africa’s savanna using Landsat 8 OLI 

imagery.  

 In comparison to traditional pixel based remote sensing techniques, which assign 

each pixel to a single class, MESMA provides a more nuanced quantification of land 

cover classes by providing estimates in a subpixel level. This property is especially 

important for highly heterogeneous areas, where the occurrence of more than one kind of 

land cover inside a single pixel is common. Among other heterogeneous environments in 
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which MESMA has been successfully applied are urban areas (Powell et al. 2007; Wu, 

Deng and Jia 2014), wetlands (Robertson, King and Davies), the Californian chaparral 

(Roberts et al.) and savannas (Mishra, Crews and Okin, 2014). As such, MESMA, as a 

sub-pixel remote sensing approach, provides a promising path towards approaching 

challenges imposed by heterogeneous landscapes concerning the quantification of land 

cover types. 

 Previous work highlights the applicability of MESMA to quantify PV, NPV and 

B at a subpixel level in savanna environments (Mishra, Crews and Okin 2014; Meyer and 

Okin 2015). Such studies show that the subpixel approach is appealing to tease out the 

above mentioned land cover classes by using multispectral data. However, the scholars 

found that MESMA presented a greater accuracy in estimating the PV fractions, while in 

this research better accuracy was shown with the B fraction. It is important to highlight 

that these previous studies took place in the Kalahari savanna region of southern Africa, 

and thus, their results are dependent of particular characteristics of this area. In this sense, 

the discrepancies observed between my results and those of previous researches may not 

only be due to methodological differences, but to the characteristics of the respective 

study areas. 

 Another major factor that influenced the outcomes of this research was the nature 

of the endmembers used to perform the analysis. The observed inefficiency of MESMA 

in bare areas might indicate that the chosen B endmembers do not encompass the total 

spectral variability found in the study area’s soil. In this sense, it is recognizable that 

MESMA failed to map very bright areas in the landscape with very sandy soil and 

minimal vegetation cover. Another aspect that may have influenced the obtained results 
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is the high content of bare soil observed in NPV endmembers. None of the selected NPV 

endmembers were, in fact, pure pixels. This is due because the grass cover in the study 

area is not dense enough to completely cover the surface and provide a “pure” spectral 

value. A similar mixing process occurs for PV endmembers, but concerning shade. The 

Landsat pixels that are completely covered by PV have an inherent proportion of shade, 

since higher trees and shrubs project shadows over lower vegetation extracts. Also, the 

obtained shade fractions are perceptibly higher in the regions near the flood plain, which 

might indicate a certain confusion between shade and soil moisture.  

The methodology used in this study was to collect endmembers in pure pixels 

identified in the Landsat data. This selection process was chosen not only because it was 

the only available resource to do so, but because image derived endmembers carries 

spectral responses in the same scale of the original data (Myint and Okin 2009). The 

application of alternative methodologies for endmember selection such as field or 

laboratory measurements (Somers et al. 2011) would provide different endmembers, 

influencing in the obtained results. In this sense, despite the advantages of using 

endmembers derived from the image to be unmixed, the use of field or laboratory 

collected endmembers would, potentially, eliminate the undesirable mixture that occurs 

for a theoretically pure pixel in the image. Also the inclusion of endmembers representing 

additional classes in the analysis might improve MESMA’s performance. Although 

VIPER Tools limits the number of endmembers to 3, plus a shade endmember, it is 

possible to divide the study area in sub-regions to be analyzed individually, 

encompassing all the desirable classes (Myint and Okin 2009). So, in order to improve on 
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the results here obtained, a deeper investigation to select the most adequate endmembers 

to be used in the analysis would be needed. 

 The hypothesis that MESMA would provide results that effectively depict the 

fractional land cover of the study area in a subpixel level was rejected. Part of the failure 

to adequately account for fractional land cover may have been due to the implemented 

validation methodology. The accuracy assessment process carried great subjectivity, 

since it highly relies on human visual image interpretation. In this sense, both the results 

and their validation are biased and present errors. Another aspect that can lead to an 

augmenting of the imprecision of the accuracy assessment is the large difference of 

spatial resolution between Landsat 8 OLI and Worldview-2 data. In such a context, the 

admitted georreferencing error for Landsat is 15 meters, while for Worldview it is 0.25 

meters. So, it is impossible to guarantee the required positioning exactness of the overlaid 

data for validation purposes. However, this validation methodology was chosen because 

it was the only available resource to perform the accuracy assessment of the results. To 

improve the validation process, one good option would be to implement an infield spectra 

collection to serve as ground truth data (Blanco et al. 2014). Another alternative to the 

visual validation methodology would be to compare the results with accurate fractional 

images derived from high spatial resolution data (Mishra, Crews and Okin 2014). The 

limitations identified in the accuracy assessment method used in this study show that, in 

the future, the improvement of this process may lead to the acceptance of the stated 

hypothesis. 

