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Abstract

This thesis describes the research on the use of non-linear formant trajectories to model

speech dynamics under the framework of a multiple-level segmental hidden Markov model

(MSHMM). The particular type of intermediate-layer model investigated in this study is

based on the 12-dimensional parallel formant synthesiser (PFS) control parameters, which

can be directly used to synthesise speech with a formant synthesiser. The non-linear formant

trajectories are generated by using the speech parameter generation algorithm proposed by

Tokuda and colleagues. The performance of the newly developed non-linear trajectory model

of dynamics is tested against the piecewise linear trajectory model in both speech recogni-

tion and speech synthesis. In speech synthesis experiments, the 12 PFS control parameters

and their time derivatives are used as the feature vectors in the HMM-based text-to-speech

system. The human listening test and objective test results show that, despite the low overall

quality of the synthetic speech, the non-linear trajectory model of dynamics can significantly

improve the intelligibility and naturalness of the synthetic speech. Moreover, the gener-

ated non-linear formant trajectories match actual formant trajectories in real human speech

fairly well. The N -best list rescoring paradigm is employed for the speech recognition ex-

periments. Both context-independent and context-dependent MSHMMs, based on different

formant-to-acoustic mapping schemes, are used to rescore an N -best list. The rescoring

results show that the introduction of the non-linear trajectory model of formant dynamics

results in statistically significant improvement under certain mapping schemes. In addition,

the smoothing in the non-linear formant trajectories has been shown to be able to account for

contextual effects such as coarticulation.
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Chapter 1

Introduction

The year 1968 saw a Stanley Kubrick epic – 2001: A Space Odyssey, which stars a super

computer called HAL that can speak naturally and respond properly to spoken language.

Moreover, this highly intelligent machine is capable of lipreading. This classic sci-fi film, in

a sense, vividly depicted how man would communicate with machines in the future. To date,

voice, lip shape, gesture, emotion and eye movement (Cooke 2006) have all been studied for

human-computer interaction. Speech, as the primary means of communication for people, is

a major modality of research in natural multimodal human-machine communication.

1.1 Background

Computer speech recognition and synthesis are two key component technologies in nat-

ural human-machine interaction. The former deals with the problem of automatic conver-

sion of an acoustic speech signal into text, while the latter performs the reverse task. Cur-

rent automatic speech recognition (ASR) systems are firmly based on statistical methods

(Jelinek 1998), and the use of hidden Markov models (HMMs) (Rabiner 1989) for acoustic

modelling predominates in large-vocabulary continuous speech recognition (LVCSR, see,

e.g., Young (1995)). On the other hand, the most successful approach to speech synthesis has

been based on unit selection techniques (Hunt & Black 1996), though statistical parametric

speech synthesis (Black, Zen & Tokuda 2007), most notably HMM-based synthesis (Tokuda,

Yoshimura, Masuko, Kobayashi & Kitamura 2000), has recently become increasingly pop-

ular. With the emergence of the trajectory HMM (Tokuda, Zen & Kitamura 2003), speech

1
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recognition and synthesis began to converge (Zen, Tokuda & Kitamura 2007, Zhang 2009).

Conventional HMMs, whilst popular in both speech recognition and synthesis, treat

speech as a surface phenomenon, and take little account of the underlying speech production

mechanism (King, Frankel, Livescu, McDermott, Richmond & Wester 2007). The stan-

dard HMM framework assumes that the basic structure of speech consists of a sequence of

stationary segments of variable duration, with instantaneous transitions between them. All

variations from this underlying structure, either durational or segmental, are treated as noise,

rather than as the consequence of modelable articulatory phenomena.

To illustrate this point, consider how classical HMMs account for coarticulation – i.e. the

phenomenon whereby the articulation of individual segments is almost always influenced by

the articulation of neighbouring segments, often to the point of considerable overlapping of

articulatory activities (Clark & Yallop 1990). An example showing the effect of coarticula-

tion is the sound [æ̃]1 in a word like ‘cant’, where [æ] becomes nasalised when the velum

lowers prematurely to get ready for the articulation of the following nasal [n]. Taking the

traditional “beads-on-a-string” (Ostendorf 1999) approach in which words are represented

as a sequence of phonemes2, conventional HMMs deal with coarticulation by using context-

dependent (CD) phone models, such as biphones, triphones and even higher models. A

triphone, for instance, takes the form of [x-y+z] in which the given phoneme [y] occurs im-

mediately after an [x] and before a [z]. Different models would therefore exist for the [y]

for every unique pair of left and right neighbours. In hidden Markov modelling of speech,

virtually all phonetic and phonological variation is dealt with by using these CD models.

Unfortunately, the increased level of detail of context-sensitivity resulting from the use

of CD models is achieved at the cost of a huge explosion in the number of model parameters,

and consequently a vast quantity of training data is required to enable robust estimation of

all parameters. For large vocabulary recognition which includes a variety of speakers and

speaking styles, it is impossible to obtain sufficient training data to cover all possible con-

texts. A number of methods have therefore been exploited to overcome the need for very

1The phonetic notation in the text follows the International Phonetic Alphabet (IPA) system (IPA 1999).
2The term phoneme denotes the smallest segmental unit of sound employed to form meaningful contrasts

between utterances (IPA 1999), whereas the term phone refers to a particular acoustic realisation of a phoneme.
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large training corpora by “tying” parameters between HMMs or between states. For exam-

ple, generalised triphones (Lee 1990) can be formed by merging similar CD models, and

phonetic decision trees (Young, Odell & Woodland 1994) are usually employed as a means

of choosing similar states which then share training data and parameters. Alternatively, tri-

phonic models can be composed from models of less context-dependency (e.g., biphones)

based on Bayesian statistics, with the result that the number of free parameters is reduced by

higher than an order of magnitude (Ming, O’Boyle, Owens & Smith 1999).

Indeed, the use of CD models has been shown to be of great benefit in improving recog-

nition performance, compared with the use of context-independent (CI) models. However,

it is an extravagant approach to the coarticulation problem in acoustic-phonetic modelling

(Richards & Bridle 1999) and always suffers from data-sparsity problems unless unlimited

training data is available. The fact that coarticulation is an inherent phenomenon in speech

production implies that it would be most straightforward modelled in the articulatory domain

where it occurs. Again taking the nasalised sound [æ̃] in the word ‘cant’ as an example, the

process which transforms [æ] into [æ̃] could be described concisely in terms of the spread-

ing of one distinctive feature (see, e.g., Chomsky & Halle (1968)), i.e. the velic aperture

(Browman & Goldstein 1992), from [n] backwards to [æ]. Intuitively, an appropriate model

of articulator dynamics should be able to characterise contextual effects more efficiently.

An explicit model of dynamics at the production level is expected to aid recognition,

especially recognition of conversational speech, which, in comparison with read speech,

contains substantial variations caused by increased coarticulation, highly variable speaking

rate and various types of disfluency. All these make automatic recognition of conversa-

tional and spontaneous speech a big obstacle to the ultimate goal of computer recognition

– i.e., be unconstrained, real-time, with human-like performance. Current ASR systems

have difficulties in coping with these less controlled task domains, such as automatic tran-

scription of the Switchboard conversational telephone speech (CTS) (Godfrey, Holliman &

McDaniel 1992, LDC 1995). Performance in terms of word error rates (WERs)3 on the orig-

3WER is the primary measure of speech recognition performance, which is defined by WER =
ND+NS+NI

N × 100%, where ND, NS and NI donate the number of word deletion, substitution and insertion
errors respectively in the recognition output and N is the total number of words in the reference transcripts.
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inal Switchboard corpus were initially high, with a reported WER of 67% (Young, Wood-

land & Byrne 1994) using the hidden Markov model toolkit (HTK)4 recogniser that gave

state-of-the-art performance on read speech from the North American Business (NAB) news

texts (e.g., a WER of 7.2% was achieved in the 1994 NIST benchmark test on the NAB

read-sentence corpus using the HTK recogniser (Woodland, Leggetter, Odell, Valtchev &

Young 1995)). More recent research has reduced these high error rates for the Switchboard-

1 recognition task to the vincinty of 19% by using more training data and employing ad-

vanced adaptation and speech modelling techniques (Hain, Woodland, Evermann, Gales,

Liu, Moore, Povey & Wang 2005). Nevertheless, there is still a considerable performance

gap between computer recognition of read and conversational speech. Further, recognition

performance by machines still falls far below that of humans – e.g., subjective listening ex-

periments showed that error rates of humans on data from the NAB read speech corpus and

the Switchboard database were typically 1% and 4%, respectively (Lippmann 1997).

Model adaptation techniques are commonly used to accommodate systematic changes

caused by differences between speaking styles (e.g., read/spontaneous speech), or inter-

speaker differences which result from physiological factors, such as the differences between

adult’s vocal tract and that of a children. In principle, model adaptation attempts to re-

estimate a large number of model parameters using only a small amount of adaptation data

from the target domain. This is usually achieved by means of adjusting the model param-

eters using linear transformations which are calculated to maximise the likelihood of the

adaptation data (see, e.g, Leggetter & Woodland (1995)), or maximum a posteriori (MAP)

estimation (Gauvain & Lee 1994) which intends to maximise the posterior distribution of

the model parameters to be estimated for which a prior distribution is assumed.5 Although

these approaches are useful in improving ASR performance, they cannot characterise, explic-

itly, the underlying production strategies which cause the differences. Furthermore, model

adaptation has its own problems that need to be solved. For instance, supervised adaptation

requires correctly labelled adaptation utterances, and it is always difficult to collect a large

4The HTK (Young, Evermann, Gales, Hain, Kershaw, Moore, Odell, Ollason, Povey, Valtchev & Woodland
2005) is one of the most widely used software tools for speech recognition research today.

5Model adaptation is used in the synthesis experiments to mimic an individual’s voice (see Chapter 6).
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number of such utterances; unsupervised adaptation, on the other hand, usually resorts to

recognition hypotheses as the supervision source, which includes not only the correct labels

but also the recognition errors (Furui 2009).

Rather than relying entirely on generic statistical modelling techniques to accommodate

acoustic variability with ever lager training databases, it should be better to directly model

the underlying speech production mechanisms which might have caused the variability. In

the terminology of Bourlard, Hermansky & Morgan (1996, paraphrasing Jordan Cohen), this

is related to the distinction between speech description (which we usually do by increasing

the number of models and parameters) and speech modelling (which we all would like to

do by extracting the underlying properties and invariants of the speech signal). Explicit

modelling of speech dynamics in an articulatory-based space offers the chance to characterise

many phenomena which arise from simple changes in the production mechanism, yet exhibit

intricate variations in the surface description of speech. Acoustic features of speech, for

example, which are typically derived from short-term log power spectra, reflect articulatory

dynamics indirectly, often as movement across (rather than within) frequency bands (Jackson

& Russell 2002), resulting in complex paths in the acoustic feature space.

Despite the knowledge we have about speech production and its potential benefits in

improving ASR performance,6 information at this deeper level is not always available in

practice. From the perspective of accessibility and practicability, the acoustics is still the

prevailing information source for most ASR systems to work with. Actual articulation data,

such as the Electromagnetic Articulograph (EMA) data from the MOCHA corpus (Wrench

2001), is very expensive to collect and hence larger scale corpora of this kind are severely

limited. Automatic extraction of articulatory features from the acoustic speech signal, or

articulatory inversion (Richmond 2001), is a non-trivial pattern processing task and prone

to errors. On top of these, even if the articulatory information is available, the underlying

model structure of conventional HMMs does not provide a framework for accommodating

speech production knowledge since this knowledge is generally not directly applicable to the

surface level representations of speech (Russell 1997). Many of those working in the speech

6A survey of the use of speech production knowledge to aid ASR has been given by King et al. (2007).
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W

Acoustic layer (e.g., MFCCs)

Synthetic acoustic layer

Formant-to-acoustic mapping

Formant-based intermediate layer

Finite state process

Figure 1.1: A linear/linear multiple-level segmental HMM in which the relationship between
the symbolic and acoustic representations of a speech signal is regulated by a formant-based
intermediate layer.

recognition community believe that new computational paradigms beyond HMMs should be

pursued if the ASR problem is to be solved for good, even though these new approaches may

lead to the increase in error rates on standard tests in the short term.

