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ABSTRACT

COMPUTATION OF LEAST ANGLE REGRESSION COEFFICIENT
PROFILES AND LASSO ESTIMATES

Sandamala Hettigoda

May 14, 2016

Variable selection plays a significant role in statistics. There are many vari-

able selection methods. Forward stagewise regression takes a different approach

among those. In this thesis Least Angle Regression (LAR) is discussed in detail.

This approach has similar principles as forward stagewise regression but does not

suffer from its computational difficulties. By using a small artificial data set and

the well-known Longley data set, the LAR algorithm is illustrated in detail and

the coefficient profiles are obtained. Furthermore a penalized approach to variable

reduction called the LASSO is discussed, and it is shown how to compute its coeffi-

cient profiles efficiently using the LAR algorithm with a small modification. Finally,

a method called K-fold cross validation used to select the constraint parameter for

the LASSO is presented and illustrated with the Longley data.
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CHAPTER 1

INTRODUCTION

Linear regression is a method of fitting straight lines in accordance to the

patterns of data, and it is one of the most widely used of all statistical techniques

to analyze data. Simple linear regression is used to explain the relationship be-

tween a dependent variable (y) and an independent variable (x). The model with

an intercept is represented by y = β0 + β1x+ ε, where ε is a error term with mean

0 and the variance is assumed to be a constant σ2. Given observed data points

(x1, y1), . . . , (xn, yn), the simple linear regression model for the ith dependent vari-

able is yi = β0+β1xi+εi where ε1, . . . , εn are independent and identically distributed

random variables with variance σ2. In some cases, it is preferable to use a model

where the dependent variable is centered and the independent variable is rescaled;

i.e., we define x∗i = xi−x̄
sx

and yci = yi − ȳ where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi

are the sample means and sx =
√

1
n−1

∑n
i=1(xi − x̄)2 is the sample variance of the x

variable. With the centered data representation, the simple linear regression model

can be expressed as

yci = β∗1x
∗
i + εi. (1.1)

Note that β1 = β∗1/sx and β0 = ȳ − β∗1 x̄/sx = ȳ − β1x̄.

The best fit line ŷ = β̂0 + β̂1x is found by minimizing the residual sum of

squared errors
∑n

i=1 r
2
i where ri = yi − ŷi represents the ith residual. The residual

sum of squares can be expressed as

RSS = (y1 − β̂0 − β̂1x1)2 + (y2 − β̂0 − β̂1x2)2 + · · ·+ (yn − β̂0 − β̂1xn)2.
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The method of least squares chooses β̂1 =
∑n

i=1(xi−x̄)(yi−ȳ)∑n
i=1(xi−x̄)2

and β̂0 = ȳ − β̂1x̄ which

minimizes the RSS. In the scaled model (1.1), the estimate is β̂∗1 = sxβ̂1. The sample

correlation is defined by

Cor(x,y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

which is important in prediction. An alternate formula for the slope estimate in

simple linear regression is

β̂1 = Cor(x,y)
sy
sx

which shows the relationship between β̂1 and the sample correlation.

When there are p distinct predictors then the multiple linear regression

model is y = β0 + β1x1 + β2x2 + · · · + βpxp + ε. Given observed data points

(x11, . . . , x1p, y1), . . . , (xn1, . . . , xnp, yn), the simple linear regression model for the

ith dependent variable is yi = β0 + β1xi1 + . . . + βpxip + εi where ε1, . . . , εn are

independent and identically distributed random variables with variance σ2. Simi-

lar to simple linear regression, least squares estimation chooses β̂0, β̂1, . . . , β̂p which

minimizes

RSS =
n∑
i=1

(yi − β0 − β1xi1 − . . .− βpxip)2 .

In matrix form, the goal is to estimate

β =



β0

β1

...

βp


.

and the least squares estimate can be expressed as β̂ = (X>X)−1X>y where X is

n× (p+ 1) matrix with columns

J =


1

...

1

 ,x1 =


x11

...

xn1

 , . . . ,xp =


x1p

...

xnp

 , and y =


y1

...

yn

 .
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Often, each of the p predictor variables are scaled using the formulas

x∗ij =
xij − x̄j
sj

and the response variable is centered using the formula

yci = yi − ȳ

where x̄j =
∑n

i=1 xij
n

is the sample mean for the jth variable, and

sj =
√

1
n−1

∑n
i=1(xij − x̄j)2 is the sample standard deviation for the jth variable.

Letting

x∗1 =


x∗11

...

x∗n1

 , . . . ,x∗p =


x∗1p
...

x∗np

 , and yc =


yc1
...

ycn

 ,
the least squares estimate for the centered model is given by

β̂
∗

= (X∗>X∗)−1X∗>yc.

Especially when there are a large number of predictor variables available

in the multiple linear regression model, it is desirable to consider strategies for

selectively including variables in the model. Using too many predictor variables

can lead to overfitting and standard error estimates for the coefficients can become

inflated as discussed in Chapter 4 of Hocking (2013). Of course, if the number of

predictor variables is greater than the number of observations, it is not even possible

to include all of the predictor variables since (X>X)−1 does not exist if p ≥ n.

Different types of variable selection methods exist for regression models in

statistics. The goal of each method is to identify the best subset among many

variables to include in a model. Here are some basic strategies that can be used

for variable selection. Forward selection starts with a null model (no predictors

and only an intercept) and then proceeds to add one variable at a time according

to the correlation until no additional variable is significant. Backward elimination

3



starts with the full model and deletes one variable at a time until all remaining

variables are significant. Stepwise regression is a combination of forward selection

and backward elimination methods. This method requires two significance levels.

After each step, the significance level is checked, and it is determined whether a

variable should be added to or removed from the model. All subsets regression

builds all 2p possible models (including a model with only the intercept, all one

variable models, all two variables models, and so on).

Forward stagewise regression takes a different approach. It starts like for-

ward selection with no variables included (usually the predictors are scaled and the

responses are centered so this corresponds to a model with only an intercept) by

setting the estimates for all coefficients equal to 0. Then the current residuals ri

are equal to the centered values yci , and the predictor xj most correlated with r

is selected. However, instead of fully adding the predictor x∗j to the model, the

coefficient estimate for βj is only incremented by a small amount ε · sign〈r,x∗j〉 and

the residuals are updated. This step is repeated many times until the remaining

residuals are uncorrelated with each of the predictors. More discussion on forward

selection, backward elimination, forward stagewise, all subsets, and forward stage-

wise regression is given in Hastie, Tibshirani, and Friedman (2013).

