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ABSTRACT

RESIDUATED MAPS, THE WAY-BELOW RELATION, AND
CONTRACTIONS ON PROBABILISTIC METRIC SPACES

M. Ryan Luke

July 3, 2017

In this dissertation, we will examine residuated mappings on a function lat-

tice and how they behave with respect to the way-below relation. In particular,

which residuated φ has the property that F is way-below φ(F ) for F in appropriate

sets. We show the way-below relation describes the separation of two functions and

how this corresponds to contraction mappings on probabilistic metric spaces. A

new definition for contractions is considered using the way-below relation.
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CHAPTER 1

INTRODUCTION

The main purpose of this dissertation is to determine how residuated maps

behave with respect to the way-below relation, and to use the results obtained to

provide a different definition of contraction mapping on probabilistic metric spaces.

We begin by examining functions on Res(L,M) and their behavior under typical

lattice operations. Next, we present the way-below relation and how it illustrates

the separation of two elements from a lattices as well as some results of cases when

those elements are functions themselves; it turns out that the way-below relation

is a good way to describe when a function is less than another, and the two are

truly separated. In general f ≤ g if f(x) ≤ g(x) for all x in the domain and f < g

if f ≤ g and there is an x0 such that f(x0) < g(x0). However, this does not really

separate the graphs of these functions. We will show that the way-below relation

in a suitable function space does indeed provide such a separation and use this to

the setting of contraction mappings on probabilistic metric spaces.

Most of the basic definitions and preliminary material necessary for reading

this dissertation are provided in Chapter 2. Partially ordered sets and lattices have

been studied for some time and have been written about at least as early as 1941. A

basic introduction to posets and partial order is provided along with the operations

join and meet that will be used frequently throughout this text. More specifically,

the reader is introduced to lattices, the special case of posets which we use for all

our results so far.

Residuated Maps are defined in Chapter 3 and are special nondecreasing
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functions that preserve joins in a lattice and map the bottom element from the

lattice of the domain to the bottom element in the lattice of the range. These maps

are very closely related to Galois connections from which their study arose but differ

in that the composition of two residuated maps is residuated, which is not the case

for Galois connections.

Chapter 4 is the beginning of our second part where we present the way-below

relation and learn what it means for two elements to be separated. In continuous

lattices, elements that have such a relationship (other than those way-below them-

selves such as 0) are separated enough that another element can be found between

them. While we present this relation in general, we are more concerned about its

application to functions and what is required for a function to be way-below another

function.

We also answer the question in Chapter 5 about how mappings inRes([p, q], [r, s])

affect the way-below relation. The results presented classify for which F ∈ Res([p, q], [r, s])

is φ(F ) way-below F or F way-below φ(F ) when φ ∶ Res([p, q], [r, s]) → Res([p, q], [r, s]).

We also discuss whether a way-below realtionship is preserved when applying φ to

two functions that have such a relationship.

In the last part of this dissertation beginning with Chapter 6, we draw a

connection to probabilistic metric spaces (PM spaces) and contraction mappings.

The definition of PM spaces, distance distributions functions, triangle functions,

and contraction mappings are all provided and discussed in Chapter 6.

We introduce existing results on contraction mappings in Chapter 7 and

provide a new definition using the way-below relation. We then discuss our findings

and compare them to those of T.L. Hicks, V.M. Sehgal, and A.T. Bharucha-Reid.

Finally in Chapter 8, we make some closing remarks about our observations

and provide potential avenues for further research.
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CHAPTER 2

PRELIMINARIES

In order to keep this dissertation reasonably self-contained, we start by pro-

viding the definitions of some necessary terms as well as some well-known results.

Much of this can be found in references [1] and [3] or other introductory books on

order. First and foremost, we define the basic structures of order theory: partially

ordered sets and lattices.

DEFINITION 2.1 (partial order; partially ordered set). Let P be a set. A par-

tial order on P is a binary relation ≤ on P that is reflexive, antisymmetric, and

transitive. That is, for all x, y, z in P ,

(i) x ≤ x,

(ii) x ≤ y and y ≤ x imply x = y,

(iii) x ≤ y and y ≤ z imply x ≤ z.

A set P equipped with a partial order is called a partially ordered set, or poset

for short.

A partially ordered set is a set along with a binary relation that describes how

some elements compare to other elements in the set, but every element in a poset is

not necessarily related to every other element in the poset, thus a partial order. In

fact, two elements a and b that are not related are called non-comparable, and we

denote this a∣∣b. A poset in which every two elements are related is called a totally

ordered set or chain.
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For example, the set of Real Numbers (R) with the standard order, is a

totally ordered set and so are any of its subsets. For any two real numbers, we have

the law of trichotomy: a = b, a < b or b < a.

We often (and in this dissertation) use the notion of posets to examine sets

of elements that have a more complex relationship or are not just numbers, such as

a set of functions. Like with numbers, it makes sense that we may also define two

operations for posets.

DEFINITION 2.2 (Join). The join of a subset, S, of a poset, P , is the supremum

(or least upper bound) and denoted, ⋁S, if it exists.

We take note that the join of S does not have to be in S but it can be. For

example, if we take S = {x ∈ R ∣ x < 1}, then ⋁S = 1 and 1 ∈ R but 1 /∈ S. Alternately,

if S = {1,2} ⊂ R, then ⋁S = 2. Furthermore, the join does not necessarily exist. For

example, consider the poset in Figure 2.1 where if S = P , then ⋁S does not exist:

Figure 2.1: A poset, P , of 3 elements

a b

0

We also define the operation for greatest lower bound in a poset.

DEFINITION 2.3 (Meet). The meet of a subset, S, of a poset, P , is the infimum

(or greatest lower bound) and denoted, ⋀S, if it exists.

Similarly to the join, the meet of S need not be in S. Again consider P = R

and let S = {x ∈ R∣x > 0}, then ⋀S = 0 and 0 ∈ R but 0 /∈ S. The meet also does not
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necessarily exist and we can consider the poset in Figure 2.2 where if S = P , then

⋀S does not exist:

Figure 2.2: A poset, P , of 4 elements

t u v

1

If S = {a1, a2, ..., an}, we often write ⋁S = a1 ∨ a2 ∨ ... ∨ an and ⋀S = a1 ∧

a2 ∧ ...∧ an. Looking again at the previous diagrams, in Figure 2.1 for S = {a, b} we

have ⋀S = a ∧ b = 0, and in Figure 2.2 for S = {t, u, v} we have ⋁S = t ∨ u ∨ v = 1.

Posets in which both the join and the meet exist for every pair of elements are a

special class.

DEFINITION 2.4 (Lattice). A lattice is a poset in which any two elements have a

least upper bound (join) and greatest lower bound (meet).

Davey and Priestly [3] remind us that prime numbers are product-irreducible

natural numbers (other than 1) and that we have an analogous idea in lattices.

DEFINITION 2.5 (join-irreducible). Let L be a lattice. An element x ∈ L is join-

irreducible if x ≠ 0L and x = a ∨ b implies x = a or x = b for all a, b ∈ L.

DEFINITION 2.6 (meet-irreducible). Let L be a lattice. An element x ∈ L is meet-

irreducible if x ≠ 1L and x = a ∧ b implies x = a or x = b for all a, b ∈ L.

We also consider special classes of lattices. A lattice in which every subset

has a meet and a join is called a complete lattice. It should be noted that to be

a complete lattice the empty set, ∅, must also have a join and a meet. To explain

how this works, we define top and bottom elements of a poset.
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DEFINITION 2.7 (top element). Let P be a poset. We say P has a top element

or one if there exists 1 ∈ P (called top) with the property that x ≤ 1 for all x ∈ P .

DEFINITION 2.8 (bottom element). Let P be a poset. We say P has a bottom

element or zero if there exists 0 ∈ P (called bottom) with the property that 0 ≤ x for

all x ∈ P .

Top and bottom elements (i.e. 1 and 0) are required for finite posets to be

lattices while infinite lattices require them for completeness.

For example, in a finite poset (i.e. poset with a finite number of elements)

such as the one shown in Figure 2.1, the join of a and b needs to exist for P to be

considered a lattice. If a ∨ b did exist in this diagram, it would be the top element

and P would be a lattice. Likewise in Figure 2.2, the pairwise meet of t, u, and v

must exist and would be the bottom element. The lattices created in these two

examples are known as M2 and M3. In fact Mn is a family of lattices that consist

of a 1 and 0 with n non-comparable elements each of which are connected only to

the 1 and 0.

The 1 and 0 are required for an infinite lattice to be a complete lattice. This

is because the definition requires every subset (including the empty set and entire

lattice) to have a join and meet. The top element is required for completeness

because the entire lattice must have a join, and the bottom element is required for

completeness because the entire lattice must have a meet.

It is interesting to also note that the join of the empty set is the bottom

element, and the meet of the the empty set is the top element. In particular, this

means that the join is not always greater than the meet.

There are other special classes of lattices, one of which we consider in much

of the research contained in this dissertation. We now define distributive lattices.

