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Abstract

The Vehicle Routing Problem, which main objective is to find the lowest-cost set
of routes to deliver goods to customers, has many applications in transportation
services. In the past, costs have been mainly associated to the number of routes and

the travel distance, however, in real-world problems there exist additional objectives.

Since there is no known exact method to efficiently solve the problem in polynomial
time, many heuristic techniques have been considered, among which, evolutionary
methods have proved to be suitable for solving the problem. Despite this method
being able to provide a set of solutions that represent the trade-offs between multiple
objectives, very few studies have concentrated on the optimisation of more than one
objective, and even fewer have explicitly considered the diversity of solutions, which

is crucial for the good performance of any evolutionary computation technique.

This thesis proposes a novel Multi-Objective Evolutionary Algorithm to solve two
variants of the Vehicle Routing Problem, regarding the optimisation of at least two
objectives. This approach incorporates a method for measuring the similarity of so-
lutions, which is used to enhance population diversity, and operators that effectively
explore and exploit the search space. The algorithm is applied to typical benchmark
problems and empirical analyses indicate that it efficiently solves the variants being
studied. Moreover, the proposed method has proved to be competitive with recent

approaches and outperforms the successful multi-objective optimiser NSGA-II.
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Chapter 1

Introduction

The Vehicle Routing Problem (VRP) is one of the most important and widely studied
combinatorial optimisation problems, because of the many real-world applications
in delivery and transportation logistics [14]. Furthermore, this problem is of great
importance in distribution systems, as the transportation process represents between
10% and 20% of the final cost of goods [236]. Additionally, it is estimated that

distribution costs account for almost half of the total logistics costs [56].

The objective of the VRP is to obtain the lowest-cost set of routes to deliver demand
to customers. But what does lowest-cost mean? Since the problem was proposed
by Dantzig and Ramser [54] as a generalisation of the Travelling Salesman Problem
[123], cost has mostly been associated with the number of routes and the travel
distance, but, evidently, there are several other sources of cost, e.g. driver’s remu-

neration and workload imbalance [135].

The VRP has many variants that take into account different constraints, which
can be categorised as operational and of precedence. In particular, the Capacitated
VRP (CVRP) considers vehicles with restricted capacity, and in the VRP with

Time Windows (VRPTW), in addition to the limited capacity, vehicles must visit



customers within specific times. With the introduction of these restrictions, the
optimisation of one objective will probably not correspond to the optimisation of all
of them. Moreover, the optimisation of one objective could lead to the deterioration
of the others. In this scenario, one needs to consider the simultaneous optimisation
of all the objectives, and the process needs to provide a range of solutions that

represent the trade-offs between the objectives, rather than a single solution.

Optimum solutions for small instances of VRPs can be obtained using exact me-
thods, however, the computation time required increases considerably for larger
instances [71]. As a matter of fact, the VRP is NP-hard [159]. These are the main
reasons why many published research studies have considered the use of heuristic
and metaheuristic methods. Although numerous techniques have been proposed,
those studies considering evolutionary computation methods have been among the

most suitable approaches for tackling some variants of the VRP [28].

Evolutionary Algorithms (EA) have been successful in many practical situations
[254]. They are based on Darwin’s theory of evolution by natural selection: A popu-
lation (set) of individuals (solutions) is maintained, and the EA selects, recombines,
and mutates the fittest (best solutions) in the hope of producing offspring (new
solutions) of increased fitness (quality), which may replace the least fit. The evo-
lutionary operations are repeated until the quality of solutions stops increasing, or

some fixed number of generations (cycles) has been reached.

EAs population-based approach permits them to find multiple optimum solutions in
one single run, which is especially useful in the context of multi-objective optimisa-
tion, since more than one optimum solution is required [62]. The idea of optimality
in multiple objective problems concerns solutions that are as good as all other so-
lutions in each objective function and strictly better than the others in at least one

of the objectives [44].



One of the key factors in the success of an EA is the ability to avoid premature
convergence, which is the effect of losing population diversity and getting stuck in
sub-optimum solutions. This can be achieved with an appropriate trade-off bet-
ween exploration and exploitation of the search space [81]. Actually, maintaining
diversity has been considered as an additional objective to be pursued while solving

optimisation problems [232].

The concept of population diversity is not only related to how many distinct solutions
there are in the population, information that is easy to access, but also to how
different the solutions are between them. In fact, the term is often used without
definition and the implicit assumption is the diversity of gemotypes, or structural
diversity [33]. In order to quantify this, one would require the use of specialised

tools, which could be utilised to boost population diversity.

Many existing well-known and successful evolutionary approaches do have diversity
preservation tools, but their use for solving VRPs would not be appropriate because
they require the definition of niche spaces, a task that would be problematic since
most good feasible solutions to the VRP reside in a very small region of the number

of routes dimension [182].

In most situations, population diversity is inversely proportional to the similarity
between the solutions comprised in the population, or directly proportional if the
difference or distance between them is considered. To quantify population diversity,
one generally must take into account the solution encoding, since different solution
representations may require different similarity or distance measures [221]. Further-
more, for some kinds of problems, if similarity or distance are considered in the

objective space, one could be led to unreliable measures.

There exist in the literature many similarity and distance measures for specific so-

lution encodings. For example, the Hamming distance [125], which measures the



minimum number of reversals required to change one binary string into another, is
the most commonly used method for binary representations. For real-number en-
codings, the Manhattan, Fuclidean, or Chebychev distances [149, 73] are preferred.
However, for problems for which solutions are most suitably represented as a per-
mutation of a set of items, there is no agreed measure and several techniques have
been proposed. From these, the edit distance [247] is of particular interest to the
present study, since it has been suggested as a distance measure between solutions

to routing problems [219].

One of the objectives to be pursued with this research is to fulfil the identified gaps
and complement previous studies regarding, primarily, population diversity preser-
vation, the simultaneous minimisation of at least two objectives, and a appropriate

multi-objective analysis by means of multi-objective performance metrics.

1.1 Motivation

Recently, great attention has been devoted to complex variants of the VRP that are
closer to the practical distribution applications that the problems model [14]. In
this scenario, a high percentage of the evolutionary proposals for solving the CVRP,
VRPTW, and other VRP variants are hybrid approaches, i.e. a combination of an
EA with another heuristic or metaheuristic method. Actually, the first questions
that arose in the present research were why those studies were combining an EA
with another technique, and if the reason is that EAs cannot solve the problem by

themselves.

An exploratory study, revealed that a simple EA suffered from premature lack of
population diversity, and consequently got stuck in sub-optimum solutions. Thus
new research questions appeared: Do we really need to combine the EA with ano-

ther heuristic method to preserve population diversity? Or can we think of another



strategy which can be incorporated as part of the EA in order to diversify the popu-
lation? Perhaps we could measure diversity or similarity and use this information

somewhere in the algorithm?

Sorensen [219] stated that the edit distance could be used to quantify the difference
between two solutions to routing problems, however we need to know how difficult
the implementation of this method is, and what its performance is when compared
with other possibilities. In the same context, is there an alternative technique, or

can it be designed, that performs better that the edit distance?

On the other hand, the vast majority of the published research studies which utilise
heuristics or metaheuristics for solving VRPs takes into account the optimisation of
one single objective and only a small percentage considers more than one. Further-
more, from the latter, very few studies present and analyse their results in a proper
multi-objective manner. In fact, they are generally compared according to the best
results regarding exclusively one of the objectives being optimised, analysis which

could be misleading for the optimisation of multiple objectives.

The facts just described, together with the research questions, were the main mo-
tivations for studying two of the variants of the VRP, regarding the simultaneous
optimisation of multiple objectives, and for designing an EA which incorporates
a mechanism to measure solution similarity and uses this information to enhance

population diversity.

1.2 Research objectives

The research objectives are set according to, and to fulfil, the gaps detected in
previously published studies regarding solutions to the CVRP and VRPTW. In

general, these findings are related to: (z) the inclusion of heuristic methods as ad-



ditional stages in EAs for preserving population diversity, (i¢) the insufficiency of
studies considering the optimisation of multiple objectives, and (iii) the inappro-

priate presentation and analysis of the results in multi-criterion studies.

Regarding the first issue, it is crucial to know how diverse the population is in order
to increase it or maintain it. Moreover, the information about the similarity between
two solutions and between one solution and the rest of the population could be of

potential use in order to achieve this goal.

With respect to the other two topics, the flexibility to optimise other objectives, in
addition to the the number of routes and travel distance, is necessary. Consequently,
proper presentation and analysis of results are expected, which must consider the

use of multi-objective performance metrics.

To accomplish what have just been stated, the objective of this research takes into
consideration the design and development of an EA for the effective solution of the
CVRP and VRPTW regarding the optimisation of multiple objectives. Therefore,
the performance of the developed EA must be analysed in a suitable multi-criterion

manner by means of using proper multi-objective performance metrics.

Additionally, this algorithm does not have to be combined with any other heuristic
method with the purpose of escaping from sub-optimum regions. Instead, if popu-
lation diversity and solution similarity are known, this information may be used in

order to have a suitable exploration and exploitation of the search space.

1.3 Contributions

The study presented here has made the following major contributions.

A measure has been developed to quantify how similar two solutions to the VRP

are, and this information, in turn, is used to determine the similarity between one



solution and the rest of the population, and the population diversity. The advantages
of this measure are: it does not depend on how solutions are represented, it can be

used for any variant of the VRP, and it has a linear time complexity.

A mutation process has been designed, which, when incorporated in an Evolutio-
nary Algorithm for solving the VRP, helps to better exploit the search space. This
mutation process includes three basic functions, two of which are stochastic, to se-
lect routes and customers, and the other is deterministic, to reinsert customers into
routes, and a set of three operators which make modifications in the assignment of

customers to routes and in the sequence of service within a route.

A multi-objective Evolutionary Algorithm that effectively solves the Capacitated
VRP and the VRP with Time Windows, regarding the optimisation of at least
two objectives, has been formulated. This algorithm includes the similarity measure
and the mutation process mentioned above in order to better explore and exploit the
search space, consequently it preserves a higher population diversity. The outcome
of this algorithm provides solutions that suitably represent the trade-offs between

the objectives.

The solutions from the proposed algorithm to test instances of the CVRP and
VRPTW were compared with those from previous studies from a single-objective
point of view, showing that, although they are not the overall best, they are com-
parable to many, in the sense that they have less number of routes, or shorter travel
distance, while keeping the other objective equal or within 2% difference. This type
of comparison is often misleading however, since the best result for one objective

does not necessarily represent the multi-objective performance of an optimiser.

The solutions from the bi-objective and tri-objective optimisations of the VRP with
Time Windows were analysed by means of using three multi-objective quality indica-

tors and compared with those from the popular multi-objective optimiser NSGA-II,



resulting in that the former has a better performance than the latter in many test
problems. In the case of the CVRP, a multi-objective analysis could not be perfor-

med, since the objectives in the test instances are not in conflict.

Since many previous VRP studies that regarded the optimisation of multiple criteria
reported their performance analysis in a single-objective manner, the research enclo-
sed in this thesis is one of the very few that presents an appropriate multi-objective

performance analysis by means of the utilisation of formal evaluation techniques.

1.4 Publications resulting from this thesis

In addition to the contributions above, the following is the list of the publications

related to this investigation.
Chapter 4:

A. Garcia-Najera and J. A. Bullinaria. A multi-objective density restricted genetic
algorithm for the vehicle routing problem with time windows. In 2008 UK

Workshop on Computational Intelligence, 2008. [Section 4.2]

A. Garcia-Najera and J. A. Bullinaria. Bi-objective optimization for the vehicle
routing problem with time windows: Using route similarity to enhance perfor-
mance. In M. Ehrgott, C. Fonseca, X. Gandibleux, J. K. Hao, and M. Sevaux,
editors, 5th International Conference on Fvolutionary Multi-Criterion Optimi-
zation, volume 5467 of LNCS, pages 275-289. Springer, 2009, [Sections 4.3.1,

4.3.2.3, and 4.3.2.4]

A. Garcia-Najera. Preserving population diversity for the multi-objective vehicle
routing problem with time windows. In Franz Rothlauf editor, Genetic and
FEvolutionary Computation Conference 2009, pages 2689-2692. ACM, 20009.

[Sections 4.3.1.2 and 4.3.2.2]



A. Garcia-Najera and J. A. Bullinaria. Comparison of similarity measures for the
multi-objective vehicle routing problem with time windows. In Franz Rothlauf
editor, Genetic and FEvolutionary Computation Conference 2009, pages 579—
586. ACM, 2009. [Section 4.3.2.1]

Chapter 5:

A. Garcia-Najera and J. A. Bullinaria. An improved multi-objective evolutionary
algorithm for the vehicle routing problem with time windows. Computers &

Operations Research, 28(1):287-300, 2011. [Sections 5.2 and 5.3]

A. Garcia-Najera and J. A. Bullinaria. Optimizing delivery time in multi-objective
vehicle routing problems with time windows. In Robert Schaefer, Carlos Cotta,
Joanna Kolodziej, Giinter Rudolph editors, 11th International Conference on
Parallel Problem Solving from Nature, volume 6239 part II of LNCS, pages

51-60. Springer, 2010. [Section 5.3]

Additionally, although it is not directly related to the main topic of this thesis, the

following is a study at an early stage of this PhD research.

A. Garcia-Najera and J. A. Bullinaria. Extending ACOg to solve multi-objective

problems. In 2007 UK Workshop on Computational Intelligence, 2007.

1.5 Thesis outline

This thesis is structured as follows. Chapter 2 provides the required background for
the present study. It explains what combinatorial optimisation problems are and
some methods frequently used for solving them, namely local search, Tabu Search,
and Evolutionary Algorithms. Here are described multi-objective combinatorial
optimisation problems, and some quality indicators that are used to evaluate opti-

miser performance. Three widely-known multi-objective Evolutionary Algorithms



are presented, highlighting their key stages of processing. Lastly, a series of solution

distance measures for combinatorial problems are introduced.

The Vehicle Routing Problem and two of its variants, specifically the Capacitated
VRP (CVRP) and the VRP with Time Windows (VRPTW), are formulated in
Chapter 3. Additional considerations and constraints are exposed for further va-
riants of the problem. An overview of previous studies that are relevant to this
thesis, that is studies that tackled the CVRP and VRPTW, is given, along with
their reported results for commonly used benchmark sets. Finally, this chapter dis-
cusses multi-objective VRPs and surveys further studies and objectives that have

been considered for optimisation.

The developed preliminary approaches to solving VRPs, along with their results
and analysis, is presented in Chapter 4. One of the major contributions of this
thesis is presented in this chapter, which is the measure designed to quantify the
similarity between two solutions to the VRP, as well as the proposed population
diversity measure. The algorithm described in this chapter forms the basis of the
final proposed Multi-Objective Evolutionary Algorithm for solving the CVRP and
VRPTW.

Chapter 5 explains the adjustments made to the algorithm previously introduced
in order to effectively solve the CVRP and VRPTW. Here are presented the expe-
rimental studies and the analysis of results from the bi-objective and tri-objective

optimisation of the concerned problems, and a discussion on the findings.

Finally, the evaluation of the proposed approach at its different stages of develop-
ment, along with the main contributions of this thesis and potential directions for

further research, are presented in Chapter 6.
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Chapter 2

Combinatorial optimisation

problems

This chapter provides the essential background knowledge to this thesis. Here is
described, firstly, what combinatorial optimisation problems are and some common
techniques for solving them, specifically local search, Tabu Search and Evolutionary
Algorithms. Secondly, an introduction to multi-objective combinatorial optimisa-
tion problems is given, as well as to three multi-objective performance metrics,
that is coverage, convergence and hypervolume. Then, the key difference between
single-objective and multi-objective Evolutionary Algorithms is explained, an three
well-known and successful multi-objective Evolutionary Algorithms, namely PAES
[144], SPEA2 [261], and NSGA-II [67], are described. Finally, a number of solution

distance measures for combinatorial problems are presented.

2.1 What are combinatorial optimisation problems?

An optimisation problem consists in finding the best (optimum) solution to a given

instance of the problem. These problems can be grouped into two categories: In

11



the first category one can find those problems with continuous variables, where we
look for a vector of real numbers. In the second group we find those problems with
discrete variables, which are called combinatorial, where one typically looks for an
object within a finite set, or possibly countable infinite, which is generally a sub-set

of the variables, a permutation, or a graph [186].

Formally, an instance of a combinatorial optimisation problem is a pair (X, f), where
X is an N-dimensional domain, and f is a function that maps f : X — R. Without

loss of generality, we consider the problem of finding a solution &* € X for which
f(x*) < f(x), VeeX. (2.1)

Such a solution x* is called a globally optimum solution to the given instance, or,
when no confusion arises, simply an optimum solution [186]. Furthermore, f* =
f(x*) denotes the optimum cost, and X* = {x € X | f(x) = f*} denotes the

optimum solution set [2].

Sometimes we face problems for which not all & € X are valid solutions, in the sense
that they do not satisfy certain restrictions. Thus, all x € X’ C X satisfying such
restrictions are the feasible solutions, and subset X’ is the feasible domain. In this

case, the problem in (2.1) must satisfy

gi(x) <0, (2.2)
hi(z) =0, (2.3)

where the g;(z) functions in (2.2) and the h;(x) functions in (2.3) are the inequality

and equality constraints, respectively, which actually define the feasible domain X,

We will refer to function f as the objective function, to the domain X as the solution

space, and to the feasible domain X’ as the feasible region or search space.

For illustration purposes, Figure 2.1 presents one of the simplest combinatorial pro-

blems, though not easy, which is the knapsack problem [139]. Here we have a set

12
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Figure 2.1: Knapsack problem: which items should be packed to maximise the

L%

15 Kg

total value while the overall weight is kept under or equal to the backpack limit?

of items, each with a weight and a value, and a backpack which capacity is limited
in weight. The problem consists in determining which combination of items (the
solution space) should be packed so that the total weight is less than or equal to the
backpack limit (inequality constraint) and the total value is as large as possible (the
objective function). The Vehicle Routing Problem is a also combinatorial problem,
however, in addition to selecting items, we have to define a sequence of them, which

perhaps makes the problem even more difficult to solve.

2.2 How to solve combinatorial optimisation problems

A naive approach to solving an instance of a combinatorial optimisation problem
would be to simply enumerate all the possible solutions and choose the best according
to the evaluation of their objective function. Nonetheless, it will be soon evident
that this method is highly expensive in terms of time, due to the large amount of
feasible solutions to an instance of practical size [200]. For example, let us consider
a combinatorial problem for which all permutations are valid solutions, i.e. N! valid

solutions, N being the instance size. Furthermore, let us assume that the current
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fastest supercomputers'-?

are available to list all the permutations. These computers
perform in the order of 10 operations per second, which means that they would
spend around 40 minutes in listing all the permutations for an instance of size 20,
14 hours for an instances of size 21, 13 days for an instance of size 22, 300 days for
an instance of size 23, 20 years for an instance of size 24, and, for an instance of size

25, half a millennium! Consequently, it is clear that this method is not an option to

solve instances of reasonable sizes.

In the scenario described above, we could use other sort of methods to find good
solutions to the problem in an efficient manner, although not guaranteeing the best.
Such methods are called heuristics [172]. There are a number of well-known general
purpose heuristics for solving a large variety of combinatorial problems, among which

we can mention:

e Local search [1]

Tabu Search [117]

Simulated Annealing [142, 241]

Particle Swarm Optimisation [140)]

e Ant Colony Optimisation [76]

Evolutionary Algorithms [58]

As will be seen later, local search, Tabu Search, and Evolutionary Algorithms, have
been the most commonly used methods for solving VRPs. Local search is based
on what is perhaps the oldest optimisation method: trial and error. The idea is
so simple and natural that is surprising how successful local search has proven on

a variety of difficult combinatorial optimisation problems [186]. Tabu Search has

IBM RoadRunner: http://www.lanl.gov/roadrunner/ .

2Cray Jaguar: http://www.nccs.gov/computing-resources/jaguar/ .
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Algorithm 2.1: LOCALSEARCH(x)

Input: Initial solution @
Output: Solution x* result of the local search
1: while IMPROVE(x) # null do

2:  x* < IMPROVE(x)
3: T —x*
4: end while

5. return x*

demonstrated to be an excellent heuristic for solving combinatorial optimisation
problems and has achieved practical success in a range of applications [117]. On
the other hand, Evolutionary Algorithms have a natural approach for dealing with
multi-objective combinatorial optimisation problems, and have been successful in

many practical situations as well [255].

2.2.1 Local search

The basic idea behind local search is, as the name suggests, to look for solutions
around a given point in the search space. An algorithm of this kind starts with
a candidate solution and then, iteratively, moves from this point to a neighbour

solution where the objective which is being optimised has been improved.

Formally, given an optimisation problem (X, f), where X is the feasible domain of
solutions and f is the objective function, a neighbourhood N is a function that maps
N : X — 2% which defines, for each solution © € X, a set N'(x) C X of solutions
that are in some sense close to @ [2]. Local search explores this neighbourhood for
improvement. A solution € X is said to be locally optimum with respect to N if
f(@) < f(z), Yo € N(@). We denote the set of locally optimum solutions by X.

Note that local optimality depends on the neighbourhood function that is used [2]

A generic local search is shown in Algorithm 2.1. It takes a starting candidate
solution « and uses function IMPROVE(x), which returns a solution x* € N(x),

with f(x*) < f(x), if such * exists, null otherwise, to search for a better solution
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in its neighbourhood N (x). The process is repeated over the new neighbourhood

as long as a better solution is found [186].

The performance of local search is directly related to how neighbourhoods are defined
and explored. Actually, the definition of the neighbourhood is the difference between
the approaches that have been proposed. Some of the most commonly used local
search heuristics for tackling VRPs, which have been taken from the proposed for
solving the Travelling Salesman Problem [123], are k-opt [162], Or-opt [183], and

A-interchange [184].

2.2.1.1 k-opt heuristic

Lin [162] presented the k-opt heuristic, which is a generalisation of the 2-opt?® of

Croes [51] and 3-opt of Bock [24].

The most simple version of the k-opt heuristic, i.e. k = 2, works as follows. Let us
consider the circuit (vy,...,v;, Vi1, ..., U}, Vj41, ..., vy) of N vertices. Let two arcs
be removed from the circuit, e.g. (v;,v;41) and (vj,v;41), thus producing the two
disconnected paths ((vji1,...,vN,v1,...,0;)) and ((Vit1,...,v;)). Then, reconnect
those paths in the other possible way, that is (vi,...,v;, ), ..., Vit1,Vjs1, ..., UN).

This operation is called 2-exchange.

For k = 3, three arcs are removed, thus producing three disconnected paths. In gene-
ral, k£ arcs are removed, originating k£ disconnected paths, which can be reconnected
in different ways to produce another tour. This operation is called k-exchange. A

tour is k-optimum if no k-exchange produces a tour of lower cost [35].

Although the problem of finding a k-optimum tour can be performed in a number
of operations polynomial in /N, this number is exponential in k£ and is bounded from

below by N*. Thus only very small values of k can be used in any heuristic [36, 163].

3 According to Johnson and McGeoch [132], the basic move was suggested by Flood [88].
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2.2.1.2  Or-opt heuristic

The Or-opt heuristic, introduced by Or [183], is closely related to the 3-opt heuristic.
The basic idea is to relocate a sequence of vertices. This is achieved by replacing
three arcs in the original tour by three new arcs without modifying the orientation

of the route [26].

Let us illustrate this heuristic with the following example. Consider the circuit
(U1, Ui Vi1, o, UV, Vjdy « -+ Uy Ugt1, - - -, Unv) and let us remove three arcs from
it, e.g. (vi,vit1), (vj,v541), and (vg, vg41), thus producing the three disconnected
paths (Vgs1,...,UN, U1, .., 03), (Vit1,...,0;), and (Vj4q,...,v;). Then, reconnect
those paths in the following order (vy,...,v;, Vj11,. .., Uk, Vit1s .-, V), Vkt1, - - - s UN)-
As we can see, the final circuit preserved the sequence order of the original circuit,

hence this heuristic is useful when the precedence of the vertices is important.

2.2.1.3 A-interchange heuristic

Osman [184] proposed the A-interchange heuristic. This method selects two subsets
r; and r; of vertices from circuits R; and R;, respectively, satisfying |r;| < A and
|7;| < A. The operation consists in swapping the vertices in r; with those from r; as

long as this is feasible.

It can be the case that either r; or r; are empty, so this family of operations in-
cludes the simply shifting of vertices from one circuit to another. As the number of
combinations of choices of r; and r; is usually large, this procedure is implemented
with A = 1,2, and in the most efficient version of this algorithm the search stops as

soon as a solution improvement is discovered [110].
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Algorithm 2.2: TABUSEARCH(x)

Input: Initial solution
Output: Solution x* result of the Tabu Search

1: 8 =

2: k<0

3T+ 0

4: repeat

5 k< k+1

6: s < SELECT(S(x)\T) /% sp is the best move in S(x) \T */
7 x4 sp(x) /* move sy is applied to x */

8 if f(x) < f(«*) then

9: T
10:  end if

11:  UpDATE(T
12: until S(x)\T =0
13: return z*

2.2.2 Tabu Search

Tabu Search (TS) is a guide for certain methods known as hill climbing [174], which
progress in one direction from their starting point to a local optimum, to conti-
nue exploration without becoming confused by an absence of improving moves and
without falling back into a local optimum where it was previously stuck. This is
accomplished by two of its key elements [115]: that of restricting the search by
classifying certain moves as forbidden, i.e. tabu, and that of releasing the search
by a short term memory function that provides a kind of strategic forgetting, which

removes records from the tabu list after some iterations.

To have an idea of T'S, Algorithm 2.2 presents the general process. Here T represents
a list of forbidden moves and S(z) is the set of feasible moves that lead from « to a
neighbouring solution. Let us emphasise that both 7" and S(x) contain moves and

not actual solutions.

According to Glover [115, 116], three aspects deserve attention: (i) list 7" restricts
the search, hence the solutions generated depend on the composition of 7" and the

way it is updated (line 11), (ii) local optimality is never referred to, except when a
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local optimum improves the best solutions previously found, and (zii) instead of an

improvement move, a best move is chosen at each step (line 6).

2.2.3 Evolutionary Algorithms

The first ideas of evolutionary computation date back to the 1950’s [60]. In that de-
cade, a number of scientific articles regarding computer evolutionary processes were
published. For example, the studies of Fraser [94], Friedberg [95], and Friedberg
et al. [96] in machine learning refer to the use an evolutionary algorithm for auto-
matic programming. In the same time frame, Bremermann [29] presented the first
attempts to apply simulated evolution to numerical optimisation problems, and Box
[25] developed his evolutionary operation for the design and analysis of industrial
experiments, to which Satterthwaite [209] introduced randomness and was the basis

for the simplex design method of Spendley et al. [222].

By the mid-1960’s the bases for what we today identify as the three main forms
of Evolutionary Algorithms (EA) were clearly established [60]: Fogel et al. [89]
called their method Evolutionary Programming, Holland [126] introduced Genetic
Algorithms, and Schwefel [214], Rechenberg [198, 199], and Bienert [23] proposed

Evolution Strategies.

EAs are founded on Darwin’s theory of evolution, where the fittest individuals sur-
vive and produce offspring to populate the next generation. In this context, a popu-
lation of individuals (also called chromosomes) is maintained, with each individual
being a problem solution, and fitness being an appropriate measure of how good a
solution is. EAs have a number of procedures and parameters that must be specified
in order to define their operation, and crucial to this is how the offspring are created
from the parents. The general process of an EA is presented in Algorithm 2.3 and

the specific operations are described below.
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Algorithm 2.3: EVOLUTIONARYALGORITHM(P)

Input: Population P of solutions to be evolved
Output: Solutions P* result of the evolutionary process
Py« P
Evaluate Py and assign fitness
140
repeat
Select parents from P; and recombine to produce offspring Q;
Mutate (); and evaluate
Combine P; and @);, assign fitness, and select P; 1
141+ 1
until Stop criteria is met

H
@

return P* + P;

2.2.3.1 Solution representation

The efficiency and complexity of an EA largely depends upon how solutions to a
given problem are represented and how suitable the representation is in the context
of the underlying search operators [61]. As the encoding of a solution varies from
problem to problem, a solution to a particular problem can be represented in a

number of ways, some of which lead to a more efficient search.

For the particular case of combinatorial problems, a solution is generally represented
as a binary string [10], i.e. a string of 0’s and 1’s, when only a combination of the
variables involved in the problem is necessary, or as a permutation [249], if, in

addition to the combination, the sequence of the variables is important.

2.2.3.2 Initial population

It is standard practice for an EA to begin with an initial population chosen randomly
with the aim of covering the entire search space. Thus the algorithm starts with a

set P ={s1,..., Spopsize} Of popSize randomly generated solutions s;.
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2.2.3.3 Fitness assignment

At each generation of evolution, the objective function is evaluated for every solution
s; in the population P, and for each individual s; a fitness function value ¢(s;) is
computed, which drives the natural selection process. This fitness value is assigned
according to the relative quality of the solutions in the population, which means

that the best solutions in the population are assigned a higher fitness.

2.2.3.4 Parent selection

The evolutionary process requires some stochastic function for selecting parent in-
dividuals from the population, according to their fitness, to undergo recombination
to create an offspring. Fittest individuals should be more likely to be selected, ho-
wever, low-fitness individuals might also be given a small chance with the aim of

not allowing the algorithm to be too greedy [81].

One can find several techniques for parent selection, from which two are the most
commonly utilised. The first of them, which belongs to the class of proportional
selection methods [122], is known as the Roulette Wheel Selection [57]. It takes its
name from the roulette gambling game, where all individuals s; € P are assigned a
portion of the wheel accordingly to their relative fitness function value ¢(s;). Then,
a ball is dropped and selects one element: the ball is more likely to stop on elements

assigned a bigger portion of the wheel.

In this case, the probability p(s;) that individual s; is selected, is computed as

pls) = 280 (2.4)

where

2= wls) (25)
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Algorithm 2.4: ROULETTEWHEELSELECTION(P)

Input: Population P = {s1,..., Spopsizc} from which one solution is going to be selected
Output: Selected solution s

1: &+ 0.0

2: for all s; € P do

3 O — D+ p(s;)

4: end for

5: p < RANDOMNUMBER(]0, 1])
6: sum «+ 0.0

7: while sum < p do

8 s <= SELECTRANDOMINDIVIDUAL(P)
9

sum <— sum -+ %

10: end while
11: return s

The stochastic selection is done according to Algorithm 2.4. First, ® is calculated
and then a random number in the range [0, 1] is stored in p. Afterwards, an indi-
vidual s € P is randomly selected with function SELECTRANDOMINDIVIDUAL(P),
and its proportional fitness is added to sum. This random selection continues until

sum is equal or greater than p and the last selected individual is returned.

The second method is the one called Tournament Selection [22]. It randomly chooses
T'size (the tournament size) individuals from the population and selects the fittest
individual from this group to be a parent. Tournaments are often held between pairs
of individuals, i.e. T'size = 2, which is called binary tournament, although larger

tournaments can be used [119].

2.2.3.5 Recombination

Recombination, also called mating or crossover, is the process of generating one
or more offspring from the selected parents, preferably in a manner that maintains
and combines the desirable features from both. This operation is carried out with
probability 7, otherwise the fittest individual is simply copied into the offspring

population.
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Similarly to parent selection, there exists a number of recombination methods, ho-

wever, in contrast, they all depend on the solution encoding in use.

2.2.3.6 Mutation

Once an offspring has been generated, a further stochastic change or mutation is
applied with probability u. This operator, together with recombination, have the

aim of exploring and exploiting the search space.

There are also many mutation operators, however, likewise the recombination tech-

niques, they all depend on the representation of the solution.

2.2.3.7 Survival selection

The final stage of the evolutionary cycle is the selection of individuals to form the
next generation. There are several obvious possibilities: the offspring population,
a random selection from the combined parent and offspring populations, or the
best individuals from the combined population. In the first two cases, good-quality
individuals are likely to be lost, so it is common to consider some degree of elitism,

i.e. a percentage of the next generation is filled with the best current individuals.

2.2.3.8 Repetition

The whole process of parent selection, offspring generation, i.e. recombination and
mutation, and survival selection is repeated for a fixed number numGen of genera-

tions, or until some stop criteria is met.

2.2.3.9 Parameter setting

Several parameters have been introduced above:
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e Solution encoding - How will solutions be represented?

e Initial population - How is it going to be built?

e Population size - How many solutions will be considered?

e Parent selection - What technique is going to be used?

e Recombination - Which method and what is the probability v of recombination?
e Mutation - Which method and what is the probability . of mutation?

e Survival selection - Which individuals will be taken to the next generation?

e Repetition - How many generations numGen the EA will run or what will the

stop criteria be?

The values of the parameters involved in an EA, and in any algorithm in general,
determine whether the algorithm will find near-optimum solutions, and whether it
will find such solutions efficiently [173]. For example, according to De Jong [59], a
solutions space with many local optima may require a population size of hundreds to
thousands in order to have reasonable chance of finding globally optimum solutions.
On the other hand, if reproductive variation is too strong, i.e. high recombination

and mutation probabilities, the result is undirected random search.

Two forms of setting parameter values can be distinguished: tuning and control.
Parameter tuning is done by experimenting with different values and selecting the
ones that give the best results on the test problems at hand. However, the number
of possible parameters and their different values means that this is a very time-
consuming activity [82]. Parameter control, on the other hand, forms an alternative,
as it amounts to starting a run with initial parameter values that are changed during

the run [82]. Parameter setting, in any case, is a field of research by itself [164].
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In the experimental studies carried out in this investigation, which will be presented
in Chapters 4 and 5, first experiments were performed using a range of parameter
values for parameter tuning purposes. Fair parameter optimisation requires separate
validation data sets, which were not readily available, hence a full parametric study
was not carried out, and thus no comparison nor analysis is presented for the different
tested settings. That activity is suggested as part of the future research. Although
an exhaustive search was not carried out, parameter values that worked well over
all the test cases were identified and used for the final experimentation. Wherever

possible, standard parameter values from the literature were used.

2.3 Multi-objective combinatorial optimisation problems

The definition of combinatorial optimisation problems described above considers the
optimisation of one objective function f(z), but how can we handle a combinatorial
problem with not only one, but with F' objective functions? For example, consider
the knapsack problem previously introduced. How can we solve the problem if; in
addition to its value, each item has an associated risk of being carried, which is
inversely proportional to the value, and the objective is to, additionally to maximise

the total value, minimise the total risk?

In this case, f(x) becomes the vector f(x) = (fi(x),..., fr(x)) of F objective func-
tions, and will map f : X — R¥. Thus, we can re-define (2.1) as the minimisation

problem
minimise f(x) = (fi(x),..., fr(z)), (2.6)
subject to constraints (2.2) and (2.3). Now, f will be referred to as the objective

space.

If the objective functions fi in (2.6) are not in conflict, that is, if the optimisation

of one of these objectives will lead to the optimisation of all of them, the optimum
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SOLUTION OBJECTIVE
SPACE A SPACE

r(x)

Feasible region

v (Xx)

Figure 2.2: Solutions x1,..., x5 to an example instance of the knapsack pro-

blem with two objective functions, v(«) and r(x), and their corresponding trade-

off f(x1),..., f(xs) between the objectives.
result of the process will be one solution in the search space, or probably more
but all of them mapping to one point in the objective space. The most interesting
case is when the problem presents conflicting objectives, i.e. the optimisation of
one objective will cause the deterioration of the others, where we will have a set
of solutions as the outcome of the optimisation process, as shows the example in
Figure 2.2. In this example we consider the proposed knapsack problem above, with
f(x) = (v(z),r(x)), where v(z) is the total value to be maximised and r(x) is the
total risk to be minimised, and both are in conflict. The optimisation process results
in five solutions, x1, ..., xs, which provide the trade-off f(x1),..., f(xs) between

both objectives.

2.3.1 Terminology

The following are some terms used in the multi-objective optimisation context and

are graphically represented in Figure 2.3.

Let X be the N-dimensional domain of solutions to a multi-objective optimisation
problem. We say that a solution @ € X weakly dominates (or covers) the solution

y € X, written as © < y, if  is at least as good as y [44]. In the example shown in
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SOLUTION OBJECTIVE
SPACE A SPACE

r(x)
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fx) Pareto front
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Figure 2.3: Multi-objective concepts: 3, T4 = xg, T7; moreover, 3, T4 < Lg,
x7. xg = 7 and x7 <X xg. T1,..., x5 are Pareto optimum, since they are non-
dominated, thus they belong to the Pareto set. Consequently, f(x1),..., f(xs5)
are in the Pareto front.
Figure 2.3, we can see that solutions &3 and x4 weakly dominate solutions xg¢ and

@7, since v(xs),v(xy) > v(xe),v(x7), and r(xs),r(xs) < r(x6),r(x7). Solutions

xg and xy weakly dominate each other, because f(xg) = f(x7).

Solution @ dominates solution y, written as * < vy, if and only if * < y and
@ is strictly better than y in at least one objective [44]. Solutions x3 and x4 in

Figure 2.3 dominate solutions g and xy, since x3, T4 =X xg, 7, and r(x3),r(xy) <

r(xe), (7).

Consequently, one says that a solution x € § C X is non-dominated with respect
to § if there is no solution y € S such that y < x, like solutions @1, ..., x5 in the
example, since there is no solution y € § = X such that y is strictly better than

x1,...,xs5 in any of the objectives.

A solution & € X is said to be Pareto optimum if it is non-dominated with respect to
X, and the Pareto optimum set is defined as Py = {x € X |  is Pareto optimum}.
Solutions xy, . ..xs in Figure 2.3 are Pareto optimum and comprise the Pareto op-

timum set because they are non-dominated.
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Finally, the Pareto front is defined as Py = {f(x) € R" | & € Ps}. In the example,
the vectors in the objective space f(x1), ..., f(xs) comprise the Pareto front, since

solutions @1, ..., x5 € Ps.

2.3.2 Performance metrics

The comparison of multi-objective optimiser performance is not an easy task. In
contrast with single-objective problems, where one can straightforwardly compare
the best results, or the average of them, from the various methods studied, multi-
objective problems have whole sets of solutions to compare with at least two aims:
to minimise the distance from the generated solutions, called the Pareto approxi-
mation, approximation set, non-dominated set, or non-dominated solutions, to the
true Pareto front, and to maximise the diversity of them, i.e. the coverage of the
Pareto front. For this reason, the definition and use of appropriate performance me-
trics or quality indicators is crucial. Fortunately, this subject of research has been
and continues to be widely studied. Currently, there are many proposed metrics
(84, 53, 258, 242, 257, 240, 260, 65| that can be classified into unary, which assign
each non-dominated set a number that reflects a certain quality aspect, and binary,
which assign a number to a pair of Pareto approximations. The studies of Zitzler
et al. [263], Knowles et al. [143], and Zitzler et al. [265], present an excellent review

of many quality indicators and provide an in-depth analysis of them.

Formally, let 2 be the set of all approximation sets to a given problem. A quality
indicator Z is a function Z : Q — R, which assigns each vector of approximation
sets a real value. Moreover, we say that Z is Pareto compliant if V A,B € Q: A=<
B = Z(A) > Z(B) [42]. That is, whenever an approximation set A is preferable
to B with respect to weak Pareto dominance, the indicator value for A should be at

least as good as that for B. On the other hand, we say that an indicator is Pareto
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non-compliant if, for any approximation sets A, B € (), it can yield a preference of

A over B, when B is preferable to A with respect to weak Pareto dominance [42].

Zitzler et al. [263] showed that there exists no unary quality measure that is able
to indicate whether an approximation A is better than an approximation B, even if
a finite combination of unary measures are considered. Most quality measures that
have been proposed to indicate that A is better than B at best allow to infer that
A is not worse than B, i.e. A is better than or incomparable to 5. Binary quality
measures overcome the limitations of unary measures and, if properly designed, are

capable of indicating whether A is better than B.

The multi-objective analyses performed in this research, which are going to be pre-
sented in Chapters 4 and 5, have considered the use of three quality indicators. The
first, which is binary and was proposed by Zitzler et al. [260], is called coverage and
indicates, to some extent, how diverse the solutions from two approximation sets
are. The second, convergence from Deb and Jain [65], is unary and measures the
distance from an approximation set to a reference set. Finally, Zitzler and Thiele
[258] proposed the unary hypervolume, which quantifies the size of the delimited ob-
jective space. From these, coverage and hypervolume are Pareto compliant [143, 42].

The following provides formal definitions of these quality indicators.

2.3.2.1 Coverage

This performance metric measures the extent to which one approximation set B is
weakly dominated by another approximation set A. Mc (A, B) compares the number
of solutions in B that are weakly dominated by the solutions in A to the cardinality
of B. Formally, this ratio maps the ordered pair (A, B) to the interval [0,1] as the
general coverage metric [260]:

|{y€B:EIX€A,ij}|.
8]

Mc(A, B) = (2.7)
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Figure 2.4: Graphical representation of the coverage (Mc), convergence (Mp),
and hypervolume (My) multi-objective performance metrics: Solutions in set A
have a wider coverage of the solutions in set 5 than the opposite case, are closer
to the solutions in reference set R, and define a larger hypervolume regarding
point z. Thus, the algorithm providing the set A of solutions is better than the
one providing set B.
The value Mc (A, B) = 1 means that all solutions in B are covered by the solutions
in A, while Mc(A, B) = 0 indicates the opposite situation, in which none of the
solutions in B are covered by those in A. Note that both Mc(A, B) and Mc(B, A)

have to be considered, since Mc (A, B) =1 — Mc(B,.A) does not necessarily hold.

The idea here is that the method with the best performance is the one which pro-
vides solutions with the largest coverage of the solutions from the other method.
Figure 2.4 presents an example with points in two sets, the 6 filled circles repre-
senting set A, and the 5 open circles representing set . Three points in set B are
covered by set A, and two points in A4 are covered by set B, so Mc(A,B) = 3/5,
and Mc(B, A) = 2/6. Thus the method providing solutions A is deemed better than

that providing solutions B.

2.3.2.2 Convergence

The convergence metric Mp(.A, R) measures the distance from the approximation

set A to the reference set R [65]. To define this metric, we need first to calculate
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the smallest normalised Euclidean distance d(x;),V x; € A, to R as

o) = i Z (fkcri) - fk<yj>>2 | .

]gnax _ f]gnin

where f*® and f™" are the maximum and minimum function values of the k-th
objective function in R. Then the convergence Mp(A, R) is defined as
1
Mo(A,R) = = S d(ws) 29)
’A‘ xr; €A
i.e. the average normalised distance for all points in A. In the example shown in
Figure 2.4, we can see that solutions in set A are closer to R than solutions in B.

Hence, the method which found A outperforms that which found B.

2.3.2.3 Hypervolume

The hypervolume metric My (A, z) concerns the size of the objective space defined by
the approximation set A of solutions, which is limited by setting a suitable reference
point z. The example in Figure 2.4 shows that the six filled circles representing set
A cover the shaded region limited by the reference point z = (21, z2), while the five

open circles, which represent set B, cover the dotted region.

For maximisation problems, it is common to take z to be the origin, while for
minimisation problems, z is set to exceed the maximal values for each objective.
Either way, when using this metric to compare the performance of two or more
algorithms, the one providing solutions with the largest delimited hypervolume is

regarded to be the best.

Formally, for a two-dimensional objective space f(x) = ( fi(z), fg(:zz)), each solution
x; € A delimits a rectangle defined by its coordinates ( fi(xy), f2<mi)) and the
reference point z = (21, 22), and the size of the union of all such rectangles delimited

by the solutions is used as the measure. This concept can be extended to any number
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of dimensions F' to give the general hypervolume metric [258]:

Mu(A, z) = A ( U {[fi(x;), z1] x -+ x [fp(a:i),zF]}) , (2.10)

x; € A

where A(-) is the standard Lebesgue measure [93].

2.4 Multi-objective Evolutionary Algorithms

As mentioned above, there are generally two aims for multi-objective problems: to
minimise the distance from the outcome set of solutions to the Pareto front, and
to maximise the diversity of them. In the context of multi-objective Evolutionary
Algorithms (EA), the first goal is mainly related to the task of assigning a fitness
value to the solutions, while the second concerns how to handle the selection, because
it is desirable to avoid identical solutions in the resulting set [264]. These two aspects

make the principal difference between single-objective and multi-objective EAs.

The next sections describe generic ideas of how fitness may be assigned in multi-
objective scenarios, and how selection can be implemented. Additionally, three

widely-known multi-objective EAs are introduced.

2.4.1 Fitness assignment

When dealing with a multi-objective problem, fitness assignment can not be done
straightforwardly, due to there being not only one objective function, but at least
two of them which have to be taken into account. In general, one can distinguish

the fitness assignment approaches below [264].

2.4.1.1 Aggregation

The most intuitive approach to assign fitness in the presence of multiple objective

functions is to combine them into a single function. An example of this approach is
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a sum of weights of the form

f(@) = wi fix), (2.11)

where coefficients w; > 0 are weighting values representing the relative importance
of the F' objective functions. It is usually assumed that Zlel w; = 1, however
the coefficients are varied during the optimisation process in order to find a set of
non-dominated solutions. Although this technique does not require any changes
to the basic mechanism of an EA, the major drawbacks of this approach are the
uncertainty of the weighting coefficients [39], and that for some kind of problems it

can not generate proper members of the Pareto optimum set [55].

2.4.1.2 Criterion

This approach switches between the objectives during the selection phase. Each
time an individual is chosen, potentially a different objective can be used to make
this decision [212, 152]. In Figure 2.5(a) we see an example showing that solutions
which objectives are contained in the upper-left ellipse have the minimum values
for function f;, while the those in the lower-right ellipse have the minimum values
for function f,. In this case, when one individual has to be selected, it will come
from the sets specified by any of the two ellipses, according to the proportion or

probability assigned to each objective function.

2.4.1.3 Pareto dominance

There are different methods to assign fitness under this approach [264], from which

three are described below.

Dominance rank.  This method considers the number of solutions in the population

P by which an individual is dominated [90]. To find the rank of solution s; € P, we
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Figure 2.5: Criterion and dominance depth methods for fitness assignment in
multi-objective Evolutionary Algorithms.
need to compare it with every other s; € P and count how many solutions dominate

s;. That is, the rank r(s;) of solution s; € P is

r(s;) =|{s; € P|s; <si}|. (2.12)

Dominance count. This technique takes into consideration the number of solu-
tions dominated by a certain individual [262]. In contrast with dominance rank,
this method counts the number of individuals s; € P that are dominated by s;.

Specifically, the dominance count ¢(s;) of solution s; € P is

c(si)=|{s; € P|s;<s;}]|. (2.13)

Dominance depth. This approach groups the population into non-dominated
fronts and their depth indicates the fitness of the individuals belonging to them
[223, 67]. This method is represented in Figure 2.5(b). A naive approach to identify
the front to which each solution s; € P belongs to, is to compare each solution s;
with every other s; € P to know if they are non-dominated. However, this operation
will only result in the first non-dominated front. If this procedure is repeated, the

second non-dominated front will be found. That is, this process has to be executed
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as many times as needed in order to complete the assignment of solutions to fronts.
The worst case is when there are popSize fronts and there exists only one solution in
each front. In this case, this method requires an overall O(FpopSize®) comparisons,

where F'is the number of objective functions.

2.4.2 Diversity preservation

Diversity in the Pareto approximation is important because it is desirable that the
solutions contained in this set are different. Density information reflects a good
estimation of population diversity and could be used to increase it. This means
that the probability of a solution being selected decreases as the density of solutions
in its neighbourhood increases. The methods used in multi-objective EAs can be
classified according to the categories of the techniques used in statistical density

estimation [217, 264].

2.4.2.1 Kernel methods

In this kind of method, the distance in the objective space between each solution
and all other in the population is calculated, as shown in Figure 2.6(a) for vector
x;. Then, a Kernel function is applied over those values. The density estimate for

a solution will be the sum of all evaluations of the Kernel function [67].

2.4.2.2 Nearest neighbour

Methods in this category take into account the distance in the objective space bet-
ween a given point and its k-th nearest neighbour to estimate density in its neighbou-
rhood [262]. In the example shown in Figure 2.6(b), the z;’s third nearest neighbour

is considered.
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Figure 2.6: Kernel, nearest neighbour, and histogram methods for density es-
timation which are used to preserve diversity in multi-objective Evolutionary

Algorithms.

2.4.2.3 Histogram

Techniques in this category define, as neighbourhoods, grids in the F-dimensional
space as shown in Figure 2.6(c). The number of individuals which objectives are in
the same grid as those of a given solution is then its density estimate [145, 41]. In

the example, we see that z; is sharing the neighbourhood with another vector.

2.4.3 Pareto Archived Evolution Strategy

One of the most popular multi-objective EAs is the proposed by Knowles and Corne
[144], called Pareto Archived Evolution Strategy (PAES), which was designed with
two objectives in mind: to use only a mutation operator to move from a current
solution to a nearby neighbour, and to treat all non-dominated solutions as having

equal value in order to be a true Pareto optimiser.

2.4.3.1 Fitness assignment

PAES is shown in Algorithm 2.5. It comprises three parts [144]: the candidate

solution generator, function MUTATE(s) in line 3, the candidate solution acceptance
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Algorithm 2.5: PAES(s)

Input: Solution s to be evolved

Output: Archive A = {s7,...,55,,5;..} result of PAES
1: A+ PU({s}

2: repeat

3: s’ + MUTATE(Ss)

4:  Evaluate s’

5.  if s < ¢ then

6: Discard s’

7. elseif s’ < s then

8: s+ 8

9: A+ AU{s}
10: else if s; < s’ :s5; € A then
11: Discard s’
12: else
13: TEST(s,s’,A)  /* Determine the new current solution and whether to add s’ to A */
14: end if
15: until Stop criteria is met
16: return A

function in lines 5 to 14, which can be regarded as the fitness evaluator, and the
non-dominated solution archive A. PAES maintains a single current solution s
and at each iteration produces a single new candidate s’ via random mutation. If
s’ dominates s, s’ replaces s and it is added to the archive A. However, if s’ is

dominated by s or by any member of the archive, it is discarded.

2.4.3.2 Diversity preservation

In the case that solutions s and ¢ do not dominate each other and none of the
solutions in A dominate ', function TEST(s, s, A) (line 13 in Algorithm 2.5) deter-
mines the new current solution and whether to add s’ to A in the following way.
If s’ dominates any solution in A, s’ is always accepted and archived, and the now
dominated solutions in A are removed. If s’ is non-dominated with respect to A, the
histogram method for density estimation reviewed in Section 2.4.2.3 is used, where
s’ is accepted and/or archived based on the degree of crowding in its grid location

[144).
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Algorithm 2.6: SPEA2(P)

Input: Population P = {s1,..., Spopsize} to be evolved
Output: Archive A= {s],...,s;,,q,..} result of SPEA2
1: A< 0

2: repeat

3: Compute fitness of each individual in P and A
A<+ {s; € PUA] s; is non-dominated with respect to P U A}
if |A| > mazSize then
TRUNCATE(A)
else if |A| < maxSize then
Fill A with dominated individuals in P
end if
10: P <+ MAKENEWPOPULATION(A)

11: until Stop criteria is met
12: return A

2.4.4 Strength Pareto Evolutionary Algorithm 2

Another commonly used multi-objective EA is the Strength Pareto Evolutionary
Algorithm 2 (SPEA2) proposed by Zitzler et al. [261]. The main characteristics of
SPEA2 are [259]: it keeps an archive of all non-dominated solutions found during
the evolutionary process and the offspring population is generated from the archived

solutions. SPEA2 is presented in Algorithm 2.6 [42] and described below.

2.4.4.1 Fitness assignment

SPEA2 utilises the dominance count method reviewed in Section 2.4.1.3 to define the
strength of each individual, considering both population and archive. The raw fitness
of an individual is determined by the sum of the strengths of its dominator solutions.
The fitness of an individual takes into account its raw fitness and, additionally,
density information in order to discriminate between individuals having identical
raw fitness. In this case, SPEA?2 utilises an adaptation of the k-th nearest neighbour

method reviewed in Section 2.4.2.2.
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2.4.4.2 Diversity preservation

Line 6 in Algorithm 2.6 indicates the use of function TRUNCATE(A) when the size
of the archive has been exceeded. This function removes one individual from the
archive iteratively until the size is rectified. The individual to be removed is selected
according to the minimum distance to another individual. If there are several indivi-
duals with minimum distance the tie is broken by considering the second minimum

distance and so forth [261].

