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ABSTRACT 

 

There are two purposes of this research, to design and build a heat transfer cell that 

could accurately calculate heat transport coefficients of various fluids and to determine if 

the increased heat transfer capabilities of nanofluids can be applied to cooling transformers 

by using the heat transfer cell to measure the enhancement. The design and construction of 

a heat transfer cell that could accurately calculate heat transport coefficients of various 

fluids was successful.  A heat transfer cell was built and tested on several fluids to confirm 

the accuracy of the design and the experiments.  Three fluids were successfully tested 

overall for their thermal conductivity values, and one fluid was tested for its convection 

coefficients in the heat transfer cells.  Values for the thermal conductivity and the 

convection coefficients were obtained during this experiment that agreed with commonly 

accepted values for the testing fluids.  The average value for the thermal conductivities for 

mineral oil of the first design in the ¼” diameter cell is 0.15
𝑊

𝑚2 𝐶
, and agrees well with the 

commonly accepted values of mineral oils.  The value commonly accepted value of thermal 

conductivity for mineral oil is 0.14
𝑊

𝑚2 𝐶
 at 25°C, the first heat transfer cell yielded a thermal 

conductivity value of approximately 0.16 
𝑊

𝑚2 𝐶
 at roughly 25C.  The heat transfer cell was 

also used to calculated convection coefficients of mineral oil, and values were obtained 

within the limits for natural convection according to Incropera, contributing more to the 

validity of the results from this heat transfer cell. 
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A second heat transfer cell was designed to determine the thermal conductivities of 

more thermally sensitive fluids, offering a wider range of materials that can be tested.  The 

second design places the thermocouples directly at their assumed position of the wire and 

the wall temperatures for calculation purposes, yielding more accurate results and can 

therefore more accurately calculate the thermal conductivities of various fluids.  The 

second design calculated a thermal conductivity of water to be 0.59
𝑊

𝑚2 𝐶
, while the 

commonly accepted value is 0.58
𝑊

𝑚2 𝐶
, which is well within a tolerable range of error to 

accept this value as accurate at the experimental conditions.  This heat transfer cell also 

calculated the thermal conductivity value for AMSOIL synthetic motor oil to be 0.12
𝑊

𝑚2 𝐶
 

and 0.10
𝑊

𝑚2 𝐶
 for mineral oil, both of these values are within the expected ranges of thermal 

conductivity for oils.  

The second goal of applying the heat transfer enhancement properties of a nanofluid 

to a transformer cooling application proved to be futile for Copper Oxide(40nm) and 

Carbon coated Copper nanoparticles(25nm) in mineral oil.  All of the attempted nanofluids 

fell out of suspension within a timeframe of a day, and in a transformer cell where natural 

convection is the only means of flow available that contributes to keeping the nanoparticles 

suspended, there is not enough flow to keep the nanoparticles from falling out of 

suspension.  That is why unless the transformer industry moves towards another coolant 

besides mineral oil, heat transfer enhancement using Copper Oxide (40nm) or Carbon 

Coated nanoparticles (25nm) in a mineral oil nanofluid is not a viable option. 
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NOMENCLATURE 

 

A = Surface area for heat transfer 

AA = Correlation for heat capacity calculation 

B = Correlation for heat capacity calculation 

C = Representation of Euler’s constant, ln(C) =0.5772 

D = Diameter 

I = Amperage 

L = Length 

Q/q = Heat being transported 

T = Temperature 

V = Voltage 

h = Convection coefficient 

K = Thermal conductivity 

r = Radius of the pipe 

t = Time to reach equilibrium 

x = Distance the heat travels 

ΔT = Difference in temperature between the heat source and the heat sink 

∝ = Thermal Diffusivity 

𝐶𝑝 = Heat capacity of the fluid being tested 

𝑐𝑝,𝑓 = Heat capacity of the base fluid 

𝑐𝑝,𝑛𝑝 = Heat capacity of the nanoparticle 
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𝑐𝑝,𝑛𝑓 = Heat capacity of the nanoparticle enhanced fluid 

𝜌 = Density 

𝜌𝑓 = Density of the base fluid 

𝜌𝑛𝑝 = Density of the nanoparticle 

𝜑 = Volume fraction of the nanoparticle 
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I. INTRODUCTION 

 

Transformers are an essential part of a modern community’s ability to function.  

Electricity is generated by a power plant and is transported at high voltages through power 

lines to residential and commercial properties.  Each transformer is responsible for stepping 

the voltage down from a higher transportation value to a lower value for residential and 

commercial accommodation.  Without transformers, electricity use in the commonplace 

would be more dangerous due to the higher voltage and less cost effective because of the 

heat generated by line resistance. 

The process of stepping voltage down from a higher to lower value is a classic 

application of electrical engineering.  An alternating current present on a conductive wire 

induces a magnetic field in the vicinity of the current.  If a second conductor is placed in 

the field generated by the first conductor, a current is induced in the second conductor.  

Current is transferred from one conductor to a second by the utilization of a magnetic 

field(Harlow 2004).   

Permeability is the quantitative ability of a material to carry a magnetic flux, 

measured in Newtons per Ampear squared (N/A2).  Steel is commonly used in transformers 

to carry the magnetic flux from the higher voltage wire to the lower voltage wire, because 
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of steel’s high permeability(Harlow 2004).  Wire from the source current of higher voltage 

is wrapped around the steel core for a certain number of turns, and the out wire carrying 

current to customers at a lower voltage is wrapped around the same core for a certain 

number of turns.  The number of turns around the core is a factor that contributes to the 

determination of voltage of the second wire.   

As with any process, the efficiency of power transfer between the two voltages is 

not perfect.  A considerable loss of energy is seen in the form of heat, due to the resistance 

of the current by the Joule-effect.  If too much heat is generated by the current and 

resistance of the wires, it can cause the transformer to break down due to the rapid changes 

in temperature of the materials.  It is for this reason and several others that an insulator is 

present in the transformer tank.  The most common insulator used in today’s residential 

pole transformers is a highly refined mineral oil.  A light viscous mineral oil is used to 

transfer heat from the hot core and core windings to the tank wall, where heat travels 

through the steel tank wall by conduction and is cooled by the surrounding(s), air and wind 

convection currents.  The mineral oil serves not only as a medium for heat transfer, but 

also as an insulator to protect the circuit’s from exposure to elements such as water.  The 

oil serves to keep water from the live currents in order to prevent arcing during normal 

operations.  As the temperature of the oil in the transformer tank rises, the presence of 

convection currents can be noted, which increase the heat transfer capabilities of the 

mineral oil. 

The voltage at which a transformer breaks down is called the dielectric breakdown 

voltage.  With the addition of nanoparticles to the coolant, the dielectric breakdown voltage 

can be raised so that the transformers can operate at a higher voltages if desired.  Using a 
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volume fraction of nanoparticles up to 0.8%, a rise greater than 300% has been obtained in 

the dielectric breakdown voltage of a transformer, when compared to the dielectric 

breakdown voltage using the base transformer oil as a coolant(Lee, Lee et al. 2012). 

Transformers often break down due to an overload in heat.  Repairing a transformer 

is a dangerous and cost intensive project due to the amount of current and resources needed 

for the job.  From 1997 to 2001, there was a reported total of $286,628,811 worth of 

damage business loss due to the failure of transformers, and over half of the incidents were 

directly related to the overheating and fire of the insulation(P.E. 2003).  From the 

staggering aforementioned cost of failure alone, there is reason to investigate solutions to 

the transformer heating problem.  A solution to these expensive breakdowns is to change 

the system of the transformer to prevent the thermal break downs, one way to accomplish 

this is to increase the ability of the mineral oil to transfer heat.   

A field of research orientated around colloid suspensions has emerged over recent 

years.  One significant application of this research is the discovery of the enhancement of 

the heat transfer capabilities of common coolants.  For example, addition of 4% volume 

fraction of Copper Oxide nanoparticles to Ethylene Glycol results in a 20% increase in the 

thermal conductivity by some studies (Eastman, Choi et al. 2001).  With results like this in 

mind, the addition of nanoparticles to mineral oil can potentially increase the transfer of 

heat inside of transformers and reduce the chances of transformer break down from heat 

overload. 