DEFINITION 2.9 (distributive lattice). A lattice, L is said to be distributive if

6



it satisfies the distributive law, that is, for all a, b, c ∈ L, we have a ∧ (b ∨ c) =

(a ∧ b)⋁(a ∧ c).

For the remainder of this dissertation, we will assume the lattices that we

refer to are complete, distributive lattices, but we will often need to place further

restrictions on them.

7



CHAPTER 3

RESIDUATED MAPS

Much of this dissertation is concerned with particular function lattices. We

examine Res(L,M), the functions it contains, and the behavior of these functions

under operations on the lattice. Res(L,M) is the set of residuated maps from lattice

L to lattice M , and we provide its formal definition below. While we restrict our

discussion to lattices, residuated maps can be formally defined on partially ordered

sets. The following definition can be found in [1]. In this context, f is nondecreasing

if x < y in the domain implies f(x) ≤ f(y) in the range.

DEFINITION 3.1 (residuated map). If L,M are partially ordered sets, a map

f ∶ L →M is residuated if and only if f is isotone (nondecreasing) and there exists

a unique, isotone map f+ ∶ M → L such that f+ ○ f ≥ idL and f ○ f+ ≤ idM . The

unique map f+, called the residual of f , is defined such that ∀y ∈M, f+(y) = ⋁{x ∈

L ∣ f(x) ≤ y}.

REMARK 3.2. A function, f , is in Res(L,M) if it has the following properties:

� f(0)=0 (i.e. maps the bottom element of L to the bottom element of M)

� f is non-decreasing

� f preserves arbitrary joins (i.e. f(a ∨ b) = f(a) ∨ f(b))

If L and M are complete, distributive lattices and S is any subset of L, we get

f(⋁S) = ⋁ f(S).

8



If L,M are real intervals, then f is a nondecreasing function which maps the left

end point of L to the left end point of M and is left continuous.

Figure 3.1: The graph of δa,b, a residuated map

The simplest of such functions are ones that take on only two values, zero

and one other. Figure 3.1 shows the graph of one, and we define them in this way:

δa,b(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a

b otherwise

Very often, we begin working on a problem or hypothesis by using deltas.

Since deltas are residuated and very easy to evaluate, we can sometimes find out

very quickly how something behaves or if it doesn’t work at all. Beyond the ease of

using them, deltas can also be used to construct any other residuated map.

We introduced the notion of joins in Chapter 2 and we must become aware

of how they work when the elements are functions in Res(L,M). For joins of

functions, the operation is pointwise. This means, that the join is evaluated point

by point in the domain.

We first look at the join of two delta functions.

9



EXAMPLE 3.3. Consider Res([0,1]):

δ 1
2
, 1
2

∨ δ 3
4
, 3
4
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ 1
2

1
2 if 1

2 < x ≤
3
4

3
4 if x > 3

4

Recall that the join of a finite set of real numbers takes the largest value at

each point. Thus, for any x ≤ 1
2 , both of the above functions are 0 and 0∨0 = 0. For

values of x that are between 1
2 and 3

4 , the function on the left is 1
2 and the function

on the right is 0 and so 1
2 ∨ 0 = 1

2 . Finally for x > 3
4 , both functions achieve their

highest values and 1
2 ∨

3
4 = 3

4 . The result shown in Figure 3.2 is actually a step

function as given above.

Figure 3.2: The join of two deltas

Using this example, we see that joins behave point-wise on deltas. This is the

same for arbitrary functions since any function can be written as the join of deltas.

When Res(L,M) is distributive, deltas are the join irreducibles, and a function, f

can be written as the join of join irreducibles.

10



Figure 3.3: The join of two functions in Res([0,1])

One can see in Figure 3 that the graph on the right is the join of the 2 graphs

on the left and is formed by taking the highest value of the two functions at each

point.

It is important to note that δ0,0 is the bottom element and δ0,1 is the top

element of Res([0,1]). Because it is equivalent to the zero function, there is no

function smaller than δ0,0 in Res([0,1]). The largest value a function can take in

Res([0,1]) is 1, but every function in Res([0,1]) has to be 0 at 0. Thus, the largest

function that satisfies these requirements is δ0,1, making it the top element.

Another important characteristic of a residuated map, F , that we use and

refer to often in this dissertation is the least upper bound of points where F takes

the value zero. More formally, this point is denoted bF and defined this way:

bF = ⋁{x∣F (x) = 0} (3.1)

This is the notation that will be used in this dissertation, but it should be

noted that it can be defined equivalently using the residual of F from Definition

3.1:

bF = ⋁{x∣F (x) = 0} = F +(0).

11



Now that we have an idea of the nature of residuated maps, our intention

is to actually look at mappings from a set of residuated maps to another set of

residuated maps. Consider,

φ ∶ Res([0,1]) → Res([0,1])

What properties must φ have so that

φ ∈ Res(Res([0,1])) ?

Like all residuated mappings, we require φ to map the bottom element of the

domain to the bottom element in the range and it must preserve arbitrary joins.

Explicitly, let A be an index set and Fα ∈ Res([0,1]) for all α ∈ A, then

φ(δ0,0) = δ0,0 (3.2)

φ( ⋁
α∈A

Fα) = ⋁
α∈A

φ(Fα) (3.3)

Ô⇒ φ ∈ Res(Res([0,1])) (3.4)

12



CHAPTER 4

THE WAY-BELOW RELATION

In this chapter, we discuss the way-below relation. It can provide us insight

on how separated two elements in a lattice are. For function lattices, e.g. Res(L)

or Res(Res(L)), if one function is way-below another function, we can find at least

one function that is strictly between them; this notion of strict is what we discuss

here.

To formally define the way-below relation, we must first be familiar with

directed sets.

DEFINITION 4.1 (Directed Set). Let D be a subset of a poset. D is directed if

every finite subset of D has an upper bound in D.

For example, every chain is a directed set. For another example, we consider

the lattice in Figure 4.1.

Figure 4.1: A lattice L of 5 elements

c

1

a b

0

13



In Figure 4.1, the set {a, b,1} is directed since the upper bound 1 is in the

set. Alternately, {a, b} is not a directed set since the upper bound of a and b is c,

but c is not in the set {a, b}.

With an understanding of directed sets, the formal definition of the way-

below relation is now provided.

DEFINITION 4.2 (The Way-Below Relation). Let x and y be elements of a lattice,

L. Then x is way-below y, denoted x≪ y, if for every directed subset D of L such

that y ≤ ⋁D, there exists an element d ∈D such that x ≤ d.

Like with residuated maps, we give the bottom element, or 0, of the lattice

some special attention.

REMARK 4.3. In any lattice, L, the bottom element 0 is way-below itself. (i.e.

0 ≪ 0).

Proof. Let D be a directed set in L such that ⋁D = 0. Since 0 is the bottom element

of L, then for all d ∈D, we have 0 ≤ d ≤ 0 = ⋁D. Therefore, 0 ∈D and 0 ≪ 0.

REMARK 4.4. We also note that elements that are way-below themselves, such as

the bottom element, are commonly referred to as being compact.

The Way-Below relation intuitively implies a less-than / greater-than rela-

tionship. If x is way-below y, then most certainly x ≤ y.

LEMMA 4.5. Whenever x≪ y we have x ≤ y.

Proof. Suppose not. That is, suppose x /≤ y. Consider D = {y}, a directed set.

Then, ⋁D = y ≥ y. However, y /≥ x, hence, x /≪ y, a contradiction.

Later, we will conclude that for residuated maps, this condition is actually

stronger. When the value of one function is no longer 0, a function that is way-

below must be strictly less than the other function. We have to look at where the

14



functions are not equal to 0 since all residuated maps are required to be 0 at least

at 0.

Since any two functions in Res(L,M) must map 0L to 0M , we have that no

two functions, f, g can satisfy f(x) < g(x) for all x in L. It turns out that it is not

sufficient to assume f(x) < g(x) for all x in L ∖ {0L} to attain f ≪ g. Much of this

dissertation is devoted to studying the way-below relation on Res(L,M).

With the formal definition and conceptual ideas having been discussed, it

is natural to now provide a graphical explanation of the way-below relation on

Res(L,M). As mentioned before, the notion of way below can be seen as a sep-

aration of the two elements. So, in our case, on lattices of residuated maps, we

examine functions that are way below other functions, and we will show that there

is room between the two functions to squeeze in a third function.

As with most ideas that we have involving residuated maps, it makes sense

that we first take a look at deltas. Figure 4.2 is an example of two deltas in which

G is way below F .

Figure 4.2: An example of deltas where G is way below F (G≪ F )

There are few things to notice here in Figure 4.2 about the relationship

between F = δa,b and G = δc,d where a < c and b > d. First, as required by Lemma
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4.5, G ≤ F . Another thing is that G has the value of 0 longer than F , or as discussed

in Equation 3.1, we say bG > bF . If G left zero before F , then G /≤ F , and we will

discuss what happens if G and F leave zero at the same point. Finally, we also

take note that F jumps to a higher value than that of G (i.e. F (x) > G(x) for

{x∣F (x) ≠ 0}).