The relevance of this study relies, mainly, in the ecological importance of the 

Mayuni Conservancy. Besides falling centrally in KAZA, the study area is a seasonal 
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migration corridor for native wildlife that moves across international boundaries (Naidoo 

et al. 2012). Also, this communal conservancy stands as a symbol of a great shift in land 

management policies in Namibia after its independence in 1990. These areas are 

characterized by the empowerment of local communities, which are engaged in managing 

and distributing benefits from wildlife resources in their areas. Before that, the region 

was distressed by military occupation, extensive poaching and a severe drought. Now, in 

conservancies, wildlife is livelihood asset and poaching is no longer accepted, which 

contributes to the restoration of local and regional ecosystems (World Wildlife Fund 

2016). So, the research of methods to better quantify land cover classes in these areas has 

great value, once the knowledge about the landscape dynamics aids to identify areas that 

are more prone to activities and to develop sustainable management strategies. 

.
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CONCLUSION 

 This study investigates the applicability of MESMA on Landsat 8 OLI data for 

quantifying land cover types in the Mayuni Conservancy, northeastern Namibia. To do 

so, an investigation was conducted in order to find the best endmembers selection 

methodology possible as well as to define the correct parameters to run the analysis. This 

research is justified by the inherent complexity of remote-sensing based characterization 

of savannas. Due to the high heterogeneity of the land cover in these ecosystems, which 

leads to the mixing of different land cover types at a subpixel level, traditional remote 

sensing classification methods present low effectiveness in mapping such areas in a 

quantitatively manner. In such a context, spectral unmixing techniques rise as a 

promising alternative to perform this task. The research of methods to more accurately 

assess the land cover of these environments is relevant not only because the unique 

ecologic characteristics of savannas but, also, due to the vast distribution of these 

ecosystems across the globe. 

 The knowledge about the land cover composition of southern Africa’s savannas is 

fundamental to tracing management strategies in order to promote the sustainable 

development of the region, which is characterized by the coexistence and codependence 

of human activities and biological resources. Falling centrally on the Kavango-Zambezi 

Transfrontier Conservation Area (KAZA), the study area is representative of the 

international preservation zone concerning land cover types and ecological 

characteristics.
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 The outcomes of this thesis provide subsidies for future research using spectral 

unmixing techniques applied on multispectral data for the study area and its 

surroundings. In fact, expanding the study area is a promising future direction to be taken 

under the scope of this study. Among the next steps to be taken, one of the most 

important is the inclusion of a historic series of Landsat data in the analysis, which can 

provide valuable information about the region’s ongoing landscape changings. With the 

addition of this multi-temporal component, it will be possible to assess how climatic and 

anthropogenic drivers affect the vegetation dynamics of the study area, since the research 

conducted here points out that these factors have a great weight in the transformation of 

the region’s landscape. In such a context, it is known that savannas are affected by 

climate, especially regarding rainfall and moisture availability (Scholes and Archer 

1997), and that the region in which the study area is located is getting drier over time 

(Gaughan and Waylen 2012). Also, the human population and wildlife growth in 

southern Africa’s savannas, together with enduring livestock farming activities, submits 

the natural vegetation to great pressure (Scholes and Archer 1997). 

 The conclusion to be drawn from this study is that, despite the results of the 

accuracy assessment, MESMA’s adequacy for mapping land cover in southern Africa’s 

savannas using Landsat 8 data cannot be completely refuted. In this sense, the thesis lacks 

a validation method that is able to confirm the veracity of the results with acceptable 

certainty. This study is characterized by its evaluative trait and explores many aspects of 

MESMA applied on multispectral data. Although the accuracy verification was not very 

encouraging, the results look promising and worthy of a more appropriate validation 

further ahead, such as the use of field data or algorithms applied to the available data. The 
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investigation of parameters used for the analysis is a key aspect in future research on 

MESMA. In this sense, the refinement of such parameters has the potential to enhance 

the analysis performance concerning the total area mapped. The outcomes of this study 

are not limited to its results only.  

 This thesis must be interpreted, also, as methodology test that, instead of providing 

definitive answers, leads to reflection on the importance of the definition of parameters 

for MESMA processing and on the analysis of its results. Future steps in this research 

must be taken towards enhancing the analysis’ efficiency and the validation of the results, 

as well as expanding the study area to vaster regions in the same ecosystem.
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