In recent years, research at the University of Birmingham, motivated by the considera-

tions mentioned above, has led to a class of multiple-level segmental HMMs (MSHMMs)

(Russell & Jackson 2005), in which the relationship between symbolic and acoustic repre-

sentations of speech is regulated by an intermediate ‘articulatory’ layer. The incorporation

of such an intermediate layer provides the opportunity to model speech dynamics directly

in an articulatory-related space. The resulting model is very rich in mathematical structure,

which allows many options for the development of alternative articulatory representations,

models of speech dynamics and articulatory-to-acoustic mapping schemes.

As a starting point, a simple linear/linear MSHMM was proposed (Russell & Jackson

2005) (see Figure 1.1), in which dynamics were modelled as piecewise linear trajectories

in the formant-based7 intermediate layer and projected onto the acoustic layer, e.g., Mel-

7Formants are the main resonance modes of the vocal tract, which correspond to the peaks in the short-term
spectrum. Formant frequencies are usually referred to as F1, F2 and F3 and so on (in ascending order of the
resonance frequencies).
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frequency cepstral coeffcients (MFCCs) (Davis & Mermelstein 1980), via a linear formant-

to-acoustic mapping. The ‘synthetic’ acoustic layer shown in Figure 1.1 corresponds to

the transformed formant trajectories in the acoustic domain (by using a piecewise linear

formant-to-acoustic mapping), whereby comparison is made with the actual acoustic obser-

vations (i.e. MFCCs). The theory of linear/linear MSHMMs was established, including the

derivation of segmental Viterbi decoding and expectation-maximisation (EM) (Dempster,

Laird & Rubin 1977) model parameter estimation algorithms (see Chapter 4). A collec-

tion of software tools, named ‘SEGVit’, was implemented to perform MSHMMs training

and testing. Extensive phone classification and recognition experiments were conducted and

reported (Russell & Jackson 2005, Russell, Zheng & Jackson 2007) on the TIMIT speech

corpus (Garofolo, Lamel, Fisher, Fiscus, Pallett, Dahlgren & Zue 1993).

A major motivation for studying these simple linear/linear MSHMMs is to confirm that

the introduction of such an intermediate layer does not “hurt” the system performance. An

appropriate linear fixed-trajectory segmental HMM (FTSHMM) (Holmes & Russell 1999),

which models acoustic features directly using linear trajectories in the acoustic domain, pro-

vides a theoretical upper bound on the performance of a linear/linear MSHMM because of

the linear nature of the formant trajectories and the linear mappings to the acoustic space.8 It

has been demonstrated that, despite the simplicity of this linear/linear MSHMM system, the

phone classification and recognition performance can achieve the upper bound given proper

combination of intermediate representations and formant-to-acoustic mappings. In other

words, the incorporation of such a formant-based ‘articulatory’ layer does not compromise

the system performance. In fact, compared with a conventional HMM, superior performance

can be achieved by using an MSHMM with 25% fewer parameters (Russell & Jackson 2005).

These results give us confidence that further improvements in recognition performance may

be obtained by using appropriate non-linear trajectory models of dynamics, alternative inte-

mediate ‘articulatory’ representations or non-linear articulatory-to-acoustic mappings.

The primary goal of this research is to develop an improved, non-linear trajectory model

of speech dynamics, relative to a piecewise linear trajectory model as used in previous work

8Section 2.3.4 provides a more detailed description of FTSHMMs.
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(Russell & Jackson 2005, Russell et al. 2007), and integrate it into the MSHMM framework.

Investigating alternative articulatory representations and non-linear articulatory-to-acoustic

mappings does not form part of the work reported in this thesis. The intermediate ‘articula-

tory’ representation concerned in this research continues to be the 12 parallel formant syn-

thesiser (PFS) control parameters9 from the Holmes-Mattingley-Shearme (HMS) formant

synthesiser (Holmes, Mattingly & Shearme 1964), as used in (Russell & Jackson 2005). Al-

though such a formant-based parameterization is not truly articulatory, it will be referred to as

an ‘articulatory’ representation in this thesis to remind us of the motivation for the inclusion

of such a layer. A similar intermediate representation has been studied in (Deng 1998, Deng

& Ma 2000), which comprises the first three vocal tract resonance (VTR) frequencies – the

pole locations of the vocal tract configured to produce speech sounds.

Linear formant-to-acoustic mappings designed for five different phone categorisation

schemes, as described in (Russell & Jackson 2005, see Table 4.1 on page 81), will be in-

herited in this work. For these reasons, the new, non-linear trajectory model will be referred

to as a non-linear/linear MSHMM in this thesis. However, it should be noted at this point

that the relationship between formant and spectrum-based representations of speech is indeed

non-linear (Richards & Bridle 1999, Russell et al. 2007), and therefore the use of non-linear

formant-to-acoustic mappings in MSHMMs is more compelling. Artificial neural networks

(ANNs) have been studied for non-linear mappings in the past. For example, Richards &

Bridle (1999) and Deng & Ma (2000) have investigated the use of multilayer perceptrons

(MLPs) (see, e.g., Bourlard & Morgan (1994)) to map the formant (or formant-like) space

to the acoustic representation of speech. A single MLP was employed by Richards & Bridle

(1999), while an ensemble of 10 MLPs, each corresponding to a distinct class of manner of

articulation, were used by Deng & Ma (2000). Jackson, Lo & Russell (2002) investigated the

use of radial basis function (RBF) networks (see, e.g., Bishop (1995)) for non-linear mapping

from formant to short-term spectra, and found that RBF networks consistently mapped bet-

ter than MLP networks with 10% less the r.m.s error. Up until now, the non-linear mapping

component has not yet been integrated into MSHMMs. This research is ongoing.

9The 12 PFS control parameters are described in detail in Section 3.2.2 on page 56.
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1.2 Non-linear trajectory models of speech dynamics

Figure 1.2: Waveform and wide-band speech spectrogram of the sentence (sx9) “Where
were you while we were away?”, spoken by speaker msjs1. This utterance is taken from
the TIMIT speech corpus and down-sampled to 8 KHz.

Speech is a continuous signal per se (see Figure 1.2), encoded in which is a sequence of

(discrete) symbols conveying some intended message of the speaker. The symbol sequence

is ‘transformed’ into the continuous acoustic speech signal through the generally continuous

movements of the set of highly constrained components of the vocal tract (tongue, jaw, lips,

etc.). The wide-band speech spectrogram provides a convenient representation to inspect

speech dynamics due to the fine temporal resolution resulting from a succession of short time

windows on the speech signal. As can be seen in the wide-band spectrogram in Figure 1.2,

formant trajectories10 (especially the formant trajectories for the formant frequencies F1, F2

and F3) are mostly smoothly time varying, which reflects the dynamics of the articulators

since formant dynamics are closely correlated with the dynamics of the principle articulators

(Deng, Acero & Bazzi 2006). For example, the lower F1 is, the closer the tongue is to the

roof of the mouth. Try to pronounce the vowel [i] in a word like ‘beet’ and the sound [O] in

a word like ‘bought’, for which the F1 values are about 300 Hz and 950 Hz, respectively.

10A formant trajectory is a succession of values of an individual formant frequency as a function of time,
which appears as a dark band in the spectrogram.
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One of the limitations of a linear/linear MSHMM presented in (Russell & Jackson 2005,

Russell et al. 2007) is the use of piecewise linear formant trajectories to model speech dy-

namics. Although a piecewise linear trajectory model provides a reasonable ‘passive’ ap-

proximation to the formant trajectories within individual segments, it does not capture the

active dynamics of the articulatory system. In particular, no continuity constraints are applied

across the segment boundaries. Therefore, a piecewise linear trajectory model is incapable

of modelling inter-segmental and long-span dependencies that persist in real human speech.

Of course, there are many good reasons to choose linear models for speech pattern mod-

elling. They are in general simpler and easier to deal with than non-linear models. Digalakis

(1992) justified the use of linear models for characterising intra-segmental dependencies pre-

sented in the Mel-cepstral parameterization of speech, but found that linear models did not

work well for modelling inter-segmental dependencies. Gish & Ng (1993) and Holmes &

Russell (1997) also demonstrated the adequacy of a linear trajectory to capture the time-

evolving characteristics for most sounds in MFCCs. However, one of the underlying motiva-

tions for trajectory-based models is that it should be possible to model coarticulation effects

more effectively, instead of having to resort to, for example, triphones, which require large

amounts of training data. For this to happen, the trajectories must be able to model realistic

transitions between speech units. This is more likely to be achieved by using a more sophis-

ticated, continuous and non-linear trajectory model. The use of non-linear trajectory models

will almost certainly incur substantially increased computational time or/and space complex-

ity. Nonetheless, with more computing power at lower price nowadays, this additional cost

becomes of less an issue, and thus it should not act as discouragement from exploiting this

theoretically more advantageous approach.

In 1995, Tokuda, Kobayashi & Imai (1995) proposed a speech parameter generation

(SPG) algorithm to generate a sequence of speech parameters from HMMs which include

both static and dynamic features11. The speech parameter sequence is generated in such a

way that its output probability given the standard HMMs is maximised under the constraints

between the static and dynamic features. This algorithm forms the basis of HMM-based

11Dynamic features, or delta features, see, e.g., Furui (1986), are discussed in more detail in Section 2.2.3
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speech synthesis (Yoshimura, Tokuda, Masuko, Kobayashi & Kitamura 1999). Building on

this work, Tokuda et al. (2003) translated the standard HMM into a new trajectory model,

referred to as the trajectory HMM. Under such a model, the mean for the spectral parameter

vector sequence is most consistent with the static and dynamic constraints (instead of being

piecewise constant as in HMMs), which is exactly the same as the speech parameter sequence

produced by the SPG algorithm. Tokuda’s work is particularly attractive to this research since

the generated trajectories are smooth and non-linear, which vary within a state occupancy

and are also affected by neighbouring states and models. This is the type of trajectory sought

after to characterise the formant dynamics in this work.

This study investigates the use of smooth, non-linear formant trajectories generated by

Tokuda’s SPG algorithm to characterise formant dynamics. These non-linear formant trajec-

tories are used in place of the piecewise linear trajectories in the intermediate layer of a lin-

ear/linear MSHMM. It is hoped that the use of these non-linear formant trajectories, whereby

a potentially more advantageous model of formant dynamics is formed, will give rise to fur-

ther improvement in speech recognition performance, relative to linear/linear MSHMMs

based on piecewise linear formant trajectories.

1.3 Implications for speech synthesis

Speech recognition and synthesis, though obviously different in many respects, are in

fact both concerned with verbatim translation between symbolic and acoustic representa-

tions of speech. Building a unified model for speech recognition and synthesis therefore

offers a deeper knowledge sharing between the recognition and synthesis components, and

a computational model closer to the human speech skill acquisition process that involves

the “simultaneous” learning of speech perception and of speech production (Fallside 1992).