One must then ask the questions regarding whether a way-below relationship

is maintained, “Can both F and G jump at the same point?” and “Can both F

and G jump to the same value?” These are valid points that should be investigated

since neither of these situations would violate Lemma 4.5.

Figure 4.3: An example of deltas that jump to the same value

The functions δa,b and δc,b jump to the same height, b, as shown in Figure

4.3, and δc,b ≤ δa,b However, this is not a sufficient condition to be way-below. In

fact, the functions in Figure 4.3 do not have a way-below relationship. Consider

the directed set D = {δa,b− 1
n
}. The join of D is most certainly δa,b but not a single

element in D is greater than or equal to δc,b and thus does not meet the definition

of way-below.

When deltas jump at the same point (as in Figure 4.4), they have a strictly

less-than relationship everywhere after that. This poses a problem for being way-

below as well. While δu,v ≤ δu,t and δu,v(x) < δu,t(x) for x > u, this just isn’t enough.
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Consider the directed set D = {δu+ 1
n
,t}. The join of D is δu,t but no element in

D is greater than or equal to δu,v. Again, this does not satisfy the definition of

way-below.

REMARK 4.6. Note that while the pictures are for c > 0 in Figure 4.3 and u > 0

in Figure 4.4, the same arguments work if a or u equal zero. This means that

any residuated map that is zero only at zero and nonzero everywhere else cannot be

way-below another function. For example, δ0,z for z > 0 is not way-below anything.

Figure 4.4: An example of deltas that jump at the same point

So, at the very least, we know that for a delta to be way-below another delta,

the delta that is way-below cannot jump as high and must jump later. Graphically

speaking, the delta that is way above should be shifted left and up. These conditions

are not only necessary but sufficient.

THEOREM 4.7. Let δa,b and δc,d be in Res(L). Then δa,b is way below δc,d if and

only if a > c and b < d.

Proof. If a < c or b > d, then δa,b /≤ δc,d which is a contradiction to Lemma 4.5.

If a = c and b ≤ d, then δa,b and δc,d jump at the same point and we consider the

directed set D = {δc+ 1
n
,d}. We have ⋁D = δc,d, however, δa,b /≤ d for any d ∈D. Thus,
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δa,b /≪ δc,d.

If b = d and a > c, then δa,b and δc,d jump to the same height and we consider the

directed set D = {δc,d− 1
n
}. We have ⋁D = δc,d, however, δa,b /≤ d for any d ∈D. Thus,

δa,b /≪ δc,d.

Therefore, by contrapositive argument,

δa,b ≪ δc,d Ô⇒ a > c and b < d

For the other direction, assume that a > c and b < d. This gives us δa,b ≤ δc,d.

Now, suppose D is directed and ⋁D = ⋁
F ∈D

F ≥ δc,d. This implies that there is an x0

in (c, a) and an F0 in D such that

b < F0(x0).

Since a > x0 and F0 is nondecreasing, we get

F0(a) ≥ F0(x0) > b.

So, for this F0 in D, we have

F0(x) ≥ b for all x ≥ a

which implies

F0 ≥ δa,b.

That is, for any such D, there exists an F ∈D such that δa,b ≤ F and therefore

δa,b ≪ δc,d.

In order for a delta to be way below another delta, it must remain zero longer

and must jump to a height strictly less than the other delta. It is reasonable to

assume that this extends to general residuated maps. Since general residuated maps

may take on many values, it is natural that many other questions arise.
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The following picture, Figure 4.5, is an example of two residuated maps in

which the function on the bottom (G) is way-below the function on the top (F ).

The important thing to notice is that they are only equal at the beginning where

they are both equal to zero. After the function F leaves 0, the graphs maintain a

strictly less than relationship (G < F ) yielding definite separation between the two

in which another function could be drawn. It is also important to notice, albeit a

direct consequence to what was already stated, that the function that is way-below,

G, stays 0 (value is zero) longer, just as deltas did.

Figure 4.5: An example of G way below F (G≪ F )

These observations beg the questions, “Can the functions ever intersect at a

value other than 0 and still have a way-below relationship?” and “Can they leave

zero at the same time and have a way-below relationship?

Since deltas take on a finite number of values, namely two - zero and its

second index, we ask if this affects the strictly less than restriction after leaving

zero or if this must be true for all residuated maps in general. We consider two

residuated maps, F and G, such that F (p) = G(p) and F (x) < G(x) for all x > 0

and x ≠ p. These functions are illustrated by Figure 4.6. As it turns out, this is

still problematic.
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Figure 4.6: Residuated maps that are equal at one x > 0

Consider the functions,

Hn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (x) 0 ≤ x ≤ p − 1
n ,

F (p − 1
n) p − 1

n < x ≤ p +
1
n ,

F (x) p + 1
n ≤ x

Then,

D = {Hn∣n ∈ N}

is directed and ⋁D = F . However, for each n,

Hn ∣∣ G

and therefore,

G /≪ F.

So, we conclude the functions must maintain a strictly less than relationship

and this argument is analogous to the one discussed about Figure 4.3 where two

deltas jump to the same height.

The other question that needs to be answered is about jump discontinuities.

Deltas jump from zero to only one other value, but general residuated maps can
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jump multiple times and from values other than zero. Does this affect the restric-

tions about jumping at the same point? In Figure 4.7, we see an example of

residuated maps, F and G, that jump at the same point and yet G < F for all x > 0

not just after its jump point.

Figure 4.7: F and G jump at the same point, p

We answer these questions more formally in the proofs that follow. To begin,

we consider what is required for a delta to be way-below an arbitrary residuated

function. We have shown that in order to have a way-below relationship, a delta

that is way-below cannot leave zero at the same time as the other function and

that, when it leaves zero, it must take a value that is strictly less than the other

function. This gives us the following theorem.

THEOREM 4.8. Let δa,b and F ∈ Res([p, q], [r, s]) then δa,b ≪ F if and only if

a > bF = ⋁{x∣F (x) = 0} and b < F (a)

Proof. For the only if, suppose δa,b ≪ F . By Lemma 4.5, we have

δa,b ≤ F.

This implies that

a ≥ bF .
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We also want to show that b < F (a). Then, again by way of contradiction,

assume that b ≥ F (a).

dn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0

b − 1
n if 0 < x ≤ a + 1

n

F (x) if x > a + 1
n

Again, D = {dn∣n ∈ N} is a directed set since it forms a chain and ⋁D ≥ F . However,

dn∣∣δa,b for all n.

So, δa,b /≤ dn for all n ∈ N. This contradicts δa,b << F . Therefore,

δa,b ≪ F implies a > ⋁{x∣F (x) = 0} = bF and b < F (a)

.

Now, for the reverse direction, suppose a > ⋁{x∣F (x) = 0} and b < F (a)

Let D be an arbitrary directed set where ⋁D = F . We want to show that there is

a d ∈D such that d ≥ δa,b. Suppose that d /≥ δa,b for all d ∈D.

Since

d ≥ δa,b ⇐⇒ lim
x→a+

d(x) ≥ b,

we get

d /≥ δa,b ⇐⇒ lim
x→a+

d(x) < b.

This implies, since d is non-decreasing that

d(a) ≤ lim
x→a+

d(x) < b, for all d ∈D.

which means (⋁D)(a) ≤ b. Since ⋁D = F , we get (⋁D)(a) = F (a) but by assump-

tion we have F (a) > b, thus yielding a contradiction and the theorem holds.
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Theorem 4.8 formalizes the idea that for a function to be way below, it must

stay at zero longer and after leaving zero must remain strictly less than the other

function.

It should be pointed out that this also means both functions cannot leave

zero immediately, i.e. G≪ F does not allow bG = 0. While all residuated maps are

zero at zero, a function, G, that is way-below another function has to be zero more

than just at that single point, so bG > 0.

From the details provided so far such as requiring the lower function to

remain zero longer, it may seem reasonable that a way-below relationship prevents

two functions from sharing a jump discontinuity (Compare Figure 4.7 and Figure

4.8). This is not the case. Recall Figure 4.7 and notice that G = 0 longer than

F (bG > bF ) and that G < F for all x > 0. From this and the proofs so far, we

can see that it is not necessarily the “jump” but what happens at that point of

discontinuity that poses a problem. We now examine the graphs in Figure 4.8. In

contrast to Figure 4.7, these two functions do not have a way-below relationship

even though (bG > bF ) and that G < F for all x > 0. Consider the directed set

D =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F (x − 1
n) for x > 1

n

0 otherwise

RRRRRRRRRRRRRRRRR

for all n ∈ N

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
G is not less than or equal to any d in D, specifically because of what happens at

point p.

It is evident now that the jump discontinuity is not the problem per se, but

it does become a point of interest; the overlapping situation shown in Figure 4.8

cannot happen if G is to be way-below F . More formally, in order for a way-below

relationship to exists, we must have

F (p) = lim
x→p−

F (x) > lim
x→p+

G(x).

LEMMA 4.9. Suppose F,G ∈ Res([p, q], [r, s]), then
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Figure 4.8: Alternate example of F and G which jump at the same point

a) bG > bF and G(q) < F (q) and

b) Gr(x) = limt→x+G(t) < F (x) for all x ∈ [bG, q)

imply that m = inf{F (x) −Gr(x)∣x ∈ [bG, q]} > 0.