The issue of dispersing the solid nanoparticles in suspension is an important 

thermodynamic and transport consideration.  When the solid nanoparticles are first 

introduced into the base fluid, the solid nanoparticles tend to aggregate together, forming 
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an undesirable two phase system of solid nanoparticle clusters and the liquid.  On the 

molecular level, the solid nanoparticles are present together, and the mineral oil molecules 

cannot penetrate the solid nanoparticle clusters in order to separate the individual 

nanoparticles.  To overcome this, an ultrasonic vibrator is used to break up the large clusters 

of nanoparticles and help disperse them more evenly into the base fluid(Xuan and Li 2000), 

mineral oil in this case.  In order to help keep the solute suspended in the mineral oil, a 

surfactant is often used to inhibit the molecular interactions between solid nanoparticles 

and to further prevent the agglomeration of nanoparticles into clusters.    

Heat capacity is an important thermal parameter that changes with the temperature 

of the suspension and the presence of nanoparticles in the suspension. Recently a 

calorimeter has been used to measure the specific heat capacity of a nanoparticle enhanced 

suspensions, the results of the test shows that the specific heat capacities of nanofluid are 

not the same as those of the base fluids.  The largest factors that seem to change the heat 

capacities are the nanoparticle size and volume concentration of the nanoparticles in the 

enhanced suspension(Zhou, Wang et al. 2010). 

The heat capacity of metals oxides  and metals on average are lower than that of 

organic and other small molecules according to some estimation research (Leitner, 

Chuchvalec et al. 2002, Gibbs 2013).  It takes less energy to increase the temperature of 

metals/metal oxides compared to organic molecules, such as mineral oil.  Based on a 

weighted average by volume fraction addition of solid nanoparticle metals and metal 

oxides, adding nanoparticles will not significantly decrease the heat capacity of the 

nanofluid if the percentage of nanoparticles present in the nanofluid is small(~0.1%-25%).  

Significant work has been done on the prediction of heat capacity with nanoparticle 
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addition.(Zhou, Wang et al. 2010).  Some of the research suggested that one method for 

the prediction of heat capacity of a nanofluid is to use a simple weighted average between 

the nanoparticles and the base fluid, as shown in Equation 1 below. 

 

 

𝑐𝑝,𝑛𝑓 = (1 − 𝜑)𝑐𝑝,𝑓 + 𝜑𝑐𝑝,𝑛𝑝 (1) 

 

 

Where 𝜑 is the volume fraction of nanoparticles added to enhance the base fluid, 

𝑐𝑝,𝑓 is the heat capacity of the base fluid, 𝑐𝑝,𝑛𝑝 is the heat capacity of the nanoparticle,  

𝑐𝑝,𝑛𝑓 is the heat capacity of the nanoparticle enhanced fluid.  

Nanoparticle enhancement of base fluids for increased thermal conductivities can 

be applied in more than one scenario than just heat transfer enhancement of mineral oils.  

The nanoparticle enhancement of various coolants has obvious applications with heat 

exchangers.  Adding solid metallic nanoparticles to coolants used in heat exchanges can 

increase the heat transfer efficiency of heat exchangers, but also has an effect on the 

thermodynamic generation of entropy for this operation(Elias, Miqdad et al. 2013). 

Probably the most significant parameter that changes with the addition of 

nanoparticles is the thermal conductivity coefficient, k, modeled for conduction in 

Equation 2 below: 
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𝑄 =
𝑘 × ∆𝑇

𝑥
 (2) 

 

 

Where Q is the amount of heat being transported, x is the distance that heat is 

travelling, and ΔT is the temperature gradient between the heat source and the heat sink.  

Metals are known for having a higher thermal conductivity constant than common organic 

materials, like oils.  The fact that metals have higher thermal conductivity constants (k) is 

partly due to the fact that metals have delocalized electrons.   

Several different methods are used to measure thermal conductivity values in the 

lab, such as the guarded hot plate, the hot wire technique, or by laser flash diffusivity.  The 

guarded hot plate technique is an equilibrium process where a solid sample is placed 

between two temperature controlled plates.  While one plate is heated and the other is 

cooled at constant rates, the temperature is measured until steady state conditions are 

evident and then the thickness of the sample and the required Q input is used to calculate 

thermal conductivity.  The hot wire technique places a wire into a fluid, and a constant Q 

is supplied through the wire and heat then penetrates into the fluid radially.  Several 

mathematical models exist for the calculation of thermal conductivity from the temperature 

measurements and estimates of the wire and the fluid container’s wall.  The laser flash 

diffusivity supplies heat to the sample by a laser one side, and an infrared thermometer is 

used to measure the temperature change on the opposite side of the laser.  Depending on 
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the properties of the material known, the thermal diffusivity and the thermal conductivity 

can be calculated by this testing method(Ltd. 2014). 

The addition of nanoparticles to the light mineral oil should significantly enhance 

the thermal conductivity of the mineral oil.  It has been shown that a nanoparticle 

volumetric addition of 5% of the base fluid volume can increase the thermal conductivity 

45% when compared to the base fluids(Murshed, Leong et al. 2008).  A weighted average 

of the thermal conductivities based on volume fraction would not result in a 45% increase 

in the average thermal conductivity constant (k); this significant increase in the thermal 

conductivity is reason enough to pursue the understanding of the mechanism for increased 

heat transfer. 

The mechanism for why heat transfer enhancement occurs with the addition of 

nanoparticles is currently not completely understood or known.  The most commonly 

accepted mechanism is one that includes the Brownian motion of the metal oxide 

nanoparticles, considerations of the flow conditions, properties of the nanoparticles, and 

particle and clustering size (Keblinski, Phillpot et al. 2002).   

Brownian motion is a topic that is introduced when discussing the molecular 

interactions between particles.  Brownian motion is the random motion of particles that 

occurs from various collisions with other molecules.  Consider a solid Copper Oxide 

nanoparticle suspended in mineral oil.  As the solid particles exist in the mineral oil 

suspension, it possess its own energy level, with a specific kinetic energy of rotation and 

thermal energy of vibration.  As the particle is suspended in the oil, molecules of the liquid 

interact with the solid particle.  Interactions can include reactions, collisions, or secondary 

bonding forces such as Van der Waals, but for the transformer model only interactions by 
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collisions will be considered, due to the lack of necessary electronics for reacting and Van 

der Waals forces.  As molecules from the liquid interact with the solid nanoparticle, energy 

is transferred during each interaction and collision, changing the level of energy of the solid 

nanoparticle for each collision. The more collisions that take place suggest a more uniform 

level of internal energy throughout the colloidal suspension of solid nanoparticles and 

liquid molecules, reaching a thermal equilibrium.  

Flow conditions also play an important role in the molecular interactions of solid 

nanoparticles dispersed in mineral oil.  Under laminar flow conditions (lower flow rates 

and Reynolds numbers), the molecular interactions of molecules is higher than if the 

nanofluid was still.  Under turbulent flow conditions (higher flow rates and Reynolds 

numbers), the molecular interactions of molecules is higher than if the nanofluid was under 

laminar flow conditions.  Supposedly a higher flow rate will show increased molecular 

interactions between nanoparticles and molecules of the base fluid. 

Although the Brownian motion and flow conditions play an important role in the 

heat transfer enhancement with regards to the molecular interaction mechanism, recent 

research believes that these two phenomena do not affect the heat transfer enhancement as 

much as particle size and shape(Murshed, Leong et al. 2008).  An individual solid 

nanoparticle (40nm) is very large compared to a mineral oil chain molecule (1.5~3.0 nm).  

Linear agglomeration of particles results in higher thermal conductivity.  Instead of 

individual solid nanoparticles covered in a surfactant, as the Brownian motion model 

depicts, giving the largest contribution in the thermal conductivity enhancement, the 

particle and agglomeration size is suggested to be the largest factor for thermal conductivity 
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enhancement.  Larger chained agglomerations without surfactants has been shown to 

increase the thermal conductivity of the nanofluid(Keblinski, Prasher et al. 2008). 