If the value of ε used in forward stagewise regression is small, the coefficient

estimates are updated very slowly from step to step and the number of steps re-

quired to complete the algorithm can be very large. In this thesis, a closely related

method called least angle regression (LAR) which is motivated by the same princi-

ples but more computationally efficient will be discussed in detail. The algorithm

presented here is equivalent to that developed and described in Efron et al. (2004)

and Hastie, Tibshirani, and Friedman (2013). However, the notation used herein

differs significantly from those classic references, and the paths for the coefficient

profiles are parametrized differently.

4



In Chapter 2, the LAR algorithm is presented in detail, custom R code is

provided implementing the presented version of the algorithm, and the method is

illustrated using a small artificial data example as well as the well-known Long-

ley data set. In Chapter 3, a penalized approach to variable reduction called the

LASSO is discussed and a method for computing the LASSO estimates using a

modification of the LAR algorithm is presented and illustrated using the Longley

data set. Finally, in Chapter 4, a method called k-fold cross validation for choosing

a model along the coefficient path for the LAR or LASSO algorithm is described

and illustrated with the Longley data set.
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CHAPTER 2

LEAST ANGLE REGRESSION

Just as in forward stagewise regression, the idea behind least angle regression

is to move the coefficient estimates in the direction in which the predictor variable(s)

is most correlated with the remaining residual. Instead of moving in steps of size

ε, the coefficient path for LAR changes continuously as it moves from a vector of

zeros to the least squares solution.

Finding the variable that is most highly correlated (in absolute terms) with

the current residual is equivalent to finding the vector(s) x∗j which makes the small-

est angle with the residual r. The angle θ between two vectors x∗j and r can be

determined by

cos(θ) =
〈x∗j , r〉
‖x∗j‖‖r‖

=
〈x∗j , r〉
‖r‖

(since ‖x∗j‖ = 1) (2.1)

= Cor(x∗j , r).

Thus, the absolute correlation |Cor(x∗j , r)| is maximized when | cos(θ)| is maximized

and consequently when the the absolute value of the angle, |θ|, is minimized. It

can be seen that the variable(s) which maximize (2.1) can be found by maximizing

〈x∗j , r〉 since ‖r‖ does not depend on the index j.

A basic description of the LAR algorithm is as follows, similar to the algo-

rithm provided in Algorithm 3.2 on page 74 of Hastie, Tibshirani, and Friedman

(2013).
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1. Standardized the predictors to have mean zero and unit norm. Start with all

estimates of the coefficients β∗1 , β
∗
2 , . . . , β

∗
p to be equal to 0 with the residual

r∠0 = yc.

2. Find the predictor xĵ∠1 most correlated with the response r∠0 .

3. Move the estimate of β∗
ĵ∠1

from 0 towards the least squares coefficients until

some other predictor xĵ∠2 has as large a correlation with the current residual

r̃1(α) as xĵ∠1 does.

4. At this point instead of continuing in the direction based on xj1 , LAR proceeds

in a direction of equiangularity between the two predictors xĵ∠1 and xĵ∠2 . A

third variable xĵ∠3 eventually earns its way into the most correlated (active

set), and then LAR proceeds equiangularly between xĵ∠1 ,xĵ∠2 , and xĵ∠3 .

5. Continue adding variables to the active set in this way moving in the direction

defined by least angle direction. After i steps this process gives a linear model

with predictors xĵ∠1 ,xĵ∠2 ,xĵ∠3 , . . . ,xĵ∠i . After min(n− 1, p) steps, the full least

squares solution is attained and the LAR algorithm is complete.

2.1 LAR Algorithm

In this section, the mathematical details of the LAR algorithm are developed

in detail. This presentation of the LAR algorithm uses matrices which explicitly

describe the coefficient directions on the ith step in terms of X∗ and r∠i−1 instead

of using the active set terminology described in the classic references Hastie, Tib-

shirani, and Friedman (2013) and Efron et al. (2004).

On the initial step, let r∠0 = yc and β̂
∗∠
0 = [β̂∗∠0,1, . . . , β̂

∗∠
0,p]
> = 0. Then choose

the first variable that enters the model using the formula

ĵ∠1 = argmax
j

∣∣〈x∗j , r∠0 〉∣∣.
7



Here is the algorithm for the ith step where i = 1, . . . ,min {p, n− 1}. Let ej

be the jth standard unit vector in Rp; for example, e1 = [1, 0, . . . , 0]>. The direction

on the ith step is d∠
i = E∠

i

(
E∠>
i X∗>X∗E∠

i

)−1
E∠>
i X∗>r∠i−1 where E∠

i is a matrix

with columns eĵ∠1 , . . . , eĵ∠i . Then update the coefficient estimate using the formula

β̃
∗∠
i (α) = β̂

∗∠
i−1 +αd∠

i where α is a value between [0, 1] which represents how far the

estimate of β moves in the direction d∠
i before another variable enters the model

and the direction changes again. We choose α on the ith step by finding the smallest

value of α such that the angle between the remaining residual r̃∠i (α) = r∠i−1−αX∗d∠
i

and one of the variables not in the model on the ith step (that is, a variable such

that β̂∗∠i−1,j = 0) equals the angle between r̃∠i (α) and a variable in the model.

Mathematically, we choose α as follows. The angle between r̃∠i (α) and the

jth variable x∗j equals the angle between r̃∠i (α) and x∗
ĵ∠i

when

〈r̃∠i (α),x∗j〉 = 〈r̃∠i (α),x∗
ĵ∠i
〉. (2.2)

Since it follows that

〈r̃∠i (α),x∗j〉 = 〈r∠i−1 − αX∗d∠
i ,x

∗
j〉

= 〈r∠i−1,x
∗
j〉 − α〈X∗d∠

i ,x
∗
j〉

= 〈r∠i−1,x
∗
j〉 − α〈H∠

i r
∠
i−1,x

∗
j〉

= 〈r∠i−1,x
∗
j〉 − α〈r∠i−1,H

∠
i x
∗
j〉

where H∠
i = Zi(Z

T
i Zi)

−1ZT
i is a hat matrix for Zi = X∗E∠

i , the solution to (2.2)

is

α̃+
i,j =

〈r∠i−1,x
∗
ĵ∠i
〉 − 〈r∠i−1,x

∗
j〉

〈r∠i−1,H
∠
i x
∗
ĵ∠i
〉 − 〈r∠i−1,H

∠
i x
∗
j〉

=
〈r∠i−1,x

∗
ĵ∠i
〉 − 〈r∠i−1,x

∗
j〉

〈r∠i−1,x
∗
ĵ∠i
〉 − 〈r∠i−1,H

∠
i x
∗
j〉

(2.3)
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=
〈r∠i−1,x

∗
ĵ∠i
〉 − 〈r∠i−1,x

∗
j〉

〈r∠i−1,x
∗
ĵ∠i
〉 − 〈H∠

i r
∠
i−1,x

∗
j〉

=
〈r∠i−1,x

∗
ĵ∠i
〉 − 〈r∠i−1,x

∗
j〉

〈r∠i−1,x
∗
ĵ∠i
〉 − 〈X∗d∠

i ,x
∗
j〉
.

