
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2010

Dynamic probe positioning within peer-to-peer networks for Dynamic probe positioning within peer-to-peer networks for

mining contraband file exchanges. mining contraband file exchanges.

Derek Reese
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Reese, Derek, "Dynamic probe positioning within peer-to-peer networks for mining contraband file
exchanges." (2010). Electronic Theses and Dissertations. Paper 1194.
https://doi.org/10.18297/etd/1194

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1194
mailto:thinkir@louisville.edu

DYNAMIC PROBE POSITIONING WITHIN PEER-TO-PEER NETWORKS FOR

MINING CONTRABAND FILE EXCHANGES

By

Derek Reese

B.S., University of Louisville, 2001

A Thesis

Submitted to the Faculty of the

University of Louisville

J.B. Speed School of Engineering

as Partial Fulfillment of the Requirements

for the Professional Degree

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science

December 2010

1

2

DYNAMIC PROBE POSITIONING WITHIN PEER-TO-PEER NETWORKS FOR

MINING CONTRABAND FILE EXCHANGES

Submitted by:__________________________________

Derek Reese

A Thesis Approved On

(Date)

by the Following Reading and Examination Committee:

Dr. Olfa Nasraoui, Thesis Director

Dr. Adel Elmaghraby

Dr. Michael Losavio

Dr. Ayman El-Baz

ACKNOWLEDGEMENTS 3

ACKNOWLEDGEMENTS

It has been my privilege to work with Dr. Nasraoui, Dr. Losavio and Nick Miles on

this research grant. Dr. Nasrauoi and Dr. Losavio encouragement and guidance kept me

focused on completing my portion of this work. I would also like to thank my friends and

family for their encouragement during my studies. Finally I must thank my employer and

most especially my manager, Jeff King, for their support and flexibility in the past 2 years

while I completed this thesis.

ABSTRACT 4

ABSTRACT

Peer-to-peer networks have been growing in popularity over the past decade. There

have been many new innovations that greatly improve access to a wide variety of content.

This expanded capability combined with a strong sense of anonymity has given rise to

increased proliferation of illicit content. In particular the increase in child pornography has

been a growing concern in the United States and other countries. Thus law enforcement is

motivated to find improved means for finding those sharing this material online.

Due to the dynamic and expansive nature of peer-to-peer networks, there is a need to

develop methods that allow law enforcement to monitor with a high degree of confidence

that a large percent of perpetrators can be identified. Thus a study of the current state of

peer-to-peer networks with an analysis of how best to identify clients sharing contraband

files on the network is needed to monitor these criminal elements.

Contents

ACKNOWLEDGEMENTS 3

ABSTRACT 4

Nomenclature 7

List of Tables 8

List of Figures 10

Chapter 1. Introduction 12

1.1. Motivation 12

1.2. Objectives 12

1.3. Contributions 13

1.4. Thesis Organization 13

Chapter 2. Background and Literature Review 14

2.1. History of Peer-to-Peer Networks 14

2.2. Child Pornography on Peer-to-Peer Networks 16

2.3. Existing Studies of Peer-to-Peer Networks 16

2.4. Simulating Peer-to-Peer Networks 20

2.5. Techniques for Improving Search Results 21

2.6. Summary 24

Chapter 3. Methodology 27

3.1. Tools 28

3.2. Generating the peer-to-peer network topology 31

3.3. File Distribution 33
5

CONTENTS 6

3.4. Simulating the network 33

3.5. Probe Implementation 34

3.6. Position Improvement Algorithms 35

Chapter 4. Experimental Results 41

4.1. Experimental Methodology 41

4.2. Quality Metrics 44

4.3. Gnutella v0.4 Topology 46

4.4. Gnutella v0.6 Topology 57

Chapter 5. Conclusions 68

5.1. Summary 68

5.2. Limitations 69

5.3. Recommendations 69

APPENDIX 1 71

APPENDIX 2 79

APPENDIX 3 81

APPENDIX 4 86

Bibliography 110

VITA 112

Nomenclature

direct peer: a node that is connected by a single hop to another node

node: any client in the peer-to-peer network

peer: a node in the peer-to-peer network

probe: a node in the network that is controlled by a

known operator that is exploring the network

TTL: TTL is the time-to-live value. In Gnutella this is used to indicate how many hops a

message can travel before it should be removed from the network

7

List of Tables

1 Clustering coefficients for a Gnutella network, Barabasi-Albert, Watts-Strogatz,

random graph, and 2D mesh topologies. [9] 19

2 Characteristic path length a Gnutella network, Barabasi-Albert, Watts-Strogatz,

random graph, and 2D mesh topologies.[9] 20

1 Contraband keywords with their frequency in the network 47

2 Algorithm’s label in the figures 2-5, 7-10, and 16-27 47

3 t-statistic for Gnutella v0.4 and 50 probes 55

4 t-statistic for Gnutella v0.4 and 100 probes 55

5 Degrees of freedom for Gnutella v0.4 and 50 probes 56

6 Degrees of freedom for Gnutella v0.4 and 100 probes 56

7 p-value of the t-test for Gnutella v0.4 and 50 probes. Highlighted values indicated

results that are significantly better than random searching for that technique and

metric. 57

8 p-value of the t-test for Gnutella v0.4 and 100 probes. Highlighted values indicated

results that are significantly better than random searching for that technique and

metric. 57

9 t-statistic for Gnutella v0.6 and 50 probes 66

10 t-statistic for Gnutella v0.6 and 100 probes 66

11 Degrees of freedom for Gnutella v0.6 and 50 probes 66

12 Degrees of freedom for Gnutella v0.6 and 100 probes 67
8

LIST OF TABLES 9

13 p-value for t-test for Gnutella v0.6 and 50 probes. Highlighted values indicated

results that are significantly better than random searching for that technique and

metric. 67

14 p-value for t-test for Gnutella v0.6 and 100 probes. Highlighted values indicated

results that are significantly better than random searching for that technique and

metric. 67

List of Figures

1 Left: IP and application level up-time of peers. Right: Distribution of session

durations. [8] 17

2 Log-log plot of frequency versus degree for 1 snapshot of the Gnutella network

(Power Law 2)[9] 18

3 Log-log plot the number of pairs versus the number of hops for 2 snapshots (Power

Law 3). [9] 26

1 Database Model 30

1 Flow chart for experimental run (Algorithm 7) 43

2 Percent Contraband Files discovered using 50 probes in v0.4 network 48

3 Percent Contraband Files discovered using 100 probes in v0.4 network 48

4 Percent Improvement in Contraband Files queriable using 50 probes in v0.4

network 49

5 Percent Improvement in Contraband Files queriable using 100 probes in v0.4

network 49

6 Edge number distribution for simulated Gnutella v0.4 network 50

7 Percent Contraband Nodes discovered using 50 probes in v0.4 network 51

8 Percent Contraband Nodes discovered using 100 probes in v0.4 network 51

9 Percent Improvement in Contraband Nodes reachable using 50 probes in v0.4

network 52

10 Percent Improvement in Contraband Nodes reachable using 100 probes in v0.4

network 52
10

LIST OF FIGURES 11

11 Average distance to all contraband nodes using 50 probes in v0.4 network 53

12 Average distance to all contraband nodes using 100 probes in v0.4 network 53

13 Average distance to reachable contraband nodes using 50 probes in v0.4 network 54

14 Average distance to reachable contraband nodes using 100 probes in v0.4 network 54

15 Edge number distribution for simulated Gnutella v0.6 network 58

16 Percent Contraband Files discovered using 50 probes in a v0.6 network 59

17 Percent Contraband Files discovered using 100 probes in a v0.6 network 59

18 Percent Improvement in Contraband Files queriable using 50 probes in a v0.6

network 60

19 Percent Improvement in Contraband Files queriable using 100 probes in v0.6

network 60

20 Percent Contraband Nodes discovered using 50 probes in v0.6 network 61

21 Percent Contraband Nodes discovered using 100 probes in v0.6 network 62

22 Percent Improvement in Contraband Nodes queriable using 50 probes in v0.6

network 62

23 Percent Improvement in Contraband Nodes queriable using 100 probes in v0.6

network 63

24 Average distance to all contraband nodes using 50 probes in v0.6 network 64

25 Average distance to all contraband nodes using 100 probes in v0.6 network 64

26 Average distance to reachable contraband nodes using 50 probes in v0.6 network 65

27 Average distance to reachable contraband nodes using 100 probes in v0.6 network 65

CHAPTER 1

Introduction

1.1. Motivation

Peer-to-peer networks have been growing in popularity over the past decade. There

have been many new innovations that greatly improve access to a wide variety of content.

This expanded capability combined with a strong sense of anonymity has given rise to

increased proliferation of illicit content. In particular the increase in child pornography has

been a growing concern in the United States and other countries. Thus law enforcement is

motivated to find improved means for finding those sharing this material online.

Due to the dynamic and expansive nature of peer-to-peer networks, there is a need to

develop methods that allow law enforcement to monitor with a high degree of confidence

that a large percent of perpetrators can be identified. Thus a study of the current state of

peer-to-peer networks with an analysis of how best to identify clients sharing contraband

files on the network is needed to monitor these criminal elements.

1.2. Objectives

This thesis will propose the implementation of a specialized client for a Gnutella peer-

to-peer network intended to monitor the network for illegal activity. The client should be

able to start from any random point in the network and then, using the native features of

the Gnutella protocol, dynamically position itself to monitor more illicit activity.

Adapting an existing node ranking technique for use in the dynamic node positioning

method may allow clients to get improved query results. These query results will in turn

increase identification of users sharing illegal content on the network. If formulated cor-

rectly, these probes could continually collect data, while changing their positions as new
12

1.4. THESIS ORGANIZATION 13

content is confirmed to be contraband or as nodes enter or leave the network. This thesis

will consider both the Gnutella v0.4 and v0.6 versions of the network.

1.3. Contributions

The proposed techniques described herein will offer a new approach for a more aggres-

sive and dynamic neighbor selection strategy in peer-to-peer networks that can improve

query results for diffuse low-prevalence content. This should enable tracking down and

identifying nodes that share illicit content.

1.4. Thesis Organization

This thesis is broken down into four subsequent chapters. Chapter 2 starts with a brief

overview of the history of the topic including the technologies and legal issues that give

rise to the problem that this thesis addresses. Once the problem is understood, Chapter

3 discusses the methodology used to offer one solution to the problem. Chapter 3 will

discuss all the tools and algorithms used throughout the exploration of this topic. Chapter

4 then presents the results of the various experiments and explains the statistical analysis

used to evaluate the effectiveness of the proposed solution. Finally, Chapter 5 offers a brief

assessment of the work with recommendations for the next steps.

CHAPTER 2

Background and Literature Review

Before discussing how it may be possible to improve network searches for contraband,

it is necessary to understand some of the existing work and background in this field. In

this chapter, a brief history of how these networks came to be will be discussed; followed

with how criminal elements began to disseminate illicit content. Understanding the type of

content and its quantity on the network will be needed to successfully simulate the network

and test possible improvements. The synthetic network must also be built using techniques

found in a real network and thus, a review of surveys taken on the existing networks will

shape the methodology used to build the networks tested in this thesis. Finally, there has

been considerable work already done on how to improve search results in these networks

and this chapter will conclude with a review of a few of those approaches.

2.1. History of Peer-to-Peer Networks

Since the inception of the Internet in the 1970s, it has been used to greatly expand the

availability of knowledge for those with access to it. While it started out primarily as a re-

search tool, its introduction to the public at large has irrevocably changed how information

is exchanged. As the majority of Internet users switched from researchers to the general

public, there was a large-scale increase in the material available, including files with illicit

content.

There have been numerous tools created to improve the searching and sharing of in-

formation over the Internet. Napster, which had been introduced in 1999, popularized the

concept of peer-to-peer networking as a way to independently share files with other users

without posting that data on a remote server. Prior to this, users largely depended on tools
14

2.1. HISTORY OF PEER-TO-PEER NETWORKS 15

like USENET and IRC to post files they wanted to share. Later, Yahoo and AltaVista al-

lowed these networks, in addition to the World Wide Web, to be searched for content posted

by others. Napster fundamentally changed this by allowing those that used the software to

share files amongst each other without another server to host their content.

Napster however was not an unstructured [4] peer-to-peer network. The client would

connect to a central server that would then coordinate the querying and retrieval of mu-

sic among the numerous participants in the network. This kind of structured network had

numerous benefits as it could coordinate the connections of its users to allow greater avail-

ability of files. However, to achieve this, Napster required a central control point that could

reliably direct the connections and searches of peers in the network. The servers that en-

abled a more efficient network were also a potential point of failure that could be exploited

to shutdown the network. The Napster network was in fact shutdown when Napster Inc.

failed to fulfill its obligations to monitor user behavior for illegal activity per court order at

the close of A&M Records Inc. versus Napster Inc [3]. Avoiding a central-control mech-

anism was a driving force in the popularity of the Gnutella protocol, which grew as users

joined the network with no external direction given to peers as they participated in the

network.

Gnutella and unstructured [4] peer-to-peer networks in general have a number of prop-

erties that must be considered when analyzing the participants or content in the network.

Foremost amongst these properties, are the “loose rules” [4] imposed on peers that seek to

join the network. Gnutella, in particular, has a short set of protocols that must be imple-

mented for a node to join the network. Once a node becomes part of the Gnutella network,

it is trusted to pass messages as prescribed in the protocol with no built-in mechanism for

verification. This lack of centrally imposed organization on the network has a primary ben-

efit of not having a single point of failure. Research has shown that certain attacks could

be used against these networks, and render the network worthless to a large majority of

users [7]. However there have been no documented cases of a widespread disruptive attack

2.3. EXISTING STUDIES OF PEER-TO-PEER NETWORKS 16

against the Gnutella network. Data persistence in the network is not addressed by an un-

structured protocol such as Gnutella either. Thus the network does not guarantee the

availability or reachability of any file on the network which makes tracking of file move-

ment very difficult.

2.2. Child Pornography on Peer-to-Peer Networks

As described above, peer-to-peer networks offer significant opportunities for clients

to share in a very democratic environment that maximizes user freedom to exchange files.

The decentralized nature of these networks poses a growing challenge to law enforcement’s

ability to identify purveyors of child pornography. The sense of anonymity on these net-

works combined with their dynamic nature has attracted criminal elements.

There has been growing prosecution of these offenders since the adoption of the Child

Pornography Prevention Act of 1996. The number of cases has increased from 113 in 1996

to 2,500 in 2009, an increase of 2,050% [6]. The United States General Accountability Of-

fice (GAO) also found child pornography to be easily accessible on peer-to-peer networks

using a total of 15 keywords to identify 692 out of 1,627 total images as child pornography

[5]. However it has been shown that child pornography falls far short of other activity on

the network. A survey of peer-to-peer networks for pornographic videos found that of 507

video files found, 3.7% involved child pornography [5]. Another survey in 2006 found that

only 1.6% of searches and 2.4% of responses included illegal pornographic material [15] as

defined in the United Kingdom, which includes video or photographs that sexually exploit

children. This material appears to only be shared by a small community of users. The 2006

survey found that 57% of those sharing illegal material exclusively shared such files, while

only 17% that shared such content had greater than 50% legal files.

2.3. Existing Studies of Peer-to-Peer Networks

In order to enhance the position of a small set of the nodes in a network that we can

control, it is necessary to understand the current state of the Gnutella network. Numerous

2.3. EXISTING STUDIES OF PEER-TO-PEER NETWORKS 17

FIGURE 1. Left: IP and application level up-time of peers. Right: Distri-
bution of session durations. [8]

surveys of this network have produced a variety of data reports over the years. A measure-

ment done in 2001 by Saroiu et al. [7] measured the Gnutella network over the course of

eight days. In that period, their tool reported 1,239,487 unique Gnutella peers at 1,180,205

unique IP addresses in the network. After identifying the scale of the network, active mea-

surements were taken to assess a peer’s availability and resources. 17,125 Gnutella peers

were monitored over 60 hours for latency, up-time, and files shared. It was found that

a full 25% of nodes in the Gnutella network shared no files. Additionally, the application

up-time and session length of monitored peers were documented. These results give a prac-

tical view of the amount of network churn that occurs in the Gnutella network. Saroiu et

al. [7] discussed the distribution of files available on the network, but only categorized files

based on their total size rather than on content. As this project is concerned with improving

network position relative to file content, the size of files is not germane to the problem.

Further analysis of the Gnutella network has shown that it has certain properties that

can be used to enhance the simulation of those networks. Jovanović [8] showed that the

Gnutella network, like other large self-organizing networks, can be approximated with four

Power Law characteristics (i.e. of the form y = xa). Jovanović [8] also collected data from

the Gnutella network to examine its clustering coefficient and diameter. The diameter of a

network describes the average distance in node to node hops needed to reach a “’sufficiently

large’ portion of a network.”