2.4.5 Non-dominated Sorting Genetic Algorithm II

Among the most successful multi-objective EAs is the Non-dominated Sorting Ge-
netic Algorithm IT (NSGA-II) of Deb et al. [67]. In contrast to PAES and SPEA2,
NSGA-IT does not use an archive for storing the non-dominated solutions since it is
elitist, that is, it preserves the best solutions from the combined parent and offspring

populations. Fitness assignment and diversity preservation are explained below.

2.4.5.1 Fitness assignment

First, the dominance depth criterion reviewed in Section 2.4.1.3, which is also called
non-dominated sort [118], is used to assign fitness to individuals. Deb et al. designed
a faster algorithm to perform this sort in O(FpopSize?), where F is the number of
objective functions, which is shown in Algorithm 2.7. The idea of this algorithm is,
first, to find the overall non-dominated solutions, assign them to the first front, and
record, for each non-dominated solution, the solutions they dominate. This is done
in the cycle between lines 1 and 15, where all other dominated solutions are assigned
their dominance rank. In the second main cycle between lines 17 and 30, solutions

in the current front F; are scanned and the rank of the solutions they dominate is
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Algorithm 2.7: FASTNONDOMINATEDSORT(P)

Input: Population P = {s1,..., Spopsizc} to be sorted
Output: Population P sorted according to non-domination

1: for all s; € P do
2 Qi+ 0 /* Set of solutions dominated by s; */
3 ci <0 /* Dominance count */
4 for all s; € P do
5: if s; < s; then
6 Qi + Qi U{s;}
7 else if s; < s; then
8 ci+—s;+1
9 end if
10: end for
11: if ¢; = 0 then
12: o(si) < 1 /* s; belongs to the first non-dominated front */
13: Fi1+ AU {Sl}
14: end if
15: end for
16: p+1
17: while F; # () do
18: R+ /* Solutions in the next front */
19: for all s; € F,, do
20: for all s5; € Q; do
21: cj—cj—1
22: if ¢; =0 then
23: wj—p /* s; belongs to the next front */
24: R+ RU {Sj}
25: end if
26: end for
27: end for
28: p+—p+1
29: Fp+— R

30: end while

decreased by one. If there is a solution which rank is now zero, it belongs to the

next front.

2.4.5.2 Diversity preservation

Fitness is the criteria used for parent selection, where fittest individuals are chosen
for recombination, and is also used for selecting individuals to be taken to the next

generation. Here, those solutions belonging to the fittest fronts are considered to
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Algorithm 2.8: AsSIGNCROWDINGDISTANCE(P)

Input: Population P = {sq,..., sy} which crowding distance is going to be computed
Output: Population P with crowding distance assigned

1: for all s; € P do

2: crowd(s;) < 0

3: end for

4: for all objective functions f; do

5 L < Sort(P, f;) /* Sorts in a list the solutions according to f; */
6:  crowd(L[1]) < oo /* Boundary solutions are always selected */
7 crowd(L[M]) < oo

8 for k< 2to M —1do

9

crowd(L[k]) + crowd(L[k]) + fi(Llk + 1)) = f5(L[k = 1))

max __ f£m,
5 fitin

10: end for
11: end for

be the next parent population. If the population size is exceeded in the last chosen
front, density of solutions is estimated by using the kernel method reviewed in
Section 2.4.2.1. Deb et al. introduced the crowding distance, which is a measure to
quantify the average distance of one solution to its two nearest neighbours in the
same front. Algorithm 2.8 shows this method, which is O(FpopSizelog popSize)

worst-case time complexity.

Thus, solutions belonging to that last selected front are sorted according to their
crowding distance, and those individuals located in a not so crowded space are

preferred. The overall NSGA-II is presented in Algorithm 2.9.

2.4.6 Comparison of multi-objective Evolutionary Algorithms

As was stated earlier, there are many multi-objective evolutionary approaches in
the literature, some of them being more successful than others. The objective of
this research does not contemplate an investigation of these algorithms. However,
there are many surveys and comparative studies [65, 157, 141, 68, 40, 147, 146, 143,
230, 4, 64, 66] which analyse their performance, by means of the quality indicators

presented in Section 2.3.2, and on which we can rely.
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Algorithm 2.9: NSGA-II(P)

Input: Population P = {s1,..., Spopsize} to be evolved
Output: Population P* = {s7,...,s;,,5;..} result of NSGA-II
1. P+ P
2: F < FASTNONDOMINATEDSORT(P;)
3 i1
4: repeat
5: Q; + MAKENEWPOPULATION(F;)
6: R;«+ P,UQ;
7. F < FASTNONDOMINATEDSORT(R;)
8: P10
9: k<1
10:  while |Py1| + |Fi| < popSize do
11: ASSIGNCROWDINGDISTANCE(Fy,)
12: Pii1 + Py UFy
13: k+—Fk+1
14: end while
15: L <+ SORT(Fy, crowd)
16: Py < Py U{L[1..(popSize — |Piyq|)]}

170 i+ i+1
18: until Stop criteria is met
19: return P* + P,

The evolutionary optimisers previously introduced have been considered in some of
those studies, from which we can highlight the following findings and conclusions.
In general, SPEA2 and NSGA-II perform equally well on convergence and diver-
sity maintenance [143, 146, 4, 66], however the TRUNCATE() operator of SPEA2 is
more computationally expensive than the ASSIGNCROWDINGDISTANCE() function
of NSGA-II [65, 141]. Moreover, NSGA-II converges much faster near to the true
Pareto optimum set than SPEA2 [68]. On the other hand, for a specific combina-
torial problem, PAES faced problems in maintaining a consistent performance, as

evident from the relatively large variance of the quality indicators [230].

Overall, according to Coello Coello [40], due to its clever mechanisms, NSGA-II's
performance is so good, that it has become very popular in the last few years,
establishing itself as a landmark against other multi-objective EAs. Consequently,

we believe that NSGA-II is perhaps the chosen baseline algorithm with which to
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compare. Therefore, the performance of the developed multi-objective EA is going

to be compared against that of NSGA-II.

2.5 Solution distance measures for combinatorial problems

Maintaining population diversity is crucial for EAs, in that their success depends on
the avoidance of premature convergence and on the balance of the trade-off between
exploration and exploitation of the search space [81]. For multi-objective EAs, it is
also important to maintain diversity in order for the approximation set to contain
solutions that represent the full Pareto front, rather than just a small portion of it.
With the purpose of preserving population diversity, one can take into consideration

the information provided by distance or similarity measures.

Different solution representations require different distance (or similarity) measures.
For example, the Hamming distance [125] is the most common measure for binary
representations, and for representations using a vector of real numbers, a varia-
tion of the Minkowski-r-distance [150] (e.g. Manhattan, Euclidean, and Chebychev
distances) can be employed [221]. For problems which solutions are more suitable re-
presented as a permutation, many methods have been proposed, like the ezact match
distance and deviation distance [205], the R-permutation distance [166] and the edit
distance [247]. These distance measures for permutation-based representations are

described below.

2.5.1 Exact match distance

The exact match distance [205] is similar to a Hamming measure acting on two
strings (permutations) with a higher-order (than binary) alphabet. This distance
function is relevant to permutation problems where the absolute position of a cha-

racter in a string is important. When comparing two strings s and t of size [, a
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contribution to the overall distance between s and t is made for character position

i, i (i) # ().

In this measure, the only quantity of interest is the number of exact character
matches between two strings. The exact match distance dpagen(s,t) can be defined
in terms of the exact match function m(s,t,4) [205]:
inaren(s. 1) = 1= _m(s,t,1) (2.14)
i=1
where

if s(i) =t(7) ,
m(s,t,i) = : ) =) (2.15)

0 otherwise .

2.5.2 Deviation distance

The deviation distance [205] considers absolute character position as an important
problem-domain property, and the amount of positional deviation between matching
characters is used in the calculation of distance measure. This distance is relevant
for problems where, for two strings s and ¢ of size [, the degree of positional deviation

of a character x between s and ¢ has some problem-specific importance.

The deviation distance dgeyiation($,t) is based on the positional perturbation of one
character in string s to its matching position in string ¢ and is defined as the sum

of the absolute value of the displacement of character s(i) [205]:

1 — . .
(5.1 Z B2 s =10). (2.16)

2.5.3 R-permutation distance

Marti et al. [166] proposed the R-permutation distance for problems where the
relative position of the elements is more important than the absolute position. The

R-permutation distance is applicable to problems where, for two strings s and ¢ of
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size [, it is relevant that the contiguous characters s(i) and s(i+ 1) are also adjacent

in string ¢.

The R-permutation distance dpermutation (S, t) is defined as the number of times s(i+1)

does not immediately follow s(i) in ¢ [244, 220]:

l

dpermutation($> t) - Z T(Z) ) (217)

i=1
where

i) = 1 if3j5:s()=t(j)and s(i+1)=t(j+1), 218

0 otherwise .

2.5.4 Edit distance

The edit distance is based on Levenshtein distance [160], which was first introduced
in the field of error correcting codes for dealing with binary strings. The Levensh-
tein distance between two binary strings is the minimal number of edit operations
required to transform one of the strings into the other. These edit operations are
defined as [219]: (i) reversal, 0 — 1 or 1 — 0, (i) deletion, 0 — A or 1 — A,
and (7i7) insertion, A — 0 or A — 1, where A is the null-character, specifying the

absence of a character, i.e. |[A| = 0.

Wagner and Fischer [247] extended the work of Levenshtein, first, by considering
that strings are composed of any finite alphabet, and second, by widening the re-
versal operation, which became substitution when one character is converted into
another [220]. They also provided a dynamic programming algorithm to calcu-
late the edit distance, which time complexity is O(N?), N being the length of the
strings. A commonly used bottom-up dynamic programming algorithm, based on
that of Wagner and Fischer, is presented in Algorithm 2.10, which is available from

many world wide web sites?.

4For example, Wikipedia: http://en.wikipedia.org/wiki/Levenshtein_distance.
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Algorithm 2.10: EDITDISTANCE(S, t)

Input: Strings s,|s| = M, and ¢, [t| = N
Output: Edit distance between s and ¢

1: /*d is a table with M + 1 rows and N 4+ 1 columns */

2: fori<+1to M+ 1do

3 dli,1] «—i—1 /* deletion */
4: end for

5: for j < 1to N+1do

6 dll,j]«+j5—1 /* insertion */
7: end for

8: for j+2to N+1do

9 for i <~ 2to M +1do

10: if s[i] = t[j] then

11: dfi, ] < dfi —1,§ — 1]

12: else

13: d[i, j] < min (d[i — 1, 7] + 1, /* deletion */
14: dli,j —1]+1, /* insertion */
15: dli—1,7—1]+1) /* substitution */
16: end if

17: end for

18: end for

19: return d[M +1,N +1]

substitution
substitution

substitution
N 5 € =—h

Z
g

QO «—O0
deletion
—A
substitution
< — << «—Q

Figure 2.7: Edit distance between words football and rugby: Letters foo are
substituted by rug. Letter t is deleted, while b is kept in its place. Letter a is
substituted by y, and finally letters Il are deleted. In total, four substitutions and
three deletion operations were performed, hence, the edit distance is 7.
An example of the computation of the edit distance is presented in Figure 2.7, which
shows the edit operations to transform the string football into rugby. Strings are
analysed from left to right, thus characters f, o, and o are substituted by r, u, and

g, respectively. Then, character t is deleted, while b remains in its place. Character

a is substituted by y. Finally, the last characters | and | are deleted. In total, four
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substitutions and three deletion operations were performed, hence, the edit distance

between these two strings is 7.

2.5.5 Distance measures for solutions to Vehicle Routing Problems

A solution to any variant of the Vehicle Routing Problem can be regarded as a set of
routes, and a route as a set of customers. Moreover, a route must list the customers
ordered according to service precedence. Hence, if we are interested in measuring
the distance (or similarity) between two solutions to the VRP, we need to compare
the number of routes in the solutions, the customers served in each route, and the

customer service sequernces.

Having this in mind, the exact match distance and the deviation distance would
not be an appropriate measure, since they are related to the absolute position of
the characters in the strings. In contrast, the R-permutation distance and the
edit distance provide information regarding the relative position of the characters.
However, solutions to the VRP can be encoded in many different ways, e.g. by
changing the order of the routes in the solution or by reversing some routes. A
distance measure for solutions to the VRP should be able to take this into account
and recognise the fact that the distance between two solutions encoded in different
ways should be zero [220]. In this case, the edit distance could potentially provide

a more reliable information.

In fact, Sorensen [219] proposed to use the edit distance to quantify the distance
between two solutions to the VRP in the following way. Let R and Q be solutions
to the VRP. Moreover, let R be split into parts {rqy,...,rx}, and Q into parts
{@1,...,qr}, which actually represent the designed routes in each solution. Then,

the edit distance deqit (R, Q) between solutions R and Q is given by the assignment
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problem [32]

K L
eait (P, Q) = minz Z EDITDISTANCE(7;, ;) Zij » (2.19)

i=1 j=1

subject to
Zij € {07 1}a Vi, g, (22())
owy=1, Vi, (2.21)
J

dowy=1 Vi, (2.22)
where x;; = 1 if r; is assigned to g;, 0 otherwise. One of the most widely used

techniques to solve assignment problems is the Hungarian method [151], for which

the most efficient known algorithm is O(max(K?L, KL?)), or, if K ~ L, O(K?).

2.6 Summary

This chapter described what combinatorial optimisation problems are, and presented
three heuristic methods that are commonly used to solve this kind of problems, e.g.
Vehicle Routing Problems, which are local search, Tabu Search, and Evolutionary
Algorithms. Multi-objective combinatorial optimisation problems were introduced,
along with three quality indicators which evaluate algorithm performance regarding
multiple criteria. A description of how Evolutionary Algorithms can handle pro-
blems with multiple objectives was given. Finally, a number of solution distance

measures for combinatorial problems were explained.

A combinatorial optimisation problem consists in finding the best solution to an
instance of a given problem. They consider discrete variables and one typically
looks for a solution in the form of a sub-set, permutation, or graph. The problem

of interest in this thesis, the Vehicle Routing Problem, is a combinatorial problem.
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Small instances of combinatorial optimisation problems can be solved by enumera-
ting all possible solutions and selecting the one that have the best objective function
value. Unfortunately, this is not a practical method for solving instances of realistic
sizes, in which case one can consider heuristic methods for solving the problem.
There are in the literature many problem-specific and general heuristic methods.
Local search, Tabu Search, and Evolutionary Algorithms (EA) are among the ge-
neral heuristics that have been considered for solving a number or variants of the
Vehicle Routing Problem. An EA consists in a cyclic process which recombines and
mutates a population of solutions. Each solution is assigned a fitness value according
to its relative quality to rest of the population, and is the fitness value which drives

the natural selection process.

If the combinatorial optimisation problem considers only one objective function, it
is clear that the best solution will be that providing the minimum (or maximum)
value of the objective function. However, if more objective functions are considered,
the problem consists in finding a set of solutions which provide suitable trade-offs

between the objectives.

Performance comparison of multi-objective optimiser can not be made as straight-
forwardly as in the single-objective case, since comparing the best results, or the
average of them, could be deceptive when optimising multiple objectives. Instead,
the closeness to the optimum solutions and the diversity of the obtained solutions
must be considered. There are many multi-objective quality indicators that have
been developed to measure these criteria. In particular, the convergence metric
measures the distance from a set of solutions to a reference set, the coverage metric
evaluates to some extent the diversity of the solutions, and the hypervolume metric

quantifies the size of the delimited objective space.
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EAs can be extended for tackling multi-objective problems, the difference lies in how
fitness is assigned to solutions and the survival of individuals. While in the single-
objective case fitness is assigned to an individual directly (or indirectly) proportional
to its objective function value, in the multiple criteria case it may be assigned by
counting how many solutions it dominates, how many solutions dominate it, or by
grouping the population into non-dominated fronts and each front is assigned a
fitness value. On the other hand, the survival of individuals is generally performed
by considering the density of individuals in a given region, for which statistical

density estimation techniques may be used.

Three of the most popular multi-objective EAs are the Pareto Archived Evolution
Strategy (PAES) [144], the Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[262] and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [67]. PAES
considers one single solution which is iteratively mutated for finding non-dominated
solutions, which are archived depending on their quality and on the crowding of
the region where they are located in the objective space. SPEA2 also considers an
external population to archive the non-dominated solutions found during the evolu-
tionary process. It assigns fitness to solutions according to their Pareto dominance
and to the density of solutions. NSGA-II uses the non-dominated sort, which groups
individuals into fronts for fitness assignment, and computes the crowding distance
of the solutions in each front for estimating density. The metrics mentioned above
have been used to compare these evolutionary approaches. Results suggest that

NSGA-II is one of the best algorithms with which to compare new proposals.

The success of any EA depends on several factors, e.g. crossover and mutation
operators. As will be shown later, preserving and maintaining population diversity
help the evolutionary operators in achieving a wider exploration and exploitation
of the search space. In this respect, one can measure how different or similar the

solutions in the population are and use this information to preserve diversity. There
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are many distance and similarity measures, but all of them depend on the solution
encoding. Particularly, for a permutation-based representation, which is the most
logical encoding for solutions to the Vehicle Routing Problem, the edit distance
measures how different two solutions are by counting the number of replacement,

insertion, and deletion operations required to transform one string into another.

51



52



Chapter 3

Vehicle Routing Problems

The Vehicle Routing Problem (VRP) is one of the most studied among the combina-
torial optimisation problems, due to both its practical relevance to many real-world
applications in transportation and distribution logistics [14], and its considerable
difficulty [238]. The VRP generalises [234] the well-known Travelling Salesman Pro-
blem [123] and is also related to the Bin Packing Problem [43]. Its main objective is
to obtain the lowest-cost set of routes for the distribution of goods, between depots
and customers, by means of utilising a fleet of vehicles, where lowest-cost can mean
many things. Since the problem was proposed by Dantzig and Ramser [54], cost has
been associated with the fleet size and the total travel distance, though there are
several other sources of cost, such as the delivery time, workload imbalance, waiting

time and makespan, among many others [135].

This problem has, additionally to the several objectives to be optimised, a number
of constraints to be considered, which actually call for the many variants of the VRP
that have been introduced in the literature during the years. In fact, some efforts
have been made to classify and model these variants [70, 72]. Common restrictions

lie in the vehicles capacity, the maximum distance vehicles may travel, the arrival
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time of vehicles to customer locations, and customers service precedence, to name

only a few.

Small instances of Vehicle Routing Problems can be solved to optimality by means
of using exact methods [107, 233, 234, 238, 13, 15, 138], however, the computation
time required increases considerably for larger instances [71]. Actually, it has been
demonstrated to belong to the NP-hard class [159], which means that there is no
known efficient method for optimally solving the problem in polynomial time. This
is the main reason why many published studies have considered the use of heuristic

methods.

Current heuristics for solving the VRP can be grouped into the following categories
[28]: (i) construction heuristics, (i7) improvement heuristics, and (ii) metaheuris-
tics. Construction heuristics are algorithms aiming at designing initial solutions,
building a route for each vehicle using decision functions for the selection of the

customer to be inserted in the route and the insertion position within the route.

Most of the recently published heuristics use a two-phase approach: Firstly, a con-
struction heuristic is used to generate a feasible initial solution. Secondly, an itera-
tive improvement heuristic is applied to the initial solution. These route improve-

ment methods iteratively modify the current solution by performing local searches.

To escape from local optimum, the improvement procedure can be embedded in a
metaheuristic framework. In general, a metaheuristic is guided by intelligent search

strategies to avoid getting trapped in sub-optimum regions of the search space.

The surveys by Laporte et al. [156], Laporte and Semet [154], Gendreau et al.
[109], Cordeau et al. [46], Braysy et al. [28], Braysy and Gendreau [26, 27|, and
Cordeau et al. [49], and the more recent by Baldacci et al. [13, 15], Marinakis and
Migdalas [165], Potvin [190, 191], Eksioglu et al. [83], Laporte [153], and Gendreau

and Tarantilis [105], provide a complete list of studies concentrating on the use of a
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number of construction and improvement heuristics, and metaheuristics for solving
several variants of the VRP. Additionally, the novel survey by Jozefowiez et al. [135]
examines a number of multi-objective studies related to the solution of classical and

practical VRPs.

This chapter describes the notation and the problem in detail for two variants of
the VRP, namely the Capacitated VRP (CVRP) and the VRP with Time Windows
(VRPTW), which are the principal problems studied in this thesis. These problems
have been considered for study due to: (i) being the most basic VRPs, they are
perhaps the best starting point for researchers who are willing to immerse them-
selves in the problem, (i7) there are plenty of studies regarding their solution that
can be deemed as the baseline, and (iii) specifically for VRPTW, there are bench-
mark instances that can be use for actual multi-objective optimisation. Other VRPs
commonly found in the literature have also been considered for description. Addi-
tionally, a review of three classical construction heuristics is given, which is followed
by an overview of some studies that have tackled the problems of interest. Finally,

VRPs regarding multiple objectives, along with a literature survey, are introduced.

3.1 Capacitated VRP

The most elemental variant of the VRP is the Capacitated Vehicle Routing Problem
(CVRP), which takes into account a homogeneous fleet of vehicles with restricted

capacity as an approximation to real transportation problems.
The required information to define an instance of the CVRP is the following [236]:

Vertices There is a set V = {vg,...,uy} of N + 1 vertices, representing the

geographical location of the depot and customers.
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Figure 3.1: An example instance of the CVRP and a potential solution to it.

Customers — Customers are represented by the vertices in subset V' =V \ {vo} =
{v1,...,un}. Each customer v; € V' is geographically located at coor-

dinates (z;,y;) and has a demand of goods ¢; > 0.
Depot The special vertex wvg, located at (xg,yo), with go = 0, is the depot,
from where customers are serviced and a fleet of vehicles is based.

Vehicles There is a homogeneous fleet of vehicles available to deliver goods
to customers, departing from and arriving at the depot, which have

capacity Q > max {¢; :i=1,...,N}.

The information above allows the definition of the travel distance d;; between vertices

v; and vj;, which is often considered to be the Euclidean distance, i.e.

dij = \/(fz' — ;)2 + (yi —y;)? (3.1)

The problem consists in designing a lowest-cost set R = {ry,...,rx} of K routes,
such that each route begins and ends at the depot, and each customer is serviced
by exactly one vehicle. Thus, each vehicle is assigned a set of customers that it has
to supply. Figure 3.1 shows an example instance of the CVRP with ten customers

and one potential solution to it comprising of four such routes.
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If rp = (u(1,k),...,u(Ng, k)) is defined as the sequence of Nj customers supplied
in the k-th route, where (i, k) is the i-th customer to be visited in route ry, then
Vi ={u(l,k),...,u(Nk, k)} is the set of customers serviced in route r,. Note that
the depot does not appear explicitly in this notation, however, it has to be taken

into account before the first and after the last customers when computing costs, i.e.

u(0,k) = u(Ng + 1,k) = v9. Then

Ny
d(ry) = Z i k) u(i+1,k) (3.2)

1=0

is the travel distance associated with route 7, and

q(ry) = Z Qui k) (3.3)

i=1
is the total demand of the customers serviced in route ry.
Having defined the CVRP, there are at least two obvious objective functions to

concentrate on minimising, namely the number of routes (or vehicles)
filR)= |R| =K, (3.4)

and the total travel distance

FR) =D dr) = D dus usin) 5 (3.5)

r€ER r,k€R1=0
subject to the route demand ¢(ry), associated with customers serviced in route 7y,
which must not exceed the vehicle capacity @), i.e.
Ny,
q(ry) = Z Quik) < Q, VrreR. (3.6)
i=1
In addition to capacity, route r, might also be restricted to certain maximum length
D, 1e.

Ny

d(ry) = Z ugi) uiit1h) <D, Vrry€R. (3.7)

i=0
The proposed evolutionary approach, which will be presented in Chapter 5, was

tested on instances of this problem, considering the simultaneous minimisation of
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the number of routes, f1(R) in (3.4), and the total travel distance, fo(R) in (3.5),
subject to the capacity constraint (3.6) and the maximum route length constraint

(3.7), and giving the same priority to both objectives.

3.1.1 Benchmark sets of the Capacitated VRP

There exist several benchmark sets of the CVRP in the literature, two of which,
namely that of Christofides et al. [37] and that of Rochat and Taillard [204], are
among the most used. These instances were designed to be solved as single-objective
problems, considering the minimisation of the number of routes, and for a given
number of routes, the minimisation of the travel distance. These data sets are

publicly available from several world wide web sites!.

3.1.1.1 Christofides et al.’s benchmark set

One of the typical public benchmark sets of the CVRP is the one of Christofides et al.
[37]. It consists of 14 instances of sizes varying from 50 to 199. Table 3.1 presents
the characteristics and the best-known results for this set. Columns in this table
describe, respectively from left to right, the instance name, number of customers,
geographical distribution of customers, vehicle capacity, maximum length of any
route, and stop time at customer location. The last three columns correspond to the
number of routes (R), travel distance (D), and author who found the best-known
result. In instances vrpncl to vrpnclO the customers are randomly distributed,
whereas in problems vrpncll to vrpncl4 customers are located in clusters. For
illustrative purposes, Figure 3.2 shows the geographical location of the customers

for two instances in this set.

'For example, The VRP Web: http://neo.lcc.uma.es/radi-aeb/WebVRP/.
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Instance N Location Q Max. Stop Best-known
Length Time R D Author
vrpncl 50 Random 160 0 0 5 524.61 T
vrpnc2 75 Random 140 00 0 10 835.26 T
vrpnc3 100 Random 200 00 0 8 826.14 T
vrpncd 150 Random 200 00 0 12 1028.42 T
vrpnch 199 Random 200 00 0 17 1291.29 MB
vrpncb 50 Random 160 200 10 6 555.43 T
vrpnc7 75 Random 140 160 10 11 909.68 T
vrpnc8 100 Random 200 230 10 9 865.94 T
vrpnc9 150 Random 200 200 10 14 1162.55 T
vrpncl0O 199 Random 200 200 10 18 1395.85 RT
vrpncll 120 Clustered 200 o0 0 7 1042.11 T
vrpncl?2 100 Clustered 200 o0 0 10 819.56 T
vrpncl3d 120 Clustered 200 720 50 11 1541.14 T
vrpncl4d 100 Clustered 200 1040 90 11 866.37 0O
Author: MB: Mester and Braysy [170] RT: Rochat and Taillard [204] T: Taillard [225]

Table 3.1: Characteristics and best-known results to instances in the Christo-

fides et al.’s benchmark set.
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Figure 3.2: Geographical location of customers in instances vrpne3 and vrpncll
from the Christofides et al.’s benchmark set. Location with a star represents the
depot.
Instances vrpnc6 to vrpnclO, vrpncl3 and vrpncl4, consider a maximum route
length constraint, feature that could suggest the service of less customers in each
route, thus forcing the use of more vehicles. The geographical location of customers
and the vehicle capacity for the same instances are as in vrpncl to vrpne), vrpncll

and vrpncl2, respectively.
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Figure 3.3: Geographical location of customers in instances tai7ba and tail00a
from the Rochat and Taillard’s benchmark set. Location with a star represents
the depot.

3.1.1.2 Rochat and Taillard’s benchmark set

Another commonly used CVRP benchmark set is the one of Rochat and Taillard
[204], who generated a set of test instances where customers are spread in several
clusters, and the number of such clusters and their compactness are quite variable.
Figure 3.3 shows how customers are geographically located in two of these instances.
The demands ordered by the customers are exponentially distributed, hence one
customer may use almost the entire capacity of one vehicle. They generated four
problems of each size N = 75,100, 150. The characteristics and best-known results

for these instances are shown in Table 3.2, which format is similar to that of Table 3.1

3.1.2 Classical construction heuristics

In the literature we can find several heuristics that have been proposed for construc-
ting solutions to the CVRP. Since many of the approaches that are going to be
reviewed later refer to these heuristics, this section presents a description of two of

the most commonly used classical methods.
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Best-known

Instance N Location Q R D Author
tai75a 50 Clustered 1445 10 1618.36 T
tai75b 75 Clustered 1679 10 1344.62 T
tai75c 100 Clustered 1122 9 1291.01 T
tai7bd 150 Clustered 1699 9 1365.42 T
tail00a 199 Clustered 1409 11 1291.29 GTA
tail0Ob 120 Clustered 1842 11 1940.61 MB
tail00c 50 Clustered 2043 11 1406.2 GTA
tail00d 75 Clustered 1297 11 1580.46 NB
tail50a 100 Clustered 1544 15 3055.23 T
tail50b 150 Clustered 1918 14 2656.47 GTA
tail50c 199 Clustered 2021 15 2341.84 T
tail50d 120 Clustered 1874 14 2645.39 T
Author: GTA: Gambardella et al. [97] NB: Nagata and Braysy [179] T: Taillard [225]

MB: Mester and Bréaysy [170]

Table 3.2: Characteristics and best-known results to instances in the Rochat

and Taillard’s benchmark set.

3.1.2.1 Clarke and Wright’s savings heuristic

Clarke and Wright [38] proposed the savings algorithm, which is perhaps the most
widely-known heuristic for the CVRP. It defines, for two customers v; and v;, the

saving s;; with respect to the depot vy as

Sij = dio + doj — dij (3.8)
that is, the saving in cost of merging the routes (vy,...,v;,vp) and (vo,vj, ..., vo)
into a single route (vo,...,v;,v;,...,v).

The algorithm works as follows [154]. First, compute the savings s;;,V v;,v; € V',
v; # vj. Then, create N routes (vo,v;,v9),V v; € V', and sort the savings in non-
increasing order. Consider in turn each route (vg, v;, ..., v, 7). Determine the first
saving si; or sj that can be feasibly used to merge the current route with another
route ending with the arc (v, vg) or starting with the arc (vg,v;). Implement the
merge and repeat this operation to the current route. If no feasible merge exists,
consider the next route and reapply the same operations. Stop when no route merge

is feasible.
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There is a parallel version of this algorithm which, after sorting the savings, starts
from the top of the savings list and execute the following [154]. Given a saving
sij, determine whether there exist two routes, one starting with the arc (v, v;) and
the other ending with the arc (v;,vg), that can be feasibly merged. If these routes

exist, combine them by deleting the arcs (vg, v;) and (v;, vg) and introducing the arc
(v, v).

This algorithm scores very high on simplicity and speed. It contains no parameters
and is easy to code. However, the lack of flexibility is probably not a good feature
of this algorithm, in the sense that, while additional constraints can, in principle, be
incorporated, this usually results in a sharp deterioration in solution quality. This
can be explained by the fact that the algorithm is based on a greedy principle and

contains no mechanism to undo early unsatisfactory route merges [48].

3.1.2.2 Gillet and Miller’s sweep algorithm

Gillett and Miller [113] popularised the sweep algorithm?, which initially forms fea-
sible clusters by rotating a ray centred at the depot and then a route is obtained

for each cluster by solving a TSP.

A simple implementation of this method is as follows [156]. Assume each vertex v;
is represented by its polar coordinates (6;, p;), where 6; is the angle and p; is the ray
length. Assign a value 67 = 0 to an arbitrary vertex v; and compute the remaining
angles centred at 0 from the initial ray (0,v}). Sort the vertices in increasing order
of their #;. Choose an unused vehicle k and, starting from the unserviced vertex
having the smallest angle, assign vertices to vehicle k as long as its capacity or

the maximal route length is not exceeded. If there are vertices that have not been

2Laporte et al. [156] suggest its origins are alluded to Wren [252] and Wren and Holliday [253].
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routed, choose the next available vehicle. Finally, optimise each route separately by

solving the corresponding TSP.

This algorithm scores high on simplicity, but does not seem to be superior to the
savings algorithm both in terms of accuracy and speed. It is also rather inflexible,
since the greedy nature of the sweep mechanism makes it difficult to accommodate
additional constraints and the fact that the algorithm assumes a planar structure
severely limits its applicability. In particular, the algorithm is not well suited to

instances defined in an urban setting with a grid street layout [48].

A natural extension of the sweep algorithm is to generate several routes, called
petals, and make a final selection by solving a set partitioning problem [12]. Some
examples of this approach are the 1-petal algorithm of Foster and Ryan [91] and
Ryan et al. [208], and the 2-petal heuristic of Renaud et al. [201] where, in addition
to single routes, double vehicle routes are also generated. These extensions provide

both accuracy and speed gains with respect to the sweep algorithm [48].

3.1.3 Overview of metaheuristic approaches

The Capacitated VRP has been subject of extensive research, perhaps it is the most
studied VRP [165]. In order to set a baseline for the present investigation, the
purpose of this section is to survey some of the approaches that have proved to be

good solvers of this variant of the problem.

This review starts with some Tabu Search (TS) approaches. Gendreau et al. [106]
proposed their TABUROUTE, which main characteristics are the heuristics GENI
and US. The first, GENI, is a generalised insertion routine, in which a customer is
removed from its route and it may be inserted only into a route containing one of
its closest neighbours, and every insertion is executed simultaneously with a local

re-optimisation of the current tour. US is a post-optimisation procedure that suc-
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cessively removes and reinserts every customer using GENI. The GENIUS heuristic

is used in both to construct initial solutions and to search the neighbourhood.

Taillard [225] proposed a parallel T'S which partitions the problem into several clus-
ters and solves them separately. Initial solutions are obtained by the use of the
A-interchange local search on a solution with NV routes, being N the number of cus-
tomers. The same local search heuristic is used to define the neighbourhood. This
method executes, every 200 iterations, the algorithm of Volgenant and Jonker [245]
for exactly solving an instance of the TSP. This TS was enhanced by Rochat and
Taillard [204], who proposed a method that considers an adaptive memory: a pool
of routes taken from the best solutions visited during the search. Its purpose is
to provide new starting solutions to the TS through a probabilistic selection and
combination of routes extracted from the memory. The probability of selecting a
particular route depends on the quality of the solution to which the route belongs.
After the TS executes, a post-optimisation process is applied, specifically a set par-
titioning problem [12] is solved, using the routes in the adaptive memory to return

the best possible solution.

Toth and Vigo [239] presented the Granular Tabu Search (GTS). This approach res-
tricts the search to granular neighbourhoods, which only consider moves generated
by the arcs in a reduced set. This reduced set only contains short arcs, being an arc
short if its cost is not greater than the granularity threshold value. The algorithm is
initialised with the solution obtained by the savings heuristic. GTS uses a multiple
granular neighbourhood based on the local search heuristics 2-opt, 3-opt, and Or-
opt. Visiting infeasible solutions is allowed during the search, however, their costs

are modified by adding penalties to the routing cost.

Evolutionary approaches have also been considered for tackling the CVRP. Baker

and Ayechew [11], for example, proposed a Genetic Algorithm (GA) that initia-
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lises the population with random and structured solutions. Two methods were used
to generate structured solutions, namely the sweep heuristic and the cluster-first,
route-second algorithm of Fisher and Jaikumar [87]. The GA considers the 2-point
crossover [57] and a mutation which selects two customers and exchanges their posi-
tion. They also applied the two local search heuristics 2-opt and A-interchange after

a number of generations.

Prins [195] proposed a hybrid GA which executes a local search as the mutation
operator. This GA uses a permutation-based representation and includes the Split
function to retrieve the best solution from the encoding. The algorithm starts with
an initial population formed by three solutions obtained after applying the savings
and sweep heuristics, and the Mole and Jameson [175] heuristic. The rest of the po-
pulation are random permutations. Parents are selected with the binary tournament
method and recombined using the order crossover [181] to produce two children, one
of them randomly chosen to be mutated. The mutation is a local search procedure
that tests nine specific simple moves for every pair of vertices. Each iteration of the
local search is stopped at the first improving move. The solution is then modified
and the process repeated until no further saving can be found. The new solution

replaces a mediocre individual drawn above the median.

Morgan and Mumford [176] proposed a hybrid GA which includes a perturbation
method to randomly and lightly move all customer coordinates and use the resulting
positions to produce a set of routes using the savings heuristic. This method is used
to generate an initial population. They used three different crossover operators,
namely the single-point and 2-point crossover [57], and uniform crossover [3, 224].
The mutation procedure randomly selects a number of customers and applies the

perturbation method to those customers.
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The Active Guided Evolution Strategy (AGES) of Mester and Bréysy [170] combines
a Guided Local Search (GLS) [246] with an (1+1)-Evolution Strategy (ES). Initial
solutions are created with a modified version of the savings heuristic. The iterative
improvement phase starts with the GLS based on the two local search heuristics \-
interchange and 2-opt, and on the relocate heuristic of Savelsbergh [210], considering
a reduced neighbourhood. After no improvement, the ES is applied to remove a
selected set of customers and reinsert them at optimum cost. Mester et al. [171]
modified this method: they considered an Adaptive Variable Neighbourhood, which
is created by dividing the problem in smaller geographical regions, and a number of

routes within each region are grouped in order to apply the ES to them.

Alba and Dorronsoro [5, 6] implemented a cellular GA (¢cGA), in which the popula-
tion is structured in a specified topology and the genetic operations may only take
place in a small neighbourhood of each individual. ¢cGA uses the edge recombination
crossover of Whitley et al. [250] and includes three mutation operators that insert,
swap and invert customers, which are applied with equal probability. Additionally,
a local search step is considered after mutation, which implements the 2-opt and

A-interchange heuristics.

Nagata [178] and Nagata and Braysy [179] proposed to use a modified version of the
edge assembly crossover (EAX) [180], originally introduced in a GA for solving the
TSP. They extended EAX by handling vehicle capacity constraint violations with a
penalty function method, based on 2-opt and A-interchange local search, that mo-
difies solutions in order to be feasible. Initial solutions are created from routes with
one single customer, which are applied the modification method mentioned above
and finally a further local search is executed. Afterwards, each time an offspring
is generated by means of EAX, the modification and local search procedures are

applied.
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Prins [196] presented a hybrid method GRASP x ELS which combines a Greedy
Randomised Adaptive Search Procedure (GRASP) [86] and an Evolutionary Local
Search (ELS) [251]. GRASP can be thought as a multi-start local search, in which
each initial solution is generated using one greedy randomised heuristic and improved
by local search. ELS uses a population of only one individual and there is no need for
recombination. GRASP is the main loop of this approach, which is used to provide
the nested ELS with distinct initial solutions and can be viewed as a diversification
mechanism. Initial solutions are built with the savings heuristic, which are then
submitted to the 3-opt local search. The mutation in ELS consists in swapping two
distinct customers randomly selected and, to adapt the mutation level, a number
of successive swaps are executed. Finally, the 2-opt, Or-opt and A-interchange local

search techniques are applied.

Another metaheuristic that has been used for solving VRPs is Ant Colony Optimi-
sation (ACO) [76], which simulates the behaviour of ants in their search for food
sources. In the approach of Bullnheimer et al. [31], ants successively choose custo-
mers to visit until each customer has been visited. Whenever the choice of another
customer would lead to an infeasible solution, for reasons of vehicle capacity or total
route length, the ant returns to the depot and starts a new tour. For the selection of
customers that have not yet been served, the savings criterion is taken into account.
Additionally, this algorithm introduces candidate customer lists, which, for every
customer v;, considers a restricted set of locations to be visited immediately after

v;. Finally, the 2-opt local search heuristic is applied after each iteration.

To conclude the CVRP survey, Pisinger and Ropke [189] designed an Adaptive Large
Neighbourhood Search (ALNS), which removes between 30% and 40% of the custo-
mers from their routes, and reallocates them to other vehicles. They considered
seven different removal and two different insertion heuristic methods: the heuristics

to be used are chosen stochastically according to the weights the methods are assi-
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gned. These weights are dynamically adjusted according to their efficiency during
the process. The initial solutions are generated with the regret-2 heuristic of Potvin

and Rousseau [193].

3.1.4 Results from previous studies

The surveyed studies tested their approaches on either the Christofides et al.’s or
the Rochat and Taillard’s benchmark sets, or on both. The difference between their
best obtained results and the best-known is shown in Table 3.3, for each instance of
the Christofides et al.’s benchmark set, and in Table 3.4, for each instance of the the
Rochat and Taillard’s benchmark set. Some of these approaches were also tested on
VRPTW benchmark instances and their results will be shown later in Section 3.2.4.
Pisinger and Ropke [189] tested their ALNS on the Christofides et al.’s data set,
however, they did not provide detailed results, but only mention that they are 0.11%
above the best-known results, considering the best result after 10 repetitons, and

0.31% above considering the average.

These tables present, for each instance (row) and author (column), the per cent
difference with the best-known result. In Table 3.3 we observe that the algorithm of
Mester and Braysy [170] (MB) found the best-known solutions for seven out of the
14 instances, while that of Nagata and Bréaysy [179] (NB) found the best solutions
for 13 of them. Solutions from the methods of Taillard [225] (T), Prins [195] (P04),
and Prins [196] (P09) are less than 0.1% above the best-known. In contrast, the

ACO of Bullnheimer et al. [30] (BHS) reports the highest average difference (4.43%).

On the other hand, in Table 3.4 we see that the ACO of Gambardella et al. [97]
(GTA), which approach will be presented in Section 3.2.3, achieved the current best-
known results for three of the 12 instances, though they did not report the results

for the remaining test problems. Morgan and Mumford [176] (MM), Mester and
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Instance Best T GHL BHS TV P04 BA MM MB NB P09
vrpncl 524.61  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vrpnc2 835.26  0.00 0.01 4.23 040 0.00 043 040 0.00 0.00 0.00
vrpnc3 826.14  0.00 0.00 6.45 0.29 0.00 0.40 0.62 0.00 0.00 0.00
vrpncd 1028.42  0.00 0.26 11.57 047 020 062 1.78 0.00 0.00 0.10
vrpnch 1291.29  0.58 1.55 14.10 2.09 039 283 215 0.00 0.01 0.22
vrpnc6 555.43  0.00 0.00 1.35 0.00 0.00 0.00 0.00  0.00
vrpnc7 909.68  0.00 0.00 4.23 1.21  0.00 0.00 0.00  0.00
vrpnc8 865.94  0.00 0.00 2.34  0.41 0.00 0.20 0.00 0.00
vrpnc9 1162.55  0.00 0.03 3.39 091 0.00 0.32 0.00 0.00
vrpnclO 1395.85 0.15 0.64 7.80 2.86 0.49 2.11 0.00 0.40
vrpncll 1042.11  0.00 0.00 2.91 0.07 0.00 0.46 0.00 0.00 0.00 0.00
vrpncl2 819.56  0.00 0.00 0.05  0.00 0.00 0.00 0.00 0.00 0.00
vrpncl3 1541.14  0.00 0.31 3.20 0.28 0.11 0.34 0.00 0.28
vrpncl4d 866.35  0.00 0.00 0.41 0.00 0.00 0.09 0.00 0.00
Average 0.05 0.20 443 0.64 0.09 056 0.83 0.00 0.00 0.07
St. Dev. 0.16 0.43 424 087 0.16 085 092 0.00 0.00 0.13
Author: BA: Baker and Ayechew [11] MM: Morgan and Mumford [176] P09: Prins [196]

BHS: Bullnheimer et al. [31]
GHL: Gendreau et al. [106]
MB: Mester and Bréysy [170]

NB: Nagata and Braysy [179]

P04: Prins [195]

T: Taillard [225]
TV: Toth and Vigo [239]

Table 3.3: Best results from previous studies, and their percentage difference

with the best-known results, for the Christofides et al.’s benchmark set.

Instance Best RT GTA MB MM AD NB
tai7ba 1618.36 0.00 0.00 0.00 0.00
tai75b 1344.62 0.00 0.00 0.00
tai75c 1291.01 0.00 0.00 0.00 0.00
tai7bd 1365.42 0.00 0.00 0.00 0.00
tail00a 2041.34 0.32 0.00 0.00 0.65 0.32 0.00
tail0Ob 1939.90 0.04 0.00 0.02 0.02 0.00
tail00c 1406.20 0.09 0.00 0.00 0.00 0.39 0.00
tail00d 1580.46 0.05 0.05 0.05 0.69 0.24 0.00
tail50a 3055.23 0.51 0.00 0.04 0.00
tail50b 2656.47 2.90 0.00 2.68 2.87 2.66
tail50c 2341.84 0.96 0.05 0.95 0.72
tail50d 2645.39 0.67 0.00 0.35 0.00
Average 0.69 0.01 0.23 0.17 0.47 0.28
St. Dev. 0.95 0.02 0.77 0.31 0.85 0.78

Author: AD: Alba and Dorronsoro [5]
GTA: Gambardella et al. [97]

MB: Mester and Briysy [170]
MM: Morgan and Mumford [176]

NB: Nagata and Braysy [179]
RT: Rochat and Taillard [204]

Table 3.4: Best results from previous studies, and their percentage difference
with the best-known results, for the Rochat and Taillard’s benchmark set.
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Braysy [170] (MB), and Nagata and Bréysy [179] (NB) obtained solutions which
are, respectively, 0.16%, 0.23%, and 0.28% above the best-known results, while
Rochat and Taillard [204] (RT) and Alba and Dorronsoro [5] (AD) found solutions

with the highest results, 0.69% and 0.47% higher, respectively.

The multi-objective EA developed during this research, which will be presented in
Chapter 5, was tested on these instances, thus it is going to be compared with the

reviewed studies in order to know where the algorithm establishes among them.

3.2 VRP with Time Windows

The VRP with Time Windows (VRPTW) is a variant of the problem that has,
additionally to the capacity constraint, restrictions on the service times. In this
problem, vehicles have to arrive within the customers time windows to carry out the

deliveries. Consequently, the following modified definition is required [46]:

Vertices There is a set V = {vg,...,uy} of N + 1 vertices, representing the

geographical location of the depot and customers.

Customers —Customers are represented by the vertices in subset V' =V \ {vg} =
{v1,...,ux}. Each customer v; € V' is geographically located at co-
ordinates (x;,¥;), has a demand of goods ¢; > 0, has a time window
[b;, €;] during which it has to be supplied and requires a service time

s; to unload goods.

Depot The special vertex wvg, located at (xg,yo), with go = 0, time window
[0,60 > max {ei—i—si—i—dio cie{l,...,N} }] and sy = 0, is the depot,

from where customers are serviced and a fleet of vehicles is based.
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Vehicles There is a homogeneous fleet of vehicles available to deliver goods
to customers, departing from and arriving at the depot, which have

capacity @ > max {¢; : i =1,...,N}.

In this problem, in addition to the cost related to fuel cost, i.e. the travel distance d;;
defined in (3.1), there is a cost related to driver’s remuneration, that is the delivery
time ¢;;. For the standard benchmark instances to be considered for this problem, it
is common to assume unit velocity and direct travel, hence the times and distances

are simply taken to be equal, i.e.

tij = dij = \/(fﬂz — ;) + (yi —y5)* - (3.9)

For real-world problems, however, the distances d;; are unlikely to be Euclidean and
the travel times ¢;; are unlikely to be simply related to the distances. The following

will take care to accommodate those possibilities.

Time plays an important role in this problem, as it is not possible to supply a
customer before or after its time window. Let a(i, k) denote the arrival time of
vehicle k at the i-th customer location and I(i, k) be the time it leaves, and have
vehicle k depart from the depot at time 0, i.e. [(0,k) = 0. The arrival time at the

i-th customer in route 7} is then

If the vehicle arrives early at the i-th customer location, it will have to wait until the
beginning of the i-th customer time window before the unload of goods can start.
Hence, the departure time [(i, k) will be the maximum of the arrival time a(i, k)
and window opening time b, k), plus the unloading time s,(; ). Consequently, the

waiting time w(i, k) associated with serving the i-th customer in route rj will be
0 if a(i, ]{3) Z bu(i,k) s

w(i, k) = (3.11)
bugiky — a(i, k)  otherwise .
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Arriving after the end of the customer time window is simply not allowed. Thus,

the time vehicle £ leaves the i-th customer can be written as
l(i k) = a(i, k) +w(i, k) + Su(ik) 5 (3.12)

and the total time required to complete route ry is
Ny

t(re) = Z (tugiy w1 ) + w0+ 1 k) + Suirip) (3.13)
=0

i.e. the arrival time a(Ny, + 1, k) of vehicle k back at the depot.
Hence, in addition to the number of routes, fi1(R) in (3.4), and the travel distance,
f2(R) in (3.5), a further objective function is identified, which is the total delivery

time, i.e.

Ny,
f3(R) = Z t(rk) - Z Z (tu(z,k) u(i+1,k) + ’LU(Z + 1, k’) + Su(i+1,k)) , (314)

rLER r,k€R1=0

and, additionally to the capacity restriction defined in (3.6), this problem considers
a supplementary constraint, which is that vehicle £ must arrive at the i-th customer

location no later than its time window ends, that is

CL(Z,/{Z) <6u(i,k)7 1=1,...,N, VryeR. (315)

The Evolutionary Algorithms developed in this research, which will be described
in Chapters 4 and 5, were tested on instances of this problem, considering the
simultaneous minimisation of the number of routes, fi(R) in (3.4), the total travel
distance, fo(R) in (3.5), and the total delivery time, f3(R) in (3.14), considering
all objective functions f; equally important, subject to the capacity constraint (3.6)

and the time window constraint (3.15).

3.2.1 Solomon’s benchmark set of the VRP with Time Windows

One of the standard benchmark sets, and actually most widely-used, for the VRPTW

is that of Solomon [218]3, which includes 56 instances of each size N = 25,50, 100.

3 Available from Solomon’s web site: http://w.cba.neu.edu/~msolomon/problems.htm.
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Figure 3.4: Geographical location of customers for each instance category in

the Solomon’s benchmark set. Location with a star represents the depot.
These instances are categorised as sets C1 (9 instances) and C2 (8 instances), where
customers are located in geographical clusters, R1 (12 instances) and R2 (11 ins-
tances), where customers are randomly distributed, and RC1 (8 instances) and RC2
(8 instances), which have a mix of random locations and clusters. Figure 3.4 shows

the geographical location of customers for each instance category.

Moreover, instances in sets C1, R1 and RC1 have a short scheduling horizon, i.e.
the time constraint acts as a capacity constraint, which allows only a few customers
to be serviced by the same vehicle. In contrast, instances in sets C2, R2 and RC2

have a long scheduling horizon, which, coupled with large vehicle capacities, permits
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Figure 3.5: Histograms showing the number of customers and their correspon-
ding average time window length: Customers in categories C1, R1, and RC1 have
to be scheduled for service in a short period of time. On the contrary, customers

in sets C2, R2, and RC2 can be scheduled to be visited in a longer period of time.

many customers to be serviced by the same vehicle [218]. The instances scheduling
horizon is presented as histograms in Figure 3.5. These plots show the number of
customers and their corresponding average time window length over the instances
in each set category. For example, in the top plot, corresponding to the categories

C1 and C2, we see that nearly 20 customers in the category C1 (lighter bars) have
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a time window length of approximately 300 units and that of another 20 customers
is of 400 units. Nearly 13 customers have the largest time window, which length is
approximately 500 units. On the other hand, for instances in category C2 (darker
bars), we see that the majority of the customers have a time window which length
is of approximately 700 units and longer. This means that customers in category
C1 have to be scheduled for service in a short period of time and they only have a
small fraction of this time to be appropriately programmed for their visit. On the
contrary, customers in category C2 are scheduled to be visited in a longer period of
time and the length of their time windows is also longer. For categories R1 and R2,

and RC1 and RC2 we observe a similar pattern.

Due to customers have longer time windows, there are more possibilities to schedule
a customer in categories C2, R2, and RC2 than in categories C1, R1, and RCI.
Consequently, by the nature of the instance data, the former categories have a wider
feasible region than the latter. Categories C1 and C2 are special cases since, due
to the fact that customers are located in geographical clusters, the probability of
finding good solutions comprising routes servicing customers from different clusters
is low, although they are feasible. In fact, this aspect will reduce the region of the
search space where the best solutions are and limit the degree to which the diversity

enhancement mechanisms can provide improved performance.