Techniques developed for speech recognition, for example speaker adaptation, can be readily

used for HMM-based synthesis, generating synthetic speech with various voice characteris-

tics, emotional expressions and speaking styles (Yamagishi, Kobayashi, Nakano, Ogata &

Isogai 2009), all of which can be automatically ‘learned’ from data of the target speaker.
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The particular type of intermediate model (i.e., the MSHMM) concerned in this research

is potentially suitable for both speech recognition and synthesis. The incorporation of the

intermediate, articulatory-related space in an MSHMM explicitly exploits the relationship

between symbolic and acoustic representations of speech at a production level. One of the

key findings in (Russell & Jackson 2005, Russell et al. 2007) is that high-accuracy phone

classification and recognition performance can be achieved when the intermediate layer of an

MSHMM is based on all 12 PFS control parameters. In this case, model parameter estimation

is equivalent to maximum likelihood (ML) estimation of target and slope values for each

PFS control parameter for each state in a set of (context-sensitive) phone-level models. In

principle, these 12 PFS control parameters are sufficient to create a ‘talker table’ to define a

‘voice’ for a formant synthesiser like (Holmes et al. 1964). Moreover, if speaker adaptation

is used in the intermediate layer of an MSHMM to adapt the model to an individual’s voice,

the resultant synthetic speech should sound like that speaker.

Research elsewhere (Holmes 1973) showed that a parallel formant synthesiser can gen-

erate high quality synthetic speech which is almost indistinguishable from the natural in

spectrum, waveform, and by earphone listening, provided that the synthetic glottal pulse is

derived by inverse filtering a typical natural vowel from the same talker.12 This is an im-

portant result, not only because it demonstrates how good a parallel formant synthesiser can

be, but also because it stresses the central importance of getting the synthesiser control pa-

rameters (in particular the excitation parameters) right in formant synthesis. From this point

of view, the effort of this research is guided towards generating appropriate formant synthe-

siser control parameters (preferably if this can be done automatically) for the synthesiser,

rather than improving the formant synthesiser itself. For these reasons, the ultimate goal

for an MSHMM is to build a ‘unified’ model which can support both high accuracy speech

recognition and high quality, trainable and adaptable speech synthesis.

In a linear/linear MSHMM, speech dynamics are modelled as piecewise linear trajecto-

ries in the formant-based intermediate layer, without continuity constraints between neigh-

12It has to be noted that the experiments reported in (Holmes 1973) were small scale which were based
on a very close copy synthesis of real speech samples with synthesiser control parameters, in particular the
excitation parameters, carefully tuned by humans.
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bouring segments. These assumptions might hold under severely limited situations, though

are clearly unrealistic when continuous speech is concerned. From the perspective of a uni-

fied speech model, this work is motivated by the belief that a non-linear trajectory model of

speech dynamics, relative to a piecewise linear trajectory model, would benefit both speech

recognition and synthesis.

Both model based synthesis, for example, HMM-based speech synthesis (Tokuda et al.

2000), and the use of formant information for HMM-based speech synthesis (see, e.g., Acero

(1999))13 have been studied in the past. In either case, Tokuda’s SPG algorithm is applied

to produce smoothed cepstral or formant trajectories. The novelty of this work is that the

SPG algorithm is applied to the 12 PFS data and precedes formant synthesis, and that the

synthesis performance is evaluated as another way of assessing the potentially ‘unified’, non-

linear trajectory model.

1.4 Research questions

In the context of an MSHMM, this thesis attempts to address the following questions:

• Can the SPG algorithm (Tokuda, Kobayashi & Imai 1995) be used to generate non-

linear formant trajectories suitable for MSHMMs?

• Does the use of non-linear formant trajectories in an MSHMM result in improved

speech recognition performance compared with an MSHMM using piecewise linear

formant trajectories?

• Is the use of non-linear formant trajectories in an MSHMM able to account for contex-

tual effects, such as coarticulation? If so, is it a more efficient means to coarticulation

than the use of traditional context-dependent models?

• Can MSHMMs be used to produce intelligible, good quality and adaptable synthetic

speech?

13In (Acero 1999), the first three formant frequencies and their corresponding bandwidths, together with the
dynamic features, formed the feature vectors in HMMs, and source modelling was dealt with separately.
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1.5 Outline of the thesis

The rest of the thesis is organised as follows. Chapter 2 presents a literature review on a

variety of models of speech dynamics which are relevant to this work. Chapter 3 describes

speech data used in this thesis work in detail, including both acoustic data (MFCCs) and for-

mant data (12 PFS control parameters). The HMS formant synthesiser, driven by the 12 PFS

control parameters, is also covered in this chapter as it will be used in synthesis experiments

described later in Chapter 6. Chapter 4 provides a detailed description of the MSHMM

framework, including the model formalism, training and decoding algorithms. Chapter 5

first describes the SPG algorithm proposed by Tokuda et al., which is adopted to generate

the non-linear formant trajectories in this research. The trajectory HMM method (Tokuda

et al. 2003) is then discussed, followed by a review of the HMM-based speech synthesis,

which is one of the most successful applications of the SPG algorithm. Chapter 6 documents

the experimental work and results on assessing the non-linear trajectory model from the per-

spective of speech synthesis. This chapter gives full details of the speech synthesis system

developed for this research and presents subjective and objective experiment results. Chap-

ter 7 concentrates on the application of the non-linear trajectory model to speech recogni-

tion. This chapter reports speech recognition experiments and results using non-linear/linear

MSHMMs based on the N -best list rescoring paradigm. Chapter 8 concludes this thesis and

suggests possible directions for future work.



Chapter 2

Literature review

2.1 Introduction

Modelling speech dynamics is a topic of active research and has been addressed by a

number of researchers in a variety of ways. A recent overview of dynamic speech models

was given by Deng (2006). A survey of the literature relevant to this thesis work can be di-

vided into the following three parts: 1) conventional HMMs, 2) segmental HMMs (SHMMs),

which extend conventional HMMs by modelling sequences of acoustic observation vectors

rather than individual feature vectors, and 3) hidden dynamic models (HDMs), in which

speech dynamics are modelled in an intermediate, usually articulatory-related, hidden space.

Standard HMMs will be reviewed first (Section 2.2), as these models lay the theoretical

foundation for SHMMs described later in Section 2.3. HDMs, sometimes referred to as

super-segmental models (Deng, Yu & Acero 2006), are discussed in Section 2.4.

2.2 Hidden Markov models

Although conventional HMMs do not account for speech dynamics adequately, a brief re-

view of standard HMMs and their modelling assumptions (Section 2.2.1) helps to understand

where the problem of modelling speech dynamics comes from. After all, it is these models

that provide the best compromise between accuracy and efficiency for acoustic-phonetic

modelling in current generation LVCSR systems. Hidden semi-Markov models (HSMMs)

will be re-visited next (Section 2.2.2), as they will prove useful in describing the SHMM

15
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framework. Finally, Section 2.2.3 discusses several issues resulting from the use of dynamic

features in HMMs to take account of temporal feature dynamics.

An HMM has a number of states S = {s1, . . . , sN}, each representing a distinct ‘sound’

within an utterance. One or more states are commonly used to characterise a speech segment

corresponding to a phone, and then word or sentence models can be constructed by joining

the appropriate set of phone models. State transitions are instantaneous and governed by

a state transition probability matrix A = [aij]1≤i,j≤N ,1 whereby the durational variability

in real human speech is accommodated. However, the resulting state durational model in

HMMs is not ideal, as will be discussed later.

Each HMM state is associated with a frame-level output probability distribution, whose

role is to model variations in the acoustic realisation of that state. Gaussian mixture distri-

butions are most commonly used. In principal, any probability density function (PDF) can

be approximated arbitrarily closely by a Gaussian mixture model (GMM) with a sufficiently

large number of mixture component. For example, aK-component Gaussian mixture density

bi(ot) is just a linear combination of K Gaussian PDFs

bi(ot) =
K∑
k=1

wikN (ot|µik,Σik), (2.1)

where wik (0 ≤ wik ≤ 1) is the weight of the kth mixture component in state i,
K∑
k=1

wik = 1,

and N (ot|µik,Σik) denotes a single multivariate Gaussian density with mean µik and co-

variance matrix Σik (which is typically assumed to be diagonal to simplify parameterization

and computation), evaluated at ot. As in most cases of mathematical modelling, in the case

of acoustic modelling we are interested in characterising the underlying systematic proper-

ties of the signal, rather than capturing the specific details (e.g., noise) represented in the

training data. Although a single Gaussian PDF may not be sufficiently flexible to accurately

account for the actual distribution of the data for a state, increasing mixture components

1Let xt ∈ S be the state at time t, then the state transition probability aij = P (xt+1 = sj |xt = si)2,
0 ≤ aij ≤ 1, and ∀i = 1, . . . , N :

∑N
j=1 aij = 1.

2In this thesis, P (·) and p(·) are used to denote the probability mass and density respectively.
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(and hence the model complexity) may lead up to a model which has too much flexibility

to generalise well to unseen data. From this perspective, more mixture components do not

necessarily guarantee a more accurate model for the problem at hand. On a practical level,

the number of free parameters in a mixture model is proportional to the number of mixture

components, and therefore the use of mixture models may worsen the data-sparsity problem.

An HMM can be thought of as a generator to give an observation sequence. At time

t = 1 the model is in state i, where i is determined randomly according to an initial state

probability vector π3. A speech vector ot is then generated randomly according to the state

output PDF bi for this state. At time t + 1, the model transits to state j, where j is chosen

randomly according to the transition probability matrix A. Then a speech vector ot+1 is

generated randomly and independently of {o1, . . . ,ot} according to the output PDF bj for

state j. The process goes on and a sequence of observations is produced. This generative

view is very important for HMM-based synthesis, as described in Section 5.4.

2.2.1 HMM assumptions

In HMMs, the following assumptions are made: (Holmes & Russell 1999)

• An acoustic observation sequence is produced by a piecewise stationary process, for

which each stationary region is individually represented by an HMM state, with in-

stantaneous transitions between stationary states.

• Consecutive frames of acoustic observations are statistically independent and identi-

cally distributed (IID) given a particular state (a.k.a. the independence assumption).

• The underlying (hidden) state sequence is a first order Markov chain, which implicitly

gives a geometric state duration model.

These assumptions are made for mathematical tractability and computational usefulness,

but are inappropriate for modelling speech dynamics. Firstly, human speech production is

certainly not a piecewise stationary process, but a continuous and complex one, in which the

3π = [π1, . . . , πN ], where πi = P (x1 = si), ∀i = 1, . . . , N : 0 ≤ πi ≤ 1, and
∑N

i=1 πi = 1.
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articulators move slowly and continuously along highly constrained trajectories, each one

capable of a limited set of gestures which are organized in an overlapping, asynchronous

fashion (Frankel & King 2007). Therefore, speech is, in general, a continuous changing

signal, as is shown in Figure 1.2 on page 9.