Equation (2.3) holds since Zi = H∠
i Zi which implies that[

x∗
ĵ∠1
· · · x∗

ĵ∠i

]
= X∗E∠

i = H∠
i (X∗E∠

i ) =
[
H∠

i x
∗
ĵ∠1
· · · H∠

i x
∗
ĵ∠i

]
so H∠

i x
∗
ĵ∠k

= x∗
ĵ∠k

for k = 1, . . . , i. Similarly, the angle between r̃∠i (α) and −x∗j

equals the angle between r̃∠i (α) and x∗
ĵ∠i

when

α̃−i,j =
〈r∠i−1,x

∗
ĵ∠i
〉+ 〈r∠i−1,x

∗
j〉

〈r∠i−1,x
∗
ĵ∠i
〉+ 〈X∗d∠

i ,x
∗
j〉
.

So, the smallest value of α such that a new variable should enter the model is

α̂∠
i = min

{
α ∈ [0, 1] : α = α̃+

i,j or α = α̃−i,j for some j such that β̂∗∠i−1,j = 0
}
.

Then β̂
∗∠
i = β̃

∗∠
i (α̂∠

i ), r∠i = yc −X∗β̂
∗∠
i = r∠i−1 − α̂∠

i X
∗d∠

i , and we move to the

next step where ĵ∠i+1 is the value of j such that α̃+
i,j = α̂∠

i or α̃−i,j = α̂∠
i .

So, the vector of LAR coefficient profiles based on the centered responses

and standardized inputs can described by

β̂
∗∠
i (α) =



0 if i = 0

β̃
∗∠
1 (α) if i = 1, 0 ≤ α ≤ α̂∠

1

...
...

β̃
∗∠
min{p,n−1}(α) if i = min {p, n− 1} , 0 ≤ α ≤ α̂∠

min{p,n−1}

and the vector of coefficient profiles based on the original scale is

β̂
∠

i (α) =
[
β̂∠
i,0(α), β̂∠

i,1(α), . . . , β̂∠
i,p(α)

]>
where

β̂∠
i,j(α) =

β̂∗∠i,j (α)

sxj
for j = 1, . . . , p

9



and

β̂∠
i,0(α) = ȳ −

β̂∗∠i,1 (α)

sx1
x̄1 − . . .−

β̂∗∠i,p (α)

sxp
x̄p.

A mathematical summary of the algorithm is given in Table 2.1.

2.2 Example

Here is a small artificial example to illustrate the LAR method. Suppose

that we want to obtain the LAR coefficient profiles for

X = [x1 x2 x3] =



1 1 4

5 3 5

6 4 7

6 4 1

6 5 4

6 7 3


and y =



6

8

6

7

5

4


.

Then we standardize the inputs and center the outputs to obtain

X∗ = [x∗1 x∗2 x∗3] =



−2 −1.5 0

0 −0.5 0.5

0.5 0 1.5

0.5 0 −1.5

0.5 0.5 0

0.5 1.5 −0.5


and yc =



0

2

0

1

−1

−2


.

We initialize r∠0 = yc = [0, 2, 0, 1,−1,−2]> and β̂
∗∠
0 = [0, 0, 0]>. Then we compute

〈x∗1, r∠0 〉 = −1, 〈x∗2, r∠0 〉 = −4.5, and 〈x∗3, r∠0 〉 = 0.5 to determine that ĵ∠1 = 2.

Consequently, on the first step, we have E∠
1 =


0

1

0

 and

10



initial r∠0 = yc

step β̂
∗∠
0 = [β̂∗∠0,1, . . . , β̂

∗∠
0,p]
> = 0

ĵ∠1 = argmax
j

∣∣〈x∗j , r∠0 〉∣∣
ith E∠

i =
[
eĵ∠1 · · · eĵ∠i

]
step d∠

i = E∠
i

(
E∠>
i X∗>X∗E∠

i

)−1
E∠>
i X∗>r∠i−1

α̃±i,j =
〈r∠

i−1,x
∗
ĵ∠
i

〉∓〈r∠
i−1,x

∗
j 〉

〈r∠
i−1,x

∗
ĵ∠
i

〉∓〈X∗d∠
i ,x

∗
j 〉

for j such that β̂∗∠i−1,j = 0

α̂∠
i = min

{
α ∈ [0, 1] : α = α̃+

i,j or α = α̃−i,j
}

β̂
∗∠
i (α) = β̂

∗∠
i−1 + αd∠

i , α ∈ [0, α̂∠
i ]

r∠i = r∠i−1 − α̂∠
i X

∗d∠
i

ĵ∠i+1 is the value j such that α̃+
i,j = α̂∠

i or α̃−i,j = α̂∠
i

Continue until α̂∠
i = 1.

original β̂∠
i,j(α) =

β̂∗∠
i,j (α)

sj
for all i and for j = 1, . . . , p

scale β̂∠
i,0(α) = ȳ − β̂∗∠

i,1 (α)

s1
x̄1 − . . .−

β̂∗∠
i,p(α)

sp
x̄p for all i

Table 2.1 – Summary of the algorithm to obtain the coefficient profiles based on the
LAR method.
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d∠
1 = E∠

1

(
E∠>

1 X∗>X∗E∠
1

)−1
E∠>

1 X∗>r∠0 =


0

−0.9

0

.

Let β̃
∗∠
1 (α) = β̂

∗∠
0 + αd∠

1 =


0

−0.9α

0

 and

r̃∠1 (α) = yc −X∗β̃∗∠1 (α) = r∠0 − αX∗d∠
1 =



−1.35α

2− 0.45α

0

1

−1 + 0.45α

−2 + 1.35α


for α ∈ [0, 1]. Then we compute ±〈x∗j , r̃∠1 (α)〉 for j = 1, 2, 3 . We have 〈x∗1, r̃∠1 (α)〉 =

−1 + 3.6α, 〈x∗2, r̃∠1 (α)〉 = −4.5 + 4.5α, and 〈x∗3, r̃∠1 (α)〉 = 0.5 − 0.9α. These line

segments are plotted in Figure 2-1.