Although the main objective of this problem is to minimise the number of routes and
then, for a given number of routes, to minimise the travel distance, many studies
have focused exclusively in the latter, leading to obtain solutions with an increased
number of routes. For this reason, the comparison of results to these instances could
be misleading if this is not taken into consideration. Table 3.5 shows the best-known
result for each individual instance, regarding both the number of routes (min R) and

the travel distance (min D) as the main objective to be minimised.
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Short scheduling horizon

Long scheduling horizon

min R min D min R min D

st e Aam.  ®R D Aw. ™% R D Am. R D Am
C101 10 828.94 RT 10 828.94 RT C201 3 591.56 RT 3 591.56 RT
C102 10 828.94 RT 10 828.94 RT C202 3 591.56 RT 3 591.56 RT
C103 10 828.06 RT 10 828.06 RT C203 3 591.17 RT 3 591.17 RT
C104 10 824.78 RT 10 824.78 RT C204 3 590.60 RT 3  590.6 RT
C105 10 828.94 RT 10 828.94 RT C205 3 588.88 RT 3 588.88 RT
C106 10 828.94 RT 10 828.94 RT C206 3 588.49 RT 3 588.49 RT
C107 10 828.94 RT 10 828.94 RT C207 3 588.29 RT 3 588.29 RT
C108 10 828.94 RT 10 828.94 RT C208 3 588.32 RT 3 588.32 RT
C109 10 828.94 RT 10 828.94 RT

R101 18 1613.59 TCL 18 1613.59 TCL R201 4 1252.37 HG 9 1144.48 AMT
R102 17 1486.12 RT 18 1454.68 TCL R202 3 1191.70 RGP 8 1034.35 JM
R103 13 1292.68 LL 14 1213.62 RT R203 3 939.54 M 6 874.87 JM
R104 9 1007.24 M 10 974.24 TCL R204 2 825.52 BVH 4 736.52 JM
R105 14 1377.11 RT 15 1360.78 JM R205 3 994.42 RGP 5 954.16 ORH
R106 12 1251.98 M 13 1240.47 JM R206 3 906.14 SSS 5 879.89 JM
R107 10 1104.66 S97 11 1073.34 JM R207 2 837.20 BC 4 799.86 JM
R108 9 960.88 BBB 10 947.55 JM R208 2 726.75 M 4 705.45 JM
R109 11 1194.73 HG 13 1151.84 JM R209 3 909.16 H 5 859.39 JM
R110 10 1118.59 M 12 1072.41 JM R210 3 939.34 M 5 910.7 JM
R111 10 1096.72 RGP 12 1053.5 JM R211 2 892.71 BVH 4 755.96 JM
R112 9 982.14 GTA 10 953.63 RT

RC101 14 1696.94 TBG 15 1623.58 RT RC201 4 1406.91 M 6 1134.91 TCL
RC102 12 1554.75 TBG 14 1461.23 JM RC202 3 1365.65 RTI 8 1095.64 JM
RC103 11 1261.67 S98 11 1261.67 S98 RC203 3 1049.62 CC 5 92851 JM
RC104 10 113548 CLM 10 113548 CLM  RC204 3 798.41 M 4 786.38 JM
RC105 13 1629.44 BBB 16 1518.58 JM RC205 4 1297.19 M 7 1157.55 JM
RC106 11 1424.73 BBB 13 1371.69 TCL RC206 3 1146.32 H 7 1054.61 JM
RC107 11 1222.16 TCL 12 1212.83 JM RC207 3 1061.14 BVH 6 966.08 JM
RC108 10 1139.82 TBG 11 1117.53 JM RC208 3 828.14 IKM 4 779.31 JM

Author: AMT: Alvarenga et al. [7]

BBB: Berger et al. [20]

BC: Le Bouthillier and Crainic [158]
BVH: Bent and Van Hentenryck [17]

CC: Czech and Czarnas [52]
CLM: Cordeau et al. [47]
GTA: Gambardella et al. [97]

H: Homberger [127]

HG: Homberger and Gehring [128] RTI: Repoussis et al. [203]
IKM: Ibaraki et al. [130]
JM: Jung and Moon [137]
LL: Li and Lim [161]
M: Mester [169]
RGP: Rousseau et al. [207]
RT: Rochat and Taillard [204]

ORH: Ombuki et al. [182]
S97: Shaw [215]

S98: Shaw [216]

SSSD: Schrimpf et al. [213]
TBG: Taillard et al. [226]
TCL: Tan et al. [228§]

Table 3.5: Best-known results, regarding the solutions with the smallest number

of routes and with the shortest travel distance, for the Solomon’s benchmark set.

Analysing the figures shown in this table, we realise that, with the exception of

all instances in categories C1 and C2, and instances R101, RC103, and RC104, all
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other instances have two different solutions: one with the shortest number of routes
and the other with the shortest travel distance. Therefore, it is clear that these
instances have at least two solutions, thus this benchmark set, specially instances
in categories R1, R2, RC1, and RC2, might potentially be considered for multi-

objective optimisation.

3.2.2 Solomon’s I1 insertion heuristic

Solomon [218] proposed several construction heuristics: two savings heuristics, a
time-oriented, nearest-neighbour heuristic, three insertion heuristics, and a time-
oriented sweep heuristic. Among the insertion heuristics, the /7 is considered to be

the most successful [27].

A route is first initialised with a seed customer, which is selected by finding either the
geographically farthest unrouted customer in relation to the depot or the unrouted
customer with the lowest allowed starting time for service. The method uses two
criteria, ¢;(v;, vj, vip1) and co(v;, v;, viy1), at every iteration to insert a new customer

v; into the current partial route, between two adjacent customers v; and v;1;.

Let r, = (v1,...,vn,) be the current route. For each unserviced customer, we first

compute its best feasible insertion place in the emerging route as

c1(vi(vy), v, Vi (v7)) = o mmin vy, 05, 0) - (3.16)

It is important to mention that inserting v; between v,_; and v, could potentially
alter the times to begin service at all customers after v,_1, that is ((v,, ..., vn,)).
Actually, Dullaert and Braysy [80] argue that, if customer v; is inserted between vy
and vy in the partially constructed route, the additional time needed is underesti-
mated. This can cause the selection of sub-optimum insertion places for unrouted
customers. Thus, a route with a relatively small number of customers can have a

larger schedule time than necessary.
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Next, the best customer v} to be inserted in the route is selected as the one for

which

Co (vi(v;‘), v, viH(v}‘)) = lr)?g)& {02 (vi(vj),vj, le(vj))} , (3.17)

where set U contains all unserviced customers which insertion will not produce an

infeasible solution.

Customer v} is then inserted in the route between v;(vj) and vi11(v}). When no
more customers with feasible insertions can be found, the method starts a new route,

unless it has already routed all customers.

The best feasible insertion place for an unrouted customer is the one that minimises
the distance and time required to visit the customer, criterion ¢;(v;,v;,vit1), and
maximises the benefit derived from servicing a customer on the partial route being

constructed rather than on a direct route, criterion co(v;, vj, viy1).

3.2.3 Overview of metaheuristic approaches

A significant percentage of the research on VRP has been focused on the variant with
Time Windows. This section provides a review of some studies that have achieved

important results and are of concern to this thesis.

Many Tabu Search (TS) methods have been also applied to this problem. For ins-
tance, the TS of Potvin et al. [194] was inspired by the approach of Gendreau et al.
[106] for solving the CVRP. However, solution feasibility is always maintained be-
cause, due to the time window constraint, it is quite difficult to get back to a feasible
solution after an infeasible move. This TS is initialised with the solution produced
by the I1 heuristic. Afterwards, the 2-opt and Or-opt local search are alternated to
define neighbourhoods and perform moves. However, the entire neighbourhoods are

not explored, instead they are reduced by selecting a subset of customers at each
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iteration and by considering only the exchanges that link the selected customers

with customers that are close in distance.

Taillard et al. [226] based their TS on the strategy of Rochat and Taillard [204] for
solving the CVRP, in the sense that it uses an adaptive memory containing routes
from good solutions and performs the GENIUS heuristic of Gendreau et al. [106] as
a post-optimisation procedure. The adaptive memory is initialised with routes from
solutions obtained with the I1 heuristic. This approach defines the CROSS exchange
local search, which is used to build the neighbourhood. Dynamic diversification is
incorporated by penalising CROSS exchanges that are frequently performed during
the search. The customers within each individual route are reordered, by means of

the I1 heuristic, when an overall best solution is found.

Cordeau et al. [47] proposed a method in which initial solutions are constructed by
means of a kind of sweep heuristic, i.e. according to the angle the customers make
with the depot. This algorithm allows violation of constraints, though they are
penalised in the cost function which weighting coefficients are adjusted dynamically.
The best feasible solution identified during the search is finally post-optimised by

applying an adaptation of the GENIUS heuristic of Gendreau et al. [106].

As well as for CVRP, a number of evolutionary and hybrid approaches have been
proposed to tackle VRPTW, the main difference between them being the recom-
bination and mutation operators, and the additional strategies incorporated in the
algorithms. For example, Potvin and Bengio [192] developed the GENEtic RO Uting
System (GENEROUS). They proposed the recombination operators sequence-based
crossover (SBX) and route-based crossover (RBX), and the mutation operators one-

level exchange, two-level exchange, and one based on the Or-opt local search.

Something different was proposed by Jung and Moon [137], who encoded a solution

in a two-dimensional image and introduced the natural crossover, which partitions
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the image by drawing one or more curves or geometric figures. Routes from both
parents that have not been broken with this partition are copied into the offspring
and a repair mechanism is applied. The mutation calls three local search heuristics

in sequence, namely Or-opt, and the crossover and relocation of Savelsbergh [210].

Zhu [256] presented a Genetic Algorithm that adapts the recombination and mu-
tation rates to the population dynamics, maintaining population diversity at user-
defined levels, thus preventing premature convergence. The initial population is
created with a feasible solution from the I1 heuristic and some of its 2-opt neigh-
bours, and with randomly generated solutions. Two recombination operators are
considered, namely partially matched crossover [120] and order crossover [181], each
of them with the same probability of being applied. They introduced the three muta-
tion operators one-step route reduction, one-step cost reduction, and gene relocation,

from which one is applied.

The hybrid approach of Berger et al. [20] considers two populations Pop; and Pops,
primarily formed of non-feasible solution individuals, which are evolving concur-
rently, each with its own objective function. Pop; contains at least one feasible
solution and is used to minimise the total travel distance, while Popy focuses on
minimising constraint violation. They introduced the two recombination operators
insertion-based crossover and insertion within route-based crossover, and a suite of
five mutation operators, namely large neighbourhood search-based, edge exchange,
repair solution, reinsert shortest route, and reorder customers. Later, Berger and
Barkaoui [19] proposed a parallel version of this approach: the master component
controls the execution of the algorithm, coordinates evolutionary operators and
handles parent selection, while the slave element concurrently executes reproduc-

tion and mutation operators.
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Le Bouthillier and Crainic [158] proposed a cooperative parallel metaheuristic that
implements two TS algorithms, that is the one by Gendreau et al. [106] and that
of Cordeau et al. [47], and two Evolutionary Algorithms (EA), which difference
lies in the recombination operator used, either order crossover [181] or the edge
recombination crossover of Whitley et al. [250]. To generate initial solutions and
help diversify the pool, four simple construction heuristics from Bentley [18] were
adapted: least successor, double-ended nearest neighbour, multiple fragments, and
shortest arcs hybridizing. Each of these metaheuristics works independently from
each other and the best solutions found are collected in the solution warehouse, which
is divided into two sub-populations: in-training and adult. All solutions received
from the independent processes are placed in the in-training part. Then, one of the
post-optimisation local search procedures 2-opt, 3-opt, and Or-opt, is applied and

the resulting solution is moved to the adult sub-population.

Homberger and Gehring [129] proposed a two-phase metaheuristic that combines a
(1 + A)-Evolution Strategy (ES), where p denotes the parent population size and A
the offspring population. and a subsequent TS. It starts with an initial population
P of p different feasible solutions generated using a modified version of the savings
heuristic. Then, the ES is executed by selecting a random solution from P which is
submitted to one of the local search methods 2-opt, Or-opt, and A-interchange. The
best solution found in this stage is submitted to the TS, which considers restricted
neighbourhoods of the same local search heuristics used in the first stage. The

authors also designed large scale instances, ranging from 200 to 1000 customers.

Alvarenga et al. [7] introduced a Genetic Algorithm and a set partitioning formula-
tion of the problem. The authors proposed the stochastic PFIH, which is a stochastic
version of the I1 heuristic, for the construction of initial solutions. The recombi-
nation randomly chooses a route from each parent in turns and, after all feasible

routes have been inserted in the offspring, the insertion of remaining customers are
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tested in existing routes. If some customers continue to be unrouted, new routes
are created. In this step, the stochastic PFIH is again applied. A total of eight
different specialised operators were used in the mutation phase, namely random
customer maigration, bringing the best customer, re-insertion using stochastic PFIH,
similar customer exchange, customer exchange with positive gain, merge two routes,

reinserting customer, and route partitioning.

Repoussis et al. [203] designed a EA which uses the Greedy Randomised Construc-
tion, a modified variant of the probabilistic parallel construction heuristic of Kon-
toravdis and Bard [148], for generating initial solutions. This EA considers a multi-
parent recombination operator, which goal is to deterministically select and extract
promising solution arcs from each parent individual. The proposed mutation ope-
rator follows the ruin-and-recreate principle, in which a selected set of customers is
removed from the current solution and they are reinserted back to the partially rui-
ned solution in a probabilistic-heuristic fashion. This EA considers two additional
TS-based processes at every generation after mutation: one to reduced the number

of routes and the other to minimise the travel distance.

Other studies have considered different metaheuristics, e.g. Gambardella et al. [97]
designed the Multiple Ant Colony System (MACS), which considers two objective
functions: the minimisation of the number of routes, and the minimisation of the
total travel time, where the former takes precedence over the latter. In MACS
both objectives are optimised simultaneously by coordinating the activities of two
colonies. The goal of the first, VEI is to try to decrease the number of vehicles
used, while the second colony, TIMFE, optimises the feasible solutions found by VEI.
Furthermore, TIME implements a local search procedure similar to the CROSS

exchange of Taillard et al. [226] to improve the quality of feasible solutions.
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Finally, Alternate K-exchange Reduction (AKRed), which is a two-phase approxi-
mation algorithm, was proposed by Cordone and Wolfler Calvo [50]. Tt builds a set
of initial solutions using the heuristics introduced by Solomon [218], improves them
through a local search procedure and returns the best solution found. AKRed’s local
search procedure combines k-opt moves, specifically 2-opt and 3-opt moves between
routes and inside a single route, and an ad hoc procedure, called Reduction, to reduce
the number of vehicles. Both take advantage of using a global best strategy and are
nested in such a way that their interaction is as effective as possible. To escape from
sub-optimum solutions, the algorithm applies the same local search procedure with
a slightly different objective function, whose main component is still the number
of vehicles, whereas the secondary component is the route duration, instead of the

travel distance.

3.2.4 Results from previous studies

The vast majority of the reviewed studies have tested their approaches on the So-
lomon’s benchmark set. Due to this data set contains 56 instances, it would be
impractical to show, for all of them, the best result found by each individual ap-
proach. Additionally, not all of the studies made available the detail of their results,
instead, the best results have been traditionally presented averaged over the ins-
tances in each of the C1, C2, R1, R2, RC1, and RC2 categories. Furthermore,
as was stated earlier (Section 3.2.1), these benchmark instances have been solved
considering either the number of routes (R) or the travel distance (D) as the main
objective to be optimised, thus the comparison of studies which prioritised different

objectives could result in large differences in the objectives.

For the reasons above, results from previous studies are presented in two ways. The
first considers the difference between their best results and the best-known results,

regarding both the solution with the smallest number of routes and the solution
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Author C1 C2 R1 R2 RC1 RC2 Total
0.00  0.00 3.79 7.58 3.07 4.17 3.33
0.00  0.00 0.08 1.80 -0.28 0.38 0.38

0.00  0.00 3.15 4.55 0.00 4.17 2.16
0.00  0.00 0.05 3.74 0.43 0.46 0.87

0.00  0.00 2.31 0.00 0.00 0.00 0.50
0.00  0.00 0.13 2.61 0.47 1.29 0.79

0.00  0.00 6.31 9.09 7.67 4.17 4.83
0.69 0.32 3.05 5.18 2.28 247 2.50

0.00 0.00 12.73 96.21  12.55 91.67  36.52
0.00 0.00 -2.43 -7.01  -2.55 -9.57  -3.63

0.00  0.00 2.31 0.00 0.00 0.00 0.50
0.00  0.00 0.05 1.57 0.23 1.15 0.51

0.00 0.00 1273 102.27 11.41 100.00 38.73
0.00 0.00 -2.10 -4.59  -2.70 -8.45  -2.94

0.00  0.00 0.46 0.00 0.00 0.00 0.10
0.00  0.00 0.24 0.70 0.10 0.04 0.21

Rochat and Taillard [204]

Taillard et al. [226]

Cordeau et al. [47]

Cordone and Wolfler Calvo [50]

Jung and Moon [137]

Le Bouthillier and Crainic [158]

Alvarenga et al. [7]

Repoussis et al. [203]

Table 3.6: Average difference, grouped by instance category, between results
from previous studies and the best-known results, considering the solutions with

the smallest number of routes to the Solomon’s benchmark set.

with the shortest travel distance presented in Table 3.5. For each author and test
instance, the solution with the smallest number of routes and that with the shortest
travel distance were taken, when available, and the per cent difference in both objec-
tives between these solutions and the best-known was computed. Then, the average
of this difference over the instances in each category was calculated. Table 3.6 shows,
for each author (row) and instance category (column), the percentage difference in
the number of routes (upper figure) and in the travel distance (lower figure) regar-
ding solutions with the smallest number of routes. The last column presents the
total average difference for all 56 instances. A negative difference corresponds to an
improvement in the best-known result. Table 3.7 presents the corresponding average

per cent difference considering the solutions with the shortest travel distance.

In Table 3.6 we can observe that the approach of Repoussis et al. [203] found so-

lutions with the smallest difference in the number of routes (0.1%) between their
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Author C1 C2 R1 R2 RC1 RC2 Total
0.00 0.00 -6.15 -44.60 -6.38 -40.42 -16.76
0.00  0.00 2.85 9.70 2.82 12.70 4.73
0.00 0.00 -6.75 -45.73 -9.06 -40.42 -17.50
0.00  0.00 2.85 11.84 3.55 12.73 5.26
0.00 0.00 -7.44 -48.01 -9.06 -41.98 -18.32
0.00 0.00 2.93 10.59 3.59 14.00 5.22
0.00 0.00 -3.98 -43.46 -2.17 -4042 -1547
0.69 0.32 5.92 13.20 5.37 14.98 6.93
0.00 0.00 1.76 0.00 1.97 6.25 1.55
0.00  0.00 0.28 0.02 0.41 1.44 0.33
0.00 0.00 -7.44 -48.01 -9.06 -41.98 -18.32
0.00 0.00 2.84 9.48 3.34 13.85 4.93
0.00  0.00 1.76 4.62 0.83 11.46 3.04
0.00 0.00 0.61 2.63 0.26 2.69 1.07

0.00 0.00 -9.11  -48.01 -9.06 -41.98 -18.67
0.00  0.00 3.05 8.51 3.20 12.57 4.58

Rochat and Taillard [204]

Taillard et al. [226]

Cordeau et al. [47]

Cordone and Wolfler Calvo [50]

Jung and Moon [137]

Le Bouthillier and Crainic [158]

Alvarenga et al. [7]

Repoussis et al. [203]

Table 3.7: Average difference, grouped by instance category, between results
from previous studies and the best-known results, considering the solutions with

the shortest travel distance to the Solomon’s benchmark set.

results and the best-known, followed by the approach of Cordeau et al. [47] and
that of Le Bouthillier and Crainic [158], which found solutions with a difference
of 0.5%, however, the latter achieved solutions with a smaller difference in travel
distance (0.51%), while the study of Jung and Moon [137] obtained solutions with

the highest difference (36.52%).

On the other hand, regarding solutions with the shortest travel distance, in Table 3.7
we see that the approach of Jung and Moon [137], which obtained the largest diffe-
rence in the number of routes, achieved the smallest difference between their results
and the best-known (0.33%), followed by that of Alvarenga et al. [7] which achieved
solutions with a difference of 1.07%, while the largest difference was due to Cordone
and Wolfler Calvo [50] (6.93%). It is clear from both tables that all approaches
found the best-known solutions for categories C1 and C2, since the difference in

both objectives is zero, except for that of Cordone and Wolfler Calvo [50].
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Author C1 C2 R1 R2 RC1 RC2 Total

RT 10.00 3.00 12.58 3.09 12.38 3.62 415.00
828.45 590.32 1197.42 954.36 1369.48 1139.79 57231.05
PB 10.00 3.00 12.60 3.00 12.10 3.40
838.00 589.90 1296.80 1117.70 1446.20 1360.60
PKG 10.00 3.00 12.50 3.10 12.60 3.40
850.20 594.60 1294.50 1154.40 1456.30 1404.80
TBG 10.00 3.00 12.17 2.82 11.50 3.38 410.00
828.38 589.86 1209.35 980.27 1389.22 1117.44 57521.79
GTA 10.00 3.00 12.00 2.73 11.63 3.25
828.38 589.86 1217.73 967.75 1382.42 1129.19
CLM 10.00 3.00 12.08 2.73 11.50 3.25 407.00
828.38 589.86 1210.14 969.57 1389.78 1134.52 57555.63
CW 10.00 3.00 12.50 291 12.38 3.38 422.00
834.05 591.78 1241.89 995.39 1408.87 1139.70 58481.21
IM 10.00 3.00 13.25 5.36 13.00 6.25 486.00
828.38 589.86 1179.95 878.41 1343.64 1004.20 54779.02
BBB 10.00 3.00 11.92 2.73 11.50 3.25 405.00
828.48 589.93 1121.10 975.73 1389.89 1159.37 57952.00
Author: BBB: Berger et al. [20] GTA: Gambardella et al. [97] PKG: Potvin and Bengio [192]
CLM: Cordeau et al. [47] JM: Jung and Moon [137] RT: Rochat and Taillard [204]
CW: Cordone and Wolfler Calvo [50] PB: Potvin et al. [194] TBG: Taillard et al. [226]

Table 3.8: Average best results from previous studies, grouped by instance

category, for the Solomon’s benchmark set.
The second way of presenting previous results is the traditional style commonly
found in the literature. Tables 3.8 and 3.9 show, for each author (row) and instance
category (column), the average number of routes (upper figure) and the average
travel distance (lower figure). Additionally, the last column presents, when available,
the total number of routes and total travel distance for all 56 instances. We can
observe again that many approaches found the best-known solutions for instances in
categories C1 and C2, in which customers are clustered. The approach of Homberger
and Gehring [129] (HG) obtained solutions with the smallest average number of
routes for categories R1 and RC2, and in total, while the algorithm of Repoussis
et al. [203] for categories R2 and RC1. On the other hand, the method of Jung and

Moon [137] found solutions with the shortest average travel distance for categories
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Author C1 C2 R1 R2 RC1 RC2 Total

7 10.00 3.00 12.80 3.00 13.00 3.70
828.90 589.90 1242.70 1016.40 1412.00 1201.20
BB 10.00 3.00 11.92 2.73 11.50 3.25 405.00
828.48 589.93 1221.10 975.43 1389.89 1159.37 57952.00
HG 10.00 3.00 11.91 2.73 11.50 3.25 405.00
828.38 589.86 1212.73 955.03 1386.44 1108.52 57192.00
BC 10.00 3.00 12.08 2.73 11.50 3.25 407.00
828.38 589.86 1209.19 960.95 1386.38 1133.30 57412.00
MBD 10.00 3.00 12.00 2.73 11.50 3.25 406.00
828.38 589.86 1208.18 954.09 1387.12 1119.70 56812.00
PR 10.00 3.00 11.92 2.73 11.50 3.25 405.00
828.38 589.86 1212.39 957.72 1385.78 1123.49 57332.00
AMT 10.00 3.00 13.25 5.55 12.88 6.50 489.00
828.38 589.86 1183.38 899.90 1341.67 1015.90 55134.27
RTI 10.00 3.00 11.92 2.73 11.50 3.25 405.00
828.38 589.86 1210.82 952.67 1384.30 1119.72 57215.65
Author: AMT: Alvarenga et al. [7] HG: Homberger and Gehring [129] RTI: Repoussis et al. [203]
BB: Berger and Barkaoui [19] MBD: Mester et al. [171] Z: Zhu [256]

BC: Le Bouthillier and Crainic [158] PR: Pisinger and Ropke [189]

Table 3.9: Average best results from previous studies, grouped by instance
category, for the Solomon’s benchmark set.
R2 and RC2, and in total, while that of Berger et al. [20] for category R1 and that

of Alvarenga et al. [7] for category RCI.

The summary of these best average results is shown in Table 3.10, which presents
two main rows corresponding to the results with the smallest number of routes
(min R) and with the shortest travel distance (min D). For each row and set cate-
gory (column), the average number of routes (upper figure) and the average travel
distance (lower figure) are presented, along with the author who obtained those
results. These results are going to be considered in Chapters 4 and 5 in order to
compare the results from the approaches designed in this research and consequently
know where the proposed algorithms establish among the previous studies regarding
performance. However, the detailed results presented in Tables 3.8 and 3.9 are also

going to be referenced for comparison purposes.
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Objective C1 C2 R1 R2 RC1 RC2 Total

. 10.00 3.00 11.91 2.73 11.50 3.25 405.00
min 828.38 589.86 1212.73 952.67 1384.30 1108.52 57192.00
Author HG RTI RTI HG HG
min D 10.00 3.00 11.92 5.36 12.88 6.25 486.00
828.38 589.86 1121.10 878.41 1341.67 1004.20 54779.02
Author BBB JM AMT JM JM
Author: AMT: Alvarenga et al. [7] HG: Homberger and Gehring [129] RTI: Repoussis et al. [203]
BBB: Berger et al. [20] JM: Jung and Moon [137]

Table 3.10: Best-known average results, regarding solutions with the lowest
number of routes and the shortest travel distance, for the Solomon’s benchmark

set grouped by categories.

3.3 Other Vehicle Routing Problems

As we have reviewed in the previous two sections, the VRP variants approximate
better to practical problems due to the restrictions that are considered. There exist
many other variants of the VRP [235, 121, 188], with differences between them in
the operational and customer service restrictions. The next sections describe other

VRPs that are commonly found in the literature.

It is important to remark that although the developed final algorithm, which will be
presented in Chapter 5, was only tested on the CVRP and VRPTW,| its current de-
velopment might permit to equally well tackle other variants of the VRP, specifically
those which consider capacity and, to some extent, service time constraints. This
could be handled by suitably modifying the instance customer service restrictions
and by appropriately setting in the algorithm the operational constraints. Thus, si-
mulation results for other variants than CVRP and VRPTW will not be presented,

instead, this is going to be subject of subsequent research.
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3.3.1 VRP with Backhauls

The VRP with Backhauls (VRPB) is an extension of the CVRP where the cus-
tomers are grouped into linehaul customers, which have a demand of goods, and
backhaul customers, from which a quantity of the product has to be collected. A
practical example of this customer partition is that of the grocery industry, where
supermarkets and shops are the linehaul customers and grocery suppliers are the

backhaul customers [237].
An instance of the VRPB has the following definitions [233]:

Vertices Thereis aset V = {vy,...,0n,UN+1,---,Un+a t Of N4+ M+1 vertices,

representing the geographical location of the depot and customers.

Customers — Customers are represented by the vertices in subset V' = V \ {vg} =
{v1,.. ., UN,UN+1,- .-, Unsp - Furthermore, subset V, = {vy,..., vy}
corresponds to linehaul customers and subset Vg = {vni1,. .., Unim )
represents the backhaul customers. Each customer v; € V' is geo-
graphically located at coordinates (x;,y;) and has a demand of goods

q; > 0 to be delivered or collected.

Depot The special vertex vy located at (xo, o), with ¢o = 0, is the depot,

from where customers are serviced and a fleet of vehicles is based.

Vehicles There is a homogeneous fleet of vehicles available to deliver goods
to customers, departing from and arriving at the depot, and having

capacity @ > max {¢;:i=1,...,. NN N+1,...,N+ M}.

The travel from vertex v; to vertex v; has an associated cost ¢;;, that is, there is a
matrix C' = (¢;;) corresponding to travel costs. In VRPB one aims at minimising,
first, the number of routes, then, for a given number of routes, the total cost, subject

to the following limitations [79]:
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e Each vehicle services exactly one route.
e Each customer is visited exactly once by one vehicle.
e A route is not allowed to consist entirely of linehaul or backhaul customers.

e If a route contains both linehaul and backhaul customers, then the backhaul

customers must be served after the linehaul customers.

e For each route, the total load associated with linehaul and backhaul customers

must not exceed the vehicle capacity Q).

The fourth constraint is justified by the fact that many vehicles are rear-loaded.
This makes it problematic to try to load the vehicle with goods heading for the
depot before having delivered all goods to the customers, as the collected goods
might block access to the delivery goods. The constraint is also justified by the
fact that the linehaul customers frequently prefer early deliveries, while backhaul

customers prefer late collection [206].

3.3.2 VRP with Pickups and Deliveries

In the VRP with Pickups and Deliveries (VRPPD), a heterogeneous fleet of vehicles,
based at multiple terminals, must satisfy a set of transport requests. Each request
is defined by a pickup point, a corresponding delivery point, and a demand to be
transported between these locations. The requested transport could involve goods

or persons. This latter environment is called dial-a-ride [69].
The VRPPD requires the following definitions [211, 243]:

Vertices There is a set V = {vg,...,vn,UN41,...,02n} Of 2N + 1 vertices,

representing the geographical location of the depot and customers.
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Customers

Requests

Depot

Vehicles

Customers are represented by the vertices in subset V' =V \ {v} =

{v1,..., N, VN1, ..,0an}. Each customer v; € V' is geographically
located at coordinates (z;,v;). Moreover, subset Vp = {vy,...,on}
corresponds to pick up locations and subset Vp = {uyi1,...,0on}

represents the delivery locations.

The set W = {1,..., N} represents N transportation requests. For
each request ¢ € W, a load ¢; has to be transported from customer

v; € Vp to customer v; € Vp.

The special vertex vy, located at (xg, o), is the depot, where vehicles
are based.

There is a homogeneous fleet of vehicles available to service requests,
departing from and arriving at the depot, and having capacity ¢ >

max {¢; : i € W}.

The travel from vertex v; to vertex v; has an associated cost ¢;;, that is, there is

a matrix C' = (¢;;) corresponding to travel costs. Then, the VRPPD consists of

finding a set of exactly K routes with minimum cost, and such that [236]:

e Each routes visits the depot.

e Bach customer is visited by exactly one vehicle.

e The load of the vehicle must be non-negative at all times and never exceed

the vehicle capacity Q).

e For each request i, the associated pick up location, when different from the

depot, must be served in the same route and before the corresponding delivery

location.
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e For each request i, the associated delivery location, when different from the
depot, must be served in the same route and after the corresponding pick up

location.

3.3.3 Multiple Depot VRP

Instances of the Multiple Depot VRP (MDVRP) may have more than one depot
from which customers could be served. Here, customers are to be assigned to depots,
where a fleet of vehicles is based. Then, each route originates from one depot, service

the customers assigned to that route, and return to the same depot. The formal

definition of the MDVRP is the following [202]:

Vertices There is a set V = {vy,...,0n,Un41,...,Un+p} of N + D vertices,

representing the geographical location of customers and depots.

Customers — Customers are represented by the vertices in subset Vo = {vy, ..., on}.
Each customer v; € V¢ is geographically located at coordinates (z;, y;)

and has a demand of goods ¢; > 0.

Depots The vertices in subset Vp = {vyy1,...,unip} are the depots. Each

depot v; € Vp is located at (x;,y;) and has a demand ¢; = 0.

Vehicles There is a fleet of m; identical vehicles of capacity ¢ > max {¢; : i =
1,...,N} based at each depot v; € Vp, from where customers may be
serviced. m; could be equal to zero, which means that not all depots

are necessarily used.

The travel from vertex v; to vertex v; has an associated cost ¢;;, that is, there is
a matrix C' = (¢;;) corresponding to travel costs. Thus, the MDVRP consists of

constructing a minimum-cost set of routes in such a way that [114]:

e Fach route starts and ends at the same depot.
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e Bach customer is visited exactly once by one vehicle.

e The total demand of each route does not exceed the vehicle capacity .

3.3.4 Periodic VRP

In the case of the Periodic VRP (PVRP), the basic VRP is generalised by extending

the scheduling service period from 1 to M days. Thus, a solution to this problem

may consider vehicles that might not return to the depot in the same day it departs.

Additionally, each customer could be visited more than once over the M-day period.

The PVRP is defined as follows [92]:

Period

Schedule

Vertices

Customers

Depot

Vehicles

There is a set P = {d1,...,0x} of M days that constitute the planning

period.

A schedule is a collection of days within the planning period in which
customers receive service. Allocating a customer to a schedule implies

that the customer will receive service in every day of that schedule.

There is a set V = {vg,...,uy} of N + 1 vertices, representing the

geographical location of the depot and customers.

Customers are represented by the vertices in subset V' = V \ {v} =
{v1,...,vn}. Each customer v; € V' is geographically located at coor-
dinates (z;,v;), has a total demand of goods ¢; > 0 over the planning

period and requires a fixed number visits ¢;.

The special vertex vy, located at (xg,yo), with go = 0, is the depot,

from where customers are serviced and a fleet of vehicles is based.

There is a homogeneous fleet of vehicles available to deliver goods
to customers, departing from and arriving at the depot, and having

capacity @ > max {¢; :i=1,...,N}.
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The travel from vertex v; to vertex v; has an associated cost ¢;j, that is, there is a
matrix C' = (¢;;) corresponding to travel costs. In the PVRP customers cannot be
directly assigned to vehicles, instead, they must be first allocated to an schedule,
thereby defining the delivery days for the customer, and then to a route on each
of the chosen delivery days [227]. During day d,, of the planning period, a feasible

route is an ordered sequence of customers satisfying the following constraints [104]:
e Each route must start and end at the depot.
e The sequence of customers must be visited by the same vehicle during day 9,,.

e The travel time associated with the sequence must not exceed the daily service

time of the vehicle.

e The total demand requested by the customers belonging to the route must not

exceed the vehicle capacity Q.

3.3.5 Split Delivery VRP

The Split Delivery VRP (SDVRP) was introduced in the literature by Dror and
Trudeaut [77], who showed that there can be savings generated by allowing split
deliveries. In this context, SDVRP can be tackled as a relaxation of the VRP in the
sense that customers are allowed to be served by different vehicles as long as this

service plan minimises the total costs [78]. The SVRP is defined as follows [9]:
Vertices There is a set V = {uvg,..., vy} of N + 1 vertices, representing the
geographical location of the depot and customers.

Customers — Customers are represented by the vertices in subset V' = V \ {vg} =
{v1,...,un}. Each customer v; € V' is geographically located at coor-

dinates (x;,y;) and has a demand of goods ¢; > 0.
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Depot The special vertex vy, located at (zg,yo), with go = 0, is the depot,

from where customers are serviced and a fleet of vehicles is based.

Vehicles There is a homogeneous fleet of vehicles available to deliver goods
to customers, departing from and arriving at the depot, and having

capacity @ > max {¢; : i =1,...,N}.

The traversal from vertex v; to vertex v; has a corresponding cost ¢;;, i.e. there is a
matrix C' = (¢;;) associated to travel costs. The objective is to minimise the total

distance travelled by the vehicles while considering the following restrictions [8]:
e Each vehicle must start and end its route at the depot.
e The demands of the customers must be satisfied.

e The quantity delivered in each route cannot exceed the vehicle capacity Q).

3.3.6 Stochastic VRP

According to Hadjiconstantinou and Roberts [124], the Stochastic VRP (SVRP)
differs from the VRP by the introduction of some element of variability of the system
in question. Unlike its deterministic equivalent, SVRP is ambiguously defined, since
it belongs to a class of a priori optimisation problems for which it is impractical to
consider an a posteriori approach that computes an optimum solution whenever the

random variables are realised.

Common examples of stochastic elements are:
e Stochastic demands [21].
e Stochastic travel times [155].

Sometimes, the set of customers to be visited is not known with certainty. In such

a case, each customer has a probability p; of being present [107, 108].
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3.4 Multi-objective Vehicle Routing Problems

Multi-objective Vehicle Routing Problems are mainly used in three ways [135]: (i) to
extend classical academic problems in order to improve their practical application
(while never losing sight of the initial objective), (i7) to generalise classic problems,
and (7i7) to study real-life cases in which the objectives have been clearly identified by

the decision-maker and are dedicated to a specific practical problem or application.

In any of the contexts cited above, in addition to the intrinsic economic cost of
routing, e.g. number of vehicles, travel distance and delivery time, a number of

objectives has been considered to be optimised, among which are the following:

e Service level. This objective is related to the minimisation of the longest route

length [45, 177, 185, 231].

e (Constraints. This objective regards the minimisation of the number or the

extent of violated constraints [197, 16, 34].

e Workload imbalance. Here one aims at minimising the difference of the work-

load between the longest and the shortest routes [133, 134, 187].

e Security. There are problems which concern that the risks of accidents is

minimised [112, 168].

o Accessibility. This is a dual objective, which corresponds to maximising the
coverage of a geographical area while minimising the number of mobile facilities

75, 74].

e (Geography. Sometimes it is required that customers in the same region are

serviced by the same vehicle [248].

The algorithm that will be presented in Chapter 5 can be extended to deal with any

number of these objectives, however, as stated earlier, simulation results will only
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be presented for the standard number of routes fi(R) in (3.4) and travel distance
f2(R) in (3.5), plus the delivery time f3(R) in (3.14). The optimisation of further

objectives will be suggested as a direction of future research.

3.4.1 Overview of metaheuristic approaches

Multi-objective VRPs account for less research than the two variants surveyed ear-

lier. Some of these studies are described here.

Rahoual et al. [197] tackled the VRPTW with a Genetic Algorithm (GA) based on
the first version of the NSGA [223], taking into account the minimisation of the
number of routes, the travel distance, and the penalties associated to the violated
constraints. The constraints considered were the capacity, distance, and duration
limits, in addition to the time windows. This approach considers a randomly gene-
rated initial population, single-point crossover [57], and a mutation operator which
consists in changing the position of a customer from one vehicle to another using
one out of of five different procedures, the choice of which to run is made randomly.
The authors presented results to instances in the Solomon’s benchmark categories
C1 and R1, however, many of them present violated constraints, which means that

the solutions obtained are infeasible.

Murata and Itai [177] proposed a two-fold multi-objective Evolutionary Algorithm
(EA), based on NSGA-II [67], for solving a class of VRP with normal (NDP) and
high (HDP) demands, considering the minimisation of the number of vehicles and
the maximum routing time, i.e. the route with maximum duration. This algorithm
generates a random initial population, uses the cycle crossover [181], and two muta-
tion operators: one of them modifies the assignment of customers to routes and the
other reverses the order in which customers are visited in a route. In the first stage

they solved the NDP and use the resulting solutions to initialise the optimisation of
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the HDP. They also propose the ratio of the same route similarity measure in order

to evaluate the similitude between solutions to both problems.

Jozefowiez et al. [134, 136] addressed the CVRP with Route Balancing, in which
the total travel distance and the difference between the longest and shortest routes
lengths are to be minimised. They implemented a parallel enhanced version of
NSGA-II [67], which considered two crossover operators, namely the RBX of Potvin
and Bengio [192] and the Split function of Prins [195], and a mutation based on

2-opt local search.

Ombuki et al. [182] considered VRPTW as a bi-objective optimisation problem,
where the number of vehicles and the travel distance are to be minimised, and used
a GA for solving it. In this approach 90% of the initial population are randomly
generated solutions and the remaining 10% are solutions generated with a greedy
procedure based on the nearest neighbour method. The authors introduced the best
cost route crossover (BCRC), which aims at simultaneously minimising the number
of vehicles and travel distance while checking feasibility, and proposed the constrai-

ned route reversal mutation, which purpose is to invert a sequence of customers.

Tan et al. [228] proposed a hybrid multi-objective EA for solving the VRPTW re-
garding the minimisation of the number of routes and the travel distance. This
approach starts with a randomly generated initial population, which is then submit-
ted to the designed route-exchange crossover and to a multi-mode mutation that
consists in three operations, namely partial swap, split route, and merge routes,
from which only one is executed. Additionally, the A-interchange, and the proposed
intra_route and shortest_pf local search heuristics were implemented, which were
executed every 50 generations for all individuals in the population. This analysis

found that, despite categories C1 and C2 have positively correlating objectives, the
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majority of the Solomon’s benchmark instances in categories R1, R2, RC1 and RC2

have conflicting objectives, as was previously noticed from Table 3.5.

Tan et al. [229] slightly modified the previous approach for tackling the Truck and
Trailer VRP. In this variant, different types of vehicles are considered, which means
that some of them have certain limitations. The modified version of this algorithm
considers the nearest neighbour density estimation technique in order to preserve

population diversity.

Tan et al. [231] proposed a multi-objective evolutionary approach, based on the
earlier approach of Tan et al. [228], for solving the SVRP in which the demand is
the stochastic parameter. They considered, in addition to the minimisation of the
number of routes and travel distance, the minimisation of driver remuneration, i.e.
delivery time. An initial solution is generated so that it uses a random number
of vehicles and approximately the same number of customers are serviced in each
route. In this study, instead of the 2-opt and A-interchange local search heuristics,
two methods were implemented, namely the shortest path search and the which

directional search.

Ghoseiri and Ghannadpour [111] presented a study using a goal programming ap-
proach for the formulation of the problem and an adapted a GA to solve it. Part
of the initial population is initialised randomly and part is initialised by using the
I1 heuristic and the A-interchange local search. The authors introduced the best
cost-best route crossover (BCBRC), which selects a best route from each parent and
is very similar to the BCRC of Ombuki et al. [182] with minor differences, and the
sequenced based mutation (it is actually a recombination operator), which, given two
offspring solutions produced from the recombination phase, randomly selects an arc
to break a route on each of the solutions and then make an exchange on the routes

before and after the break points to produce two new offspring. Two local search
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heuristics are incorporated in the GA, from which one is executed at the end of
each generation for a portion of the population. To our best knowledge, this is the
only multi-objective study which actually presents the overall Pareto approximation

found to each instance of the Solomon’s benchmark set.

Pacheco and Marti [185] addressed the problem of routing school buses, which
consists of transporting a group of students from their homes to a school, by means
of Tabu Search (TS). They considered the minimisation of the total number of buses
while simultaneously minimising the maximum time that a student spends in the
bus, that is the longest route. The problem is solved by considering both objective
functions separately. Since the value of the first objective, the number of routes
(or buses), is a discrete number (bounded by the number of locations), the authors
followed the simple method that consists of minimising the second objective, the
maximum length of a route, for each possible value of the number of routes. This
algorithm utilises the two constructive methods proposed by Corberan et al. [45]
and the one by Fisher and Jaikumar [87] for generating initial solutions. Then, the
TS employs a modified version of the CROSS exchange of Taillard et al. [226] to

perform the local search.

Finally, Beham [16] proposed a TS approach for solving the VRPTW, and tested
it on the instances of Homberger and Gehring [129], regarding the minimisation of
the number of routes, the total travel distance, and the time constraint violation.
In addition to the list of forbidden moves, two extra memories were used: a list of
non-dominated solutions from previous neighbourhoods, which are used to restart
the search process, and the archive containing the overall found non-dominated
solutions. A solution can be added to the archive when it is not dominated by the
solutions in the archive and this is not full. If the archive is full, the solution is added

based on the result of the crowding distance [67]. This method starts by generating
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an initial solution with the I1 heuristic, which is then improved by selecting one of

the local search heuristics 2-opt, Or-opt, and A-interchange.

3.4.2 Results from previous studies

With the exception of the study of Ghoseiri and Ghannadpour [111], the remaining
multi-criteria studies mentioned above which tackled the Solomon’s instances, na-
mely those of Rahoual et al. [197], Ombuki et al. [182], and Tan et al. [228], did not
make their results available in a proper multi-objective manner. Instead, Ombuki
et al. [182] reported their results for the solution with the smallest number of routes
and for that with the shortest travel distance. Rahoual et al. [197] and Tan et al.

[228] presented their results only for the solution with shortest travel distance.

Following the statement above, and similarly to the single-objective case, results
from these multi-objective studies are presented in two ways. The first considers the
difference between their best results and the best-known, regarding both the solution
with the smallest number of routes and that with the shortest travel distance. The
average difference over the instances in each set category are shown in Table 3.11 for
the solutions with the smallest number of routes and in Table 3.12 for the solutions
with the shortest travel distance. These tables have the same format as Tables 3.6

and 3.7.

In Table 3.11 we see that the approach of Rahoual et al. [197] obtained the smallest
difference in the number of routes (6.16%), however they only presented results for
two categories. The EA of Tan et al. [228] obtained solutions which nearly doubled
(13.93%) the number of routes from those obtained by Ombuki et al. [182] (7.19%),

though they correspond to a saving in the travel distance (0.8%).

On the other hand, regarding solutions with the shortest travel distance, we observe

in Table 3.12 that the GA of Ombuki et al. [182] achieved the smallest difference
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Author C1 C2 R1 R2 RC1 RC2 Total
0.00 10.78 6.16
7.18 13.17 10.60

0.00  0.00 7.83  16.67 7.35 8.33 7.19
0.01  0.13 0.29 1.16 0.03 3.19 0.77

0.00 0.00 10.12  32.58 7.31  30.21 13.93
0.06  0.16 -1.70 0.93 -1.75 -2.85 -0.80

0.00  0.00 9.75 31.82 10.81 16.67  12.26
0.00  0.28 1.68 9.92 0.90 4.35 3.10

Rahoual et al. [197]

Ombuki et al. [182]

Tan et al. [228]

Ghoseiri and Ghannadpour [111]

Table 3.11: Average difference, grouped by instance category, between results
from previous multi-objective studies and the best-known results, considering the

solutions with the smallest number of routes to Solomon’s benchmark set.

Author C1 C2 R1 R2 RC1 RC2 Total
0.00 -0.03 -0.02
7.18 16.26 12.37

0.00  0.00 1.06 -13.31 2.27 -3.57 -2.57
0.01 0.13 2.47 1.72 3.72 3.49 1.92
0.00 0.00 -0.64 -31.62 -2.66 -26.53 -10.52
0.06 0.16 1.04 8.49 1.25 8.58 3.33

0.00 0.00 14.38 46.97  14.84 25.00 18.00
0.00 0.28 0.80 11.15 0.41 3.87 3.01

Rahoual et al. [197]

Ombuki et al. [182]

Tan et al. [228]

Ghoseiri and Ghannadpour [111]

Table 3.12: Average difference, grouped by instance category, between results
from previous multi-objective studies and the best-known results, considering the

solutions with the shortest travel distance to Solomon’s benchmark set.

between their results and the best-known (1.92%), followed by the approach of Gho-
seiri and Ghannadpour [111] (3.01%). In contrast to the single-objective proposals,
these studies were not able to find the best-known solutions for all instances in ca-
tegories C1 and C2, since the difference in the travel distance is not 0%, except for
the algorithm of Ghoseiri and Ghannadpour [111] which obtained the best-known

solutions only for instances in category C1.

The second way of presenting results is the traditionally found in the literature,
which corresponds to the format of Tables 3.8 and 3.9. Results from previous multi-
objective studies are shown in Table 3.13, which shows, for each author (row) and

instance category (column), the average number of routes (upper figure) and the
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Author C1 C2 R1 R2 RC1 RC Total

10.00 12.90 12.60
Rahoual et al. [197]
887.78 1362.17 1487.00
Ombuki et al. [182] 10.00 3.00 12.67 3.09 12.38 3.50 427.00
(min R) 828.48 590.60 1212.58 956.73 1379.87 1148.66 57484.35
Ombuki et al. [182] 10.00 3.00 13.17 4.55 13.00 5.63 471.00
(min D) 828.48 590.60 1204.48 893.03 1384.95 1025.31 55740.33

10.00 3.00 12.92 3.59 12.38 4.25 441.00
828.91 590.81 1187.35 951.74 1355.37 1068.26 56293.06

Ghoseiri and Ghannadpour  10.00 3.00 12.92 3.45 12.75 3.75 439.00

Tan et al. [228]

[111] (min R) 828.38 591.49 1228.60 1033.53 1392.09 1162.40 58735.22
Ghoseiri and Ghannadpour  10.00 3.00 13.50 3.82 13.25 4.00 456.00
[111] (min D) 828.38 591.49 1217.03 1049.62 1384.3 1157.41 58671.12

Table 3.13: Best average results from previous multi-objective studies, grouped

by instance category, for the Solomon’s benchmark set.
average travel distance (lower figure). Additionally, the last column presents, the
total number of routes and total travel distance for all 56 instances. In this case,
the studies of Ombuki et al. [182] and Ghoseiri and Ghannadpour [111] present two
series of results, one corresponding to the solutions with the smallest number of

routes (min R) and the other regarding solutions with the shortest travel distance

(min D).

From these studies, we see that the one of Ombuki et al. [182] (min R) obtained the
solutions with the smallest number of routes, in all categories and in total, though
they have an increased travel distance when compared with the other approaches.
The EA of Tan et al. [228] achieved solutions with the shortest travel distance to
instances in categories R1 and RC1, while that of Ghoseiri and Ghannadpour [111]
for category C1 and that of Ombuki et al. [182] (min D) for the remaining categories

C2, R2 and RC2, and in total.

These studies will also be considered in Chapters 4 and 5, when evaluating the
performance of the designed multi-objective EAs, in order to known how its perfor-

mance compares with previous multi-objective approaches.
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3.5 The way forward

According to the reviews presented in this chapter, there is vast research regar-
ding the solution of the VRP using different heuristic and metaheuristic methods.

However, some issues can be highlighted, as they are open useful research directions.

Firstly, Tabu Search and Evolutionary Algorithms have been widely applied to the
VRPs of interest to this thesis with successful results. Their performance and com-
putational requirements depend on the use of local search strategies, additional
memory for saving previous solutions, and post-optimisation procedures. Impor-
tantly for Tabu Search methods is the definition of (reduced) neighbourhoods and

the update of the list of forbidden moves.

Secondly, as was pointed out in Section 3.2, despite delivery time not being consi-
dered as the primary objective to be minimised in many of the variants of the VRP,
in real-life circumstances it plays an important role, as companies offering transpor-
tation services are often interested in reducing the overall delivery time, or driver
salary cost, as well as the overall travel distance, or fuel cost, and those can be in
conflict. With the exception of the study by Tan et al. [231], several objectives are

considered to be minimised, but never the delivery time.

From all the publicly available literature regarding the solution of VRPs, the vast
majority of the methods has considered the optimisation of prioritised objective
functions, e.g. the travel distance is minimised for each number of routes, and only
a really small amount of studies has considered multiple non-prioritised objectives to
be simultaneously optimised. Furthermore, from the few methods which proposed
solving VRPs regarding multiple criteria, very few reported the detail of their results,
and, when available, they were not presented in a proper multi-objective manner.

The rest of the studies show their results in a traditional single-objective style, i.e.
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best and average best results of the optimised objectives, which may be misleading

when interpreting multi-objective performance.

On the other hand, only a small amount of the studies proposing evolutionary com-
putation methods have explicitly considered the preservation of population diversity,
despite it being well known to be of great importance for the success of any Evolu-

tionary Algorithm.

To lead into the presentation and analysis of our proposal for solving two variants

of the VRP, it is useful to quote part of the conclusions of Jozefowiez et al. [135]:

“Despite this recent increase in the number of studies on multi-
objective vehicle routing problems, almost every study appears to have
been undertaken independently of all the others. Cleraly [sic], some of
these studies could have been linked together. In some cases, the different
studies deal with the same or almost the same multi-objective problem;
when the entire problem is not exactly the same, at least several objec-
tives are shared. Based on this observation, it would seem that there is
a need to define some general multi-objective vehicle routing problems

that could be used as the starting points for more complex problems.

“The studies employing multi-objective evolutionary algorithm usu-
ally limit themselves to operators from the literature, which were desi-
gned to solve for an objective associated to the single-objective problem
underlying the studied multi-objective problems. There is a real need
for future studies to develop operators for the other objectives, as well
as operators that can deal with several objectives simultaneously. The
need to define general multi-objective vehicle routing problems is closely

connected to this need to develop new operators.”
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The remainder of this thesis seeks to remedy the unavailability of appropriate presen-
tation of results and analysis regarding the multiple criteria optimisation of VRPs.
Furthermore, the design of an Evolutionary Algorithm, which includes specialised
crossover and mutation operators, and a mechanism to maintain population diver-
sity, for solving a range of VRPs regarding the optimisation of varied objectives is

addressed.