Secondly, the independence assumption is a major drawback of HMMs as proper models

of speech dynamics. The constraints of the human vocal apparatus and more immediately,

the restrictions on feature extraction (in which acoustic features are derived from overlapping

short windows on the acoustic speech signal) ensure that successive acoustic features, espe-

cially those within the same phonetic segment, are highly correlated and hence not indepen-

dent under a Gaussian assumption. This has been justified by Digalakis (1992) on MFCCs

and later by Frankel (2003) on the perceptual linear prediction (PLP) (Hermansky 1990) pa-

rameters and the EMA data (direct measure of human articulation). Both authors validated

the suitability of using the linear regression method to account for the variance of a partic-

ular observation within a phone segment and therefore subscribed to linear models on an

intra-phone basis in their respective work. By assuming no dependency between observa-

tions (other than through the state sequence), HMMs are incapable of modelling the temporal

dynamics and time correlation of speech frames that we believe are important in describing

speech patterns, not to mention long-term correlations which may spread their effects across

the whole utterance, such as speaker characteristics. Moreover, problems associated with

the independence assumption are compounded by the use of GMMs in a standard HMM,

since the model is free to switch mixture components at every frame, providing a means of

modelling acoustic trajectories without knowledge of the underlying process (Iyer, Gish, Siu,

Zavaliagkos & Matsoukas 1998). Holmes & Russell (1999) made the case that in a typical

speaker-independent HMM system where Gaussian mixture densities are used with different

modes corresponding to different speaker sub-populations, the model in effect treats each

frame of an utterance as if it may have been spoken by a different speaker.

Finally, the state duration model in an HMM is determined by state self-transition prob-

abilities, with the result that the maximum probability is assigned to a duration of one frame
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and exponentially decreasing probabilities to longer durations. This corresponds to a geo-

metric distribution for which the probability of the underlying Markov process staying in

state i for l (l = 1, 2, . . .) consecutive time units is given by P (l) = a
(l−1)
ii (1 − aii), where

aii is the self-transition probability for state i. Clearly this geometric distribution is unreal-

istic for modelling speech patterns since human speech sounds have a typical duration, with

shorter and longer durations being less likely.

2.2.2 Hidden semi-Markov models

The weak duration modelling problem can be reduced by adopting an explicit state dura-

tion model for each HMM state in place of the state self-transition probability. The resulting

model is sometimes referred to as an HSMM (Russell & Moore 1985) or a continuously

variable duration HMM (CVDHMM) (Levinson 1986). The behavior of an HSMM as a

generative model is different from that of a standard HMM due to the inclusion of explicit

duration distributions: at some integer time t, the underlying stochastic process enters state i

and then stays in this state for a period of l, which is determined randomly according to the

state duration distribution di. During this period, a sequence of l observations is generated

independently according to the state output PDF bi. At the end of the period the underlying

process transits to another state which is chosen randomly according to the state transition

probability matrix.

Both non-parametric and parametric duration distributions have been investigated in the

past. Non-parametric duration models, such as those proposed in (Ferguson 1980, Ostendorf,

Kannan, Kimball & Rohlicek 1992), simply use smoothed relative frequencies. Examples

of parametric duration models include the Poisson distribution (Russell & Moore 1985), the

Gamma distribution (Levinson 1986) and the Gaussian distribution (Oura, Zen, Nankaku,

Lee & Tokuda 2006). Most authors reported positive experimental results when an appropri-

ate explicit duration model, either parametric or non-parametric, was incorporated, though

parametric models have less parameters than their non-parametric counterparts.

A problem in explicitly duration modelling is the increased computational complexity in
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both training and decoding. For example, the time complexity of an HSMM is increased by

a factor of L, relative to a standard HMM, in Viterbi decoding, where L is the maximum

allowed duration of any state (Mitchell, Harper & Jamieson 1995, Datta, Hu & Ray 2008).

A number of modified recursions have been developed to improve the complexity (see, e.g.,

Yu & Kobayashi (2003), Datta et al. (2008)). Alternatively, Johnson (2005) showed that

a standard HMM with a small increase in the number of states is able to closely model

actual phone duration distributions on TIMIT and match the performance of a corresponding

Gamma duration model. Johnson’s approach has the practical advantage that only minimum

modification is required to many standard, off-the-shelf software tools for HMMs.

Although HSMMs provide an improved model of state duration, the impact of the in-

dependence assumption is still there. Dynamic features are often employed to mitigate the

effects of the independence assumption in HMMs, as discussed in the next section.

2.2.3 HMMs with dynamic features

A simple approach to capture inter-frame time dependence is to add first and second

order time derivatives (so-called ∆ and ∆2 features, or dynamic features) to the basic static

acoustic features (see, e.g., Furui (1986)). In HTK (Young et al. 2005), for example, these

dynamic features are calculated by fitting a linear regression over a window covering the Θ

preceding and Θ following vectors

∆ct =

Θ∑
θ=1

θ(ct+θ − ct−θ)

2
Θ∑
θ=1

θ2

, (2.2)

where ct is the static feature vector at time t and ∆ct is a delta coefficient vector computed in

terms of the corresponding static features {ct−Θ, . . . , ct+Θ}. The ∆2 coefficients can be cal-

culated using the same equation applied to the ∆ coefficients. In (Young 1995), for instance,

Θ is set to 2, so that the ∆ (velocity) and ∆2 (acceleration) coefficients of each ‘augmented’

feature vector contain information from the surrounding 4 and 8 frames respectively.
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The use of dynamic features proves to be of practical benefit in improving performance

for a wide range of applications in speech processing, such as speech recognition (Wilpon,

Lee & Rabiner 1991, Lee & Giachin 1991), speaker recognition (Soong & Rosenberg 1988),

not to mention HMM-based speech synthesis (Tokuda, Kobayashi & Imai 1995, Tokuda

et al. 2000), which is deeply rooted in the application of dynamic features. However, the

inclusion of these dynamic features in augmented feature vectors makes both the indepen-

dence assumption and the piecewise stationarity assumption of HMMs even less appropriate.

Not only is each frame of data now ‘explicitly’ forced to contribute to several neighbouring

frames (which further invalidates the independence assumption), but also the resulting model

is inconsistent in its assumption that the static, ∆ and ∆2 parameters are constant and possi-

bly non-zero throughout a state occupancy (Russell et al. 2007).

Tokuda et al. (2003) clearly understood the inconsistency in HMMs caused by the use of

dynamic features, and reformulated the standard HMM as a new trajectory HMM. The mean

trajectory (defined in the static feature space) is calculated in such a way as to explicitly

take account of the constraints between static and dynamic parameters (see Section 5.3 for

more details on the trajectory HMM). A similar interpretation is given by Bridle (2004), who

shows that an HMM which includes dynamic features can be thought of as an ‘unconven-

tionally’ generative model, from which the generated samples (sequences of static feature

vectors) are constrained by the delta distributions, which are independent of statics.

Appending the ∆ and ∆2 parameters to static acoustic features has become a standard

exercise in front-end signal processing for ASR. Despite the recent findings on how one

can remedy the inconsistency caused by dynamic features in terms of an autoregressive

model (Williams 2005), expanding observation space with feature derivatives can be merely

counted as another example of speech description (by increasing the number of parameters),

rather than speech modelling. It is believed by many researchers that emphasis should be

put on speech modelling to make the model more appropriate for speech signals, rather than

trying to modify the data to fit the model (Holmes & Russell 1999). SHMMs, as discussed

next, are examples which attempt to model temporal acoustic feature dynamics.



CHAPTER 2. LITERATURE REVIEW 22

2.3 Segmental hidden Markov models

2.3.1 General segmental modelling framework

SHMMs are generalised versions of HMMs, which aim to provide an improved model

of feature dynamics relative to conventional HMMs, and meanwhile retain advantages of the

HMM framework, such as straightforward training and recognition algorithms. In SHMMs,

sequences of acoustic vectors, or ‘segments’4, are modelled as homogeneous units so that

dependencies between vectors within a segment can be modelled explicitly. Many different

types of SHMMs have been studied in the past, and a comprehensive overview has been

presented in an earlier review paper (Ostendorf, Digalakis & Kimball 1996).

In general, a state si in an SHMM is associated with a state output distribution bi defined

on the set of sequences of observation vectors
{
ol1 = {o1, . . . ,ol}; l ∈ L

}
5, where L is the

set of all possible segment lengths (in frames). This differs from an HMM or HSMM, in

which state output densities are at the frame level. In addition, an explicit duration distribu-

tion di is also associated with state i that gives the probability of state duration l ∈ L, as in

the case of the HSMM. Under an SHMM, a sequence of l acoustic vectors ol1 = {o1, . . . ,ol}

is generated given state si according to the density

p(ol1, l|si) = p(ol1|l, si)p(l|si) = bi(o
l
1)di(l). (2.3)

An HSMM discussed before (see Section 2.2.2) can be seen as a limiting case of an SHMM

for which successive observations are assumed to be IID within given segment boundaries.

In this case, Equation (2.3) can be written as

p(ol1, l|si) = bi(o
l
1)di(l) = di(l)

l∏
t=1

p(ot|si). (2.4)

Furthermore, if the explicit state duration distribution di is assumed to be geometric, then the

4In the context of segmental modelling for ASR, the term ‘segment’ refers to any sequence of frames
representing some linguistically meaningful speech unit such as the phone or the subcomponent of the phone.

5The sub and superscript are used in the notation ol
1 to explicitly show the start and end time of an individual

speech segment {o1, . . . ,ol}.
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above segmental model (i.e., the HSMM) reduces to a conventional HMM.

As a generative model, the generation mechanism of an SHMM is described as follows.

At some integer time t, the underlying stochastic process enters a state si. The stochastic

process then stays in this state for a period of l, which is determined randomly according

to the state duration distribution di. During this period, a sequence of l observations is

generated as a single sample according to the segmental output distribution bi. At the end

of the period the underlying process transits to a new state according to the state transition

probability matrix.

Comparing generation mechanisms of a standard HMM, HSMM and SHMM, it can

be noted that one frame of observations is generated by visiting each HMM state, while

a variable-length (determined by the explicit duration model) sequence of observations are

generated by visiting each state in either an HSMM or SHMM. What is more, in both HMMs

and HSMMs, observations are generated independently according to the frame-level state

output model, while an observation sequence is generated as a single sample according to

the segment-level output densities in SHMMs.

Trajectory-based segmental HMMs

Trajectory-based SHMMs are a broad class of segment models in which acoustic fea-

ture dynamics within a segment is modelled by some form of trajectory through the acoustic

feature space. The trajectory may be non-parametric or parametric, and in the case of para-

metric trajectory, the trajectory parameters may be probabilistic or fixed. Typical parametric

trajectories studied in the past include constant, linear and higher order polynomials. Obser-

vations are assumed to be independent given the segment length, though conditioned on the

trajectory of the segment to which they belong. The resulting trajectory model therefore pro-

vides a strong continuity constraint between observations in the segment without requiring a

complex model of correlations. Parametric SHMMs are discussed first, and these models are

reviewed in Sections 2.3.2 - 2.3.5. Non-parametric SHMMs are reviewed in Section 2.3.6

and compared with parametric models in Section 2.3.7.
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2.3.2 Static segmental HMMs

Russell (1993) introduced a static SHMM, which adopted two separate components to

model extra- and intra-segmental sources of variability separately. In such a model, a state si

is associated with a state target PDF bi (assumed to be a single Gaussian PDF bi = N (νi,ηi)

with mean νi and variance ηi), which aims to characterise extra-segmental factors of speech

that remain fixed over the entire segment, such as speaker identity (when the models are

used to characterise speech from a number of speakers) or chosen pronunciation of a speech

sound. On arrival at state si a target vector c (whose dimension is that of the acoustic feature

space) is chosen randomly according to this PDF and then remains static throughout the state

occupancy, thus giving a constant trajectory.

The state duration l (hence the trajectory length) is determined randomly according to the

duration distribution di associated with state si. During this period, at each time t (1 ≤ t ≤ l)

the observation ot is generated randomly and independently of {o1, . . . ,ot−1} according

to another Gaussian PDF N (c,Σi) with mean c (the target) and fixed variance Σi. This

Gaussian distribution is referred to as the intra-segment distribution, which models intra-

segmental variations once all sources of extra-segmental variability have been fixed. Fig-

ure 2.1 illustrates how the SHMM separates the distribution over the observations into extra-

segmental and intra-segmental variations. In contrast, conventional HMMs model these two

types of variability together using the mixture components of the output density, which, com-

pounded by the independence assumption, allows extra-segmental factors such as speaker

identities to change in synchrony with the frame rate of the acoustic patterns.