Enhancements in heat transfer capabilities have been found in varying types of 

nanofluids, even in suspensions with very small volumetric particle loading, approximately 

<5%(Murshed, Leong et al. 2008).  The nanoparticle parameters which seem to repeatedly 

make significant differences in the heat transfer abilities of the nanofluid are size, shape, 

and material of the nanoparticles.  Nanofluids with metallic nanoparticles have been found 

to possess higher thermal conductivity values when compared to nanofluids with oxide 

nanoparticles.  Smaller nanoparticles sizes have shown higher heat transfer capabilities and 

nanoparticles that are rod-like have shown higher conductive heat transfer capability than 

spherical nanoparticles(Murshed, Leong et al. 2008). 

The name “mineral oil” is a broad term that can be used to describe several different 

types of oil.  Mineral oil is a distillate of petroleum and typically has carbon alkane cyclic 

compounds and chains anywhere from fifteen to forty carbons in length.  The properties of 

mineral oil as a whole can vary with the concentrations of various molecules in the oil, for 

example an oil with considerably longer carbon chains would have a larger viscosity than 

a mineral oil with considerably shorter chains. The mineral oil used in this experiment is a 

lighter viscosity mineral oil.  The rational of using a lighter viscosity mineral oil instead of 

a heavier viscosity oil is simply the resistance to convection.  As the heat starts to build up 

in the oil and the main heat transfer mechanism goes from conduction to convection, a 

lighter viscosity mineral oil offers less resistance to a convection current and therefore has 

a better coolant property in regard to ease of convection current buildup, in the 

experimental cell or the transformer.  The lighter viscosity mineral oil and the addition of 
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the nanoparticles to the mineral oil should increase the heat transfer capabilities of the 

coolant that can be used in a transformer, and by extension reduce the likelihood of a 

transformer failure from heat overload. 

There are two purposes of this research, to design and build a heat transfer cell that 

could accurately measure the heat transport coefficients of various fluids and to determine 

if the increased heat transfer capabilities of nanofluids can be applied to cooling 

transformers.  If a stable suspension of nanofluid can be obtained, the instrument for 

measuring thermal conductivity and convection coefficients was meant to measure the heat 

transfer enhancement of the nanofluids.  After reviewing the work of various research in 

the nanofluids community and how individuals commonly measure thermal conductivity 

today, several nanofluid suspensions were attempted and measuring instruments were 

constructed and tested. 
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II. METHODS AND MATERIALS 

One goal of this project was to apply the heat transfer enhancement of nanofluids 

to a transformer.  In order to gain a better understanding of how this technology would be 

used in the field, an experimental set up was designed with parameters and conditions 

similar to a common transformer.   

In order to test this application of heat transfer enhancement in regards to use in 

transformers, a direct current source meter was used to provide energy to a system 

analogous to a residential pole transformer.  A direct current source meter (BK 

PRECESION 1761) was used to provide current to a Nichrome Wire (14 AWG from 

McMaster-Car), a well-known resistance wire, suspended in mineral oil, or other fluid.  

The mineral oil, or any heat transfer fluids mentioned below, is contained in a vertically 

suspended copper pipe that has a loose copper cap on the top and a soldered copper cap on 

the bottom.  The copper pipe is 6” in length and varies in diameter based on the experiments 

performed.  The copper caps have holes for the Nichrome wire to fit through, and the top 

copper cap has an additional hole to relieve any pressure built up in the copper tube, making 

the pressure inside the tube approximately atmospheric.  The Nichrome wire is insulated 

where it makes contact with the copper pipe, in an effort to reduce the current moving 

throughout the copper pipe.  On the surface of the copper pipe, there is a drilled indent 
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roughly the thickness of the pipe wall to represent a thin plane of copper that is the inner 

wall of the copper pipe.  A T-type thermocouple is placed on the indent to read the assumed 

temperature of the inner wall while another T-type thermocouple is placed on the Nichrome 

wire above the top insulation to represent the temperature of the wire (transformer core).   

The described transformer cell system is illustrated in Figure 1 below. 

 

T-Thermocouple 

Direct Current 
Source

T-Thermocouple 

6"9" Nichrome Wire

Insulation

Soldered Copper 
Cap

Loose 
Copper 

Cap

Pressure 
Relief Hole

Copper 
Pipe

Indent for 
Thermocouple

Insulation

 

FIGURE 1-ILLUSTRATION OF FIRST EXPERIMENTAL HEAT TRANSFER CELL 

 

There are several pipe diameters to choose from, to model various transformer tanks 

and the thicknesses of the heat transfer medium, mineral oil, from the core to the wall of 

the transformer tank.  As the wire conducts the current from the source meter, the resistance 

of the Nichrome will generate heat by the Joule effect.  The heat is then transferred from 
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the wire to the wall of the copper pipe by convection and conduction heat transfer 

mechanisms.   

The maximum distance between a transformer’s core and the wall is on average 

two inches1.  Heat is transferred from the transformers hot core to the wall by either 

conduction or convection.  In order to determine roughly where a crossover from 

conduction to convection occurs, several experiments were conducted that varied the 

distance from the heat source to the heat sink.  Experiments were conducted in copper pipes 

of diameter ¼”, ½”, and 1”.   

In this scenario, the heat source of the steel core of a transformer is represented by 

the Nichrome wire, the distance that the heat travels is comparable to the distance between 

a transformer’s core and steel pot’s wall.  The mineral oil used is a light viscosity mineral 

oil, able to achieve convection currents more readily than a thick viscous mineral oil.  The 

light viscosity of the mineral oil is desirable for conditions in a transformer tank and heat 

transfer cell because the lighter viscosity will allow for the faster development of 

convection currents, which are ideal for heat transfer(Srinivasan and Saraswathi 2012).  

The model mentioned above should be a good comparison to a common residential pole 

transformer.   

Due to some questionable results and the possible error mentioned from the two 

assumptions above, a second design was implemented for experimentation.  This second 

design is very similar to the apparatus shown in Figure 1, with the major difference being 

the location of the thermocouples.  For the thermocouple that reports the wall temperature, 

                                                 
1 The two inches number was provided by a well-known transformer manufacturer in the United States of 

America. 
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a small hole was drilled into the side of the copper pipe, and a thermocouple was placed 

just inside the hole.  The thermocouple was then sealed with a silicone spread to prevent 

any leakage.  The thermocouple that represents the wire temperature was placed inside the 

cell at the same height as the thermocouple inside the wall.  The wire thermocouple was 

adhered to the wire by a thermally conductive cement provided by OMEGA.  The wire 

thermocouple was also placed on the opposite side of the wire from the wall thermocouple, 

so that the heat travelling radially from the wire to the wall would not encounter any added 

resistance from the thermally conductive.  A diagram of this second apparatus can be seen 

in Figure 2 below. 

 

T-Thermocouple 

Direct Current 
Source

T-Thermocouple 

Nichrome Wire

Silicone 
Sealent6"9"

Insulation

Soldered Copper 
Cap

Loose 
Copper 

Cap

Pressure 
Relief Hole

Copper 
Pipe

Insulation

Thermally 
Conductive 

Cement

 

FIGURE 2-ILLUSTRATION OF SECOND EXPERIMENTAL HEAT TRANSFER CELL 
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One interesting facet about this second experimental heat transfer cell is that the 

temperature of the wall and the wire are being directly measured.  Some lab scale 

instruments are designed to estimate the temperature of the wire, which may introduce 

some error into the accuracy of the instrument.  The change in thermocouple placement is 

essential for contributing to the elimination of error in the second experimental heat transfer 

cell.  By placing the thermocouples directly on the wire and the wall, this instrument in 

some ways is more accurate than some lab scale instruments. 