Then, we have

〈x∗1, r̃∠1 (α̃+
11)〉 = 〈x∗2, r̃∠1 (α̃+

11)〉 ⇒ α̃+
11 =

−4.5 + 1

−4.5 + 3.6
=

35

9
/∈ [0, 1)

〈−x∗1, r̃∠1 (α̃+
11)〉 = 〈x∗2, r̃∠1 (α̃+

11)〉 ⇒ α̃−11 =
−4.5− 1

−4.5− 3.6
=

55

81
≈ .679

〈x∗3, r̃∠1 (α̃+
13)〉 = 〈x∗2, r̃∠1 (α̃+

13)〉 ⇒ α̃+
13 =

−4.5− 0.5

−4.5− 0.9
=

25

27
≈ .926

〈−x∗3, r̃∠1 (α̃−13)〉 = 〈x∗2, r̃∠1 (α̃−13)〉 ⇒ α̃−13 =
−4.5 + 0.5

−4.5 + 0.9
=

10

9
/∈ [0, 1).
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Figure 2.1 – Line segments 〈x∗1, r̃∠1 (α)〉 (red), ±〈x∗2, r̃∠1 (α)〉 (green), and 〈x∗3, r̃∠1 (α)〉
(blue) for step 1 of the LAR algorithm.

Thus, we have α̂∠
1 = 55

81
so that β̂

∗∠
1 = β̃

∗∠
1 (α̂∠

1 ) =


0

−11
18

0

 ≈


0

−0.611

0

,

r∠1 = r̃∠1 (α̂∠
1 ) =



−11
12

61
36

0

1

−25
36

−13
12


,
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and ĵ∠2 = 1.

Then, on the second step, we have E∠
2 =


0 1

1 0

0 0

 and

d∠
2 = E∠

2

(
E∠>

2 X∗>X∗E∠
2

)−1
E∠>

2 X∗>r∠1 =


13
9

−13
9

0

.

Let β̃
∗∠
2 (α) = β̂

∗∠
1 + αd∠

2 =


13
9
α

−11
18
− 13

9
α

0

 and

r̃∠2 (α) = yc −X∗β̃∗∠2 (α) = r∠1 − αX∗d∠
2 =



−11
12

+ 13
18
α

61
36
− 13

18
α

−13
18
α

1− 13
18
α

−25
36

−13
12

+ 13
9
α


for α ∈ [0, 1]. Then we compute ±〈x∗j , r̃∠2 (α)〉 for j = 1, 2, 3 . We have 〈x∗1, r̃∠2 (α)〉 =

13
9
− 13

9
α, 〈x∗2, r̃∠2 (α)〉 = −13

9
+ 13

9
α, and 〈x∗3, r̃∠2 (α)〉 = −1

9
− 13

12
α. These line segments

are plotted in Figure 2-2.

Then, we have

〈x∗3, r̃∠2 (α̃+
23)〉 = 〈x∗1, r̃∠2 (α̃+

23)〉 ⇒ α̃+
23 =

13
9
− 1

9
13
9

+ 13
12

=
48

91
≈ .527

〈−x∗3, r̃∠2 (α̃−23)〉 = 〈x∗1, r̃∠2 (α̃−23)〉 ⇒ α̃−23 =
13
9

+ 1
9

13
9
− 13

12

=
56

13
/∈ [0, 1).
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Figure 2.2 – Line segments 〈x∗1, r̃∠2 (α)〉 (red), 〈x∗2, r̃∠2 (α)〉 (green), and 〈x∗3, r̃∠2 (α)〉
(blue) for step 2 of the LAR algorithm.

Thus, we have α̂∠
2 = 48

91
so that β̂

∗∠
2 = β̃

∗∠
2 (α̂∠

2 ) =


16
21

−173
126

0

 ≈


0.762

−1.373

0

,

r∠2 = r̃∠2 (α̂∠
2 ) =



−45
84

331
252

− 8
21

13
21

−25
36

− 9
28


,
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and ĵ∠3 = 3.

Then E∠
3 =


0 1 0

1 0 0

0 0 1

 and d∠
3 = E∠

3

(
E∠>

3 X∗>X∗E∠
3

)−1
E∠>

3 X∗>r∠2 =


10664
14007

−33497
42021

−172
667

. Let β̃
∗∠
3 (α) = β̂

∗∠
2 + αd∠

3 =


16
21

+ 10664
14007

α

−173
126
− 33497

42021
α

−172
667
α

 and

r̃∠3 (α) = yc −X∗β̃∗∠3 (α) = r∠2 − αX∗d∠
3 =



−45
84

+ 3053
9338

α

331
252
− 22661

84042
α

− 8
21

+ 86
14007

α

13
21
− 10750

14007
α

−25
36

+ 215
12006

α

− 9
28

+ 6407
9338

α


for α ∈ [0, 1]. Then we compute ±〈x∗j , r̃∠3 (α)〉 for j = 1, 2, 3 . We have 〈x∗1, r̃∠3 (α)〉 =

−43
63

+ 43
63
α, 〈x∗2, r̃∠3 (α)〉 = 43

63
− 43

63
α, and 〈x∗3, r̃∠3 (α)〉 = 43

63
− 43

63
α. These line segments

are plotted in Figure 2-3. When α = 1, we get the least squares estimate

β̂
∗∠
3 =


1016
667

−2895
1334

−172
667

 ≈


1.523

−2.170

−0.258

.

Since ȳ = 6, x̄1 = 5, x̄2 = 4, x̄3 = 4 and sx1 = sx2 = sx3 = 2, the LAR

coefficient profiles are

β̂i,0(α) =



6 if i = 0

6 + 9
5
α if i = 1, 0 ≤ α ≤ 55

81

65
9
− 13

18
α if i = 2, 0 ≤ α ≤ 48

91

431
63

+ 8686
42021

α if i = 3, 0 ≤ α ≤ 1

,
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Figure 2.3 – Line segments 〈x∗1, r̃∠3 (α)〉 (red), 〈x∗2, r̃∠3 (α)〉 (green), and 〈x∗3, r̃∠3 (α)〉
(blue) for step 3 of the LAR algorithm.