Under a static Gaussian segmental HMM (GSHMM, in which both extra- and intra-

segmental distributions are assumed to be Gaussian), the joint probability of a segment ol1 =

{o1, . . . ,ol} of length l and a particular target c given state si is

p(ol1, c|si) = di(l)bi(c)p(o
l
1|c) = di(l)N (c|νi,ηi)

l∏
t=1

N (ot|c,Σi). (2.5)

The basic theory of GSHMMs is presented in (Russell 1993), including the extension of the
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Figure 2.1: Separate modelling of extra- and intra-segmental variability in the static segmen-
tal HMM. Acoustic observations are assumed to be one-dimensional for simplicity. Figure
adapted from (Holmes 2000).

conventional Baum-Welch parameter estimation algorithm to this type of model.

A similar approach was proposed by Gales & Young (1993), who extended the SHMM

framework to include Gaussian mixture densities to model extra-segmental variations, and

by Digalakis (1992) as a ‘target state segment model’, which is a special case of a dynamical

system model, as described later in Section 2.3.8. The probability p(ol1|si) of the segment

ol1 given state si was calculated as the integral p(ol1|si) =
∫

c
p(ol1, c|si)dc in (Gales &

Young 1993), whereas Russell (1993) proposed an estimation of the segment probability as

p(ol1|si) ≈ p̂(ol1|si) = p(ol1, ĉ|si), (2.6)

based on the ‘best’ target ĉ which maximises the probability of p(ol1, c|si)

ĉ = arg max
c

p(ol1, c|si). (2.7)

In the case of a GSHMM, it can be found that the optimal target ĉ is given by

ĉ =

νiΣi +
l∑

t=1

otηi

Σi + lηi
. (2.8)
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That is, the optimal target ĉ is a weighted sum of the expected value and the actual acoustic

observations. Gales & Young (1993) show that these two segment probability calculation

approaches are related by

p(ol1|si) = Kp̂(ol1|si), (2.9)

where K is a normalisation constant which is solely dependent on the segment length l and

model variances, but not on the data.

Preliminary TIMIT results using CI SHMMs were disappointing, with an increased

phone error rate (PER) relative to standard CI HMMs reported on a sub-set of the TIMIT

corpus (Gales & Young 1993). Positive recognition results were achieved on a simpler

task of connect digit recognition (Holmes & Russell 1995a). CD SHMMs were trained

on either vocabulary-independent (i.e., training material is reading sentences) or vocabulary-

dependent (i.e., training material is recording of four-digit strings) data, with 32% and 20%

reduction in error rates respectively relative to standard HMMs. For CI SHMMs, recog-

nition improvement relative to HMMs was only achieved when segmental models were

trained on vocabulary-dependent data (27% reduction in error rates), but not on vocabulary-

independent data. In addition, it was demonstrated that SHMMs provided a similar level

of performance (except in the case of vocabulary-independent monophones) with fewer pa-

rameters when compared with two-component-mixture conventional HMMs. Later work

(Holmes & Russell 1996) investigated the use of Gaussian mixtures to improve the intra-

segmental model, and showed that the incorparation of a two-component Gaussian mixture

intra-segmental distribution, where the two mixture components have the same mean but one

has much smaller variance than the other, can significantly improve performance.

The use of two distributions is the key feature of the SHMM framework in attacking

problems caused by the independence assumption. However, in practice, it is also the source

of the principal difficulty, since imbalance between the extra- and intra-segmental proba-

bilities leads to poor modelling and increased recognition errors (Holmes & Russell 1996).

A static SHMM reduces the impact of the independence assumption of standard HMMs to

some extent by imposing a continuity constraint which takes the form of a constant, random
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mean model of the speech segment. However, substantial performance improvements would

not be expected until a proper model of dynamics is incorporated.

2.3.3 Linear probabilistic-trajectory segmental HMMs

In a linear trajectory segmental HMM (Holmes & Russell 1995b, Holmes & Russell

1997, Russell & Holmes 1997), the relationship between observations in a segment ol1 =

{o1, . . . ,ol} is characterised by a ‘noisy’, linear trajectory, instead of a constant trajectory

as in a static SHMM. A linear trajectory f (m,c) of duration l can be defined as

f(t) = (t− t̄)m+ c, (2.10)

where t̄ = (l + 1)/2 is the midpoint of the start and end time points, and m, c are the slope

vector and mid-point vector respectively (whose dimension is that of the acoustic-feature

space). Recall that the valuesm′ and c′ for which f (m,c) best fits ol1 (in a least-squares error

sense) are given by

m′ =

l∑
t=1

(t− t̄)ot
l∑

t=1

(t− t̄)2

, c′ =

l∑
t=1

ot

l
. (2.11)

Intuitively, trajectories may be different for different utterances of the same sound be-

cause of extra-segmental factors, such as differences between speakers or chosen pronuncia-

tions for the speech sound. Therefore, it is unlikely to provide a very accurate representation

for any one model unit by using a single trajectory to characterise all examples of that unit.

One possible solution is to use a mixture of trajectories as described in (Gish & Ng 1993).

However, many mixture components will be required to accommodate all possible trajec-

tories. Alternatively, Holmes & Russell (1999) suggested a linear ‘probabilistic-trajectory

segmental HMM’ (PTSHMM), in which both of the slope and mid-point vectors were as-

sumed to be random variables with Gaussian distributions (assuming diagonal covariance

matrices): m ∼ N (µ,γ), c ∼ N (ν,η). Due to the uncertainty of the trajectory parameters

m and c, the model in effect represents a continuous mixture of trajectories, each one pro-



CHAPTER 2. LITERATURE REVIEW 28

viding a plausible time-evolving series of distribution means for any one segment example.

As in a static SHMM, individual observations within a segment are mutually independent

for a given state si, though they are conditioned on the trajectory f associated with that state.

In a linear PTSHMM, the joint probability of a sequence of acoustic observations ol1 of length

l and a particular linear trajectory f given state si is

p(ol1,f |si) = di(l)p(f)
l∏

t=1

p
(
ot|f(t)

)
= di(l)N (m|µi,γi)N (c|νi,ηi)

l∏
t=1

N
(
ot|f(t),Σi

)
, (2.12)

where Σi is the fixed covariance matrix of the intra-segment Gaussian PDF.

Like a static SHMM, two approaches have been investigated to calculate the segment

probability p(ol1|si) for a linear PTSHMM. One option adopted in early work (Holmes &

Russell 1995b, Holmes & Russell 1997, Russell & Holmes 1997) is to approximate the seg-

ment probability as: p(ol1|si) ≈ p̂(ol1|si) = p(ol1, f̂ |si), where f̂ is the most-likely-trajectory

(Holmes & Russell 1999) which maximises the joint probability of the observations and the

trajectory

f̂ = arg max
m,c

p(ol1,f (m,c)|si). (2.13)

The most-likely-trajectory f̂ is defined by maximum a posteriori estimates of the slope (m̂)

and mid-point (ĉ), which are obtained by expanding log p(ol1,f |si) (Equations 2.12 and

2.10) according to the definition of a Gaussian distribution, differentiating with respect tom

and c, setting the partial derivatives to zero and solving

m̂ =

(
l∑

t=1

(t− t̄)ot
)
γi + µiΣi(

l∑
t=1

(t− t̄)2

)
γi + Σi

, (2.14)

ĉ =

(
l∑

t=1

ot

)
ηi + νiΣi

lηi + Σi

. (2.15)
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Equations (2.14, 2.15) show that the most likely slope m̂ and mid-point ĉ are each a weighted

sum of the values which are optimal with respect to the data and the expected values as

defined by the model. Substituting m̂ and ĉ defined by Equations (2.14, 2.15) into equation

p̂(ol1|si) = p(ol1, f̂ (m,c)|si) gives the most-likely-trajectory output probability p̂(ol1|si).

An alternative approach, which was also used by Gales & Young (1993) for a static

model, is what is referred to as the trajectory-independent probability calculation (Holmes

& Russell 1999), in which all possible trajectories given state si are considered

p(ol1|si) =

∫
f

p(ol1,f |si) = di(l)

∫ ∞
−∞

∫ ∞
−∞
N (m|µi,γi)N (c|νi,ηi)

×
l∏

t=1

N
(
ot|f(t),Σi

)
dc dm. (2.16)

The relationship between these two approaches to the segment probability calculation is

given by p(ol1|si) = Kp̂(ol1|si), where K is a normalising constant term which depends on

the model variances and on segment duration, but not on the data (Holmes & Russell 1999).

Experiments exploring the consequences of the differences between the two approaches

to computing output probabilities were reported in (Holmes & Russell 1999). Both static

and linear PTSHMMs were evaluated on a small corpus (Russell, Moore, Tomlinson &

Deacon 1983), which includes four lists of 50 connected-digit triples spoken by each of 10

male speakers (giving a total of 2000 words in the database). Experimental results showed

that the trajectory-independent probability calculation method outperformed its most-likely-

trajectory counterpart, with 75.6%, 71% and 60% reduction in WERs for static, linear (flexi-

ble slope) and linear (constained slope) PTSHMMs respectively.6 The extent of the drop in

performance when swtiching from the trajectory-independent approach to the most-likely-

trajectory method demonstrates the difficulty in making unbiased trajectory estimates since

the most-likely-trajectory is strongly infulenced by the data, and so the variance of the ob-

servations around that trajectory tends to be smaller than the variance around the ‘true’ tra-

6The flexible-slope approach determins the means and variances of the individual trajectory slopes based
on collected statistics of all training examples, while the constrained-slope approach allows no variability in
the slope varaiance parameters.
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jectory, especially for short segments.

The fullest investigation into recognition using PTSHMMs was reported by Holmes &

Russell (1999), who presented theoretical and experimental comparisons between different

types of PTSHMMs, simpler SHMMs and conventional HMMs. However, before looking at

the statistics, it is a good time to review a class of related models, which, in the terminology

of Holmes & Russell (1999), is referred to as a fixed-trajectory segmental HMM, as opposed

to a probabilistic-trajectory SHMM of their own work.

2.3.4 Fixed-trajectory segmental HMMs (FTSHMMs)

The linear trajectory models proposed by Gish & Ng (1993) (as a segmental model)

and Deng, Aksmanovic, Sun & Wu (1994) (as a non-stationary or trended HMM) can be

regarded as a limiting case of a linear PTSHMM (Holmes & Russell 1999) for which the

extra-segment variances γ and η of the slope and mid-point vectors are both fixed at zero.

Since there is no uncertainty in the trajectory parameters, a single fixed linear trajectory

is associated with each state si, and the slope and mid-point values are always equal to

the model means. In addition to constant and linear trajectories, higher order polynomial

trajectories were also investigated, such as quadratic trajectories (Gish & Ng 1993, Deng

et al. 1994) and cubic trajectories (Deng et al. 1994).

Gish & Ng (1993) suggested a segment model in which the time-varying mean trajectory

of the feature vectors in a variable-length segment is represented by a polynomial. In such a

model, an N -frame speech segment (each frame is a D dimensional vector) is modelled as

C = ZB +E, (2.17)

where C is a N ×D matrix representing the speech segment (each row vector corresponds

to a frame), Z an N × R design matrix, B an R × D trajectory parameter matrix, and E

a residual error matrix. R is the number of parameters in the polynomial function such that

R = 1 for constant, R = 2 for linear and R = 3 for quadratic trajectories.