2.3. EXISTING STUDIES OF PEER-TO-PEER NETWORKS 18

The four power-law attributes that Jovanović [8] outlined were the “rank exponent,”

“out-degree exponent,” “hop-plot exponent” and the “eigen exponent.” The first power-

law defines the degree, dv, of each node (v) which is proportional to the rank (r) raised to

the power R (i.e. a = R). The rank of a node is the index of the node in a list of nodes

ordered by decreasing degree. Power-law 2 says that the frequency of the out-degree, fd,

is proportional to the out-degree value (d) raised to the power O (i.e. a = O). Power-law

3 says that the “total number of pairs of nodes P(h) within h hops is proportional to the

number of hops to the power of a constant H” (i.e. a = H). The final power-law finds that

the eigenvalues, ei, of the network are proportional to the order, i, raised to the power of E

(i.e. a = E). The analysis of the collected data for power-laws 2 and 3 are shown below.

However the author omitted the results for 1 and 4, but reported that the Gnutella network

did have these properties.

FIGURE 2. Log-log plot of frequency versus degree for 1 snapshot of the
Gnutella network (Power Law 2)[9]

2.3. EXISTING STUDIES OF PEER-TO-PEER NETWORKS 19

TABLE 1. Clustering coefficients for a Gnutella network, Barabasi-Albert,
Watts-Strogatz, random graph, and 2D mesh topologies. [9]

Jovanović [8] defined the network’s clustering coefficient for a graph of size k as the

average of the clustering coefficients for all the nodes in the network. The clustering co-

efficient for each node v is defined as the number of cross edges in a Breadth First Search

(BFS) tree of depth l with root node v divided by the maximum number of cross edges

possible for a graph of size k. The formula for the maximum number of cross edges in a

graph of size k is as follows:

k!/((k−2)!∗2)− (k−1)

Jovanović [8] used a tool to take five snapshots of the topology of Gnutella in November

and December of 2000. He found that the average clustering coefficient over that time was

0.02054 with a standard deviation of 0.00759.

Jovanović [8] discussed that the effective diameter provides a good way to apply the

information learned from the power-law properties. In particular, the hop-plot exponent

or power-law 3 is used to calculate the effective diameter, which could in turn be used to

better tune the TTL for the network. Searching the network would be more efficient if the

effective diameter and the TTL for the network are equal. The effective diameter is defined

as follows where N is the number of nodes, E the number of edges, and H is the hop-plot

exponent.

δef = (N2/(N +2∗E))1/H

While there has been a number of surveys of the Gnutella network over the years,

there appears to be a deficiency in the ability to quantify whether the simulated network is

2.4. SIMULATING PEER-TO-PEER NETWORKS 20

TABLE 2. Characteristic path length a Gnutella network, Barabasi-Albert,
Watts-Strogatz, random graph, and 2D mesh topologies.[9]

representative of a real-world network. Most authors made qualified conclusions that their

surveys would represent the networks studied as those networks evolved.

2.4. Simulating Peer-to-Peer Networks

There are numerous implementations available for simulating peer-to-peer networks.

Most involve using properties observed in the real networks to generate simulated net-

works for testing at a smaller scale. It has proven difficult to model a real Gnutella network

with more than one million nodes. Most simulations take the approach of taking the prop-

erties discovered by surveying a Gnutella network and using algorithms that will generate

a network that contains those properties [16]. Many models attempt to scale the network

down to less than 10,000 nodes [10, 12].

Another approach proposed was that the network could be built by modeling the actual

protocol the network would use when forming connections [16]. In this case, the synthetic

network was initialized using known data from a real network. Then, once the initial net-

work was built, an algorithm scaled the network up or down. Scaling down targeted specific

nodes for removal from the network while maintaining the initial network properties. Scal-

ing up was accomplished by employing the network specific “bootstrapping” technique to

find nodes that would be appropriate to connect to in a real network. In the case of the mod-

ern Gnutella v0.6 network, the bootstrapping process would find a super peer, also called

an ultra peer, to initiate a connection. The new node would continue searching for a super

peer to connect to until it was successful or it reached a limit on its allowed number of con-

nections [17]. The authors used an inverse Barabasi-Albert approach for selecting super

2.5. TECHNIQUES FOR IMPROVING SEARCH RESULTS 21

peers by assigning a higher weight to known super peers with the least number of connec-

tions. This technique allows for both the use of real data to simulate modifications to the

network or to generate entirely new networks that should closely mimic a real network.

2.5. Techniques for Improving Search Results

Identifying users that are sharing illicit information on an unstructured peer-to-peer

network such as Gnutella can be difficult due to the dynamic and anonymous nature of

the network. While child pornography on the Gnutella network is an ongoing problem for

law enforcement, this problem still only consists of a small percentage of overall users that

download and traffic in illicit material. Thus, finding techniques that allow law enforcement

to search a greater percentage of the network with fewer resources over a shorter period will

improve deterrence by identifying perpetrators more quickly. As the problem continues

to grow, there has not been much advancement in methodologies to identify contraband

exchange on peer-to-peer networks. A few articles have proposed to modify the network

to enhance information retrieval on peer-to-peer networks ([9, 10, 11, 12]). Although these

techniques would help law enforcement track down criminals on future networks, they do

not address the problem of tracking down offenders using existing protocols. This thesis

will explore a technique to improve a node’s position in a Gnutella network to enhance

suspicious query results.

Much research has been done on how to create a better peer-to-peer network ([9, 10,

11, 12]) that would allow a client in the new network to track down information much more

quickly. The biggest hurdle to applying these techniques to the existing Gnutella protocol

is that they require global knowledge of all peers in the network. Some [10] also require

knowledge of all the content on the network. The size and dynamic nature of peer-to-

peer networks, including Gnutella, make it unlikely that a single client could have global

knowledge of the network.

Using a particle swarm optimization approach Liu, Abraham, and Badr [10] attempted

to maximize the disjointness of the network. They define disjointness as the amount of

2.5. TECHNIQUES FOR IMPROVING SEARCH RESULTS 22

content that one node can share with another. Their particle swarm algorithm attempts to

bring together nodes that can share the most information possible. The swarm technique

rewards those that contribute more content to the network by connecting them closely with

nodes that are sharing information they do not already have. However this approach would

be difficult to apply to an existing network as it optimizes with complete knowledge of

all nodes and each node’s content in the network. The technique also necessitates that all

nodes be configurable in order to move to an optimal solution.

Schmid and Wattenhofer [11] take an approach that is more relevant to the problem of

improving the position in an existing network like Gnutella. They are also trying to refine

the Gnutella protocol to improve overall network performance. Their approach offers more

opportunities for application in an existing network as it is formulated with individual nodes

acting only with local knowledge. They propose that some peers should take on the role

of “beacons,” which identify a cluster of nodes with shared interests. The beacons then

identify themselves to new nodes attempting to join the network. Beacons are similar to

the “super” peers in the v0.6 version of the Gnutella network as they can have a greater

edge-degree in the network than other nodes. Clients in the network then tell inquiring

peers about beacons that can be reached. Schmid and Wattenhofer utilize a strategy of

having clients select new peers that maximize the number of different beacons that can be

reached through their direct peers. While the technique is interesting, it requires that the

communication protocol of Gnutella be changed and thus can not be used as presented in

the existing network.

Li, Yang, Shi and Bai [12] also took the approach of applying local knowledge to opti-

mize node positions. Their approach attempts to factor in the “popularity” of a document

into their clustering strategy. They assign weights to the documents based on the frequency

of their occurrence and then assign a score to peers that are candidates for connection that

is a sum of the weights of that peer’s documents. One problem with this scoring method is

that it is not possible to know all documents that may exist in the network. Thus one cannot

assign a score to a document that has not been seen, but that may exist on nodes being

2.5. TECHNIQUES FOR IMPROVING SEARCH RESULTS 23

evaluated. The optimization is also greedier as each node is attempting to get connected to

highly desirable nodes rather than simply connecting to a node that is already connected to

a desirable node. They did not seem to address the fact that this may cause those that are

not sharing many files to become starved for connections into the larger network. When

evaluating the results, the clients were modified to perform a directed walk based on the

weights of the peers instead of using Gnutella’s flooding method. This would also have

to be addressed if attempting to use the results in the existing network as it is not possi-

ble to change the behavior of other peers in the network. The ability to assign weights to

documents would apply to the problem of illicit content in Gnutella as the goal is to find

users sharing a particular kind of file and not just any files on the network. Thus, with that

technique, the optimization can be focused on the users sharing specified information.

Finally [9] addressed improving node placement in a peer-to-peer network by propos-

ing equations that could be applied locally. These equations had the advantage that they

could be applied to specified nodes in the network, while leaving other nodes to function

according to the current protocol. [9] suggested that responding nodes could be assigned a

fitness or importance based on the results of the queries that were returned. They proposed

modifying all nodes in the network to use these formulas in order to have each node move

independently towards other nodes with shared interests. While it is not possible for one

node to force a modification on another in the existing network, it is possible to request a

connection between the node that has been modified and an unmodified node. Thus, the

controlled nodes can move closer to other nodes they are interested in even if those nodes

are not moving in a similar fashion. The fitness value of each node was composed of two

factors:

(1) The percentage of all results that it had received from that particular node

(2) The distance to that node.

Both of those factors can be found in the existing Gnutella protocol. Nodes sharing files

must identify themselves to those that are attempting to download files. In addition, the

protocol passes information regarding the number of nodes that were passed through as the

2.6. SUMMARY 24

hops value in the node descriptor packet [14]. Clients on the network can use a variety of

techniques to mask their true identity. In many cases, there would be methods available

to law enforcement to use what data is provided for an actual download to track down the

actual computer sending a file. The following formulas are used to calculate the fitness of

each node that a client can identify. The QueryHitsp,q(s) is the number of matching query

results sent from node s to node p through node p’s direct peer q. QueryHitsp(s) is the

total number of query results sent from node so to node p through all of p’s direct peers.

nHopsp(s) is the number of hops between p and s. α and β assign a weight to previous

values, thus preventing previously valuable nodes from being removed too quickly.

(2.5.1) averNHopsp(q) = ∑
s
(QueryHitsp,q(s)∗nHopsp(s))/∑

s
∑
q

QueryHitsp,q(s)

(2.5.2) percQueryHitsp(s) = QueryHitsp(s)/∑
r

∑
q

QueryHitsp,q(r)

(2.5.3) Impp(q, t) = α ∗ percQueryHitsp(q)/averNHopsp(q)+β ∗ Impp(q, t −1)

2.6. Summary

This chapter reviewed the rise of peer-to-peer networks as a technological solution to

the need to share content with little ability for other parties, including the government, to

interfere. This characteristic fits in with the spirit of an Internet that enabled large scale

exchange of information for all those connected to it. It also enabled less savory content

to be easily distributed, increasing the interest of law enforcement in finding solutions to

that problem. As the properties of these networks have been surveyed and opportunities for

improvement were proposed, it became apparent that there is a need for improved methods

in the current state of the arts to enable law enforcement to track down illegal file sharers. In

2.6. SUMMARY 25

the subsequent chapters, one solution will be implemented and its results will be validated

using experiments on a simulated peer-to-peer network.

2.6. SUMMARY 26

FIGURE 3. Log-log plot the number of pairs versus the number of hops for
2 snapshots (Power Law 3). [9]

CHAPTER 3

Methodology

Chapter 3, Methodology, will present the specific tools and algorithms that the team

used to simulate a realistic peer-to-peer network and will describe the methodology to be

followed in our simulations. If one were to attempt to reproduce the results for oneself,

this chapter along with the referenced appendices should allow for the experiments to be

repeated.

As discussed previously, there was little work in the existing literature that could be di-

rectly applied to the problem of improving search results in an existing network. Creating

a new protocol offers many tangible benefits for researchers and law enforcement. Once

a new network is created, there is the challenge of transitioning a sufficient portion of the

existing users to the new infrastructure. Gnutella only gained popularity after Napster was

shutdown and new protocols, such as BitTorrent, have further fractured the peer-to-peer

community. Thus, this thesis operates without attempting to modify the Gnutella proto-

col, but instead creating a single intelligent client that should be indistinguishable from

other clients on the network. The client’s intelligence cones from its ability to dynamically

change its placement within the peer-to-peer network using an algorithm to optimize that

position in order to better intercept illicit traffic.

The problem of improving query performance is constrained by the information pro-

vided by peers through the existing Gnutella protocol and by the number of nodes in the

network that can be instantiated by the operator. While it is possible to manipulate the mes-

sages initiated by or passed through a controlled client, this would not affect a significant

portion of the messages passed on the network. The modification of messages carries a

risk that other sophisticated clients could recognize the manipulation and stop responding

27

3.1. TOOLS 28

to the probe [14]. With these restrictions in mind, the fitness formula and algorithms cre-

ated by Ramanathan, Kalogeraki, and Pruyne [9] were adapted for use by a limited number

of probe nodes in the network. These probes are listening nodes that can intercept data

exchanged through them while adjusting their position in the network in order to identify

nodes that are sharing illicit material.

3.1. Tools

The project was developed on the Java 1.5 platform in a Windows XP and Win7 envi-

ronment. The Eclipse IDE for Java Developers was used to implement the Java code. Data-

base structures were written in a simple text editor. The database objects were deployed

to a MySQL 5.4 database using MySQL’s command line client. Queries to extract results

were also written in a simple text editor and run through MySQL Workbench 5.2. Results

were analyzed and graphically depicted with a spreadsheet program, OpenOffice.org Calc.

An algorithm provided by another student working on the project, Nick Miles, was written

in Python and thus a Python interpreter was used to extract the necessary data.

Java was chosen due to the freely available documentation and support found on the

web. Version 1.5 of Java was selected as it included Generics syntax, which allowed for

more type safe code. This avoided type mismatch errors that often arose in Java programs

that included Java Collections in prior versions. The project was commented using the

javadoc tool to provide an easy reference for others to review the code. In addition, the

java code profiler included with the Java Development Toolkit (JDK) was used to identify

problem sections of the code. The profiler indicated that 80% of the time was spent writing

to the database. Database tables and indexes were designed for data integrity and opti-

mized query performance which could reduce insert performance. Modifying the design

for improved insertion, would hinder analysis of the results which was deemed more im-

portant for this thesis. The application code could be modified to cache results in memory

for writing to the database in order to improve execution time. However, this was not done

for the simulation as the time to simulations run was acceptable and efforts to improve

3.1. TOOLS 29

performance would be better spent on an implementation that operated on a real Gnutella

network.

The MySQL database structures were developed to interface with a simple program

built on top of the Limewire Gnutella client code. The database relational model is shown

below. This program sent a query out on the network and then attempted to download all

results returned from the network for that query. Information regarding the node that re-

sponded along with any complete files that were able to be retrieved were saved to the data-

base. The program also stored any queries it received from the network to a table. These

activities were not a part of the simulation, and thus the schema has numerous data ele-

ments that are not needed to collect simulation results. In addition the simulation required

elements for network analysis that would be useless when working in a real network.

3.1. TOOLS 30

FIGURE 1. Database Model

3.2. GENERATING THE PEER-TO-PEER NETWORK TOPOLOGY 31

Default selections in the Installation Wizard for MySQL were used for the initial setup.

The automated query tool required a modification to the database configuration after instal-

lation to enable larger files to be saved in the database. In particular, the max_allowed_packet

was increased to 1GB from its default value of 1 MB to save files that were multiple

megabytes in size in a single transaction. The “thesis” and “thesisv4” users were created to

hold copies of the tables used in the simulation. See Appendix 1. Each user was setup to

only allow connections from the local host. A change in configuration would be required

to run the database on a separate machine from the simulation code.

Finally, to connect to the database from a Java application required the downloading of

the “mysql-connector” for java from the MySQL website. This jar file was added to the

CLASSPATH for running the Java application. Once the driver was loaded using normal

Java methods, the standard Java database API could be used to communicate with the

MySQL database.

3.2. Generating the peer-to-peer network topology

To begin, it was necessary to create a synthetic network that could be used to analyze

the results of each algorithm. The algorithm written by team member Nick Miles [22] in

Python that in turn used a modified Barabasi-Albert [20] algorithm was used to generate the

networks. Due to the nature of the Gnutella v0.4 protocol, the Barabasi-Albert distribution

applied within an algorithm that built the network from scratch would have generated some

nodes with too high of a degree to accurately model a v0.4 network. Thus team member

Miles’ algorithm limited the number of edges for any single node at a level appropriate for

Gnutella v0.4. The modified Barabasi-Albert algorithm has 3 inputs:

(1) the size of the network to be generated

(2) the minimum number of edges per node

(3) the maximum number of edges per node.