There were three types of fluids used in these experimental apparatuses to test the 

accuracy of the results obtained: DI water, AMSOIL 0W-30 Synthetic Motor Oil, and a 

light viscosity mineral oil.  The DI water used is common quality de-ionized water that can 

be found in many labs.  The AMSOIL 0W-30 Synthetic Motor Oil was unused motor oil 

and was opened from a new container of oil, the oil has a light amber color and other details 

about it can be found on AMSOIL’s website2.  The light viscosity mineral oil was 

purchased from McMaster-Car and was produced by the W. S. DODGE OIL Co. under the 

name WHITE OIL LIGHT. 

Two nanopowders were used in attempt to create a stable nanofluid.  The first 

nanopowder used was Copper Oxide (CuO) nanoparticles 40nm in diameter and nearly 

spherical.  The Copper Oxide nanoparticles were purchased from SkySpring 

Nanomaterials in Texas.  Copper Oxide nanoparticles were initially chosen for this 

experiment for several reasons.  Copper Oxide nanoparticles had been used in nanofluid 

suspensions before and shown a heat transfer enhancement in coolants like Ethylene Glycol 

                                                 
2 http://www.amsoil.com/shop/by-product/motor-oil/gasoline/sae-0w-30-signature-series-100-percent-

synthetic-motor-oil/ 
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at small volume fractions (Kwak and Kim 2005, Srinivasan and Saraswathi 2012) and have 

been shown to have higher heat transfer enhancement versus Silica and Aluminum 

nanofluids(Yulong Ding and Yurong He1 2007).  Copper Oxide also does not show 

significant magnetic behavior in a magnetic field, this is important because the strong 

magnetic field in a transformer could potentially effect the flow patterns of nanoparticles 

and diminish the heat transfer enhancement observed(Tomčo, Marton et al. 2006).   It is 

advantageous to use a nanoparticle like Copper Oxide that does not trap charges as 

compared to other nanoparticles that can trap charges and cause a thermal break downs if 

the relative humidity becomes too high(Du, Lv et al. 2012) .  At the planning stages of this 

experiment, Copper Oxide had not been tested for compatibility with mineral oil for 

transformer cooling or very few results have been published(Choi, Yoo et al. 2008).  The 

Copper Oxide nanoparticles were used in conjunction with a well-known surfactant 

cetyltrimethylammonium bromide, CTAB, in order to enhance the stability of the 

nanofluid(Murshed, Leong et al. 2008, Rucker 2011).  The second nanopowder used in this 

experiment was a carbon coated copper nanoparticle 25nm from US Research 

Nanomaterials, and spherical in morphology.  

In order to record data more efficiently and regularly, an automatic data logger was 

used throughout this experiment.  The Reed SD-947 4-Channel Data Logger was used 

throughout this experiment in order to provide accurate and consistent data.  This data 

logger from Reed was chosen because it has the ability to record data from four different 

thermocouple ports, seeing how each experiment would take two thermocouple readings, 

it was convenient to be able to perform more than one experiment at a time.  One feature 

used from this data logger is the ability to change the time interval where data was taken 
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from every second, to every two seconds, to every five seconds, to every 15 seconds a data 

point and so forth.  The time interval was chosen based on the length of experiment and 

how many data points the data logger could record onto the Excel sheet and the removable 

SD memory card, average time intervals were from one to three hours to reach steady state 

conditions.  Another reason this data logger was chosen is because it can read a variety of 

thermocouples, which allows its use in a larger temperature range and more likely to be 

used in the lab for subsequent experiments. 
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A. Procedures For Nanofluid Preparation 

 

Following is the procedure for preparing the nanofluid by the two step approach(Yu 

and Xie 2012): 

1. Weigh out amount of the base fluid to be used  

2. Determine weights of nanoparticle and surfactant(optional) to add for 

desired weight percentage of nanoparticle 

3. Add predetermined surfactant amount to the base fluid 

4. Add predetermined nanoparticle amount to the mixture 

5. Sonicate at 65% amplitude for 30 minutes 

a. Optional: Sonicate in an ice bath to prevent excessive heating of the 

nanofluid 
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B. Procedure for Experimental Heat Transfer Cell Operation 

 

Following is the procedure for the experiment with the heat transfer cells: 

1. Check to ensure that the inside of the copper cell and the wire is clean and 

that the seals are working by rinsing out the cell with DI water or the base 

fluid 

2. Fill to the copper cell completely with the fluid being tested 

3. Put the loose copper cap on top of the copper cell and the Nichrome wire 

a. Plug in the thermocouples into the Reed SD-947 Data Logger and 

record which ports the thermocouples are located. If using the first 

heat transfer cell, tape the wire thermocouple to the Nichrome wire 

above the insulation and the loose copper cap.  Ensure that there is 

direct contact between the thermocouple and the Nichrome wire 

4. Connect the positive and negative electrodes to the Nichrome wire and the 

direct current source meter (BK PRECESION 1761) 

5. Format the SD card in the Reed SD-947 Data Logger, with the data logger’s 

software, for recording data 

6. Set the thermocouple type on the data logger to type T 

7. Set the time interval set point to the desired value 

8. Optional: Wait for the wire and wall temperatures to read the same 

temperature, or use a fan to cool the thermocouples to the same temperature 
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9. Start recording data on the Reed SD-947 Data Logger while simultaneously 

turning on the direct current source meter (BK PRECESION 1761) to the 

desired Voltage and Amperage 

10. Wait for equilibrium to be reached 

11. Optional: Step the Voltage and Amperage to the desired value and repeat 

the previous step 

12. Stop data logging and turn off the Reed SD-947 Data Logger and then turn 

off the direct current source meter (BK PRECESION 1761) 

13. Download the recorded data from the Reed SD-947 Data Logger’s SD card 

14. Disconnect the electrodes from the direct current source meter (BK 

PRECESION 1761) and the Nichrome wire. 

15. Dispose of the fluid in the heat transfer cell rinse out with DI water or the 

base fluid for the next experiment 

 

 

The experiments which followed these procedures all varied based on the type of 

experiment conducted.  Throughout all of the experiments, the time to wait until 

equilibrium varied from approximately one to three hours.  Some experiments were done 

in seven steps of supplied q, while other experiments were done in one step or three steps.  

The steps for the various experiments and their respective approximate q values are given 

in Table I below. 
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TABLE I 

VALUES FOR SUPPLIED q AND STEPS FOR EXPERIMENTS 

Steps Step q(Watts) 

1 1 2.15 

3 

1 0.20 

2 0.90 

3 2.15 

7 

1 0.05 

2 0.20 

3 0.45 

4 0.80 

5 1.25 

6 1.80 

7 2.15 
Table I-VALUES FOR SUPPLIED q AND STEPS FOR EXPERIMENTS 
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III. RESULTS AND DISCUSSION 

Throughout the course of this experiment, several changes in the design and process 

were implemented due to the poor results obtained.  Data was collected by the Reed data 

logger described in the previous section, analyzed for a steady state operation, and then 

evaluated with the various equations mentioned below to determine the thermal 

conductivity, k, and the natural convection coefficient, h, for the individual experiments.  

During the course of all the experiments, the time of waiting until equilibrium was reached 

fell between one to three hours, data for temperature was then averaged over a period of 

time to represent the equilibrium values.  A summary of the most significant experiments 

and discussion of results can be found in this section. 

In the model described in Figure 1, there are two very important assumptions to 

consider.  The first major assumption being that the thermocouple that represents the 

temperature of the wall is accurate.  Although the copper pipe wall is drilled to be very thin 

where the thermocouple is, it is difficult to have the thermocouple sit in the indent even 

after the thermal conductivity paste is used to adhere the thermocouple to the wall.  So the 

temperature reading from that point may be lower than the true value for the inside wall 

temperature due to the increased thermal resistance, and thus error can be introduced by 

this assumption.   
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The second major assumption when considering the first heat transfer cell design 

is that the temperature reading from the thermocouple at the top of the cell is a good 

representation for the temperature of the wire inside the cell.  In order to determine if the 

observed wire temperature was a good representation of the temperature of the wire inside 

the cell, a small experiment was conducted to determine if there is a temperature 

distribution of in the wire.  Thermocouples were attached at various lengths of a bare 

Nichrome wire the same length as those used in the experimental copper cells, and a 

measured current similar to that used in the experiment was sent through the Nichrome 

wire.  Results showed that there was not a significant temperature distribution through the 

Nichrome wire for this experimental design, but still introduced some amount of error by 

placing the thermocouple outside of the heat transfer cell and not directly onto the 

Nichrome wire. 