The role of the design matrix Z is to perform duration normalisation for each segment
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so that its frames are distributed uniformly between times 0 and 1. Taking R = 3 as an

example, where a quadratic trajectory is specified, Z becomes

Z =



1 0 0

1 1
N−1

(
1

N−1

)2

1 2
N−1

(
2

N−1

)2

...
...

...

1 1 1


. (2.18)

In this case, the ith feature dimension of the segment (i.e., the ith column of C) is



c1,i

c2,i

...

cN,i


=



1 0 0

1 1
N−1

(
1

N−1

)2

...
...

...

1 1 1




b1,i

b2,i

b3,i

+



e1,i

e2,i

...

eN,i


, (2.19)

or

cn,i = b1,i + b2,i

( n− 1

N − 1

)
+ b3,i

( n− 1

N − 1

)2

+ en,i, (2.20)

where n = 1, . . . , N and i = 1, . . . , D.

Instead of using normalised time to describe the polynomial trajectories, as is shown in

Equation (2.20), Deng et al. (1994) employed absolute time to specify the polynomial regres-

sion functions. Assume that the segment C is associated with state j, then Equation (2.20)

becomes

cn,i = b1,i + b2,i(t− tj) + b3,i(t− tj)2 + en,i, (2.21)

where tj is an auxiliary parameter which registers the time when state j in the HMM is just

entered so that (t − tj) ∝ n for the nth frame in the segment. Using absolute time has the

advantage of efficient recognition and segmentation algorithms since the Markov assumption

holds within and across segments (Ostendorf et al. 1996), while phonetic alignments must

be available or derived by some other means with the model described by Gish & Ng (1993).
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Given a segment k (of length Nk) with data matrix Ck and design matrix Zk, the max-

imum likelihood estimates of the trajectory parameters are given by using the least squares

method

B̂k = [Z>kZk]
−1Z>kCk, (2.22)

where > and −1 denote the transpose and inverse respectively. In both (Gish & Ng 1993)

and (Deng et al. 1994), the residual errors are assumed to be IID from frame to frame with

a zero-mean Gaussian distribution N (0,Σk), where Σk is the state-dependent covariance

matrix identical for all frames in the segment k. Once the trajectory parameter matrix B̂k is

estimated, the residual error covariance matrix for the segment, Σ̂k, is given by

Σ̂k =
Ê
>
k Êk

Nk

=

(
Ck −ZkB̂k

)>(
Ck −ZkB̂k

)
Nk

, (2.23)

where Nk is the number of frames in segment k.

Deng et al. (1994) conducted a quantitative analysis on the effect of different trajecto-

ries (including piecewise constant, linear, quadratic and cubic trended functions) by fitting

actual speech data (both the training data and the test data, in the form of mel-cepstral co-

efficients). Firstly, the optimal segmentation of the data was found via a modified Viterbi

algorithm. Then various polynomial functions were fitted to the segmented data according

to the corresponding states. The measure for the accuracy of the data fitting was obtained by

summing state-dependent frame residual errors over frames, with a smaller value indicating

better performance. Experiment results showed that the data fitting error decreased quickly

as the polynomial order increased. These results provided some evidence that the use of

higher order trajectories could be beneficial in improving recognition performance.

Experiments on a TIMIT speaker-independent vowel classification task (including 13

monothongs and 3 diphthongs)7 using segment models were conducted by Gish & Ng (1993).

Later, Gish & Ng (1996) evaluated more complex trajectory models with Gaussian mixtures

and time-varying covariances on the same task. The main findings are: 1) the use of higher

7The 13 monothongs are [iy, ih, ey, eh, ae, aa, ah, ao, ow, uw, uh, ux, er] and the 3 diphthongs are [ay, oy,
aw]. The phonetic symbols used here follow the TIMIT labelling convention.
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order polynomials (from constant to linear and finally to quadratic) leads to a steady, al-

though moderate, improvement in recognition performance; 2) only some vowels, mainly

the diphthongs, require quadratic trajectories. In other words, linear trajectories are suffi-

cient to characterise most sounds; 3) The use of Gaussian mixture models and time-varying

covariances results in further improvements in performance. Similar results were reported

by Deng et al. (1994) on an isolated-word speaker-dependent 36-CVC-word8 speech recog-

nition experiment.

Based on the work of Gish & Ng, Yun & Oh (2002) developed a full continuous speech

recognition system. Instead of modelling variable-length speech segments as in previous

work (Gish & Ng 1993, Gish & Ng 1996), Yun & Oh fitted fixed-length sliding windows on

the acoustic observations. The design matrix Z was modified accordingly to centre on the

current observation vector, and therefore frames within a segment were distributed uniformly

between normalised times [−0.5,+0.5]. For example, given a speech segment of length

N = 2M + 1, the design matrix for a quadratic trajectory becomes

Z =



1 − M
2M

−
(
M
2M

)2

1 −M−1
2M

−
(
M−1
2M

)2

...
...

...

1 0 0

...
...

...

1 M−1
2M

(
M−1
2M

)2

1 M
2M

(
M
2M

)2



. (2.24)

Yun & Oh (2002) conducted TIMIT phone recognition experiments and compared the

performance of the new segmental-feature HMM (SFHMM) with that of conventional HMMs.

Only CI models were evaluated (including 48 monophone models), and a phone bigram lan-

guage model was also used in their experiments. Using 12-MFCC plus log energy, the

SFHMM gave a slight improvement over conventional HMMs which also included ∆ fea-

8These 36 CVC words, in which ‘C’ encompasses six stop consonants [p, t, k, b, d, g] and ‘V’ is the vowel
[i:], were spoken with a short pause in between by three native English speakers in a normal office environment.
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tures, provided that the segment length was set at the value of 5 and the polynomial order

was greater than 3. When SFHMMs were used with static and ∆ features, the new model

outperformed conventional HMMs which included both ∆ and ∆2 parameters. For instance,

the standard HMM system with 2 Gaussian mixture components gave a phone accuracy of

57.0%, while an SFHMM with fixed segment length of 5 and polynomial order of 3 produced

an accuracy of 60.1%.

2.3.5 PTSHMMs summary

PTSHMM

FT-SHMM

HSMM

Static SHMM

Standard
HMM

γ= 0η = 0μ= 0γ= 0

η= 0 m = 0

d = geometric

Figure 2.2: The family tree of PTSHMMs. This figure shows how a linear PTSHMM can
be related to other segmental models by making certain simplifying assumptions. Each line
indicates that there is a direct link between the two types of models it connects, with the
arrow pointing to the simplified model under the conditions given beside the line.

Many acoustic models reviewed so far in this chapter can be regarded as special cases of

a PTSHMM. Figure 2.2 shows the relationships between models of the PTSHMM family.

For example, a static SHMM (Russell 1993, Gales & Young 1993) can be seen as a limiting
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case of a linear PTSHMM for which both the slope mean µ and the slope variance γ are

fixed at zero, giving a constant trajectory defined by the mid-point parameter. An HSMM

can be viewed as a limiting case of a static SHMM for which the mid-point variance η is

zero, or as a limiting case of a linear FTSHMM for which the slopem is fixed at zero.

Holmes & Russell (1999) compared phone classification results on the male portion of

the TIMIT core test set for different sets of segment-based models shown in Figure 2.2. Both

CI (60-symbol set) and right-CD models were used. The first 12 MFCCs together with an av-

erage amplitude feature formed the basic feature set for their experimental work. In addition,

dynamic features were also used in some experiments. All the PTSHMM experiments were

carried out using the trajectory-independent approach to computing segment probabilities.

Model set %Errors
MFCCs only MFCCs+∆ features

HMMs 40.9 29.8
HSMMs 43.0 29.4
Static PTSHMMs 45.0 32.2
Linear FTSHMMs 39.0 27.4
Linear PTSHMMs 38.2 26.8

Table 2.1: This table highlights main phone classification results (data taken from (Holmes
& Russell 1999)) for different types of CD PTSHMMs, compared with standard HMMs, on
the core test set (male only) of the TIMIT corpus.

Experimental results using CD models are summarised in Table 2.1. HSMMs performed

very slightly better than HMMs when time-derivatives were included, but gave somewhat

worse performance than HMMs when only static features were used. The difference in

HSMMs performance demonstrates the importance of modelling feature dynamics, as the use

of ∆ features provides a means of incorporating dynamic information in acoustic modelling.

The use of static PTSHMMs did not lead to classification improvements over conventional

HMMs. Linear PTSHMMs outperformed linear FTSHMMs, which in turn outperformed

conventional HMMs, with or without time-derivatives. These results showed the advantages

of introducing a linear trajectory model, and further benefits when a distinction is made be-

tween extra- and intra-segmental variability in conjunction with the linear trajectory model.

Experiments results using CI models followed the same pattern.
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2.3.6 Non-parametric segmental HMMs

Previous sections have reviewed typical trajectory-based SHMMs in which the segment

mean is specified by a constant, linear or higher order polynomial trajectory. An alternative

approach to modelling acoustic feature dynamics takes the form of a non-parametric trajec-

tory model, in which the sequence of distributions for a segment (i.e., the mean trajectory) is

represented by a non-parametric trajectory, and each distribution mean corresponds directly

with a point along the trajectory.

Motivated by the fact that speech is really produced by a non-stationary process, Ghitza

& Sondhi (1993) transformed the standard HMM into a non-stationary HMM, in which each

HMM state is defined as a single, fixed-length template. Instead of phones as used in many

other segment models, diphones (i.e., transitions between a pair of adjacent phones) were

used as the modelling units in Ghitza & Sondhi’s model. Let Ō be the template of length T̄

(or a ‘typical’ sequence of T̄ observations) for a given HMM state si andO = {O1, . . . ,OK}

be the K observation segments in the database corresponding to that state. Following the

modified k-means clustering method (Wilpon & Rabiner 1985), the template Ō (i.e., the

sequence of Gaussian distribution means for state si) is specified as the observation sequence

in the setO whose cumulative distance from all other observation sequences in the ensemble

O is a minimum
K∑
k=1

D(Ō,Ok) 6
K∑
k=1

D(Oj,Ok), (2.25)

for all j, where j = 1, . . . , K, and D(Oj,Ok) denotes the distance between the two obser-

vation sequencesOj andOk, which is calculated by the usual dynamic time warping (DTW)

procedure (see, e.g., Holmes & Holmes (2001)).

A similar non-parametric trajectory model, known as the ‘stochastic segment model’

(SSM) in the literature, was described in (Ostendorf & Roukos 1989). The SSM models the

sequence of observation vectors over the entire speech segment of a phone. The main dif-

ference between these two non-parametric approaches is that a deterministic time-warping

transformation (either a linear time sampling or a space sampling) was used in SSMs to trans-

form variable-length segments to the fixed-length template, whereas dynamic time warping
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based on dynamic programming was used by Ghitza & Sondhi (1993). Deterministic map-

pings have the advantage of reduced computation relative to dynamic programming, and for

phone-sized units and smaller, they work quite well in practice (Ostendorf et al. 1996). In

both approaches, a block-diagonal covariance structure (where each block corresponds to

a sample covariance) was used to reduce the parameterization by assuming that successive

frames within a segment are independent given the segment length.

Using non-parametric segmental models, both authors reported positive experimental re-

sults compared with conventional HMMs. For example, speaker-dependent phoneme recog-

nition experiment results presented in (Ghitza & Sondhi 1993) showed that the new segmen-

tal HMM outperformed the base-line HMM system (Levinson 1986), yielding 20 − 30%

reductions in PERs. Ostendorf & Roukos (1989) built a word recognition system based on

SMMs, which reduced WERs by approximately one-third in comparison to conventional

HMMs on a speaker-dependent, CI continuous speech recognition task.