3.2. GENERATING THE PEER-TO-PEER NETWORK TOPOLOGY 32

The function was modified to output the edges in a usable file format. A single 50,000 node

network with 2 to 5 edges per node was created to test the position optimization algorithms.

See Appendix 2.

In order to approximate a modern Gnutella v0.6 network, a variation of the bootstrap-

ping mechanism proposed in [16] was developed to designate some nodes as ultra nodes.

This algorithm insured that all nodes are connected to at least one super node, as well as

maintain a ratio of super nodes to normal nodes that exists in a real Gnutella network of

one super node for every three normal nodes [16]. This algorithm took 6 input values to

control the nature of the network.

(1) the size of the network to generate

(2) the minimum number of edges for any node

(3) the maximum number of edges for a leaf node

(4) the maximum number of edges for a super node

(5) the percentage of all nodes that should be super nodes

(6) the percent chance that a super node will connect to another super node.

While there was data on the percentage of nodes in a Gnutella network that are super nodes,

there was no data on the frequency of connections between super nodes. However, to avoid

the network being fractured, it was generated with a 30% chance that each connection for

a super node would also be a super node. See Appendix 3.

Based on the algorithms described, there were two variations of the network that the

position optimization algorithms were tested on. Change in the network over time was ne-

glected in these experiments. The only change in the network was caused by modifications

initiated by the probe nodes. However the code was designed to allow behavioral classes to

be implemented that would use an interface to control the behavior of any number of nodes

in the synthetic network. This interface is how the probe behavior was implemented.

3.4. SIMULATING THE NETWORK 33

3.3. File Distribution

Another data-set was needed to simulate the distribution of files in the network. More

difficult than knowing the true network topology is knowing the ever changing nature of

files distributed on the network. New content on the Internet is generated very frequently

and this data can quickly become available on a peer-to-peer network. However as dis-

cussed previously there have been surveys [5, 6, 15] on the availability of illicit material

such as child pornography in real networks.

An algorithm (see Appendix 4) was developed to distribute contraband material based

on this information. It was written to be configurable with parameters in case these values

changed in the future. The algorithm took 11 parameters to generate the distribution.

(1) the list of keywords to generate contraband file names

(2) the list of keywords to generate normal file names

(3) percent distribution for each contraband keyword

(4) percent distribution for each normal keyword

(5) the number of peers in the network

(6) the minimum number of files found at a peer that shares files

(7) the maximum number of files on a peer that shares files

(8) the percent of nodes that share any files

(9) the percent chance that a node with files will have contraband

(10) the percent chance a node with contraband will exclusively share contraband files

(11) the percent of contraband found in a node sharing normal and contraband files

3.4. Simulating the network

To simulate the network, a single class was implemented that mimicked the messages

passed in the Gnutella protocol in function calls. This was not an exact simulation as the

messages were passed using function calls between individual instances of the Gnutel-

laSimNode class. The functions were named after the message they simulated. These

messages include ping, pong, query, queryhit and push. The push message was never

3.5. PROBE IMPLEMENTATION 34

implemented as the impact of firewalls on the ability of shared files was neglected. If a fire-

wall does not allow a node on the real network to share data, then while that node may have

contraband data, no one but the user would be able to access those files. Other approaches

such as query analysis or using a “honey pot” would be needed to determine whether the

user at nodes behind restrictive firewalls were collecting illegal content. However in a

real network, a node that was forced to push a file to the probe, would require additional

investigation in order to track down the clients operating behind the firewall.

In order to simulate more complex behavior, it would be desirable to have the nodes

operating independently on separate threads rather than all being controlled by a single

thread. The code would need modification to allow for multi-threaded access to internal

members as the classes were not designed for such environments.

3.5. Probe Implementation

To implement the behavior of a probe node, there were hooks added to the Gnutel-

laSimNode class to send messages to those interested in events at that node. In this way,

the probe was able to react to all the messages that were received at a particular Gnutel-

laSimNode. The interface for this functionality was defined by GnutellaSimNodeCon-

troller. While these controllers could not alter the basic responses required by the Gnutella

protocol, it could record results or initiate new messages on the network in response to

these messages. While in a real network, a probe could also alter the behavior of a node to

not comply with the Gnutella protocol, this was ignored since a modified client could also

be detected and ignored by some nodes on the network [14].

The probe nodes were selected from the set of all nodes at random at the beginning of

the simulation. Then a list of configurable queries was initiated one at a time from each

probe. The probes would then collect all results that were returned. Once all queries had

been sent and results collected, each probe would calculate the importance [9] values for

each of its direct peers using Equation 2.5.3. After recording these values, an algorithm

was run to select the direct peers, if any, to be replaced with a new peer.

3.6. POSITION IMPROVEMENT ALGORITHMS 35

3.6. Position Improvement Algorithms

Two algorithms were evaluated against a baseline exploration (Algorithm 4) of the

network. Algorithm 5 would randomly select new peers from the network to replace un-

interesting peers. This could be accomplished in a real network using methods such as the

host-cache functionality provided by Limewire [17]. While the entire network would not

be available for selection, a new peer could be drawn from a significant pool of known

hosts. Algorithm 6 instead used ping messages to get lists of known peers from a peer that

had previously returned contraband data. This is based on the assumption that if clients

regularly search for these files that they would naturally gravitate toward a neighborhood

of users sharing or collecting these files. There is, however, no known data that would

support this model of natural neighborhood formation within the Gnutella network. The

synthetic file distribution or network topologies did not assume that these neighborhoods

existed.

3.6.1. Original Ramanathan Algorithm and Base Algorithm. The original algo-

rithm defined by Ramanathan [9], as shown in Algorithm 3, was intended to be imple-

mented at each node on the network. Since modifying the entire network is not possible,

the algorithm was modified to account for a limited number of probes that could be placed

on the network. In addition part of Ramanathan’s algorithm was broken into modules that

could be called from other algorithms being tested to improve the modularity of the pro-

posed solutions. The base algorithm used to measure results against omitted any selection

criteria, such that it would randomly replace any direct peer with a randomly selected node

from the network.

3.6.2. Increased Random Exploration. Since the non-probe nodes on the network

would not be attempting to move closer to the probes, the algorithm had to be modified

in order to increase that exploration of the network (Algorithm 5). The first approach to

do this was simply to replace low performing nodes with new nodes that are randomly

selected from the network. These nodes could have been attached previously, as no history

3.6. POSITION IMPROVEMENT ALGORITHMS 36

Algorithm 1 Module Maximum Percent Query Hits

MaxPercen tQueryHi t s (Node p , Node i_max)
{
/ / Th i s a l g o r i t h m w i l l f i n d t h e i n d i r e c t p e e r o f p
/ / t h a t has t h e maximum p e r c e n t Q u e r y H i t s r e t u r n i n g i t a s i_max

f o r each i n d i r e c t peer , i , t h a t s e n t a q u e r y h i t t o p
{

P c u r r = p e r c e n t Q u e r y H i t s (p , i)
i f P c u r r > Pmax
{

Pmax = P c u r r
i_max = i

}
}

}

Algorithm 2 Module Get Minimum Importance

MinImpor tance (Node p , t ime t , Node d_min , S e t Z)
{
/ / Th i s a l g o r i t h m f i n d s t h e d i r e c t p e e r o f p
/ / a t t h e c u r r e n t t ime , t , t h a t has t h e minimum i m p o r t a n c e
/ / r e t u r n i n g t h e v a l u e as d_min
/ / Z a l s o s t o r e s a l l p e e r s t h a t have a z e r o i m p o r t a n c e v a l u e
/ / which c o u l d i n c l u d e d_min
Imin = i n f i n i t y
Z = empty s e t
d_min = random d i r e c t p e e r o f p
f o r each d i r e c t peer , d
{

I c u r r = I m p o r t a n c e (p , d , t)
i f I c u r r < Imin t h e n
{

Imin = I c u r r
d_min = d

}
i f I c u r r = 0 t h e n
{

add d t o Z
}

}
}

3.6. POSITION IMPROVEMENT ALGORITHMS 37

Algorithm 3 Original Ramanathan Algorithm

Ramanathan_Algor i thm (Node p , t ime t)
{

MaxPercen tQueryHi t s (p , s)
MinImpor tance (p , q , t)

/ / Greedy r e p l a c e m e n t o f d i r e c t p e e r q by s
i f p e r c Q u e r y H i t s (p , s) >= p e r c Q u e r y H i t s (p , q) t h e n
{

i f addConnec t i on (p , s) s u c c e s s f u l t h e n
{

i f NumberConnect ions (p) > MAX_CONNECTIONS(p) t h e n
{

d r o p C o n n e c t i o n (p , q)
}

}
}

}

Algorithm 4 Baseline Random Placement Algorithm

BaseAlgor i thm (Node p)
{

S e l e c t random d i r e c t peer , d , from p
S e l e c t random node , r , t h a t i s n o t a d i r e c t p e e r o f p

/ / Add r as a d i r e c t p e e r o f p
i f addConnec t i on (p , r) s u c c e s s f u l t h e n
{

/ / Remove d as a d i r e c t p e e r o f p i f now exceed maximum # of c o n n e c t i o n s
i f NumberConnect ions (p) > MAX_CONNECTIONS(p) t h e n
{

d r o p C o n n e c t i o n (p , d)
}

}
}

is maintained about previously attached direct peers. However, the large number of peers

to select from in any peer-to-peer network makes re-attaching to an old peer unlikely, and

the dynamic nature of the network may be desirable as new content or peers could now be

accessible through the peer.

3.6.3. Targeted Exploration. The other method (Algorithm 6) uses ping messages in

an attempt to discover the neighbors of a contraband node. This would prove more useful if

3.6. POSITION IMPROVEMENT ALGORITHMS 38

Algorithm 5 Increased Random Exploration

I n c r e a s e d R a n d o m E x p l o r a t i o n (Node p , t ime t)
{

MaxPercen tQueryHi t s (p , i_max) / / A lgo r i t hm 1
MinImpor tance (p , t , d_min , Z) / / A lgo r i t hm 2

/ / Th i s compar i son on ly c o n s i d e r s d i r e c t r e s u l t s and n o t r e s u l t s t h a t
/ / may have been r e c e i v e d t h r o u g h d_min . However t h e i m p o r t a n c e
/ / c a l c u l a t i o n i n c l u d e s a l l r e s u l t s t h r o u g h d_min and t h u s d_min i s t h e w o r s t
/ / o f c u r r e n t d i r e c t p e e r s . Th i s i s a g re e dy s e l e c t i o n o f new p e e r s

d o _ e x p l o r a t i o n = f a l s e
i f p e r c e n t Q u e r y H i t s (p , i_max) >= p e r c e n t Q u e r y H i t s (p , d_min) t h e n
{

i f addConnec t i on (p , i_max) s u c c e s s f u l t h e n
{

i f NumberConnect ions (p) > MAX_CONNECTIONS(p) t h e n
{

d r o p C o n n e c t i o n (p , d_min)
}

}
e l s e

d o _ e x p l o r a t i o n = t r u e
}
e l s e

d o _ e x p l o r a t i o n = t r u e

i f d o _ e x p l o r a t i o n = t r u e t h e n
{

/ / I f c o u l d n o t f i n d a b e t t e r node t h a t would a c c e p t a c o n n e c t i o n t h e n randomly
/ / w i th 50% p r o b a b i l i t y r e p l a c e nodes t h a t a r e c u r r e n t l y n o t r e t u r n i n g any r e s u l t s

f o r each node , c , i n Z
{

r = random R[0 , 1)
i f r < 0 . 5 t h e n / / With p r o b a b i l i t y 50%
{

S e l e c t random node i n network , n
i f addConnec t i on (p , n) s u c c e s s f u l t h e n
{

i f NumberConnect ions (p) > MAX_CONNECTIONS(p) t h e n
{

d r o p C o n n e c t i o n (p , c)
}

}
}

}
}

}

3.6. POSITION IMPROVEMENT ALGORITHMS 39

there are a few known existing nodes at the start. However in the course of investigating the

Limewire client, there were numerous sources available that provided lists of known peers

in peer-to-peer networks. In addition, the Limewire client also queries known host caches

at start up if it cannot find a peer on its own. While there may be situations where a host

will not respond to ping messages, one can also use an “X-Try” header message [17] in

Limewire clients to find other peers from a host that is refusing a connection. Other client

implementations may not provide this alternative.

The methods implemented in this chapter promise to provide a good basis for accom-

plishing the objective of improving law enforcement’s capability to track down purveyors

of child pornography on peer-to-peer networks. The tools used are widely available and

well understood by those in the field. Thus even if new technologies are desired, the tools

used here should provide an easy transition to any other technology. With the neighbor se-

lection algorithms above in mind, it is hoped that the experimental results will bear out the

hypothesis that these techniques can improve search and detection results for those tracking

down illicit material on peer-to-peer networks.

3.6. POSITION IMPROVEMENT ALGORITHMS 40

Algorithm 6 Increased Targeted Exploration

I n c r e a s e d T a r g e t e d E x p l o r a t i o n (Node p , I n t e g e r QueryTTL , t ime t)
{

MaxPercen tQueryHi t s (p , i_max) / / A lgo r i t hm 1
MinImpor tance (p , t , d_min , Z) / / A lgo r i t hm 2

/ / Th i s compar i son on ly c o n s i d e r s d i r e c t r e s u l t s and n o t r e s u l t s t h a t
/ / may have been r e c e i v e d t h r o u g h d_min . However t h e i m p o r t a n c e
/ / c a l c u l a t i o n i n c l u d e s a l l r e s u l t s t h r o u g h d_min and t h u s d_min i s t h e w o r s t
/ / o f c u r r e n t d i r e c t p e e r s . Th i s i s a g re e dy s e l e c t i o n o f new p e e r s

d o _ e x p l o r a t i o n = f a l s e
i f p e r c e n t Q u e r y H i t s (p , i_max) >= p e r c e n t Q u e r y H i t s (p , d_min) t h e n
{

i f addConnec t i on (p , i_max) s u c c e s s f u l t h e n
{

i f NumberConnect ions (p) > MAX_CONNECTIONS(p) t h e n
{

d r o p C o n n e c t i o n (p , d_min)
}

}
e l s e

d o _ e x p l o r a t i o n = t r u e
}
e l s e

d o _ e x p l o r a t i o n = t r u e

i f d o _ e x p l o r a t i o n = t r u e t h e n
{

/ / I f c o u l d n o t f i n d a b e t t e r node t h a t would a c c e p t a c o n n e c t i o n t h e n randomly
/ / w i th 50% p r o b a b i l i t y r e p l a c e nodes t h a t a r e c u r r e n t l y n o t r e t u r n i n g any r e s u l t s
/ / by s e n d i n g a p ing t o i_max

f o r each node , c , i n Z
{

r = random R[0 , 1)
i f r < 0 . 5 t h e n
{

i n i t i a t e P i n g (p , i_max , TTL = FLOOR(QueryTTL / 2))
f o r each node , o , t h a t r e s p o n d wi th a pong t o p
{

i f addConnec t i on (p , o) s u c c e s s f u l t h e n
{

i f NumberConnect ions (p) > MAX_CONNECTIONS(p) t h e n
{

d r o p C o n n e c t i o n (p , c)
}
e x i t l oop

}
}

}
}

}
}

CHAPTER 4

Experimental Results

In this chapter the experimental methodology and analysis of the results will be pre-

sented. The factors used to measure each algorithm’s success in improving search results

will be detailed, including how they were measured or calculated during or after the simu-

lation. In addition, this chapter will present a statistical analysis to evaluate whether or not

each of the tested algorithms was effective.

4.1. Experimental Methodology

For each experimental run, the network was loaded and the files distributed amongst all

nodes in the network. Np nodes with connections and no contraband were then randomly

selected to serve as probes. This approximates bootstrapping Np probe nodes randomly.

The simulation then proceeded to iterate through a list of queries, collecting the query

results for the importance calculation. After all queries had been processed, the simulation

attempted to connect to new peers and recorded the results for that generation. The program

also calculated the distance to all contraband peers from all probe nodes using Dijkstra’s

shortest path algorithm [21]. The number of generations, probes and list of queries could

all be controlled using the input parameters to the simulation. Algorithm 7 for running

each experiment is shown below followed by a flowchart (Figure 1).