Proof. We know the infimum exists since the set is non empty and bounded below

by 0. Thus there is a sequence {xn}n∈N in (bG, q] such that (F −Gr)(xn) converges

toward this infimum m. Since the sequence is bounded, there is a convergent subse-

quence {xnj
}j∈N of the {xn}n∈N converging to some t ∈ [bG, q] and this subsequence

can be chosen to be decreasing or increasing (if infinitely many elements of the origi-

nal sequence are less than the limit, we have an increasing sequence, otherwise a de-

creasing one). If the subsequence is increasing, then since our functions are left con-

tinuous we get 0 < F (t)−Gr(t) ≤ F (t)−G(t) = limj→∞(F )(xnj
)−limj→∞Gr(xnj

) =m.

Similarly if the sequence is decreasing we get 0 < F (t) − Gr(t) ≤ F r(t) − Gr(t) =

limj→∞F (xnj
) − limj→∞Gr(xnj

) = m hence the infimum has to be positive and the

graphs of F and G are vertically separated.
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This allows us to now clearly formulate how much two functions are separated

when they are way-below one another.

THEOREM 4.10. Suppose F,G ∈ Res([p, q], [r, s]), and let

a) bG > bF and G(q) < F (q)

b) Gr(x) = limt→x+G(t) < F (x) for all x ∈ [bG, q)

Then G≪ F if and only if a) and b) hold.

Proof. By several previous examples we have seen that G ≪ F implies conditions

a) and b). For the converse, we will construct a collection {δxn,yn ∣n = 1, . . . ,N} such

that δxn,yn ≪ F for n = 1, . . . ,N and G ≤ ⋁Nn=1 δxn,yn . Let x1 = bG and y1 = Gr(x1)+m4 ,

where m is the infimum of the previous lemma. For n > 1, let

xn = ⋁{x∣G(x) ≤ yn−1} = G+(yn−1) and yn = Gr(xn) +
m

4
.

Observe that

yn − yn−1 = Gr(xn) +
m

4
− yn−1 = Gr(G+(yn−1)) +

m

4
− yn−1.

Since G(x) ≤ yn−1 implies that x ≤ G+(yn−1) it follows that G(t) > yn−1 for all

t > G+(yn−1). Therefore,

Gr(G+(yn−1)) ≥ yn−1 or Gr(G+(yn−1)) − yn−1 ≥ 0.

It now follows that

yn − yn−1 ≥
m

4
.

Thus, there is a smallest N such that yN > G(q).

Furthermore, for n = 1, . . . ,N we have that F (xn)−Gr(xn) ≥m which in turn

implies that yn = Gr(xn) + m
4 < F (xn). Also, for 1 ≤ n < N , G(xn+1) = G(G+(yn)) ≤

yn. Now G(xn+1) ≤ yn < F (xn) along with G(q) < yN < F (q) implies that δxn,yn ≪ F

for all n = 1, . . . ,N and G(x) ≤ ⋁Nn=1 δxn,yn . Since ≪ distributes over finite joins, we

have that G ≤ ⋁Nn=1 δxn,yn ≪ F , hence G≪ F .
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Looking back to Figure 4.5, observe that as soon as F leaves zero, there

is always a separation from G in which it is possible to find another function that

is between them. Explicitly, as stated in Theorem 4.10, we can use deltas whose

join is a step function that occupies this space between F and G. More than that,

however, one should see that we can find a function, H, between F and G where

H ≪ F and G≪H. Lemma 4.11 shows that H ≪ F exists.

LEMMA 4.11. If G1,G2, ...,Gn ≪ F then ⋁Gi ≪ F.

Proof. Let D be directed and ⋁D ≥ F . Then, for each i, there is a di ∈D such that

di ≥ Gi. This implies that

ω =
n

⋁
i=1
di ≥

n

⋁
i=1
Gi

Now, ω is not necessarily an element in D, but because D is directed, there is a

d ∈D such that d ≥ ω.

The information so far should give us a good idea of what the way-below

relation is and give some illustration of how two functions are related when one is

said to be way-below the other. We also note that in the coming pages, the idea of

way-above will be mentioned. Intuitively, we say that if G is way-below F then F

is way-above G.

The notion of way-above is of more interest since given an arbitrary function,

we can always find something way-below. Recall that from Remark 4.3 even the

bottom element has something way-below it, namely itself. In the next part where

we discuss contraction mapping, it is sometimes more feasible to use way-above in

our discussion.
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CHAPTER 5

FUNCTION MAPPINGS WITH RESPECT TO WAY-BELOW

We have discussed what it means for two residuated functions to be way-

below one another, and we now turn our interest to mappings on spaces of residuated

sets and whether or not the object in the range is way-above (or way-below) the

input from the domain. That is, given a mapping φ ∶ Res([L,M]) → Res([L,M])

and F ∈ Res([L,M]), is F ≪ φ(F )? As before, we need to restrict ourselves to

L,M being real intervals. We focus on the intervals [p, q], [r, s] and consider the

functions in Res(Res([0,1])), i.e. φ ∶ Res([0,1]) → Res([0,1]). This allows us to

begin work in Probabilistic Metric Spaces where distance distribution functions are

in Res([0,∞], [0,1]).

The results presented began with one basic question, “For which F ∈ Res([p, q])

and φ ∶ Res([p, q]) → Res([r, s]) is F ≪ φ(F )?”. That is, can we classify the φ

and F for which φ(F ) maps to an element way above? We also consider under

which conditions is the way-below relationship preserved, i.e. if F is way-below G

for which φ is this maintained?

We begin by describing the set of functions that are way above some F ∈

Res([p, q], [r, s]). What characteristics must a function have to be way-above F?

We will give such a set special notation as follows. Let ↟ F denote the set of

functions that are way above F , i.e.

↟ F = {G ∈ Res([p, q])∣F ≪ G}.

Again, we start with the most simple residuated maps by looking at deltas.
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Since we provided the requirements for a delta to be way below an arbitrary F in

the last chapter, the following should be straightforward.

THEOREM 5.1. For p < a < q and r < b < s,

↟ δa,b = {F ∈ Res([p, q], [r, s]) ∣ a > bF & F (a) > b}.

Proof. This is an immediate consequence of Theorem 4.8.

After establishing such a set can exist, we would like to show that it is

nonempty and not trivial for functions other than deltas. The following gives us

the requirement on F for which there are functions way-above it, or ↟ F ≠ ∅.

Using the information previously discussed, a residuated map has at least one other

function above it as long as it does not jump at zero and it never attains the top

value (in this case, s).

THEOREM 5.2. The set of functions that are way above F ∈ Res([p, q], [r, s]) is

nonempty if and only if bF > 0 and F (q) < s.

Proof. Let F ∈ Res([p, q], [r, s]). Suppose ↟ F ≠ ∅, that is, there exists G ∈

Res([p, q], [r, s]) such that F ≪ G. Suppose bF /> 0. Since G ≥ F , consider the

directed set, D, consisting of

dn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 x ≤ 1
n

G(x) otherwise

Then, ⋁D = G, however, F /≤ d for all d ∈D. Thus, F /≪ G.

Now suppose F (q) = s and bF > 0. Let K = ⋀{x ∣ G(x) = s}, then for x < K,

G(x) < s and define

dn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G(x) for x ≤K − 1
n

G (K − 1
n
) for x >K − 1

n
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Then, since G(x) ≥ F (x) for all x ∈ [p, q] and F (q) = s, we have dn ∣∣ F but

⋁dn = G ≥ F . Since the dn form a directed set, we have F /≪ G.

Therefore ↟ F ≠ ∅ implies bF > 0 and F (q) < s.

In the other direction, consider bF > p and F (q) < s. Let G be the top func-

tion in Res([p, q], [r, s]), that is, G = δp,s where G(p) = p and G(x) = s for x ≠ p.

Consider

H = δ bF +p

2
,
F (q)+s

2

.

By Theorem 4.10, F ≪ G because F ≤H and H ≪ G.

We begin our observations with some strong restrictions by first looking at

order automorphisms. It turns out that an order isomorphism will preserve the

way-below relationship.

THEOREM 5.3. Let φ ∶ Res(L1,M1) → Res(L2,M2) be an order isomorphism,

then F ≪ G if and only if φ(F ) ≪ φ(G).

Proof. Let φ an order isomorphism and D ⊆ Res(L,M) be a directed set with

⋁D ≥ φ(G). Let D̃ = {φ−1(d)∣d ∈ D}. Then, D̃ is a directed set since both φ and

φ−1 preserve order.

Observe,

⋁ D̃ = ⋁{φ−1(d)∣d ∈D} = φ−1(⋁D) ≥ φ−1(φ(G)) = G.

This means ⋁ D̃ ≥ G. Since F ≪ G, there exists d̃ ∈ D̃ such that F ≤ d̃. This

implies,

φ(F ) ≤ φ(d̃) ∈D.

Thus,

φ(F ) ≪ φ(G).