β̂i,1(α) =


0 if i ≤ 1

13
18
α if i = 2, 0 ≤ α ≤ 48

91

8
21

+ 5332
14007

α if i = 3, 0 ≤ α ≤ 1

,

β̂i,2(α) =



0 if i = 0

− 9
20
α if i = 1, 0 ≤ α ≤ 55

81

−11
36
− 13

18
α if i = 2, 0 ≤ α ≤ 48

91

−173
252
− 33497

84042
α if i = 3, 0 ≤ α ≤ 1

,

and

β̂i,3(α) =

 0 if i ≤ 2

− 86
667
α if i = 3, 0 ≤ α ≤ 1

.
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Figure 2.4 – Coefficient profiles for the artificial data example in Section 2.2.

The LAR coefficient profiles for β1, β2, and β3 are illustrated in Figure 2.4.

2.3 Code

All of the computational work in the thesis was performed using the R sta-

tistical software environment (R Core Team, 2015). The following custom function

our.lar implements the LAR algorithm as described in Section 2.1.

# LAR code from scratch

our.lar=function(X,y,epsilon=1e-8){

n=nrow(X)

p=ncol(X)

#compute the mean and standard deviation of each column of X
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X.means=apply(X,2,mean)

X.sds=apply(X,2,sd)

#center and scale the columns of X

Xstar=X

for (i in 1:p)

Xstar[,i]=(X[,i]-X.means[i])/X.sds[i]

#center the y variable

yc=y-mean(y)

#step up matrix to store the parameters that will be returned

#from the function

beta.hat=rep(0,p+1)

alpha.hat=NULL

#initial step

r=yc

#compute inner product and choose the first variable to enter

#the model

inner.products=t(X)%*%r

j.hat=which.max(abs(inner.products))

#algorithm on the ith step

i=1

while ((i==1)||(alpha.hat[i-1]<1)){

beta.hat=rbind(beta.hat,rep(0,p+1))

alpha.hat=c(alpha.hat,1)

njhat=length(j.hat)

j.hat=c(j.hat,0)

XE=Xstar[,j.hat]

d=rep(0,p)

d[j.hat]=solve(t(XE)%*%XE)%*%t(XE)%*%r

Xd=Xstar%*%d

#find alpha.hat[i]

for (j in 1:p){

alpha=1

if (j%in%j.hat==FALSE){

if (abs(sum(Xstar[,j.hat[1]]*r)-sum(Xstar[,j]*Xd))>epsilon){

alpha=(sum(Xstar[,j.hat[1]]*r)-sum(Xstar[,j]*r))/

(sum(Xstar[,j.hat[1]]*r)-sum(Xstar[,j]*Xd))

if ((alpha<epsilon)|(alpha>1-epsilon)){

alpha=1
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if (abs(sum(Xstar[,j.hat[1]]*r)+sum(Xstar[,j]*Xd))>epsilon){

alpha2=(sum(Xstar[,j.hat[1]]*r)+sum(Xstar[,j]*r))/

(sum(Xstar[,j.hat[1]]*r)+sum(Xstar[,j]*Xd))

if ((alpha2>epsilon)&(alpha2<1-epsilon))

alpha=alpha2

}

}

if (alpha+epsilon<alpha.hat[i]){

alpha.hat[i]=alpha

j.hat[njhat+1]=j

}

}

}

}

beta.hat[i+1,2:(p+1)]=beta.hat[i,2:(p+1)]+alpha.hat[i]*d

r=r-alpha.hat[i]*Xd

i=i+1

}

#translate coefficient estimates back to original scale

beta.hat[,-1]=t(t(beta.hat[,-1])/X.sds)

beta.hat[,1]=mean(y)-beta.hat[,-1]%*%X.means

#output relevant results

list(beta=beta.hat,alpha=alpha.hat)

}

Here is code that can be used to compute the LAR coefficient profiles for the artificial

data example in Section 2.2.

X=rbind(

c(1,1,4),

c(5,3,5),

c(6,4,7),

c(6,4,1),

c(6,5,4),

c(6,7,3))

y=c(6,8,6,7,5,4)

print(our.lar(X,y)$beta,digits=4)

print(our.lar(X,y)$alpha,digits=4)

Here is the output for print(our.lar(X,y)$beta,digits=4).
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> print(our.lar(X,y)$beta,digits=4)

[,1] [,2] [,3] [,4]

beta.hat 6.000 0.0000 0.0000 0.0000

7.222 0.0000 -0.3056 0.0000

6.841 0.3810 -0.6865 0.0000

7.048 0.7616 -1.0851 -0.1289

The rows give the values of β̂
∠

0 , β̂
∠

1 , β̂
∠

2 , and β̂
∠

3 , respectively. There is an excel-

lent R package lars (Hastie and Efron, 2013) for implementing LAR, the LASSO,

and forward stagewise regression. Using the package lars, the following command

coef(lars(X,y,type="lar")) verifies that the custom function above obtains the

same coefficient profile as the classic LAR algorithm.

The other output command print(our.lar(X,y)$alpha,digits=4) explic-

itly computes the values of α̂∠
1 , α̂∠

2 , and α̂∠
3 .

> print(our.lar(X,y)$alpha,digits=4)

[1] 0.6790 0.5275 1.0000

2.4 Longley Example

As an example for Least Angle Regression consider the Longley data set

which is studied extensively in Longley (1967). This data contained seven economi-

cal variables observed annually from 1947 to 1960. There are 6 explanatory variables

x1, . . . , x6; they are the GNP implicit price deflator(GNP.deflator), Gross National

Product(GNP), number of people unemployed(Unemployed), number of people in the

armed force(Armed Force), non institutionalized population greater than 14 years

of age(Population), and the time(Year), respectively. The dependent variable y is

the number of people employed(Employed). The data set is also available in the R

data frame longley. The scale for the variables in R’s built-in data set is different

from the scale in the original paper by Longley (1967); herein, the scale in the R

data set is used.
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i (Step) β̂∗∠i,1 β̂∗∠i,2 β̂∗∠i,3 β̂∗∠i,4 β̂∗∠i,5 β̂∗∠i,6

0 0 0 0 0 0 0

1 0 12.59954 0 0 0 0

2 0 13.94697 -1.347432 0 0 0

3 0 14.30726 -1.662917 -0.267191 0 0

4 0 -2.52538 -4.995279 -1.661989 0 19.67211

5 1.13 -15.87012 -7.548153 -2.780428 0 34.09000

6 0.63 -13.789 -7.312 -2.784 -1.377 33.728

Table 2.2 – LAR coefficient table for the standardized Longley data.