These algorithms were tested against two network topologies. The first topology tested

was built using Nick Mile’s algorithm (see Appendix 2) [22] and was set up to mimic a

Gnutella v0.4 network. The second topology was built using the algorithm in Appendix 3

and was generated using techniques that simulated a more modern Gnutella network with

version 0.6 of the protocol. Both networks contained 50,000 nodes and were populated
41

4.1. EXPERIMENTAL METHODOLOGY 42

Algorithm 7 Pseudocode for Experimental Run

Exper imentRun (Number g e n e r a t i o n s ,
A lgo r i t hm P e e r S e l e c t i o n A l g o r i t h m ,
S e t Quer i e s ,
S e t Probes ,
I n t e g e r QueryTTL)

O u t p u t s : Network G,
I m p o r t a n c e f o r each probe i n Probes ,
S h o r t e s t d i s t a n c e from each probe i n P ro be s t o a l l c o n t r a b a n d

{
t =0
w h i l e t < g e n e r a t i o n s
{

t += 1
f o r each query , q i n q u e r i e s
{

f o r each probe , p i n p r o b e s
{

/ / p i n i t a t e s que ry q wi th TTL of QueryTTL
i n i t i a t e Q u e r y (p , q , QueryTTL)
C o l l e c t s r e s u l t s i n S e t R e p l i e s

}
f o r each probe , p i n p r o b e s
{

c a l c u l a t e I m p o r t a n c e (p , t) / / Using e q u a t i o n 2 . 5 . 3
s e l e c t N e w P e e r s (p , R e p l i e s , P e e r S e l e c t i o n A l g o r i t h m) / / A lgo r i t hm 4 , 5 o r 6

}
/ / A l l c o n t r a b a n d nodes a r e known s i n c e t h i s i s a s i m u l a t i o n
/ / Thus c a l c u l a t i n g D i j k s t r a ’ s s h o r t e s t p a t h i s used as
/ / a b a s e l i n e f o r measu r ing how r e s u l t s improved between g e n e r a t i o n s
/ / D i j k s t r a ’ s s h o r t e s t p a t h (Algo r i t hm 8)

G e n e r a t e D i j k s t r a ’ s s h o r t e s t p a t h from each probe t o a l l c o n t r a b a n d nodes f o r t
Save m o d i f i e d ne twork s t a t e , G, f o r t
Save d i s t a n c e from D i j k s t r a ’ s c a l c u a t i o n f o r each probe i n t
Save i m p o r t a n c e f o r each probe i n t

}
}

with the same file distribution. Each network was tested with 50 and 100 of the total nodes

in the network being selected as probe nodes. The two algorithms also varied the α value

for the Ramanathan importance calculations in Equation 2.5.3 to measure its influence on

the results. The α values tested were 1.0, 0.9 and 0.8. The control group ran the same

4.1. EXPERIMENTAL METHODOLOGY 43

Algorithm 8 Dijkstra’s Shortest Path [21]

Algor i t hm S h o r t e s t P a t h (NodeSet V)
Outpu t : S e t o f minimum d i s t a n c e s , D, f o r each v i n V
S <− {v } ;
D[v] <− 0 ;
f o r each v i n V − {v} do D[v] <− l (v , v) ;
w h i l e S != V do
{

choose a v e r t e x w i n V − S such t h a t D[w] i s a minimum ;
add w t o S
f o r each v i n V − S do
{
D[v] <− MIN(D[v] , D[w] + l (w, v)) / / l (w, v) a lways 1 i n our c a s e

}
}

FIGURE 1. Flow chart for experimental run (Algorithm 7)

experimental algorithm above, but randomly replaced direct peers with new nodes instead

of using the importance calculations to select replacements.

A null hypothesis was formulated to test each algorithm against the control group that

used random exploration (Algorithm 4). The null hypothesis stated,

4.2. QUALITY METRICS 44

“the algorithm to improve probe positioning in the network does not improve contraband

search results.” Each group was tested with the same parameters for 10 runs. Statistical

analysis was then performed to test the null hypothesis for each algorithm and its input α

value.

4.2. Quality Metrics

Six quality metrics were used to measure the viability of the algorithms implemented.

These metrics were as follows:

(1) percent of contraband files discovered

(2) improvement in percent contraband files discovered

(3) percent of contraband nodes discovered

(4) improvement in percent contraband nodes discovered

(5) average distance to all contraband nodes

(6) average distance to reachable contraband nodes.

Each metric was evaluated against the random placement using a t-test to calculate the p-

value for each algorithm [19]. The t-test with a t-distribution was chosen because it allowed

for smaller samples to be compared, where the variance of each sample could be different.

The first metric quantifies the number of total contraband files that could be found

using a set of parameters. The file distribution generated for all experiments had 20,381

contraband files allocated among a total of 3,724,405 files in the network. Just as in a real

network, only a fraction of all nodes had any files with 15,015 nodes sharing one or more

files.

The second metric, the percent improvement in total contraband files, complements the

first metric since it quantifies how the probe’s positions were improved over the course of

the experiment with regard to content discovered. This measure was calculated by dividing

the difference of the percent contraband found between the first and nth generation by the

percent found in the first generation:

4.2. QUALITY METRICS 45

(4.2.1)

PercFileImpr = (PercContraFiles(n)−PercContraFiles(0))/PercContraFiles(0)

Next the percentage of all contraband nodes that had been discovered by any probe

was determined. More important than discovering all contraband files, is being able to

find all nodes sharing contraband. If the supply of contraband material can be significantly

reduced, then queries for the data will stop returning results. Only 69 of the 50,000 nodes

on the network contained any contraband content. As with the second metric, the fourth

metric gives insight into how quickly the technique can improve results by measuring the

increase in contraband nodes found during the run. The fourth metric was calculated using

the following formula:

(4.2.2)

PercNodeImpr = (PercContraNodes(n)−PercContraNodes(0))/PercContraNodes(0)

The fifth and sixth metrics are very similar as they represent the average distance be-

tween the probes and contraband nodes. The fifth metric measures the average distance

from each probe to all contraband nodes in the network. Di jkstraDist(p,c) is the dis-

tance calculated by Dijkstra’s algorithm in hops between probe p and contraband node c.

TotalContrabandNodes is the total number of contraband nodes in the network. TotalReachableContrabandNodes

is the total number of contraband nodes that are less than the query TTL value in hops from

a probe.

(4.2.3) averDistToContra(q) = ∑
p

Di jkstraDist(p,c)/TotalContrabandNodes

4.3. GNUTELLA V0.4 TOPOLOGY 46

(4.2.4)

averDistToReachContra(q) = ∑
p

Di jkstraDist(p,c)/TotalReachableContrabandNodes

The overall goal is to try to move the probes closer to as many contraband nodes as possible.

The sixth metric measures the average distance from each probe to all reachable contraband

nodes. “Reachable” simply means that the contraband nodes are close enough to be queried

from the probe based on the input TTL values. Shorter distances to known contraband

nodes could increase the likelihood that queries for contraband in addition to replies to

incoming queries could be seen by surrounding probes.

4.3. Gnutella v0.4 Topology

4.3.1. Contraband Content Discovered. The content distributed in the simulated net-

work had 0.547% contraband. This is actually significantly less than what was reported on

real networks [5, 15]. However this should not impact our results, as file searches for con-

traband assumed that all results from contraband queries were in fact contraband. Other

files on the network were generally ignored by the queries. It would be possible to generate

keywords that could return both types of files in the simulation, but this was neglected as

it provided no additional value in assessing the quality of the algorithms. In a real client,

the downloaded content would have to be verified as contraband. There are some known

methods for doing this verification [18].

The file distribution also designated six types of contraband files that could be uniquely

identified by a keyword. The search of the network used four of the keywords as queries.

The four keywords that were used in the experiments were BAD, AWFUL, HORRID and

MALICIOUS. Table 1 lists all six keywords and their frequency relative to all contraband

files.

4.3. GNUTELLA V0.4 TOPOLOGY 47

Keyword % Distribution
BAD 40%
TERRIBLE 30%
AWFUL 20%
HORRID 5%
WORST 3%
MALICIOUS 2%

TABLE 1. Contraband keywords with their frequency in the network

Figure 2 and 3 show the results on the Gnutella v0.4 topology for each algorithm

against 50 and 100 probes respectively. Random searching (Algorithm 4) with 50 probes

only returned an average of 46.97% of all contraband content across all runs with a stan-

dard deviation of 5.82%. Just from visual inspection, the “Increased Random” approach

(Algorithm 5), appears to be performing better with averages ranging from 60.98% up to

61.96%. Doubling the number of probes did not yield better results with the “Increased

Random” having averages between 65.68% and 66.00%. Figure 9 and 10 indicate the

overall improvement resulting from each algorithm from the start of the experiment until

the end.

Algorithm Figure Label
4 Random
5 IncRand
6 IncTarg

TABLE 2. Algorithm’s label in the figures 2-5, 7-10, and 16-27

4.3. GNUTELLA V0.4 TOPOLOGY 48

FIGURE 2. Percent Contraband Files discovered using 50 probes in v0.4 network

FIGURE 3. Percent Contraband Files discovered using 100 probes in v0.4 network

4.3. GNUTELLA V0.4 TOPOLOGY 49

FIGURE 4. Percent Improvement in Contraband Files queriable using 50
probes in v0.4 network

FIGURE 5. Percent Improvement in Contraband Files queriable using 100
probes in v0.4 network

4.3.2. Contraband Nodes Discovered. Metrics 3 and 4 (Figures 7 through 10) will

generally be of greater interest, as identifying all nodes sharing contraband is more impor-

tant than simply finding all possible contraband content. As one can see from Figures 7 and

4.3. GNUTELLA V0.4 TOPOLOGY 50

8, Algorithm 5 or “Increased Random” searching produced the best results in the Gnutella

v0.4 topology. Looking at the edge frequency in the Gnutella v0.4 network (Figure 6), one

can see that most nodes have a nearly equal number of edges, and thus each node is roughly

equivalent. Thus Algorithm 5, random exploration, will provide a greater chance to find a

node outside a locally formed neighborhood than Algorithm 6, targeted searching.

FIGURE 6. Edge number distribution for simulated Gnutella v0.4 network

4.3. GNUTELLA V0.4 TOPOLOGY 51

FIGURE 7. Percent Contraband Nodes discovered using 50 probes in v0.4 network

FIGURE 8. Percent Contraband Nodes discovered using 100 probes in v0.4 network

4.3. GNUTELLA V0.4 TOPOLOGY 52

FIGURE 9. Percent Improvement in Contraband Nodes reachable using 50
probes in v0.4 network

FIGURE 10. Percent Improvement in Contraband Nodes reachable using
100 probes in v0.4 network

4.3.3. Distance to Contraband. Both algorithms for each α value appeared to have

similar success in shrinking the average distance from probes to contraband. Assuming

that network nodes are not programmed to ignore increased TTL values, this information

4.3. GNUTELLA V0.4 TOPOLOGY 53

could be used for greater exploration by being able to increase the TTL used for queries by

a small amount, and thereby reach additional contraband nodes.

FIGURE 11. Average distance to all contraband nodes using 50 probes in
v0.4 network

FIGURE 12. Average distance to all contraband nodes using 100 probes in
v0.4 network

4.3. GNUTELLA V0.4 TOPOLOGY 54

FIGURE 13. Average distance to reachable contraband nodes using 50
probes in v0.4 network

FIGURE 14. Average distance to reachable contraband nodes using 100
probes in v0.4 network

4.3.4. Statistical Analysis. A t-test was employed to test the null hypothesis that the

algorithms do not improve node positioning appreciably better than a random search. First

4.3. GNUTELLA V0.4 TOPOLOGY 55

that test requires the calculation of the t-statistic in 4.3.1 [20] where Xi is the ith sample

mean, si is the ith sample standard deviation, and Ni is the ith sample size. The two samples

are the results generated by the base algorithm and tested algorithm.

(4.3.1) t = (X1 −X2)/
√

s2
1/N1 + s2

2/N2

TABLE 3. t-statistic for Gnutella v0.4 and 50 probes

TABLE 4. t-statistic for Gnutella v0.4 and 100 probes

In addition, the test requires that the degrees of freedom for each sample must be cal-

culated using Equation 4.3.2. Tables 5 and 6 show the results of this calculation for each

set.

(4.3.2) v = (s2
1/N1 + s2

2/N2)
2/((s4

1/(N
2
1 − (N1 −1)))+(s4

2/(N
2
2 − (N2 −1)))

4.3. GNUTELLA V0.4 TOPOLOGY 56

TABLE 5. Degrees of freedom for Gnutella v0.4 and 50 probes

TABLE 6. Degrees of freedom for Gnutella v0.4 and 100 probes

Once the t-statistic and degrees of freedom for each sample have been determined, a

t-distribution is used to find the one-tailed p-value. A low p-value indicates that there is

a low probability that the null hypothesis is true and thus that the algorithms do in fact

improve node position for obtaining query results. The threshold for rejecting the null

hypothesis was set at 0.05 which is a typical value when evaluating surveys with a low

sample population. In Tables 7 and 8, the green highlight indicates those results that can

confidently be said to be significantly better than random search (i.e. p-value < 0.05).

4.4. GNUTELLA V0.6 TOPOLOGY 57

TABLE 7. p-value of the t-test for Gnutella v0.4 and 50 probes. Highlighted
values indicated results that are significantly better than random searching
for that technique and metric.

TABLE 8. p-value of the t-test for Gnutella v0.4 and 100 probes. High-
lighted values indicated results that are significantly better than random
searching for that technique and metric.

4.4. Gnutella v0.6 Topology

The objective with these results was to check that the results on the Gnutella v0.4

network were still valid when applied to a more structured and modern network, where

some nodes are more highly connected than others. Thus the difference in the network can

be seen in the edge degree frequency for nodes in the network.

4.4.1. Contraband Content Discovered. The same file distribution and queries used

in the Gnutella v0.4 network were used again on the new topology. The overall contraband

nodes and content found on the network were reduced for each approach to querying. Ran-

dom searching with 50 probes dropped from an average of 47.0% contraband files found in

the v0.4 network to 35.7% contraband content found in the v0.6 network. The structured

4.4. GNUTELLA V0.6 TOPOLOGY 58

FIGURE 15. Edge number distribution for simulated Gnutella v0.6 network

networks in v0.6 were supposed to make the network more scalable and increase the avail-

ability of popular content. It could be inferred from these results that content falling below

a certain threshold may have become harder to find in the structured network. However

there were no surveys found that support that conclusion regarding the move to v0.6 of

the protocol. The reduced amount of contraband found when doing random search gives

greater opportunity for the algorithms to improve the results of queries.

4.4. GNUTELLA V0.6 TOPOLOGY 59

FIGURE 16. Percent Contraband Files discovered using 50 probes in a v0.6 network

FIGURE 17. Percent Contraband Files discovered using 100 probes in a
v0.6 network

4.4. GNUTELLA V0.6 TOPOLOGY 60

FIGURE 18. Percent Improvement in Contraband Files queriable using 50
probes in a v0.6 network

FIGURE 19. Percent Improvement in Contraband Files queriable using 100
probes in v0.6 network

4.4.2. Contraband Nodes Discovered. For contraband nodes, there was a correspond-

ing drop in percentage of nodes found in the v0.6 network versus the v0.4 network. When

4.4. GNUTELLA V0.6 TOPOLOGY 61

searching randomly with 50 probes, the percent of contraband nodes discovered dropped to

48.0%, down from 64.2%. The number of probes in the v0.6 network therefore had a much

greater impact on the number of contraband nodes found compared to the v0.4 network.

There was approximately a 38% increase in the number of nodes found randomly searching

using 100 probes versus 50 in the v0.6 network compared to only 26% increase in the v0.4

network.

FIGURE 20. Percent Contraband Nodes discovered using 50 probes in v0.6 network

4.4. GNUTELLA V0.6 TOPOLOGY 62

FIGURE 21. Percent Contraband Nodes discovered using 100 probes in
v0.6 network

FIGURE 22. Percent Improvement in Contraband Nodes queriable using 50
probes in v0.6 network

4.4. GNUTELLA V0.6 TOPOLOGY 63

FIGURE 23. Percent Improvement in Contraband Nodes queriable using
100 probes in v0.6 network

4.4.3. Distance to Contraband. As shown in Figures 24 and 25 distance to contra-

band in the v0.6 network also increased, which can be attributed to most nodes having to

work through a smaller number of super nodes in order to get access to the entire network.

Even after improving overall position, the average distance to contraband nodes did not

drop significantly compared to random searching.

4.4. GNUTELLA V0.6 TOPOLOGY 64

FIGURE 24. Average distance to all contraband nodes using 50 probes in
v0.6 network

FIGURE 25. Average distance to all contraband nodes using 100 probes in
v0.6 network

4.4. GNUTELLA V0.6 TOPOLOGY 65

FIGURE 26. Average distance to reachable contraband nodes using 50
probes in v0.6 network

FIGURE 27. Average distance to reachable contraband nodes using 100
probes in v0.6 network

4.4.4. Statistical Analysis. The results of the t-test for the v0.6 network as was done

for v0.4 network is shown in Tables 4.4.4-14. Again the green highlighted p-values are

4.4. GNUTELLA V0.6 TOPOLOGY 66

those that validate the significance of the improvements and disprove the null hypothesis

(p-value < 0.05).