3.6 Summary

This chapter presented the description and formal definition of a number of variants
of the Vehicle Routing Problem (VRP), which consists in designing a minimum-cost
set of routes in order to service requests from customers. Such routes are covered
by using a fleet of vehicles based at the depot, from where customers are supplied.
Cost is generally related to the number of routes, or the vehicle cost, and the travel
distance, relating to fuel cost, but there are several other sources of cost, e.g. the

driver’s remuneration or delivery time.

This problem has a number of variants, which consider different restrictions, that are
close to real-world applications. For example, the Capacitated VRP has restrictions
on the vehicle capacity, which must not be exceeded, and in the VRP with Time
Windows, in addition to the capacity constraint, customers have to be serviced

within specific times.

Many other variants of the problem have been subject of study, being the difference
between them the customer precedence and the operational constraints. Further-
more, several other objective functions have been considered to be optimised, ran-
ging from the associated economic cost, like workload imbalance and route length,

to problem-specific objectives, like security, welfare and health.
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Some studies that are of importance to this thesis were reviewed. These are re-
lated to the solution of a number of variants of the VRP by means of utilising
general-purpose heuristic methods, such as Tabu Search (TS) and Evolutionary Al-
gorithms (EA). With the aim of better exploiting the search space and escaping
from sub-optimum solutions, many TS and EA methods have been combined with
local search heuristics, which make the approaches require additional resources. In
particular, the performance of local search techniques depend on the definition of
neighbourhoods, and TS methods require efficient strategies for updating the tabu
list. Additionally, the majority of the evolutionary approaches did not explicitly

considered population diversity preservation.

Many of the surveyed approaches took into account the optimisation of only one
objective, and many others assigned priorities to the objectives being optimised,
procedure which do not lead to the finding of an appropriate Pareto approximation
in a single run. On the other hand, the studies that did perform a proper multiple
objective optimisation, did not regard the minimisation of the delivery time, which
is often considered in real-world applications to be optimised. Furthermore, they
analysed their results in a single-objective manner, which might be deceiving for
problems with multiple criteria, instead of applying proper multi-objective quality

indicators to compare performance.
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Chapter 4

Preliminary approaches to solving

VRPs with Time Windows

During the progress of the present study, a series of algorithms for solving the
VRPTW as a multi-objective problem were developed. More precisely, an algo-
rithm followed an evolution which was based on the needs and findings suggested by
the analysis of the results from the earlier stages of the research: after an explora-
tory Evolutionary Algorithm, a multi-objective density-restricted Genetic Algorithm
(drGA) was proposed, which after some modifications became a Bi-objective Evolu-
tionary Algorithm (BiEA), and finally it turned into an improved Multi-Objective
Evolutionary Algorithm (MOEA). This chapter focuses on describing the prelimi-
nary development of the aforementioned algorithm and the next will concentrate

exclusively on the description of the final MOEA.

4.1 Exploratory Evolutionary Algorithm

The initial approach to solving the VRPTW was a simple Evolutionary Algorithm

(EA), which aimed at simultaneously minimising the number of routes and travel
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distance. This prototype was inspired by the fact that mostly all previous research
using evolutionary approaches proposed a hybrid optimiser, i.e. an EA combined

with other sorts of heuristics.

4.1.1 Experimental analysis

The exploratory EA was tested on the Solomon’s benchmark set and, after the
analysis of the results, it became clear that population diversity was a crucial factor
for the success of the algorithm, in the sense that it suffered from premature lack of
population diversity and became stuck in sub-optimum solutions. At this stage of
the research, population diversity was estimated by computing the variance in the

objective functions values of all solutions in the population.

Figure 4.1 presents six series of plots, one for each of the test instance categories,
showing the average normalised variance in each objective function, that is in the
number of routes R (upper plot) and in the travel distance D (lower plot), over the
generations. Notice that the vertical axis is in logarithmic scale in all plots. In some
cases, specially for the variance in R, there is no information plotted, which means

that the variance was zero for those generations in the evolutionary process.

The first observation we can make is that, after a few evolutionary generations, the
normalised variance in R is below the range of 1072 for all instance categories. If
we consider that solutions to these instances have no more than 25 routes, then the
variance in R was of only hundredths of a route, that is the number of routes varied

approximately 2%.

In the case of the travel distance, the normalised variance was approximately in the
range of 107°. Solutions have between 500 and 2000 units of distance, which means

that the variance was of hundredths of a unit, i.e. between 0.005% and 0.02%.
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Figure 4.1: Average normalised variance in the objective functions values of all

solutions in the population, over the instances in each set category, presented by

the exploratory approach.

The figures above indicate that the population actually presented a lack of diversity.

Moreover, if we consider that the variance did not present a significant change after

the first fourth of the evolutionary process, we could argue that the loss of diversity
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was premature. Consequently, the need for a method to promote and maintain

population diversity was evident.

Results from this approach were not near neither the best-known results nor the
best average results presented in Tables 3.5 and 3.10, thus their comparison is not

going to be presented in this case.

4.2 Multi-objective density-restricted Genetic Algorithm

This section presents the proposed multi-objective density-restricted Genetic Algo-
rithm (drGA) for solving VRPTW as a bi-objective problem. The main contribution
of this algorithm, which is a method to restrict density of solutions as an attempt

to preserve diversity, along with preliminary results and analysis are presented.

4.2.1 Algorithm design

EAs have a number of procedures that must be specified in order to define their ope-
ration (see Section 2.2.3). Hence, the drGA design, including the solution encoding,
fitness function, how density of solutions is computed, and the stages of processing,

is described next.

4.2.1.1 Solution encoding

The idea for the solution encoding was inspired by Falkenauer [85] and is depicted
in Figure 4.2, which shows the encoding of a solution to an example instance with
10 customers, i.e. N = 10. It consists of a chromosome with three parts. The first
position in the chromosome indicates the number of routes in the solution (3 in this
example). The following N genes are a permutation of the N customers (1,...,10).

The rest of the genes specify the position in the chromosome of the last customer
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Route 1 Route 2 Route 3
ﬁ 1T T ]

@:3 2 | 7 | 4| 9| 1|10 8|6 | 5:|s @@f

Permutation of N customers Position of the last customers in the routes

Figure 4.2: Encoding of a solution to an example instance of the VRPTW with

10 customers, which consists of three routes: (3,2,7,4), (9,1,10), and (8,6, 5)
in every route. In this example, the first route includes customers 3, 2,7, 4, being
customer 4 the last customer of the route, as specified in position 12. The order
in which these customers are serviced is exactly as they appear in the chromosome,

hence the three routes are (3,2,7,4), (9,1,10) and (8,6,5).

4.2.1.2 Initial population

It is standard practice for an EA to begin with an initial population chosen ran-
domly with the aim of covering the entire search space. Thus, drGA starts with
a population P of initial solutions, |P| = popSize, each being a randomly genera-
ted feasible route. These routes are constructed by the following process: First, a
customer is selected at random and placed as the first location to be visited on the
first route. Then, a different customer is randomly chosen and, if the capacity and
time constraints would be met, it is placed on the current route after the previous
customer. If any of the constraints are not met, a new route is created and this
customer is the first location to be visited on that route. This process is repeated

until all customers have been assigned to a route.

Initial solutions could have been generated by means of the construction heuristics
reviewed in Sections 3.1.2 and 3.2.2, however, the aim of this research was to design

an EA without additional heuristics.
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4.2.1.3 Fitness assignment

drGA assigns fitness to individuals using the dominance depth criterion reviewed in
Section 2.4.1.3, where the population is divided into several non-dominated fronts
and the depth specifies the fitness of the individuals belonging to them. As a matter
of fact, it implements the function FASTNONDOMINATEDFRONT() of Deb et al. [67]

presented in Section 2.4.5.2 (Algorithm 2.7).

4.2.1.4 Density of solutions

To overcome the situation in which the exploratory algorithm gets stuck in sub-
optimum solutions and to prevent the lack of population diversity, a feature to help
in the selection process is implemented in drGA. It considers density information,
using the nearest neighbour method (see Section 2.4.2.2), to estimate the diversity
of solutions. Specifically, it takes into account the number of equal solutions to

determine and restrict density.

In other words, drGA introduces a new parameter o, which is called diversity ratio,
to restrict the density of equal solutions from growing indiscriminately. That is, if
0 = popSize, drGA will allow the whole population to be the same solution. On the

other hand, if o = 1, drGA restricts all solutions in the population to be unique.

drGA computes the density A(s;) of solution s; as

A(si) = [{s; € P| f(si) = f(s), i # 55} - (4.1)

That is, drGA counts the number of solutions s; € P that have equal objective
function values to those of s;. The density information is used in the parent and

survival selection stages to bias the selection of individuals.
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(a) Copying routes from parents (b) Resulting offspring

Figure 4.3: The recombination process in drGA: A random number of routes
are copied from the first parent into the offspring and from the second all those
routes which are not in conflict with the customers already copied. If there remain

any unassigned customers, these are allocated to any of the existing routes

4.2.1.5 Parent selection

The standard Tournament Selection method, reviewed in Section 2.2.3.4, is used
in drGA to select two parents for the recombination process. It chooses T'size
individuals s; randomly from the population P and selects the fittest individual
from this group to be one of the parents. In case there is a tie between individuals,
density information is used to select the winner, in the sense that the solution having

the lowest density wins the tournament, since less common individuals are preferred.

4.2.1.6 Recombination

The recombination operator takes a traditional form suggested by Falkenauer [85],
and works as follows. The algorithm here is designed to randomly select and preserve
routes from both parents. The recombination of two example parents is shown in
Figure 4.3(a). First, a random number of routes are chosen from the first parent

and copied into the offspring. In the example, both routes on the left from the first
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parent were selected to be copied into the offspring. Then all those routes from
the second parent which are not in conflict with customers already copied from the
first, are copied into the offspring. In the example, only the route on the right can
be copied from the second parent, since the other two contain customers already
present in the offspring. Finally, if there remain any unassigned customers, these
are allocated, in the order they appear in the second parent, to any of the existing
routes, as in the example shown in Figure 4.3(b). If there is no way to insert such
remaining customers into the existing routes without violating the constraints, a
new route is created. The resulting solution s, is stored in the offspring population

(), and parent selection and recombination are repeated until |Q| = popSize.

4.2.1.7 Mutation

Once an offspring s has been generated, it is submitted to the mutation process.
drGA implements six possible mutation operators which can be categorised as inter-
route and intra-route operations. In the former, the algorithm will perform changes
between two routes, thus modifying the assignment of customers to routes, and
in the latter, the changes will be done within a route, hence affecting the travel

sequence.
In the first category, three viable processes can be identified:

e removing a sequence of customers from one route and inserting them into

another,
e swapping two sequences of customers from two different routes, and
e merging one route into another,

which can be seen as A-interchange moves. In the case of the intra-route modifica-

tions, drGA uses three operations:
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(a) Insertion (¢) Merge

(d) Inversion (e) Shift (f) Split

Figure 4.4: The six mutation operations used in drGA which can be categorised
as inter-route, the three at the top, and intra-route, the three at the bottom.
The original offspring is shown in Figure 4.3(b). The dotted lines in each figure

represent the changes in the sequences.

e the inversion of a sequence of customers, which is a 2-opt move,
e the shift of one customer, which can be considered an Or-opt move, and
e splitting a route, which may be regarded as a A-interchange move.

Examples of these operations are shown graphically in Figure 4.4, which are the mu-
tations of the original routes shown in Figure 4.3(b). The dotted lines in each figure
represent the changes made to the routes. In Figure 4.4(a), customer 10 was remo-
ved from the upper-left route and inserted into the route on the right. Figure 4.4(b)
shows the swap of customer 4 with customers 2 and 3. In Figure 4.4(c), the bottom-
left route has been merged into the route on top-left, connecting customer 4 after
customer 3. Figure 4.4(d) illustrates the inversion of the sequence of customers

((7,8,9)) to ((9,8,7)). In Figure 4.4(e) we see how customer 9 has been shifted bet-
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ween customers 6 and 7. Finally, Figure 4.4(f) depicts how the route on the right
has been split between customers 7 and 8. In this latter case, the split operator
itself tries to insert the customers belonging to the smallest sub-route into any other

existing route.

From these six operations only one is executed, the choice on which to apply is
done stochastically, accordingly to the weights wgperator that the operators are pre-
assigned, such that the sum of these weights adds up 1.0. This means that, the higher
the weight of an operator, more likely it is to be performed. Split and merge share
the same weight, however, the decision on splitting a route is inversely proportional
to the number of routes in the solution. That is, the probability of splitting a route

is higher if the number of routes is small.

4.2.1.8 Survival selection

After the crossover and mutation stages, the offspring population () is merged into
the parent population P and the density of the individuals is computed. If the
density A(s;) of solution s; has grown to more than the maximum allowed (p),
further individuals are removed from the population until the density is rectified.
That is, if A(s;) > p, individuals s;, f(s;) = f(s;), are removed from the population

until A(s;) = o.

Afterwards, the population is grouped into non-dominated fronts and fitness is as-
signed to individuals. Then, elitism is considered to form the population for the
next generation, which is comprised by the individuals belonging to the fittest
fronts. If the population size is exceeded in the final selected front, solutions with
shortest travel distance are preferred. This process is presented in Algorithm 4.1,
which is actually a modified version of the survival selection procedure of NSGA-II

(Section 2.4.5.2).
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Algorithm 4.1: SURVIVALSELECTION(P)

Input: Population P = {sq,..., SpopSize ; Submitted to the survival selection process

Output: Elite solutions P* = {s7,...,8, 6;.c}

1: for all s; € P do

2 for all s; € P\ {s;} do

3 if f(s;) = f(s;) then

4 P+ P\ {s;}

o: end if

6 end for

7: end for

8: F < FASTNONDOMINATEDSORT(P)
9: P* <«
10: k+1

11: while |P| + |Fx| < popSize do

12: P*«+— P*UFy

13: k+—k+1

14: end while

15: L < SORT(Fp, f2) /* Sort front Fy, according to travel distance */
16: P* < P*U{L[l..(popSize — |P*|)]}

17: return P~

4.2.2 Experimental analysis

First experiments were carried out for parameter tuning purposes. Several settings
were tested, maintaining fixed some of the parameters while varying others, and vice
versa. In this context, many parameters have standard values that have been used
in many past studies. For example, a very low mutation probability perhaps will not
help the algorithm to escape from sub-optimum solutions, and, on the contrary, a
very high probability could lead to a deterioration of the results. However, as stated
in Section 2.2.3.9, the task of finding the right parameter values is a problem itself
and time-consuming. Since a parametric study is not the core of this investigation,
appropriate analysis of the parameters involved in the algorithms presented in this
thesis is proposed as a subsequent research activity. Hence, for the remaining expe-
rimental analysis in this chapter an in the next, only the parameter values found to

improve the algorithm’s performance are going to be presented.
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N =25 N =50
Set

Overall best Average best Overall best Average best
Category

% SD % SD % SD % SD
C1 0.26 0.02 3.65 3.63 1.89 3.23 8.91 5.10
C2 0.39 0.01 2.04 1.57 0.59 0.40 2.14 2.41
R1 0.24 0.03 2.86 0.96 3.30 1.31 6.54 2.01
R2 0.83 0.69 3.96 1.31 2.94 1.33 7.26 2.20
RC1 0.29 0.13 1.99 2.40 1.69 1.50 6.55 3.19
RC2 1.73 3.28 5.74 4.78 0.56 0.59 8.75 2.46
Average 0.62 3.37 1.83 6.69
St. Dev. 0.59 1.41 1.15 2.46

Table 4.1: Summary of the results from drGA for the Solomon [218]’s instances
size N =25 and N = 50.

drGA was run 10 times on each of the Solomon’s instances size N = 25, 50, 100, set
to minimise the number of routes and the travel distance. The values that made the

algorithm perform better are the following;:

0 =1 Tsize =5 Winsert = 0.3 Wenigt = 0.15
popSize = 200 ¥ = 0.8 Wswap = 0.3 weplit = 0.05
numGen = 600 14 = 0.2 Winvert = 0.2

4.2.2.1 Comparison with optimum solutions

Solomon’s smallest instances, size N = 25,50, have been solved to optimality, mi-
nimising first the number of routes and then, for each value of this objective, the
travel distance. Hence, results from drGA can be compared with them in order to

know its performance.

The summary of the results from drGA is shown in Table 4.1, where they are grouped
by instance category, i.e. C1, C2, R1, R2, RC1 and RC2. This table presents, for each
instance size N, the average percentage difference (%), and corresponding standard
deviation (SD), between the optimum results' and the overall best and average best

results obtained by drGA after 10 repetitons, where best refers to the lowest travel

!Taken from Solomon’s web site: http://w.cba.neu.edu/~msolomon/problems.htm

120


http://w.cba.neu.edu/~msolomon/problems.htm

distance. Analysing the results in this table, we can see that for instances size
N = 25, the average difference between the optimum results and the overall best
results obtained by drGA is of only 0.62%, and 3.37% if we consider the average
best results. For instances size N = 50, the differences are of 1.83% and 6.69%,

respectively.

4.2.2.2  Comparison with previous studies

Although the performance of drGA was not the best, it was acceptable, thus it
was also tested on the instances N = 100. Table 4.2 presents the results obtained
by drGA, averaged over the instances in each set category, and they are compared
with the best average results from Section 3.2.3 and with those from the multi-
objective studies in Section 3.4.1. Despite the fact that drGA was set to optimise
both objectives, only for this occasion, results from drGA are compared considering
exclusively the solutions with the shortest travel distance, since, as we will see, its
performance was not close to the results from previous studies and including more

information would not lead to a different conclusion in this case.

For each instance, the solution from drGA with the shortest travel distance after all
repetitions was taken. Then, the number of routes and travel distance were averaged
over the instances in each set category. These averages are presented in Table 4.2.
For each author and instance set, the average number of routes (upper figure) and
the average travel distance (lower figure) are shown. The last column presents the
total number of vehicles and the total travel distance for all 56 instances. The last
two rows indicate, for each instance category, the percentage difference between the
results from drGA and the best average results, regarding the number of routes (%

diff. R) and the travel distance (% diff. D).
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Author C1 C2 R1 R2 RC1 RC2 Total
10.00 3.00 11.91 2.73 11.50 3.25 405.00
828.38 589.86 1212.73  952.67 1384.30 1108.52 57192.00

10.00 3.00 11.92 5.36 12.88 6.25 486.00
828.38 589.86 1121.10 878.41 1341.67 1004.20 54779.02

10.00 3.00 13.17 4.55 13.00 5.63 471.00
828.48 590.60 1204.48  893.03 1384.95 1025.31 55740.33

10.00 3.00 12.92 3.55 12.38 4.25 441.00
828.91 590.81 1187.35 951.74 1355.37 1068.26 56293.06

Ghoseiri and Ghannadpour  10.00 3.00 13.50 3.82 13.25 4.00 456.00
[111] 828.38 591.49 1217.03 1049.62 1384.3 1157.41 58671.12

10.00 3.44 13.42 3.82 13.00 4.75 459.00

min R

min D

Ombuki et al. [182]

Tan et al. [228]

drGA

rG 845.33 592.74 1252.38  959.44 1412.77 1096.99 58010.31
% diff. R 0.00 14.67 12.68 39.93 13.04 46.15 13.33
% diff. D 2.05 0.49 11.71 9.22 5.30 9.24 5.90

Table 4.2: Number of routes and travel distance, averaged over categories, for

the best solutions found by previous studies and by drGA.
Analysing these results, we can observe that for instance sets C1 and C2, drGA
obtained the highest costs for both objectives. On the other hand, for the remaining
categories and in total, solutions from drGA are between 5% and 12% larger in travel
distance than the best from the previous studies, and consider between 12% and 47%
more routes. One interesting observation is that results for sets R2 and RC2 suggest
a multi-objective nature of VRPTW, in that drGA obtained larger travel distances
using a smaller number of vehicles when compared with some of the previous studies,
e.g. that of Ombuki et al. [182]. This issue will be analysed later in more detail with

the improved algorithms.

The preliminary study described up to here was accepted for publication and pre-

sented at the 2008 UK Workshop on Computational Intelligence (UKCI 2008) [99].

4.2.2.3 Analysis of the population diversity

In order to know if drGA preserved a higher diversity than the exploratory EA,

both algorithms are compared in Figure 4.1. This figure presents six series of plots,
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exploratory EA for all instance categories and in some cases, namely for instances
in categories R1, RC1 and RC2, the difference in the normalised variance is of
nearly two orders of magnitude. This results indicate that the density control is
achieving the purpose of promoting and preserving population diversity. However,
the fact of having all different solutions in the population was not enough to obtain
results comparable to the best-known. Hence, an improved method to promote and
guarantee population diversity, which could help the algorithm to better explore and

exploit the search space, was necessary.

4.2.3 A note on the presentation of results

As was stated in Section 3.5, because previous studies which considered multiple
objectives while solving VRPTW did not present their results in a proper multi-
objective manner, results from drGA could not be compared with them from an
appropriate multiple criteria point of view. Moreover, the average number of routes
and the average travel distance have been used as the standard benchmark for com-
paring the performance in single-objective and multi-objective optimisation. This is
why the comparison with previous studies was made using a conventional table as
shown above. In the literature this is the traditional method for comparing results
for this problem, thus the format of this table will be used for the remaining of the
thesis for comparing results from the proposed approaches with those from earlier
studies, even though such analyses could be misleading. Tables like this will always
present the average of the best results found after all repetitions over the instances

in each set category.

On the other hand, the studies with which the proposed algorithms are compared
were selected according to the overall success of the results presented in Section 3.2.3,
in addition to the fact that some of them are of interest to this research, as they

solved the VRPTW as a multi-objective problem.
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Nevertheless, later in this chapter and in the next, when the proposed algorithms
are compared with each other and proper non-dominated solutions are available,
the formal multi-objective metrics reviewed in Section 2.3.2 are going to be used in

order to perform more reliable comparisons.

For the remaining of this thesis, similar to this section, each of the proposed algo-
rithms are going to be analysed from several perspectives following the next method.
Firstly, the designed approach will be compared with itself using other settings, e.g.
different objective functions. Secondly, the algorithm will be contrasted with the
previous approach, for example, drGA with the exploratory EA. Afterwards, the
best solutions obtained to each instance are going to be compared with those from
previous studies using the format of Table 4.2. Subsequently, the average population
diversity preserved throughout the evolutionary process will be presented. Finally,

specifically in the next chapter, the algorithms will be compared against NSGA-II.

4.3 Bi-objective Evolutionary Algorithm

Results from drGA highlighted the need for a more sophisticated method to preserve
diversity and have a wider exploration and exploitation of the search space. For this
reason, some modifications were made to drGA in order to enhance its performance.
The new modified algorithm is called Bi-objective Evolutionary Algorithm (BiEA).
The detail of the applied changes, as well as the improved population diversity

techniques, are described below.

4.3.1 Algorithm design

This section describes BiEA design, including a new solution encoding, a solution

similarity measure, which is used to know how similar a solution is to the rest of the
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(a) Solution (b) Encoding

Figure 4.6: Solution to an example instance of the VRP with 10 customers and
its encoding: a route is simply a list of customers which are serviced as they are
listed and a solution is a list of routes.

population and to quantify population diversity, and the stages of processing which

differ from drGA.

4.3.1.1 Solution encoding

Since a solution to the VRP is a list of routes, which are themselves lists of customers,
the solution encoding was changed to a list of lists. Now, a route encoding simply
lists the customers in the order they are serviced, and the solution encoding lists
a number of routes. This is a more appropriate representation because the route
delimiters which were used in drGA are not present any more, hence the decoding
task is no longer required, additionally to the ease with which the evolutionary
operations are implemented. A solution to an example instance and its encoding
are shown in Figure 4.6. In this example, the first route, ry, is formed by the
customers 1, 2 and 3, and they are serviced in that order, i.e. r; = (1,2,3). The

other routes are ry = (4,5), r3 = (6,7,8), and 4 = (9, 10).
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4.3.1.2  Solution similarity measure

The concept of population diversity not only refers to the number of distinct so-
lutions there are in the population, but also to how different solutions are among
them. It is relatively simple to determine the number of distinct solutions there
are in a population and to make sure there are no duplicates, however, evaluating
how solutions are spread in the search space generally requires the use of encoding-
specific and problem-specific tools. If this information is known, it could be used to

boost and maintain population diversity.

To accomplish this, the obvious starting point was the edit distance, introduced in
Section 2.5.4, however, as will be seen later, it is computationally intensive. Thus a
new similarity measure for solutions to the VRP was designed and the two methods
are compared in Section 4.3.2.1. The designed solution similarity measure is based
on Jaccard’s similarity coefficient [131, 73], which measures the similarity of two
sets as the ratio of the cardinality of the intersection to the cardinality of the union

of those sets. Formally, the Jaccard similarity J(A, B) of sets A and B is:

ANB
J(A,B) = :AU B; . (4.2)

Thus if both sets contain the same elements, the intersection will equal the union,
and J(A, B) = 1. On the other hand, if the sets do not share any element at all,

the intersection will be the empty set, i.e. |[AN B| =0, and J(A, B) = 0.

The natural way to implement Jaccard similarity for solutions to the VRP is to
consider each solution R as the set of segments or arcs (u(i, k), u(i + 1,k)) of each

route 7y, i.e.

R=J U {(uk),uli+1,k)} . (4.3)

rre Ri=0

Then, the similarity of two solutions equals the ratio between the number of arcs

that are common to both solutions and the total number of arcs used by them.
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(a) Solution R (b) Solution Q

Figure 4.7: Two potential solutions to an example instance of the VRP. The nine
continuous lines in both solutions represent the arcs that they have in common.

In total, 18 different arcs are used, therefore ¢ro = 9/18 = 0.5

Denoting y;jx = 1 if arc (v;,v;) from customer v; to customer v, is traversed by any
vehicle in solution R, and 0 otherwise, the similarity ¢ro between solutions R and

Q is
Z Z YijR - YijQ

eVjey

B Z Z sign (yi= + Yijo) |

eVjey

SRQ (4.4)

in which the term in the sum in the numerator will only equal 1 if arc (v;,v;) is
used by both solutions, while that in the denominator will equal 1 if either solution
uses it. Note that arcs (v;,v;) and (vj,v;) are considered to be different, even if the
cost of traversing them is the same, since we are interested in measuring solution
similarity on the solution space and not in the objective space. Hence, if solutions
R and Q are the same, that is if they use the same arcs, ¢ro = 1, while if they
are two completely different solutions with no arc in common, ¢gro = 0. Figure 4.7
shows two potential solutions to an example instance of the VRP, where the nine
continuous lines in both solutions represent the arcs they have in common. Solution
R uses four additional arcs, while solution Q uses five more. In total, 18 different

arcs are used, therefore ¢ro = 9/18 = 0.5.

128



Algorithm 4.2: COMPUTEJACCARDSSIMILARITY(R, Q)

Input: Solutions R and Q to the VRP
Output: Jaccard similarity ¢ro between solutions R and Q
c B+ 0

1

2: for all arc (v;,v;) in R do
3 E<—EU{(’U¢,UJ‘)}

4: end for

5: shared < 0

6: total + |E|

7: for all arc (v;,v;) in Q@ do
8 if (v;,v;) € E then

9: shared < shared + 1
10: else

11: total < total + 1

12: end if

13: end for

14: return shared/total

Algorithm 4.2 is used to compute the Jaccard similarity between solutions R and
Q. The two loops in lines 2-4 and 7-13 are executed at most 2/N times, because
there can be a maximum of N routes, i.e. one route per customer. This means that

the worst-case time complexity of this algorithm is O(N).

For the purposes of the proposed algorithm, a measure of how similar a solution is
to the rest of the evolutionary population is also required. If P is the population of
solutions, the similarity ox of solution R € P with the rest of the solutions in the
population will be given by the average similarity of R with every other solution

Q, € P, that is

1
= . 4.5
oR popSize — 1 Z RQ: (45)
Q; € P\ {R}

Algorithm 4.3 computes this similarity. Line 7, where the similarity between so-
lutions R; and R; is calculated, is executed popSize(popSize — 1)/2 times, i.e.
O(popSize?). Thus the total time complexity of this algorithm is O(NpopSize?).

Line 9 is introduced in order to avoid duplicated computations, i.e. r,r; = Sr,R;-
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Algorithm 4.3: COMPUTEPOPULATIONSIMILARITY (P)

Input: Population P = {R,... ,Rpopsl-ze} of solutions to VRP
Output: List of similarities S = [01, ..., 0popsize] corresponding to solutions R; € P

1: for i + 1 to popSize do
2 g; < 0.0

3: end for

4: S+ []

5: for i < 1 to popSize do
6 for j < i+ 1 to popSize do
7 $iMjj < SRR,

8 0; < 0; + sim;;

9 05 <05+ S’imij

10: end for

11 o0; < 0; / (popSize — 1)

12: S[i] « oy

13: end for

14: return S

Finally, we define the Jaccard diversity djaccara(P) of solutions in P as one minus

the average solution similarity, i.e.

1
5Jaccard<P) =1—-—F— Z OR,; - (46)
popSize R Cp

These solution similarity and population diversity definitions are part of the main
contributions of this research. It is important to mention that one of the advantages
of the Jaccard similarity measure is that it does not depend on the solution encoding,
since only the information about the arcs forming the routes is required and this
is known independently of the representation being used. For the same reason,
another advantage is that this measure can be used for any variant of the VRP,
since solutions to these problems can be represented as a set of arcs. Moreover, the
worst-case time complexity of the solution similarity algorithm is O(NV), and that

of the population similarity is O(NpopSize?).
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4.3.1.3 Parent selection

BiEA uses the tournament selection method as drGA does. It differs from most EAs
in that, in addition to using fitness to select good parents, it also uses the similarity
to maintain population diversity: the first of two parents is chosen on the basis of

fitness and the second on the basis of similarity.

This is done with the intention of, after recombination, generating an offspring with
similar fitness to that of the first parent, which could be located in a region of the

search space that has not been properly explored.

4.3.1.4 Mutation

Here, BiEA discards the merge mutation operator used drGA, since the insertion
operator was modified in order to allow a complete route to be taken and inserted
into another. All other operators remained, however, they are not pre-assigned any
weight, since it is desirable to have a better control over the parameters involved
[63]. Instead, the following procedure is executed each time an offspring is going to
be mutated. First, the split operator is performed with a probability equal to the
inverse of the number of routes in the solution. Then, the solution is submitted to
one of the inter-route operators: insertion or swap. The decision of which to apply
is random. Finally, one of the intra-route operators, inversion or shift, is applied to

the solution. The complete mutation process is shown in Algorithm 4.4.

4.3.1.5 Survival selection

After the mutation process, the algorithm evaluates the objective functions for each
solution in the offspring population, and combines both parent and offspring po-

pulations to assign fitness. Those solutions having the highest fitness are taken to
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Algorithm 4.4: MUTATE(R)

Input: Solution R to the VRPTW
Output: Mutated solution R’

1: RN+ R

2: if RANDOMNUMBER([0,1]) < 77 then
3 R’ + SPLIT(R’)

4: end if

5: if RANDOMNUMBER(]0, 1]) < 0.5 then
6

7

8

9

R’ < INSERT(R’)

: else

;R + Swap(R/)

: end if
10: if RANDOMNUMBER([0, 1]) < 0.5 then
11: R’ + INVERT(R')
12: else
13: R+ SHIFT(R')
14: end if
15: return R’

Algorithm 4.5: SURVIVALSELECTION(P)

Input: Population P = PUQ = {s1,..., S2popSize } Submitted to the elitism process
Output: Elite solutions P* = {s],..., 85, 5i.c}
F < FASTNONDOMINATEDSORT(P’)
P* 0
k<1
while |P*| + |Fi| < popSize do
COMPUTEPOPULATIONSIMILARITY (F})
P* «+— P*UFy,
k< k+1
end while
L + SORT(Fg,0) /* Sort front Fy, according to similarity */
P* + P*U{L[1..(popSize — | P*|)] }
: return P~

—_ =
= O

the next generation. If the last selected front is in conflict with the population size,
unlike how drGA does, similarity is computed for the solutions belonging to that
front. Solutions in this front which have the lowest evaluation for each objective
function, i.e. extreme solutions, are assigned a similarity of zero with the aim of
being selected. Then, the less common individuals are considered for the next itera-
tion. This procedure is presented in Algorithm 4.5. Finally, similarity is computed

for the entire population and the evolutionary process is repeated.
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4.3.2 Experimental analysis

This time BiEA was only tested on Solomon’s instances size N = 100 and was run
30 times for each instance. Solutions in the Pareto approximation were recorded
after each execution. BiEA was set to minimise both the number of routes and the

travel distance.

The modifications made to the algorithm, that is the mutation stage and the in-
clusion of the similarity measure, led to a new parameter tuning. However, some
parameters only affected the speed of evolution and not the final performance, e.g.
BiEA did not need the 200-individual population nor the 600-generation evolutio-
nary process set in drGA. Hence, there was an initial series of experiments with
the aim of obtaining the parameter values that resulted in improved results. The
parameters for which the algorithm worked better were as follows:

popSize = 100 Tsize = 10 v = 09

numGen = 500 w = 0.1
The analysis of the results in this section has three objectives: (i) to compare the
performance of BIEA set to use either edit distance or Jaccard similarity, (ii) to
examine the effect of the similarity measure on performance, (iii) to compare re-
sults from single-objective and bi-objective algorithms, and (iv) to compare the

performance of BiEA with that of other algorithms proposed in previous studies.

4.3.2.1 Edit distance v Jaccard similarity

In Section 2.5.4 was stated that the edit distance could be used to quantify the
distance between solutions to the VRP, thus its use is considered here. With the
purpose of evaluating the proposed Jaccard similarity against the edit distance,
both were implemented in BiEA, allowing a comparison of the results from both

techniques. As was stated earlier, BIEA chooses the second parent according to

133



solution similarity. For this, we have at least two options when the set of T'size
individuals has been selected to compete in the tournament: it can be chosen the
individual that is the least similar to the whole population (W) or the least similar to
the first parent (P). The algorithm which implements Jaccard similarity and selects
the individual that is the least similar to the whole population will be identified as
BiEA-JW, and as BiEA-JP the one which selects the least similar to the first parent.
Analogously, the algorithms which use edit distance will be labelled as BiIEA-EW
and BiEA-EP.

With the aim of making a proper comparison, the outcome non-dominated solu-
tions from each implementation of BiEA were evaluated using the three perfor-
mance metrics reviewed in Section 2.3.2, i.e. coverage, Mc in (2.7), convergence, Mp
in (2.9), and hypervolume, My in (2.10). In order to apply the coverage metric,
for each given instance and ordered pair of implementations BiEA-X and BiEA-Y,
Mc(BiEA-X;, BiEA-Y;), V i, = 1,...,30, that is 900 Mc values, were computed.
BiEA-X; refers to the outcome set from the i-th execution of BIEA-X. After these
computations, the Mc(BiEA-X;, BiEA-Y;) values were averaged (Mc) over all the
instances within each set category, and the resulting 900 values were collected to-
gether. These Mc values are presented in Figure 4.8 as box-and-whisker diagrams,
which represent the distribution of the Mc¢ values for each ordered pair of algorithms.
Each cell, which range is 0 at the bottom and 1 at the top, contains six box-and-
whisker plots, corresponding to categories C1, C2, R1, R2, RC1, and RC2 from left
to right, referring to the average coverage of the algorithm in the corresponding
column by the algorithm in the corresponding row. Each box indicates where the
middle 50% of the data is located, on which the central mark is the median and the
lower and upper edges are the first and third quartiles respectively. Dashed lines

specify the most extreme data values that are not considered as outliers.
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Figure 4.8: Box-and-whisker plots representing the distribution of the M¢ values

for each ordered pair of the implementations EW, EP, JW, and JP of BiEA.
We observe that, for categories C1 and C2, all four algorithms found the optimum
solutions for almost all the instances, this is why the plots corresponding to these
categories, the two leftmost boxes on each cell, show similar heights. For the remai-
ning categories, we can observe that the height of the medians corresponding to the
coverage by BIEA-EP and BiEA-JP, second and forth rows, is always lower than 0.5,
and those by the implementations BIEA-EW and BiEA-JW/ first and third rows, are

higher than 0.5, with some exceptions in the cells between these two. This means
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Figure 4.9: Bar plots representing the Mp values, averaged over instance ca-
tegory, for the results obtained by the implementations of BiEA with similarity
and selection settings EW, EP, JW, and JP.

that the latter methods have a higher coverage of the former than the inverse cases.

Finally, for the implementations BiEA-EW and BiEA-JW, the coverage between

them appears to be similar.

In order to compare the algorithms using the convergence metric, it is necessary to
have a reference set for every instance since the true Pareto fronts are not known.
For each algorithm and instance, the overall non-dominated solutions were extracted
from the 30 Pareto approximations. Then, a composite non-dominated reference
set R was found using the overall non-dominated sets from the four algorithms.
Afterwards, for each implementation BiEA-X, Mp(BiEA-X;,R),Y i = 1,...,30,
were computed. Finally, the Mp values were normalised according to the distance
from point z = (N, D™*) to the origin, where z corresponds to the solution with
largest number of routes, i.e. number of customers N, and longest travel distance
D™a* equal to twice the sum of the distances of all customers from the depot. These
normalised Mp values were grouped by the instances in each set category and the
average Mp and standard error were calculated. Figure 4.9 presents these results
as bar plots, which heights represent the averages. We can see that solutions from

BiEA-EP and BiEA-JP, second and fourth bars on each group, are the farthest
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to the reference set in five of the six categories, while those from BiEA-EW and

BiEA-JW, first and third bars, are the nearest and present similar performance.

On the other hand, the hypervolume metric has been utilised to compare only
algorithms BIEA-EW and BiEA-JW, since they have been the most competitive
methods regarding the other two quality indicators. Computing the hypervolume
metric My requires an appropriate reference point z to be set. As was done for
the normalisation of the convergence metric, each instance has an obvious maximal
solution, that with largest number of routes N and longest travel distance D™,
hence the reference point for each instance was set at z = (N, D™*). For each
implementation BIEA-X, My(BIiEA-X;,2),V ¢ = 1,...,30, were computed. Then,
the My values were normalised according to the space defined between point z and
the origin. These My values were grouped by the instances in each set category and

the average My was computed.

The details of the hypervolume metric, along with those of the coverage and conver-
gence metrics, comparing the results from BiEA-EW and BiEA-JW are presented
in Table 4.3. The averages Mc, Mp and My over the instances in each category
are shown, along with the number of instances, in brackets, where the algorithm
performs better than the other at the 95% significance level. The statistical si-
gnificance for each instance was determined by applying a two-tailed t-test for
two samples with unequal variance to the results of Mc(BiEA-EW,, BIEA-JW))
and Mc(BiEA-JW;, BIEA-EW,), Mp(BiEA-EW;,R) and Mp(BiEA-JW;,R), and
Mu(BiEA-EW,, z) and My(BiEA-JW;, 2), V 4,5 = 1,...,30. The result of the t-
test specifies, with 95% of confidence, if the true means of the data do differ. In
Table 4.3 we see that the averages of the coverage, convergence, and hypervolume
metrics present a small difference between the results from BiEA-EW and BiEA-JW
for all categories, which may suggest that both algorithms perform similarly. Ho-

wever, despite the narrow gap, BIEA-EW have a significantly better performance,
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Algorithm ~ Metric C1 C2 R1 R2 RC1 RC2

Mc 0.85(5) 0.73(5) 047 (4) 051 (5) 047 (2) 053 (5)
BiEA-EW Mp(x10~4) 14.80 (0) 7.684 (0) 58.69 (1) 82.72 (0) 4857 (0) 92.01 (2)
Mu(x1072)  76.95 (0) 87.30 (0) 66.39 (1) 78.46 (3) 69.69 (1) 80.44 (4)
Mc 0.81 (2) 0.64 (1) 048 (7) 047 (3) 049 (3)  0.39 (1)
BiEA-JW Mp(x10~4) 17.63 (0) 8.099 (0) 56.44 (0) 82.05 (1) 48.65 (1) 99.61 (0)
Mu(x1072)  76.92 (0) 87.29 (0) 66.43 (1) 78.39 (0) 69.64 (0) 80.21 (0)

Table 4.3: Averages Mc, Mp and My over instance category for the solutions
obtained by BiEA-EW and BiEA-JW. Shown in brackets are the number of

instances for which the result is significantly better than the other approach.
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Figure 4.10: Execution time, averaged over instance categories, of the imple-
mentations of BIEA with similarity and selection settings EA, EP, JA, and JP.
regarding the coverage metric, for more instances in set categories C1, C2, R2, and
RC2, while BIEA-JW for more instances in categories R1 and RC1. We can also ob-
serve that BIEA-EW delimits a significantly larger hypervolume for some instances

in categories R2 and RC2.

Lastly, Figure 4.10 represents the average execution time, corresponding to each set
category, of the four implementations of BiEA. It is clearly visible that BiIEA-JW
is the quickest method, while BIEA-EW is the slowest, the latter taking at least
300% more time in executing 500 generations than the former, and more than 500%
on average. This is due to the fact that the edit distance has a quadratic time

complexity, in contrast to the linear behaviour of the Jaccard similarity.
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Based on the analysis of the three performance metrics, we conclude that imple-
mentations BIEA-EW and BiEA-JW have a better performance that the implemen-
tations BiEA-JP and BiEA-EP, since the former obtain better results for all three
quality indicators. Considering execution time, BIEA-JW is the quickest algorithm,
running, on average, 500% faster than BiEA-EW, the slowest. This last fact make
us believe that the saving in time is worth the minimal overall differences in the
performance metrics between algorithms BiEA-JW and BiEA-EW. However, both
edit distance and Jaccard similarity will be tested later with the final algorithm
in order to analyse if they present the same behaviour. Meanwhile, the following
experiments and analysis will be made considering the results from BiEA set to use

Jaccard similarity, and hereafter BIEA-JW will be simply called BiEA.

4.3.2.2 Effect of the similarity measure

The same series of experiments was carried out using BIEA without considering the
similarity measure (BiEA-nS), in which the parent and survival selections took only
fitness into account. In these experiments, the crossover probability v was set to
1.0 with the aim of maximising diversity, and the mutation probability p was set to
zero in order not to interfere with the diversity control. The purpose of this analysis
is two-fold: to compare the performance of BiEA with and without the similarity
measure, and to determine whether the similarity measure is accomplishing the goal

of diversifying the population.

Table 4.4 presents the results of the three performance metrics comparing the re-
sults from BiEA-nS and BiEA. The averages Mc, Mp and My, which were computed
as before, over the instances in each category are shown, along with the number of
instances, in brackets, where the algorithm performs significantly better than the
other. As we can observe, BiEA outperforms BiEA-nS in all six categories, since

Mc(BiEA, BiEA-nS) > Mc(BiEA-nS, BiEA), Mp(BiEA,R) < My(BiEA-nS, R),
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Algorithm  Metric C1 C2 R1 R2 RC1 RC2

Mc 023 (0) 0.39(0) 0.00 (0) 0.1 (0) 0.00(0) 0.14 (0)
BiEA-nS Mp(x1072) 1.99 (0) 058 (0)  2.37(0)  1.44 (0) 2.40(0) 1.38 (0)
Mu(x1072) 75.22 (0) 86.73 (0)  64.29 (0)  77.21 (0) 67.30 (0) 79.12 (0)
Mc 0.96 (6) 0.77 (7) 099 (7) 0.87 (11) 0.99 (6)  0.83 (8)
BiEA  Mp(x1072) 0.28(8) 034 (6) 053 (12) 068 (11) 054 (8) 0.82(7)
Mu(x1072) 76.76 (8) 86.96 (7) 66.34 (12) 77.97 (11) 69.54 (8) 79.92 (7)

Table 4.4: Averages Mc, Mp and My over instance category for the solutions

obtained by BiEA-nS and BiEA. Shown in brackets are the number of instances

for which the result is significantly better than the other approach.
and My (BiEA, z) > My(BiEA-nS, z). Furthermore, BiEA performs significantly
better than BiEA-nS for the vast majority of the instances. The difference in these
results is the effect of including the similarity measure, since one of the parents is
selected to be not so similar to the rest of the population, thus looking for solutions
in other regions of the search space. This selection could result, after recombination,

in an offspring with good quality and different from current individuals.

The population diversity preserved by both algorithms, averaged over the instances
in each set category, along with the average hypervolume difference between both
algorithms, are shown in Figure 4.11, which contains six plots, each for the instance
category printed at the top-right. In this case, the population diversity dj.ccara in

(4.6) was computed.

It is noticeable that BiEA preserves a higher diversity than BiEA-nS for sets R1,
R2, RC1, and RC2. Moreover, the lines corresponding to BiEA present a more
gentle slope in all cases, except for C2. This behaviour suggests that BiEA is
having a wider exploration of the search space, which is due to the utilisation of the
Jaccard similarity. On the other hand, we can see that the hypervolume difference
is negative for the first evolutionary generations in all categories, which means that
BiEA-nS delimits a wider objective space due to it converged to better solutions than

those found by BiEA. However, after some generations, the hypervolume difference
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Figure 4.11: Average population diversity, over the instances in each set ca-
tegory, preserved by BiEA-nS and BiEA, and average hypervolume difference

between both algorithms.

decreased and became positive, which means BiEA had outperformed BiEA-nS by

finding better solutions because of the wider exploration of the search space.
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Algorithm C1 C2 R1 R2 RC1 RC2
BiEA-nS 1.08 (0) 1.05 (0) 1.31 (0) 1.65 (0) 1.35 (0) 1.93 (1)
BiEA 1.05 (0) 1.04 (0) 1.47 (2) 1.73 (2) 1.70 (4) 2.02 (2)

Table 4.5: Size of the Pareto approximations, averaged over instance categories,

obtained with BiEA-nS and BiEA. Shown in brackets are the number of instances

for which the non-dominated sets are significantly larger than the other approach.
Finally, the size of the Pareto approximations, averaged over instance categories,
are shown in Table 4.5, and in brackets are the number of instances where the
difference in the sizes is significant. We see that, although the averages present
a small difference for all categories, the non-dominated sets found by BiEA are
significantly larger than those from BiEA-nS for some of the instances in categories

R1, R2, RC1, and RC2, for which population diversity was also higher.

It is important to recall that objectives in categories C1 and C2 are not really
in conflict, consequently the Pareto front does not contain multiple solutions and
diversity is not really needed in these cases. Additionally, due to the customers
locations are clustered, the probability to obtain good solutions, in which customers
from different clusters are serviced by one route, is low. These are the reasons
why the population diversity preserved by BiEA-nS and BiEA experienced an early
drastic loss and ended up being low. We would expect, then, to have the same

behaviour with all algorithms for instances in these categories.

4.3.2.3 Single-objective v bi-objective optimisation

This section compares the results from BiEA with those from a single-objective EA,
namely the version of BiEA which only minimises one of the two objective functions.
For simplicity, the one that minimises the number of routes will be called BiEA-R
and the one that minimises the travel distance will be labelled as BiEA-D. This

comparison is performed to determine whether better results can be achieved by
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Algorithm C1 C2 R1 R2 RC1 RC2 Total

BiEA-R 10.43 3.07 13.08 3.14 12.91 3.60 442.00
1 -
1685.22  898.33 1550.45 1448.03 1742.10 1769.78  84982.41
BiEA-D 10.05 3.01 13.52 4.00 13.51 4.81 467.00
1 -
908.21 601.42 1273.83 954.24 1464.37  1111.69  59376.27
10.00 3.00 12.51 3.09 12.23 3.46 423.60
BiEA (min R)
838.63  594.67 121541 983.13 1376.60 1194.52  58273.34
10.00 3.00 12.91 3.84 12.66 4.50 448.50
BiEA (min D)
838.63  594.67  1206.49 953.60 1370.12 1118.91 57184.87
% diff. R 4.30 2.33 4.56 1.62 5.56 4.05 4.34
% diff. D 8.30 1.14 5.58 0.07 6.88 -0.65 3.83

Table 4.6: Number of routes and travel distance, averaged over categories, for
the best solutions found by BiEA-R, BiEA-D, and BiEA.
considering VRPTW as a multi-objective problem and to known if BiEA is having

a performance at least as good as a single-objective EA.

In Table 4.6 are presented the average best results, where the best result found for
each instance is averaged over all iterations, and then averaged over the instance set.
For each algorithm and set category, the average number of routes (upper figure)
and the average travel distance (lower figure) are shown. The last column presents
the total average number of routes and the total average travel distance for all 56
instances. For BiEA, the solutions with the smallest number of routes (min R) and
the shortest travel distance (min D) were considered to compute the average. The
last two rows indicate, for each instance category, the percentage difference in the
number of routes between the results from BiEA and BIEA-R (% diff. R), and in

the travel distance (% diff. D) between the results from BiEA and BiEA-D.

Let us analyse first the solutions with the smallest number of routes. We can see
that the average number of routes from BiEA-R is lower than that from BiEA-D
in four of the six categories and in total. BiEA (min R) obtained solutions with
smaller number of routes and shorter travel distance than BiEA-R in all categories
and in total, while achieving better results for both objectives than BiEA-D in all

categories, except for R2 and RC2, and in total. With respect to the solutions
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with the shortest travel distance, solutions from BiEA-D always have shorter travel
distance than those from BiEA-R. With the exception of category RC2, BiEA
(min D) achieved solutions with shorter travel distance than those from BiEA-D for
the remaining categories and in total, while performing better for both objectives
than BiEA-R in four of the categories. These results indicate that considering
VRPTW as a bi-objective problem leads to find better solutions. This is in part due
to BiEA-R and BiEA-D are only minimising one objective, the number of routes
and the travel distance respectively, and do not consider an additional objective that

could help the algorithm escape from sub-optimum regions of the search space.

4.3.2.4 Comparison with previous studies

Results from BiEA are shown in Table 4.7, where they are compared with the best
average results from Section 3.2.3 and with those from the multi-objective studies in
Section 3.4.1. This table has the same format as that of Table 4.2, with the difference
that now the approach of Ombuki et al. [182], that of Ghoseiri and Ghannadpour
[111] and BiEA have two rows, one considering the solutions with the smallest
number of routes (min R) and other for the solutions with the shortest travel distance
(min D). For each instance, the solution with the smallest number of routes and
that with the shortest travel distance were taken and the average over the instances
in each set category was computed. The last two rows indicate, for each instance
set, the percentage difference between the results from BiEA and the best average
results, regarding the number of routes (% diff. R) and the travel distance (% diff.
D).

With respect to the number of routes, we can see that for instance categories C1 and
C2, BiEA (min R) obtained the best-known results. For categories R1, RC1, RC2,
and in total, the results are between 2.1% and 4.4% above the best average results,

and for category R2 they are nearly 13% higher. Regarding the travel distance,
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Author C1 C2 R1 R2 RC1 RC2 Total
10.00 3.00 11.91 2.73 11.50 3.25 405.00

min 828.38 589.86 1212.73  952.67 1384.30 1108.52 57192.00
min D 10.00 3.00 11.92 5.36 12.88 6.25 486.00

828.38 589.86 1121.10 878.41 1341.67 1004.20 54779.02
Ombuki et al. [182] 10.00 3.00 12.67 3.09 12.38 3.50 427.00
(min R) 828.48 590.60 1212.58  956.73 1379.87 1148.66 57484.35
Ombuki et al. [182] 10.00 3.00 13.17 4.55 13.00 5.63 471.00
(min D) 828.48 590.60 1204.48  893.03 1384.95 1025.31 55740.33

10.00 3.00 12.92 3.59 12.38 4.25 441.00
828.91 590.81 1187.35 951.74 1355.37 1068.26 56293.06

Ghoseiri and Ghannadpour  10.00 3.00 12.92 3.45 12.75 3.75 439.00

Tan et al. [228]

[111] (min R) 828.38 591.49 1228.60 1033.53 1392.09 1162.40 58735.22
Ghoseiri and Ghannadpour  10.00 3.00 13.50 3.82 13.25 4.00 456.00
[111] (min D) 828.38 591.49 1217.03 1049.62 1384.3 1157.41 58671.12

10.00 3.00 12.17 3.09 12.00 3.38 417.00
828.45 589.86 1208.67 947.53 1353.71 1146.78 57105.67

10.00 3.00 12.75 4.00 12.50 4.63 448.00
828.45 589.86 1184.71 915.48 1346.12 1070.85 55797.43
% diff. R 0.00 0.00 2.16 13.22 4.35 3.85 2.96
% diff. D 0.01 0.00 5.67 4.22 0.33 6.64 1.86

BiEA (min R)

BiEA (min D)

Table 4.7: Number of routes and travel distance, averaged over categories, for

the best solutions found by previous studies and BiEA.
BiEA (min D) obtained the best-known results for category C2, and for category
C1 it is slightly 0.01% above them. In respect to the remaining categories, results
from BiEA are no more than 6.7% higher than the best from previous studies. These
results indicate an improvement over drGA when they are compared with the best

of the previous results.