Coefficient tables obtained from the custom R function our.lar are given

in Table 2.2 (for the standardized predictors and centered response) and in Ta-

ble 2.3 for the variables all in the original scale. It is seen that GNP is most

highly correlated with Employed since it is the first variable to enter the model.

Then Unemployed enters the model next, followed by Armed Force, Year, and

GNP.deflator. Population enters the model last and finally the least squares

solution

ŷ = −13.789x2 − 7.312x3 − 2.784x4 + 33.728x6 + 0.63x1 − 1.377x5

is attained.

Figure 2.1 clearly shows the LAR coefficient profiles for the standardized

Longley data.
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Figure 2.5 – LAR coefficient profiles for the standardized Longley data.

i (Step) β̂∠
i,0 β̂∠

i,1 β̂∠
i,2 β̂∠

i,3 β̂∠
i,4 β̂∠

i,5 β̂∠
i,6

0 65.32 0 0 0 0 0 0

1 52.63 0 0.03273 0 0 0 0

2 52.46 0 0.03623 -0.003723 0 0 0

3 52.63 0 0.03717 -0.004595 -0.0009913 0 0

4 -2011.32 0 -0.00656 -0.013802 -0.0061663 0 1.067

5 -3525.56 0.02701 -0.04123 -0.020856 -0.0103159 0 1.849

6 -3482.26 0.01506 -0.03582 -0.020202 -0.0103323 -0.0511 1.829

Table 2.3 – LAR coefficient table for the Longley data (original scale).
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CHAPTER 3

PENALIZED REGRESSION VIA THE LASSO

Penalized regression methods estimate the regression coefficients by minimiz-

ing the Residual Sum of Squares(RSS) which is based on Ordinary Least Squares(OLS)

as in LAR. However penalized regression methods use a penalty on the size of the

regression coefficients. This penalty causes the regression coefficients to shrink

towards zero. Penalized regression methods include sequence of models each asso-

ciated with specific values for one or more tuning parameters. Some versions of

penalized regression keep all the predictors in the model; for example, ridge regres-

sion coefficients minimize the RSS

β̄ = arg min
β

N∑
i=1

(
yci −

p∑
j=1

x∗ijβ
∗
j

)2

subject to

p∑
j=1

β∗2j ≤ t

for some non-negative real number t.

Another method for penalized regression is the Least Absolute Shrinkage and

Selection Operator(LASSO). The LASSO is a constrained version of OLS which

minimizes the RSS subject to a constraint on the sum of absolute value of the

regression coefficients. There is an important difference in LASSO with Ridge Re-

gression. In Ridge Regression the L2 ridge penalty,
∑p

j=1 β
∗2
j is replaced by the L1

LASSO penalty,
∑p

j=1

∣∣β∗j ∣∣. So the LASSO constraint makes the solutions non lin-

ear. Making t sufficiently small will cause some of the coefficients to be zero. Often,

the coefficient profiles for the LASSO are written as functions of the standardized

tuning parameter s =
t∑p

j=1 |β̂∗j |
.

Figure 3.1 illustrates the LASSO constraint for the artificial example using
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Figure 3.1 – Contour plot of ‖yc −X∗β∗‖2 and LASSO constraint
∑2

j=1 |β∗j | ≤ 0.4
for the artificial example with X∗ = [x∗1 x∗2].

only x∗1 and x∗2 as explanatory variables with t = .4. The solid blue diamond∑2
j=1 |β∗j | ≤ 0.4 gives the set of values of β∗1 and β∗2 which are permitted under

the LASSO constraint. The point at the center of the contour plot represents the

least squares estimates of β∗1 and β∗2 based on the regression model of y on x∗1 and

x∗2. The red ellipses depicted in Figure 3.1 show level curves for the sum of squares

function ‖yc−X∗β∗‖2; the further the ellipse is from the center of the contour plot,

the larger the sum of squares function. Thus, it is seen from the contour plot that

the constrained minimum of ‖yc −X∗β∗‖2 is at the corner of the diamond where

β∗1 = 0. Hence, for t = .4, the first variable x∗1 is not included in the model.

Naive computation of the LASSO is very computationally expensive but a
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simple modification of LAR algorithm gives a computationally efficient algorithm

for computing the LASSO estimates. The main modification to the LAR algorithm

is that if a non-zero coefficient hits zero, its variable must be dropped from the active

set of variables and the current joint least squares direction should be recomputed.

Thus, in the LASSO algorithm, variables can leave the model and possibly re-enter

later multiple times. Hence it may take more than p steps to reach the full model,

if n− 1 > p, whereas in the LAR algorithm, variables added to the model are never

removed, hence it will reach the full least squares solution using all variables in p

steps or less.

3.1 LASSO Algorithm via LAR Modification

The LAR algorithm with a minor modification provides an efficient algorithm

for computing the LASSO coefficient profiles. On the ith step, the modification

requires that none of the coefficient profiles cross 0. This is equivalent to considering

other candidates for α̂◦i that correspond to values of α such that β̂
∗◦
i−1 + αd◦i = 0.

If β̂i−1,j 6= 0, then let

α̃∗i,j = −β̂∗◦i−1,j/d
◦
i,j.

Then, α is selected using the modified formula

α̂◦i = min
{
α ∈ [0, 1] :

(
α = α̃+

i,j or α = α̃−i,j for some j such that β̂∗◦i−1,j = 0
)

or

(
α = α̃∗i,j for some j such that β̂∗◦i−1,j 6= 0

)}
.

Finally, the other modification is made if α̂◦i = α̃∗i,j for some j such that β̂∗◦i−1,j 6=

0; in this case, E◦i is the matrix formed by removing the column ej from E◦i−1.