TABLE 9. t-statistic for Gnutella v0.6 and 50 probes

TABLE 10. t-statistic for Gnutella v0.6 and 100 probes

TABLE 11. Degrees of freedom for Gnutella v0.6 and 50 probes

4.4. GNUTELLA V0.6 TOPOLOGY 67

TABLE 12. Degrees of freedom for Gnutella v0.6 and 100 probes

TABLE 13. p-value for t-test for Gnutella v0.6 and 50 probes. Highlighted
values indicated results that are significantly better than random searching
for that technique and metric.

TABLE 14. p-value for t-test for Gnutella v0.6 and 100 probes. Highlighted
values indicated results that are significantly better than random searching
for that technique and metric.

CHAPTER 5

Conclusions

In this Chapter, the results will be distilled into a succinct conclusion based on the

analysis of the experiment detailed in Chapter 4. Also some of the limits of the analysis

and techniques evaluated will be reviewed with some recommendations of how one might

want to proceed if these initial results proved promising.

5.1. Summary

The results showed that the v0.6 network is ripe for techniques that would improve

query results by modifying connections based on user queries. Both Alogrithm 5 and 6

gave across-the-board improvements in query results for each quality metric compared to

random searching. These techniques deployed to a sufficient percentage of overall network

nodes could be used by law enforcement to significantly increase their ability to identify

users sharing illicit content. The α values tested appeared to have little influence on the

results given the universal improvement compared to random searching.

The v0.4 network however appears to require more exploratory approaches to improv-

ing query results as the targeted exploration approach did not appear to significantly im-

prove query results returned or nodes found compared to random searching. However, the

increased random exploration improved results for all input parameters evaluated. There

seems to be some advantage for the targeted search technique using an α value of 1.0 and

0.8 as these found additional results more reliably when 0.1% of the network consisted of

probes. However in the v0.4 network when 0.2% of the network was set up as probes that

search for contraband, there was no advantage for the targeted technique at any tested value

of α .
68

5.3. RECOMMENDATIONS 69

5.2. Limitations

One of the greatest limitations of the analysis presented in this thesis happens to be

one of the strongest advantages of peer-to-peer networks. In particular, the highly dynamic

nature of the network makes it difficult to know if the simulated network was representative

of a real world scenario. From the cited surveys [7, 8] one can see just how varied the

Gnutella network has been over a few days to a few years. Another limiting factor is

how accurate the estimate used for the prevalence of contraband files on the network. If

either of these assumptions proved significantly inaccurate then much of the results could

be discounted.

5.3. Recommendations

There are numerous areas where additional techniques could be applied to improve

results. Some heuristics applied to the Ramanathan update equations, or used to control

network exploration could improve results or decrease the resources needed to explore the

network. In addition scaling up the network simulation or implementing a real client would

be logical next steps in evaluating these techniques.

When implementing the Ramanathan formulas, it became obvious that a simulated an-

nealing technique applied to the α and β values could be used to let a probe explore more

broadly at first and then settle into a more stable neighborhood after a certain time. A sim-

ilar method could also be applied to the constant 50% chance to increase exploration and

replace nodes that have currently returned zero relevant results. This again would allow

for increased exploration at appropriate stages of the search and allow for a stable set of

connections after certain criteria were met.

Also, there is some data [7, 8] on the Gnutella network that would help to validate

whether the networks tested would indeed be representative of real networks. There was

no data found that quantified the number of nodes in the network that left connections

open for new nodes in the network. It could be that in the v0.6 network only super nodes

keep open connections and that leaf nodes regularly fill all connections at start-up. This

5.3. RECOMMENDATIONS 70

would tend to diminish the ability to use a random exploration technique as only super

nodes would ever accept new connections, potentially leaving some parts of the network

unexplorable. In fact, while testing a small client in the Limewire network, only other super

nodes tended to ever accept new connection requests. However this experience would need

to be validated by a survey of the network.

APPENDIX 1

DROP VIEW IF EXISTS v r e p l i e s ;

DROP VIEW IF EXISTS v q u e r y _ s o u r c e s ;

DROP VIEW IF EXISTS v n o d e _ r e a c h a b i l i t y ;

DROP VIEW IF EXISTS v n o d e _ i m p o r t a n c e ;

DROP VIEW IF EXISTS v n o d e _ c o n n e c t i o n s ;

DROP VIEW IF EXISTS v q u e r i e s _ s e n t ;

DROP VIEW IF EXISTS v q u e r i e s _ r e c e i v e d ;

DROP TABLE IF EXISTS t r e s u l t _ s o u r c e s ;

DROP TABLE IF EXISTS t r e s u l t s ;

DROP TABLE IF EXISTS t r e p l y _ l o c a t i o n s ;

DROP TABLE IF EXISTS t r e p l i e s ;

DROP TABLE IF EXISTS t q u e r y _ s o u r c e s ;

DROP TABLE IF EXISTS t n o d e _ r e a c h a b i l i t y ;

DROP TABLE IF EXISTS t n o d e _ i m p o r t a n c e ;

DROP TABLE IF EXISTS t n o d e _ c o n n e c t i o n s ;

DROP TABLE IF EXISTS t n o d e _ p r o x i e s ;

DROP TABLE IF EXISTS t n o d e s ;

DROP TABLE IF EXISTS t q u e r i e s ;

DROP TABLE IF EXISTS t e x p e r i m e n t s ;

CREATE TABLE t e x p e r i m e n t s

(

ex p_ id INTEGER (8) NOT NULL AUTO_INCREMENT

, d e s c r i p t i o n VARCHAR(5 1 2)

, c r e a t e d TIMESTAMP DEFAULT CURRENT_TIMESTAMP

,CONSTRAINT pk_exp_ id PRIMARY KEY (ex p_ id)

) ;

CREATE TABLE t q u e r i e s

(

71

APPENDIX 1 72

q u e r y _ i d INTEGER(1 6) AUTO_INCREMENT

, e xp_ id INTEGER (8) NOT NULL

, q u e r y _ g u i d VARCHAR(1 2 8) NOT NULL

, que ry VARCHAR(1 0 2 4) NOT NULL

, incoming INTEGER (1) NOT NULL DEFAULT 0

, c r e a t e d TIMESTAMP DEFAULT CURRENT_TIMESTAMP

,CONSTRAINT p k _ q u e r y _ i d PRIMARY KEY (q u e r y _ i d)

,CONSTRAINT q u e r i e s _ f k _ e x p FOREIGN KEY (ex p_ id) REFERENCES t e x p e r i m e n t s (e xp_ id)

,CONSTRAINT i ncoming_check CHECK (incoming = 0 OR incoming = 1)

) ;

CREATE TABLE t n o d e s

(

node_ id INTEGER(1 6) AUTO_INCREMENT

, e xp_ id INTEGER (8) NOT NULL

, i p _ a d d r e s s VARCHAR(3 2) NOT NULL

, p o r t INTEGER (8) NOT NULL

, c r e a t e d TIMESTAMP DEFAULT CURRENT_TIMESTAMP

,CONSTRAINT pk_node_ id PRIMARY KEY (node_ id)

,CONSTRAINT nodes_ fk_exp FOREIGN KEY (ex p_ id) REFERENCES t e x p e r i m e n t s (e xp_ id)

,CONSTRAINT u n i q _ e x p _ i p _ p o r t UNIQUE (exp_id , i p _ a d d r e s s , p o r t)

) ;

CREATE TABLE t n o d e _ p r o x i e s

(

node_ id INTEGER(1 6) NOT NULL

, p r x _ n o d e _ i d INTEGER(1 6) NOT NULL

, c r e a t e d TIMESTAMP DEFAULT CURRENT_TIMESTAMP

,CONSTRAINT n o d e _ p r o x i e s _ f k _ n o d e s 1 FOREIGN KEY (node_ id) REFERENCES t n o d e s (node_ id)

,CONSTRAINT n o d e _ p r o x i e s _ f k _ n o d e s 2 FOREIGN KEY (p r x _ n o d e _ i d) REFERENCES t n o d e s (node_ id)

,CONSTRAINT u n i q _ i d _ i p _ p o r t UNIQUE (node_id , p r x _ n o d e _ i d)

) ;

CREATE TABLE t n o d e _ c o n n e c t i o n s

(

node_ id1 INTEGER(1 6) NOT NULL

, node_ id2 INTEGER(1 6) NOT NULL

APPENDIX 1 73

,CONSTRAINT node_conns_ fk_nodes1 FOREIGN KEY (node_ id1) REFERENCES t n o d e s (node_ id)

,CONSTRAINT node_conns_ fk_nodes2 FOREIGN KEY (node_ id2) REFERENCES t n o d e s (node_ id)

,CONSTRAINT u n i q _ c o n n _ i d 1 _ i d 2 UNIQUE (node_id1 , node_ id2)

) ;

CREATE TABLE t n o d e _ i m p o r t a n c e

(

node_ id1 INTEGER(1 6) NOT NULL

, node_ id2 INTEGER(1 6) NOT NULL

, q u e r y _ i d INTEGER(1 6) NOT NULL

, i m p o r t a n c e FLOAT(1 6 , 1 4) NOT NULL

, ave r_n_hops FLOAT(6 , 4) NOT NULL

, p e r c _ h i t s FLOAT(8 , 6) NOT NULL

, t o t a l _ h i t s INTEGER (6) NOT NULL

,CONSTRAINT node_imp_fk_nodes1 FOREIGN KEY (node_ id1) REFERENCES t n o d e s (node_ id)

,CONSTRAINT node_imp_fk_nodes2 FOREIGN KEY (node_ id2) REFERENCES t n o d e s (node_ id)

,CONSTRAINT n o d e _ i m p _ f k _ q u e r i e s FOREIGN KEY (q u e r y _ i d) REFERENCES t q u e r i e s (q u e r y _ i d)

,CONSTRAINT u n i q _ i m p _ n o d e _ i d 1 _ 2 _ q u e r y _ i d UNIQUE (node_id1 , node_id2 , q u e r y _ i d)

) ;

CREATE TABLE t n o d e _ r e a c h a b i l i t y

(

node_ id1 INTEGER(1 6) NOT NULL

, node_ id2 INTEGER(1 6) NOT NULL

, d i s t a n c e INTEGER (3) NOT NULL

,CONSTRAINT n o d e s _ o f _ i n t e r e s t _ f k _ n o d e s 1 FOREIGN KEY (node_ id1) REFERENCES t n o d e s (node_ id)

,CONSTRAINT n o d e s _ o f _ i n t e r e s t _ f k _ n o d e s 2 FOREIGN KEY (node_ id2) REFERENCES t n o d e s (node_ id)

) ;

CREATE TABLE t q u e r y _ s o u r c e s

(

q u e r y _ i d INTEGER(1 6) NOT NULL

, node_ id INTEGER(1 6) NOT NULL

,CREATED TIMESTAMP DEFAULT CURRENT_TIMESTAMP

,CONSTRAINT q u e r y _ s o u r c e s _ f k _ q u e r i e s FOREIGN KEY (q u e r y _ i d) REFERENCES t q u e r i e s (q u e r y _ i d)

,CONSTRAINT q u e r y _ s o u r c e s _ f k _ n o d e s FOREIGN KEY (node_ id) REFERENCES t n o d e s (node_ id)

) ;

APPENDIX 1 74

CREATE TABLE t r e p l i e s (

r e p l y _ i d INTEGER(2 4) AUTO_INCREMENT

, q u e r y _ i d INTEGER(1 6) NOT NULL

, n o d e _ i d _ t o INTEGER(1 6) NOT NULL

, node_ id_f rm INTEGER(1 6) NOT NULL

, n o d e _ i d _ t h r u INTEGER(1 6) NOT NULL

, r e p l y _ g u i d VARCHAR(1 2 8) NOT NULL

, i s _ p u s h INTEGER (1) NOT NULL

, vendor VARCHAR(6 4)

, hops INTEGER (2)

, t t l INTEGER (2)

, f i l e _ n a m e VARCHAR(4 0 9 6)

, c r e a t e d TIMESTAMP DEFAULT CURRENT_TIMESTAMP

,CONSTRAINT p k _ r e p l y _ i d PRIMARY KEY (r e p l y _ i d)

,CONSTRAINT r e p l i e s _ f k _ q u e r i e s FOREIGN KEY (q u e r y _ i d) REFERENCES t q u e r i e s (q u e r y _ i d)

,CONSTRAINT r e p l i e s _ t o _ f k _ n o d e s FOREIGN KEY (n o d e _ i d _ t o) REFERENCES t n o d e s (node_ id)

,CONSTRAINT r e p l i e s _ f r m _ f k _ n o d e s FOREIGN KEY (node_ id_f rm) REFERENCES t n o d e s (node_ id)

,CONSTRAINT r e p l i e s _ t h r u _ f k _ n o d e s FOREIGN KEY (n o d e _ i d _ t h r u) REFERENCES t n o d e s (node_ id)

,CONSTRAINT i s _ p u s h _ c h e c k CHECK (i s _ p u s h IN (−1 , 0 , 1))

,CONSTRAINT hops_check CHECK (hops > 0)

,CONSTRAINT t t l _ c h e c k CHECK (t t l > 0)

) ;

CREATE TABLE t r e p l y _ l o c a t i o n s

(

r e p l y _ i d INTEGER(2 4) NOT NULL

, node_ id INTEGER(1 6) NOT NULL

, c r e a t e d TIMESTAMP DEFAULT CURRENT_TIMESTAMP

,CONSTRAINT r e p l y _ l o c a t i o n s _ f k _ r e p l i e s FOREIGN KEY (r e p l y _ i d) REFERENCES t r e p l i e s (r e p l y _ i d)

,CONSTRAINT r e p l y _ l o c a t i o n s _ f k _ n o d e s FOREIGN KEY (node_ id) REFERENCES t n o d e s (node_ id)

,CONSTRAINT u n i q _ i d _ i p _ p o r t UNIQUE (r e p l y _ i d , node_ id)

) ;

CREATE TABLE t r e s u l t s

(

r e s u l t _ i d INTEGER(2 0) AUTO_INCREMENT

APPENDIX 1 75

, q u e r y _ i d INTEGER(1 6) NOT NULL

, f i l e _ n a m e VARCHAR(4 0 9 6)

, f i l e _ d a t a LONGBLOB

, c r e a t e d TIMESTAMP DEFAULT CURRENT_TIMESTAMP

,CONSTRAINT p k _ r e s u l t _ i d PRIMARY KEY (r e s u l t _ i d)

,CONSTRAINT r e s u l t _ f k _ q u e r i e s FOREIGN KEY (q u e r y _ i d) REFERENCES t q u e r i e s (q u e r y _ i d)

) ENGINE=InnoDB ;

CREATE TABLE t r e s u l t _ s o u r c e s

(

r e s u l t _ i d INTEGER(2 0) NOT NULL

, node_ id INTEGER(1 6) NOT NULL

,CONSTRAINT r e s u l t _ s o u r c e s _ f k _ r e s u l t s FOREIGN KEY (r e s u l t _ i d) REFERENCES t r e s u l t s (r e s u l t _ i d)

,CONSTRAINT r e s u l t _ s o u r c e s _ f k _ n o d e s FOREIGN KEY (node_ id) REFERENCES t n o d e s (node_ id)

) ;

CREATE VIEW v q u e r i e s _ s e n t AS

SELECT q u e r y _ i d

, ex p_ id

, q u e r y _ g u i d

, que ry

, c r e a t e d

FROM t q u e r i e s

WHERE incoming = 0 ;

CREATE VIEW v q u e r i e s _ r e c e i v e d AS

SELECT q u e r y _ i d

, ex p_ id

, q u e r y _ g u i d

, que ry

, c r e a t e d

FROM t q u e r i e s

WHERE incoming = 1 ;

CREATE VIEW v n o d e _ c o n n e c t i o n s AS

SELECT n1 . i p _ a d d r e s s i p _ a d d r e s s

, n1 . p o r t p o r t

, n2 . i p _ a d d r e s s p e e r _ i p _ a d d r e s s

APPENDIX 1 76

, n2 . p o r t p e e r _ p o r t

, e . d e s c r i p t i o n

, n1 . e xp_ id

, c . node_ id1 node_ id

, c . node_ id2 p e e r _ n o d e _ i d

FROM t n o d e _ c o n n e c t i o n s c

INNER JOIN t n o d e s n1

ON n1 . node_ id = c . node_ id1

INNER JOIN t n o d e s n2

ON n2 . node_ id = c . node_ id2

INNER JOIN t e x p e r i m e n t s e

ON e . e xp _ i d = n1 . e xp _ i d

WHERE n1 . ex p_ id = n2 . ex p_ id ;