If we refer to the results obtained by the reviewed studies in Section 3.2.3 (Tables
3.8 and 3.9 in pages 86 and 87), we observe that BiEA achieved improved results
when compared with some of them, e.g. smaller number of routes and shorter travel
distance with respect to the results from Potvin et al. [194], Potvin and Bengio [192],
Cordone and Wolfler Calvo [50], and Zhu [256].
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On the other hand, considering exclusively the multi-objective studies, we see in
Table 4.7 that BiEA obtained better results for both objectives than the approach of
Ombuki et al. [182] and that of Ghoseiri and Ghannadpour [111], regarding solutions
with the smallest number of routes (min R). In respect to solutions with the shortest
travel distance (min D), BiEA improved the approach of Ombuki et al. [182] and
that of Ghoseiri and Ghannadpour [111] in categories C1, C2, R1 and RC1, and in
total, and achieved better results than that of Tan et al. [228] in categories C1, C2,

and R1.

The study regarding BiEA described up to here was accepted for publication and
presentation in two top conferences, the 5th International Conference on Evolutio-
nary Multi-criterion Optimization (EMO’09) [100] and the Genetic and Evolutionary

Computation Conference 2009 (GECCO 2009) [98, 101].

4.3.2.5 Influence of the mutation operators on performance

In order to know what the influence of the improved mutation operators was, two
additional series of experiments were performed. Firstly, BiEA was set to use all
possible combinations of four out of the five mutation operators, that is, five different
settings, each excluding a different operation. Secondly, the algorithm was set to

use only one mutation operator, i.e. five additional settings.

The outcome set of non-dominated solutions from each algorithm was evaluated
using the coverage and convergence performance metrics. For each algorithm and
instance, the overall non-dominated solutions were extracted from the 30 Pareto
approximations. Then, a composite non-dominated reference set R was found using
the overall non-dominated sets from the five algorithms ran for each series of expe-
riments. Afterwards, for each implementation BiEA-X, where X is related to the

different mutation operator settings, Mc(BiEA-X;, R) and Mp(BiEA-X;,R),V i =
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obtained by BiEA set to exclude one of the mutation operators.

1,...,30, were computed. These M¢c and Mp values were grouped by the instances in
each set category and the averages Mc and Mp, and corresponding standard errors,

were calculated.

Figures 4.12 and 4.13 show, respectively, the Mc and Mp values for the first series of
experiments, that is for the algorithms set to exclude one of the mutation operators.
We observe in Figure 4.12 that the bar corresponding to the algorithm that was set
to exclude the split mutation operator, the left-most bar in each group, is always
lower than the others, except for category R2, which means that this algorithm has,
on average, the narrowest coverage of the reference set R. All other algorithms

obtained similar coverage metric values. Moreover, we see in Figure 4.13 that the
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Setting no-Split no-Insertion no-Swap no-Inversion no-Shift

no-Split 2 2 3 3
no-Insertion 10 1 1 1
no-Swap 10 2 1 2
no-Inversion 13 4 4 0
no-Shift 11 3 1 2

Table 4.8: Number of instances for which there is a significant difference, bet-
ween each pair of algorithms set to exclude one of the mutation operators, in
the results from the coverage, upper diagonal, and convergence, lower diagonal,
performance metrics.
bar corresponding to this algorithm is always higher than the other bars, except for
category RC1, which indicates that the non-dominated solutions from this algorithm

are, on average, the farthest to R. The solutions from the rest of the algorithms are

equally distant from the reference set.

Additionally, Table 4.8 presents the number of instances for which there is a signi-
ficant difference, between each pair of algorithms, in the coverage metric, shown in
the upper diagonal, and in the convergence metric, shown in the lower diagonal. We
see here that both the row and column corresponding to the algorithm excluding
the split operator have the largest number of instances with significant differences.
This corroborates that setting BiEA to exclude the split mutation operator results

in low-quality non-dominated solutions.

On the other hand, Figures 4.14 and 4.15 present the Mc and Mp values for the
second series of experiments, i.e. for the algorithms set to perform only one of the
mutation operators. Figure 4.14 shows that the algorithm that was set to exe-
cute only the split mutation operator has the widest coverage of the reference set,
since the bar corresponding to this algorithm, the left-most bar in each group, is
the highest in all six categories. Furthermore, Figure 4.15 indicates that the non-
dominated solutions from this algorithm are, on average, the closest to R, since the

bar corresponding to this algorithm is the smallest in all six categories.
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obtained by BiEA excluding one of the mutation operators.
Additionally, Table 4.9 shows the number of instances for which there is a signifi-
cant difference, between each pair of algorithms, in the results from the coverage,
upper diagonal, and convergence, lower diagonal, performance metrics. We observe
that the row and column corresponding to the algorithm set to execute only the
split operator have the largest number of instances with significant difference. This
confirms that setting BiEA to perform only the split mutation operator results in

high-quality non-dominated solutions.

This analysis indicates that split is the mutation operator that has the strongest
influence on BiEA’s performance, which suggests and could lead to the improvement

of the mutation process. As a reminder, what this operator does, is to split a route

149



Setting Split Insertion Swap Inversion Shift

Split ) 6 5 )
Insertion 22 0 0 0
Swap 26 7 1 0
Inversion 24 2 3 1
Shift 25 4 3 5

Table 4.9: Number of instances for which there is a significant difference, bet-
ween each pair of algorithms set to perform only one mutation operator, in the
results from the coverage, upper diagonal, and convergence, lower diagonal, per-
formance metrics.

and attempts to reallocate the customers assigned to the smallest sub-route to the

other existing routes. Thus, the next evident enhancement to BiEA is the mutation

process.

4.4 Summary

The first stage of the preliminary study proposed a multi-objective density-restricted
Genetic Algorithm (drGA), for which the main feature was the control of the num-
ber of distinct solutions in the population. It considered a recombination operator
which was designed for preserving routes from both parents and a mutation process
with six operators which were applied according to a weight they were pre-assigned.
Three of these can be categorised as inter-route operators, modifying the assignment
of customers to routes, and the other three as intra-route, modifying the sequence
of customers within a route. If, after the crossover and mutation stages, the density
of any solution had grown to more than the maximum allowed, further individuals
were removed from the population until the density rectified. Fittest solutions were
taken to the next generations and in case the population size was compromised,
solutions with the shortest travel distance were preferred. Results from this al-

gorithm uncovered the need for a better method to preserve population diversity,
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which not only aimed at maintaining different solutions in the population, but also

at contemplating solutions in different regions in the search space.

In order to overcome the problem of getting stuck in sub-optimum solutions and
to have a better exploration of the search space, a more sophisticated and efficient
technique to diversify the population was proposed as part of a Bi-objective Evolu-
tionary Algorithm (BiEA). Experiments with several possibilities led to the use of a
particular form of the Jaccard’s similarity coefficient, which measures, in a straight-
forward manner, how similar two sets are as the ratio of the number of elements
they have in common to the number of total elements in both sets. Some of the
advantages of this Jaccard similarity are that it does not depend on the solution
encoding, since it uses information of the actual routes, and, for the same reason,
this measure can be applied on not only VRPTW, but on any variant of the VRP.

Furthermore, the worst-case time complexity of this algorithm is O(V).

BiEA differs from drGA in several respects: the solution encoding, the parent selec-
tion, the mutation process and the elitism procedure. Parent and survival selection
use the information provided by the Jaccard similarity, in the sense that less similar
individuals are preferred. The mutation process now involves only five operators,
two in the inter-route category and three in the intra-route. Results from BiEA
showed a significant improvement over drGA when they are compared with those
from previous studies, and specifically from the multi-objective approaches. It was
also shown, by means of applying three multi-objective performance metrics to the
non-dominated solutions, that these results are similar to those obtained when edit
distance is used instead of Jaccard similarity, though the difference in the execution
time is huge, since the algorithm set to use edit distance takes, on average, 500%

longer.
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Finally, an analysis of the mutation process revealed that the split mutation operator
is having the strongest influence on BiEA’s performance, which suggests that the

process and operations can be enhanced.
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Chapter 5

Multi-Objective Evolutionary

Algorithm for solving VRPs

This chapter focuses on the description of the final algorithm resulting from the
preliminary study introduced in the previous chapter. Specifically, an improved
mutation process, which involves new operators, was incorporated in the Multi-
Objective Evolutionary Algorithm (MOEA). Additionally, the application of the new
algorithm to two VRPs is presented: the VRP with Time Windows (VRPTW) and
the Capacitated VRP (CVRP). The former is solved by optimising, first, the number
of routes and the travel distance, and then, an additional objective is considered,
namely the delivery time. The latter is solved by optimising the first two objectives

only, since travel distance and delivery time are never in conflict in this case.

5.1 Multi-Objective Evolutionary Algorithm

After analysing the results from BiEA, it was necessary to know what the effect of
the mutation operators on performance was. An analysis was conducted and BiEA

was tested with different mutation operator settings. The result indicated that not

153



all the operators were contributing substantially to the good performance of the
algorithm. Consequently, the mutation process and operators were altered, and all
other stages in the new Multi-Objective Evolutionary Algorithm (MOEA) remained
unchanged. The modified mutation procedure and operations are now presented in

detail.

5.1.1 Mutation

The mutation process in the improved algorithm now involves the use of three basic

functions and three mutation operators.

5.1.1.1 Basic functions

The three basic functions considered in the mutation stage of the new MOEA are

the following.

SELECTROUTE(R)  This is a stochastic process that selects a route r; from so-
lution R = {ry,...,rx} according to the proportion of the travel distance to the
number of customers related to route ry, i.e. routes with a larger travel distance and
fewer customers are more likely to be selected. This function is implemented using

the Roulette Wheel Selection (RWS) presented in Section 2.2.3.4, where function

d(ry)

p(ry) = N, (5.1)

is the ratio of the travel distance d(ry) to the number of customers Nj associated

with route 7. This function applies RWS and returns the selected route ;.

SELECTCUSTOMER(r,)  This function stochastically chooses customer v} from
route 1, = (v1,...,vy,) according to the lengths d;_;,; and d;;+; of its inbound
and outbound arcs, i.e. (i —1,4) and (i,7+ 1), respectively. That is, customers with

longer associated travel distance are more likely to be chosen. Special cases exist for
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Algorithm 5.1: INSERTCUSTOMER(v;, 7%,

Input: Customer v; to be inserted into route r, = (vy,...,vn,)
Output: true if customer was inserted, false otherwise

1: /* Verify whether capacity constraint will be satisfied if v; is inserted in ry */

2: if q(rk) + ¢ < Q then

3 manDist < oo

4:  p+«null /* Insertion position where the lowest distance is obtained */
5: for j < 1to N+ 1do

6 if Inserting customer v; between v;_; and v; would satisfy time constraint then

7 Insert customer v; between v;_; and v;

8 if d(ry) < minDist then

9: minDist < r(ry)

10: pJ

11: end if

12: Remove v; from 7y,

13: end if

14: end for

15: if p # null then

16: Insert customer v; between v,_ and v,
17: return true

18: end if

19: end if

20: return false

the first and last customers in a route, where only the outbound and inbound arcs,
respectively, are taken into account. This function is also based on the utilisation

of RWS, where function
di—1 i+ dii
V) = ————— 5.2
o) = S (5:2)

is the ratio of the travel distance associated with customer v; to the travel distance

related to route r;. This function returns the customer v} chosen by RWS.

INSERTCUSTOMER (v;,7)  This procedure deterministically inserts customer v;
into route 7, = (v1,...,vy,) in the position p where the lowest travel distance
is obtained. It tests all feasible insertion positions and each time a new minimum
travel distance is found, this is recorded as well as the insertion position p where
it was obtained. The detailed function is shown in Algorithm 5.1. If v; can not be

inserted due to the capacity or time constraints, false is returned, true otherwise.
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Algorithm 5.2: REALLOCATE(rg, R)

Input: Route r = (v1,...,vn,) € R from which customers are going to be reallocated
1: v; < SELECTCUSTOMER(7})
v; <= SELECTCUSTOMER(7})
Remove ¢ = ((v;,...,v;)) from 7y
for all v; € ¢ do

inserted < false

for all r; € R\ {r;} and while inserted = false do

inserted <— INSERTCUSTOMER(v;,7;)

end for

if inserted = false then
INSERTCUSTOMER(v;, 7'%,)

11: end if

12: end for

,_.
e

5.1.1.2 Mutation operators

The two basic functions SELECTCUSTOMER() and INSERTCUSTOMER() described

above are used by the following new mutation operators.

REALLOCATE(r,, R)  This operator removes a sequence of customers from route
ry = (v1,...,vyn,) and allocates them to any other route r; € R. First, function
SELECTCUSTOMER(7},) is used to choose two customers v; and v; from route ry.
These are removed from the route, along with the sequence ((vii1,...,v;-1)) of
all those customers in between them, and collected in g = ((v;, Vig1,...,vj-1,75)).
Then, INSERTCUSTOMER(v;) attempts to reallocate all removed customers v; € ¢
into any of the existing routes r; € R. If customer v; € ¢ could not be reallocated,

it is reinserted into route 7. This operation is shown in Algorithm 5.2.

An example of this operator is illustrated in Figure 5.1. In this example, customers
5 and 8 were selected from the route on the right and the sequence ((5,6,8)) was
removed from the route. Then, the operator attempted to insert those customers
into the route on the left, however, due to capacity or time constraints, the insertion
of customer 5 was the only successful move. Customers 6 and 8 were reinserted into

their original route.
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ORIGINAL OFFSPRING

Sequence to
be reallocated

Reallocated
customer

Selected
customers

Figure 5.1: Example of the reallocate mutation operator: It selects customers

5 and 8, and removes the sequence ((5,6,8)) from the route on the right. Then,

attempts to reinsert them into the route on the left, however, only customer 5 is

successfully inserted. Customers 6 and 8 are returned to their original route.
EXCHANGE(rk, ;)  In this operation, two sequences of customers ¢, and ¢; extrac-
ted from routes 7 and 1y, respectively, are swapped. First, SELECTCUSTOMER(7})
chooses two customers v; and v; from route ;. These customers and the sequence of
customers ((vj41,...,v;-1)) in the middle of them are then removed from 7 and col-
lected in g, = ((v;, Vit1,...,v;-1,v;)). The same procedure is performed for route
r;. Then function INSERTCUSTOMER(v;,7;) attempts to reallocate all customers
v; € qx into route ;. If customer v; cannot be inserted into the other route due to
the capacity or time constraints, INSERTCUSTOMER(v;, 7;) is applied to attempt to
insert them into the other existing routes r; € R. The same process is repeated for

all customers v; € ¢; and route r. Algorithm 5.3 presents this operator.

An example is shown in Figure 5.2, where customers 5 and 8 are selected from the
route on the right and customers 10 and 2 from the route in the left. Then, sequences
((5,6,8)) and ((10, 1,2)) are removed from their routes. After the attempt to insert
customers 5, 6 and 8 into the route on the left, and customers 10, 1 and 2 into the
route on the right, the only feasible insertions were customers 5 and 10, all other

customers were returned to their original routes.
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Algorithm 5.3: EXCHANGE(rg, 71, R)

Input: Routes rp = (vi,...,vn,), 71 = (U1,...,un,) € R which are going to exchange customer
1. for m =k,l do
2:  v; < SELECTCUSTOMER (7, )
3: vj = SELECTCUSTOMER(7,)
4: Remove ¢, = ((vs, Vit1,...,vj-1,v;)) from 7y,
5: end for
6: for m =k, land n =1,k do
7 for all v; € ¢, do
8: INSERTCUSTOMER (v;, 7, )
9: end for
10: end for
11: for m =k,l do
12: for all v; € ¢, do
13: inserted < false
14: for all 7; € R\ {r,,,} and while inserted = false do
15: inserted < INSERTCUSTOMER(v;,7;)
16: end for
17: if inserted = false then
18: INSERTCUSTOMER (v;, 7',
19: end if
20: end for
21: end for

Sequences to
be exchanged

Exchanged
customers

Figure 5.2: Example of the exchange mutation operator: It selects customers
5 and 8 from the route on the right and customers 10 and 2 from the route on
the left. Then, it removes sequences ((5,6,8)) and ((10,1,2)) from their routes.
After the attempt to insert customers 5, 6 and 8 into the route on the left, and
customers 10, 1 and 2 into the route on the right, the only feasible insertions are

customers 5 and 10, all other customers are returned to their original routes.
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Repositioned
customer

Selected
customer

Figure 5.3: Example of the reposition mutation operator: It selects customer 7
to be repositioned. Then, customer 7 is removed from the route and reinserted

between customers 6 and 8.

REPOSITION(7%) This operation makes use of function SELECTCUSTOMER(7%) to
select one customer v; from route 7, and calls INSERTCUSTOMER(v;, 1) to reinsert
v; into 7y in the position where the shortest distance is achieved. Note that customer
v; can always be reinserted into route r, since route r; was feasible before v; was
removed. Figure 5.3 presents an example of this operator. Here, customer 7 was
selected to be repositioned. Then, it was removed from the route and reinserted

between customers 6 and 8.

The overall mutation stage is described in Algorithm 5.4 and proceeds as follows.
First, two routes 7, and r; are chosen using function SELECTROUTE(R). If the se-
lected routes are the same, i.e. r, = r;, REALLOCATE(r, R) is performed, otherwise
function EXCHANGE(r, 7, R) is called. Finally, 7, = SELECTROUTE(R) and then

REPOSITION(7) are executed.

These were the modifications made to the mutation stage of the redesigned MOEA,
with the aim of enhancing this process and, consequently, the algorithm’s perfor-
mance. The new mutation, which operates according to the inherent objective
functions values of the solutions, represents one of the main contributions of this

thesis.
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Algorithm 5.4: MUTATE(R)

Input: Solution R to be mutated
Output: Mutated solution R’
R <R
r < SELECTROUTE(R’)
r; < SELECTROUTE(R/)
if r, = r; then
REALLOCATE(ry, R')
else
EXCHANGE(ry, 71, R’)
end if
r < SELECTROUTE(R’)
REPOSITION(7};)

—_ =
= O

: return R’

5.2 Bi-objective optimisation of VRPs with Time Windows

As in the drGA and BiEA cases, MOEA was tested using the Solomon’s instances
size N = 100. First, the two standard objectives, namely the number of routes (R),
fi(R) in (3.4), and travel distance (D), fo(R) in (3.5), were considered, and then,
the additional objective delivery time (7"), f3(R) in (3.14). This section will focus
on the experimental analysis of the bi-objective optimisation case, for which MOEA

will be labelled as MOEA-RD.

To provide reliable statistics, MOEA-RD and all other algorithms with which it is
going to be compared were run 30 times, using different random number seeds, for
each benchmark instance. The population diversity and the solutions in the fittest
front were recorded at the end of every evolutionary generation for later analysis.
Since MOEA has a new mutation process, preliminary experiments for parameter
tuning were required. The evolutionary parameters were set to the following suitable
values determined by the tuning procedure:
popSize = 100 Tsize = 2 v = 1.0

numGen = 500 uo= 0.1
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It is important to mention that the parameters set for MOEA-RD were fixed throu-
ghout the experiments described in this chapter and they were used for all settings

and algorithms with which it was compared.

Results from MOEA-RD were analysed from three different perspectives: (i) to
provide an indication of the number of instances for which MOEA is able to find
proper multi-solution Pareto approximations, (ii) to know if the changes made to
the mutation stage lead to performance improvement, (iii) to compare the results
obtained by MOEA-RD with those from previous studies, and (iv) to compare the
MOEA-RD solutions with those from NSGA-II, the latter involving features that
provide a useful contrast to the new MOEA, by means of using multi-objective

performance metrics.

5.2.1 Analysis of the Pareto approximations

The first issue to be studied is whether MOEA-RD does find appropriate Pareto
approximations to the Solomon’s test instances. That is, are the outcome from
MOEA-RD such that there are trade-offs between the objectives that result in more

that one single solution in the Pareto approximation sets?”

Let us recall that, according to the best-known results from previous studies shown in
Table 3.5, many of the instances have conflicting objectives, as indicated by the ex-
treme solutions. However, these solutions were found by independent studies which
prioritised the optimisation of either the number of routes or the travel distance,

consequently the true Pareto front is unknown.

Figure 5.4 shows the number of instances for which MOEA-RD found overall ap-
proximation sets with multiple solutions, i.e. instances with conflicting objectives,
out of the total number of instances in each category (wider clear bars). For com-

parison purposes, the corresponding numbers from the previous multi-objective ap-
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Figure 5.4: Number of instances with conflicting objectives found by previous

multi-objective studies and by MOEA-RD, out of the total number of instances

in each category.
proaches of Ombuki et al. [182], Tan et al. [228], and Ghoseiri and Ghannadpour
[111] are also shown. MOEA-RD managed to find more approximation sets with
multiple solutions than the previous methods for instances in categories R1, RC1
and RC2, while that of Ombuki et al. [182] for category R2. For categories C1 and
(C2, as was stated earlier, all four approaches agreed did not include any instances
with conflicting objectives. In total, MOEA-RD found approximation sets with in-
compatible objectives for 31 instances out of 56, the GA of Ombuki et al. [182] for
27, the EA of Tan et al. [228] for 16, and the approach of Ghoseiri and Ghannadpour

[111] for 15.

Additionally, for each instance, the overall Pareto approximation from the previous
multi-objective studies was taken, and this was compared with that from MOEA-
RD. Table 5.1 shows the number of instances for which the overall Pareto approxi-
mations from previous studies dominate (<) and are dominated (>) by those from
MOEA-RD. We see that the overall Pareto approximation from MOEA-RD do-
minate those from the previous studies for many of the instances, while they are

dominated for only few of them.

Figure 5.5 presents bar plots showing the number of instances for different sizes

of the Pareto approximation found by MOEA-RD, revealing that the 31 instances
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C1 C2 R1 R2 RC1 RC2 Total

Author

D e
Ombuki et al. [182] 0 1 0 1 1 11 1 3 1 6 0 3 3 25
Tan et al. [228] 0 4 0 4 3 5 0 10 2 4 0 4 5 31
Ghoseiri and Ghannadpour [111] 0 0 0 3 1 11 010 07 06 1 37

Table 5.1: Number of instances for which the overall Pareto approximations

from previous studies dominate (<) and are dominated (>) by those from MOEA-
RD

T T T
o | 1 MOEA-RD [ MOEA-RD + best-known| |

20 b

] I I |
. . . 1 |—|L
2 3 4

Size of the Pareto approximation

Number of instances

Figure 5.5: Number of instances for each number of solutions in the Pareto
approximations found by MOEA-RD, and considering the best-known solutions.
mentioned above have 2, 3, and 4 solutions in their non-dominated set. Furthermore,
if the best-known solutions from Table 3.5 are considered in addition to those from
MOEA-RD, the number of instances with three and four solutions in its best-known
Pareto approximation increases. This confirms the multi-objective nature of the
VRPTW, and indicates the extent to which MOEA-RD is finding the best-known

Pareto approximation.

In the past, fully multi-objective comparisons between algorithms have been ham-
pered by a lack of published solution details. Until now, only the study of Ghoseiri
and Ghannadpour [111] has appropriately presented the solutions in the Pareto ap-
proximations for each instance. To remedy this for future studies and to promote
proper multi-objective comparisons, Table 5.2 presents the full details of the number

of routes (R) and travel distance (D), associated with the solutions in the overall
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Instance R D R D Instance R D R D
R101 20 164288 19  1650.80 RC102 14 1480.26 13 1501.11
R102 18 1474.19 17  1486.12 RC105 15 1519.44 14  1540.18
R103 14 1219.37 13 1308.28 RC106 13 1379.68 12 1395.70
R104 11 984.56 10 990.79 RC107 12 1215.06 11  1234.49
R105 15  1364.91 14 1377.11 RC108 11 112298 10  1158.22
R106 13 1241.65 12 1261.52 RC201 7 1299.58 6 1316.25
R107 11 1083.30 10  1154.38 5  1329.26 4  1438.43
R108 10 960.03 9 984.75 RC202 5 1120.15 4 1165.57
R109 13 1154.61 12 1157.76 RC203 4 954.51 3 1061.47
R110 12 1088.61 11  1094.75 RC204 4 792.84 3 802.71
R201 5 1194.07 4 125477 RC205 7 1205.06 6 1214.49
R202 5 1050.41 4 1087.29 5  1259.00 4  1318.71
R203 5 905.34 4 912.24 RC206 5 1077.48 4 1085.82
3 950.90 3  1191.62
R205 4 968.09 3 1040.29 RC207 5 1001.51 4 1001.73
R206 4 899.83 3 930.58 3 1133.27
R208 3 712.98 2 736.90 RC208 4 780.07 3 844.96
R209 4 878.05 3 921.97
R210 4 936.68 3 961.36

Table 5.2: Number of routes and travel distance for the instances where both
objectives are in conflict, corresponding to the solutions in the overall Pareto
approximations obtained by MOEA-RD.

Pareto approximation obtained by MOEA-RD, for the 31 instances in which the

two objectives are in conflict.

5.2.2 Comparison with BiEA

Since the full multi-objective results are available, this comparison will be done ac-
cording to the coverage, convergence and hypervolume performance metrics, which
were applied over the non-dominated sets obtained by BiEA and MOEA-RD. To ap-
ply the coverage metric, Mc(BiIEA;, MOEA-RD;) and Mc(MOEA-RD;, BIEA;) were
computed for all repetitions 7,7 = 1,...,30, giving 900 M¢ values for each instance.
Figure 5.6 presents six series of box-and-whisker plots, one for each set category, to
display the resultant distributions of the M¢ values. For each instance there are two

boxes, the one on the left showing the distribution of the Mc(BiEA, MOEA-RD)
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values, and the one on the right Mc(MOEA-RD, BiEA). On each box, the central
mark is the median |\7|c, while the lower and upper edges correspond to the first
and third quartiles. This time, boxes have an additional notch, which display the
variability of the median. The width of the notches is computed so that boxes which

notches do not overlap have different medians at the 95% significance level [167].

We observe that for all instances in categories C1 and C2, the boxes corresponding
to Mc(MOEA-RD,BiEA) are agglomerated at the top, except for instance C204
that extends from 0 to 1, which means that solutions from MOEA-RD always cover
those from BiEA, while those regarding Mc(BiEA, MOEA-RD) are agglomerated
at the top, at the bottom, and some extend over the whole range, which means
that solutions from BiEA not always cover those from MOEA-RD. For instances
in categories R2 and RC2, |\7IC(MOEA—RD, BiEA) = 1, with the exception of two
instances in RC2 where it is located at 0.5, while Mc(BiEA, MOEA-RD) is always
zero, which means that the medians significantly differ. In the case of the sets R1

and RC1, we observe mixed results, thus we will analyse them in more detail later.

To compare the algorithms using the convergence metric, for each algorithm and
instance, the overall non-dominated solutions were extracted from the 30 Pareto ap-
proximations. Then, from the overall non-dominated sets, a composite reference set
R was found. Afterwards, Mp(BiEA;, R) and Mp(MOEA-RD;,R),Vi=1,...,30,

were computed and normalised regarding the maximal solution as in Section 4.3.2.2.

The distribution of these Mp values are shown in Figure 5.7 as box-and-whisker
plots. For each instance there are two boxes, the one on the left showing the dis-
tribution of the Mp(BiEA, R) values, and the one on the right Mp(MOEA-RD,R).
We observe here that both algorithms present similar performance for instances in
categories C1 and C2, with some exceptions where solutions from MOEA-RD are

closer to R than those from BiEA. For categories R2 and RC2, MOEA-RD sur-
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Figure 5.6: Box-and-whisker plots representing the distribution of the Mc
values. For each instance are shown two bars: the one on the left depicting
Mc(BiEA, MOEA-RD), and the one on the right Mc(MOEA-RD, BiEA).

passed BiEA in the majority of the instances, in the sense that MD(MOEA-RD, R)

is lower than I\7ID(BiEA,R) and the notches in the boxes, and in some cases the
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Figure 5.7: Box-and-whisker plots representing the distribution of the Mp
values. For each instance are shown two bars: the one on the left depicting
Mp(BIEA,R), and the one on the right Mp(MOEA-RD,R).

complete boxes, do not overlap. Results for the instances in categories R1 and RC1

do not show a clear visual difference.
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Algorithm Metric C1 C2 R1 R2 RC1 RC2

Mc 0.77 (0)  0.50 (0)  0.47 (2) 0.12 (0)  0.51 (4)  0.14 (0)
BiEA Mp(x1072) 0.18 (0)  0.08 (0)  0.55 (3) 1.00 (0)  0.51(3)  1.14 (0)
My(x1072) 76.92 (0) 87.29 (0) 66.43 (3)  78.39 (0) 69.64 (1) 80.21 (0)
Mc 0.94 (8) 094 (6) 048 (8) 085 (11) 044 (3)  0.79 (8)
MOEA-RD Mp(x1072) 0.07 (2)  0.04 (3) 0.58 (4) 048 (11)  0.60 (0)  0.62 (8)
My(x1072) 77.01 (2) 87.34 (6) 66.37 (4) 78.90 (11) 69.60 (0) 80.73 (7)

Table 5.3: Averages Mc, Mp and My over instance categories for the solutions

obtained with BiEA and MOEA-RD. Shown in brackets are the number of

instances for which the result is significantly better than the other approach.
On the other hand, in order to compute the hypervolume metric My, the vector
z = (N, D™®), corresponding to the maximal solution with largest number of routes
N and longest travel distance D™**, was considered the reference point for each ins-
tance. Then, My(BiEA;, z) and My(MOEA-RD;, z),Vi =1, ..., 30, were computed
and normalised according to the space defined between point z and the origin. These
My values were grouped by the instances in each set category and the average My
was calculated. These My results, along with M¢ and Mp, were analysed more rig-
orously by counting the significant performance difference for individual problem

istances.

Table 5.3 presents the averages Mc, Mp and My over all the instances within each
problem category, and the numbers of instances, in brackets, for which there was
significant improvement over the other approach. We can observe here more clearly
that MOEA-RD has a better performance than BiEA regarding the coverage me-
tric, since for all categories, with the exception of RC1, Mc(MOEA-RD, BiEA) >
Mc(BiEA, MOEA-RD), and the difference is significant for the majority of the ins-
tances. We see a similar pattern with respect to the convergence metric, since
solutions from MOEA-RD are closer to R than those from BiEA, and the difference
is significant for many of the instances. An analogous situation occurs for the hyper-
volume metric, which is larger for MOEA-RD and the difference is also significant

for many of the instances.
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Based on these results, we conclude that MOEA-RD is a significant improvement
of BiEA, since the solutions found by the former cover more widely those from the
latter, are closer to the composite reference sets, and delimit a wider objective space
for the majority of the benchmark instances. We argue that this improvement is due
to the modified mutation process and operators, since this is the difference between
both algorithms. Hence, the new mutation procedure is accomplishing the purpose

of finding better solutions, consequently enhancing the algorithm’s performance.

5.2.3 Comparison with previous studies

Here, the results found by MOEA-RD are compared with the best published results
known, previously presented in Section 3.2.1 (Table 3.5 in page 76). Tables 5.4 and
5.5 show, for each instance and both the solution with the smallest number of routes
(min R) and the solution with the shortest travel distance (min D), the best-known
results for each objective, along with the best result found by MOEA-RD after 30
runs. For the results from MOEA-RD), the percentage difference with respect to the
best-known result is displayed (%R and %D), which is averaged over instances in
each set category. A negative percentage indicates improvement over the best-known

result.

Let us analyse first the results for the solutions with lowest number of routes (min R).
We can see that MOEA-RD found the best-known solutions, shown in bold, for
all instances in categories C1 and C2, and two more in R1. Additionally, for 13
instances, MOEA-RD achieved solutions with the best-known number of routes
and no more than 2% above the corresponding travel distance, shown in italic.
Overall, solutions from MOEA-RD have, on average, 5.46% more routes than the
best-known, which correspond to a saving of 0.42% regarding travel distance. In
respect to the solutions with the shortest travel distance (min D), MOEA-RD found

the best-known solutions, shown in bold, for all instances in categories C1 and C2.
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min R min D

Inst.  Best-known MOEA-RD Best-known MOEA-RD

R D R D %R %D R D R D %R %D
C101 10 828.94 10 828.94 0.00 0.00 10 828.94 10 828.94 0.00 0.00
C102 10 828.94 10 828.94 0.00 0.00 10 828.94 10 828.94 0.00 0.00
C103 10 828.06 10 828.06 0.00 0.00 10 828.06 10 828.06 0.00 0.00
C104 10 824.78 10 824.78 0.00 0.00 10 824.78 10 824.78 0.00 0.00
C105 10 828.94 10 828.94 0.00 0.00 10 828.94 10 828.94 0.00 0.00
C106 10 828.94 10 828.94 0.00 0.00 10 828.94 10 828.94 0.00 0.00
C107 10 828.94 10 828.94 0.00 0.00 10 828.94 10 828.94 0.00 0.00
C108 10 828.94 10 828.94 0.00 0.00 10 828.94 10 828.94 0.00 0.00
C109 10 828.94 10 828.94 0.00 0.00 10 828.94 10 828.94 0.00 0.00
Category average 0.00 0.00 0.00 0.00
R101 18 1613.59 19 1650.80 5.56 2.31 18 1613.59 20 1642.88 11.11 1.82
R102 17 1486.12 17 1486.12 0.00 0.00 18 1454.68 18 1474.19 0.00 1.34
R103 13 1292.68 18 1308.28 0.00 1.21 14 1213.62 14 1219.837 0.00 0.47
R104 9 1007.24 10 990.79 11.11 -1.63 10 974.24 11 984.56 10.00 1.06
R105 14 1377.11 14 1377.11 0.00 0.00 15 1360.78 15 1364.91 0.00 0.30
R106 12 1251.98 12 1261.52 0.00 0.76 13 1240.47 18 1241.65 0.00 0.10
R107 10 1104.66 10 1154.38 0.00 4.50 11 1073.34 11 1083.30 0.00 0.93
R108 9 960.88 9 984.75 0.00 2.48 10 947.55 10 960.03 0.00 1.32
R109 11 1194.73 12 1157.76 9.09 -3.09 13 1151.84 18 1154.61 0.00 0.24
R110 10 1118.59 11 1094.75 10.00 -2.13 12 1072.41 12 1085.61 0.00 1.51
R111 10 1096.72 11 1061.37 10.00 -3.22 12 1053.50 11 1061.87 -8.33 0.75
R112 9 982.14 10 980.83 11.11 -0.13 10 953.63 10 980.83 0.00 2.85
Category average 4.74 0.09 1.06 1.06
RC101 14 1696.94 15 1625.26 7.14 -4.22 15 1623.58 15 1625.26 0.00 0.10
RC102 12 1554.75 13 1501.11 8.33 -3.45 14 1461.23 14 1480.26 0.00 1.30
RC103 11 1261.67 11 1278.19 0.00 1.31 11 1261.67 11 1275.19 0.00 1.31
RC104 10 1135.48 10 1144.39 0.00 0.78 10 1135.48 10 1144.39 0.00 0.78
RC105 13 1629.44 14 1540.18 7.69 -5.48 16 1518.58 15 1519.44 -6.25 0.06
RC106 11 1424.73 12 1395.70 9.09 -2.04 13 1371.69 13 1879.68 0.00 0.58
RC107 11 1222.16 11 1234.49 0.00 1.01 12 1212.83 12 1215.06 0.00 0.18
RC108 10 1139.82 10 1158.22 0.00 1.61 11 1117.53 11 1122.98 0.00 0.49
Category average 4.03 -1.31 -0.78 0.60

Table 5.4: Best-known results from literature and the best results obtained
by MOEA-RD, considering the lowest number of routes and the shortest travel
distance, for Solomon’s instance categories C1, R1 and RC1.

Furthermore, for 22 instances, MOEA-RD achieved solutions with an increase of

no more than 2% in the travel distance and with equal or less number of routes

compared with the best-known, shown in talic. Overall, MOEA-RD solutions are,
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min R min D
Inst. Best-known MOEA-RD Best-known MOEA-RD

R D R D %R %D R D R D %R %D
C201 3 591.56 3 591.56 0.00 0.00 3 591.56 3 591.56 0.00 0.00
€202 3 591.56 3 591.56 0.00 0.00 3 591.56 3 591.56 0.00 0.00
C203 3 9591.17 3 591.17 0.00 0.00 3 591.17 3 591.17 0.00 0.00
C204 3 590.60 3 590.60 0.00 0.00 3 590.60 3 590.60 0.00 0.00
C205 3 588.88 3 588.88 0.00 0.00 3 588.88 3 588.88 0.00 0.00
C206 3 588.49 3 588.49 0.00 0.00 3 588.49 3 588.49 0.00 0.00
C207 3 588.29 3 588.29 0.00 0.00 3 588.29 3 588.29 0.00 0.00
C208 3 588.32 3 588.32 0.00 0.00 3 588.32 3 588.32 0.00 0.00

Category average 0.00 0.00 0.00 0.00

R201 4 1252.37 4 1254.77 0.00 0.19 9 1149.68 5 1194.07 -44.44 3.86
R202 3 1191.70 4 1087.29 33.33 -8.76 8 1034.35 5 1050.41 -37.50 1.55
R203 3 939.54 3 950.90 0.00 1.21 6 874.87 5 905.34 -16.67 3.48
R204 2 825.52 3 752.83 50.00 -8.81 4 736.52 3 752.83 -25.00 2.21
R205 3 994.42 3 1040.29 0.00 4.61 5 954.16 4 968.09 -20.00 1.46
R206 3 906.14 3 930.58 0.00 2.70 5 879.89 4 899.83 -20.00 2.27
R207 2 837.20 3 818.97 50.00 -2.18 4 799.86 3 818.97 -25.00 2.39
R208 2 726.75 2 736.90 0.00 1.40 4 70545 8 712.98 -25.00 1.07
R209 3 909.16 3 921.97 0.00 1.41 5 859.39 4 878.05-20.00 2.17
R210 3 939.34 3 961.36 0.00 2.34 5 910.70 4 936.68 -20.00 2.85
R211 2 892.71 3 785.97 50.00 -11.96 4 755.96 3 785.97 -25.00 3.97

Category average 16.67 -1.62 -25.33 2.48

RC201 4 1406.91 4 1438.43 0.00 2.24 6 1134.91 7 1299.58 16.67 14.51
RC202 3 1367.09 4 1165.57 33.33 -14.74 8 1095.64 5 1120.15 -37.50 2.24
RC203 3 1049.62 3 1061.47 0.00 1.13 5 928.51 4 954.51 -20.00 2.80
RC204 3 79841 3 802.71 0.00 0.54 4 786.38 4 792.84 0.00 0.82
RC205 4 1297.19 4 1318.71 0.00 1.66 7 1157.55 7 1205.06 0.00 4.10
RC206 3 1146.32 3 1191.62 0.00 3.95 7 1054.61 5 1077.48 -28.57 2.17
RC207 3 1061.14 3 1133.27 0.00 6.80 6 966.08 5 1001.51 -16.67 3.67
RC208 3 828.14 3 84496 0.00 2.03 4 779.31 4 780.07 0.00 0.10
Category average 4.17 045 -10.76  3.80
Overall average 5.46 -0.42 -6.40 1.34
St. Dev. 12.7  3.70 12.78 2.17

Table 5.5: Best-known results from literature and the best results obtained
by MOEA-RD, considering the lowest number of routes and the shortest travel

distance, for Solomon’s instance categories C2, R2 and RC2.

on average, 1.34% above the best-known travel distance, however they reduce the

number of routes in 6.40%.

If we compare the average difference between results from MOEA-RD and the best-

known with that from previous studies shown in Tables 3.6 and 3.7 (pages 84 and
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85), we can see that MOEA-RD surpasses the approaches of Cordone and Wolfler
Calvo [50] and of Ghoseiri and Ghannadpour [111], in the sense that the differences
from MOEA-RD are smaller in both objectives. However, if only the number of
routes is taken into account, MOEA-RD additionally surpasses the approaches of
Jung and Moon [137] and of Alvarenga et al. [7], while if the travel distance is
exclusively considered, MOEA-RD surpasses all approaches, except those of Jung

and Moon [137] and of Alvarenga et al. [7].

It is important to observe that, with respect to solutions with the shortest travel
distance (min D), there is a considerable saving in the number of routes for cate-
gories R2 and RC2, 25.33% and 10.76%, respectively, though the travel distance is,
correspondingly, 2.48% and 3.80% larger. This might suggest that MOEA-RD is
having difficulties for exploring the search space where solutions with a larger num-
ber of routes are located, which could potentially reduce the travel distance. As was
described in Section 3.2.1, instances in these categories have a wider search space
than that for instances in the rest of the categories, feature which makes them even
harder to solve. Consequently, in order to know exaclty what prevents the algorithm
achieving solutions with larger numbers of routes, a deeper analysis is going to be

proposed as a future research activity.

Results from MOEA-RD constitute one of the contributions of this thesis, since,
although they are not the overall best, they are comparable to many, in the sense
that they have one of the objectives within 2% difference with respect to the best-

known, while the other objective is equal or better.

On the other hand, Table 5.6 presents the average results, over the instances in each
set category, from MOEA-RD), as well as the best average results from past studies
and those from previous multi-objective approaches. This table presents the same

format as that of Table 4.7, used in the previous chapter for comparing results from
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Author C1 C2 R1 R2 RC1 RC2 Total
10.00 3.00 11.91 2.73 11.50 3.25 405.00

min 828.38 589.86 1212.73  952.67 1384.30 1108.52 57192.00
min D 10.00 3.00 11.92 5.36 12.88 6.25 486.00

828.38 589.86 1121.10 878.41 1341.67 1004.20 54779.02
Ombuki et al. [182] 10.00 3.00 12.67 3.09 12.38 3.50 427.00
(min R) 828.48 590.60 1212.58  956.73 1379.87 1148.66 57484.35
Ombuki et al. [182] 10.00 3.00 13.17 4.55 13.00 5.63 471.00
(min D) 828.48 590.60 1204.48  893.03 1384.95 1025.31 55740.33
Tan et al. [228] 10.00 3.00 12.92 3.55 12.38 4.25 441.00

828.91 590.81 1187.35 951.74 1355.37 1068.26 56293.06
Ghoseiri and Ghannadpour  10.00 3.00 12.92 3.45 12.75 3.75 439.00

[111] (min R) 828.38 591.49 1228.60 1033.53 1392.09 1162.40 58735.22
Ghoseiri and Ghannadpour  10.00 3.00 13.50 3.82 13.25 4.00 456.00
[111] (min D) 828.38 591.49 1217.03 1049.62 1384.3 1157.41 58671.12
MOEA-RD (min R) 10.00 3.00 12.33 3.09 12.00 3.38 419.00

828.38 589.86 1209.04 931.08 1359.69 1119.59 56758.86
MOEA-RD (min D) 10.00 3.00 13.17 3.91 12.63 5.13 457.00

828.38 589.86 1188.03 900.29 1345.66 1028.90 55330.28
% diff. R 0.00 0.00 3.55 13.22 4.35 3.85 3.46
% diff. D 0.00 0.00 5.97 2.49 0.30 2.46 1.01

Table 5.6: Number of routes and travel distance, averaged over categories, for

the best solutions found by previous studies and MOEA-RD.
BiEA. Let us remind that for each instance, the solutions with the smallest number
of routes (min R) and with the shortest travel distance (min D) were taken and the

average over the instances in each set category was computed for each objective.

With respect to the number of routes (min R), we see that, for instance categories
C1 and C2, MOEA-RD obtained the best-known results. For categories R1, RC1
and RC2, and in total, results are between 3.5% and 4.5% higher, while for R2 they
are nearly 13% above. Regarding the travel distance, MOEA-RD (min D) obtained
the best-known results for categories C1 and C2. In respect to categories R2, RC1
and RC2, and in total, the difference is of no more than 2.5%, and below 6% for

category R1.

173



Considering exclusively the multi-objective studies, MOEA-RD found similar or
better solutions than those obtained by Ombuki et al. [182] and Ghoseiri and Ghan-
nadpour [111] in all categories and in total regarding solutions with the smallest
number of routes (min R), and in categories C1, C2, R1, and RCI1, and in total
considering the solutions with shortest travel distance (min D). In respect to the
the study of Tan et al. [228], solutions from MOEA-RD are better in categories
C1 and C2. In general, we conclude that MOEA-RD maintains the good perfor-
mance of BiEA, in the sense that it is comparable or better than that of previous

multi-objective approaches.

5.2.4 Comparison with NSGA-II

As was stated in Section 2.4.6, NSGA-II [67] has established itself as a benchmark
algorithm for multi-objective optimisation and is currently renowned as one of the
leading general purpose multi-objective optimisers. Hence, given the operational
similitude, NSGA-II is the best algorithm to compare MOEA with. In this case, an
additional series of experiments was carried out in order to compare the performance
of MOEA-RD set to use edit distance instead of Jaccard similarity. This algorithm

will be labelled as MOEA-ERD.

Results from NSGA-II, MOEA-ERD and MOEA-RD are now analysed by means of
the coverage, convergence, and hypervolume performance metrics. In order to make
a fair comparison, NSGA-II was coded with the same recombination and mutation
operators, and parameter values as MOEA. The difference lies in how parent and
survival selections are performed: while MOEA considers solution similarity in both
cases, NSGA-II uses exclusively fitness in the former and crowding distance in the

latter.
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Figure 5.8: Box-and-whisker plots representing the distribution of the Mc

values. For each instance are shown two bars: the one on the left depicting

Mc(NSGA-II, MOEA-RD), and the one on the right Mc(MOEA-RD, NSGA-II).
The procedure to calculate the Mc values was the same as previously applied to

compare BiEA and MOEA-RD. Figure 5.8 presents six series of box-and-whisker

plots to display the resultant distributions of the M¢ values. For each instance there
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Algorithm  Covers C1 C2 R1 R2 RC1 RC2

Nsaaq  MOBA-ERD 080 (0) 091 (1) 0.14 (0) 041 (4) 008 (0) 037 (1)
MOEA-RD  0.81 (0) 091 (2) 0.14 (0) 035 (0) 0.11 (0) 0.35 (0)
NSGA-II 0.95 (4) 0.88 (1) 0.82 (12) 054 (7) 0.89 (8) 0.53 (6)
MOBA-ERD \10rA-RD 092 (2) 0.90(2) 049 (7) 041 (1) 057 (6) 0.42 (1)
NSGA-II 0.93 (4) 0.88 (0) 0.81 (12) 0.60 (10) 0.85 (8) 0.57 (7)
MOEA-RD 1 0BA-ERD  0.89 (0) 0.90 (1) 046 (2) 055 (9) 0.38 (0) 0.48 (5)

Table 5.7: Averages Mc over instance categories for the solutions obtained with

NSGA-II, MOEA-ERD, and MOEA-RD. Shown in brackets are the number of

instances for which the result is significantly better than the other approach.
are two boxes, the one on the left showing Mc(NSGA-II, MOEA-RD), and the one
on the right Mc(MOEA-RD,NSGA-II). Both algorithms show similar coverage of
each other for instances in categories C1 and C2, since the median Mc = 1 for all
cases, except for instance C104, where |\7IC(NSGA—II, MOEA-RD) = 0. For instances
in categories R1 and RC1, solutions in the non-dominated sets found by MOEA-RD
completely cover those obtained by NSGA-II, except for three instances in category
R1 and one in RC1, and solutions from NSGA-II never cover those from MOEA-RD,
with the exception of two instances in R1. For categories R2 and RC2, although for

several instances Mc(NSGA-II, MOEA-RD) < Mc(MOEA-RD, NSGA-II), and the

notches do not overlap, we need more details for a proper analysis.

Table 5.7 presents the averages Mc, over all the instances within each problem cate-
gory, of the coverage metric applied to every ordered pair of the algorithms NSGA-II,
MOEA-ERD, and MOEA-RD, along with the numbers of instances, in brackets,
for which there was significant improvement over the other approach. We can ob-
serve that, for categories C1, R1, R2, RC1, and RC2, Mc(MOEA-ERD, NSGA-II)
and Mc(MOEA-RD,NSGA-II) are greater than the opposite cases, and the diffe-
rence is significant for the majority of the instances in those sets. Between them,
solutions from MOEA-ERD significantly cover those from MOEA-RD in more ins-
tances in categories R1 and RC1, and the latter significantly cover the former in

many instances in categories R2 and RC2.

176



(=

T T T T T T T T
30
© |
g 20 Q
X
10 - -
o) IS p— — bn_ 1 |é —_ —_ — — gn_ ]
C1l01 C102 C103 C104 C105 C106 C107 C108
T T T T T T T
6 B —
o T
\8 4 - O
X
il 00 J
o —1— i R I I i R i R i R 1
C201 C202 C203 C204 C205 C206 Cc207 C208
30 T T T T T T T T T T T
T
o 20 . T
|a - — T g
I N AR B 8
T 1 g 1
é@é@ |$ l|$ [ |é |% |J- lIQ I L |J-
R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112
T T T T T T
15
P 10 _ M g
TR B fa ad 23 88?3 QQ g
x |
A58 Ok Bi g% TN Q o]
ok 1 1 I L L 1,1 L L
R201 R202 R203 R204 R205 R206 R207 R208 R209 R210 R211
T T T T =T T
20 - |
g T
L 15F .
BT &g 8 8 R g LS Q
X
5 1 n g % % 1
(0 = 1 L 1
RC101 RC102 RClOS RC104 RC105 RClOS RC107 RC108
20F T T T T T T T T
5 — - T
S DR R
X
51 |
1
L n L1

| J‘ | | %I J_ =
RC201 RC202 RC203 RC204 RC205 RCZOG Rczo7
Figure 5.9: Box-and-whisker plots representing the distribution of the Mp
values. i

RC208
For each instance are shown two bars

: the one on the left depicting
Mp(NSGA-II, R), and the one on the right Mp(MOEA-RD,R)

To compare the algorithms using the convergence metric, the same procedure used
to compare BiEA and MOEA-RD was followed, however, the overall Pareto ap-

proximations from MOEA-ERD were also taken into account to find the composite
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Algorithm  Compares C1 C2 R1 R2 RC1 RC2

MOEA-ERD (0) (0) (0) (2) (0) (0)
NSGA-II MOEA-RD 1.87 (0) 0.38 (0) 8.05 (0) 6.74 (O) 10.24 (0> 7.45 (0)
NSGA-II (3) (0) (12) (3) (8) 1)
MOEA-ERD MOEA-RD 0.55 (0) 0.34 (0) 4.34 (1) 6.38 (1) 4.72 (1> 7.15 (0)
NSGA-II (3) (0) (12) (4) (8) 1)
MOEA-RD MOEA-ERD 0.74 (0) 0.38 (0) 4.17 (1) 5.29 (5) 5.28 (0> 6.40 (0)

Table 5.8: Averages Mp (x1073) over instance categories for the solutions

obtained with NSGA-II, MOEA-ERD, and MOEA-RD. Shown in brackets are

the number of instances for which the result is significantly better than the other

approach.
reference set R. The distribution of the Mp values are shown in Figure 5.9 as box-
and-whisker plots. For each instance there are two boxes, the one on the left showing
Mp(NSGA-II, R), and the one on the right showing Mp(MOEA-RD, R). In this fi-
gure we can see that, in general, both algorithms present similar performance for all
instances in categories C1 and C2, since Mp(NSGA-II, R) ~ Mp(MOEA-RD, R),
except for instance C203 where notches do not overlap. For the majority of the
instances in categories R1 and RC1, results from MOEA-RD are significantly closer
to R than those from NSGA-II are, as indicated by the lower medians Mp and the
non-overlapping notches. For the rest of the instances in these categories the algo-
rithms perform similarly. Finally, for categories R2 and RC2, both algorithms seem
to perform equally well, since there is no visual significant difference, thus more

details are required for this analysis.