The energy of the current running through the Nichrome wire is directly related to 

the heat generated by the Joule effect, a larger current leads to more resistance and 

ultimately more heat generated.  Some of the experiments described here are either multi-

stepped experiments, where the total heat generated is stepped up to a maximum value, or 

single-stepped experiment, where the total heat generated is set to the maximum value at 

the beginning of the experiment.  The multistep experiment is advantageous because one 

can see the thermal conductivity and convection coefficients change as a function of the 

temperature of the heat source.  The single step experiments are convenient especially with 

the nanofluids.  When trying to suspend the nanoparticles, the single step experiments build 

convection currents faster than the multistep experiments because the single step 
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experiments reach a higher temperature in a shorter time frame.  This presence of 

convection currents is advantageous when trying to keep the nanoparticles in suspension, 

The hot wire technique is a good method for determining the thermal conductivity 

of fluids. One reason is that the design allows for the utilization of the wire to work as both 

a heat source and a temperature sensor, some lab scale equipment utilizes this fact when 

calculating the transport coefficients.  To solve for thermal properties like the thermal 

conductivity with the hot wire method, it is assumed that the wire heat source is long with 

a uniform temperature distribution, within an “infinite” test sample(Alvarado, Marín et al. 

2012).  The more important assumption is that the temperature differences in the heat 

transfer cell are solely a result of the heat transfer by conduction from the hot wire.  

In order to calculate the thermal conductivity, k, of the various liquids in this 

experiment, Equation 3 below was used.  This equation is a well-known tool for many 

researchers utilizing the hot wire method in their labs (Xuan and Li 2000, Alvarado, Marín 

et al. 2012).   

 

 

∆𝑇 =
𝑞

4𝜋𝑘
ln (

4𝑡𝛼

𝑟2𝐶
) (3) 

 

 

Where ∆𝑇 is the difference in temperature between the wire and wall and is given 

by the thermocouple readings during the experiment. The variable 𝑘 is the thermal 

conductivity of the fluid being tested.  The radius of the pipe, the distance between the wire 
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and the wall, is 𝑟.  The variable 𝐶 is a representation of Euler’s constant, ln(C) =0.5772.  

The time 𝑡 is the time it takes for the temperature to reach equilibrium.   

One important assumption for the results of Equation 3 to be valid is Equation 4 

below is satisfied. 

 

 

𝑟2

4 ∝ 𝑡
≪ 1 (4) 

 

 

Seeing that Equation 4 is satisfied is a key restraint on the hot wire equation and is 

evidence that either conduction or convection is the major mechanism for heat transfer.  

Equation 4 compares the distance that the heat travels between the heat source and sink, 

represented by r2, to the penetration distance of the heat in the system, represented by 4αt 

and is essentially an effective penetration depth.  This equation compares what distance the 

heat can actually penetrate to what the distance between the heat source and sink is.  If the 

equation is less than one, then the heat is penetrating further than the fluid thickness and 

passes the system boundaries, a strong case for conduction.  If the equation is greater than 

one, then the thickness of the fluid is greater than what the heat can penetrate, leading to 

the development of convection currents. 

The energy flowing through the Nichrome resistance wire is 𝑞, and 𝑞 and 𝛼 are 

represented by the equations below. 
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𝑞 = 𝑉𝐼 (5) 

 

 

The voltage is represented by 𝑉.  The amperage is represented by 𝐼.   

 

 

𝛼 =
𝑘

𝜌𝐶𝑝
 (6) 

 

 

The variable 𝛼  is the thermal diffusivity and is dependent upon the testing fluid 

and temperature.  The density and heat capacity of the fluid is represented by 𝜌 and 𝐶𝑝.  

The heat capacity for a test liquid like DI water is readily available from reliable sources 

on the internet and textbooks; however, for a liquid like mineral oil, the heat capacity is 

harder to obtain.  In order to find a value for the heat capacity of mineral oil, a correlation 

from Perry’s Chemical Engineers’ Handbook was used(Green and Perry 2008), page 2-

185. 

 

 

𝐶𝑝 = 𝐴𝐴√𝜌 + 𝐵(𝑇 − 15) (7) 
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Where 𝐶𝑝 here is given in cal/ (g C) and must be converted.  AA and B are 

correlations for various fluids, for a paraffin base mineral oil AA is 0.425 and B is 0.0009. 

To solve for the thermal conductivity, k, of the test fluid an iterative process was 

used.  All of the experimental data was entered into an Excel formula with an initial guess 

for k.  Excel then varied the value for the thermal conductivity until Equation 4 and 

Equation 3 were made true.  In order to complete the calculation for the thermal 

conductivity k, the initial guess must be in the same order of magnitude as the true value 

of the thermal conductivity.  The experiment being performed and the conditions of the 

experiment affected the validity of the calculated value.  In all calculations, there was never 

a case of multiple values for the thermal conductivity which made Equation 3 and Equation 

4 true.   

For the calculation of the convection coefficient, h, Equation 8 below was used. 

 

 

ℎ =
𝑉𝐼

∆𝑇𝐴
 (8) 

 

 

Where A is the surface area for heat transfer, for this case the surface area of heat 

transfer between the source and the sink is the surface of the Nichrome wire, A=πDL.  

Since all of these values are readily available and recorded, the calculation for the 
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convection coefficient, h, is very simple.  Using Equation 8, the experiments conducted 

where we expected the presence of convection yielded values for h in the correct range, 

50-1000 
𝑊

𝑚2 𝐶
 according to Incropera(Incropera, Dewitt et al. 2007). 

In the initial stages of designing this experiment, it was realized that there would 

be some transition between the heat transfer mechanisms of conduction and convection 

before two inches between the transformer core and wall had been reached.  Several pipe 

diameters for the heat transfer cells had been chosen to determine where the transition from 

conduction to convection would occur.  From the results of experiments seen in Table II, 

it is reasonable to conclude that there is only conduction present in the ¼” diameter heat 

transfer cell, and convection in the ½” and 1” diameter heat transfer cells below  
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TABLE II 

DATA FOR MINERAL OIL IN FIRST HEAT TRANSFER CELL 

 

 

TABLE II-DATA FOR MINERAL OIL IN FIRST HEAT TRANSFER CELL 
The only results from the conduction calculations which made Equation 3 and 

Equation 4 true were from the ¼” diameter heat transfer cell.  The values for 
𝑟2

4∝𝑡
 are much 

less than one for the ¼” diameter cell, and are closer to one for the ½” and 1” diameter cells.  

Considering the discussion after Equation 4, this is strong evidence that there is a conduction 

presence in the ¼” diameter cell and more of a convection presence in the ½” and 1” diameter 

cell.  These values for k from the ¼” diameter heat transfer cell are also in agreement with 

Cell 
Size 

Step k(
𝑊

𝑚2 𝐶
) h(

𝑊

𝑚2 𝐶
) q(W) Twall(C) Swall(C) Twire(C) Swire(C) Time(s) 

𝒓𝟐

𝟒 ∝ 𝒕
 

1/4" 

1 0.130 559.335 0.036 21.75 0.05 21.85 0.06 4870 6.82E-03 

2 0.122 513.320 0.161 22.90 0.01 23.44 0.09 5800 6.10E-03 

3 0.165 545.710 0.392 24.77 0.08 26.00 0.15 17389 1.50E-03 

4 0.159 508.120 0.702 26.97 0.10 29.34 0.24 22469 1.21E-03 

5 0.163 503.130 1.104 30.04 0.08 33.79 0.21 27509 9.64E-04 

6 0.162 486.007 1.619 34.55 0.23 40.25 0.59 33569 7.96E-04 

7 0.185 520.375 2.075 36.73 0.14 43.55 0.41 47588 4.91E-04 

1/2" 