The converse is analogous.

29



In 1988, R.C. Powers published a classification theorem for order automor-

phisms ([7]). According to Powers, every order automorphism in Res(L) is either

Type 1 or Type 2.

THEOREM 5.4. (Powers 1988 [7]) The map φ belongs to Aut(Res([p, q], [r, s])) if

and only if for all F in Res([p, q], [r, s]), one of the following holds:

(i) φ(F ) = θ ○ F ○ τ where θ ∈ Aut[r, s] and τ ∈ Aut[p, q] ( Type 1 );

(ii) φ(F ) = α ○ F + ○ β where α and β are dual automorphisms

from [p, q] onto [r, s] (Type 2) and F + is the associated residual of F .

Type 1 automorphisms are very nice in that under certain circumstances

they can map way-below (or way-above). Because Type 1 is a composition with

continuous increasing bijections, we will need that F cannot reach 1 and bF ≠ 0.

THEOREM 5.5. Let φ be an order automorphism of Res([p, q], [r, s]) such that

φ(F ) = θ ○ F ○ γ where γ ∶ [p, q] → [p, q], θ ∶ [r, s] → [r, s], are both order auto-

morphisms with the property that γ(x) < x for all x ∈ (p, q) and θ(x) < x for all

x ∈ (r, s). If bF > p and F (q) < s, then φ(F ) ≪ F .

Proof. If F = 0F , then φ(0F ) = 0F ≪ 0F = 0 for all x.

Otherwise, using the properties of θ and γ, we get

(φ(F ))(x) = θ(F (γ(x))) ≤ F (γ(x)).

Since F is nondecreasing, we get

F (γ(x)) ≤ F (x).

Thus,

φ(F ) ≤ F for all F ∈ Res([p, q], [r, s]).
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Since θ is a bijection, we have θ(u) = r ⇐⇒ u = θ−1(r) = r, thus

(φ(F ))(x) = θ(F (γ(x))) = r ⇐⇒ F (γ(x)) = r.

With bF = ⋁{x∣F (x) = r} > p, we get

bφ(F ) = ⋁{x∣(φ(F ))(x) = r}

= ⋁{x∣F (γ(x)) = r} Let y = γ(x), then γ−1(y) = x.

= ⋁{γ−1(y)∣F (y) = r}

= γ−1(⋁{y∣F (y) = r}) since γ−1 is an order automorphism.

= γ−1(bF )

Thus,

φ(F )(x) = r ⇐⇒ x ≤ γ−1(bF ) ⇐⇒ γ(x) ≤ bF .

Since γ(x) < x, we have γ−1(x) > x for x ∈ [p, q]. Hence,

bφ(F ) > bF .

We require that bF > 0 since

θ(F (γ(0))) = 0 if bF = 0 then bφ(F ) = 0

We also observe φ(F )(q) < F (q) since

θ(F (γ(q))) = θ(F (q)) < F (q).

Similarly we need F (q) < s since if

F (q) = s then θ(F (γ(q))) = s is possible.

Now,

lim
x→a+

φ(F )(x) < F (a).
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Then,

lim
n→∞ θ (F (γ(a + 1

n
))) = θ ( lim

n→∞F (γ(a + 1

n
))) .

And for n large, γ(a + 1
n) < a. Then,

F (γ(a + 1

n
)) ≤ F (a) ≤ θ(F (a)) < F (a).

Therefore, when bF > 0 and F (q) < s, by Theorem 4.10, we have φ(F ) ≪ F .

This also easily establishes that we can have a φ of Type 1 that maps way-

above for which we provide the following corollary. The proof is analogous taking

into consideration the changes to θ and γ.

Corollary 5.6. Let φ be an order automorphism of Res([p, q], [r, s]) such that φ(F ) =

θ ○ F ○ γ where γ ∶ [p, q] → [p, q], θ ∶ [r, s] → [r, s], are both order automorphisms

with the property that γ(x) > x for all x ∈ [p, q] and θ(x) > x for all x ∈ [r, s]. Then,

F ≪ φ(F ) for all F such that ↟ F ≠ ∅.

On the other hand, Type 2 order automorphisms do not map with a way-

below relationship. In fact, if φ is an order automorphism of Type 2, not only can

we always find a δa,b for which φ(δa,b) /≪ δa,b, but we also know that δa,b and φ(δa,b)

are non-comparable when δa,b ≠ δp,r = 0.

THEOREM 5.7. If φ(F ) = α ○F + ○β, then there exists δa,b, with a ∈ (p, q], b ∈ (r, s]

such that φ(δa,b)∥δa,b and φ(δa,b) /≪ δa,b. Note: φ(δa,b) = δβ−1(b),α(a)

Proof. Since α and β are bijections and therefore invertible, choose any t ∈ (r, s)

which means

β−1(t) < q and γ−1(t) < q.

So, there exists an a ∈ (p, q) such that,

a > β−1(t) (5.1)

32



and

a > α−1(t). (5.2)

Applying the strictly decreasing function, α, to both sides of (5.2), we get

α(a) < t (5.3)

This implies,

δβ−1(t),α(a)∥δa,t (5.4)

φ(δa,t)∥δa,t (5.5)

And, in particular, φ(δa,t) /≪ δa,t (5.6)

Order Automorphisms were a place to start looking but a bit too restric-

tive for our purposes and application. Thus, we turn our attention to mappings

on Res([p, q], [r, s]) in general. As discussed before, we first look at how such a

mapping, φ, behaves with deltas and extend our findings from there.

The first step is to look at φ that are induced similar to Type 1 order au-

tomorphisms. If applying φ to δa,b results in a delta whose first index is just a

function of the original a and whose second index is just a function of the original

b (i.e. φ(δa,b) = δτ(a),θ(b)), we can identify the monotonicity and continuity of those

functions (τ, θ).

More formally, for residuated φ ∶ Res([p, q], [r, s]) → Res([p, q], [r, s]) and

φ(δa,b) = δτ(a),θ(b), then τ is increasing and right continuous while θ is increasing

and left continuous.

LEMMA 5.8. Suppose φ ∶ Res([p, q], [r, s]) → Res([p, q], [r, s]) is residuated and

φ(δa,b) = δτ(a),θ(b) for all a ∈ [p, q] and b ∈ [r, s].

Then, τ ∶ [p, q] → [p, q] and θ ∶ [r, s] → [r, s] are nondecreasing.
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Proof. If φ is residuated, then φ is nondecreasing and maps δp,r → δp,r. Suppose

φ /≡ δp,r. Thus, there exists an b ∈ (r, s] such that θ(b) /= r. Now, suppose b1 < b2 in

(r,s].

Then, δa,b1 < δa,b2 which implies φ(δa,b1) ≤ φ(δa,b2). Thus, δτ(a),θ(b1) ≤ δτ(a),θ(b2).

Therefore,

θ(b1) ≤ θ(b2)

Similarly, there is an a ∈ [p, q) such that τ(a) /= q, and we suppose a1 < a2 in [p,q).

Then, δa2,b < δa1,b which implies φ(δa2,b) ≤ φ(δa1,b). Thus, δτ(a2),θ(b) ≤ δτ(a1),θ(b).

Therefore,

τ(a1) ≤ τ(a2)

LEMMA 5.9. Let φ ∶ Res([p, q], [r, s]) → Res([p, q], [r, s]) be residuated and φ(δa,b) =

δτ(a),θ(b). Then θ ∶ [r, s] → [r, s] is left continuous and τ ∶ [p, q] → [p, q] is right con-

tinuous.

Proof. Without loss of generality, assume φ /≡ δp,r and let a < q, b > r. Choose b such

that θ(b) > r and b such that τ(a) < q then consider,

δa,b = ⋁
t<b
δa,t = lim

t→b−
δa,t = δa, lim

t→b−
t

Since φ is residuated,

δτ(a),θ(b) = φ(δa,b) = φ(⋁
t<b
δa,t)

= ⋁
t<b
φ(δa,t)

= ⋁
t<b
δτ(a),θ(t)

= lim
t→b−

δτ(a),θ(t)

= δτ(a),θ( lim
t→b−

t)
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Therefore, θ must be left continuous.

Again without loss of generality assume a < q, b > r. Now consider,

δa,b = ⋁
s > a

δs,b = lim
s→a+

δs,b = δ lim
s→a+

s, b

If φ is residuated,

δτ(s),θ(b) = φ(δa,b) = φ( ⋁
s > a

δs,b)

= ⋁
s > a

φ(δs,b)

= ⋁
s > a

δτ(s),θ(b)

= lim
s→a+

δτ(s),θ(b)

= δτ( lim
s→a+

s),θ(b)

Therefore, τ must be right continuous.

Now, we consider what happens if applying φ to δa,b results in a delta where

the indices are functions of the opposite index from the input, i.e. similar to Type

2 order automorphisms. Thus, if

φ(δa,b) = δα(b),β(a)

for some sets

α ∶ [r, s] → [p, q]

β ∶ [p, q] → [r, s]

we have that the functions α,β are both decreasing while α is left continuous and

β is right continuous.