Table 5.8 presents the averages Mp, over all instances within each problem cate-
gory, of the convergence metric applied to the solutions from algorithms NSGA-II,
MOEA-ERD, and MOEA-RD, along with the numbers of instances, in brackets,
for which there was significant improvement over the other approach. In this res-
pect, results from MOEA-ERD and MOEA-RD are closer to the reference set than
those from NSGA-II for all categories, except for C2, and they perform significantly

better than NSGA-II in many of the instances. According to this metric, NSGA-II
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Algorithm  Compares C1 C2 R1 R2 RC1 RC2

MOEA-ERD 0) (0) 0) (0) (0) 0)
NSGA-II MOEA-RD 76.91 (0) 87.34 (0) 65.90 (0) 78.76 (0) 68.83 ) 80.58 (0)
NSGA-II (3) (0) (12) (5) 8) (4)
MOEA-ERD MOEA-RD 77.03 (0) 87.34 (0) 66.40 (3) 78.89 (1) 69.75 @) 80.81 (0)
NSGA-II (3) (0) (12) (6) (8) (3)
MOEA-RD MOEA-ERD 77.01 (0) 87.34 (0) 66.37 (1) 78.90 (0) 69.60 0) 80.73 ()

Table 5.9: Averages My (x1073) over instance categories for the solutions
obtained with NSGA-II, MOEA-ERD, and MOEA-RD. Shown in brackets are
the number of instances for which the result is significantly better than the other
approach.
never performs significantly better than MOEA-RD. MOEA-ERD and MOEA-RD
perform similarly well, however, MOEA-RD significantly improves MOEA-ERD in

more instances in category R2.

Hypervolume values were computed using the method followed to compare BiEA
and MOEA-RD. Table 5.9 presents the average My, over the instances within each
set category, of the hypervolume metric applied to the solutions from algorithms
NSGA-II, MOEA-ERD, and MOEA-RD, along with the numbers of instances, in
brackets, for which there was significant improvement over the other approach. We
see that, although all three algorithms present similar average hypervolume for all
categories, there is a significant difference between MOEA-ERD and MOEA-RD
with NSGA-II for instances in five out of the six categories, while MOEA-ERD has
a slightly better performance than MOEA-RD for few instances in categories R1,
R2, and RC1.

To understand the differences, it is instructive to look at the population diversity
preserved by algorithms NSGA-II and MOEA-RD. Figure 5.10 presents six plots,
one for each instance category, showing the average population diversity on the ver-
tical axis, along with the average hypervolume difference between both algorithms,

as a function of the first 500 generations on the horizontal axis. It is noticeable

that MOEA-RD preserves a higher diversity for categories R1, R2, RC1 and RC2,
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for which improvements over NSGA-IT were observed. Moreover, the MOEA-RD

diversities present a more gentle drop in all categories, except for C2, suggesting

that MOEA-RD performs a wider exploration of the search space before settling on
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Algorithm C1 C2 R1 R2 RC1 RC2
NSGA-II 1.14 (0) 1.00 (0) 1.31 (0) 1.66 (1) 1.48 (0) 1.86 (0)
MOEA-RD 1.28 (2) 1.00 (0) 1.56 (5) 1.70 (0) 1.95 (5) 2.01 (0)

Table 5.10: Size of the Pareto approximations, averaged over instance catego-

ries, obtained with NSGA-II and MOEA-RD. Shown in brackets are the number

of instances for which the result is significantly better than the other approach.
its final solutions. This means that MOEA-RD is presenting the same behaviour of
BiEA regarding the exploration of the search space. Additionally, we see that the
hypervolume difference between both algorithms is negative for the first evolutio-
nary generations, which means NSGA-II achieved better non-dominated solutions
than those found by MOEA-RD. However, solutions from MOEA-RD improved in
the last generations and the hypervolume difference finished to be positive. This
means that the diversity preservation mechanism helped MOEA-RD to better ex-
plore the search space, obtain better non-dominated solutions than NSGA-II and

actually achieve the objective it was designed for.

Table 5.10 presents the size of the Pareto approximations, averaged over instance
categories, and the number of instances, in brackets, where the difference in the
sizes is significant. We observe that, although the difference in the averages is small
in all categories, there are a number of instances in categories C1, R1, and RCI,
for which the non-dominated sets found by MOEA-RD are significantly larger than
those from NSGA-II.

Lastly, Figure 5.11 shows the average execution time over a 500-generation period,
corresponding to each instance category, of the algorithms analysed in this section,
including those of BIEA and MOEA-ERD for comparison purposes. Notice that the
vertical axis is in logarithmic scale. We observe that MOEA-RD and BiEA have
similar execution times, while NSGA-IT executes faster than both, 15% on average.
MOEA-ERD still presents the slowest performance, using nearly 700% more time.
The difference between BiEA and MOEA-RD with NSGA-II is due to the former
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Figure 5.11: Execution time, averaged over instance categories, of the algo-
rithms NSGA-II, BiEA, MOEA-ERD, and MOEA-RD.
compute Jaccard similarity in the survival selection stage, which has O(N?) time

complexity, while NSGA-II calculates crowding distance, which is O(N log N).

We conclude that, with the exception of the instances in categories C1 and C2,
which instances are not really multi-objective and for which the performance of
NSGA-IT and MOEA-RD proved to be similar, MOEA-RD has a significantly better
performance than the observed by NSGA-II for all instances in categories R1 and
RC1 and for many in sets R2 and RC2. We can attribute this superior performance
to the broader exploration of the search space, which is achieved through the use of
the solution similarity measure. Additionallyy, MOEA-RD set to use edit distance
still presents a slightly better performance than set to use Jaccard similarity for few
instances in categories R1 and RC1, and the latter presents a significantly better

performance than the former for few instances in categories R2 and RC2.

With these results, presentation and analysis, we argue that the research objec-
tives regarding the bi-objective solution of the VRPTW and its comparison against
NSGA-II are achieved. Additionally, this also represents one of the main contribu-
tions of this thesis, since an appropriate performance analysis of the two evolutio-
nary approaches, regarding the two criteria optimisation of the problem, has been

accomplished.
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5.3 Tri-objective optimisation of VRPs with Time Windows

To demonstrate the ease with which MOEA is able to address additional objectives,
this section concentrates on the experimental analysis of the tri-objective optimisa-
tion of the VRPTW. The additional objective to be considered is the delivery time

(T), f3(R) in (3.14) (see Section 3.2).

MOEA was run 30 times for each of the Solomon’s benchmark instances size N =
100. The population diversity and the non-dominated solutions were recorded after
each evolutionary generation for later analysis. The evolutionary parameters were

set as in the bi-objective optimisation case.

Results were analysed from three different perspectives: (i) to analyse MOEA’s per-
formance with different objective settings and to test the effect of the optimisation of
the additional delivery time objective, (i7) to compare the results from MOEA with
those from previous studies, and (ii7) to compare the results obtained by MOEA

with those from NSGA-II using the multi-objective performance metrics.

5.3.1 Effect of the minimisation of the delivery time

The first aim is to analyse the performance of MOEA with different objective set-
tings, in order to test the effect of the optimisation of the additional delivery time
objective. The number of routes (R), travel distance (D) and delivery time (7) were
first set to be minimised in pairs, giving three objective settings: RD, RT and DT.
Then, all three of them together: RDT. For each of these settings, MOEA will be
labelled as MOEA-X, where X refers to the objective setting. The results from all
four algorithms with different objective settings are compared using the coverage,

convergence and hypervolume performance metrics.
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In order to apply the coverage metric, for each given instance and ordered pair of
algorithms MOEA-X and MOEA-Y, Mc(MOEA-X;, MOEA-Y,),V i,j = 1,..., 30,
that is 900 Mc¢ values, were computed regarding all three objectives. MOEA-X;
refers to the outcome set from the i-th execution of MOEA-X. After these com-
putations, the Mc(MOEA-X;, MOEA-Y) values were averaged (Mc) over all the
instances within each set category, and the resulting 900 values were collected to-
gether. These Mc values are presented in Figure 5.12 as box-and-whisker diagrams,
which represent the distribution of the Mc values for each ordered pair of algorithms.
Each cell, which range is 0 at the bottom and 1 at the top, contains six box-and-
whisker plots corresponding to categories C1, C2, R1, R2, RC1 and RC2, from left
to right, referring to the coverage of the algorithm in the corresponding column by

the algorithm in the corresponding row.

From this figure we can make the following observations: All algorithms show a
relatively high coverage of each other for categories C1 and C2, as indicated by the
two leftmost boxes in each cell. For the rest of the instance categories, plots in the
top row, the coverage of MOEA-RT, MOEA-DT and MOEA-RDT, by MOEA-RD,
show that the median of the coverage |\7|C is low, with some boxes extending up to
nearly 0.2. Similarly, we see in the MOEA-RT row that the coverage of the solutions
from the other algorithms is extremely low, since the |\~/Ic for all categories in each
cell, and actually the complete box, is very close to zero. The most interesting cases
are MOEA-DT and MOEA-RDT, because it is clearly visible that their coverage of
MOEA-RD and MOEA-RT is higher than the inverse cases. Between them, there is
not an evident difference in the coverage of each other. These cases will be analysed

later in more detail.

Regarding the convergence metric, for each algorithm and instance, the overall non-
dominated solutions were extracted from the 30 Pareto approximations. Then, a

composite non-dominated reference set R was found using the overall non-dominated
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Figure 5.12: Box-and-whisker plots representing the distribution of the Mc
values for each ordered pair of the results obtained by MOEA with objective
settings RD, RT, DT and RDT.
sets from the four algorithms. Afterwards, Mp(MOEA-X;,R),Vi=1,...,30, were
computed for each algorithm MOEA-X and instance, and normalised regarding the
maximal solutions. These Mp values were grouped by the instances in each set
category and the average Mp and corresponding standard error were calculated.
Figure 5.13 presents these values as bar plots, where the height of the bars represent

the Mp values. It is clear that, in general, solutions from MOEA-DT and MOEA-
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Figure 5.13: The Mp values, averaged over instance categories, for the results
obtained by MOEA with objective settings RD, RT, DT and RDT.
RDT are the closest to R, while those obtained by MOEA-RD and MOEA-RT are
the farthest. Moreover, the former appear to have similar performance, thus more

information is needed for analysis.

To help with the analysis of the coverage and convergence between algorithms
MOEA-DT and MOEA-RDT, and to present the result of the hypervolume metric,
which was computed as in the bi-objective case, Table 5.11 presents the averages Mc,
Mp and My over the instances within each problem category, as well as the numbers
of instances, in brackets, for which there was significant improvement over the other
approach. We observe that the differences of the Mc, Mp and My between both algo-
rithms are very narrow for all categories, however, Mc(MOEA-RDT,MOEA-DT)
is still higher than Mc(MOEA-DT,MOEA-RDT) in four categories, and the co-
verage by MOEA-RDT is significantly larger than that by MOEA-DT in more
instances. In respect to the convergence metric, solutions from MOEA-RDT are
closer to R in five set categories than those from MOEA-DT', and the former are
significantly closer than the latter in one instance. On the other hand, despite
Mp(MOEA-RD,R) < Mp(MOEA-RDT,R) in the remaining category, MOEA-

DT never performs significantly better than MOEA-RDT. Finally, solutions from
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Algorithm Metric C1 C2 R1 R2 RC1 RC2

Mc 0.91(2) 0.88(2) 043 (4) 040 (4) 042 (2) 042 (3)
MOEA-DT Mp(x1073) 0.90 (0)  0.40 (0)  4.10 (0)  4.10 (0)  4.60 (0)  4.20 (0)
Mu(x1072) 77.01 (0) 87.34 (0) 65.33 (0) 77.29 (0) 68.68 (0) 78.74 (0)
Mc 0.89 (2) 0.89 (1) 044 (5) 043 (5) 046 (6) 0.41 (3)
MOEA-RDT Mp(x1073) 1.00 (0)  0.30 (0)  4.00 (0)  3.90 (0)  4.50 (0)  3.90 (1)
Mu(x1072) 77.00 (0) 87.34 (0) 65.37 (2) 77.30 (1) 68.75 (1) 78.78 (0)

Table 5.11: Averages Mc, Mp, and My over instance categories for the solutions
obtained with MOEA-DT and MOEA-RDT. Shown in brackets are the number

of instances for which the result is significantly better than the other approach.
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Figure 5.14: Execution time, averaged over instance categories, of MOEA with
objective settings RD, RT', DT, and RDT.
MOEA-RDT delimit a moderately larger hypervolume that those from MOEA-DT

in four categories, and the difference is significant in four instances.

Figure 5.14 shows the average execution time, over the instances in each set category,
of MOEA with the four different objective settings. We notice that MOEA-RD
executes quicker than the other three algorithms, running approximately 23% faster.
This difference is a consequence of the O(FM?) non-dominated sort, where F' is
the number of objective functions. Since MOEA-RDT considers three objective
functions, its increased execution time is clear. However, the other three algorithms
consider two objectives. The difference in these cases is the number of solutions M
in each front. Table 5.12 presents the size of the Pareto approximations averaged

over instance category. We notice that they all present similar approximation sizes
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Algorithm C1 C2 R1 R2 RC1 RC2

MOEA-RD 1.28 1.00 1.56 1.7 1.95 2.01
MOEA-RT 1.21 1.15 20.34 43.22 21.45 53.31
MOEA-DT 1.80 1.43 23.56 19.56 22.25 20.60
MOEA-RDT 1.91 1.47 22.57 18.72 23.28 21.21

Table 5.12: Size of the Pareto approximations, averaged over instance catego-
ries, obtained by MOEA with objective settings RD, RT, DT, and RDT.
for categories C1 and C2, which corresponds to similar execution times. For the
remaining categories, however, the size of the Pareto approximations from MOEA-
RT and MOEA-DT is larger than that from MOEA-RD and so they are their

execution times.

Considering the results from the three performance metrics, we conclude that algo-
rithms MOEA-DT and MOEA-RDT perform significantly better than MOEA-RD
and MOEA-RT', since solutions from the former have a higher coverage of those
from the latter, are closer to the reference sets, and delimit a wider objective space.
Between them, MOEA-RDT and MOEA-DT, despite their solutions are equally
distant from the reference sets, solutions from MOEA-RDT have a significantly lar-
ger coverage of those from MOEA-DT in more instances than the opposite case, and
they delimit a significantly wider objective space than the defined by the solutions
from MOEA-DT'. These results indicate that setting MOEA to minimise all three
objectives does lead to find even better non-dominated solutions for many of the

mstances.

5.3.2 Comparison with previous studies

As noted earlier, previous multi-objective studies tackling the VRPTW have not
presented their results in a proper multi-objective manner, however, it is still worth
comparing results from MOEA-RDT in the traditional single-objective style with

them.
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Author C1 C2 R1 R2 RC1 RC2 Total
10.00 3.00 11.91 2.73 11.50 3.25 405.00

min 828.38 589.86 1212.73  952.67 1384.30 1108.52 57192.00
min D 10.00 3.00 11.92 5.36 12.88 6.25 486.00

828.38 589.86 1121.10 878.41 1341.67 1004.20 54779.02
Ombuki et al. [182] 10.00 3.00 12.67 3.09 12.38 3.50 427.00
(min R) 828.48 590.60 1212.58  956.73 1379.87 1148.66 57484.35
Ombuki et al. [182] 10.00 3.00 13.17 4.55 13.00 5.63 471.00
(min D) 828.48 590.60 1204.48  893.03 1384.95 1025.31 55740.33
Tan et al. [228] 10.00 3.00 12.92 3.55 12.38 4.25 441.00

828.91 590.81 1187.35 951.74 1355.37 1068.26 56293.06
Ghoseiri and Ghannadpour  10.00 3.00 12.92 3.45 12.75 3.75 439.00

[111] (min R) 828.38 591.49 1228.60 1033.53 1392.09 1162.40 58735.22
Ghoseiri and Ghannadpour  10.00 3.00 13.50 3.82 13.25 4.00 456.00
[111] (min D) 828.38 591.49 1217.03 1049.62 1384.3 1157.41 58671.12
MOEA-RDT (min R) 10.00 3.00 12.33 3.00 12.00 3.38 418.00

829.07 589.93 1256.36 1097.01 1411.45 1335.52 61300.28
MOEA-RDT (min D) 10.00 3.00 12.83 3.82 12.63 4.38 446.00

828.38 589.86 1191.30 916.32 1349.24 1060.80 55829.68
% diff. R 0.00 0.00 3.55 9.89 4.35 3.85 3.21
% diff. D 0.00 0.00 6.26 4.32 0.56 5.64 1.92

Table 5.13: Number of routes and travel distance, averaged over categories, for

the best solutions found by previous studies and by MOEA-RDT.
This comparison is going to be made in the same manner as in the bi-objective
case, that is, the best results from the literature will be the reference to those from
MOEA-RDT. Table 5.13 presents the average results, over the instances in each set
category, from MOEA-RDT, as well as the best average results from past studies
and those from previous multi-objective approaches. The format of this table is

similar to that of Table 5.6.

We can observe that MOEA-RDT presents a similar performance to that obtained
with MOEA-RD, in the sense that, with respect to the number of routes, MOEA-
RDT (min R) obtained the best-known results for all instances in categories C1 and
C2. For category R2, results from MOEA-RDT are no more than 10% above the

best-known, while for the remainig categories and in total the difference is below
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4.4%. Concerning the travel distance, MOEA-RDT (min D) obtained the best-
known results for all instances in categories C1 and C2. For categories R1, R2, and
RC2, results from MOEA-RDT are between 4.3% and 6.3% above the best known,

while for category RC1 and in total, they are no more than 2% higher.

Taking into account only the multi-objective studies, we see that MOEA-RDT
(min D) found solutions similar to those of Tan et al. [228] for all categories, in
the sense that they have shorter travel distances, though with a slightly increased
number of routes. In the same context, MOEA-RDT found solutions with corres-
ponding smaller number of routes and shorter travel distance than those from the
approach of Ombuki et al. [182] for categories R1 and RC1, and than the achieved

by Ghoseiri and Ghannadpour [111] for all categories, except RC2, and in total.

These results show that, overall, MOEA-RDT maintains its level of performance,
as it is still comparable or better in this respect than previously published multi-

objective approaches.

5.3.3 Comparison with NSGA-II

In the same manner as in the bi-objective scenario, an additional series of experi-
ments with MOEA-RDT set to use edit distance (MOEA-ERDT') was performed,
and these results, along with those from MOEA-RDT, are compared to those from
NSGA-II by means of the coverage, convergence, and hypervolume performance me-
trics. The process of computing Mc, Mp, and My was identical to the followed in

that case, with the difference that now the three objectives are considered.

Figure 5.15 presents six series of box-and-whisker plots to display the resultant dis-
tributions of the Mc values. For each instance there are two boxes: the one on the left
represents Mc(NSGA-II, MOEA-RDT'), and the one on the right Mc(MOEA-RDT,

NSGA-II). Both algorithms perform like in the bi-objective case, in the sense that
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Figure 5.15: Box-and-whisker plots representing the distribution of the Mc

values. For each instance are shown two bars: the one on the left depic-

ting Mc(NSGA-II, MOEA-RDT'), and the one on the right Mc(MOEA-RDT,
NSGA-II).
they present similar coverage of each other for instances in categories C1 and C2,

with the exception of three instances in which Mc(MOEA-RDT, NSGA-II) is greater

than |\7|C(NSGA-H, MOEA-RDT), and in one the latter is greater than the former.
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Algorithm  Covers C1 C2 R1 R2 RC1 RC2

NSCA MOEA-ERDT  0.81 (0) 0.88 (2) 0.18 (0) 0.48 (10) 0.09 (0) 0.43 (5)
] MOEA-RDT  0.81 (0) 0.87 (2) 0.14 (0) 0.37 (4) 0.13 (0) 0.35 (0)
NSGA-II 0.94 (4) 0.87 (1) 0.72 (11) 0.32 (0) 0.85 (8) 0.36 (2)
MOBA-ERDT \10BA-RDT — 0.91 (1) 0.87 (0) 0.38 (4) 0.31 (0) 0.51 (6) 0.32 (0)
NSGA-II 0.93 (4) 0.88 (2) 0.78 (12) 0.41 (5) 0.80 (8) 0.45 (7)

MOBA-RDT 1 0BA-BRDT  0.90 (2) 0.89 (2) 0.50 (8) 0.53 (11) 0.38 (2) 0.51 (7)

Table 5.14: Averages Mc over instance categories for the solutions obtained
with NSGA-II, MOEA-ERDT, and MOEA-RDT. Shown in brackets are the
number of instances for which the result is significantly better than the other
approach.
For categories R1 and RC1, solutions in the non-dominated sets found by MOEA-
RDT widely cover those obtained by NSGA-II in all instances, and solutions from
NSGA-II narrowly cover those of MOEA-RDT in very few instances. Categories R2

and RC2 will be analysed later since it is not visually clear what the difference in

their performance is.

Table 5.14 presents the averages Mc, over the instances within each problem cate-
gory, of the coverage metric applied to every ordered pair of the algorithms NSGA-II,
MOEA-ERDT, and MOEA-RDT, along with the numbers of instances, in bra-
ckets, for which there was significant improvement over the other approach. We

can observe that, in all six categories, Mc(MOEA-RDT,NSGA-II) is greater than
Mc(NSGA-II, MOEA-RDT). Furthermore, the number of instances in which solu-
tions from MOEA-RDT significantly cover those from NSGA-II is much higher than
that for the inverse case. On the other hand, we see that in three categories, namely
C1, R1, and RC1, Mc(MOEA-ERDT,NSGA-II) > Mc(NSGA-II, MOEA-ERDT),
for which solutions from MOEA-ERDT significantly cover those from NSGA-II, and
the latter cover the former in the remaining three categories, i.e. C2, R2, and RC2.
Solutions from MOEA-RDT significantly cover those from MOEA-ERDT' in many
of the instances in categories C2, R1, R2, and RC2, and the latter cover the former

in more instances only in category RCI.
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Figure 5.16: Box-and-whisker plots representing the distribution of the Mp

values.

For each instance are shown two bars:

the one on the left depicting

Mp(NSGA-II, R), and the one on the right Mp(MOEA-RDT,R).

Similarly to the analysis done in the bi-objective optimisation, Figure 5.16 shows the

distribution of the Mp values. Again, both algorithms present similar performance

for the clustered instances, with some exceptions where MD(MOEA—RDT ,R) <
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Algorithm  Compares C1 C2 R1 R2 RC1 RC2

MOEA-ERDT (0) 0) (0) (8) 0) (3)
NSGA-II MOEA-RDT 1.97 (0) 0.33 (O) 7.33 (0) 4.06 (0) 9.90 (0) 4.48 (O)
NSGA-II (2) (0) 9) (0) 8) (0)
MOBA-ERDT 0 ppy MO0 (034 (1 493 (1 546 ) 393 0 538
NSGA-II (3) (0) (12) (1) (8) (1)
MOEA-RDT MOEA-ERDT 0.97 (0) 0.30 (O) 3.89 (6) 4.22 (7) 4.76 (0) 4.30 (4)

Table 5.15: Averages Mp (x1073) over instance categories for the solutions
obtained with NSGA-II, MOEA-ERDT, and MOEA-RDT'. Shown in brackets
are the number of instances for which the result is significantly better than the
other approach.
I\N/ID(NSGA—H,R) and the notches in the boxes do not overlap. Solutions from
MOEA-RDT appear to be closer to R for the majority of the instances in sets R1 and
RC1 than those from NSGA-II are, since |\7|D(MOEA-RDT, R) < MD(NSGA-II,R)
and the notches, and for some instances the complete boxes, do not overlap. Regar-

ding set categories R2 and RC2, the plots do not show a clear visual difference in

their performance.

Table 5.15 presents the averages Mp, over the instances within each problem ca-
tegory, of the convergence metric applied to the solutions from NSGA-II, MOEA-
ERDT, and MOEA-RDT, along with the numbers of instances, in brackets, for
which there was significant improvement over the other approach. We observe that
solutions from MOEA-ERDT and MOEA-RDT' are significantly closer to the re-
ference set R than those from NSGA-II for nearly all instances in categories C1,
R1 and RC1, and solutions from NSGA-II are significantly closer to R than those
from MOEA-ERDT for many instances in categories R2 and RC2, though never
significantly closer than those from MOEA-RDT. Solutions from MOEA-RDT are
significantly closer to the reference set than those from MOEA-ERDT for many
instances in categories R1, R2, and RC2, and the latter are never significantly closer

to R than the former.
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Algorithm  Compares C1 C2 R1 R2 RC1 RC2

MOEA-ERDT (0) (0) 1) (6) (0) (3)
NSGA-II MOBARDT 09 () ST ) G488 TT5 [ 68.09 0 78IS
NSGA-II (2) (0) (8) (0) (7) (2)
MOEA-ERDT MOEA-RDT 77.00 (O) 87.34 (0) 65.27 (0) 77.02 (0) 68.79 (0) 78.54 (O)
NSGA-II (3) (0) (11) 1) (8) (1)
MOEA-RDT MOEA-ERDT 77.00 (O) 87.34 (0) 65.37 (4) 77.30 (4) 68.75 (1) 78.78(1)

Table 5.16: Averages My (x1072) over instance categories for the solutions

obtained with NSGA-II, MOEA-ERDT, and MOEA-RDT'. Shown in brackets

are the number of instances for which the result is significantly better than the

other approach.
The hypervolume metric was also computed in order to compare these three algo-
rithms. Table 5.16 presents the average My, over the instances within each set cate-
gory, of the hypervolume metric applied to the solutions from algorithms NSGA-II,
MOEA-ERDT, and MOEA-RDT, along with the numbers of instances, in brackets,
for which there was significant improvement over the other approach. We observe
that the average hypervolume delimited by the solutions from the three algorithms
is very similar, however there are significant differences. MOEA-ERDT and MOEA-
RDT present a significantly larger hypervolume than NSGA-II for many instances
in categories C1, R1 and RC1, while that of NSGA-II is significantly larger that
that of MOEA-ERDT in categories R2 and RC2. Solutions from MOEA-RDT' de-
fine a significantly larger hypervolume than those from MOEA-ERDT for several

instances in categories R1, R2, RC1, and RC2 .

To exemplify how the overall Pareto approximations are distributed in the objective
space, Figure 5.17 presents these for four instances, one from each of the categories
R1, R2, RC1, and RC2. We see that, in general, solutions from both algorithms are
evenly distributed over the travel distance and delivery time dimensions, and over a
small region in the number of routes. In the cases of the instances R105 and RC105,

it is clear that solutions from MOEA-RDT dominate those from NSGA-II, and for
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Figure 5.17: Overall Pareto approximations found by NSGA-II and MOEA-
RDT for one instance in each of the categories R1, R2, RC1, and RC2.
instance RC205, NSGA-II found solutions with six routes, however, MOEA-RDT

was not able to find solutions with that number of routes.

Additionally, Figure 5.18 presents the average population diversity over generations,
along with the average hypervolume difference, for each instance category. Similarly
to the bi-objective optimisation case, we observe that MOEA-RDT preserves a
higher diversity for categories R1, R2, RC1 and RC2, for which also present a
more gentle drop. We argue that this behaviour is due to that MOEA-RDT is
performing a wider exploration of the search space, which is achieved by utilising
the solution similarity measure. Moreover, the hypervolume difference between the

two algorithms starts negative in all cases, which means that NSGA-II found better
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Figure 5.18: Average population diversity, over the instances in each set cate-
gory, preserved by NSGA-II and MOEA-RDT, and average hypervolume diffe-

rence between both algorithms.

solutions than those obtained by MOEA-RDT. However, this difference decreases in

later generations, which means that MOEA-RDT is achieving better solutions and,
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Algorithm C1 C2 R1 R2 RC1 RC2
NSGA-II 1.99 (0) 1.44 (0) 18.06 (0) 17.85 (0) 18.75 (0) 19.09 (0)

MOEA-RDT 191 (0) 147 (0) 2257 (4) 1872 (0)  23.28 (3)  21.21 (1)

Table 5.17: Size of the Pareto approximations, averaged over instance catego-
ries, obtained with NSGA-II and MOEA-RD. Shown in brackets are the number

of instances for which the result is significantly better than the other approach.
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Figure 5.19: Execution time, averaged over instance categories, of the algo-
rithms NSGA-II, MOEA-ERDT, and MOEA-RDT.
in the case of the categories R1 and RC1, finally improve those found by NSGA-II.

In the case of categories R2 and RC2, the difference ended up being nearly zero.

Table 5.17 presents the size of the Pareto approximations, averaged over instance
categories, and the number of instances, in brackets, where the difference in the sizes
is significant. We can see that, for instances in categories R1, R2, RC1, and RC2,
the average size of the Pareto approximations obtained with MOEA-RDT is larger
than that of the non-dominated sets found by NSGA-II. Furthermore, the difference

of the sizes is significant for some instances in categories R1, RC1, and RC2

To finalise the analysis of the tri-objective optimisation, the average execution
time, over the instances in each set category, of NSGA-II, MOEA-ERDT, and
MOEA-RDT, is depicted in Figure 5.19. Notice that the vertical axis is in lo-
garithmic scale. We see that MOEA-RDT executes slower than NSGA-II, being
this difference of approximately 30%. The execution time of MOEA-ERDT re-

mians being the largest, with nearly one order of magnitud in this case. The
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difference in execution time between MOEA-RDT and NSGA-II is, as in the bi-
objective case, due to the different time complexity in the survival selection stage,
i.e. the O(M log M) of NSGA-II's AssiIGNCROWDINGDISTANCE() and the O(M?)

of COMPUTEJACCARDSIMILARITY() in MOEA-RDT.

From this study we conclude that MOEA-RDT performs significantly better than
NSGA-II for many of the Solomon’s instances, particularly for all instances in catego-
ries R1 and RC1, where MOEA-R DT achieved a significantly improved performance.
This is due to the wider exploration of the search space MOEA-RDT achieves. On
the other hand, MOEA-RDT has a better performance when the Jaccard simila-
rity is set instead of the edit distance, since, in the second case, the algorithm was
surpassed by NSGA-II in two of the categories. Actually, when the edit distance
is set, MOEA’s performance appears to deteriorate while more objectives are to be

optimised.

After having analysed the results from the bi-objective and tri-objective optimisa-
tions, we observe that MOEA showed a significantly improved performance over
NSGA-II for many of the test instances used, particularly for all instances in cate-

gories R1 and RC1. Let us try to argue the reason for this behaviour.

The characteristics of the test instances used in this investigation were described
in Section 3.2.1, and was stated that the attributes of the instances in categories
R2 and RC2 make them have a wider search space than those in categories C1,
C2, R1, and RC1. Thus, we conjecture that, although MOEA is preserving a higher
population diversity, and exploring and exploiting a wider search space than NSGA-
I1, it is even harder for both algorithms to achieve improved solutions to instances
in the former categories than in the latter. An investigation regarding this subject,
which considers an in-depth analysis in order to find the reasons for this situation,

is proposed as a key future research topic.
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With these results and analysis, we claim that the research objectives regarding
the multi-objective solution of the VRPTW, and its comparison with NSGA-II by
means of appropriate quality indicators, is completely fulfilled. Additionally, the
analysis carried out in this section constitute one of the main contributions of this
thesis, which is that an appropriate multi-objective performance analysis of the two
evolutionary approaches, concerning the three criteria optimisation of the problem,

has been achieved.

The bi-objective and part of the tri-objective analyses were published as a journal
paper in Computers & Operations Research [103]. The remaining tri-objective ana-
lysis was accepted for publication and presentation in another top conference, the
11th International Conference on Parallel Problem Solving From Nature (PPSN XI)

[102].

5.4 Bi-objective optimisation of Capacitated VRPs

This section demonstrates how MOEA can be applied to different variants of the
VRP, in this case, particularly to the CVRP. As was reviewed in Chapter 3.1, the
objective of the Capacitated VRP is exclusively related to the minimisation of the
number of routes, and for a given number of routes, the minimisation of the travel
distance. In this section, the solution of this problem is considered from a bi-
objective perspective, simultaneously optimising the number of routes, fi(R) in
(3.4), and the travel distance, f>(R) in (3.5), subject to the capacity constraint
(3.6) and the maximum route length constraint (3.7). Moreover, these objectives

were considered to have the same priority.

MOEA-RD was tested on the Christofides et al.’s and Rochat and Taillard’s bench-
mark sets, which instances were suitably modified so that customers could be visited

at any time, as long as the length restriction, if any, is met. MOEA-RD was executed
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30 times for every instance and the Pareto approximation was recorded after each
run. The evolutionary parameters were kept as for the bi-objective and tri-objective

optimisation of the VRPTW.

5.4.1 Solution of the Christofides et al.’s benchmark set

Results for the Christofides et al.’s test instances are shown in Table 5.18, where the
best-known result, the difference between results from previous studies and the best-
known, and the best and average best results from MOEA-RD are presented. The
best-known results and from previous studies were taken from Table 3.3 (page 69).
Along with the results from MOEA-RD, the percentage difference (%) between these
and the best-known results are also shown. The last four rows show the averages of
the percentage difference over all instances, and corresponding standard deviation,

and over instances size N < 120, respectively.

Analysing this table, we can see that MOEA-RD was able to find the best-known
solutions for three of the instances, namely vrnpcl, vrpnc6, and vrpnc7. We can
also see that the best solutions obtained by MOEA-RD are no more than 0.53%
higher than the best-known, considering instances of size N < 120, however, the
overall difference increases up to 4.5%. Regarding the average of the best results
over the 30 repetitions, the difference between them and the best-known is of 3.92%

for instances of size N < 120, and 9.18% overall.

Excluding the instances for which MOEA-RD found the best-known solution, re-
sults from MOEA-RD are higher than those presented in previous studies, with
the exception of those from Bullnheimer et al. [31], which, for many instances, are
the highest. Additionally, MOEA-RD found that instance vrpncl4 has conflicting

objectives, since the best-known result do not dominate the solutions obtained.
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Istance 0 T GHL BHS TV P04 BA MM MB NB P09 MOEA-RD
known Best % Avg. %
Best T GHL BHS TV P BA MM MB NB P

vrpncl 524.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 524.61 0.00 537.53 2.46
vrpnc2 835.26 0.00 0.01 4.23 0.40 0.00 0.43 0.40 0.00 0.00 0.00 843.92 1.04 862.25 3.23
vrpne3 826.14 0.00 0.00 6.45 0.29 0.00 0.40 0.62 0.00 0.00 0.00 839.35 1.60 865.27  4.74
vrpnc4d 1028.42 0.00 0.26 11.57 0.47 0.20 0.62 1.78 0.00 0.00 0.10 1117.71 8.68 1162.84 13.07
vrpnch 1291.29 0.58 1.55 14.10 2.09 0.39 2.83 2.15 0.00 0.01 0.22 1559.87  20.80 1778.72 37.75
vrpnc6 555.43 0.00 0.00 1.35 0.00 0.00 0.00 0.00 0.00 555.43 0.00 560.74 0.96
vrpnc’ 909.68 0.00 0.00 4.23 1.21 0.00 0.00 0.00 0.00 909.68 0.00 924.28 1.60
vrpnc8 865.94 0.00 0.00 2.34 0.41 0.00 0.20 0.00 0.00 866.87  0.11 882.33 1.89
vrpnc9 1162.55 0.00 0.03 3.39 0.91 0.00 0.32 0.00 0.00 1204.68 3.62 1251.65 7.66
vrpnclO 1395.85 0.15 0.64 7.80 2.86 0.49 2.11 0.00 0.40 1737.65 24.49 1826.93  30.88
vrpncll 1042.11 0.00 0.00 2.91 0.07 0.00 0.46 0.00 0.00 0.00 0.00 1047.04 0.47 1151.20 10.47
vrpncl?2 819.56 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 821.36 0.22 857.58 4.64
vrpncl3 1541.14 0.00 0.31 3.20 0.28 0.11 0.34 0.00 0.28 1558.80 1.15 1587.02 2.98
vrpncl4d 866.35 0.00 0.00 0.41 0.00 0.00 0.09 0.00 0.00 872.95 0.76 920.05 6.20
Average 0.05 0.20 4.43 0.64 0.09 0.56 0.83 0.00 0.00 0.07 4.50 9.18
St. Dev. 0.16 0.43 4.24 0.87 0.16 0.85 0.92 0.00 0.00 0.13 8.06 11.27
Average 0 0.03 2.52 0.27 0.01 0.19 0.25 0.00 0.00 0.03 0.53 3.92
St. Dev. 0 0.1 2.11 0.37 0.04 0.2 0.31 0.00 0.00 0.09 0.57 2.81
Author: BA: Baker and Ayechew [11] GHL: Gendreau et al. [106] MM: Morgan and Mumford [176] P04: Prins [195] T: Taillard [225]

¢0¢

BHS: Bullnheimer et al. [31]

MB: Mester and Briysy [170]

NB: Nagata and Braysy [179]

P09: Prins [196]

Table 5.18: Best-known results, results from previous studies, and best results
from MOEA-RD for the Christofides et al.’s benchmark set.

TV: Toth and Vigo [239]
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Figure 5.20: Execution time of MOEA-RD for the Christofides et al.’s bench-

mark set.

The average execution time of MOEA-RD for the Christofides et al. [37]’s instances
is shown in Figure 5.20. Here we notice how the execution time increases for the
different instance sizes. For example, instances vrpnch and vrpncl0 have 199 custo-
mers, for which MOEA-RD spends at least 4000% more time than for the smallest

instances vrpncl and vrpnc6 with 50 customers.

5.4.2 Solution of the Rochat and Taillard’s benchmark set

Results for the Rochat and Taillard’s benchmark set are shown in Table 5.19, which
has the same format as Table 5.18. The best-known and previous results were taken

from Table 3.4 (page 69).

In this case, MOEA-RD was capable of finding the best-known solution for three
out of the 12 instances, namely tai7ba, tai7bc, and tai7bd, however, the average
difference between the best results obtained and the best-known is of 1.28%, and
if we consider only instances of size N < 100 the difference decreases down to
0.37%. Taking into account the average of the best solutions found in each of the

30 repetitions, these differences are of 3.01% and 1.81%, respectively.

Compared with the previous studies, we can observe that, with the exception of

the instances size N = 75, MOEA-RD obtained solutions with the largest travel
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Best MOEA-RD

Instance Known R GTA MB MM AD NB Bost % Avg, %
tai7ba 1618.36 0.00 0.00 0.00 0.00 1618.36 0.00 1629.24 0.67
tai75bb 1344.62 0.00 0.00 0.00 1345.19 0.04 1358.78 1.05
tai75c 1291.01 0.00 0.00 0.00 0.00 1291.01 0.00 1325.31 2.66
tai75d 1365.42 0.00 0.00 0.00 0.00 1365.42 0.00 1380.22 1.08
tail00a 2041.34 0.32 0.00 0.00 0.65 0.32 0.00 2055.31 0.68 2079.16 1.85
tail00b 1939.90 0.04 0.00 0.02 0.02 0.00 1943.75 0.20 1969.25 1.51

tail00c 1406.20 0.09  0.00 0.00 0.00 0.39 0.00 1410.15 0.28 1430.81 1.75
tail00d 1580.46 0.05  0.05 0.05 0.69 0.24 0.00 1607.80 1.73 1643.49 3.99

tail50a 3055.23  0.51 0.00 0.04 0.00 3131.24 2.49 3201.61 4.79
tail50b 2656.47  2.90 0.00 2.68 2.87 2.66 2803.72 5.54 2872.58 8.14
tail50c 2341.84 0.96 0.05 0.95 0.72 2405.26 2.71  2469.76 5.46
tail50d 2645.39  0.67 0.00 0.35 0.00 2688.56 1.63 2730.47 3.22
Average 0.69 0.01 0.23 0.17 0.47 0.28 1.28 3.01
St. Dev. 0.95 0.02 077 031 0.85 0.78 1.68 2.23
Average 0.12 0.02 0.01 0.17 0.14 0.00 0.37 1.82
St. Dev. 0.13 0.03 0.02 031 0.17 0.00 0.60 1.07
Author: AD: Alba and Dorronsoro [5] MB: Mester and Braysy [170] NB: Nagata and Braysy [179]

GTA: Gambardella et al. [97] MM: Morgan and Mumford [176] RT: Rochat and Taillard [204]

Table 5.19: Best results from previous studies, and their percentage difference

with the best-known results, for the Rochat and Taillard’s benchmark set.
distances. Something important to mention is that, after analysing the Pareto ap-
proximations to each instance, it was discovered that they were comprised of one
single solution, with the exception of those to instances tai7bb and tail50c, which

had two solutions.

Figure 5.21 presents the average execution time of MOEA-RD for the Rochat and
Taillard [204]’s instances. We observe the same behaviour as for the Christofides
et al. [37]’s test set, in the sense that for the largest instances, in this case tail50a
through tail50d with 150 customers, MOEA-RD spends nearly 800% more time

than for the smallest instances tai7ba through tai75b with 75 customers.

In general, we conclude that the performance of MOEA-RD on instances of the
CVRP is comparable with that of previous proposals for instances of up to 120
customers, for which the overall difference between the best results from MOEA-

RD and the best-known results is, on average, 0.45%.
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Figure 5.21: Execution time of MOEA-RD for the Rochat and Taillard’s bench-

mark set.

This result and analysis achieve one the objectives of this investigation, which re-
gards the design and development of a multi-objective EA for solving both the

CVRP and VRPTW, and forms part of the main contributions of this research.

5.5 Summary

This chapter described the modifications made to the Bi-objective Evolutionary Al-
gorithm (BiEA), presented in Chapter 4, in order to enhance its performance. These
modifications are concentrated on the mutation stage: procedure and operators. A

detailed analysis of the new algorithm’s performance was also provided.

The mutation process in the new Multi-Objective Evolutionary Algorithm (MOEA)
includes only three improved operators, namely REALLOCATE(), EXCHANGE(), and
REPOSITION(), which embrace the five operations previously used in BiEA. These
operators make use of three basic functions: the stochastic SELECTROUTE() and

SELECTCUSTOMER(), and the deterministic INSERTCUSTOMER().

The new MOEA was tested on benchmark sets for two VRP variants: the VRP
with Time Windows and the Capacitated VRP. The former was solved, first, by

optimising the two objectives number of routes (R) and travel distance (D), and
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then, an additional objective was considered, that is the delivery time (7'). The
results obtained by MOEA for the first case were analysed in several ways. Firstly,
the outcome Pareto approximations showed to be actual bi-objective for 31 out
of the 56 benchmark instances. In this respect, MOEA was compared with pre-
vious multi-objective studies which found conflicting objectives for fewer number
of instances, and many of their overall Pareto approximations were dominated by
those from MOEA. Secondly, the results were compared with those from previously
published single-objective and bi-objective algorithms, showing that MOEA found
solutions which travel distance was no more than 2% higher than the best-known,
but with smaller or equal number of routes. Next, a comparison with the previously
proposed BiEA was done, showing that, in fact, the modifications made to the mu-
tation stage contributed to its performance enhancement. Finally, and perhaps most
importantly, the new MOEA was evaluated using the coverage, convergence and hy-
pervolume multi-objective performance metrics, showing significantly better results
than the well-known multi-objective evolutionary optimiser NSGA-II for many test

instances.

In respect of the tri-objective optimisation, the algorithm was tested with four dif-
ferent objective settings: first minimising pairs of objectives (RD, RT and DT), and
then all three at once (RDT). The coverage, convergence and hypervolume perfor-
mance metrics were used to evaluate the algorithm, showing that settings DT and
RDT had a higher coverage of RD and RT, and that their solutions were closer to
a composite reference set and delimited a larger hypervolume, indicating that the
minimisation of the delivery time improves the algorithm’s performance. Moreover,
RDT significantly covered DT in more instances, which implied that even better re-
sults can be obtained by considering the minimisation of all three objectives at the
same time. The non-dominated sets found by MOEA with objective setting RDT

were compared with previous studies, and, although its results are not the overall
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best, they are better in some respects than those from previous multi-objective ap-
proaches. MOEA was compared against NSGA-II, by measuring the tri-objective
coverage, convergence and hypervolume, showing that solutions found by MOEA

are significantly better for many of the test instances.

With regard to the solution of the CVRP, MOEA was set to optimise the number
of routes and travel distance only, since distance and time are not in conflict in this
case. The results obtained showed that the outcome set had a proper bi-objective
Pareto approximation for three test instances out of 26. On the other hand, although
MOEA did not manage to achieve the best-known solution for all the instances in
two benchmark sets, the difference between the best-known results and the best

solutions found by MOEA-RD is very narrow, no more than 0.5%.
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Chapter 6

Conclusions

The origin of the research presented in this thesis was, as in many other cases,
curiosity. Curiosity to know, in the first instance, why some nature-inspired tech-
niques perform suitably for certain kind of problems and not for others. In fact, the
main topic of this thesis was selected while experimenting with different methods

for solving different sorts of problems.

As a consequence of this experimentation, the answer to the very first research
questions why those studies were combining an EA with another technique for solving
VRPs, and if the reason would be that EAs can not solve the problem by themselves
emerged: for certain classes of problems, the use of a simple Evolutionary Algorithm
does not guarantee population diversity will be preserved, consequently it gets stuck
in sub-optimum solutions and additional strategies have to be considered in order

to escape from these regions and have a proper exploration of the search space.

At this stage, there were two possible directions for research: The first involved
the consideration of another heuristic method as part of the evolutionary process,
a topic that had already been the subject of extensive investigation. The second

was to propose a method for measuring solution similarity and use this information
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to stimulate and preserve population diversity. The latter was chosen as the most

promising way forward.

This chapter presents an evaluation of the proposed approach at three phases of
enhancement, and the main contributions and achievements of this investigation.

Finally, a number of topics for further research are considered.

6.1 Evaluation of the proposed approach

This section evaluates the proposed algorithm at its different stages of development,
namely the preliminary multi-objective density-restricted Genetic Algorithm (drGA)
and the Bi-objective Evolutionary Algorithm (BiEA), presented in Chapter 4, and

the final Multi-Objective Evolutionary Algorithm (MOEA), described in Chapter 5.

6.1.1 Multi-objective density-restricted Genetic Algorithm

With the aim of overcoming the lack of population diversity, identified in the explo-
ratory study, by means of using intrinsic information, the first approach to preserve
diversity was a control to restrict the density of equal solutions in the population,
which was incorporated as part of the proposed multi-objective density-restricted
Genetic Algorithm (drGA) introduced in Section 4.2. This algorithm considered a
recombination operator which intended preserving routes from both parents and a
mutation process with six operators, which were applied proportionally to a weight
they were pre-assigned: merge, insertion, and swap making inter-route changes, and
inversion, shift, and split performing intra-route modifications. Then, the density
control was used: if after the crossover and mutation stages the density of any
solution had grown to more than the maximum allowed, further individuals were

removed from the population until the density was rectified. Finally, fittest solu-
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tions were considered for the next generation, and in case the population size was

compromised, the solutions with shortest travel distance were preferred.

This algorithm was tested on standard benchmark instances and, despite achieving
better solutions than the exploratory approach, the conclusion was that the fact of
having all distinct solutions in the population was not enough to escape from sub-
optimum solutions, and a more sophisticated diversity preservation technique was
necessary. Specifically, solutions from drGA were compared with those from past
studies in a standard single-objective style, where the solutions with the shortest
travel distance for each instance were considered. The results showed that solutions
from drGA were between 5% and 12% larger, on average, than the best achieved by
previous approaches. An interesting result from drGA was that, for some instance
categories, it obtained solutions with shorter travel distances using more vehicles,
when compared with those from previous studies, and vice versa for the accumulated

results, which suggested the multi-objective nature of the VRPTW.

6.1.2 Bi-objective Evolutionary Algorithm

In order to obtain more reliable information about population diversity, the Jaccard
similarity, based on the Jaccard’s similarity coefficient, was designed and used to
quantify the similarity between two solutions to the VRP, and this, in turn, to
calculate the similarity between one solution and the rest of the population, and
the population diversity. It is important to remark that this similarity measure is
independent of the solution encoding and can be used in any variant of the VRP,
since it uses the inherent information about the arcs forming the routes in the

solution.

A similarity measure replaced the density control in drGA, which became the Bi-

objective Evolutionary Algorithm (BiEA) described in Section 4.3, and was used to
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select one of the parents for the recombination process and to prevent individuals
that were highly similar to others in the population being considered for the next
generation. BiEA was set to use either Jaccard similarity or edit distance and tested
on benchmark instances. The results of the experiments were submitted to the
coverage, convergence and hypervolume multi-objective performance metrics, which
showed that both obtained similar improved performance, however, the execution
time of BiEA set to use edit distance was considerably longer, more than 300% on

average, than when it was set to use Jaccard similarity.

Solutions from BiEA were compared, using the multi-objective performance me-
trics, to those from a version of the algorithm which did not consider the similarity
measure for parent selection. The results of the performance metrics indicated that
BiEA outstandingly and significantly surpassed the other algorithm in all instance
categories. Furthermore, the population diversity preserved by both algorithms was
analysed, confirming that the use of the similarity measure for selecting one of the
parents did contribute to preserve a higher population diversity and to find higher

quality solutions and larger non-dominated sets.

Results from BiEA showed a significant improvement over drGA, though a suitable
comparison with previous studies using multi-objective performance metrics could
not be made due to the fact that, unfortunately, they did not present their results in a
proper multi-objective style. However, a traditional single-objective comparison was
performed, where the best results from BiEA, i.e. solutions with the smallest number
of routes and the shortest travel distance, were shown to be already better or similar
to those from previous multi-objective studies, since they achieved the smallest
average number of routes in all categories and, with respect to the average travel
distance, they were the shortest in four of the six categories. Solutions from BiEA
were also compared, in the same manner, with those from the versions of BiEA which

only minimised one of the number of routes and travel distance objectives. This
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comparison remarkably reflected the importance of considering the simultaneous
minimisation of both objectives, since BIEA obtained, for all instance categories,

solutions with the smallest numbers of routes and the shortest travel distances.

In addition to the changes regarding the inclusion of the similarity measure, the
new BiEA differed from drGA in the mutation process, which then only had five
operators: the split operator was applied inversely proportional to the number of
routes in the solution, then, one of the insertion and swap was applied, and finally,
the inversion or shift was performed. In order to know what the contribution of the
mutation operators was, an additional series of experiments was performed, setting
different combinations of the mutation operators. After analysing the results with
the coverage and convergence performance metrics, it was noticeable that the split
operator was contributing more substantially to BiEA’s performance, since, when
this operator was excluded from the mutation process, BiEA obtained the worst
results, and when BiEA was set to perform only this operator, the best results
were obtained. The characteristic of this operator is that, after splitting a route, it
attempts to reallocate the customers belonging to the shortest sub-route to other
existing routes. This result suggested that the mutation process and operators could

be enhanced.

6.1.3 Multi-Objective Evolutionary Algorithm

According to the analysis of the mutation operators, the mutation process was re-
vised: the five mutation operations are now embraced in only three, namely real-
location, exchange and reposition of customers, and the process makes use of three
basic functions, two of which are used to stochastically select routes and customers,
while the other deterministically inserts a customer in a route. The final Multi-
Objective Evolutionary Algorithm (MOEA), presented in Section 5.1, was analysed

from several perspectives in the three different scenarios described below.
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6.1.3.1 Bi-objective optimisation of the VRPTW

The first scenario involved the solution of the VRP with Time Windows regarding
the minimisation of the number of routes and the travel distance. The analysis of
the results confirmed that the overall Pareto approximation to 31 out of 56 bench-
mark instances had conflicting objectives, and actually represent the extent to which
MOEA is finding the best-known Pareto approximation. Additionally, MOEA found
multiple solution Pareto approximations for more instances than those found by

recent multi-objective approaches.