1 0.015 204.175 0.050 21.91 0.04 21.48 0.04 4230 2.07E-01 

2 0.013 175.390 0.190 24.26 0.07 22.40 0.01 4980 2.07E-01 

3 0.012 170.053 0.435 28.47 0.13 24.09 0.02 5510 2.07E-01 

4 0.014 172.908 0.781 33.94 0.50 26.21 0.06 4550 2.07E-01 

5 0.012 180.761 1.200 39.94 0.16 28.59 0.02 5270 2.07E-01 

6 0.011 181.268 1.743 47.75 0.20 31.30 0.07 5850 2.07E-01 

7 0.012 188.862 2.152 52.83 0.49 33.34 0.06 5090 2.07E-01 

1" 

1 0.060 168.805 0.050 21.49 0.03 22.00 0.03 4870 2.36E-01 

2 0.053 162.895 0.192 22.20 0.00 24.21 0.11 5540 2.36E-01 

3 0.059 166.323 0.436 23.11 0.03 27.60 0.17 4960 2.36E-01 

4 0.060 175.828 0.782 24.20 0.00 31.81 0.15 4920 2.36E-01 

5 0.070 186.180 1.204 25.58 0.00 36.64 0.17 4180 2.36E-01 

6 0.059 198.284 1.738 27.80 0.02 42.79 0.51 4990 2.36E-01 

7 0.024 227.282 2.186 28.50 0.01 44.95 0.51 11979 2.36E-01 
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the common value for mineral oil at 25°C, which is 0.14
𝑊

𝑚2 𝐶
, this instrument showed a 

thermal conductivity value of approximately 0.16
𝑊

𝑚2 𝐶
 at approximately 25°C.  These results 

show that the thermal conductivity equation is only valid for the ¼” diameter heat transfer 

cell.   

The average for the convection coefficient h in the ¼” diameter cell is 519.42
𝑊

𝑚2 𝐶
, 

and the average for h in the ½” and 1” diameter cells are 181.91
𝑊

𝑚2 𝐶
 and 183.65

𝑊

𝑚2 𝐶
 

respectively.  The convection coefficient values for the ½” and 1” diameter cells are 

significantly lower than the convection coefficient value for the ¼” diameter cell, this 

pattern is repeated throughout the course of all the experiments. This pattern also shows 

that the Equation 8 is only valid for calculating the convection coefficient in the ½” and 1” 

diameter pipes.  The trend mentioned here and the results of the 
𝑟2

4∝𝑡
  equation is why it is 

believed that for mineral oil there is the transfer between conduction and convection 

between the ¼” to ½” diameter cells and not at the longer distance of a 2” radius as 

mentioned above.  Since the convection coefficient values for the ¼” diameter pipe are 

repeatedly and significantly larger than the values for the ½” and 1” diameter pipe, it is 

believed that there is only a conduction heat transfer mechanism present in the ¼” diameter 

pipe and that in this case the convection coefficient values for the ¼” diameter pipe are not 

representative of the true convection coefficient value.  The results from Table II show that 

the convection and conduction equations are only valid in their respective distances, and 

that there is no overlap in validity between the two equations.   

These values for k in the ¼” diameter cell in Table II correlate with the known 

values for mineral oil’s thermal conductivity.  This agreement is strong evidence of the 
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validity of the thermal conductivity values obtained from the ¼” diameter experimental 

heat transfer cell of the first design for fluids like mineral oil.  The results shown in Table 

II were also checked for repeatability for the success of predicting the thermal conductivity 

values in the ¼” diameter cell.  The experiment for heat transfer of mineral oil in the ¼” 

diameter cell was repeated in order to ensure the precision of the instrument, and very 

similar results were obtained and can be seen in Appendix I. 

The values shown above for the convection coefficient h of the ½” and 1” diameter 

experimental heat transfer cells of the first design are within the expected range for natural 

convection coefficients.  Due to the lack of reported values for natural convection 

coefficients for various fluids, these values obtained for the ½” and 1” diameter cells are 

assumed to be valid because they fall within the expected range of 50-1000
𝑊

𝑚2 𝐶
. 

During the course of this experiment, there were several attempts to stabilize 

nanofluids for experimentation.  All fluids were prepared using the procedure listed in the 

Methods and Materials Section.  Nanofluids were prepared with Copper Oxide and Carbon 

coated nanoparticles in mineral oil, all materials are described in the previous section. 

Copper Oxide nanoparticles were first attempted to be stabilized in mineral oil.  

Initially three volume percentages were used with 1 drop of surfactant CTAB, 0.5%, 1.0%, 

and 1.5% volume as seen in Figure 3 below. 
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FIGURE 3-CuO NANOFLUID WITH ONE DROP OF CTAB 

 

The images in Figure 3 were all taken approximately 16 hours after sonication.  As 

evident in Figure 3, all three samples are unstable and are unsuitable for testing of this time 

frame.  There is a light cloud near the top of the beaker and the visibility thickens as the 

view is progressed near the bottom.  Although it may appear as the nanoparticles are 

suspended in the mineral oil near the bottom of the beaker, the nanoparticles are clinging 

to the interior side of the beaker, and the vast majority of the CuO nanoparticles are 

accumulated at the bottom.  This behavior of the nanofluid was also observed three hours 

after sonication. 

After acknowledging that the nanofluid in Figure 3 failed to stabilize, another 

copper oxide nanofluid was prepared with 1% wt. of the nanoparticle, a significantly lower 

particle loading.  The same procedure in the Methods and Materials section was followed, 

and the resulting nanofluid after 16 hours of sonication is seen in Figure 4 below. 
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FIGURE 4-CuO NANOFLUID WITH 1 DROP CTAB, 1% WT 

 

The nanofluid shown in Figure 4 is cloudy with better visibility near the top of the 

beaker.  This is the same result as the nanofluids seen in Figure 3.  The nanoparticles 

accumulate at the bottom of the beaker after a short period of stagnant conditions.   

After seeing that the smaller weight percentage of nanoparticles did not yield a 

stable suspension, varying the amount of surfactant used with the copper oxide 

nanoparticles was attempted.  In the previous attempts, the concentration of the CTAB was 

approximately 0.5mM, a concentration that was reasonably as low that could be achieved 

with the equipment and materials available and is similar to other concentrations used with 

oxide nanoparticles(Murshed, Leong et al. 2008).  Due to the equipment limitations, the 

smallest achievable increase in surfactant is a drop from a pipet. Two more batches of 

Copper Oxide nanofluid was made with 1% wt., one with two drops and one with three 

drops of the surfactant CTAB.  The nanofluids after 16 hours are shown below in Figure 

5. 
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FIGURE 5-CuO NANOFLUID WITH 2 AND 3 DROPS CTAB, 1% WT 

 

As evident with the other Copper Oxide nanofluids, the nanoparticles cling to the 

wall of the glass beaker and accumulate at the bottom of the beaker.  There is some 

visibility through the beaker and there is no significant difference between these two 

samples and the previously discussed Copper Oxide nanofluids. 

After several failed attempts to suspend the Copper Oxide nanoparticles into the 

mineral oil, a 25nm Carbon coated Copper nanoparticle was chosen for experimentation.  