LEMMA 5.10. Suppose φ ∶ Res([p, q], [r, s]) → Res([p, q], [r, s]) is residuated and

φ(δa,b) = δα(b),β(a) for all a ∈ [p, q] and b ∈ [r, s].

Then, α ∶ [r, s] → [p, q] and β ∶ [p, q] → [r, s] are decreasing and α(r) = q, β(q) = r.
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Proof. If φ is residuated, then φ is nondecreasing and maps δp,r → δp,r. Suppose

φ /≡ δp,r. Thus, there exists an a ∈ (p, q) such that β(a) /= r. Now, suppose b1 < b2 in

(r,s).

Then, δa,b1 < δa,b2 which implies φ(δa,b1) ≤ φ(δa,b2). Thus, δα(b1),β(a) ≤ δα(b2),β(a).

Therefore,

α(b1) ≥ α(b2)

Similarly, there is a b ∈ (r, s) such that α(b) /= p, and we suppose a1 < a2 in (p,q).

Then, δa2,b < δa1,b which implies φ(δa2,b) ≤ φ(δa1,b). Thus, δα(b),β(a2) ≤ δα(b),β(a1).

Therefore,

β(a1) ≥ β(a2)

We have

δp,r = δa,r = δq,a for all a.

Thus,

δα(r),β(a) = δq,β(a) for all a

and

δα(a),β(q) = δa,r for all a.

This implies that

β(q) = r and α(r) = q.

LEMMA 5.11. Let φ(δa,b) = δα(b),β(a) then φ ∶ Res([p, q], [r, s]) → Res([p, q], [r, s])

is residuated if α is left continuous and β is right continuous.

Proof. Without loss of generality, assume φ /≡ δp,r and a < q, b > r. Choose a such

that β(a) ≠ r and consider,

δa,b = ⋁
t<b
δa,t = lim

t→b−
δa,t = δa, lim

t→b−
t

36



Since φ is residuated,

δα(b),β(a) = φ(δa,b) = φ(⋁
t<b
δa,t)

= ⋁
t<b
φ(δa,t)

= ⋁
t<b
δα(t),β(a)

= lim
t→b−

δα(t),β(a)

= δα( lim
t→b−

t),β(a)

Therefore, α must be left continuous.

Again without loss of generality assume a < q, b > r. Now consider,

δa,b = ⋁
s > a

δs,b = lim
s→a+

δs,b = δ lim
s→a+

s, b

If φ is residuated,

δα(b),β(a) = φ(δa,b) = φ( ⋁
s > a

δs,b)

= ⋁
s > a

φ(δs,b)

= ⋁
s > a

δα(b),β(s)

= lim
s→a+

δα(b),β(s)

= δα(b),β( lim
s→a+

s)

Therefore, β must be right continuous.

Next we consider more general mappings: the case where applying φ to δa,b

results in a delta whose indices are functions of two variables and dependent on

both a and b from the input. Such a φ is given by

φ(δa,b) = δγ(a,b),σ(a,b)
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and we get that γ is increasing in the first variable, decreasing in the second and

σ is increasing the second variable, decreasing in the first. Both γ and σ are left

continuous in second variable and right continuous in the first variable.

LEMMA 5.12. Suppose φ ∶ Res([p, q], [r, s]) → Res([p, q], [r, s]) is residuated and

φ(δa,b) = δγ(a,b),σ(a,b) for all a ∈ [p, q] and b ∈ [r, s].

Then, γ ∶ [p, q] × [r, s] → [p, q] and σ ∶ [p, q] × [r, s] → [r, s]must be decreasing in b

and a, respectively, and γ, σ are increasing in a and b, respectively.

Proof. Since φ is residuated, then φ is increasing. Let a1, a2 ∈ [p, q] and b1, b2 ∈ [r, s].

Assume a1 ≥ a2 and b1 ≤ b2.

Then,

δa1,b1 ≤ δa2,b2 (5.7)

φ(δa1,b1) ≤ φ(δa2,b2) (5.8)

δγ(a1,b1),σ(a1,b1) ≤ δγ(a2,b2),σ(a2,b2) (5.9)

(5.10)

Thus,

γ(a1, b1) ≥ γ(a2, b2) and σ(a1, b1) ≤ σ(a2, b2)

Now, if b1 = b2,

γ is increasing in a and σ is decreasing in a

And if a1 = a2,

γ is decreasing in b and σ is increasing in b

LEMMA 5.13. Let φ(δa,b) = δγ(a,b),σ(a,b) then φ ∈ Res([p, q], [r, s]) if γ ∶ [p, q] ×

[r, s] → [p, q] and σ ∶ [p, q] × [r, s] → [r, s] are left continuous in the second variable

and right continuous in the first variable.
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Proof. Suppose φ ∶ Res([p, q], [r, s]) → Res([p, q], [r, s]) is residuated and

φ(δa,b) = δγ(a,b),σ(a,b) for all a ∈ [p, q] and b ∈ [r, s].

Without loss of generality, assume φ /≡ δp,r and a < q, b > r, then we can choose a

such that γ(a, b) ≠ q and σ(a, b) ≠ r and consider,

δa,b = ⋁
t<b
δa,t = lim

t→b−
δa,t = δa, lim

t→b−
t

If φ is residuated,

δγ(a,b),σ(a,b) = φ(δa,b) = φ(⋁
t<b
δa,t)

= ⋁
t<b
φ(δa,t)

= ⋁
t<b
δγ(a,t),σ(a,t)

= lim
t→b−

δγ(a,t),σ(a,t)

= δγ(a, lim
t→b−

t),σ(a, lim
t→b−

t)

Therefore, γ, σ must be left continuous in the second variable.

Similarly, we now consider,

δa,b = ⋁
u > a

δu,b = lim
s→a+

δu,b = δ lim
u→a+

u, b

If φ is residuated,

δγ(a,b),σ(a,b) = φ(δa,b) = φ( ⋁
u > a

δu,b)

= ⋁
u > a

φ(δu,b)

= ⋁
u > a

δγ(a,b),σ(a,b)

= lim
u→a+

δγ(a,b),σ(a,b)

= δγ( lim
u→a+

u,b),σ( lim
u→a+

u,b)

Therefore, γ, σ must be right continuous in the first variable.
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These lemmas tell us a lot about what happens when a residuated map, φ,

maps a delta to another delta. In fact, this gives us enough information to know

that iterations of φ will eventually map to the top element, δq,s.

THEOREM 5.14. Let φ ∶ Res([p, q], [r, s]) → Res([p, q], [r, s]) and be residuated.

Suppose φ maps deltas to deltas,then for all F /= δ0,0 with ↟ F /= ∅, we have

F ≪ φ(F ) Ô⇒ lim
n→∞φ

n(F ) = δ0,1

Proof. Since ↟ δp,b = ∅ for b ≠ r and ↟ δa,s = ∅ for a ≠ q, we may assume

a > p and b < s.

Case 1: Type 1 mappings of the form θ ○ δa,b ○ τ−1 = φ(δa,b) = δτ(a),θ(b)

Suppose a > 0, b < 1 and lim
n→∞φ

n(δa,b) /= δ0,1. Since φn(δa,b) = δτn(a),θn(b), we have

lim
n→∞θ

n(b) = L1 < 1 or lim
n→∞τ

n(a) = L2 > 0.

Suppose lim
n→∞θ

n(b) = L1 < 1. Then consider δa,L1 and note that ↟ δa,L1 /= ∅. Since

lim
n→∞θ

n(b) = L1 < 1, we get

φ(δa,L1) = θ ○ δa,L1 ○ τ−1 = δτ(a),θ(L1) = δτ(a),L1

L1 = lim
n→∞θ

n(b) = lim
n→∞ θ

n+1(b)

= θ( lim
n→∞ θ

n(b)) since θ has to be left continuous by Lemma 5.9.

= θ(L1)

Now by Lemma 5.8,

δa,L1 ≪ φ(δa,L1) = δτ(a),θ(L1) = δτ(a),L1

This is a contradiction, δa,L1 /≪ φ(δa,L1) and so,

lim
n→∞θ

n(b) = L1
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Now, suppose lim
n→∞τ

n(a) = L2 > 0. Consider δL2,b and note that ↟ δL2,b /= ∅. If

δL2,b ≪ φ(δL2,b) = δτ(L2),θ(b), this would require L2 < τ(L2). However,

L2 = lim
n→∞τ

n(b) = lim
n→∞τ

n+1(b)

= τ( lim
n→∞τ

n(b)) since τ is right continuous by Lemma 5.9

= τ(L2)

contradicting δL2,b ≪ δτ(L2),b = φ(L2, b). Thus,

lim
n→∞τ

n(b) = 0

Case 2: Type 2 mappings of the form α ○ δ+a,b ○ β−1 = φ(δa,b) = δα(b),β(a)

According to Theorem 4.7, δa,b ≪ δα(b),β(a) if and only if α(b) < a and β(a) > b.

So, suppose α(b) < a and β(a) > b. Fix a ∈ (0,1).

We note,

lim
b→1

δa,b = δa,1

And,

φ(lim
b→1

δa,b) = δα(limb→1 b),β(a)

As b goes to 1, β(a) must go to 1 for all a since β(a) > b.