When compared with previous studies, considering the solutions with the smallest
number of routes and the shortest travel distance, although results from MOEA are
not the overall best, they present an improvement when compared with previous
multi-objective studies, since they have the smallest average number of routes for
the six instance categories and the shortest average travel distance in four. In
general, we conclude that MOEA presents a performance comparable or better than
the previous multi-objective studies. Additionally, MOEA found the best-known
solutions for 19 out of 56 instances, and for 22 instances MOEA achieved solutions
with an increase of 2% in the travel distance and with equal or less number of routes

compared with the best-known.

Results were also compared, by means of the coverage, convergence and hypervo-
lume multi-objective performance metrics, with those from BiEA, confirming that
the modifications made to the mutation stage contributed to find better solutions
and, consequently, to the improvement of MOEA’s performance, since solutions from
MOEA significantly covered those from BiEA in the majority of the benchmark ins-
tances, for which they were also significantly closer to the reference set and delimited

a significantly larger objective space.
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Solutions were also compared in the same manner with those from NSGA-II, where
it was noticeable that MOEA surpassed NSGA-IT in many of the benchmark ins-
tances, since solutions from the former significantly covered those from the latter
for the majority of the instances in five of the six categories, for which they were
significantly closer to the reference set and defined a significantly larger objective
space. According to the coverage metric, NSGA-II performed significantly better
than MOEA in only two of the 56 instances. Moreover, the population diversity
preserved by MOEA was higher that the preserved by NSGA-II for four out of the
six instance categories, and the Pareto approximations were significantly larger in

two of the categories.

Finally, MOEA was set to use edit distance instead of Jaccard similarity and the
results were also analysed by means of the performance metrics, resulting in that
this algorithm performed equally well as with Jaccard similarity, in the sense that
it significantly surpassed NSGA-II in many of the benchmark instances and that
both edit distance and Jaccard similarity significantly outperformed each other in

approximately the same number of test instances.

6.1.3.2 Tri-objective optimisation of the VRPTW

The second scenario that was studied with MOEA took into account the optimisation
of three objectives while solving the VRP with Time Windows: the standard number
of routes (R) and travel distance (D), plus the delivery time (T). In this case, MOEA
was tested with four different objective settings, first minimising pairs of objectives,
i.e. RD, RT and DT, and then all three at once, that is RDT. The non-dominated
solutions from each algorithm were submitted to the coverage, convergence and
hypervolume performance metrics. Settings DT and RDT achieved significantly
better solutions than settings RD and RT, in the sense that solutions from the

former had a wider coverage of those from the latter, were closer to composite
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reference sets and delimited a larger objective space. RDT performed significantly
better than DT in more instances, which implies that even better solutions can be

obtained by considering the minimisation of all three objectives at the same time.

Solutions from MOEA were also compared to those from previous studies in the
traditional single-objective style. This comparison indicated that MOEA could still
find comparable solutions with respect to previous multi-objective studies, since, as
in the bi-objective case, they achieved the smallest average number of routes in all
six instance categories and the shortest average travel distance in three of them.

These results showed that, overall, MOEA maintained its level of performance.

MOEA was compared against NSGA-II, by computing the tri-objective performance
metrics, showing that, for the majority of the instances in the same five categories as
in the bi-objective case, the non-dominated sets found by MOEA still significantly
covered those from NSGA-II, were significantly closer to the reference set and defined
a significantly larger hypervolume. This time, NSGA-II performed significantly
better than MOEA in six of the 56 benchmark instances according to the coverage
metric, and in one according to the hypervolume. Furthermore, the population
diversity preserved by MOEA was still higher that the preserved by NSGA-II for
the same four categories as in the bi-objective case, and the Pareto approximations
were significantly larger in the two categories that were also larger in the bi-objective

scenario.

Lastly, MOEA was set to use edit distance instead of Jaccard similarity. This
algorithm significantly outperformed NSGA-II in three of the six categories, however,
NSGA-II was significantly better in the other three. Moreover, solutions from this
algorithm were significantly better than those from MOEA for instances in only one

of the set categories, and those from MOEA were significantly better in three.
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6.1.3.3 Bi-objective optimisation of the CVRP

The third and last scenario considered the solution of the Capacitated VRP concer-
ning the minimisation of the number of routes and travel distance only, since dis-
tance and time are not in conflict in this case. MOEA was tested on 26 benchmark
instances from two different sets, and, although MOEA managed to find the best-
known solutions for only six of the instances, the overall average difference was of
3.1%. However, it is mportant to mention that, if only the instances size N < 120
are considered, the overall average difference decreases to 0.46%. Additionally, the
solutions obtained by MOEA showed that the outcome set had a proper bi-objective
Pareto approximation for only four of the instances, and those for all other contained

one single solution.

6.1.4 Final discussion

In Section 5.2.3 we observed that MOEA obtained substantial savings in the number
of routes for Solomon’s instance categories R2 and RC2 with respect to the best-
known results, however, the travel distance had been increased. Additionally, in
Sections 5.2.4 and 5.3.3, it was clear that, although MOEA preserved a higher
population diversity, and explored and exploited a wider search space than NSGA-
I1, solutions obtained by MOEA for instances in categories R2 and RC2 were not as
good as those found for instances in the remaining categories. This situation might
be due, to a certain degree, to an insufficient exploration and exploitation of regions
in the search space where solutions with larger number of routes are located. Let
us remind that instances in categories R2 and RC2 have an even larger search space

than that of instance in categories C1, C2, R1, and RCI.

The facts above highlight the need for an adequate balance between exploration

and exploitation of the search space, specially when its characteristics are similar
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to those defined by the R2 and RC2 instances. One of the objectives of this re-
search was to use information regarding solution similarity in order to promote and
preserve population diversity, and consequently provide the algorithm with more
possibilities for exploration and exploitation of the search space. These objectives,
as appropriately analysed in Chapter 5, were accomplished, however they were not

enough to substantially succeed for instances in sets R2 and RC2.

This situation might be rectified by an adaptive mechanism for population diversity
control, in order to improve the balance between exploration and exploitation of the
search space. That is, at some point the algorithm could stop trying to increase

population diversity and concentrate on the exploitation of promising regions.

On the other hand, MOEA and its predecessors were originally designed to solve
the two variants studied in this thesis. However, the algorithm at its actual state of
development could equally well solve other VRPs, particularly those variants that
consider capacity and customer service time constraints. Actually, CVRP instances
were slightly modified by incorporating silly infinite time windows. This proce-
dure could be used, to some extent, in other variants of the VRP that could be
handled by suitably modifying the instance customer precedence restrictions and by

appropriately setting in the algorithm the operational constraints.

In general, VPRs can be seen as problems where a set of items have to be split
into groups regarding some criteria and, for each group, items have to be sequenced
according to some priorities, if any. This level of abstraction could lead to models,
designs and implementations of a broad variety of combinatorial problems, which

could potentially consider multiple objectives to be optimised.
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6.2 Main contributions and achievements

The research carried out in this thesis made several contributions, which respond to
the research questions initially raised and achieve the research objectives set. These

contributions can be categorised according to the topics below.

6.2.1 Population diversity preservation

For the particular VRPs studied in this thesis, if one intends to solve them by
means of an EA, special attention has to be given to preserve population diversity,
since one needs not only to consider the diversity in the objective space, but also
the intrinsic information of the solutions, e.g. customer assignment to routes and
customer service sequence. In Section 4.2 it was proven than having all distinct
solutions in the population, and all of them with different objective functions values,
was not enough to escape from sub-optimum regions of the search space. Thus, a
more sophisticated method than guaranteeing different solutions in the population

is required to preserve diversity.

An appropriate measure, based on the Jaccard’s similarity coefficient, was developed
to quantify how similar two solutions to the VRP are, and this, in turn, is used
to determine how similar one solution is to the rest of the population and the
population diversity. It is important to say that this measure does not depend on
how the solutions are represented, since it uses the inherent information about the
arcs forming the designed routes, that it can be applied to any variant of the VRP,

and that it has a linear time complexity.

In Section 4.3.2.2 it was confirmed that, when Jaccard similarity is incorporated in
an Evolutionary Algorithm for solving the VRPTW, better and larger Pareto ap-

proximations are found and a higher population diversity is preserved than when
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similarity information is not considered. Furthermore, in Sections 5.2.4 and 5.3.3,
this measure was proven to perform equally well or better than the edit distance
when they are incorporated into the designed MOEA for solving the VRPTW re-
garding multiple objectives. It is worth noting that MOEA executes much quicker
when Jaccard similarity is used than when it uses edit distance, since the latter has

a quadratic time complexity.

The contributions stated above, respond to the research questions raised in the in-
troductory chapter and achieve the research objective regarding population diversity

preservation.

6.2.2 Solution of VRPs by means of an Evolutionary Algorithm

In order to design a multi-objective Evolutionary Algorithm for solving two variants
of the VRP, a mutation process was developed to help better exploit the search space.
This mutation process includes a set of three operators, which make modifications
in the assignment of customers to routes and in the sequence of service within a
route, and three basic functions, two of which are stochastic, to select routes and

customers, and the other is deterministic, to insert a customer into a specific route.

Moreover, a Multi-Objective Evolutionary Algorithm (MOEA) has been formula-
ted that effectively solves the Capacitated VRP and the VRP with Time Windows,
regarding the optimisation of at least two objectives. This algorithm includes the
above-mentioned Jaccard similarity and mutation process. In Chapter 5 it was
confirmed that the good performance of this algorithm is, in part, due to the consi-
deration of the information provided by the Jaccard similarity, since it helps the
recombination phase to explore more suitably the search space, and, additionally,

the mutation stage proved to be an effective technique for exploiting it. This com-
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bination leads to provide solutions that better represent the trade-offs between the

objectives.

The solutions to the CVRP and VRPTW from the proposed algorithm were com-
pared with those from the most successful of the previous studies from a single-
objective point of view, showing that, although they are not the overall best, they
are better than some of the previously published. However, this comparison is often
misleading, since the best result for one objective does not necessarily represent the

multi-objective performance of an optimiser.

The contributions exposed above accomplish the research objective related to the

effective solution of the CVRP and VRPTW regarding multiple objectives.

6.2.3 Multi-objective performance analysis

The study presented in this thesis is one of the very few that have made a proper
performance analysis of the optimisation of VRPs regarding multiple objectives, in
the sense that appropriate multi-objective performance metrics were applied to the

outcome non-dominated solutions from each algorithm that was considered.

In this respect, in Section 5.3.1, the developed MOEA was confirmed to find even
better non-dominated solutions when it is set to optimise the delivery time, addi-
tionally to the number of routes and travel distance, since it obtained significantly
better results from the performance metrics than when any pair of the three objec-

tives was set.

In Sections 5.2.4 and 5.3.3, MOEA proved to be a significantly better method for
solving many instances of the VRPTW when it is compared with the popular and
successful NSGA-II, regarding both the bi-objective and tri-objective optimisations.
This improved performance is the result of considering the information provided by

the Jaccard similarity, in the sense that MOEA preserves a higher population diver-
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sity, which suggests a wider exploration of the search space, leading the algorithm

to find better solutions.

Additionally, although MOEA found that many of the VRPTW benchmark ins-
tances and few of the CVRP have conflicting objectives, solutions lie in a narrow
region of the number of routes dimension, which make Pareto approximations com-
prise a relatively small number of solutions. This fact highlights the need for proper

multi-objective VRPs benchmark instances.

These contributions complete the research objective corresponding to the suitable
multi-criterion analysis, by means of utilising proper multi-objective performance

metrics, of the optimisation of the studied VRPs.

6.3 Directions for future research

There remains considerable scope for further development of the proposed MOEA

approach and its components, which can be categorised as MOEA’s enhancement

and further study of VRPs.

6.3.1 Enhancement of the Multi-Objective Evolutionary Algorithm

Although the proposed Jaccard similarity used by MOEA has been shown to result
in improved performance, it still only explicitly considers the arcs used in the routes
in a solution and not the sequence of them nor the number of routes. Consequently,
additional improvements might be possible by developing more refined similarity
measures, which provide performance improvements that justify the inevitable in-

creased computational costs.

In the same context, a more strict analysis of the edit distance may be carried

out, in order to determine exactly what aspects of the tri-objective optimisation are
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weakening its performance and consider this for the further improvements of the

Jaccard similarity.

An adequate study, including supplementary experimentation and analysis, regar-
ding the parameters involved in the proposed MOEA is required in order to further

support the conclusions stated here.

MOEA’s performance for instances in categories R2 and RC2 was not as good as
for those in C1, C2, R1 and RC1. Thus, an in-depth analysis of this behaviour is

required in order to identify the actual reasons for this situation.

6.3.2 Further study of Vehicle Routing Problems

More rigorous comparisons of the results from MOEA with other evolutionary multi-
criterion optimisation methods can be addressed, which may involve the utilisation

of further Pareto compliant multi-objective quality indicators.

There is also the possibility to explore the extension of MOEA to the optimisation
of supplementary objectives while solving CVRP and VRPTW, such as workload
imbalance, makespan and waiting time, in order to verify if the algorithm maintains

its good performance.

One more possible direction of research is the adaptation of MOEA for tackling fur-
ther variants of the VRP, which may consider additional constraints and objectives
to be optimised, with the aim of solving routing problems even closer to real-life

applications.

It is evident the lack of multi-objective Vehicle Routing Problem benchmark ins-
tances, thus an effort might be done to design improved instances considering the

multiple objectives that could be optimised.
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Appendix A

Sample of Pareto approximations,

performance metrics and statistics

Table A.1 presents the Pareto approximations found by MOEA-RDT to Solomon’s

instance R105. The first column shows the run number and the following columns

present the number of routes (R), travel distance (D) and delivery time (7") asso-

ciated with each solution in the approximation set.

run R D T R D T R D T R D T

1 14 1377.63 2627.67 14 1379.89 2627.31 14 1392.59 2626.43 14 1394.71 2622.15
14 1396.96 2621.80 14 1397.44 2616.42 14 1399.56 2612.14 14 1401.82 2611.79
14 1408.32 2611.15 14 1410.58 2610.80 14 1414.13 2610.49 14 1416.38 2610.13
14 1420.31 2607.38 14 1422.57 2607.03 14 1427.73 2603.80 14 1429.99 2603.44
14 1442.30 2602.14 14 1444.55 2601.79 15 1374.42 2755.31 15 1375.90 2739.59
15 1377.53 2711.31

2 14 1377.11 2631.56 14 1377.63 2627.67 14 1379.89 2627.31 14 1381.91 2624.35
14 1384.17 2624.00 14 1385.45 2622.33 14 1386.22 2620.76 14 1388.48 2620.40
14 1396.36 2619.41 14 1397.13 2617.83 14 1399.39 2617.48 15 1369.51 2743.48
15 1370.03 2739.59 15 1372.28 2739.23 15 1373.76 2727.81 15 1374.28 2723.91
15 1376.54 2723.56

3 14 1419.75 2688.88 14 1420.27 2679.34 14 1421.94 2677.76 14 1422.64 2672.15
14 142490 2671.80 14 1427.51 2671.79 14 1427.63 2651.26 14 1428.15 2641.73
14 1430.17 2633.15 14 1432.32 2626.56 14 1434.58 2626.21 14 1461.47 2619.77

continued on next page...
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...continued from previous page

run R D T R D T R D T R D T
14 1463.73 2619.42 15 1395.35 2711.39 15 1397.60 2711.04 15 1399.87 2707.08
15 1402.13 2706.72 15 1403.44 2702.28 15 1404.63 2702.19 15 1405.70 2701.92
15 1406.26 2692.10 15 1408.52 2691.74 15 1410.79 2687.78 15 1413.05 2687.43

4 14 1408.93 2641.80 14 1409.19 2630.82 14 1411.45 2630.47 14 1412.35 2630.23
14 1414.60 2629.87 14 1420.44 2627.94 14 1422.70 2627.59 14 1423.59 2627.34
14 1425.85 2626.99 14 1428.79 2626.47 14 1429.49 2626.40 14 1431.04 2626.11
14 1431.75 2626.05 14 1435.02 2623.01 14 1435.19 2622.12 14 1436.13 2616.34
14 1438.39 2615.98 14 1440.31 2615.29 14 1442.56 2614.93 14 1450.70 2612.13
14 145295 2611.78 14 1460.20 2611.57 14 1462.46 2611.21 14 1468.54 2611.10
15 1392.42 2727.94 15 1394.68 2727.59 15 1396.68 2712.27 15 1398.93 2711.91
15 1401.56 2711.15 15 1403.82 2710.80 15 1406.50 2710.56 15 1407.40 2710.20
15 1407.92 2709.38

5 14 1388.94 2631.46 14 1391.20 2631.10 14 1394.32 2623.93 14 1396.58 2623.58
14 1397.27 2616.36 14 1399.52 2616.00 14 1402.62 2613.08 14 1404.87 2612.72
14 1435.46 2612.62 14 1438.33 2612.26 14 1452.26 2611.92 15 1375.50 2767.64
15 1378.37 2767.28 15 1379.53 2742.99 15 1381.79 2742.64 15 1385.47 2737.19
15 1387.73 2736.84

6 14 1381.06 2628.08 14 1383.31 2627.72 14 1384.84 2622.26 14 1386.22 2620.76
14 1388.48 2620.40 14 1405.70 2618.85 14 1407.96 2618.50 14 1409.11 2617.08
14 1411.37 2616.73 14 1411.55 2612.99 14 1413.81 2612.64

7 14 1386.01 2647.21 14 1386.66 2646.79 14 1388.92 2646.44 14 1390.94 2643.48
14 1393.20 2643.13 14 1394.02 2641.52 14 1394.68 2641.11 14 1396.94 2640.76
14 1397.03 2638.84 14 1398.96 2637.80 14 1399.40 2632.79 14 1401.66 2632.44
14 1407.42 2627.11 14 1409.67 2626.76 14 1416.09 2623.47 14 1418.35 2623.11
14 142411 2617.78 14 1426.37 2617.43

8 14 1378.89 2627.67 14 1381.15 2627.31 14 1383.17 2624.35 14 1385.43 2624.00
14 1389.19 2621.66 14 1391.45 2621.30 14 1392.86 2618.03 14 1394.98 2617.30
14 1397.23 2616.94 14 1398.83 2616.25 14 1400.94 2615.52 14 1403.20 2615.16
14 1408.13 2614.41 14 1410.24 2613.68 14 1412.50 2613.32 14 1414.09 2612.63
14 1416.21 2611.90 14 1418.20 2611.66 14 1418.47 2611.54 14 1420.45 2611.31
14 1421.21 2610.29 14 1423.47 2609.94 14 1426.77 2609.63 14 1429.03 2609.28
14 1429.79 2608.26 14 1432.05 2607.91 14 1441.15 2606.08 14 1443.41 2605.73
14 1444.17 2604.71 14 1446.43 2604.36

9 14 1377.63 2627.67 14 1379.89 2627.31 14 1381.91 2624.35 14 1383.94 2620.76
14 1386.20 2620.40 14 1388.47 2616.43 14 1390.73 2616.07 14 1393.97 2613.66
14 1396.23 2613.31 14 1418.20 2611.66 14 1418.55 2610.29 14 1420.81 2609.94
14 1428.09 2608.72 14 1430.35 2608.36 14 1442.72 2607.64 14 1443.07 2606.28
14 1445.33 2605.92

10 14 1378.78 2628.08 14 1383.17 2622.33 14 1383.94 2620.76 14 1387.81 2618.18
14 1393.78 2616.40 14 1411.37 2614.95 14 1417.34 2613.17 15 1368.28 2736.27
15 1372.62 2730.31 15 1373.44 2728.95

continued on next page...
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run R D T R D T R D T R D T

11 14 1432.39 2646.42 14 1454.37 2642.67 14 1456.63 2642.32 14 1457.98 2639.45
14 1458.40 2637.58 14 1462.88 2635.29 14 1465.12 2634.19 15 1398.16 2764.17
15 1398.87 2745.39 15 1399.48 2745.34 15 1400.65 2723.81 15 1404.78 2708.14
15 1409.72 2706.30 15 1412.33 2693.52 15 1414.59 2693.17 15 1415.48 2690.73
15 1415.94 2690.30 15 1423.60 2688.84 15 1426.12 2683.76 15 1429.27 2680.97
15 1429.73 2680.54 15 1431.99 2680.18

12 14 1386.01 2647.21 14 1388.27 2646.85 14 1394.02 2641.52 14 1394.87 2640.37
14 1397.13 2640.02 14 1399.69 2637.26 14 1401.04 2635.36 14 1402.89 2634.69
14 1403.47 2620.92 14 1405.73 2620.57 14 1413.42 2620.46 14 1414.72 2615.96
14 1416.98 2615.61 14 1419.24 2614.03 14 1421.50 2613.68 14 1425.16 2613.52
14 1425.20 2612.25 14 1427.46 2611.90 14 1431.12 2611.74 14 1433.38 2611.38
15 1369.69 2745.97 15 1378.76 2735.80 15 1381.01 2735.44 15 1382.03 2734.26
15 1383.01 2720.12 15 1385.27 2719.77

13 14 1400.12 2648.96 14 1401.51 2642.14 14 1403.63 2637.87 14 1405.89 2637.52
14 1408.38 2636.09 14 1410.30 2633.84 14 1411.05 2633.67 14 1412.56 2633.49
14 1432.19 2633.17 14 1432.22 2630.53 14 1434.47 2630.18 14 1434.77 2629.43
14 1437.03 2629.08 15 1366.38 2755.49 15 1366.41 2740.59 15 1368.66 2740.24
15 1370.64 2739.81 15 1370.66 2724.92 15 1372.92 2724.57 15 1375.80 2723.53
15 1375.82 2717.60 15 1378.08 2717.25 15 1386.49 271596 15 1386.51 2710.02
15 1388.77 2709.67 15 1398.07 2705.45

14 14 1377.33 2641.23 14 1377.63 2627.67 14 1379.89 2627.31 14 1383.17 2624.35
14 1384.84 2622.26 14 1386.22 2620.76 14 1388.48 2620.40 14 1397.44 2616.42
14 1399.70 2616.07 14 1416.11 2613.99 14 1418.20 2611.66 14 1418.55 2610.29
14 1420.81 2609.94 14 1427.88 2608.34 14 1428.23 2606.98 14 1430.49 2606.62

15 14 1377.63 2627.67 14 1379.89 2627.31 14 1381.55 2623.38 14 1383.81 2623.03
14 1386.71 2620.44 14 1388.97 2620.08 14 1392.05 2619.54 14 1393.37 2616.96
14 1395.63 2616.61 14 1399.35 2616.06 14 1400.57 2612.45 14 1402.83 2612.10
14 1405.91 2611.55 14 1408.17 2611.20 14 1412.95 2608.86 14 1415.21 2608.50
14 1426.82 2603.86 14 1429.07 2603.51

16 14 1377.63 2627.67 14 1379.89 2627.31 14 1381.91 2624.35 14 1384.17 2624.00
14 1392.86 2618.03 14 1394.98 2617.30 14 1397.23 2616.94 14 1397.44 2616.42
14 1398.83 2616.25 14 1400.94 2615.52 14 1403.20 2615.16 14 1418.20 2611.66
14 1420.31 2607.38 14 1422.57 2607.03 14 1440.31 2605.28 14 1442.42 2604.54
14 1443.27 2601.80 14 1446.14 2601.45 14 1463.50 2600.66 14 1465.76 2600.31
14 1469.61 2600.20 15 1377.53 2711.31

17 14 1401.43 2626.29 14 1403.69 2625.94 14 1409.82 2616.86 14 1412.08 2616.51
14 1423.26 2614.15 14 1425.52 2613.79 14 1430.41 2613.26 14 1430.58 2612.10
14 1430.93 2610.73 14 1433.19 2610.38 14 1436.84 2609.94 14 1437.00 2608.79
14 1437.36 2607.42 14 1439.62 2607.07 15 1394.23 2748.38 15 1394.27 2720.62
15 1394.30 2714.03 15 1396.56 2713.68

18 14 1377.63 2627.67 14 1379.89 2627.31 14 1381.91 2624.35 14 1384.17 2624.00

continued on next page...
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run R D T R D T R D T R D T
14 1405.80 2619.32 14 1408.06 2618.97 14 1410.08 2616.00 14 1412.33 2615.65
14 1412.95 2608.86 14 1415.21 2608.50 14 1423.50 2608.37 14 1425.72 2607.38
14 1426.07 2606.01 14 1428.33 2605.66 14 1441.12 2600.51 14 1443.38 2600.16
14 1447.41 2599.35 14 1449.67 2598.99

19 14 1391.29 2619.97 14 1393.13 2619.70 14 1395.39 2619.34 14 1398.14 2617.12
14 1399.97 2614.76 14 1402.23 2614.41 14 1414.09 2606.69 14 1416.35 2606.33
14 1436.07 2601.21 14 1438.33 2600.86 14 1446.18 2600.71 15 1376.58 2723.76
15 1378.83 2723.40 15 1380.83 2708.08 15 1383.09 2707.73 15 1391.21 2680.00

20 14 1391.53 2638.15 14 1392.48 2636.78 14 1393.52 2634.97 14 1394.85 2633.71
14 1396.97 2629.43 14 1399.23 2629.07 14 1400.02 2629.04 14 1401.65 2618.93
14 1403.77 2618.20 14 1406.02 2617.84 14 1412.56 2616.01 14 1414.82 2615.66
14 1429.36 2611.02 14 1429.82 2610.59 14 1431.47 2610.28 14 1431.93 2609.85
14 1434.19 2609.50 15 1368.29 2747.00 15 1368.63 2730.72 15 1369.58 2729.35
15 1371.84 2728.99 15 1372.89 2715.04 15 1373.84 2713.67 15 1376.09 2713.32
15 1386.49 2698.39 15 1386.83 2682.11 15 1387.78 2680.74 15 1390.04 2680.39

21 14 1377.63 2627.67 14 1379.89 2627.31 14 1392.90 2624.05 14 1395.15 2623.69
14 1396.03 2623.35 14 1397.44 2616.42 14 1399.56 2612.14 14 1401.82 2611.79
14 1414.13 2610.49 14 1414.83 2608.04 14 1417.09 2607.68 14 1420.31 2607.38
14 1422.57 2607.03 14 1429.39 2603.39 14 1431.65 2603.04 15 1371.17 2750.82
15 1371.19 2744.88 15 1373.45 2744.53 15 1375.42 2735.14 15 1375.44 2729.21

22 14 1398.17 2629.89 14 1400.43 2629.54 14 1401.35 2618.60 14 1403.61 2618.25
14 1404.88 2610.90 14 1407.14 2610.55 14 1407.20 2609.98 14 1409.45 2609.62
14 1442.79 2606.52 14 1444.91 2605.78 14 1444.96 2604.97 14 1447.07 2604.23
14 1448.06 2602.24 14 1450.23 2600.69 14 1452.48 2600.33

23 14 1395.63 2646.21 14 1395.93 2633.13 14 1398.19 2632.78 14 1404.40 2623.70
14 1406.66 2623.35 14 1417.70 2623.10 14 1418.77 2622.54 14 1418.83 2619.98
14 1420.13 2618.61 14 1422.39 2618.26 14 1425.15 2617.13 14 1426.17 2613.67
14 1427.30 2610.55 14 1428.60 2609.18 14 1430.86 2608.83 14 1442.97 2608.02
14 1445.22 2607.67 15 1392.35 2715.91 15 1393.13 2709.20 15 1395.39 2708.85

24 14 1402.71 2649.17 14 1403.72 2634.35 14 1405.98 2634.00 14 1411.93 2632.60
14 1411.94 2632.22 14 1414.64 2631.43 14 1416.89 2631.08 14 1420.60 2629.65
14 1422.86 2629.30 14 1425.84 2618.51 14 1428.09 2618.16 14 1431.79 2617.11
14 1431.80 2616.73 14 1434.06 2616.38 14 1434.94 2612.70 14 1437.20 2612.35
15 1378.16 2740.13 15 1379.12 2739.78 15 1379.35 2738.76 15 1381.12 2724.46
15 1383.38 2724.11 15 1383.61 2723.09 15 1385.86 2722.74 15 1389.71 2716.63
15 1390.25 2716.31 15 1391.97 2716.28 15 1392.51 2715.95 15 1402.16 2715.45
15 1402.17 2712.09

25 14 1404.73 2630.27 14 1405.78 2616.91 14 1408.04 2616.56 14 1417.99 2612.26
14 1418.09 2610.56 14 1420.35 2610.21 15 1380.32 2714.27 15 1382.57 2713.91
15 1384.60 2710.95 15 1394.44 2706.20 15 1396.70 2705.84 15 1398.72 2702.88
15 1400.98 2702.53 15 1402.31 2701.56
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run R D T R D T R D T R D T

26 14 1403.76 2653.70 14 1403.86 2627.06 14 1403.87 2622.78 14 1406.13 2622.43
14 1409.42 2621.55 14 1411.68 2621.20 14 1423.48 2619.34 14 1424.62 2616.21
14 1425.63 2612.76 14 1426.77 2609.63 14 1429.03 2609.28 14 1429.79 2608.26
14 1432.05 2607.91 15 1380.84 2723.77 15 1382.08 2719.55 15 1384.34 2719.20
15 1386.22 2716.25 15 1387.47 2712.03 15 1389.72 2711.67 15 1394.23 2710.57
15 1395.48 2706.34 15 1397.74 2705.99 15 1400.18 2680.59 15 1400.18 2684.87
15 1401.43 2676.37 15 1403.69 2676.01

27 14 1403.13 2645.86 14 1405.39 2645.51 14 1407.19 2645.27 14 1407.43 2634.86
14 1409.69 2634.51 14 1415.17 2631.89 14 1417.20 2624.57 14 1419.45 2624.22
14 1419.80 2620.48 14 1422.05 2620.12 14 1426.10 2615.14 14 1428.36 2614.79
14 1428.71 2611.05 14 1430.96 2610.69 15 1370.52 2741.17 15 1372.78 2740.81
15 1374.78 272549 15 1377.04 2725.14 15 1379.94 2718.17 15 1382.20 2717.82
15 1388.38 2710.45 15 1390.64 2710.10 15 1393.54 2703.13 15 1395.80 2702.78
15 1396.85 2701.02 15 1399.11 2700.67 15 1400.82 2686.73 15 1401.06 2676.33

28 14 1377.63 2627.67 14 1379.89 2627.31 14 1381.91 2624.35 14 1384.17 2624.00
14 1392.82 2621.43 14 1392.86 2618.03 14 1394.98 2617.30 14 1397.23 2616.94
14 1398.83 2616.25 14 1400.94 2615.52 14 1403.20 2615.16 14 1403.78 2615.11
14 1406.03 2614.76 14 1409.74 2613.33 14 1412.00 2612.98 14 1420.57 2610.12
14 1421.03 2609.69 14 1422.68 2609.38 14 1423.15 2608.95 14 1425.40 2608.60
14 1426.53 2608.34 14 1427.00 2607.91 14 1428.65 2607.60 14 1429.11 2607.17
14 1431.37 2606.82

29 14 1428.90 2629.26 14 1431.15 2628.91 14 1443.57 2626.60 14 1445.83 2626.24
14 1448.58 2622.88 14 1450.84 2622.52 14 1456.02 2612.79 14 1458.28 2612.44
15 1388.08 2750.66 15 1391.87 2742.60 15 1392.21 2734.98 15 1392.95 2732.99
15 1396.00 2726.93 15 1397.39 2725.50 15 1398.24 2716.04 15 1399.83 2712.50
15 1400.68 2703.05 15 1402.94 2702.69 15 1405.51 2700.05 15 1406.47 2698.95
15 1412.55 2690.03 15 1414.80 2689.67

30 14 1391.49 2623.16 14 1393.75 2622.81 14 1395.77 2619.85 14 1398.03 2619.49
14 1422.60 2616.83 14 1423.99 2614.04 14 1424.00 2609.76 14 1426.26 2609.41
14 1426.82 2603.86 14 1429.07 2603.51 14 1444.90 2602.75 14 1447.16 2602.39

Table A.1: Number of routes (R), travel distance (D) and delivery time (7°)
associated with the solutions in the Pareto approximations obtained by MOEA-
RDT for instance R105.

Table A.2 presents, for Solomon’s instance R105, the Mp values corresponding to

the Pareto approximations result from each run of MOEA-RDT'. These Mp values

are normalised according to the reference point z =

The average of these 30 Mp values is 0.0019.

(100.00,4989.42, 13017.71).
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run Mp run Mp run Mp run Mp run Mp run Mp

1 0.0009 6 0.0011 11 0.0069 16 0.0014 21 0.0010 26 0.0025
2 0.0007 7 0.0022 12 0.0018 17 0.0019 22 0.0015 27 0.0025
3 0.0052 0.0010 13 0.0021 18 0.0010 23 0.0019 28 0.0009
4 0.0033 9 0.0008 14 0.0009 19 0.0011 24 0.0024 29  0.0042
5 0.0018 10 0.0008 15 0.0007 20 0.0015 25 0.0024 30 0.0011

Table A.2: Mp values corresponding to the Pareto approximations, result from

each run of MOEA-RDT, to Solomon’s instance R105.

Similarly, Table A.3 presents, for Solomon’s instance R105, the My values corres-

ponding to the Pareto approximations result from each run of MOEA-RDT. These

Mp values are normalised according to the reference point z =

13017.71). The average of these 30 My values is 0.6096.

(100.00, 4989.42,

run My run My run My run My run My run My

1 0.6072 6 0.6124 11 0.6072 16 0.6067 21 0.6068 26 0.6090
2 0.6074 7 0.6120 12 0.6079 17 0.6047 22 0.6119 27 0.6106
3 0.6065 8 0.6147 13 0.6097 18 0.6154 23 0.6052 28 0.6141
4 0.6057 9 0.6148 14 0.6141 19  0.6090 24 0.6077 29  0.6076
5 0.6063 10 0.6072 15 0.6142 20  0.6102 25 0.6078 30  0.6127

Table A.3: My values corresponding to the Pareto approximations, result from

each run of MOEA-RDT, to Solomon’s instance R105.

Table A.4 presents the Pareto approximations found by NSGA-II to Solomon’s ins-

tance R105. The first column shows the run number and the following columns

present the number of routes (R), travel distance (D) and delivery time (7") asso-

ciated with each solution in the approximation set.

run R D T R D T R D T R D T

1 14 1479.23 2657.82 14 1479.30 2656.32 14 1481.47 2654.90 14 1481.54 2653.40
14 1483.80 2653.05 15 1419.63 2725.36 15 1421.74 2721.08 15 1423.99 2718.16
15 1426.24 2717.80 15 1429.76 2716.20 15 1432.02 2715.85 15 1434.98 2715.14
15 1435.71 2714.37 15 1437.22 2712.22 15 1437.95 2711.45 15 1440.21 2711.09
15 1443.00 2710.27 15 1443.72 2709.49 15 1445.98 2709.14 15 1447.05 2707.05
15 1449.30 2704.13 15 1451.56 2703.78 15 1455.07 2702.18 15 1457.33 2701.83
15 1461.02 2700.35 15 1463.26 2697.43 15 1465.52 2697.07 15 1469.04 2695.47
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run R D T R D T R D T R D T
15 1471.29 2695.12 15 1477.20 2693.53

2 14 1421.24 2655.62 14 1422.94 2655.26 14 1423.72 2646.03 14 1423.95 2636.66
14 1425.65 2635.82 14 1427.90 2635.47 14 1434.86 2634.01 14 1436.56 2633.17
14 1438.82 2632.81 15 1399.21 2763.26 15 1399.44 2753.89 15 1401.14 2753.04
15 1403.40 2752.69 15 1406.72 2734.99 15 1406.94 2725.62 15 1408.64 2724.77
15 1410.90 2724.42 15 1420.68 2721.34

3 15 1387.98 2743.18 15 1390.08 2733.66 15 1392.24 2727.51 15 1394.49 2727.15
15 1396.52 2724.19 15 1398.77 2723.84 15 1402.87 2712.36 15 1405.13 2712.01
15 1407.15 2709.04 15 1409.40 2708.69 15 1413.46 2708.21 15 1415.72 2707.86
15 1416.99 2703.28 15 1419.24 2702.93 15 1421.27 2699.97 15 1423.52 2699.61
15 1437.74 2695.08 15 1439.99 2694.72 15 1449.96 2693.70 15 1452.22 2693.35

4 15 1412.56 2724.19 15 1415.00 2714.03 15 1418.03 2711.19 15 1420.99 2704.91
15 1423.48 2704.89 15 1424.01 2702.08 15 1425.92 2694.73 15 1428.94 2691.90
15 1434.08 2689.28 15 1437.10 2686.45 15 1437.21 2683.72 15 1439.32 2682.98
15 1440.23 2680.89 15 1442.34 2680.15

5 14 1407.05 2637.89 14 1411.33 2634.57 14 1414.34 2633.56 14 1418.62 2630.24
14 1421.73 2628.12 14 1428.02 2625.25 14 1429.02 2623.79 14 1435.31 2620.92
14 1438.42 2618.79 14 1445.71 2614.46 15 1393.60 2752.83 15 1397.88 2749.52
15 1399.26 2742.53 15 1400.60 2730.05 15 1401.33 2723.34 15 1405.61 2720.02

6 14 1391.02 2642.05 14 1391.50 2640.64 14 1391.53 2638.15 14 1392.02 2636.75
14 1394.27 2636.40 14 1398.09 2636.26 14 1399.14 2636.10 14 1400.20 2635.52
14 1400.82 2634.50 14 1401.13 2622.34 14 1401.65 2618.93 14 1403.77 2618.20
14 1406.02 2617.84 14 1423.88 2616.59 14 1424.39 2615.99 14 1426.65 2615.63
14 1429.86 2613.23 14 1430.38 2612.62 14 1432.63 2612.27

7 14 1421.21 2630.05 14 1421.22 2625.77 14 1423.47 2625.41 14 1425.73 2624.89
14 1425.74 2620.61 14 1428.00 2620.26 15 1390.21 2756.56 15 1390.96 2755.72
15 1391.53 2753.09 15 1392.28 2752.25 15 1394.47 2740.88 15 1395.22 2740.05
15 1395.79 2737.41 15 1396.54 2736.58 15 1398.80 2736.22 15 1399.24 2732.90
15 1400.31 2732.26 15 1400.56 2729.43 15 1402.01 2725.74 15 1402.77 2724.91
15 1403.34 2722.27 15 1404.09 2721.44 15 1406.35 2721.08 15 1407.86 2717.12
15 1408.61 2716.28 15 1410.05 2714.29 15 1411.84 2700.20 15 1411.84 2704.48
15 1412.60 2699.36 15 1414.85 2699.01 15 1416.37 2695.05 15 1416.62 2692.22
15 1418.88 2691.86 15 1419.39 2685.06 15 1419.39 2689.34 15 1420.15 2684.22

8 14 1405.56 2631.64 14 1407.67 2630.90 14 1407.81 2630.44 14 1409.93 2629.71
14 1416.47 2628.72 14 1418.73 2627.52 14 1426.94 2626.85 14 1427.43 2626.67
14 1429.69 2625.48 15 1397.95 2743.56 15 1400.21 2742.36 15 1402.21 2727.88
15 1404.47 2726.69

9 14 1452.30 2649.21 14 1457.42 2645.84 15 1432.32 2744.71 15 1433.08 2736.72
15 1433.86 2729.01 15 1438.57 2727.97 15 1443.64 2703.02 15 1445.76 2699.34
15 1448.42 2698.33 15 1450.46 2698.30

10 15 1401.92 2756.50 15 1403.17 2752.28 15 1406.76 2749.71 15 1408.36 2746.09
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run R D T R D T R D T R D T
15 1411.88 2746.08 15 1411.95 2743.53 15 1412.39 2742.54 15 1413.12 2741.86
15 1413.64 2738.32 15 1414.51 2738.26 15 1415.24 2737.58 15 1415.75 2734.04
15 1418.78 2732.20 15 1419.35 2732.08 15 1422.38 2729.64 15 1431.59 2728.69
15 1433.71 272721 15 1435.15 2725.22

11 14 1421.63 2662.23 14 1423.41 2656.92 14 1423.84 2649.84 14 1425.62 2644.54
14 1427.02 2638.55 14 1428.80 2633.25 14 1431.06 2632.89 14 1436.35 2626.91
14 1438.14 2622.50 14 1438.75 2622.45 14 1440.39 2622.15 14 1441.28 2621.06
14 1441.74 2620.62 14 1444.00 2620.27

12 14 1403.98 2655.30 14 1405.85 2649.16 14 1408.11 2648.80 14 1414.12 2644.74
14 1416.38 2644.39 14 1419.41 2636.16 14 1421.67 2635.81 14 1422.37 2635.07
14 1424.63 2634.71 14 1430.65 2634.35 14 1432.90 2634.00 14 1439.25 2633.70
14 1439.40 2623.74 15 1400.13 2734.61 15 1402.39 2734.25

13 14 1386.97 2652.05 14 1397.88 2647.77 14 1400.38 2637.98 14 1402.50 2633.70
14 1405.46 2632.60 14 1416.60 2630.76 14 1417.07 2629.05 14 1420.03 2627.95
14 1423.66 2626.13 14 1426.62 2625.03 14 1430.21 2624.30 14 1430.67 2623.86
14 1433.17 2623.20 14 1433.63 2622.77 14 1444.30 2621.36 14 1444.77 2620.93
14 1444.77 2619.65 14 1445.23 2619.22 14 1447.73 2618.55 14 1448.19 2618.12
15 1376.64 2741.70 15 1379.94 2741.61 15 1380.89 2726.02 15 1384.19 2725.94
15 1385.82 2715.85

14 14 1402.93 2621.40 14 1405.19 2621.05 14 1408.90 2619.62 14 1411.16 2619.27
14 1417.06 2613.33 14 1419.09 2611.44 14 1421.35 2611.09 14 1425.05 2609.66
14 1427.31 2609.31 14 1439.92 2608.74 14 1441.95 2606.85 14 1444.21 2606.50
14 144792 2605.07 14 1450.18 2604.72

15 14 1417.56 2661.39 14 1418.80 2657.17 14 1421.96 2656.89 14 1422.94 2653.87
14 1424.18 2649.65 14 1425.88 2646.29 14 1429.03 2646.01 14 1430.76 2644.62
14 1431.23 2643.01 14 1434.38 2642.73 14 1436.11 2641.33 14 1444.97 2640.29
14 1448.12 2640.01 14 1449.85 2638.61 15 1409.15 2747.51 15 1410.39 2743.29

16 14 1451.61 2632.57 14 1453.87 2628.03 14 1457.01 2625.24 15 1423.56 2744.40
15 1425.81 2739.86 15 1428.96 2737.07 15 1431.68 2728.65 15 1432.53 2721.95
15 1434.79 2717.41 15 1437.94 2714.62 15 1441.53 2684.48 15 1443.79 2679.94
15 1446.94 2677.15

17 14 1396.29 2636.22 14 1398.40 2635.48 14 1398.54 2635.02 14 1400.66 2634.28
14 1404.37 2633.70 14 1404.51 2633.24 14 1406.63 2632.51 14 1407.20 2631.94
14 1409.46 2630.74 14 1413.17 2630.16 14 1415.42 2628.96 14 1423.99 2625.92
14 1426.11 2625.19 14 1428.37 2624.88 14 1428.83 2624.45 14 1429.96 2624.14
14 1432.08 2623.41 14 1434.33 2623.10 14 1434.79 2622.67 15 1387.01 2742.02
15 1389.27 2740.83 15 1392.97 2740.24 15 1395.23 2739.05

18 15 1383.38 2756.88 15 1383.40 2750.94 15 1385.66 2750.59 15 1388.35 2748.15
15 1388.88 2746.97 15 1389.00 2742.86 15 1391.26 2742.51 15 1393.95 2740.07
15 1394.24 2732.55 15 1394.26 2726.61 15 1396.52 2726.26 15 1398.09 2720.46
15 1400.35 2720.11 15 1404.66 2714.47 15 1404.68 2708.53 15 1406.94 2708.18
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run R D T R D T R D T R D T
15 1407.83 2705.74 15 1408.29 2705.31 15 1410.55 2704.96 15 1415.73 2703.91
15 1417.99 2703.56 15 1419.31 2701.16 15 1421.57 2700.81

19 15 1444.58 2737.51 15 1444.83 2731.96 15 1447.99 2731.12 15 1450.69 2725.98
15 1450.94 2720.43 15 1451.61 2719.53 15 1453.37 2718.45 15 1454.05 2717.55
15 1463.64 2717.06 15 1465.41 2715.97 15 1466.08 2715.07 15 1466.38 2712.76
15 1467.06 2711.86 15 1468.82 2710.78 15 1469.50 2709.88

20 15 1418.75 2772.63 15 1420.27 2760.46 15 1420.29 2758.49 15 1422.55 2758.14
15 1422.88 2756.96 15 1424.40 2744.79 15 1424.42 2742.82 15 1426.68 2742.46
15 1439.79 2732.49 15 1439.81 2730.52 15 1442.07 2730.17 15 1442.23 2727.77
15 1444.49 2727.42

21 14 1396.79 2658.93 14 1398.90 2654.65 14 1402.03 2638.83 14 1404.14 2634.55
14 1409.61 2632.49 15 1389.18 2770.85 15 1392.78 2768.28

22 15 1381.13 2737.81 15 1383.25 2737.08 15 1385.39 2722.14 15 1387.65 2721.79
15 1390.55 2714.82 15 1392.81 2714.47 15 1400.83 2708.65 15 1400.98 2707.54
15 1403.23 2707.19 15 1406.05 2707.18 15 1406.14 2700.22 15 1408.40 2699.87
15 1411.21 2699.86 15 1412.02 2696.87 15 1414.27 2696.52 15 1417.34 2696.18
15 1419.59 2695.83 15 1422.05 2689.35 15 1424.31 2689.00

23 14 1383.05 2640.19 14 1383.39 2623.91 14 1385.65 2623.55 14 1389.36 2622.13
14 1391.61 2621.77 15 1381.44 2742.99 15 1381.77 2726.71

24 14 144751 2705.72 14 1448.80 2652.50 14 1452.21 2647.22 14 1452.23 2646.28
14 1453.50 2645.03 14 1454.31 2639.00 14 1471.48 2636.19 15 1433.23 2792.94
15 1433.89 2792.68 15 1434.52 2739.72 15 1435.18 2739.46 15 1440.11 2735.16
15 1440.76 2734.90 15 1440.80 2730.21 15 1443.87 2727.91 15 1445.85 2727.72
15 1446.51 2727.46 15 1446.72 2726.52

25 14 142591 2660.41 14 1426.61 2653.62 14 1427.95 2650.77 14 1428.66 2643.97
14 1432.27 2643.17 14 1433.61 2641.18 14 1437.22 2640.38 14 1438.49 2639.43
14 1443.44 2636.64 14 1453.53 2635.99 15 1387.79 2744.29 15 1388.50 2737.49
15 1393.00 2736.78 15 1393.03 2730.71 15 1393.71 2729.98 15 1396.51 2729.28
15 1397.22 272248 15 1401.74 2715.70 15 1406.70 2712.91 15 1415.34 2712.83
15 1419.22 2708.33 15 1419.86 2706.05 15 1424.17 2705.54 15 1424.81 2703.26

26 14 1415.06 2667.71 14 1421.12 2661.30 14 1424.24 2658.88 14 1431.11 2656.48
14 1433.22 2653.61 14 1438.34 2652.15 14 1438.38 2651.03 14 1441.49 2648.60
14 1464.25 2640.36

27 14 1414.31 2649.53 14 1416.57 2649.17 14 1418.25 2641.36 14 1418.90 2638.86
14 1420.69 2635.49 14 1421.34 2633.00 14 1422.13 2619.82 14 1424.28 2613.23
14 1426.54 2612.88 14 1426.72 2607.37 14 1428.98 2607.01 14 1429.98 2606.45
14 1432.23 2606.10 14 1432.86 2605.80 14 1435.12 2605.44 14 1443.41 2604.37
14 1445.67 2604.02 15 1397.94 2730.80 15 1400.22 2717.80 15 1402.47 2717.45
15 1404.34 2714.28 15 1405.60 2710.28 15 1405.79 2703.19 15 1408.05 2702.84

28 14 1409.21 2655.47 14 1411.46 2655.12 14 1412.37 2645.25 14 1414.63 2644.89
14 1417.07 2644.81 14 1420.01 2639.95 14 1422.27 2639.60 14 1423.11 2639.04

continued on next page...

233



...continued from previous page

run R D T R D T R D T R D T
14 1423.34 2636.88 14 1425.59 2636.53 14 1428.03 2636.44 15 1400.50 2768.57
15 1401.96 2762.34 15 1404.22 2761.98 15 1404.33 2756.29 15 1405.13 2753.36
15 1407.39 2753.00 15 1407.50 2747.31

29 14 1421.77 2630.72 14 1421.80 2628.68 14 1432.76 2627.31 14 1437.93 2627.15
14 1437.95 2625.11 14 1448.91 2623.73 15 1392.01 2741.28 15 1392.03 2739.24
15 1399.97 2736.24 15 1399.99 2734.20 15 1402.08 2732.56 15 1402.11 2730.52
15 1404.10 2729.37 15 1404.12 2727.33 15 1409.57 2726.33 15 1412.05 2725.38
15 1415.82 2718.42 15 1415.85 2716.38 15 1421.66 2714.42

30 14 1409.11 2649.41 14 1409.13 2641.14 14 1411.25 2640.40 14 1413.90 2636.67
14 1416.02 2635.93 14 1419.86 2634.89 14 1420.02 2629.52 14 1422.14 2628.78
14 1425.98 2627.74 14 1428.10 2627.00 15 1399.83 2755.22 15 1399.86 2746.94
15 1404.09 2739.55 15 1404.11 2731.27 15 1408.88 2726.80

Table A.4: Number of routes (R), travel distance (D) and delivery time (7°)
associated with the solutions in the Pareto approximations obtained by NSGA-II

for instance

R105.

Table A.5 presents, for Solomon’s instance R105, the Mp values corresponding to

the Pareto approximations result from each run of MOEA-RDT. These Mp values

are normalised according to the reference point z =

The average of these 30 Mp values is 0.0057.

(100.00,4989.42, 13017.71).

run Mp run Mp run Mp run Mp run Mp run Mp

1 0.0119 6 0.0018 11 0.0030 16 0.0096 21 0.0036 26 0.0048
2 0.0049 7 0.0054 12 0.0035 17 0.0025 22 0.0055 27 0.0029
3 0.0073 8 0.0033 13 0.0023 18 0.0052 23 0.0013 28 0.0047
4 0.0102 9 0.0109 14 0.0015 19 0.0143 24 0.0102 29 0.0049
5 0.0034 10 0.0082 15 0.0044 20 0.0110 25 0.0050 30 0.0039

Table A.5: Mp values corresponding to the Pareto approximations, result from
each run of NSGA-II, to Solomon’s instance R105.

Similarly, Table A.6 presents, for Solomon’s instance R105, the My values corres-

ponding to the Pareto approximations result from each run of NSGA-II. These

My values are normalised according to the reference point z =

13017.71). The average of these 30 My values is 0.6035.

(100.00, 4989.42,
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run My run My run My run My run My run My

1 0.6050 6 0.6117 11 0.6066 16 0.6037 21 0.6027 26 0.6077
2 0.6045 7 0.6078 12 0.6030 17 0.6046 22 0.6022 27 0.6051
3 0.6021 8 0.6038 13 0.6070 18 0.6011 23 0.6055 28  0.6025
4 0.5982 9 0.6014 14 0.6108 19 0.5927 24 0.5998 29  0.6061
5 0.6049 10 0.5975 15 0.6014 20 0.5951 25 0.6075 30 0.6037

Table A.6: My values corresponding to the Pareto approximations, result from
each run of NSGA-II, to Solomon’s instance R105.

The result of the two-tailed t-test for two samples with unequal variance applied to

the values in Tables A.2 and A.5 is 0.0, which indicates that the true means of both

series of values do differ. The same result is obtained when the t-test is applied to

the values in Tables A.3 and A.6.

235



236



Bibliography

1]

2]

E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimiza-

tion. Princeton University Press, 2003.

E. Aarts and J. K. Lenstra. Introduction. In E. Aarts and J. K. Lenstra, edi-
tors, Local Search in Combinatorial Optimization. Princeton University Press,
2003.

D. H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer Aca-
demic Publishers, 1987.

H. E. Aguirre and K. Tanaka. Working principles, behavior, and performance
of MOEAs on MNK-landscapes. Eur. J. Oper. Res., 181(3):1670 — 1690, 2007.