CREATE VIEW v n o d e _ i m p o r t a n c e AS

SELECT n1 . i p _ a d d r e s s i p _ a d d r e s s

, n1 . p o r t p o r t

, n2 . i p _ a d d r e s s p e e r _ i p _ a d d r e s s

, n2 . p o r t p e e r _ p o r t

, i . i m p o r t a n c e

, i . ave r_n_hops

, i . p e r c _ h i t s

, i . t o t a l _ h i t s

, e . d e s c r i p t i o n

, n1 . ex p_ id

, i . q u e r y _ i d

, i . node_ id1 node_ id

, i . node_ id2 p e e r _ n o d e _ i d

FROM t n o d e _ i m p o r t a n c e i

INNER JOIN t n o d e s n1

ON n1 . node_ id = i . node_ id1

INNER JOIN t n o d e s n2

ON n2 . node_ id = i . node_ id2

INNER JOIN t e x p e r i m e n t s e

ON e . e xp _ i d = n1 . e xp _ i d

APPENDIX 1 77

WHERE n1 . ex p_ id = n2 . ex p_ id ;

CREATE VIEW v n o d e _ r e a c h a b i l i t y AS

SELECT n1 . i p _ a d d r e s s i p _ a d d r e s s

, n1 . p o r t p o r t

, n2 . i p _ a d d r e s s p e e r _ i p _ a d d r e s s

, n2 . p o r t p e e r _ p o r t

, r . d i s t a n c e

, e . d e s c r i p t i o n

, n1 . ex p_ id

, r . node_ id1 node_ id

, r . node_ id2 p e e r _ n o d e _ i d

FROM t n o d e _ r e a c h a b i l i t y r

INNER JOIN t n o d e s n1

ON n1 . node_ id = r . node_ id1

INNER JOIN t n o d e s n2

ON n2 . node_ id = r . node_ id2

INNER JOIN t e x p e r i m e n t s e

ON e . e xp _ i d = n1 . e xp _ i d

WHERE n1 . ex p_ id = n2 . ex p_ id ;

CREATE VIEW v q u e r y _ s o u r c e s AS

SELECT s . q u e r y _ i d

, s . node_ id

, s . c r e a t e d

, n . ex p_ id

, n . i p _ a d d r e s s

, n . p o r t

, q . q u e r y _ g u i d

, q . que ry

FROM t q u e r y _ s o u r c e s s

INNER JOIN t n o d e s n

ON n . node_ id = s . node_ id

INNER JOIN t q u e r i e s q

ON q . q u e r y _ i d = s . q u e r y _ i d ;

CREATE VIEW v r e p l i e s AS

APPENDIX 1 78

SELECT r . r e p l y _ i d

, r . q u e r y _ i d

, r . n o d e _ i d _ t o

, r . node_ id_f rm

, r . n o d e _ i d _ t h r u

, r . r e p l y _ g u i d

, r . i s _ p u s h

, r . vendor

, r . hops

, r . t t l

, r . f i l e _ n a m e

, r . c r e a t e d

, q . e xp_ id

, q . q u e r y _ g u i d

, q . que ry

, q . incoming

, n1 . i p _ a d d r e s s t o _ i p _ a d d r e s s

, n1 . p o r t t o _ p o r t

, n2 . i p _ a d d r e s s f r m _ i p _ a d d r e s s

, n2 . p o r t f r m _ p o r t

, n3 . i p _ a d d r e s s t h r u _ i p _ a d d r e s s

, n3 . p o r t t h r u _ p o r t

FROM t r e p l i e s r

INNER JOIN t q u e r i e s q

ON q . q u e r y _ i d = r . q u e r y _ i d

INNER JOIN t n o d e s n1

ON n1 . node_ id = r . n o d e _ i d _ t o

INNER JOIN t n o d e s n2

ON n2 . node_ id = r . node_ id_f rm

INNER JOIN t n o d e s n3

ON n3 . node_ id = r . n o d e _ i d _ t h r u ;

APPENDIX 2

import random

def b a r a b a s i _ r a n d o m _ g r a p h (num_nodes

, min_edges_per_node

, max_edges_per_node) : ’ ’ ’ G e n e r a t e s B a r a b a s i random graph ’ ’ ’

r e p e a t e d _ n o d e s = []

G = {}

t a r g e t s = []

f o r i in r a n g e (0 , num_nodes) :

G[s t r (i)] = {}

f o r i in r a n g e (0 , min_edges_per_node) :

t a r g e t s . append (s t r (i))

s o u r c e = min_edges_per_node

whi le s o u r c e < num_nodes :

f o r x in t a r g e t s :

G[x] [s t r (s o u r c e)] = 1

G[s t r (s o u r c e)] [x] = 1

p r i n t (x , " " , s t r (s o u r c e))

r e p e a t e d _ n o d e s . e x t e n d (t a r g e t s)

r e p e a t e d _ n o d e s . e x t e n d ([s t r (s o u r c e)] ∗ min_edges_per_node)

t a r g e t s = s e t ()

whi le l e n (t a r g e t s) < min_edges_per_node :

x = random . c h o i c e (r e p e a t e d _ n o d e s)

i f (l e n (G[x]) < max_edges_per_node) :

t a r g e t s . add (x)

79

APPENDIX 2 80

s o u r c e += 1

re turn G

APPENDIX 3

import random

def b a r a b a s i _ r a n d o m _ g r a p h (num_nodes \

, min_edges_per_node \

, m a x _ e d g e s _ p e r _ l e a f \

, m a x _ e d g e s _ p e r _ u l t r a \

, p e r c e n t _ u l t r a \

, p e r c e n t _ u l t r a _ t o _ u l t r a) :

’ ’ ’ G e n e r a t e s G n u t e l l a graph w i t h s u p e r nodes and \

l e a v e s u s i n g B a ra b a s i d i s t r i b u t i o n f o r each ’ ’ ’

r e p e a t e d _ n o d e s = []

r e p e a t e d _ u l t r a = []

t a r g e t s = s e t ()

G = {}

Parameter v a l i d a t i o n . D i s a l l o w bad v a l u e s

i f (m a x _ e d g e s _ p e r _ l e a f > m a x _ e d g e s _ p e r _ u l t r a) :

m a x _ e d g e s _ p e r _ u l t r a = m a x _ e d g e s _ p e r _ l e a f

i f (p e r c e n t _ u l t r a >= 1 . 0) :

p e r c e n t _ u l t r a = 0 . 0

i f (p e r c e n t _ u l t r a _ t o _ u l t r a >= 1 . 0) :

p e r c e n t _ u l t r a _ t o _ u l t r a = 0 . 5

m i n _ e d g e s _ p e r _ u l t r a = m a x _ e d g e s _ p e r _ l e a f + 1

S e l e c t u l t r a nodes based on p e r c e n t o f ne twork

t h a t i s supposed t o be u l t r a p e e r s (p e r c e n t _ u l t r a)

u l t r a _ n o d e s = s e t ()

whi le (((l e n (u l t r a _ n o d e s) + 1) / num_nodes) < p e r c e n t _ u l t r a) :

n e w _ u l t r a = random . r a n d i n t (0 , num_nodes −1)

81

APPENDIX 3 82

i f (n e w _ u l t r a not in u l t r a _ n o d e s) :

u l t r a _ n o d e s . add (i n t (n e w _ u l t r a))

r e p e a t e d _ u l t r a . e x t e n d ([i n t (n e w _ u l t r a)]) ;

I n i t i a l i z e G and p u t min_edges_per_node

edges i n f o r each node i n t h e ne twork

Do n o t i n c l u d e u l t r a nodes i n r e p e a t e d _ n o d e s

as t h e y are p o p u l a t e d p r e v i o u s l y i n r e p e a t e d _ u l t r a

f o r i in r a n g e (0 , num_nodes) :

G[i n t (i)] = {}

i f (i not in u l t r a _ n o d e s) :

r e p e a t e d _ n o d e s . e x t e n d ([i n t (i)])

S t a r t p r o c e s s i n g a t node 0

s o u r c e = 0

whi le s o u r c e < num_nodes :

t a r g e t s = s e t ()

g e t c u r r e n t number o f edges f o r s o u r c e node

c u r r _ l e n _ s r c = l e n (G[i n t (s o u r c e)])

S e t u p up edge l i m i t s based on whe ther

s o u r c e i s u l t r a peer or l e a f

i f (s o u r c e in u l t r a _ n o d e s) :

i s _ s r c _ s u p e r _ n o d e = 1

h a s _ s u p e r _ n o d e = 1

c u r r _ m i n _ e d g e s = m a x _ e d g e s _ p e r _ l e a f +1

cur r_max_edges = m a x _ e d g e s _ p e r _ u l t r a

e l s e :

i s _ s r c _ s u p e r _ n o d e = 0

h a s _ s u p e r _ n o d e = 0

c u r r _ m i n _ e d g e s = min_edges_per_node

cur r_max_edges = m a x _ e d g e s _ p e r _ l e a f

T e s t i f s o u r c e a l r e a d y has an u l t r a peer

f o r n in G[i n t (s o u r c e)] :

i f (n in u l t r a _ n o d e s) :

APPENDIX 3 83

h a s _ s u p e r _ n o d e = 1

break

S top loop i f c u r r _ l e n _ s r c g e t s t o max

C o n t in u e loop w h i l e l e s s than min edges w i t h random chance o f

add ing more up t o max t h a t d e c r e a s e s w i t h a d d i t i o n a l edges

whi le (c u r r _ l e n _ s r c < cur r_max_edges and \

(c u r r _ l e n _ s r c < c u r r _ m i n _ e d g e s or \

random . random () < \

(1 . 0 − (f l o a t (c u r r _ l e n _ s r c)) / f l o a t (cu r r_max_edges)))) :

new_edge = i n t (s o u r c e)

Loop u n t i l a v a l i d edge c a n d i d a t e i s found

whi le (i n t (new_edge) == i n t (s o u r c e) or \

s o u r c e in G[i n t (new_edge)] or \

new_edge in G[i n t (s o u r c e)] or \

new_edge in t a r g e t s) :

p e r c e n t _ u l t r a _ t o _ u l t r a i s t h e chance t h a t u l t r a

nodes w i l l c o n n e c t t o o t h e r u l t r a nodes

Need t o a v o i d f r a c t u r i n g

Give l e a f nodes w i t h s u p e r nodes a l r e a d y

a chance t o c o n n e c t t o m u l t i p l e s u p e r nodes based

on t h e c u r r e n t number o f c o n n e c t i o n s

i f i s _ s r c _ s u p e r _ n o d e == 1 and \

random . random () < p e r c e n t _ u l t r a _ t o _ u l t r a :

new_edge = random . c h o i c e (r e p e a t e d _ u l t r a)

e l i f h a s _ s u p e r _ n o d e == 0 or \

random . random () < (1 . 0 − \

(f l o a t (c u r r _ l e n _ s r c)) / f l o a t (m a x _ e d g e s _ p e r _ u l t r a)) :

new_edge = random . c h o i c e (r e p e a t e d _ u l t r a)

e l s e :

new_edge = random . c h o i c e (r e p e a t e d _ n o d e s)

i f new_edge in u l t r a _ n o d e s :

new_edge_min_edges = m a x _ e d g e s _ p e r _ l e a f +1

APPENDIX 3 84

new_edge_max_edges = m a x _ e d g e s _ p e r _ u l t r a

e l s e :

new_edge_min_edges = min_edges_per_node

new_edge_max_edges = m a x _ e d g e s _ p e r _ l e a f

i f (l e n (G[i n t (new_edge)]) < new_edge_max_edges) :

t a r g e t s . add (i n t (new_edge))

i f (h a s _ s u p e r _ n o d e == 0 and \

(new_edge in u l t r a _ n o d e s or s o u r c e in u l t r a _ n o d e s)) :

h a s _ s u p e r _ n o d e = 1

M a i n ta i n l i s t o f edges f o r s o u r c e edge added

i f (c u r r _ l e n _ s r c > 1) :

i f (i s _ s r c _ s u p e r _ n o d e == 1) :

r e p e a t e d _ u l t r a . e x t e n d ([i n t (s o u r c e)])

e l s e :

r e p e a t e d _ n o d e s . e x t e n d ([i n t (s o u r c e)])

M a i n ta i n l i s t o f edges f o r new_edge added

i f ((l e n (G[i n t (new_edge)]) + 1) > 1) :

i f (new_edge in u l t r a _ n o d e s) :

r e p e a t e d _ u l t r a . e x t e n d ([i n t (new_edge)])

e l s e :

r e p e a t e d _ n o d e s . e x t e n d ([i n t (new_edge)])

I n c r e m e n t l e n g t h o f s o u r c e

c u r r _ l e n _ s r c += 1

e l s e :

c o n t in u e

i f (c u r r _ l e n _ s r c >= cur r_max_edges) :

break

f o r x in t a r g e t s :

G[i n t (s o u r c e)] [i n t (x)] = 1

APPENDIX 3 85

G[i n t (x)] [i n t (s o u r c e)] = 1

s o u r c e += 1

P r i n t t h e o u t p u t

s o r t e d _ G = s o r t e d (G)

f o r f i r s t in s o r t e d _ G :

s o r t e d _ F i r s t = s o r t e d (G[i n t (f i r s t)])

f o r second in s o r t e d _ F i r s t :

i f (G[i n t (f i r s t)] [i n t (second)] == 1) :

p r i n t ("%6d %6d " % (i n t (f i r s t) , i n t (second)))

G[i n t (second)] [i n t (f i r s t)] = 0

G[i n t (f i r s t)] [i n t (second)] = 0

re turn G

APPENDIX 4

package edu . l o u i s v i l l e . c e c s . d a r e e s 0 1 ;

i m p o r t j a v a . i o . F i l e I n p u t S t r e a m ;

i m p o r t j a v a . i o . F i l e N o t F o u n d E x c e p t i o n ;

i m p o r t j a v a . i o . F i l e W r i t e r ;

i m p o r t j a v a . i o . IOExcep t i on ;

i m p o r t j a v a . u t i l . Date ;

i m p o r t j a v a . u t i l . P r o p e r t i e s ;

i m p o r t j a v a . u t i l . Random ;

i m p o r t j a v a . u t i l . V e c t o r ;

/∗∗

∗ C l a s s used t o g e n e r a t e a f i l e d i s t r i b u t i o n f o r a ne twork G e n e r a t e s f i l e s f o r

∗ a 50 ,000 node ne twork A s s i g n s 1−1000 f i l e s t o a node Each node has a 30%

∗ chance t o have f i l e s Each node t h a t has a f i l e has a 1% chance t o have

∗ c o n t r a b a n d (0.3% chance o f c o n t r a b a n d f o r a l l nodes) Con t r aband f i l e names

∗ a r e g e n e r a t e d from a d i s t r i b u t i o n o f keywords A node wi th c o n t r a b a n d has a

∗ 57% of ha v in g e x c l u s i v e l y c o n t r a b a n d f i l e s Nodes wi th a mix of c o n t r a b a n d and

∗ r e g u l a r f i l e s have a 0.45% c o n t r a b a n d f i l e s

∗

∗ I n p u t p a r a m e t e r s can o v e r w r i t e a l l v a l u e s , b u t t h e d e f a u l t s a r e as d e s c r i b e d

∗

∗

∗ @author Derek Reese

∗

∗ /

86

APPENDIX 4 87

p u b l i c c l a s s G e n e r a t e F i l e D i s t r i b u t i o n

{

p u b l i c enum A p p P r o p e r t i e s

{

FILE_DIST (" F i l e D i s t ") ,

CONTRABAND_KEYWORDS(

" ContrabandKeywords ") ,

NONCONTRABAND_KEYWORDS(

" NoncontrabandKeywords ") ,

CONTRABAND_KEY_DIST(

" Con t r abandKeyDis t ") ,

NONCONTRABAND_KEY_DIST(

" Noncon t rabandKeyDis t ") ,

NUM_PEERS(" NumPeers ") ,

MIN_FILES_PER_PEER (

" M i n F i l e s P e r P e e r ") ,

MAX_FILES_PER_PEER (

" M a x F i l e s P e r P e e r ") ,

CHANCE_NODE_HAS_CONTENT(

" ChanceNodeHasContent ") ,

CHANCE_NODE_HAS_CONTRABAND(

" ChanceNodeHasContraband ") ,

CHANCE_NODE_HAS_ALL_CONTRABAND(

" ChanceNodeHasAl lCont raband ") ,

PERCENT_CONTRA_FOR_MIX_NODE(

" Percen tCon t raForMixNode ") ;

p r i v a t e S t r i n g Ms_name ;

A p p P r o p e r t i e s (S t r i n g Ps_name)

{

Ms_name = Ps_name ;

}

APPENDIX 4 88

p u b l i c S t r i n g getName ()

{

r e t u r n Ms_name ;

}

}

p u b l i c G e n e r a t e F i l e D i s t r i b u t i o n ()