2.3.7 Comparison of parametric and non-parametric models

Sections 2.3.2 – 2.3.5 discuss various parametric SHMMs and Section 2.3.6 reviews

typical non-parametric models. The parametric and non-parametric approaches each have

their respective advantages and disadvantages. A comparison between these two approaches

has been provided by Kannan & Ostendorf (1998) in the context of LVCSR using the Wall

Street Journal (WSJ) (Paul & Baker 1992) and Switchboard corpora.

From the perspective of speech pattern modelling, parametric models are better suited

for certain classes of speech, such as vowels or sub-phone units, which often exhibit smooth

trajectories. For those units that do not vary smoothly in time (e.g., stop consonants), multi-

ple segments can be used. On the other hand, non-parametric models are more suitable for

modelling phones including discontinuities which can not be simply represented by para-

metric trajectories, e.g., in stops between the closure and the burst. Parametric models

generally have a more compact parameterization than non-parametric models, which can

be potentially advantageous when limited training and/or adaptation data is available. How-
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ever, non-parametric approaches offer some computational (and/or storage) advantages since

distribution means can be stored in a small table and score caching can be used for reducing

computation (Ostendorf et al. 1996).

In terms of recognition performance, the N -best list rescoring experiments on either

WSJ or Switchboard conducted by Kannan & Ostendorf (1998) showed that the paramet-

ric approach (using two linear trajectories per phone, which can be thought of as approx-

imating a quadratic trajectory) provided similar, but slightly lower performance than the

non-parametric approach (using eight regions per phone). For example, the non-parametric

system gave WERs of 13.2% and 45.6%, compared to 13.6% and 46.8% given by the para-

metric system, on WSJ and Swithchboard respectively. The likely explanation for the slight

degradation for the parametric system may be because of the constant covariance assumption

used in the parametric model but not in the non-parametric model. This was also supported

by Gish & Ng (1996), who showed that relaxing the constant covariance assumption for

parametric models resulted in improved recognition performance.

2.3.8 Linear dynamical systems

A stochastic, linear dynamical system (LDS) was first introduced as a speech recognition

model by Digalakis et al. (Digalakis 1992, Digalakis, Rohlicek & Ostendorf 1993). The

application of the LDS for ASR has recently been readdressed by Frankel et al. (Frankel

& King 2001, Frankel 2003, Frankel & King 2007), referred to as a linear dynamic model

(LDM), to describe articulator movement at the University of Edinburgh. A linear dynamical

system is, in general, identified by the following pair of equations:

xt = Fxt−1 +wt, (2.26)

ot = Hxt + vt, (2.27)

where xt is an m-dimensional unobserved state vector, and ot is an n-dimensional obser-

vation vector. The underlying dynamical state process of an LDS is specified by Equa-
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tion (2.26), in which state propagation is governed by a linear transformation via the m×m

state evolution matrix F and the addition of Gaussian noise wt ∼ N (µ(x),Σ(x)). The ob-

servation process is described by Equation (2.27), which is linked to the state process via a

linear projection H (the n × m observation matrix) with the addition of observation noise

vt ∼ N (µ(o),Σ(o)). The two noise vectors wt and vt are assumed to be independent. Fur-

thermore, the initial state x0 is also Gaussian: x0 ∼ N (µ0,Σ0).

Many statistical acoustic models can be regarded as special cases of an LDS model,

and the relationships between the dynamical system segment model and various acoustic

models was discussed in (Ostendorf et al. 1996). For example, the static SHMM proposed

by Russell (1993) and Gales & Young (1993) (see Section 2.3.2) assumes a constant mean

throughout the segment ot ∼ N (c,Σi), where the mean c is modelled by a Gaussian prior

c ∼ N (νi,ηi). This static model can be seen as the target state (Digalakis 1992) version of

an LDS model, in which the hidden state is fixed at its initial value for all t, xt = x0 = c, i.e.,

F = I9, wt = 0, µ(o) = 0 and Σ(o) = Σi. The distribution of the target state represents the

more global forms of variability, such as speaker identity, and the target state, once chosen,

remains fixed throughout the entire segment.

In the case that the unobserved state xt is taken to be zero, the LDS model is then fully

defined by the term vt; that is, ot = vt. This special type of LDS model corresponds to the

constrained-mean trajectory assumption, which includes examples of both parametric mean

trajectory models (e.g., the fixed-trajectory segmental HMM described in Section 2.3.4) and

non-parametric mean trajectory models (such as the non-stationary HMM and the stochastic

segment model described in Section 2.3.6), depending on the definition of the term vt.

In the original application of LDS by Digalakis (1992), the dimension of the state vector

is assumed to be equal to the size of the observation vector, i.e., m = n, the observation

matrix H = I for all models and the observation noise covariance matrix Σ(o) shared glob-

ally by all models. As a result, the observation process is assumed to be a noisy version of

an underlying Gauss-Markov process (defined by Equation 2.26) (Wellekens 1987, Kenny,

Lennig & Mermelstein 1990), which explicitly models correlation between neighbouring

9I is used to denote an identity matrix.



CHAPTER 2. LITERATURE REVIEW 40

feature vectors within a segment ol1 = {o1, . . . ,ol}

bi(o
l
1) =

l∏
t=1

p(ot|ot−1, si). (2.28)

Therefore, the LDS segment model includes the Gauss-Markov process as a special case, for

whichH = I,vt = 0 and ot = xt.

Digalakis (1992) described a model parameter estimation algorithm based on the EM

technique and a recognition algorithm for LDS models. CI phone classification experi-

ments on TIMIT showed that LDS models outperformed other segment models, including

the independent-frame model (i.e., the block-diagonal SSM), the target state model and the

Gauss-Markov model, with 9 − 15% reduction in error rate relative to other models based

on the 18 cepstra feature set. When feature derivatives were used, the LDS model gave the

highest accuracy of 73.9%, while the independent-frame SSM gave an accuracy of 72.1%.

In phone recognition experiments, the LDS segment model also gave better performance

than the independent-frame model, with 58% and 55% accuracies, respectively, on static 18

cepsetra coefficients, though a similar level of performance was achieved (63% and 64% for

the LDS model and the independent-frame model, respectively) when the first time deriva-

tives were also included in the acoustic features.

2.4 Hidden dynamic models

Section 2.3 reviews a variety of SHMMs appeared in the literature. These approaches in-

tend to explicitly model dependencies between speech vectors within a variable-length seg-

ment in the acoustic domain, thus mitigating problems caused by the independence assump-

tion in conventional HMMs. Most of these models register some gains in recognition perfor-

mance compared with HMMs on standard tests. However, one of the disadvantages of these

approaches is the unsuitability of a spectrum-based acoustic representation for modelling dy-

namics, in which simple articulator movements often exhibit complex changes. Moreover,

in SHMMs, successive segments are assumed to be independent. It is believed that due to
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Acoustic representation

Symbolic representation

Hidden dynamics

Articulatory-to-acoustic 

mapping

Figure 2.3: A hidden dynamic model in which speech dynamics are modelled in an interme-
diate layer and transformed to the acoustic layer via an articulatory-to-acoustic mapping.

strong coarticulation in speech production, this assumption is not valid. HDMs, as shown

in Figure 2.3, attempt to overcome these limitations of acoustic dynamic models by incor-

porating an intermediate layer (referred to as a hidden layer since it is not accessed directly

from the acoustics) in which dynamics can be modelled directly in an articulatory-related

space. A major theoretical advantage of such an approach is that coarticulation can be dealt

with naturally and efficiently in a potentially low-dimensional, articulatory domain (i.e., the

hidden layer). By exploiting speech production knowledge at this deeper, production level,

HDMs may be able to capture additional information about acoustic-phonetic relationships

which is unavailable in current acoustic models.

Early work on HDMs was due to Bakis (1991), who proposed a very general model with

targets, linear dynamics and non-linear output mapping. This model was rediscovered later

by Deng (1998) and Richards & Bridle (1999). These two approaches were investigated,

evaluated and compared at the 1998 Workshop on Language Engineering, Johns Hopkins

University (Picone, Pike, Reagan, Kamm, Bridle, Deng, Ma, Richards & Schuster 1999).

Deng, Yu & Acero (2006) provide a more recent review on many different types of hidden

dynamic speech models.
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Before describing the HDM framework and various HDM implementations, it is useful

to revisit the state-space model (see, e.g., Rosti (2004)). Let xt and ot be an m-dimensional

state vector and an n-dimensional observation vector, respectively. A general state-space

model is described by the following two equations:

xt = f(xt−1, . . . ,x1,wt), (2.29)

ot = h(xt,vt), (2.30)

where the state evolution is defined by f(·) and transformed to the observation space via the

mapping h(·). wt and vt are the state noise and observation noise respectively. A linear

Gaussian model (Roweis & Ghahramani 1999, Rosti 2004) is a special case of the above

general state-space model, in which both functions f(·) and h(·) are restricted to being linear

transformations, and the noise termswt and vt are assumed to be Gaussian. Apparently, the

LDS model discussed in Section 2.3.8 is an example of a linear Gaussian model with a first-

order state process.

The hidden dynamic model (as shown in Figure 2.3) can now be properly interpreted in

terms of a state-space model. Intuitively, the state vector xt represents formants or articulator

positions at time t, and the state evolution function f(·) describes formant transitions or

articulator movements in time. The state noise wt characterises variations in the underlying

production system, such as differences between speakers or speaking styles. The observation

mapping h(·) transforms the underlying articulatory dynamics, along with the observation

noise vt onto the acoustic representation, where vt models all the external sources of noise

such as background noise or channel variability.

The rest of this section first describes an example system of hidden dynamic models pro-

posed by Richards & Bridle (1999) (Section 2.4.1), and then discusses the HDM framework

component by component (Sections 2.4.2–2.4.4), pointing out differences and similarities

among a variety of HDM implementations. The main concern is, of course, about how the

hidden dynamics are modelled in the hidden space (Section 2.4.3).
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2.4.1 An example HDM system

Inspired by the classic HMS synthesis-by-rule system (Holmes et al. 1964) (which con-

verts phone-segment sequences to formant patterns and hence waveforms, see Section 3.2.4),

Richards & Bridle (1999) suggested a segmental HDM, which aims at explicitly accounting

for the coarticulation and transitions between neighbouring phone segments in an utterance.

Under such a model, each phone segment in the inventory is associated with a single target

vector in the hidden dynamic space, which remains constant throughout the entire phone

duration. The target for each phone segment can be thought of as corresponding to formant

frequencies or articulator positions for that phone, though in (Richards & Bridle 1999) tar-

gets and transitions are more abstract than formant frequencies and amplitudes. An acoustic

pattern is then assumed to be produced from a target sequence in the hidden dynamic space

with given durations. (Note that the target is typically multi-dimensional.) In addition, each

phone class is also associated with a vector of time-constant, which represents target impor-

tance weight or variance associated with that target.

Given a time-aligned phone sequence, the corresponding piecewise constant target se-

quence in the hidden space is smoothed using a zero-phase second-order low-pass filter (a

simple Kalman smoother) (Kalman 1960, Haykin 2001) to generate a continuous trajectory

through the hidden space. The variable low-pass filter is symmetrical so that the center

of transitions occurs at phone boundaries, to agree with normal phonetic marking practice

(Picone et al. 1999). The smoothed hidden trajectory is then transformed to the surface

acoustic space via a single non-linear mapping for all phone classes in the form of an MLP.