Believing that the smaller particle size and the organic-organic interface between the 

Carbon coated Copper nanoparticle and the mineral oil would help stabilize the nanofluid, 

a 1% wt. nanofluid without surfactant was prepared by the procedure described in the 

Methods and Materials section.  Unfortunately the nanoparticles began falling out of 

suspension at the same rate or greater than that of the Copper Oxide nanofluids.  One 

interesting note about this nanofluid is that the nanoparticles that clinged to the edge of the 

beaker seem to make the nanofluid look stable, as seen in Figure 6 below.  It is believed 

that this phenomenon is due to the nature of the black Carbon coating, the black 

nanoparticles together block out so much light it seems that the nanofluid is stable. 
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FIGURE 6-CARBON COATED COPPER NANOFLUID 

 

Two different nanoparticles have been tested for their ability to create a stable 

nanofluid using a light viscosity mineral oil as the base fluid.  In all cases and variations of 

the experiments, the nanoparticles fell out of suspension in a time frame that does not allow 

for the valid experimentation and determination of heat transfer coefficients like thermal 

conductivity, k, and convection, h.  This is evident by the figures which show the 

nanoparticles falling out of suspension and the experimental results for thermal 

conductivity and convection coefficients of the nanofluids, found in Appendix I.  One 

factor that may have a large effect on the suspension of these nanoparticles is density, the 

density of both of these nanoparticles may be too large for suspension in mineral oil.  Both 

of the nanoparticles shown here are small in diameter, but are very large when compared 

to small particles like zeolites.  These nanoparticles used in this research have been 
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stabilized in other oils and fluids, but for the case of conduction and natural convection, 

the flow conditions do not aid in the stabilization of the nanofluid.  Unless the transformer 

industry would start to make a move away from using a coolant like mineral oil, using 

Copper Oxide (40nm) and Carbon Coated Copper (25nm) nanoparticles to increase the 

heat transfer capabilities of mineral oil is not a viable due to the quick destabilization of 

the nanofluids. 

To ensure that the poor results from the heat transfer experiments with the nanofluid 

was due to the poor stability of the nanofluids and not the error inherent with the measuring 

instruments, a second design was used to create another heat transfer cell as shown in 

Figure 2.  This second design places the thermocouples in direct contact with their assumed 

positions to yield more accurate results.  To test the accuracy of the experimental heat 

transfer rig, three fluids were tested; mineral oil, AMSOIL synthetic 0w-30, and DI water.  

The reported thermal conductivity values for mineral oil, AMSOIL, and DI water can be 

found in Table III below. 
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TABLE III 

GENERAL THERMAL CONDUCTIVITY VALUES FOR MINERAL OIL AND 

AMSOIL AND REPORTED VALUE FOR DI WATER 

Fluid k(
𝑾

𝒎𝟐 𝑪
) 

Mineral Oil3 0.14 

AMSOIL4 0.14 

DI Water5 0.58 
Table III-GENERAL THERMAL CONDUCTIVITY VALUES FOR MINERAL OIL AND AMSOIL AND REPORTED 

VALUE FOR DI WATER 

The thermal conductivity value for AMSOIL seen in Table III is a general thermal 

conductivity value for unused engine oil, this value will be used for comparison because 

there is no reported value for the AMSOIL.  The thermal conductivity value for mineral 

oil in Table III is a general value for transformer oil and may not necessarily be the true 

value but can be used for comparison with the experimental value for mineral oil.  Table 

IV below summarizes the results from the experimental test with the first and second heat 

transfer cell designs in the ¼” diameter cells and experiments performed in one step. 

  

                                                 
3 http://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html 
4 http://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html 
5 http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html 



 

38 

 

TABLE IV 

RESULTS FROM THE FIRST AND SECOND HEAT TRANSFER CELLS 

Design Fluid k(
W

m2 C
) q T1(C) S1(C) T2(C) S2(C) Time(s) r2/4at 

First Mineral 
Oil 

0.081 2.224 52.03 0.12 40.63 0.05 9733 8.10E-02 

Second Mineral 
Oil 

0.099 2.042 48.00 0.01 39.04 0.05 10150 9.92E-02 

First DI Water 0.122 2.152 46.53 0.41 39.07 0.11 17520 1.22E-01 

Second DI Water 0.594 2.104 37.89 0.03 36.10 0.00 10065 5.94E-01 

First AMSOIL 0.109 2.224 48.13 0.13 39.20 0.00 9735 1.09E-01 

Second AMSOIL 0.120 2.104 46.06 0.11 38.25 0.11 9638 1.20E-01 

Table IV-RESULTS FROM THE FIRST AND SECOND HEAT TRANSFER CELLS 

As seen in Table IV, the thermal conductivity values for mineral oil has dropped 

significantly from the beginning of the experiment; however, the mineral oil has been 

sitting for several months, so it is possible that the quality of the sample has degraded over 

time.   

It is important to note how close in value the thermal conductivity is between the 

first and second design for the oils, but the thermal conductivity values between the first 

and second design for DI water are very far apart.  This can be explained by the relatively 

poor thermal conductivity that oil has compared to a liquid like DI water.  Most oils have 

a thermal conductivity of 0.15
𝑊

𝑚2 𝐶
, a value very low when compared to DI water’s 

0.58
𝑊

𝑚2 𝐶
.  The reason that the thermal conductivity value for the first design’s DI water 

experiment is much lower is due to the fact that DI water is more thermally sensitive to the 

error because the water can transport heat more efficiently than the oils, this is why the 

thermal conductivity values for the oils in the first design still were within acceptable 

ranges of the true value.  The oils are not as sensitive to the error due to their relatively 
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poor thermal conductivity.  Any kind of variance in the current provided by the source 

meter is recognized better in the experiments using the second design and DI water, 

because DI water has such a high thermal conductivity it shows the noise of the variance 

in the heat generated.  The experiments using the mineral oil was not as susceptible to error 

because if the values for the heat generated changed during the experiment, roughly the 

same amount of heat was transported to the cell wall anyways because the oils were 

transporting less heat when compared to the DI water.  Because the DI water experiments 

worked with a smaller ΔT than the oil experiments, any change in the ΔT observed had a 

large impact on the data and calculated variables. 

The mineral oil, AMSOIL, and DI water thermal conductivity values for the second 

design were all within acceptable ranges of their expected values.  If assuming the true 

thermal conductivity of the sample DI water is actually 0.58
𝑊

𝑚2 𝐶
, the error associated with 

the calculated 0.59
𝑊

𝑚2  𝐶
 value is 1.7%, an acceptable range of error for most studies and in 

the same range of error for instruments of similar design(Nagasaka and Nagashima 1981).   

Since the second design was able to calculate the true values of thermal 

conductivity for the DI water and the oils, the second design is more versatile than the first 

design.  When comparing the calculated values of the thermal conductivity for the various 

fluids to that of their expected ranges, the success of the heat transfer cells is evident.    
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IV. CONCLUSIONS 

 

There were two purposes of this research, decided at the beginning of these 

experiments.  The first goal was to design and build a heat transfer cell that could accurately 

calculate heat transport coefficients of various fluids and possible measure the 

enhancement of heat transfer obtained by a nanofluid.  The second goal was to determine 

if the increased heat transfer capabilities of nanofluids could be applied to cooling 

transformers.   

For the first goal of designing and building a heat transfer cell that could accurately 

calculate heat transport coefficients of various fluids, there is success.  The commonly 

accepted thermal conductivity value of mineral oil 0.14
𝑊

𝑚2 𝐶
 at 25°C, and is very close to the 

0.16
𝑊

𝑚2 𝐶
 value that the instrument of the first design yielded at approximately 25°.  Seeing 

how the term mineral oil, can account for variety of different oils, it is accepted that the 

0.16
𝑊

𝑚2 𝐶
 value obtained is valid.  The success of the heat transfer cells is also evident by 

Table IV, where the heat transfer cell of the second design showed a thermal conductivity 

of DI water to be 0.59
𝑊

𝑚2 𝐶
, which his significantly close to the commonly accepted value 

of 0.58
𝑊

𝑚2 𝐶
 .  The second heat transfer cell also showed a thermal conductivity value for 
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AMSOIL to be 0.12
𝑊

𝑚2 𝐶
 and 0.10

𝑊

𝑚2 𝐶
 for mineral oil, both of these values are within the 

expected ranges of thermal conductivity for oils.  The second heat transfer cell design was 

able to accurately predict the thermal conductivity of the DI water and the oils, which the 

first design was only able to accurately show the thermal conductivity values for the oils.  

This is credited to the high sensitivity to error of the DI water because of water’s high 

thermal conductivity.  The oils are not as sensitive to the error due to the oil’s relatively 

lower thermal conductivities. 