{

}

/∗∗

∗ S t a t i c f u n c t i o n used t o g e n e r a t e d i s t r u b t i o n D i s t r i b u t i o n i s w r i t t e n t o

∗ C : \ \ d a r \ \ s c h o o l \ \ t h e s i s \ \ g e n _ v e r t e x _ f i l e s . t x t

∗

∗ @param pAs_inparams

∗ /

p u b l i c s t a t i c vo id main (

S t r i n g [] PAs_args)

{

/ / Load p r o p e r t i e s from f i l e

P r o p e r t i e s o _ p r o p e r t i e s =

new P r o p e r t i e s () ;

i f (PAs_args . l e n g t h > 0)

{

t r y

{

F i l e I n p u t S t r e a m o _ p r o p _ i n =

new F i l e I n p u t S t r e a m (

PAs_args [0]) ;

o _ p r o p e r t i e s

. l o a d (o _ p r o p _ i n) ;

}

c a t c h (F i l e N o t F o u n d E x c e p t i o n Eo_fnf)

{

APPENDIX 4 89

System . o u t

. p r i n t l n (" P r o p e r t i e s f i l e does n o t e x i s t : "

+ PAs_args [0]) ;

}

c a t c h (IOExcep t ion Eo_io)

{

System . o u t

. p r i n t l n (" E r r o r open ing p r o p e r t i e s f i l e : "

+ Eo_io

. ge tMessage ()) ;

}

}

i n t i_num_nodes = 50000 , i _ m i n _ n u m _ f i l e s =

1 , i _max_num_f i l e s = 1000 , i _ n u m _ f i l e s _ f o r _ i =

0 , i _ t o t a l _ c o n t r a = 0 , i _ t o t a l _ n o n c o n t r a =

0 , i _ n o d e s _ w i t h _ f i l e s = 0 , i _ n o d e s _ w i t h _ c o n t r a =

0 ;

do ub l e d _ p e r c _ n o d e _ h a s _ f i l e s =

0 . 3 , d _ p e r c _ n o d e _ h a s _ c o n t r a =

0 . 0 1 , d _ p e r c _ n o d e _ h a s _ a l l _ c o n t r a =

. 5 7 , d _ p e r c _ c o n t r a _ f i l e s =

0 . 0 0 4 5 ;

b o o l e a n b _ i _ h a s _ c o n t r a = f a l s e , b _ o n l y _ c o n t r a _ f o r _ i =

f a l s e , b _ a s s i g n e d _ a _ c o n t r a _ f o r _ i =

f a l s e ;

S t r i n g s _ f i l e _ d i s t =

new S t r i n g (

"C : \ \ d a r \ \ s c h o o l \ \ t h e s i s \ \ g e n _ v e r t e x _ f i l e s . t x t ") , s _ c o n t r a _ k e y s =

new S t r i n g (

"BAD| TERRIBLE |AWFUL| HORRID |WORST| MALICIOUS ") , s _ n o n c o n t r a _ k e y s =

APPENDIX 4 90

new S t r i n g (

"GOOD| GREAT | NICE | EXCELLENT | SUPER | SPLENDID ") , s _ c o n t r a _ k e y _ d i s t =

new S t r i n g (

" 0 . 4 | 0 . 3 | 0 . 2 | 0 . 0 5 | 0 . 0 3 | 0 . 0 2 ") , s _ n o n c o n t r a _ k e y _ d i s t =

new S t r i n g (

" 0 . 3 | 0 . 2 | 0 . 2 | 0 . 1 | 0 . 1 | 0 . 1 ") ;

/ / Read p r o p e r t i e s

s _ f i l e _ d i s t =

o _ p r o p e r t i e s

. g e t P r o p e r t y (

A p p P r o p e r t i e s . FILE_DIST

. getName () ,

s _ f i l e _ d i s t) ;

s _ c o n t r a _ k e y s =

o _ p r o p e r t i e s

. g e t P r o p e r t y (

A p p P r o p e r t i e s .CONTRABAND_KEYWORDS

. getName () ,

s _ c o n t r a _ k e y s) ;

s _ n o n c o n t r a _ k e y s =

o _ p r o p e r t i e s

. g e t P r o p e r t y (

A p p P r o p e r t i e s .NONCONTRABAND_KEYWORDS

. getName () ,

s _ n o n c o n t r a _ k e y s) ;

s _ c o n t r a _ k e y _ d i s t =

o _ p r o p e r t i e s

. g e t P r o p e r t y (

A p p P r o p e r t i e s . CONTRABAND_KEY_DIST

. getName () ,

APPENDIX 4 91

s _ c o n t r a _ k e y _ d i s t) ;

s _ n o n c o n t r a _ k e y _ d i s t =

o _ p r o p e r t i e s

. g e t P r o p e r t y (

A p p P r o p e r t i e s .NONCONTRABAND_KEY_DIST

. getName () ,

s _ n o n c o n t r a _ k e y _ d i s t) ;

t r y

{

i_num_nodes =

I n t e g e r

. va lueOf (o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s . NUM_PEERS

. getName ())) ;

}

c a t c h (NumberFormatExcept ion Eo_nf)

{

System . e r r

. p r i n t l n (" Bad v a l u e f o r num nodes : "

+ o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s . NUM_PEERS

. getName ())) ;

i_num_nodes = 50000 ;

}

t r y

{

i _ m i n _ n u m _ f i l e s =

I n t e g e r

. va lueOf (o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s . MIN_FILES_PER_PEER

APPENDIX 4 92

. getName ())) ;

}

c a t c h (NumberFormatExcept ion Eo_nf)

{

System . e r r

. p r i n t l n (" Bad v a l u e f o r min f i l e s p e r p e e r : "

+ o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s . MIN_FILES_PER_PEER

. getName ())) ;

i _ m i n _ n u m _ f i l e s = 1 ;

}

t r y

{

i_max_num_f i l e s =

I n t e g e r

. va lueOf (o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s . MAX_FILES_PER_PEER

. getName ())) ;

}

c a t c h (NumberFormatExcept ion Eo_nf)

{

System . e r r

. p r i n t l n (" Bad v a l u e f o r max f i l e s p e r p e e r : "

+ o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s . MAX_FILES_PER_PEER

. getName ())) ;

i _max_num_f i l e s = 1000 ;

}

t r y

{

d _ p e r c _ n o d e _ h a s _ f i l e s =

Double

APPENDIX 4 93

. va lueOf (o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s .CHANCE_NODE_HAS_CONTENT

. getName ())) ;

}

c a t c h (NumberFormatExcept ion Eo_nf)

{

System . e r r

. p r i n t l n (" Bad v a l u e f o r % chance node has c o n t e n t : "

+ o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s .CHANCE_NODE_HAS_CONTENT

. getName ())) ;

d _ p e r c _ n o d e _ h a s _ f i l e s = 0 . 3 ;

}

c a t c h (N u l l P o i n t e r E x c e p t i o n Eo_np)

{

System . e r r

. p r i n t l n (" Nu l l v a l u e f o r % chance node has c o n t e n t ") ;

d _ p e r c _ n o d e _ h a s _ f i l e s = 0 . 3 ;

}

t r y

{

d _ p e r c _ n o d e _ h a s _ c o n t r a =

Double

. va lueOf (o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s .CHANCE_NODE_HAS_CONTRABAND

. getName ())) ;

}

c a t c h (NumberFormatExcept ion Eo_nf)

{

System . e r r

. p r i n t l n (" Bad v a l u e f o r % chance node has c o n t r a b a n d : "

+ o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s .CHANCE_NODE_HAS_CONTRABAND

APPENDIX 4 94

. getName ())) ;

d _ p e r c _ n o d e _ h a s _ c o n t r a =

0 . 0 1 ;

}

c a t c h (N u l l P o i n t e r E x c e p t i o n Eo_np)

{

System . e r r

. p r i n t l n (" Nu l l v a l u e f o r % chance node has c o n t r a b a n d ") ;

d _ p e r c _ n o d e _ h a s _ c o n t r a =

0 . 0 1 ;

}

t r y

{

d _ p e r c _ n o d e _ h a s _ a l l _ c o n t r a =

Double

. va lueOf (o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s .CHANCE_NODE_HAS_ALL_CONTRABAND

. getName ())) ;

}

c a t c h (NumberFormatExcept ion Eo_nf)

{

System . e r r

. p r i n t l n (" Bad v a l u e f o r % chance node has a l l c o n t r a b a n d : "

+ o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s .CHANCE_NODE_HAS_ALL_CONTRABAND

. getName ())) ;

d _ p e r c _ n o d e _ h a s _ a l l _ c o n t r a =

0 . 5 7 ;

}

c a t c h (N u l l P o i n t e r E x c e p t i o n Eo_np)

{

System . e r r

. p r i n t l n (" Nu l l v a l u e f o r % chance node has a l l c o n t r a b a n d ") ;

APPENDIX 4 95

d _ p e r c _ n o d e _ h a s _ a l l _ c o n t r a =

0 . 5 7 ;

}

t r y

{

d _ p e r c _ c o n t r a _ f i l e s =

Double

. va lueOf (o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s . PERCENT_CONTRA_FOR_MIX_NODE

. getName ())) ;

}

c a t c h (NumberFormatExcept ion Eo_nf)

{

System . e r r

. p r i n t l n (" Bad v a l u e f o r % c o n t r a b a n d f o r mix node : "

+ o _ p r o p e r t i e s

. g e t P r o p e r t y (A p p P r o p e r t i e s . PERCENT_CONTRA_FOR_MIX_NODE

. getName ())) ;

d _ p e r c _ c o n t r a _ f i l e s =

0 . 0 0 4 5 ;

}

c a t c h (N u l l P o i n t e r E x c e p t i o n Eo_np)

{

System . e r r

. p r i n t l n (" Nu l l v a l u e f o r % c o n t r a b a n d f o r mix node ") ;

d _ p e r c _ c o n t r a _ f i l e s =

0 . 0 0 4 5 ;

}

Vector < S t r i n g > o _ c o n t r a _ k e y w o r d s =

new Vector < S t r i n g > () , o_noncon t r a_keywords =

new Vector < S t r i n g > () ;

Vector <Double > o _ c o n t r a _ k e y d i s t =

APPENDIX 4 96

new Vector <Double > () , o _ n o n c o n t r a _ k e y d i s t =

new Vector <Double > () ;

parseKeywords (s _ c o n t r a _ k e y s ,

o _ c o n t r a _ k e y w o r d s) ;

parseKeywords (s _ n o n c o n t r a _ k e y s ,

o_noncon t r a_keywords) ;

p a r s e K e y D i s t (s _ c o n t r a _ k e y _ d i s t ,

o _ c o n t r a _ k e y d i s t) ;

p a r s e K e y D i s t (

s _ n o n c o n t r a _ k e y _ d i s t ,

o _ n o n c o n t r a _ k e y d i s t) ;

S t r i n g [] A s _ c o n t r a b a n d _ t e r m s =

new S t r i n g [o _ c o n t r a _ k e y w o r d s

. s i z e ()] , As_good_terms =

new S t r i n g [o_noncon t r a_keywords

. s i z e ()] ;

do ub l e [] A d _ c o n t r a b a n d _ p e r c =

new do ub le [o _ c o n t r a _ k e y w o r d s

. s i z e ()] , Ad_good_perc =

new do ub le [o_noncon t r a_keywords

. s i z e ()] ;

o _ c o n t r a _ k e y w o r d s

. t o A r r a y (A s _ c o n t r a b a n d _ t e r m s) ;

o_noncon t r a_keywords

. t o A r r a y (As_good_terms) ;

/ / I n i t i a l i z e d i s t r i b u t i o n s t o 0 . 0

i n t i _ i = 0 ;

f o r (i _ i = 0 ; i _ i < A d _ c o n t r a b a n d _ p e r c . l e n g t h ; i _ i ++)

{

A d _ c o n t r a b a n d _ p e r c [i _ i] =

APPENDIX 4 97

0 . 0 ;

}

f o r (i _ i = 0 ; i _ i < Ad_good_perc . l e n g t h ; i _ i ++)

{

Ad_good_perc [i _ i] = 0 . 0 ;

}

/ / Read i n p u t p a r a m e t e r s i n t o d i s t r i b u t i o n s

i _ i = 0 ;

f o r (Double o _ i : o _ c o n t r a _ k e y d i s t)

{

A d _ c o n t r a b a n d _ p e r c [i _ i] =

o _ i . doub l eVa lue () ;

i _ i ++;

i f (i _ i >= A d _ c o n t r a b a n d _ p e r c . l e n g t h)

{

b r e a k ;

}

}

i _ i = 0 ;

f o r (Double o _ i : o _ n o n c o n t r a _ k e y d i s t)

{

Ad_good_perc [i _ i] =

o _ i . doub l eVa lue () ;

i _ i ++;

i f (i _ i >= Ad_good_perc . l e n g t h)

{

b r e a k ;

}

}

APPENDIX 4 98

/ / Add up t o t a l o f d i s t r i b u t i o n (s h o u l d be = 1 . 0)

do ub l e d _ c o n t r a _ t o t a l = 0 . 0 , d _ n o n c o n t r a _ t o t a l =

0 . 0 ;

f o r (i _ i = 0 ; i _ i < A d _ c o n t r a b a n d _ p e r c . l e n g t h ; i _ i ++)

{

d _ c o n t r a _ t o t a l +=

A d _ c o n t r a b a n d _ p e r c [i _ i] ;

}

i f (d _ c o n t r a _ t o t a l > 1 . 0)

{

System . o u t

. p r i n t l n (" T o t a l p e r c e n t a g e o f c o n t r a b a n d t e r m s g r e a t e r t h a n 100%: "

+ d _ c o n t r a _ t o t a l) ;

r e t u r n ;

}

f o r (i _ i = 0 ; i _ i < Ad_good_perc . l e n g t h ; i _ i ++)

{

d _ n o n c o n t r a _ t o t a l +=

Ad_good_perc [i _ i] ;

}

i f (d _ n o n c o n t r a _ t o t a l > 1 . 0)

{

System . o u t

. p r i n t l n (" T o t a l p e r c e n t a g e o f good t e r m s g r e a t e r t h a n 100%: "

+ d _ n o n c o n t r a _ t o t a l) ;

r e t u r n ;

}

/ / T e s t f o r match o f keywords t o d i s t r i b u t i o n s and c o r r e c t i f n e c e s s a r y

i f (o _ c o n t r a _ k e y w o r d s . s i z e () < o _ c o n t r a _ k e y d i s t

APPENDIX 4 99

. s i z e ())

{

System . o u t

. p r i n t l n (" Con t r aband d i s t r i b u t i o n has "

+ (o _ c o n t r a _ k e y d i s t

. s i z e () − o _ c o n t r a _ k e y w o r d s

. s i z e ())

+ " v a l u e s t h a t w i l l be i g n o r e d ") ;

}

e l s e i f (o _ c o n t r a _ k e y w o r d s

. s i z e () > o _ c o n t r a _ k e y d i s t

. s i z e ())

{

System . o u t

. p r i n t l n (" The l a s t "

+ (o _ c o n t r a _ k e y w o r d s

. s i z e () − o _ c o n t r a _ k e y d i s t

. s i z e ())

+ " c o n t r a b a n d keywords w i l l e v e n l y d i s t r i b u t e d ") ;

/ / D i s t r i b u t e t o l a s t o f keywords

f o r (i _ i =

o _ c o n t r a _ k e y w o r d s

. s i z e () ; i _ i < A d _ c o n t r a b a n d _ p e r c . l e n g t h ; i _ i ++)

{

A d _ c o n t r a b a n d _ p e r c [i _ i] =

(1 . 0 − d _ c o n t r a _ t o t a l)

/ (o _ c o n t r a _ k e y w o r d s

. s i z e () − o _ c o n t r a _ k e y d i s t

. s i z e ()) ;

}

}

i f (o_noncon t r a_keywords

APPENDIX 4 100

. s i z e () < o _ n o n c o n t r a _ k e y d i s t

. s i z e ())

{

System . o u t

. p r i n t l n (" Noncon t raband d i s t r i b u t i o n has "

+ (o _ n o n c o n t r a _ k e y d i s t

. s i z e () − o_noncon t r a_keywords

. s i z e ())

+ " v a l u e s t h a t w i l l be i g n o r e d ") ;

}

e l s e i f (o_noncon t r a_keywords

. s i z e () > o _ n o n c o n t r a _ k e y d i s t

. s i z e ())

{

System . o u t

. p r i n t l n (" The l a s t "

+ (o_noncon t r a_keywords

. s i z e () − o _ n o n c o n t r a _ k e y d i s t

. s i z e ())

+ " n o n c o n t r a b a n d keywords w i l l e v e n l y d i s t r i b u t e d ") ;