Similarly, fixing b ∈ (0,1), we get that as a goes to 0, α(b) must also go to zero since

α(b) < a. Thus,

φ(δa,b) = δ0,1

Case 3:φ(δa,b) = δγ(a,b),σ(a,b)

Similar to case 2, we need only consider γ(a, b) < a and σ(a, b) > b. Fix a ∈ (0,1).

As noted before,

lim
b→1

δa,b = δa,1
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And,

φ(lim
b→1

δa,b) = δγ(a,limb→1 b),σ(a,limb→1 b)

As b goes to 1, then σ(a, b) is forced to 1 because σ(a, b) > b. Similarly, fixing

b ∈ (0,1), we get that as a goes to 0, γ(a, b) must also go to zero since γ(a, b) < a.

Again resulting in,

φ(δa,b) = δ0,1

Now, let F ∈ ∆+ ∖ {δ0,0}. Then, there is an x0 ∈ (0,1) such that F (x0) > 0. Then,

δx0, 12F (x0) ≤ F

Apply φn to both sides,

φn(δx0, 12F (x0)) ≤ φ
n(F )

Taking the limit as n goes to infinity, we get

δ0,1 = lim
n→∞φ

n(δx0, 12F (x0)) ≤ lim
n→∞φ

n(F )

Therefore,

lim
n→∞φ

n(F ) = δ0,1

The result that successive iterations of φ gives us a fixed point, namely the

top element δ0,1 is what we are hoping for, but the requirement that φ maps deltas

to deltas is quite restrictive. So, we would like to extend this same result to any

nondecreasing φ in our space.

We then considered a less restrictive case and tried to relax the condition

that φ be residuated. We conclude that even requiring φ to be monotone, if φ is not

residuated, then φn(F ) does not necessarily go to δ0,1 as illustrated by the following

counterexample:
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EXAMPLE 5.15. Consider φ ∶ Res([p, q], [r, s]) → Res([p, q], [r, s]), a monotone

function, and fix a ∈ (0,1):

φ(F ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δa+bF
2

,
1+F (1)

2

if F ≪ δa,1

δ0,1 if F /≪ δa,1

Clearly φ(δa,b) ≫ δa,b for all a, b ∈ (0,1). Furthermore, if F ≪ δa,1, then

φn(F ) → δa,1 as n → ∞, but since φ is not residuated, we do not get that δa,1 has

to be a fixed point. Thus dropping the requirement that φ be residuated (even at

just one point) no longer allows the conclusion of Theorem 5.14.
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CHAPTER 6

INTRODUCTION TO PROBABILISTIC METRIC SPACES AND
CONTRACTION MAPPINGS

The research presented regarding the way-below relation has application in

probabilistic metric spaces. In this chapter, we will introduce probabilistic metric

spaces (or PM spaces) and contraction mappings. We present some basic definitions

below which can be found in the book Probabilistic Metric Spaces by B. Schweizer

and A. Sklar [11] or references therein.

The general idea of a probabilistic metric space is that in reality we can-

not measure distances accurately but that a series of measurements will give us a

likelihood of distances. Thus, a probabilistic metric space is a set of points where

distances are measured by so called distance distribution functions (d.d.f.). The in-

terpretation will be that such a d.d.f. F (x) gives the probability that the distance

of two points is less that or equal to x. Thus, we begin with this definition because

we will need it.

DEFINITION 6.1 (distribution function, distance distribution function). A dis-

tribution function (d.f.) is a nondecreasing function, F defined on the extended

nonnegative reals, [0,∞], with F (0) = 0 and F (∞) = 1. We further assume that F

is left continuous on (0,∞). We denote the space of all such functions by ∆+.

We note that ∆+ does not quite fit with our notion of residuated mappings

as defined in Chapter 3. For that to work, we need F ∶ [0,∞] → [0,1] to satisfy

F (0) = 0, F nondecreasing on [0,∞], and left continuous on (0,∞]. However, ∆+ is

needed for the probability interpretation of the d.d.f. that F (∞) = 1. Fortunately,
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it is easy to see that ∆+ ≅ Res([0,∞], [0,1]) via F ∈ ∆+ → F̃ ∈ Res([0,∞], [0,1])

with F (x) = F̃ (x) for all x in [0,∞). This is clearly bijective and order preserving

with an order preserving inverse and thus an automorphism.

Now that the usual metric of [0,∞) is replaced by the d.d.f.’s in ∆+, we need

to generalize the properties of a metric space to this setting. Recall that (X,d) is

a metric space if

i.) d(x, y) = 0 if and only if x = y,

ii.) d(x, y) = d(y, x), and

iii.) d(x, z) ≤ d(x, y) + d(y, z).

To generalize i, we need a d.d.f. that corresponds to a distance of zero.

Based on the probability interpretation of d.d.f., we need a function that says the

properties of the distance being less than or equal to 0 is 1. This is, in our notation,

the function

d0,1(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x = 0

1 if x > 0

The probabilistic version of ii is straightforward, we simply assign the same

d.d.f. to the pair (x, y) as to (y, x).

In order to find an analog of the triangle inequality in iii, we need a suitable

function from ∆+ ×∆+ into ∆+. These are the triangle functions defined below.

DEFINITION 6.2 (triangle function). We say that τ ∶ ∆+ × ∆+ → ∆+ is a trian-

gle function if τ assigns a distance distribution function to every pair of distance

distribution functions and satisfies the following conditions:

i. τ(F,G) = τ(G,F ) for all F,G ∈ ∆+,
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ii. τ(F,G) ≤ τ(H,K) whenever F ≤H,G ≤K in ∆+,

iii. τ(F, δ0,1) = F for all F ∈ ∆+,

iv. τ(τ(F,G),H) = τ(F, τ(G,H)) for all F,G,H ∈ ∆+.

A triangle function is a binary operation on a set of d.d.f.’s (Definition 6.1)

that is commutative, associative, and nondecreasing in each place, and has an iden-

tity, δ0,1 (Note that Schweizer and Sklar call this ε0). Now, we are ready for the

definition of a PM space.

DEFINITION 6.3 (probabilistic metric space). A probabilistic metric space (briefly,

a PM space) is a triple (S,F , τ) where S is a nonempty set (whose elements are the

points of the space), F is a function from S × S into ∆+ (the probabilistic metric),

τ is a triangle function, and the following are satisfied for all p, q, r in S:

i. F(p, p) = ε0, for all p ∈ S.

ii. F(p, q) ≠ ε0 if p ≠ q ∈ S.

iii. F(p, q) = F(q, p) for all p, q ∈ S.

iv. F(p, r) ≥ τ(F(p, q),F(q, r)) for all p, q, r, s ∈ S.

The other notion that must be discussed is that of contractions, or contrac-

tion mappings. First, we provide the well-known definition of a contraction mapping

on a general metric space.

DEFINITION 6.4. [contraction mapping, contraction] On a metric space, M , with

metric, d, that is, (M,d), a contraction mapping (or contraction) is a function

f from M to itself with the property that there is some nonnegative real number

0 ≤ k < 1 such that for all x, y in M ,

d(f(x), f(y)) ≤ kd(x, y).
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Since our goal is to use results from our previous chapter to provide a new

definition of construction on a PM space, we start by providing the definition from

[11] for contraction mapping on PM spaces.

DEFINITION 6.5 (contraction mapping on a PM space). Let (S,F , τ) be a PM

space and φ a function from S into S. Then, ψ is a contraction map on (S,F , τ)

if there is an α in (0,1), the contraction constant of ψ, such that

Fφpφq(x) ≥ Fpq(x/α)

for all p, q in S and all x in the extended positive half-line, [0,∞]; or equivalently,

if for all p, q in S

Fφpφq(x) ≥ Fpq(j/α)

where j is the identity function on [0,∞].

Now that we have the necessary terminology, in the next chapter we will look

at some existing work done with contraction mappings on PM spaces and present

how it compares to our own.
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CHAPTER 7

CONTRACTIONS ON PROBABILISTIC METRIC SPACES

Contractions on PM spaces were first studied (and defined) in 1966 by V.M.

Sehgal who was working in fixed point theory. Later in the 1970s and 1980s, studies

continued with A.T. Bharucha-Reid and T.L. Hicks. Viorel Radu ( [8]) states that

there are two known types of contraction mappings in probabilistic metric spaces,

one by Sehgal and Bharucha-Reid and one by Hicks. Here we will examine some of

their results and compare them with our notion of using way-above and way-below

to define a contraction mapping on a PM space (S,F , τ).

Since a contraction mapping on a metric space as defined in Definition 6.4

maps any pair of points closer together, we need to achieve this also in the prob-

abilistic sense. This means that two points (x, y) get mapped to (f(x), f(y)) and

that the probability of certain distances need to be larger at smaller distances.