E. Alba and B. Dorronsoro. Computing nine new best-so-far solutions for
capacitated VRP with a cellular genetic algorithm. Inform. Process. Lett., 98
(6):225-230, 2006.

E. Alba and B. Dorronsoro. A hybrid cellular genetic algorithm for the capa-
citated vehicle routing problem. In A. Abraham, C. Grosan, and W. Pedrycz,
editors, Engineering Evolutionary Intelligent Systems, volume 82 of SCI, pages
379-422. Springer, 2008.

G. B. Alvarenga, G. R. Mateus, and G. de Tomi. A genetic and set partitio-
ning two-phase approach for the vehicle routing problem with time windows.
Comput. Oper. Res, 34(6):1561-1584, 2007.

C. Archetti and M. G. Speranza. An overview on the split delivery vehicle
routing problem. In K.-H. Waldmann and U. M. Stocker, editors, Operations
Research, pages 123-127. Springer, 2006.

237



[9]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

C. Archetti and M. G. Speranza. The split delivery vehicle routing problem: A
survey. In B. Golden, S. Raghavan, and E. Wasil, editors, The Vehicle Routing
Problem: Latest Advances and New Challenges, pages 103—122. Springer, 2008.

T. Back. Binary strings. In T. Back, D. B. Fogel, and Z. Michalewicz, editors,
FEvolutionary Computation 1: Basic Algorithms and Operators. Institute of
Physics Publishing, 2000.

B. M. Baker and M. A. Ayechew. A genetic algorithm for the vehicle routing
problem. Comput. Oper. Res., 30(5):787-800, 2003.

E. Balas and M. W. Padberg. Set partitioning: A survey. SIAM Rev., 18(4):
710-760, 1976.

R. Baldacci, P. Toth, and D. Vigo. Recent advances in vehicle routing exact
algorithms. 4OR-Q. J. Oper. Res., 5(4):269-298, 2007.

R. Baldacci, M. Battarra, and D. Vigo. Routing a heterogeneous fleet of
vehicles. In B. L. Golden, S. Raghavan, and E. A. Wasil, editors, The Vehicle
Routing Problem: Latest Advances and New Challenges, pages 3—27. Springer,
2008.

R. Baldacci, P. Toth, and D. Vigo. Exact algorithms for routing problems
under vehicle capacity constraints. Ann. Oper. Res., 175(1):213-245, 2010.

A. Beham. Parallel tabu search and the multiobjective vehicle routing problem
with time windows. In 21th International Parallel and Distributed Processing

Symposium, pages 1-8. IEEE Computer Society, 2007.

R. Bent and P. Van Hentenryck. A two-stage hybrid local search for the vehicle
routing problem with time windows. Transport. Sci., 38(4):515-530, 2004.

J. J. Bentley. Fast algorithms for geometric traveling salesman problems.
INFORMS J. Comput., 4(4):387-411, 1992.

J. Berger and M. Barkaoui. A parallel hybrid genetic algorithm for the vehicle
routing problem with time windows. Comput. Oper. Res., 31(12):2037-2053,
2004.

J. Berger, M. Barkaoui, and O. Braysi. A route-directed hybrid genetic ap-
proach for the vehicle routing problem with time windows. INFOR, 41(2):
179-194, 2003.

238



[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[31]

[32]

D. J. Bertsimas. A vehicle routing problem with stochastic demand. Oper.
Res., 40(3):574-585, 1992.

T. Bickle. Tournament selection. In T. Back, D. B. Fogel, and Z. Michale-
wicz, editors, Fvolutionary Computation 1: Basic Algorithms and Operators.

Institute of Physics Publishing, 2000.

P. Bienert. Aufbau einer Optimierungsautomatik fir drei Parameter. PhD
thesis, Technical University of Berlin, Institute of Measurement and Control

Technology, Berlin, Germany, 1967.

F. Bock. An algorithm for solving ‘traveling salesman’ and related network
optimization problems. In 14th National Meeting of ORSA, 1958.

G. E. P. Box. Evolutionary operation: A method for increasing industrial
productivity. J. Roy. Stat. Soc. C-App., 6(2):81-101, 1957.

O. Braysy and M. Gendreau. Vehicle routing problem with time windows,
part I: Route construction and local search algorithms. Transport. Seci., 39(1):
104-118, 2005.

O. Braysy and M. Gendreau. Vehicle routing problem with time windows,
part II: Metaheuristics. Transport. Sci., 39(1):119-139, 2005.

O. Braysy, W. Dullaert, and M. Gendreau. Evolutionary algorithms for the
vehicle routing problem with time windows. J. Heuristics, 10(6):587-611,
2004.

H.-J. Bremermann. Optimization through evolution and recombination. In
M. C. Yovits, G. T. Jacobi, and G. D. Goldstein, editors, Self-organizing
systems, pages 93-106. Spartan Books, 1962.

B. Bullnheimer, R. F. Hartl, and C. Strauss. Applying the ant system to
the vehicle routing problem. In 2nd Metaheuristics International Conference,
pages 1-12, 1997.

B. Bullnheimer, R. F. Hartl, and C. Strauss. An improved ant system algo-
rithm for the vehicle routing problem. Ann. Oper. Res., 89(1):319-328, 1999.

R. Burkard and S. M. Mauro Dell’Amico. Assignment Problems. STAM, 20009.

239



33]

[35]

[38]

[39]

[41]

[42]

E. K. Burke, S. Gustafson, and G. Kendall. Diversity in genetic programming:
an analysis of measures and correlation with fitness. IEEE T. Evolut. Comput.,
8(1):47-62, 2004.

J. P. Castro Gutiérrez, D. Landa-Silva, and J. A. Moreno-Pérez. Exploring fea-
sible and infeasible regions in the vehicle routing problem with time windows
using a multi-objective particle swarm optimization approach. In N. Krasno-
gor, B. Melian-Batista, J. A. Moreno-Pérez, J. M. Moreno-Vega, and D. A.
Pelta, editors, Nature Inspired Cooperative Strategies for Optimization, volume
236 of SCI, pages 103-114. Springer, 2009.

N. Christofides. The travelling salesman problem. In N. Christofides, A. Min-
gozzi, P. Toth, and C. Sandi, editors, Combinatorial Optimization, pages 131—
149. John Wiley & Sons, 1979.

N. Christofides and S. Eilon. Algorithms for large-scale travelling salesman
problems. Oper. Res Quart, 23(4):511-518, 1972.

N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In
N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, editors, Combinatorial
Optimization, pages 315-338. John Wiley & Sons, 1979.

G. Clarke and J. Wright. Scheduling of vehicles from a central depot to a
number of delivery points. Oper. Res., 12(4):568-581, 1964.

C. A. Coello Coello. A short tutorial on evolutionary multiobjective optimi-
zation. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne,
editors, First International Conference on Evolutionary Multi-Criterion Opti-
mization, volume 1993 of LNCS, pages 21-40. Springer, 2001.

C. A. Coello Coello. 20 years of evolutionary multi-objective optimization:
What has been done and what remains to be done. In G. Yen and D. Fo-

gel, editors, Computational Intelligence: Principles and Practice, pages 73—-88.
IEEE Press, 2006.

C. A. Coello Coello and M. Salazar Lechuga. MOPSO: A proposal for multiple
objective particle swarm optimization. In 2002 IEEE Congress on Fvolutio-
nary Computation, pages 1051-1056. IEEE Press, 2002.

C. A. Coello Coello, G. L. Lamont, and D. A. Van Veldhuizen. Fvolutionary
Algorithms for Solving Multi-Objective Problems. Springer, 2007.

240



[43]

[44]

[45]

[47]

E. G. Coffman, G. Galambos, S. Martello, and D. Vigo. Bin packing approxi-
mation algorithms: Combinatorial analysis. In D.-Z. Du and P. M. Pardalos,
editors, Handbook of Combinatorial Optimization. Kluwer Academic Publi-
shers, 1998.

Y. Collette and P. Siarry. Multiobjective Optimization: Principles and Case
Studies. Springer, August 2003.

A. Corberan, E. Ferndandez, M. Laguna, and R. Marti. Heuristic solutions to
the problem of routing school buses with multiple objectives. J. Oper. Res.
Soc., 53(4):427-435, 2002.

J.-F. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon, and F. Soumis.
VRP with time windows. In P. Toth and D. Vigo, editors, The vehicle routing
problem, pages 157-193. SIAM, 2001.

J.-F. Cordeau, G. Laporte, and A. Mercier. A unified tabu search heuristic
for vehicle routing problems with time windows. J. Oper. Res. Soc., 52(8):
928-936, 2001.

J.-F. Cordeau, M. Gendreau, G. Laporte, J.-Y. Potvin, and F. Semet. A guide
to vehicle routing heuristics. J. Oper. Res. Soc., 53(5):512-522, 2002.

J.-F. Cordeau, M. Gendreau, A. Hertz, G. Laporte, and J.-S. Sormany. New
heuristics for the vehicle routing problem. In A. Langevin and D. Riopel,
editors, Logistics Systems: Design and Optimization, pages 279-297. Springer,
2005.

R. Cordone and R. Wolfler Calvo. A heuristic for the vehicle routing problem
with time windows. J. Heuristics, 7(2):107-129, 2001.

G. A. Croes. A method for solving traveling-salesman problems. Oper. Res.,
6(6):791-812, 1958.

Z. J. Czech and P. Czarnas. Parallel simulated annealing for the vehicle rou-
ting problem with time windows. In 10th Euromicro Workshop on Parallel,
Distributed, and Network-Based Processing, pages 376-383. IEEE Computer
Society, 2002.

P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing - a metaheuristic

technique for multiple-objective combinatorial optimization. J. Multi-Criteria

241



[54]

[55]

[56]

[60]

[61]

Decis. Anal., 7(1):34-47, 1998.

G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Manage.
Sei., 6(1):80-91, 1959.

I. Das and J. Dennis. A closer look at drawbacks of minimizing weighted sums
of objectives for Pareto set generation in multicriteria optimization problems.
Struct. Optimization, 14(1):63-69, 1997.

B. De Backer, V. Furnon, P. Kilby, P. Prosser, and P. Shaw. Local search in
constraint programming: Application to the vehicle routing problem. In 7997
Workshop on Industrial Constraint Directed Scheduling, pages 1-15, 1997.

K. De Jong. An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan, Ann Arbor, Michigan, USA, 1975.

K. De Jong. Ewvolutionary computation: a unified approach. MIT Press, 2006.

K. De Jong. Parameter setting in EAs: a 30 year perspective. In F. G. Lobo,
C. F. Lima, and Z. Michalewicz, editors, Parameter Setting in Evolutionary

Algorithms, pages 1-18. Springer, 2007.

K. De Jong, D. B. Fogel, and H.-P. Schwefel. A history of evolutionary com-
putation. In T. Back, D. B. Fogel, and Z. Michalewicz, editors, Fvolutionary
Computation 1: Basic Algorithms and Operators, pages 40-58. Institute of
Physics Publishing, 2000.

K. Deb. Introduction to representations. In T. Back, D. B. Fogel, and Z. Mi-
chalewicz, editors, Fvolutionary Computation 1: Basic Algorithms and Ope-

rators. Institute of Physics Publishing, 2000.

K. Deb. Multi-Objective Optimization Using Fvolutionary Algorithms. John
Wiley & Sons, 2001.

K. Deb. Evolutionary multi-objective optimization without additional para-
meters. In F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors, Parameter

setting in evolutionary algorithms, pages 241-257. Springer, 2007.

K. Deb. Current trends in evolutionary multi-objective optimization. Int. J.
Simul. Multidiscip. Design Opt., 1(1):1-8, 2007.

242



[65]

[67]

[68]

[70]

[71]

[72]

73]

[74]

K. Deb and S. Jain. Running performance metrics for evolutionary multi-
objective optimization. In L. Wang, K. C. Tan, T. Furuhashi, J.-H. Kim, and
X. Yao, editors, Fourth Asia-Pacific Conference on Simulated Evolution and

Learning, pages 13-20, 2002.

K. Deb and S. Tiwari. Omni-optimizer: A generic evolutionary algorithm for
single and multi-objective optimization. Fur. J. Oper. Res., 185(3):1062 —
1087, 2008.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE T. on Evolut. Comput., 6(2):
182-197, 2002.

K. Deb, M. Mohan, and S. Mishra. Evaluating the e-domination based multi-
objective evolutionary algorithm for a quick computation of Pareto-optimal
solutions. Evolut. Comput., 13(4):501-525, 2005.

G. Desaulniers, J. Desrosiers, A. Erdmann, M. M. Solomon, and F. Soumis.
VRP with pickup and delivery. In P. Toth and D. Vigo, editors, The vehicle
routing problem, pages 225-242. SIAM, 2001.

M. Desrochers, J. K. Lenstra, and M. W. P. Savelsbergh. A classification
scheme for vehicle routing and scheduling problems. FEur. J. Oper. Res., 46
(3):322-332, 1990.

M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm
for the vehicle routing problem with time windows. Oper. Res., 40(2):342-354,
1992.

M. Desrochers, C. V. Jones, J. K. Lenstra, M. W. P. Savelsbergh, and L. Stou-
gie. Towards a model and algorithm management system for vehicle routing
and scheduling problems. Decis. Support Syst., 25(2):109-133, 1999.

M. M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2009.

K. F. Doerner and R. F. Hartl. Health care logistics, emergency preparedness,
and disaster relief: New challenges for routing problems with a focus on the
austrian situation. In B. L. Golden, S. Raghavan, and E. Wasil, editors, The
Vehicle Routing Problem: Latest Advances and New Challenges, pages 527—
550. Springer, 2008.

243



[75]

[85]

[36]

[87]

K. F. Doerner, A. Focke, and W. J. Gutjahr. Multicriteria tour planning for
mobile healthcare facilities in a developing country. Eur. J. Oper. Res., 179
(3):1078-1096, 2007.

M. Dorigo and T. Stiitzle. Ant Colony Optimization. MIT Press, 2004.

M. Dror and P. Trudeaut. Savings by split delivery routing. Transport. Sci.,
23(2):141, 1989.

M. Dror, G. Laporte, and P. Trudeau. Vehicle routing with split deliveries.
Discrete Appl. Math., 50(3):239 — 254, 1994.

C. Duhamel, J.-Y. Potvin, and J.-M. Rousseau. A tabu search heuristic for the
vehicle routing problem with backhauls and time windows. Transport. Sci.,
31(1):49-59, 1997.

W. Dullaert and O. Braysy. Routing relatively few customers per route. TOP,
2(11):325-336, 2002.

A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Sprin-
ger, 2003.

A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith. Parameter
control in evolutionary algorithms. In F. G. Lobo, C. F. Lima, and Z. Mi-
chalewicz, editors, Parameter setting in evolutionary algorithms, pages 19—46.
Springer, 2007.

B. Eksioglu, A. V. Vural, and A. Reisman. The vehicle routing problem: A
taxonomic review. Comput. Ind. Eng., 57(4):1472-1483, 2009.

H. Esbensen and E. Kuh. Design space exploration using the genetic algorithm.
In 1996 IEEE International Symposium on Circuits and Systems, volume 4,
pages 500-503. IEEE Press, 1996.

E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. J. Heu-
ristics, 2(1):5-30, 1996.

T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search proce-
dures. J. Global Optim., 6(2):109-133, 1995.

M. L. Fisher and R. Jaikumar. A generalized assignment heuristic for vehicle
routing. Networks, 11(2):109-124, 1981.

244



8]

[89]

[90]

[91]

[92]

[96]

[97]

(98]

[99]

M. M. Flood. The traveling-salesman problem. Oper. Res., 4(1):61-75, 1956.

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through
Stmulated Fvolution. John Wiley & Sons, 1966.

C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective op-
timization: Formulation, discussion and generalization. In S. Forrest, editor,
5th International Conference on Genetic Algorithms, pages 416-423. Morgan
Kaufmann, 1993.

B. A. Foster and D. M. Ryan. An integer programming approach to the vehicle
scheduling problem. Oper. Res. Quart., 27(2):367-384, 1976.

P. M. Francis, K. R. Smilowitz, and M. Tzur. The period vehicle routing
problem and its extensions. In B. Golden, S. Raghavan, and E. Wasil, editors,
The Vehicle Routing Problem: Latest Advances and New Challenges, pages
73-102. Springer, 2008.

J. Franks. A (Terse) Introduction to Lebesque Integration. AMS, 2009.

A. S. Fraser. Simulation of genetic systems by automatic digital computers.
Aust. J. Biol. Sci., 10:484-491, 1957.

R. M. Friedberg. A learning machine: Part I. IBM J. Res. Dev., 2(1):2-13,
1958.

R. M. Friedberg, B. Dunham, and J. H. North. A learning machine: Part II.
IBM J. Res. Dev., 3(3):282-287, 1959.

L. M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A mul-
tiple ant colony system for vehicle routing problems with time windows. In
D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V.
Price, editors, New Ideas in Optimization, pages 63-76. McGraw-Hill, 1999.

A. Garcia-Najera. Preserving population diversity for the multi-objective ve-
hicle routing problem with time windows. In F. Rothlauf, editor, Genetic and
Evolutionary Computation Conference 2009, pages 2689-2692. ACM, 2009.

A. Garcia-Najera and J. A. Bullinaria. A multi-objective density restricted
genetic algorithm for the vehicle routing problem with time windows. In 2008
UK Workshop on Computational Intelligence, pages 47-52, 2008.

245



[100]

[101]

[102]

103]

[104]

[105]

[106]

107]

[108]

[109]

A. Garcia-Najera and J. A. Bullinaria. Bi-objective optimization for the ve-
hicle routing problem with time windows: Using route similarity to enhance
performance. In M. Ehrgott, C. Fonseca, X. Gandibleux, J. K. Hao, and M. Se-
vaux, editors, 5th International Conference on Evolutionary Multi-Criterion
Optimization, volume 5467 of LNCS, pages 275-289. Springer, 2009.

A. Garcia-Najera and J. A. Bullinaria. Comparison of similarity measures for
the multi-objective vehicle routing problem with time windows. In F. Rothlauf,
editor, Genetic and Fvolutionary Computation Conference 2009, pages 579—
586. ACM, 20009.

A. Garcia-Najera and J. A. Bullinaria. Optimizing delivery time in multi-
objective vehicle routing problems with time windows. In R. Schaefer,
C. Cotta, J. Kolodziej, and G. Rudolph, editors, 11th International Confe-
rence on Parallel Problem Solving From Nature, volume 6239 part I of LNCS,
pages 51-60. Springer, 2010.

A. Garcia-Najera and J. A. Bullinaria. An improved multi-objective evolutio-
nary algorithm for the vehicle routing problem with time windows. Comput.
Oper. Res., 38(1):287-300, 2011.

M. Gaudioso and G. Paletta. A heuristic for the periodic vehicle routing
problem. Transport. Sci., 26(2):86-92, 1992.

M. Gendreau and C. D. Tarantilis. Solving large-scale vehicle routing problems
with time windows: The state-of-the-art. Technical Report CIRRELT-2010-
04, Interuniversity Research Centre on Enterprise Networks, Logistics and

Transportation, Montreal, Canada, 2010.

M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the vehicle
routing problem. Manage. Sci., 40(10):1276-1290, 1994.

M. Gendreau, G. Laporte, and R. Séguin. An exact algorithm for the vehicle
routing problem with stochastic demands and customers. Transport. Sci., 29
(2):143-155, 1995.

M. Gendreau, G. Laporte, and R. Séguin. Stochastic vehicle routing. Fur. J.
Oper. Res., 88(1):3-12, 1996.

M. Gendreau, G. Laporte, and J.-Y. Potvin. Metaheuristics for the capacitated
VRP. In P. Toth and D. Vigo, editors, The vehicle routing problem, pages 129—

246



[110]

[111]

[112]

[113]

114]

[115]
[116]
[117]

[118]

[119]

[120]

[121]

[122]

154. STAM, 2001.

M. Gendreau, G. Laporte, and J.-Y. Potvin. Vehicle routing: modern heu-
ristics. In E. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial

Optimization. Princeton University Press, 2003.

K. Ghoseiri and S. F. Ghannadpour. Multi-objective vehicle routing problem
with time windows using goal programming and genetic algorithm. Appl. Soft.
Comput., 10(4):1096-1107, 2010.

[. Giannikos. A multiobjective programming model for locating treatment
sites and routing hazardous wastes. Fur. J. Oper. Res., 104(2):333-342, 1998.

B. E. Gillett and L. R. Miller. A heuristic algorithm for the vehicle-dispatch
problem. Oper. Res., 22(2):340-349, 1974.

[. D. Giosa, I. L. Tansini, and I. O. Viera. New assignment algorithms for the

multi-depot vehicle routing problem. J. Oper. Res. Soc, 53(9):977-984, 2002.
F. Glover. Tabu Search—Part I. INFORMS J. Comput., 1(3):190-206, 1989.
F. Glover. Tabu Search—Part II. INFORMS J. Comput., 2(1):4-32, 1990.

F. Glover and M. Laguna. Tabu Search. Springer, 1998.

D. E. Goldberg. Genetic algorithms in search, optimization and machine lear-
ning. Addison-Wesley, 1989.

D. E. Goldberg and K. Deb. A comparative analysis of selection schemes
used in genetic algorithms. In G. J. E. Rawlins, editor, First Workshop on
Foundations of Genetic Algorithms, pages 69-93. Morgan Kaufmann, 1991.

D. E. Goldberg and R. L. Jr. Alleles, loci, and the traveling salesman problem.
In J. J. Grefenstette, editor, 1st International Conference on Genetic Algo-
rithms and their Applications, pages 10—19. Lawrence Erlbaum Associates,
1985.

B. L. Golden, S. Raghavan, and E. Wasil, editors. The Vehicle Routing Pro-
blem: Latest Advances and New Challenges. Springer, 2008.

J. Grefenstette. Proportional selection and sampling algorithms. In T. Back,
D. B. Fogel, and Z. Michalewicz, editors, Evolutionary Computation 1: Basic
Algorithms and Operators. Institute of Physics Publishing, 2000.

247



[123] G. Gutin and A. Punnen. Traveling Salesman Problem and Its Variations.
Kluwer Academic Publishers, 2002.

[124] E. Hadjiconstantinou and D. Roberts. Routing under uncertainty: an appli-
cation in the scheduling of field service engineers. In P. Toth and D. Vigo,
editors, The vehicle routing problem, pages 331-352. STAM, 2001.

[125] R. W. Hamming. Error detecting and error correcting codes. Bell Syst. Tech.
J., 26(2):147-160, 1950.

[126] J. Holland. Adaptation in natural and artificial systems. University of Michi-
gan Press, 1975.

[127] J. Homberger. Verteilt-Parallele Metaheuristiken zur Tourenplanung. PhD
thesis, FernUniversitt, Hagen, Germany, 2000.

[128] J. Homberger and H. Gehring. Two evolutionary metaheuristics for the vehicle

routing problem with time windows. INFOR, 37(3):297 — 318, 1999.

[129] J. Homberger and H. Gehring. A two-phase hybrid metaheuristic for the
vehicle routing problem with time windows. Eur. J. Oper. Res., 162(1):220—
238, 2005.

[130] T. Ibaraki, S. Imahori, M. Kubo, T. Masuda, T. Uno, and M. Yagiura. Effec-
tive local search algorithms for routing and scheduling problems with general
time-window constraints. Transport. Sci., 39(2):206-232, 2005.

[131] P. Jaccard. Etude comparative de la distribution florale dans une portion des

alpes et des jura. Bull. Soc. Vaudoise Sci. Nat., 37:547-579, 1901.

[132] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case
study in local optimization. In E. Aarts and J. K. Lenstra, editors, Local

Search in Combinatorial Optimization. Princeton University Press, 2003.

[133] N. Jozefowiez, F. Semet, and E.-G. Talbi. Parallel and hybrid models for
multi-objective optimization: Application to the vehicle routing problem. In
J. J. M. Guervés, P. Adamidis, H.-G. Beyer, J. L. F.-V. Martin, and H.-P.
Schwefel, editors, 7th International Conference on Parallel Problem Solving
from Nature, volume 2439 of LNCS, pages 271-280. Springer, 2002.

[134] N. Jozefowiez, F. Semet, and E.-G. Talbi. Enhancements of NSGA II and

its application to the vehicle routing problem with route balancing. In E.-

248



[135]

136

[137]

138

[139)]

[140]

141]

142]

[143]

144]

[145)

G. Talbi, P. Liardet, P. Collet, E. Lutton, and M. Schoenauer, editors, 7th
International Conference on Artificial Evolution, volume 3871 of LNCS, pages
131-142, 2006.

N. Jozefowiez, F. Semet, and E.-G. Talbi. Multi-objective vehicle routing
problems. Eur. J. Oper. Res., 189(2):293-309, 2008.

N. Jozefowiez, F. Semet, and E.-G. Talbi. An evolutionary algorithm for the
vehicle routing problem with route balancing. FEur. J. Oper. Res., 195(3):
761-769, 2009.

S. Jung and B. R. Moon. A hybrid genetic algorithm for the vehicle rou-
ting problem with time windows. In Genetic and Evolutionary Computation
Conference 2002, pages 1309-1316. Morgan Kaufmann, 2002.

B. Kallehauge. Formulations and exact algorithms for the vehicle routing
problem with time windows. Comput. Oper. Res., 35(7):2307-2330, 2008.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan Kauf-
mann, 2001.

V. R. Khare, X. Yao, and K. Deb. Performance scaling of multi-objective
evolutionary algorithms. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb,
and L. Thiele, editors, 2nd International Conference on Fvolutionary Multi-
Criterion Optimization, volume 2632 of LNCS, pages 376-390. Springer, 2003.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671-680, 1983.

J. Knowles, L. Thiele, and E. Zitzler. A tutorial on the performance assessment
of stochastic multiobjective optimizers. Technical Report TIK 214, Computer
Engineering and Networks Laboratory (TIK), ETH, Zurich, Switzerland, 2006.

J. D. Knowles and D. W. Corne. The Pareto Archived Evolution Strategy: A
new baseline algorithm for Pareto multiobjective optimisation. In 1999 IEEE

Congress on Evolutionary Computation, pages 98-105. IEEE Press, 1999.

J. D. Knowles and D. W. Corne. Approximating the nondominated front using
the Pareto Archived Evolution Strategy. Fvol. Comput., 8(2):149-172, 2000.

249



[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

154]

[155]

[156]

[157]

J. B. Kollat and P. M. Reed. Comparing state-of-the-art evolutionary multi-
objective algorithms for long-term groundwater monitoring design. Adv. Water
Resour., 29(6):792-807, 2006.

A. Konak, D. W. Coit, and A. E. Smith. Multi-objective optimization using
genetic algorithms: A tutorial. Reliab. Eng. Syst. Safe., 91(9):992-1007, 2006.

G. Kontoravdis and J. F. Bard. A GRASP for the vehicle routing problem
with time windows. INFORMS J. Comput., 7(1):10-23, 1995.

E. F. Krause. Taxicab geometry: an adventure in non-Fuclidean geometry.
Dover Publications, 1986.

J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika, 29(1):1-27, 1964.

H. W. Kuhn. The Hungarian method for the assignment problem. Nav. Res.
Logist. @., 2(1):83-97, 1955.

F. Kursawe. A variant of evolution strategies for vector optimization. In H.-P.
Schwefel and R. Manner, editors, 1st Workshop on Parallel Problem Solving
from Nature, volume 496 of LNCS, pages 193-197. Springer, 1991.

G. Laporte. Fifty years of vehicle routing. Transport. Sci., 43(4):408-416,
2009.

G. Laporte and F. Semet. Classical heuristics for the capacitated VRP. In
P. Toth and D. Vigo, editors, The vehicle routing problem, pages 109-128.
STAM, 2001.

G. Laporte, F. Louveaux, and H. Mercure. The vehicle routing problem with
stochastic travel times. Transport. Sci., 26(3):161-170, 1992.

G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet. Classical and modern
heuristics for the vehicle routing problem. [Int. Trans. Oper. Res., 7(4):285—
300, 2000.

M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and

diversity in evolutionary multiobjective optimization. Evolut. Comput., 10(3):
263-282, 2002.

250



[158]

[159]

[160]

[161]

[162]

[163]

164]

[165]

[166]

[167]

168

[169]

A. Le Bouthillier and T. G. Crainic. A cooperative parallel meta-heuristic for
the vehicle routing problem with time windows. Comput. Oper. Res., 32(7):
1685-1708, 2005.

J. K. Lenstra and A. H. G. R. Kan. Complexity of vehicle routing and sche-
duling problems. Networks, 11(2):221-227, 1981.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Doklady, 10(8):707-710, 1966.

H. Li and A. Lim. Local search with annealing-like restarts to solve the vrptw.
Eur. J. Oper. Res., 150(1):115-127, 2003.

S. Lin. Computer solutions of the traveling salesman problem. Bell Syst. Tech.
J., 44(10):2245-2269, 1965.

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res., 21(2):498-516, 1973.

F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors. Parameter Setting in
Evolutionary Algorithms. Springer, 2007.

Y. Marinakis and A. Migdalas. Annotated bibliography in vehicle routing.
Oper. Res. Int. J., 7(1):27-46, 2007.

R. Marti, M. Laguna, and V. Campos. Scatter search vs. genetic algorithms:
An experimental evaluation with permutation problems. In C. Rego and
B. Alidaee, editors, Metaheuristic Optimization Via Adaptive Memory and
Evolution: Tabu Search and Scatter Search, pages 263-282. Kluwer Academic
Publishers, 2005.

R. McGill, J. W. Tukey, and W. A. Larsen. Variations of box plots. Am. Stat.,
32(1):12-16, 1978.

Q. Meng, D.-H. Lee, and R. L. Cheu. Multiobjective vehicle routing and sche-
duling problem with time window constraints in hazardous material transpor-
tation. J. Transp. Eng., 131(9):699-707, 2005.

D. Mester. An evolutionary strategies algorithm for large scale vehicle rou-
ting problem with capacitate and time windows restrictions. Working paper.

Institute of Evolution, University of Haifa, Israel, 2002.

251



[170]

171]

172]

173

[174]

[175]

[176]

[177]

[178]

[179]

D. Mester and O. Braysy. Active guided evolution strategies for large-scale
vehicle routing problems with time windows. Comput. Oper. Res., 32(6):1593—
1614, 2005.

D. Mester, O. Braysy, and W. Dullaert. A multi-parametric evolution strate-
gies algorithm for vehicle routing problems. Ezpert Syst. Appl., 32(2):508-517,
2007.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer, 1996.

Z. Michalewicz and M. Schmidt. Parameter control in practice. In F. G. Lobo,
C. F. Lima, and Z. Michalewicz, editors, Parameter setting in evolutionary

algorithms, pages 277-294. Springer, 2007.

M. Minsky. Steps toward artificial intelligence. In E. A. Feigenbaum and
J. Feldman, editors, Computers and Thought. McGraw-Hill, 1963.

R. H. Mole and S. R. Jameson. A sequential route-building algorithm em-
ploying a generalized savings criterion. Oper. Res. Quart., 27(1):503-511,
1976.

M. J. Morgan and C. L. Mumford. Capacitated vehicle routing: perturbing
the landscape to fool an algorithm. In D. Corne, Z. Michalewicz, B. McKay,
G. Eiben, D. Fogel, C. Fonseca, G. Greenwood, G. Raidl, K. C. Tan, and
A. Zalzala, editors, 2005 IEEE Congress on Evolutionary Computation, pages
2271-2277. IEEE Press, 2005.

T. Murata and R. Itai. Multi-objective vehicle routing problems using two-fold
EMO algorithms to enhance solution similarity on non-dominated solutions.
In C. A. Coello Coello, A. Hernandez, and E. Zitzler, editors, 3rd Internatio-
nal Conference on Evolutionary Multi-Criteria Optimization, volume 3410 of
LNCS, pages 885-896. Springer, 2005.

Y. Nagata. Edge assembly crossover for the capacitated vehicle routing pro-
blem. In 7th European Conference on Evolutionary Computation in Combina-

torial Optimization, pages 142—-153. Springer, 2007.

Y. Nagata and O. Braysy. Edge assembly-based memetic algorithm for the
capacitated vehicle routing problem. Networks, 54(4):205-215, 20009.

252



[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189)]

190]

Y. Nagata and S. Kobayashi. Edge assembly crossover: A high-power genetic
algorithm for the travelling salesman problem. In T. Back, editor, 7th Interna-
tional Conference on Genetic Algorithms, pages 450-457. Morgan Kaufmann,
1997.

[. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of permutation
crossover operators on the traveling salesman problem. In J. J. Grefenstette,
editor, Second International Conference on Genetic Algorithms on Genetic al-

gorithms and their application, pages 224-230. Lawrence Erlbaum Associates,
1987.

B. Ombuki, B. J. Ross, and F. Hanshar. Multi-objective genetic algorithms for
vehicle routing problem with time windows. Appd. Intel., 24(1):17-30, 2006.

I. Or. Traveling salesman-type combinatorial problems and their relation to
the logistics of blood banking. PhD thesis, Northwestern University, 1976.

I. H. Osman. Metastrategy simulated annealing and tabu search algorithms
for the vehicle routing problems. Ann. Oper. Res., 41(4):421-451, 1993.

J. Pacheco and R. Marti. Tabu search for a multi-objective routing problem.
J. Oper. Res. Soc., 57(1):29-37, 2006.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Dover Publications, 1998.

J. M. Pasia, K. F. Doerner, R. F. Hartl, and M. Reimann. A population-based
local search for solving a bi-objective vehicle routing problem. In C. Cotta and
J. I. van Hemert, editors, 7th Furopean Conference on Evolutionary Compu-
tation in Combinatorial Optimization, volume 4446 of LNCS, pages 166-175.
Springer, 2007.

F. B. Pereira and J. Tavares, editors. Bio-inspired Algorithms for the Vehicle
Routing Problem. Springer, 2008.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems.
Comput. Oper. Res., 34(8):2403-2435, 2007.

J.-Y. Potvin. A review of bio-inspired algorithms for vehicle routing. In
F. B. Pereira and J. Tavares, editors, Bio-inspired Algorithms for the Vehicle
Routing Problem, volume 161 of SCI, pages 1-34. Springer, 2009.

253



[191] J.-Y. Potvin. Evolutionary algorithms for vehicle routing. INFORMS J. Com-
put., 21(4):518-548, 2009.

[192] J.-Y. Potvin and S. Bengio. The vehicle routing problem with time windows
— part II: Genetic search. INFORMS J. Comput., 8(2):165-172, 1996.

[193] J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm for the
vehicle routing and scheduling problem with time windows. Fur. J. Oper.
Res., 66(3):331-340, 1993.

[194] J.-Y. Potvin, T. Kervahut, B.-L. Garcia, and J.-M. Rousseau. The vehicle
routing problem with time windows — part I: Tabu search. INFORMS J.
Comput., 8(2):158-164, 1996.

[195] C. Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. Comput. Oper. Res., 31(12):1985-2002, 2004.

[196] C. Prins. A GRASP x evolutionary local search hybrid for the vehicle routing
problem. In F. B. Pereira and J. Tavares, editors, Bio-inspired Algorithms for
the Vehicle Routing Problem, volume 161 of SCI, pages 35-53. Springer, 2009.

[197] M. Rahoual, B. Kitoun, M.-H. Mabed, V. Bachelet, and F. Benameur. Multi-
criteria genetic algorithms for the vehicle routing problem with time windows.
In 4th Metaheuristics International Conference, pages 527-532, 2001.

[198] I. Rechenberg. Cybernetic solution path of an experimental problem. Technical
report, Royal Aircraft Establishment, 1965.

[199] 1. Rechenberg. Ewvolutionsstrategie: optimierung technischer systeme nach

prinzipien der biologischen evolution. Frommann-Holzboog, 1973.

[200] C. R. Reeves and J. E. Beasley. Introduction. In C. R. Reeves, editor, Modern
heuristic techniques for combinatorial problems, pages 1-19. John Wiley &
Sons, 1993.

[201] J. Renaud, F. F. Boctor, and G. Laporte. An improved petal heuristic for the
vehicle routeing problem. J. Oper. Res. Soc., 47(2):329-336, 1996.

[202] J. Renaud, G. Laporte, and F. F. Boctor. A tabu search heuristic for the multi-
depot vehicle routing problem. Comput. Oper. Res., 23(3):229-235, 1996.

254



[203] P. P. Repoussis, C. D. Tarantilis, and G. Ioannou. Arc-guided evolutionary
algorithm for the vehicle routing problem with time windows. IEFEE Trans.
Evolut. Comput., 13(3):624-647, 2009.

[204] Y. Rochat and E. Taillard. Probabilistic diversification and intensification in
local search for vehicle routing. J. Heuristics, 1(1):147-167, 1995.

[205] S. Ronald. More distance functions for order-based encodings. In 1998 IEEE
International Conference on Fvolutionary Computation, pages 558-563. IEEE
Press, 1998.

[206] S. Ropke and D. Pisinger. A unified heuristic for a large class of vehicle routing
problems with backhauls. Eur. J. Oper. Res., 171(3):750-775, 2006.

[207] L.-M. Rousseau, M. Gendreau, and G. Pesant. Using constraint-based opera-
tors to solve the vehicle routing problem with time windows. J. Heuristics, 8
(1):43-58, 2002.

[208] D. M. Ryan, C. Hjorring, and F. Glover. Extensions of the petal method for
vehicle routeing. J. Oper. Res. Soc., 44(3):289-296, 1993.

[209] F. E. Satterthwaite. Random balance experimentation. Technometrics, 1(2):
111-137, 1959.

[210] M. W. P. Savelsbergh. The vehicle routing problem with time windows: Mi-
nimizing route duration. INFORMS J. Comput., 4(2):146-154, 1992.

[211] M. W. P. Savelsbergh and M. Sol. The general pickup and delivery problem.
Transport. Sci., 29(1):17-29, 1995.

[212] J. D. Schaffer. Multiple objective optimization with vector evaluated genetic
algorithms. In J. J. Grefenstette, editor, First International Conference on
Genetic Algorithms and their Applications, pages 93-100. Lawrence Erlbaum
Associates, 1985.

[213] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record brea-
king optimization results using the ruin and recreate principle. J. Comput.
Phys., 159(2):139-171, 2000.

[214] H.-P. Schwefel. Kybernetische Evolution als Strategie der experimentellen For-
schung in der Stromungstechnik. PhD thesis, Technical University of Berlin,

Hermann Fottinger Institute for Hydrodynamics, Berlin, Germany, 1965.

255



[215]

[216]

[217]

[218]

219]

[220]

221]

222

[223]

224]

[225]

[226]

P. Shaw. A new local search algorithm providing high quality solutions to
vehicle routing problems. Working paper, 1997. University of Strathclyde,
Glasgow, United Kingdom.

P. Shaw. Using constraint programming and local search methods to solve
vehicle routing problems. In M. Maher and J.-F. Puget, editors, 4th Inter-
national Conference on Principles and Practice of Constraint Programming,
volume 1520 of LNCS, pages 417-431. Springer, 1998.

B. W. Silverman. Density estimation for statistics and data analysis. Chapman
and Hall, 1986.

M. M. Solomon. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Oper. Res., 35(2):254-265, 1987.

K. Sorensen. Distance measures based on the edit distance for permutation-
type representations. In Workshop on Analysis and Design of Representations

and Operators, pages 15-21, 2003.

K. Sorensen. Distance measures based on the edit distance for permutation-
type representations. J. Heuristics, 13(1):35-47, 2007.

K. Soérensen and M. Sevaux. MA|PM: memetic algorithms with population
management. Comput. Oper. Res., 33(5):1214-1225, 2006.

W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application of
simplex designs in optimisation and evolutionary operation. Technometrics, 4
(4):441-461, 1962.

N. Srinivas and K. Deb. Muiltiobjective optimization using nondominated
sorting in genetic algorithms. Evol. Comput., 2(3):221-248, 1994.

G. Syswerda. Uniform crossover in genetic algorithms. In J. D. Schaffer, edi-
tor, 3rd International Conference in Genetic Algorithms, pages 2-9. Morgarn
Kaufmann, 1989.

E. Taillard. Parallel iterative search methods for vehicle routing problems.
Networks, 23(8):661-673, 1993.

E. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin. A Tabu
Search Heuristic for the Vehicle Routing Problem with Soft Time Windows.
Transport. Sci., 31(2):170-186, 1997.

256



[227]

[228]

[220]

[230]

[231]

232]

233

[234]

[235]

[236]

[237]

238

239

C. Tan and J. Beasley. A heuristic algorithm for the period vehicle routing
problem. Omega, 12(5):497-504, 1984.

K. C. Tan, Y. H. Chew, and L. H. Lee. A hybrid multiobjective evolutionary
algorithm for solving vehicle routing problem with time windows. Comput.
Optim. and Appl., 34(1):115-151, 2006.

K. C. Tan, Y. H. Chew, and L. H. Lee. A hybrid multiobjective evolutionary
algorithm for solving truck and trailer vehicle routing problems. Eur. J. Oper.
Res., 172(3):855-885, 2006.

K. C. Tan, C. K. Goh, Y. J. Yang, and T. H. Lee. Evolving better population
distribution and exploration in evolutionary multi-objective optimization. Fur.
J. Oper. Res., 171(2):463-495, 2006.

K. C. Tan, C. Y. Cheong, and C. K. Goh. Solving multiobjective vehicle
routing problem with stochastic demand via evolutionary computation. Eur.

J. Oper. Res., 177(2):813-839, 2007.

A. Toffolo and E. Benini. Genetic diversity as an objective in multi-objective
evolutionary algorithms. Fvol. Comput., 11(2):151-167, 2003.

P. Toth and D. Vigo. An exact algorithm for the vehicle routing problem with
backhauls. Transport. Sci., 31(4):372-385, 1997.

P. Toth and D. Vigo. Exact solution of the vehicle routing problem. In T. G.
Crainic and G. Laporte, editors, Fleet Management and Logistic, pages 1-31.
Kluwer Academic Publisher, 1998.

P. Toth and D. Vigo, editors. The vehicle routing problem. SIAM, 2001.

P. Toth and D. Vigo. An overview of vehicle routing problems. In P. Toth
and D. Vigo, editors, The vehicle routing problem, pages 1-26. STAM, 2001.

P. Toth and D. Vigo. VRP with backhauls. In P. Toth and D. Vigo, editors,
The vehicle routing problem, pages 195-224. STAM, 2001.

P. Toth and D. Vigo. Models, relaxations and exact approaches for the capa-
citated vehicle routing problem. Discrete Appl. Math., 123(1):487-512, 2002.

P. Toth and D. Vigo. The granular tabu search and its application to the
vehicle routing problem. INFORMS J. Comput., 15(4):333-346, 2003,

257



240]

[241]

242

243]

[244]

[245]

[246]

[247]

[248]

249

[250]

B. Ulungu, J. Teghem, P. Fortemps, and D. Tuyttens. Mosa method: a tool for
solving multi-objective combinatorial optimization problems. J. Multi-Criteria
Decis. Anal., 8:221-236, 1999.

P. J. M. van Laarhoven and E. H. L. Aarts, editors. Simulated annealing:
theory and applications. Kluwer Academic Publishers, 1987.

D. A. Van Veldhuizen. Multiobjective evolutionary algorithms: classifications,
analyses, and new innovations. PhD thesis, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, USA, 1999.

N. Velasco, P. Castagliola, P. Dejax, C. Guéret, and C. Prins. A memetic al-
gorithm for a pick-up and delivery problem by helicopter. In F. B. Pereira and
J. Tavares, editors, Bio-inspired Algorithms for the Vehicle Routing Problem,
pages 173-190. Springer, 2009.

R. M. Vicente Campos, Manuel Laguna. Context-independent scatter and
tabu search for permutation problems. INFORMS J. Comput., 17(1):111-122,
2005.

T. Volgenant and R. Jonker. The symmetric traveling salesman problem and

edge exchanges in minimal 1-trees. Fur. J. Oper. Res., 12(4):394-403, 1983.

C. Voudouris and E. Tsang. Guided local search and its application to the
traveling salesman problem. Eur. J. Oper. Res., 113(2):469-499, 1999.

R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J.
Assoc. Comput. Mach., 21(1):168-173, 1974.

S. Watanabe and K. Sakakibara. A multiobjectivization approach for vehicle
routing problems. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Mu-
rata, editors, 4th International Conference on Evolutionary Multi-criterion

Optimization, volume 4403, pages 660-672. Springer, 2007.

L. D. Whitley. Permutations. In T. Back, D. B. Fogel, and Z. Michalewicz, edi-
tors, Evolutionary Computation 1: Basic Algorithms and Operators. Institute
of Physics Publishing, 2000.

L. D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems and
traveling salesmen: The genetic edge recombination operator. In J. D. Schaffer,

editor, 3rd International Conference on Genetic Algorithms, pages 133-140.

258



[251]

[252]

[253]

[254]

255

[256]

[257]

258

[259]

260]

[261]

Morgan Kaufmann, 1989.

S. Wolf and P. Merz. Evolutionary local search for the super-peer selection
problem and the p-hub median problem. In 4th International Conference on

Hybrid Metaheuristics, pages 1-15. Springer, 2007.
A. Wren. Computers in transport planning and operation. lan Allen, 1971.

A. Wren and A. Holliday. Computer scheduling of vehicles from one or more

depots to a number of delivery points. Oper. Res. Quart., 23(3):333-344, 1972.

T. Yu and L. Davis. An introduction to evolutionary computation in prac-
tice. In T. Yu, L. Davis, C. M. Baydar, and R. Roy, editors, FEvolutionary
Computation in Practice, volume 88 of SCI, pages 1-8. Springer, 2008.

T. Yu, L. Davis, C. M. Baydar, and R. Roy, editors. Evolutionary Computation
in Practice, volume 88 of SCI. Springer, 2008.

K. Q. Zhu. A diversity-controlling adaptive genetic algorithm for the vehicle
routing problem with time windows. In 15th IEEE International Conference
on Tools with Artificial Intelligence, pages 176-183. IEEE Computer Society,
2003.

E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. PhD thesis, ETH, Zurich, Switzerland, 1999.

E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algo-
rithms — a comparative case study. In A. E. Eiben, T. Back, M. Schoenauer,
and H.-P. Schwefel, editors, 5th International Conference on Parallel Problem
Solving from Nature V, volume 1498 of LNCS, pages 292-304. Springer, 1998.

E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A compara-
tive case study and the Strenght Pareto approach. IEEE T. Evolut. Comput.,
3(4):257-271, 1999.

E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evol. Comput., 8(2):173-195, 2000.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Technical Report TIK 103, Computer Engi-
neering and Networks Laboratory (TIK), ETH, Zurich, Switzerland, 2001.

259



262]

263

[264]

[265]

E. Zitzler, M. Laumanns, and L. Thiele. SPEA 2: Improving the Strength
Pareto Evolutionary Algorithm for multiobjective optimization. In K. Gian-
nakoglou, D. Tsahalis, J. Periaux, K. Papailiou, and T. Fogarty, editors, Fvolu-
tionary Methods for Design, Optimisation and Control, pages 19-26. CIMNE,
2002.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca.
Performance assesment of multiobjective optimizers: An analysis and review.

IEEE T. Evolut. Comput., 7(2):117-132, 2003.

E. Zitzler, M. Laumanns, and S. Bleuler. A tutorial on evolutionary mul-
tiobjective optimization. In X. Gandibleux, M. Sevaux, K. Sorensen, and
V. T’kindt, editors, Metaheuristics for Multiobjective Optimisation, volume
535 of LNEMS, pages 3-38. Springer, 2004.

E. Zitzler, J. D. Knowles, and L. Thiele. Quality assessment of pareto set
approximations. In J. Branke, K. Deb, K. Miettinen, and R. Slowinski, edi-
tors, Multiobjective Optimization: Interactive and Evolutionary Approaches,
volume 5252 of LNCS, pages 373-404. Springer, 2008.

260



	Introduction
	Motivation
	Research objectives
	Contributions
	Publications resulting from this thesis
	Thesis outline

	Combinatorial optimisation problems
	What are combinatorial optimisation problems?
	How to solve combinatorial optimisation problems
	Local search
	k-opt heuristic
	Or-opt heuristic
	-interchange heuristic

	Tabu Search
	Evolutionary Algorithms
	Solution representation
	Initial population
	Fitness assignment
	Parent selection
	Recombination
	Mutation
	Survival selection
	Repetition
	Parameter setting


	Multi-objective combinatorial optimisation problems
	Terminology
	Performance metrics
	Coverage
	Convergence
	Hypervolume


	Multi-objective Evolutionary Algorithms
	Fitness assignment
	Aggregation
	Criterion
	Pareto dominance

	Diversity preservation
	Kernel methods
	Nearest neighbour
	Histogram

	Pareto Archived Evolution Strategy
	Fitness assignment
	Diversity preservation

	Strength Pareto Evolutionary Algorithm 2
	Fitness assignment
	Diversity preservation

	Non-dominated Sorting Genetic Algorithm II
	Fitness assignment
	Diversity preservation

	Comparison of multi-objective Evolutionary Algorithms

	Solution distance measures for combinatorial problems
	Exact match distance
	Deviation distance
	R-permutation distance
	Edit distance
	Distance measures for solutions to Vehicle Routing Problems

	Summary

	Vehicle Routing Problems
	Capacitated VRP
	Benchmark sets of the Capacitated VRP
	Christofides et al.'s benchmark set
	Rochat and Taillard's benchmark set

	Classical construction heuristics
	Clarke and Wright's savings heuristic
	Gillet and Miller's sweep algorithm

	Overview of metaheuristic approaches
	Results from previous studies

	VRP with Time Windows
	Solomon's benchmark set of the VRP with Time Windows
	Solomon's I1 insertion heuristic
	Overview of metaheuristic approaches
	Results from previous studies

	Other Vehicle Routing Problems
	VRP with Backhauls
	VRP with Pickups and Deliveries
	Multiple Depot VRP
	Periodic VRP
	Split Delivery VRP
	Stochastic VRP

	Multi-objective Vehicle Routing Problems
	Overview of metaheuristic approaches
	Results from previous studies

	The way forward
	Summary

	Preliminary approaches to solving VRPs with Time Windows
	Exploratory Evolutionary Algorithm
	Experimental analysis

	Multi-objective density-restricted Genetic Algorithm
	Algorithm design
	Solution encoding
	Initial population
	Fitness assignment
	Density of solutions
	Parent selection
	Recombination
	Mutation
	Survival selection

	Experimental analysis
	Comparison with optimum solutions
	Comparison with previous studies
	Analysis of the population diversity

	A note on the presentation of results

	Bi-objective Evolutionary Algorithm
	Algorithm design
	Solution encoding
	Solution similarity measure
	Parent selection
	Mutation
	Survival selection

	Experimental analysis
	Edit distance v Jaccard similarity
	Effect of the similarity measure
	Single-objective v bi-objective optimisation
	Comparison with previous studies
	Influence of the mutation operators on performance


	Summary

	Multi-Objective Evolutionary Algorithm for solving VRPs
	Multi-Objective Evolutionary Algorithm
	Mutation
	Basic functions
	Mutation operators


	Bi-objective optimisation of VRPs with Time Windows
	Analysis of the Pareto approximations
	Comparison with BiEA
	Comparison with previous studies
	Comparison with NSGA-II

	Tri-objective optimisation of VRPs with Time Windows
	Effect of the minimisation of the delivery time
	Comparison with previous studies
	Comparison with NSGA-II

	Bi-objective optimisation of Capacitated VRPs
	Solution of the Christofides et al.'s benchmark set
	Solution of the Rochat and Taillard's benchmark set

	Summary

	Conclusions
	Evaluation of the proposed approach
	Multi-objective density-restricted Genetic Algorithm
	Bi-objective Evolutionary Algorithm
	Multi-Objective Evolutionary Algorithm
	Bi-objective optimisation of the VRPTW
	Tri-objective optimisation of the VRPTW
	Bi-objective optimisation of the CVRP

	Final discussion

	Main contributions and achievements
	Population diversity preservation
	Solution of VRPs by means of an Evolutionary Algorithm
	Multi-objective performance analysis

	Directions for future research
	Enhancement of the Multi-Objective Evolutionary Algorithm
	Further study of Vehicle Routing Problems


	Sample of Pareto approximations, performance metrics and statistics
	Bibliography