Complete details for this LASSO algorithm are provided in Table 3-1.
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initial r◦0 = yc

step β̂
∗◦
0 = [β̂∗◦0,1, . . . , β̂

∗◦
0,p]
> = 0

ĵ◦1 = argmax
j

∣∣〈x∗j , r◦0〉∣∣
E◦1 = eĵ◦1

ith d◦i = E◦i
(
E◦>i X

∗>X∗E◦i
)−1

E◦>i X
∗>r◦i−1

step α̃±i,j =
〈r◦

i−1,x
∗
ĵ◦
i
〉∓〈r◦

i−1,x
∗
j 〉

〈r◦
i−1,x

∗
ĵ◦
i
〉∓〈X∗d◦

i ,x
∗
j 〉

for j such that β̂∗◦i−1,j = 0

α̃∗i,j = −β̂∗◦i−1,j/d
◦
i,j for j such that β̂∗◦i−1,j 6= 0

α̂◦i = min
{
α ∈ [0, 1] : α = α̃+

i,j, α = α̃−i,j, or α = α̃∗i,j
}

β̂
∗◦
i (α) = β̂

∗◦
i−1 + αd◦i , α ∈ [0, α̂◦i ]

r◦i = r◦i−1 − α̂◦iX∗d◦i

If α̃+
i,j = α̂◦i or α̃−i,j = α̂◦i for some j, then E◦i+1 = [E◦i ej].

If α̃∗i,j = α̂◦i for some j, then E◦i+1 is E◦i with ej removed.

Continue until α̂◦i = 1.

original β̂◦i,j(α) =
β̂∗◦
i,j(α)

sj
for all i and for j = 1, . . . , p

scale β̂◦i,0(α) = ȳ − β̂∗◦
i,1(α)

s1
x̄1 − . . .−

β̂∗◦
i,p(α)

sp
x̄p for all i

Table 3.1 – Modified LAR algorithm to obtain the coefficient profiles based on the
LASSO method.
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3.2 Code

The following custom function our.lasso implements the LASSO algorithm

discussed in the previous section.

# LASSO code from scratch

our.lasso=function(X,y,epsilon=1e-8,max.steps=20){

n=nrow(X)

p=ncol(X)

#compute the mean and standard deviation of each column of X

X.means=apply(X,2,mean)

X.sds=apply(X,2,sd)

#center and scale the columns of X

Xstar=X

for (i in 1:p)

Xstar[,i]=(X[,i]-X.means[i])/X.sds[i]

#center the y variable

yc=y-mean(y)

#step up matrix to store the parameters that will be returned

#from the function

beta.hat=rep(0,p+1)

alpha.hat=NULL

#initial step

r=yc

#compute inner product and choose the first variable to enter

#the model

inner.products=t(X)%*%r

j.hat=which.max(abs(inner.products))

#algorithm on the ith step
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i=1

while (((i==1)||(alpha.hat[i-1]<1))&(i<max.steps)){

beta.hat=rbind(beta.hat,rep(0,p+1))

alpha.hat=c(alpha.hat,1)

njhat=length(j.hat)

j.hat=c(j.hat,0)

XE=Xstar[,j.hat]

d=rep(0,p)

d[j.hat]=solve(t(XE)%*%XE)%*%t(XE)%*%r

Xd=Xstar%*%d

#find alpha.hat[i]

for (j in 1:p){

alpha=1

if (j%in%j.hat==FALSE){

if (abs(sum(Xstar[,j.hat[1]]*r)-sum(Xstar[,j]*Xd))>epsilon){

alpha=(sum(Xstar[,j.hat[1]]*r)-sum(Xstar[,j]*r))/

(sum(Xstar[,j.hat[1]]*r)-sum(Xstar[,j]*Xd))

if ((alpha<epsilon)|(alpha>1-epsilon)){

alpha=1

if (abs(sum(Xstar[,j.hat[1]]*r)+sum(Xstar[,j]*Xd))>epsilon){

alpha2=(sum(Xstar[,j.hat[1]]*r)+sum(Xstar[,j]*r))/

(sum(Xstar[,j.hat[1]]*r)+sum(Xstar[,j]*Xd))

if ((alpha2>0)&(alpha2<1))

alpha=alpha2

}

}

if (alpha+epsilon<alpha.hat[i]){

alpha.hat[i]=alpha

j.hat[njhat+1]=j

}

}

}

else{

#LASSO modification

if (d[j]!=0){

alpha=-beta.hat[i,j+1]/d[j]

if ((alpha>0)&(alpha<alpha.hat[i])){

alpha.hat[i]=alpha

j.hat[njhat+1]=-j

}

}

}

}

if (j.hat[njhat+1]<0){
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remove.j=-j.hat[njhat+1]

j.hat=j.hat[abs(j.hat)!=remove.j]

}

beta.hat[i+1,2:(p+1)]=beta.hat[i,2:(p+1)]+alpha.hat[i]*d

r=r-alpha.hat[i]*Xd

i=i+1

}

#translate coefficient estimates back to original scale

beta.hat[,-1]=t(t(beta.hat[,-1])/X.sds)

beta.hat[,1]=mean(y)-beta.hat[,-1]%*%X.means

#output relevant results

list(beta=beta.hat,alpha=alpha.hat)

}

The LASSO coefficient profiles and the α values can be extracted from the

output of our.lasso the same way as the LAR coefficient profiles and the α values

were extracted from the output of our.lar.

3.3 Longley Example

Now, the LASSO method is illustrated on the Longley data set that was

described in Section 2.4. The coefficient tables obtained from the custom R function

our.lasso are given in Table 3-2 (for the standardized predictors and centered

response) and Table 3-3 for the variables all in the original scale.

Figure 3.1 clearly shows the LASSO coefficient profiles for the standardized

Longley data. When using the LASSO, it is preferable to parameterize the coeffi-

cient profiles by s instead of the index i for the step and the α̂∠
i that was used for

the LAR algorithm.

The LASSO coefficient profiles are the same as the LAR coefficient profiles

through step 3. On step 4, the LAR path for crosses 0. This is allowed for the LAR

algorithm, but it causes GNP to be dropped from the model when its path hits 0.

From that point on, the direction for the coefficients in the LASSO differs from the
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Figure 3.2 – LASSO coefficient profiles for the standardized Longley data.

direction for LAR. Eventually, at beginning of step 8, GNP re-enters the model, but

now with a negative coefficient. At the end of step 8, the path for GNP.deflator

hits 0, so it is dropped from the model; eventually it returns on the last step with

the opposite sign for the coefficient.
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i (Step) β̂∗◦i,1 β̂∗◦i,2 β̂∗◦i,3 β̂∗◦i,4 β̂∗◦i,5 β̂∗◦i,6