This corresponds to “moving” our d.d.f. “left” and “up”, which in turn means the

original d.d.f. or (x, y) is way-below the new d.d.f. or (f(x), f(y)). This leads to

DEFINITION 7.1. Let (S,F , τ) be a PM space. Then f ∶ S → S is a probabilistic

ω-contraction if there is a φ ∶ ∆+ → ∆+ such that F ≪ φ(F ) for all F ∈ ∆+ with

↟ F ≠ ∅ and φ(Fp,q) ≤ Ffp,fq for all p ≠ q in S and all Fp,q in F . We will call φ the

ω-construction factor of f . Here, way-below is interpreted in Res([0,∞], [0,1]).

In view of Theorem 5.14, we see that φ ∈ Res(Res([0,∞], [0,1])) with δa,b ≪

φ(δa,b) for all a ∈ (0,∞) and b ∈ (0,1) are the ω-construction functions that will be

most useful.
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In a 1983 paper ([6]), T. L. Hicks stated that in a probabilistic metric space,

if there is a metric d on S related to the distribution functions by

d(x, y) < t if and only if Fx,y(t) > 1 − t, for t > 0,

then d is called a compatible metric. He used this to translate conditions to PM

spaces, especially the contraction condition. His result is presented in Theorem 7.2.

DEFINITION 7.2 (Hicks 1983). The following condition is a reasonable general-

ization of a contraction to PM-spaces:

F ∶ S → S is a contraction if there is a k such that for t > 0,

Ffx,fy(kt) > 1 − kt whenever Fx,y(t) > 1 − t

In order to compare our Definition 7.1 to that of other authors, we need to

rephrase theirs in terms of our ω-construction function φ. In particular, if

Fp,q /≪ Ffp,fq

we see that the two notions are not comparable.

THEOREM 7.3. If we have for all t > 0,

Ffx,fy(kt) > 1 − kt if and only if Fxy(t) > 1 − t,

then this neither implies nor is implied by

Fx,y ≪ Ffx,fy.

Proof. Let 0 < k < 1 be fixed and let t > 3
4 .
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Consider the functions:

G(x) = δ 3
4
,1

F (x) = δ 3
8
, 3
4

If k = 1
2 , we have Gx,y(t) > 1 − t. Also,

F (1

2
t) = 3

4
> 1 − 1

2
⋅ 3

4
= 5

8
.

So, the condition for Hicks’ definition is satisfied, however, G∣∣F , in particular,

G /≪ F .

Now consider:

δ 1
4
, 1
2
= G≪ F = δ 1

8
, 3
4

For G(t) > 1 − t, we must have t > 1
4 . This means,

F (kt) > 1 − kt if and only if
3

4
> 1 − 1

4
k

3 > 4 − k

−1 > −k

k > 1

So, given two functions G ≪ F , does not imply there is a 0 < k < 1 which satisfies

Hicks’ Fixed Point Theorem.

We conclude that the contraction on PM-spaces introduced by T.L. Hicks is

not directly related to the way-below relation.
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In 1972, V.M. Sehgal and A.T. Bharucha-Reid published some different work

on contraction mappings in probabilistic metric spaces [12]. For simplicity, we

will present their result using the notation from a paper written by Schweizer,

Sherwood, and Tardiff [10]. They referred to Sehgal and Bharucha-Reid’s notion

as a B-contraction.

DEFINITION 7.4 (B-contraction). A mapping f of a PM space, (S,F , τ) into itself

is a B-contraction if there is a γ in (0,1) such that for all points p, q in S and all

x > 0,

Ffp,fq(γx) ≥ Fpq(x)

As it turns out, these B-contractions are also not directly related to way-

above. Our notion of way-above is actually stronger in some sense.

In Sehgal and Bharucha-Reid’s contraction, we can consider there is a func-

tion, T that maps Fp,q → Ffp,fq and that T (F )(x) = F (γx) for some γ in (0,1).

Since the (γx) gives us a scaling along the x-axis and we have a greater than or

equal relationship, this T was a potential match for our ω-construction function φ

that maps way-above. However, in some cases, this scaling along the x-axis was

only enough to “shift left” and not “shift up” as we have required for way-above.

So we consider the following example.

EXAMPLE 7.5. Let Fpq = δ 1
2
, 1
2

and γ = 1
2 . Then, we have

T (δ 1
2
, 1
2
) = δ 1

4
, 1
2
≥ δ 1

2
, 1
2

satisfying the idea of B-contraction. However,

δ 1
4
, 1
2

/≪ δ 1
2
, 1
2
.

Thus, these B-contractions are not always related to way-above.

51



It is relevant to note that there is some overlap. A ω-construction function

φ can lead to a B-contraction. This would be when φ ∶ ∆+ → ∆+ is an order

automorphism of Type 1 with θ(t) > t where t ∈ (0,1) and γ(x) = kx for k < 1 and

x ∈ (0,∞).

To add to the discussion, we present that our notion of way-above along

with the proper φ is another type of contraction on PM spaces. In a general metric

space, a contraction is where the distance between two points diminishes to zero (or

where you have a single point) by a factor of 0 < k < 1. Where f is the contraction

mapping, this is modeled by

d(f(p), f(q)) ≤ k ⋅ d(p, q)

for all p, q in the space. We note that k does depend on f but works for any two

points in the space. Applying the contraction again yields

d(f 2(p), f 2(q)) ≤ k ⋅ d(f(p), f(q)) ≤ k2 ⋅ d(p, q).

Thus, iteratively applying the contraction f makes the distance smaller by a factor

of k. We note that f alone can make the distance smaller, and the k guarantees

that this distance converges to zero. This is much like the fact that we require both

a shift left and up for way-above.

Now, in a probabilistic metric space, the value of the metric is a probability

distribution function (or distance distribution function) represented by F as in the

Sehgal definition. If we look back at this representation,

Fp,q ≤ Ffp,fq,

applying our contraction (a φ that maps way-above) is actually squeezing in between

the left and right side,

Fp,q ≪ φ(Fp,q) ≤ Ffp,fq.
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As pointed out in the earlier example φ(Fp,q) could be equal to Ffp,fq, but only for

a select group of d.d.f.’s.

Our contraction, φ, is much like that of the factor k. We require that the

same φ work for all d.d.f.’s, Fp,q, and φ is way-above the identity map. Continuing

to iterate φ brings us back to the result of Chapter 5,

φn(Fp,q) → δ0,1.

In this context with δ0,1 being a d.d.f., it means the probability that points p and q

have a distance of zero or less is 1, and the probability that they have a distance of

more than zero is 0. Effectively, two points with the distance distribution function,

δ0,1, have 0 distance. This makes φ a contraction because in the general metric

since, continuing to apply φ makes the distance between two points diminish to a

single point. In the future, we plan to investigate further and consider fixed points

in PM spaces.
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CHAPTER 8

REMARKS AND CONCLUSION

This dissertation consists of three parts: understanding posets and basic the-

ory of lattices, working with the way-below relation and how it extends to function

spaces and mappings between them, and the basic understanding of probabilistic

metric spaces and where the notion of way-below was used to provide an alternative

definition of contraction.

After spending time studying special posets and what makes them a lattice,

it was particularly interesting to work on problems where the elements of these sets

were functions. It also became necessary to examine the behavior of these sets when

mapping them back into themselves or other lattices. In this dissertation, we began

our work with residuted maps and made progress in generalizing to functions with

less restriction.

The basic notion of residuated maps were being studied in the early 1960’s by

G.N. Raney when he began to look at Galois connections on lattices. Later, Blyth

and Janowitz brought residuated maps to the forefront in this 1972 book [1]. There

are still unanswered questions about the residuated maps particular lattices induce

and how the relationship between certain lattices affect or provide the relationship

between their associated sets of residuated maps. This leaves avenues for future

research in the area and even exploratory work on an undergraduate project.

The way-below relation was studied on some well-known but restrictive

spaces of residuated maps.A characterization of when G≪ F for F,G ∈ Res(L,M)

where L,M are more general lattices than the chains [p, q], [r, s] is one of the fu-
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ture plans together with extending other results from this dissertation to this more

general setting. It is an example of some notions we encounter where the formal

definition, the graphical interpretation, and using it in practice are not necessarily

the same in appearance. This work provided a carefully examined characteriza-

tion of functions that have the way-below relationship. Through examples and

proof, we were able to determine criteria necessary for excluding functions from

having another function way-above and when this relationship does exist under

which mappings is it preserved.

The culmination of these efforts was that the iteration of a function φ that

always maps functions way-above and sends deltas to deltas yields the top element

of the lattice, or in our case δ0,1. Throughout the time spent on way-below, we

continually changed restrictions on φ and made much headway on generalizing.

While we were able to provide sufficient conditions for mappings on Res([p, q], [r, s])

that guarantee φn(F ) → δ0,1, future work will need to look at what conditions

are necessary. We did provide one example of a monotone function, which is not

residuated and does not iterate to δ0,1, so we have paved the way in that direction.

The last part of our study was making connections between the way-below

relation and probabilistic metric spaces. By looking at some current definitions

of contractions, we were able to make the case that our φ that maps way-above

provides another definition for contraction. This too opens new doors for potential

study. We intend to continue looking at our contraction and what conditions if

any can be relaxed as well as begin a study on fixed points in PM spaces and their

uniqueness.
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