As for the second goal of applying the increased heat transfer capabilities of 

nanofluids to a transformer cooling application, it is concluded that this is not a viable 

option for the nanoparticles tested in this research.  In the experiments involving Copper 

Oxide and Carbon coated Copper nanoparticles, no stable nanofluids were obtained using 

these nanoparticles with mineral oil as the base fluid.  Due to the poor stability of the 

nanofluids produced with mineral oil as the base fluid, the heat transfer enhancement of 

nanofluids produced by this research is not applicable as a coolant for transformers, unless 

the transformer industry would make a move to use a more suitable nanofluid base fluid as 

the coolant or an appropriate nanoparticle can be suspended in mineral oil.   

In the end, although the nanoparticles were not able to be suspended in the mineral 

oil, there is notable success by the design and use of the heat transfer cells.  Two heat 

transfer cells were designed and used to successfully predict the thermal conductivity and 

convection coefficients of a range of fluids.  The materials used to make the heat transfer 

cells are upwards of $100 and is very inexpensive when compared to using a lab scale 

instrument which can cost thousands of dollars. 
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V. RECOMMENDATIONS 

 

Several areas of this research can be expanded and built upon to further expand the 

knowledge of oil-based nanofluids and to ensure that the results gained from 

experimentation are true and valid to the highest degree. 

 

1. Try several different nanoparticles to gain a stable suspension.  There are 

cases of success with stabilizing a nanofluid with mineral oil as the base 

fluid, for example using Hexagonal Boron Nitride nanoparticles(Taha-

Tijerina, Narayanan et al. 2012).  I tried two different density materials, but 

it is possible that the density was not low enough for suspension in mineral 

oil.  It should be worthwhile to try a zeolite nanoparticle or even 

nanoparticles smaller than 25nm, which is the smallest nanoparticle used in 

this research. 

2. Be accurate with the fluid properties, like heat capacity, used for calculation 

of thermal properties.  When testing for the thermal conductivity of a 

nanofluid with the devices described in this paper, measure the heat capacity 

of the nanofluid or any fluid being tested and use the measured value in the 

calculations.  During the course of the experiment I found that whether or 
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not valid results were obtained could be dependent upon entering in the 

correct heat capacity and other properties. 

3. Try using a material besides copper for the heat transfer cell.  Although 

copper is thermally conductive, it may be that some interactions between 

the copper cell and the copper nanoparticles could have contributed to the 

error of the nanofluid experimentation. 

4. Increase the temperature range of experimentation.  Although the range of 

temperatures used in this experiment are valid for research, it would be good 

to see if any of the data would change at temperatures similar to those found 

in common pole mounted transformers. 
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TABLE V 

HEAT TRANSFER RESULTS FROM NANOFLUID EXPERIMENTS 

Fluid Cell Size Steps Step k(
𝑊

𝑚2 𝐶
) h(

𝑊

𝑚2 𝐶
) q(Watts) T1(C) S1(C) T2(C) S2(C) Time(s) r2/4at 

CuO Nanofluid 1/4" 7 1 0.03 165.13 0.03556 23.87 0.05 23.50 0.00 5180 1.76E-02 

CuO Nanofluid 1/4" 7 1 0.04 193.97 0.03500 23.81 0.04 23.50 0.00 6000 1.14E-02 

CuO Nanofluid 1/4" 7 2 0.03 229.25 0.16080 25.71 0.09 24.51 0.03 3260 2.13E-02 

CuO Nanofluid 1/4" 7 2 0.05 234.10 0.16032 25.87 0.07 24.70 0.00 6760 7.59E-03 

CuO Nanofluid 1/4" 7 3 0.04 253.02 0.39026 28.70 0.13 26.06 0.07 3150 1.94E-02 

CuO Nanofluid 1/4" 7 3 0.05 268.02 0.39000 28.74 0.17 26.25 0.09 4030 1.26E-02 

CuO Nanofluid 1/4" 7 4 0.05 259.30 0.70000 33.00 0.11 28.38 0.05 4280 1.23E-02 

CuO Nanofluid 1/4" 7 4 0.05 275.74 0.72000 33.03 0.10 28.57 0.05 3760 1.33E-02 

CuO Nanofluid 1/4" 7 5 0.05 268.91 1.09868 37.89 0.18 30.90 0.07 4400 1.13E-02 

CuO Nanofluid 1/4" 7 5 0.05 284.46 1.15368 38.22 0.31 31.28 0.15 3930 1.20E-02 

CuO Nanofluid 1/4" 7 6 0.05 284.39 1.62216 43.93 0.27 34.17 0.11 3180 1.63E-02 

CuO Nanofluid 1/4" 7 6 0.05 292.87 1.65440 44.03 0.24 34.37 0.08 4180 1.06E-02 

CuO Nanofluid 1/4" 7 7 0.05 297.23 2.07583 49.02 0.26 37.08 0.10 3560 1.31E-02 

CuO Nanofluid 1/4" 7 7 0.09 303.53 2.14389 50.74 0.44 38.66 0.19 22990 1.21E-03 

CuO Nanofluid 1" 7 1 0.01 163.10 0.05060 23.73 0.05 23.20 0.00 5190 1.54E+00 

CuO Nanofluid 1" 7 2 0.01 195.84 0.19076 25.47 0.07 23.80 0.00 4550 1.50E+00 

CuO Nanofluid 1" 7 3 0.01 199.81 0.42000 28.29 0.11 24.70 0.01 4850 1.44E+00 

CuO Nanofluid 1" 7 4 0.01 201.90 0.76076 32.24 0.16 25.80 0.02 10870 1.02E+00 

CuO Nanofluid 1" 7 5 0.01 197.75 1.17547 37.17 0.18 27.00 0.00 4680 1.48E+00 

CuO Nanofluid 1" 7 6 0.01 204.85 1.67944 42.53 0.33 28.51 0.02 4400 1.50E+00 

CuO Nanofluid 1" 7 7 0.01 210.50 2.11869 47.02 0.35 29.81 0.03 4970 1.39E+00 

C-Cu Nanofluid 1/4" 1 1 0.00 306.13 2.10986 49.34 0.30 37.56 0.05 9700 4.43E-04 

C-Cu Nanofluid 1/4" 1 1 0.08 328.39 2.19494 48.77 0.28 37.34 0.09 10503 8.13E-02 

C-Cu Nanofluid 1" 1 1 0.05 175.16 2.18595 52.09 2.10 30.74 1.74 5767 2.05E-01 

C-Cu Nanofluid 1" 1 1 0.04 206.95 2.18595 48.56 0.36 30.49 0.03 7600 2.07E-01 

C-Cu Nanofluid 1" 1 1 0.03 193.95 2.15296 50.60 0.36 30.12 0.04 8750 3.28E-02 

Table V- HEAT TRANSFER RESULTS FROM NANOFLUID EXPERIMENTS  
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TABLE VI 

RESULTS FROM THE REPEATED ¼” HEAT TRANSFER CELL OF THE FIRST 

DESIGN WITH FRESH MINERAL OIL 

Fluid Step k(
𝑊

𝑚2 𝐶
) h(

𝑊

𝑚2 𝐶
) Q(Watts) T1(C) S1(C) T2(C) S2(C) Time(s) r2/4at 

Mineral Oil 1 0.17 709.31 0.04 21.63 0.05 21.71 0.04 4220 3.35E-03 

Mineral Oil 2 0.14 576.10 0.16 22.86 0.05 23.34 0.08 4980 3.53E-03 

Mineral Oil 3 0.11 480.82 0.39 25.00 0.03 26.39 0.11 5530 3.88E-03 

Mineral Oil 4 0.10 473.49 0.70 27.62 0.07 30.15 0.28 4530 5.09E-03 

Mineral Oil 5 0.13 538.07 1.13 30.51 0.05 34.09 0.16 5190 3.65E-03 

Mineral Oil 6 0.16 622.75 1.62 34.13 0.13 38.59 0.25 5900 2.60E-03 

Mineral Oil 7 0.15 642.62 2.11 37.11 0.14 42.72 0.61 4900 3.15E-03 
Table VI-RESULTS FROM THE REPEATED ¼” HEAT TRANSFER CELL OF THE FIRST DESIGN WITH FRESH 

MINERAL OIL 
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