0 0 0 0 0 0 0

1 0 12.599536 0 0 0 0

2 0 13.946968 -1.347432 0 0 0

3 0 14.307258 -1.662917 -0.267191 0 0

4 0 0 -4.495328 -1.452729 0 16.72073

5 0 0 -5.109205 -1.921372 0 17.40197

6 0 0 -5.324667 -2.321762 -4.132012 21.83734

7 -0.3217731 0 -5.359592 -2.352200 -4.600470 22.65942

8 0 -4.664033 -6.019837 -2.498540 -3.510064 26.40331

9 0 -9.753905 -6.764499 -2.665480 -2.563231 31.09839

10 0.6295186 -13.788770 -7.311544 -2.784841 -1.376789 33.72789

Table 3.2 – LASSO coefficient table for the standardized Longley data.
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i (Step) β̂◦i,0 β̂◦i,1 β̂◦i,2 β̂◦i,3 β̂◦i,4 β̂◦i,5 β̂◦i,6

0 65.32 0 0 0 0 0 0

1 52.63 0 0.03273 0 0 0 0

2 52.46 0 0.03623 -0.003723 0 0 0

3 52.63 0 0.03717 -0.004595 -0.0009913 0 0

4 -1701.67 0 0 -0.012421 -0.0053899 0 0.9068

5 -1772.89 0 0 -0.014117 -0.0071286 0 0.9438

6 -2224.44 0 0 -0.014712 -0.0086142 -0.15337 1.1843

7 -2308.69 -0.007699 0 -0.014809 -0.0087271 -0.17076 1.2289

8 -2705.65 0 -0.01212 -0.016633 -0.0092700 -0.13029 1.4319

9 -3201.50 0 -0.02534 -0.018691 -0.0098894 -0.09514 1.6865

10 -3482.26 0.015062 -0.03582 -0.020202 -0.0103323 -0.05110 1.8292

Table 3.3 – LASSO coefficient table for the Longley data (original scale).
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CHAPTER 4

SELECTION OF CONSTRAINT FOR THE LASSO

Selection of the constraint t in the LASSO plays an important role since it

controls the amount of regularization. One approach in such circumstances is to

use a cross validation method to find the optimal value. Choosing the constraint

depends on how many variables are included in the model, or equivalently how many

coefficients are shrunk towards zero. Therefore each value corresponds to a model

selection. There are a few kinds of cross validation methods (see, for instance,

Chapter 7 of Hastie, Tibshirani, and Friedman (2013)). Herein a method called

K-fold cross validation is considered. In this method the data set is randomly

partitioned into K equal (or approximately equal) size parts. Then the method

leaves out one part as a test data set and fits the model based on the other K − 1

parts combined together. The fitted model based on K−1 parts (the training data)

is used to obtain predictions for the left out part (test data), and the prediction

error is recorded for each observation in the part that was left out. This process is

repeated using each of the K parts, and thus the prediction error is obtained for

all observations in the data set. Finally, there are different approaches for selecting

the final model based on the average prediction error for each candidate model.

While it is natural to choose the model which minimizes the average prediction

error, some instead choose the model by visually identifying the “elbow” of the

curve representing average prediction error as a function of the complexity of the

model.
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4.1 Description of K-Fold Cross-Validation for the LASSO

First, the labels for the observations are randomly permuted to obtain a

design matrix X̆ and response vector y̆. The rows of X̆ and y̆ are randomly

partitioned into K parts so that

X̆ =



X̆1

X̆2

...

X̆K


and y̆ =



y̆1

y̆2

...

y̆K


where X̆k is an nk × (p + 1) matrix and y̆k is a nk dimensional vector for k =

1, . . . , K. Usually, n1, . . . , nK are chosen to be approximately equal. Then, for each

k, the method proceeds to use the LASSO to estimate a coefficient profile denoted

by β̂
◦
−k(s) based on the design matrix X̆

(−k)
=



X̆1

...

X̆k−1

X̆k+1

...

X̆K


and response vector

y̆(−k) =



y̆1

...

y̆k−1

y̆k+1

...

y̆K


to predict y̆k using the formula ̂̆yk = X̆kβ̂

◦
−k(s). The K-fold

cross-validation mean square error function for a LASSO model can be expressed

as

CV(s) =
1

n

K∑
k=1

‖y̆k − X̆kβ̂
◦
−k(s)‖2,

and the smallest CV can be found by minimizing CV(s) for s in [0, 1].
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Figure 4.1 – 5-fold cross validation for the LASSO with the Longley data.

4.2 Longley Example

The built-in function cv.lars in the lars package can be used to obtain the

cross-validation function. The following R commands can be used to compute the

function CV (s) with K = 5 and obtain the plot shown in Figure 4.1.

set.seed(32245)

cv.lasso.model=cv.lars(X,y,K=5,type="lasso",index=seq(0,1,by=.01))

In the above code, the random seed 32245 is useful to obtain reproducable

results based on the random partitioning of the observation into K = 5 parts.

The argument index=seq(0,1,by=.01) sets up a grid of values on which CV (s) is

computed.
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The minimum value s of the cross-validation function can be obtained with

the following R commands.

w=which.min(cv.lasso.model$cv)

s=cv.lasso.model$index[w]

s

This code outputs the value s = 0.59, though if one wants to use the “elbow”

estimate to obtain a result with lower complexity, a value near 0.2 should be used.

Finally, the vector of coefficients can be obtained with the following R code.

lasso.model=lars(X,y,type="lasso")

b=coef(lasso.model,s=s,mode="fraction")

b

intercept=mean(y)-sum(apply(X,2,mean)*b)

intercept

This code produces the fitted model

ŷ = −2302.76− 0.00716x1 − 0.01480x3 − 0.00872x4 − 0.16954x5 + 1.22574x6.
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CHAPTER 5

CONCLUSION

LASSO is a recently developed well-known variable selection method in

statistics. It is a regression analysis method that performs at the same time both

variable selection and regularization. The purpose of this thesis has been to study

Least Angle Regression in full detail and subsequently study a computationally ef-

ficient method for obtaining the LASSO coefficient estimates. Rather than giving

the brief compact version of the LAR algorithm, I described it with full mathemat-

ical details which is easy to follow and understand. Furthermore, the algorithm is

illustrated with the help of an artificial small example and a famous Longley data

set including all necessary steps fully described.

With a small modification of the LAR algorithm, the LASSO is obtained and

illustrated with the same two examples. Using my own R codes, both methods are

implemented, and a comparison of the LAR and LASSO coefficient profiles are made

with graphs and coefficient tables using the custom R code and the lars package.

To use the LASSO to estimate the regression coefficients, a point on the

coefficient paths must be selected. That is, we must select a value for the penalty,

or equivalently, the shrinkage factor. K-fold cross validation is a method which can

be used to accomplish this task, and an example of selcting the shrinkage factor s

using 5-fold cross validation for the Longley data set was presented.
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