/ / D i s t r i b u t e t o l a s t o f keywords

f o r (i _ i =

o_noncon t r a_keywords

. s i z e () ; i _ i < Ad_good_perc . l e n g t h ; i _ i ++)

{

Ad_good_perc [i _ i] =

(1 . 0 − d _ n o n c o n t r a _ t o t a l)

/ (d ou b l e) (o_noncon t r a_keywords

. s i z e () − o _ n o n c o n t r a _ k e y d i s t

. s i z e ()) ;

}

}

APPENDIX 4 101

System . o u t

. p r i n t l n (" Con t r aband : ") ;

f o r (i _ i = 0 ; i _ i < A s _ c o n t r a b a n d _ t e r m s . l e n g t h ; i _ i ++)

{

System . o u t

. p r i n t l n (" \ t "

+ A s _ c o n t r a b a n d _ t e r m s [i _ i]

+ " wi th d i s t "

+ A d _ c o n t r a b a n d _ p e r c [i _ i]) ;

}

System . o u t . p r i n t l n (" Good : ") ;

f o r (i _ i = 0 ; i _ i < As_good_terms . l e n g t h ; i _ i ++)

{

System . o u t . p r i n t l n (" \ t "

+ As_good_terms [i _ i]

+ " wi th d i s t "

+ Ad_good_perc [i _ i]) ;

}

/ / S t a r t G e n e r a t i o n

Random o_randgen =

new Random (new Date ()

. ge tTime ()) ;

S t r i n g s _ s e a r c h t e r m = n u l l , s _ l i n e =

n u l l ;

i f (A s _ c o n t r a b a n d _ t e r m s . l e n g t h != A d _ c o n t r a b a n d _ p e r c . l e n g t h)

{

System . o u t

. p r i n t l n (" Each c o n t r a b a n d te rm must have a p e r c e n t d i s t r i b u t i o n ") ;

r e t u r n ;

}

APPENDIX 4 102

i f (As_good_terms . l e n g t h != Ad_good_perc . l e n g t h)

{

System . o u t

. p r i n t l n (" Each good te rm must have a p e r c e n t d i s t r i b u t i o n ") ;

r e t u r n ;

}

F i l e W r i t e r o _ f i l e w r i t e r = n u l l ;

t r y

{

o _ f i l e w r i t e r =

new F i l e W r i t e r (

s _ f i l e _ d i s t) ;

}

c a t c h (IOExcep t ion e _ i o e x c)

{

e _ i o e x c . p r i n t S t a c k T r a c e () ;

r e t u r n ;

}

f o r (i _ i = 0 ; i _ i < i_num_nodes ; i _ i ++)

{

/ / De te rmine i f node has f i l e s 30% chance

i f (o_randgen . nex tDoub le () < d _ p e r c _ n o d e _ h a s _ f i l e s)

{

/ / I f node has f i l e s p l a c e a random # of f i l e s between 1 and

/ / 1000 f i l e s

i _ n u m _ f i l e s _ f o r _ i =

(o_randgen

. n e x t I n t () % (i_max_num_f i l e s − i _ m i n _ n u m _ f i l e s))

+ i _ m i n _ n u m _ f i l e s ;

i _ n o d e s _ w i t h _ f i l e s ++;

APPENDIX 4 103

/ / De te rmine i f node c o n t a i n s c o n t r a b a n d 1% ∗ 30% = 0.3% chance

i f (o_randgen

. nex tDoub le () < d _ p e r c _ n o d e _ h a s _ c o n t r a)

{

b _ i _ h a s _ c o n t r a =

t r u e ;

/ / I f node has c o n t r a b a n d t h e n g i v e 57% chance o f c o n t a i n i n g

/ / 100% c o n t r a b a n d

i f (o_randgen

. nex tDoub le () < d _ p e r c _ n o d e _ h a s _ a l l _ c o n t r a)

{

b _ o n l y _ c o n t r a _ f o r _ i =

t r u e ;

}

e l s e

{

b _ o n l y _ c o n t r a _ f o r _ i =

f a l s e ;

}

}

e l s e

{

b _ i _ h a s _ c o n t r a =

f a l s e ;

b _ o n l y _ c o n t r a _ f o r _ i =

f a l s e ;

}

b _ a s s i g n e d _ a _ c o n t r a _ f o r _ i =

f a l s e ;

f o r (i n t i _ j = 0 ; i _ j < i _ n u m _ f i l e s _ f o r _ i ; i _ j ++)

{

APPENDIX 4 104

do ub l e d _ r a n d _ f o r _ f i l e =

o_randgen

. nex tDoub le () ;

i n t i _ f i l e _ p i c k e d ;

i f (b _ i _ h a s _ c o n t r a

&& (b _ o n l y _ c o n t r a _ f o r _ i | | o_ randgen

. nex tDoub le () < d _ p e r c _ c o n t r a _ f i l e s))

{

i _ f i l e _ p i c k e d =

A d _ c o n t r a b a n d _ p e r c . l e n g t h ;

w h i l e (i _ f i l e _ p i c k e d >= A d _ c o n t r a b a n d _ p e r c . l e n g t h)

{

do ub l e d _ t o t a l =

0 . 0 ;

f o r (i _ f i l e _ p i c k e d =

0 ; i _ f i l e _ p i c k e d < A d _ c o n t r a b a n d _ p e r c . l e n g t h ; i _ f i l e _ p i c k e d ++)

{

d _ t o t a l +=

A d _ c o n t r a b a n d _ p e r c [i _ f i l e _ p i c k e d] ;

i f (d _ r a n d _ f o r _ f i l e < d _ t o t a l)

{

b r e a k ;

}

}

/ / Choose a new f i l e s i n c e l a s t one c o u l d n o t be

/ / s e l e c t e d

d _ r a n d _ f o r _ f i l e =

o_randgen

. nex tDoub le () ;

}

s _ s e a r c h t e r m =

new S t r i n g (

APPENDIX 4 105

A s _ c o n t r a b a n d _ t e r m s [i _ f i l e _ p i c k e d]

+ i _ j) ;

i _ t o t a l _ c o n t r a ++;

b _ a s s i g n e d _ a _ c o n t r a _ f o r _ i =

t r u e ;

}

e l s e

{

i _ f i l e _ p i c k e d =

Ad_good_perc . l e n g t h ;

w h i l e (i _ f i l e _ p i c k e d >= Ad_good_perc . l e n g t h)

{

do ub l e d _ t o t a l =

0 . 0 ;

f o r (i _ f i l e _ p i c k e d =

0 ; i _ f i l e _ p i c k e d < Ad_good_perc . l e n g t h ; i _ f i l e _ p i c k e d ++)

{

d _ t o t a l +=

Ad_good_perc [i _ f i l e _ p i c k e d] ;

i f (d _ r a n d _ f o r _ f i l e < d _ t o t a l)

{

b r e a k ;

}

}

/ / Choose a new f i l e s i n c e l a s t one c o u l d n o t be

/ / s e l e c t e d

d _ r a n d _ f o r _ f i l e =

o_randgen

. nex tDoub le () ;

}

s _ s e a r c h t e r m =

APPENDIX 4 106

new S t r i n g (

As_good_terms [i _ f i l e _ p i c k e d]

+ i _ j) ;

i _ t o t a l _ n o n c o n t r a ++;

}

s _ l i n e =

new S t r i n g (

i _ i

+ " "

+ s _ s e a r c h t e r m

+ " \ r \ n ") ;

t r y

{

o _ f i l e w r i t e r

. w r i t e (

s _ l i n e ,

0 ,

s _ l i n e

. l e n g t h ()) ;

}

c a t c h (IOExcep t ion e _ i o e x c)

{

System . o u t

. p r i n t l n (" Could n o t w r i t e l i n e : "

+ s _ l i n e) ;

}

/ / System . o u t . p r i n t l n (i _ i + " " + s _ s e a r c h t e r m) ;

}

i f (b _ a s s i g n e d _ a _ c o n t r a _ f o r _ i)

{

i _ n o d e s _ w i t h _ c o n t r a ++;

}

APPENDIX 4 107

}

}

System . o u t

. p r i n t l n (" T o t a l c o n t r a b a n d f i l e s : "

+ i _ t o t a l _ c o n t r a) ;

System . o u t

. p r i n t l n (" T o t a l non−c o n t r a b a n d f i l e s : "

+ i _ t o t a l _ n o n c o n t r a) ;

System . o u t

. p r i n t l n (" T o t a l f i l e s : "

+ (i _ t o t a l _ c o n t r a + i _ t o t a l _ n o n c o n t r a)) ;

System . o u t

. p r i n t l n (" T o t a l nodes wi th c o n t r a b a n d : "

+ i _ n o d e s _ w i t h _ c o n t r a) ;

System . o u t

. p r i n t l n (" T o t a l nodes wi th f i l e s : "

+ i _ n o d e s _ w i t h _ f i l e s) ;

System . o u t

. p r i n t l n (" Average f i l e s p e r node : "

+ (i _ t o t a l _ c o n t r a + i _ t o t a l _ n o n c o n t r a)

/ i _ n o d e s _ w i t h _ f i l e s) ;

}

p u b l i c s t a t i c vo id parseKeywords (

S t r i n g Ps_keywords ,

Vector < S t r i n g > P o _ k e y w o r d _ l i s t)

{

/ / P a r s e o u t keywords

i n t i _ c u r _ i n d e x = 0 , i _ n x t _ i n d e x =

0 ;

w h i l e ((i _ n x t _ i n d e x =

Ps_keywords

. indexOf (’ | ’ ,

APPENDIX 4 108

i _ c u r _ i n d e x)) >= 0)

{

P o _ k e y w o r d _ l i s t

. add (Ps_keywords

. s u b s t r i n g (

i _ c u r _ i n d e x ,

i _ n x t _ i n d e x)) ;

i _ c u r _ i n d e x =

i _ n x t _ i n d e x + 1 ;

}

i f (! Ps_keywords

. s u b s t r i n g (i _ c u r _ i n d e x)

. i sEmpty ())

{

P o _ k e y w o r d _ l i s t

. add (Ps_keywords

. s u b s t r i n g (i _ c u r _ i n d e x)) ;

}

}

p u b l i c s t a t i c vo id p a r s e K e y D i s t (

S t r i n g P s _ k e y _ d i s t ,

Vector <Double > P o _ k e y _ d i s t)

{

/ / P a r s e o u t keywords

i n t i _ c u r _ i n d e x = 0 , i _ n x t _ i n d e x =

0 ;

w h i l e ((i _ n x t _ i n d e x =

P s _ k e y _ d i s t

. indexOf (’ | ’ ,

i _ c u r _ i n d e x)) >= 0)

{

P o _ k e y _ d i s t

APPENDIX 4 109

. add (Double

. va lueOf (P s _ k e y _ d i s t

. s u b s t r i n g (

i _ c u r _ i n d e x ,

i _ n x t _ i n d e x))) ;

i _ c u r _ i n d e x =

i _ n x t _ i n d e x + 1 ;

}

i f (! P s _ k e y _ d i s t

. s u b s t r i n g (i _ c u r _ i n d e x)

. i sEmpty ())

{

P o _ k e y _ d i s t

. add (Double

. va lueOf (P s _ k e y _ d i s t

. s u b s t r i n g (i _ c u r _ i n d e x))) ;

}

}

}

Bibliography

[1] David Barkai. 2001. Peer-to-Peer Computing: Technologies for Sharing and Collaborating on the Net.

Intel Press

[2] Sun Microsystems Inc. 2005. “Sun Java System Communications Services 6 2005Q1 Deployment Plan-

ning Guide.”, available from http://docs.sun.com/source/819-0063/index.html; accessed 16 February

2010

[3] Napster. Wikipedia. available from http://en.wikipedia.org/wiki/Napster; accessed 14 April 2010

[4] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma and Steven Lim. 2004. A Survey and

Comparison of Peer-to-Peer Overlay Network Schemes. IEEE Communications Survey and Tutorial

March 2004.

[5] United States General Accountability Office: Testimony before the Committee on the Judiciary. U.S.

Senate. 2003. FILE SHARING PROGRAMS: Users of Peer-to-Peer Networks Can Readily Access

Child Pornography. Statements of Linda D. Koontz. GAO-03-1115T.

[6] Stacie Rumemap. 2009. “Peer-to-Peer File Sharing: Pandora’s Box of Child Porn?,” In-

ternet Source, 16 November 2009, available from http://stopchildpredators.org/pdf/ \

SCP_on_P2P_File_Sharing_Pandoras%C2% \ AD_Box_of_Child_Pornography_1109.pdf; accessed

15 April 2010.

[7] Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble. 2001. “A Measurement Study of Peer-

to-Peer File Sharing Systems,” available from http://www.cs.washington.edu/ \ homes/gribble/paper-

s/mmcn.pdf; accessed 11 April 2010.

[8] Mihajlo Jovanović. 2001. MODELING PEER-TO-PEER NETWORK TOPOLOGIES THROUGH

“SMALL-WORLD” MODELS AND POWER LAWS. IX TELECOMMUNICATIONS FORUM

TELFOR 2001, Belgrade, 20-22.11.2001.

[9] Murali Krishna Ramanathan, Vana Kalogeraki, Jim Pruyne. 2002. Finding Good Peers in Peer-to-Peer

Networks. Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’02),

1530-2075/02.

110

BIBLIOGRAPHY 111

[10] Liu Hongbo, Ajith Abraham, Youakim Badr. 2009. “Neighbor Selection in Peer-to-Peer Overlay Net-

works: A Swarm Intelligence Approach,” available from http://www.softcomputing.net/pervasive.pdf ;

accessed 11 April 2010

[11] Stafan Schmid, Roger Wattenhofer. 2007. “Structuring Unstructured Peer-to-Peer Networks.” In 14th

Annual IEEE International Conference on High Performance Computing (HiPC). Goa, India: IEEE

Press.

[12] Li Zhen-wu, Yang Jian, Shi Xu-dong, Bai Ying-cai. 2003. “A ’cluster’ based search scheme in peer-to-

peer network,” Journal of Zheijang University SCIENCE V.4, No. 5, P.549-554

[13] Limewire Inc. 2008. “The Gnutella Protocol Specification v0.4.”, available from

http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf; accessed 16 May 2010

[14] Henning Schulzrinne, Enrico Marocco, Emil Ivov. ”Security Issues and Solutions in Peer-to-

Peer Systems for Realtime Communications” Internet Source, February 2010, available from

http://tools.ietf.org/html/rfc5765; accessed 3 June 2010.

[15] Hughes Daniel, Walkerdine James, Coulson Geoff, and Gibson Stephen. 2006. "Is Deviant Behavior the

Norm on P2P File-Sharing Networks?" IEEE Distributed Systems Online, vol. 7, no. 2, 2006, art. no.

0602-o1001.

[16] Dhurandher Sanjay, Misra Sudip, Obaidat Mohammad, Agarwel Raghua, Bhambhani Bhevnesh. May

2009. “Simulating Peer-to-Peer Networks.” Computer Systems and Applications, 2009. P.336-341

[17] Limewire Inc. 2008. “Gnutella Protocol Specification.”, available from

http://wiki.limewire.org/index.php?title=GDF; accessed 2/7/2010

[18] United States National Institute of Standards and Technology. 2008. “The CFReDS Project.”, available

from http://www.cfreds.nist.gov/; accessed 7/7/2010

[19] Wikipedia. 2010. “Welch’s t-test”, available from http://en.wikipedia.org /wiki/ Welch%27s_t_test; ac-

cessed 4/28/2010

[20] Wikipedia. 2010. “Barabasi-Albert Model”, available from http://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model;

accessed 9/12/2010

[21] Alfred Aho, John Hopcroft, and Jeffrey Ullman. 1974. The Design and Analysis of Computer Algo-

rithms. Addison-Wesley Publishing Company.

[22] Nicholas Miles. 2010. ARCHITECUTRE ANALYSIS OF PEER-TO-PEER NETWORK STRUC-

TURE AND DATA EXCHANGES FOR DISTRIBUTION OF CONTRABAND MATERIAL. Masters

Thesis. University of Louisville.

VITA

I graduated from the University of Louisville with a Bachelors of Science in Computer

Engineering and Computer Science. I have worked for United Parcel Service since Feb-

ruary 2001 and I am currently a Senior Programmer Analyst. Having left graduate studies

in 2003 to participate in community and political organizations, I returned in 2008 to com-

plete the work. As my employer has a strong interest in planning transportation networks,

I was drawn to Dr. Nasraoui’s interest in heuristic algorithms applied to large scale net-

works. The work under her guidance has enhanced my ability to analyze the tools for

transportation network planning at UPS.

112

	Dynamic probe positioning within peer-to-peer networks for mining contraband file exchanges.
	Recommended Citation

	tmp.1423685735.pdf.QUKsZ