In (Bridle, Deng, Picone, Richards, Ma, Kamm, Schuster, Pike & Reagan 1999), this type

of HDM is also referred to as a deterministic HDM (DHDM) since the whole production

process is treated as deterministic until the acoustic output is generated, and Gaussian noise

is then added to this acoustic pattern to model the variability.

All targets were initialized at zero, and the MLP had 40 hidden units in one hidden layer,

whose weights were initialized with small random values. Model parameters estimation

was by means of gradient descent (see, e.g., Bishop (1995)) on the difference E (using a
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Euclidean distance) between the synthetic patterns and training data. Derivatives of the error

E can be backpropagated through the MLP and through the filter to the targets, so that

derivatives of E with respect to the MLP weights and the two phone-dependent parameters

(i.e., the target and the time-constant) can be obtained.

Picone et al. (1999) reported N -best list rescoring experiment results on a subset of the

Switchboard conversational speech corpus (including 1241 utterances, spoken by 23 male

speakers). When theN -best list (whereN = 5) contained reference transcriptions, the HDM

system demonstrated superior performance to conventional HMMs, with 32% reduction in

WER. In case the reference transcripiton was not included in the N -best list (either N =

5 or N = 100), the HDM system gave similar, though slightly inferior performance to

conventional HMMs. It should be noted that the HDM system was trained only on a limited

amount of speech data from a single speaker of the Switchboard corpus, whereas the HMM

system was trained on a much larger training set. These results suggest that HDMs are

capable of capturing extra information that conventional HMMs are incapable of. In addition,

Picone et al. (1999) showed that the two HDM variants, i.e., the DHDM system (Richards &

Bridle 1999) and the VTR system (Deng 1998), were fairly closely in performance.

2.4.2 Alternative symbolic representations of speech

In most ASR work, speech at the symbolic (phonetic) level is represented as a sequence

of phonemes, oft-cited as the “beads-on-the-string” model of speech. Using phoneme as the

basic unit for speech recognition has many theoretical and practical advantages. Firstly, any

word in a language can be transcribed in terms of a sequence of phonemes of that language.

Secondly, the total number of phonemes in any language is relatively small in comparison

with the total number of words of that language. In English, for example, approximately 50

phonemes are sufficient to describe any word, while a typical state-of-the-art LVCSR system

is expected to be able to cope with a large vocabulary over 65,000 words. Thirdly, there is

a rich source of phoneme-based pronunciation dictionaries, which enable idealised pronun-

ciations of most words in a language to be transcribed easily as a sequence of phonemes
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(Russell 2003).

The “beads-on-the-string” view of speech leads to a naive, sequential model of speech

pattern structure. Although this is a reasonable approach in many speech technologies, it

is at variance with modern theories in speech science such as non-linear phonology, which

treat speech in terms of multi-dimensional asynchronous processes of a set of distinctive

features10. In recent year, many alternative approaches have been studied to represent speech

at the symbolic level, among which feature-based approaches have shown some advantages

over the traditional phone-based speech model (Gutkin & King 2004, Deng 1998).

Deng (1998) adopted a feature-based phonological model (or pronunciation model) in

which speech was represented as multi-dimensional, asynchronous and overlapping articu-

latory features. A detailed description of the feature-based phonological model was given in

(Deng & Sun 1994) and a brief review is provided here for completeness.

A total of five multi-valued features were used in (Deng & Sun 1994), including lips,

tongue blade, tongue dorsum, velum and larynx. A detailed feature specification system was

created, in which each phone corresponds to a distinct, static (hence context-independent)

configuration of articulatory features (affricates and diphthongs, on the other hand, were de-

composed into their associated relative stationary sub-segment, i.e., affricates → stop and

fricative positions; diphthongs→ concatenation of two target vowels). To account for con-

text dependencies, features were allowed to spread in both left and right directions with

a varying degree of spread depth, resulting in temporal overlap among different features.

Given the feature-overlapping pattern, a state sequence was constructed in which each state

(or the feature bundle) must be identified with a permissible feature group that can be found

at a fixed time point in the feature-overlapping pattern.

Phonetic classification results on TIMIT showed that feature-based HMMs outperformed

phonemic CI HMMs, with at most a 27% reduction in the error rate. Moreover, the superior

performance of feature-based approach can be achieved with far fewer mixture components

than conventional HMMs, which suggests that less traning data is required in the feature-

10The term ‘feature’ here is used to denote the symbolic indicators of phonetic contrasts, rather than acoustic
observations as it is usually used to refer to in ASR.
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based approach.

Investigating alternative pronunciation models is out of the scope of this thesis. Ostendorf

(1999) provided some useful insights into non-standard strategies to represent speech other

than phonemes.

2.4.3 Hidden dynamics modelling

Choice of the hidden representation

A choice must be made at the first place about the nature of the hidden representation in

an HDM. This does not have to be a real articulatory description, though in this thesis it is

often referred to as an articulatory layer. The vocal-tract-resonances (Deng 1998, Deng & Ma

2000, Zhou, Seide & Deng 2003) or formant frequencies (Russell & Jackson 2005, Russell

et al. 2007), among others, provide an appropriate hidden representation because formants

are closely related to not only articulation but also acoustics. VTRs are the pole locations

of the vocal tract configured to produce all speech sounds, and have acoustic correlates of

formants which are directly measurable for vocalic sounds, but often are hidden or perturbed

for consonantal sounds due to the concurrent spectral zeros and turbulence noises (Deng &

Ma 2000). For nonnasalized vowels, VTRs coincide with formants.

Apart from VTRs or formants, a number of alternative hidden representations have also

been investigated in the past. For example, the intermediate representation in the HDM

described in (Richards & Bridle 1999) is an unconstrained hidden space, which is more

abstract than formant frequencies. In the coarticulation model presented in (Gao, Bakis,

Huang & Zhang 2000), the hidden space is based on the five articulatory features as described

in (Deng & Braam 1994), i.e., lips, tongue blade, tongue dorsum, velum and larynx.

The dimensionality of the hidden space varies, depending on the nature of the hidden

representation. For example, when the hidden representation is based on formants, the first

three formant frequencies are typically used, resulting in a three-dimensional hidden space

(Deng 1998, Russell & Jackson 2005). Russell & Jackson (2005) also investigated two

alternative hidden representations based on formant frequencies and amplitudes, which could



CHAPTER 2. LITERATURE REVIEW 47

lead up to a 12-dimensional hidden space. A higher-dimensional hidden space provides

more information about the underlying production mechanisms, though leads to increased

parameterisation and computation. Bridle et al. (1999) found in an experiment that two

dimensions seemed adequate to reproduce certain vowel sounds.

Form of hidden dynamics

The hidden dynamics have been modelled in a variety of ways. Table 2.2 summarises

various forms of hidden dynamics proposed in the literature. For notational simplicity, it is

assumed that the hidden space is one-dimensional, and all unit (state or phone) indices are

omitted for illustrative clarity.

Author Form of hidden dynamics/State equation
Russell & Jackson (2005) Piecewise linear
Russell et al. (2007) f(t) = (t− t̄)m+ c
Richards & Bridle (1999) Smoothed piecewise constant (Kalman smoother)
Gao et al. (2000) (σ−1 + 2)x(t) = σ−1c+ x(t+ 1) + x(t− 1)
Deng (1998) Causal second-order low-pass filter
Zhou et al. (2003) target-direct trajectory function
Seide et al. (2003) x(t) = 2ρx(t− 1)− ρ2x(t− 2) + (1− ρ)2c+ w(t)
Deng & Ma (2000) Causal first-order low-pass filter

x(t) = 2ρx(t− 1) + (1− ρ)2c+ w(t)

Table 2.2: Summary of various forms of hidden dynamics appeared in the literature.

Piecewise linear The simplest form of dynamics is a piecewise linear trajectory model

(Russell & Jackson 2005, Russell et al. 2007). Each state of the linear/linear MSHMM

is associated with a variable-duration linear trajectory f in the formant-based intermediate

layer, and therefore formant dynamics are modelled as piecewise linear trajectories. m and

c are the slope and mid-point of the linear trajectory f and t̄ = (l + 1)/2 where l is the

trajectory duration. Although such an approach offers computational advantages, the lack of

continuity constraints at segment boundaries poses as a major drawback because the temporal

smoothness of formant transitions between speech units is lost. The research presented in

this thesis attempts to overcome this limitation by using a continuous, non-linear trajectory

instead of the piecewise linear trajectory.
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Smoothed piecewise constant In the HDMs proposed by Richards & Bridle (1999) and

Gao et al. (2000), the piecewise constant target sequence is smoothed using a simple Kalman

smoother (c and ρ denote the target and time-constant). Each state x(t) at time t along the

smoothed state sequence can be seen as a weighted sum of the target at that time and the

adjacent values: x(t− 1) and x(t+ 1). The Kalman smoother equations which describe the

smoothed trajectory were presented in (Richards & Bridle 1999).

Causal low-pass filter Deng (1998) propose a statistical HDM in which the VRT dynamics

is described by a causal second-order discrete-time critically-damped unity-gain low-pass

filter. The state equation using the state-space formalism is given in Table 2.2, where ρ

determines the rate of the critically-damped system dynamics towards the local target c. In

addition, the global smoothness was achieved by imposing continuity constraints in such a

way that the state vector x(t) at the end of a dynamic regime (e.g., phone) to be identical

to the initial state vector for the immediate following regime. Therefore, the model is able

to characterise long-span coarticulation effects. A simplified first-order state equation was

used in (Deng & Ma 2000). In the 1998 Workshop on Language Engineering (Bridle et al.

1999), Deng’s statistical HDM provided similar level of performance compared to the HDM

proposed by Richards & Bridle (1999).

Hidden-trajectory HMM Zhou et al. (2003) proposed a hidden-trajectory HMM (HTHMM)

which combines the advantages of both HDMs and HMMs. The hidden trajectory model was

based on the same state equation as in (Deng 1998), though the frame-wise noise term is re-

moved to allow simple training and recognition implementations. This hidden trajectory

model was incorporate into a standard HMM whose Gaussian means in the output mixture

distributions were adapted to the hidden trajectory model. A full MAP decoding algorithm

for HTHMMs was derived and described in (Seide, Zhou & Deng 2003), which is the first

recognition system in the context of HDMs. Using a small vocabulary digit-string corpus, the

context-independent HTHMMs achieved slightly better performance compared to triphone

HMMs with about 20% few parameters.
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2.4.4 Articulatory-to-acoustic mapping

In the HDM framework, an important component is the articulatory-to-acoustic mapping

which transforms the hidden dynamics to the acoustic domain. Both linear and non-linear

mappings have been used in the past, and in either case, the mapping parameters can be tied

across different phones based on different categorisations of the phone set.

Non-linear mapping

In most HDM approaches, a non-linear mapping such as an MLP is used. This is natural

since it is widely established that the relationship between the hidden representation, e.g.,

articulator movement or formant frequencies, and the acoustic representation is non-linear

(Richards & Bridle 1999, Russell et al. 2007). For example, a single MLP for all phone

classes was used by Richards & Bridle (1999), while an ensemble of 10 MLPs was used in

(Deng & Ma 2000), with each MLP associated with a distinct manner of articulation. The

ten phone classes are listed in Table 2.3 below. As can be seen, all vowels are tied using

a single MLP since vowel distinction is based exclusively on different target values in the

intermediate VTR domain. For phones with similar VTR targets, e.g., [s] and [sh], separate

MLPs are used. ‘Sil’ and ‘sp’ are two silence models so that they can be tied using a single

mapping.

Number Phone class
1 aw, ay, ey, ow, oy, aa, ae, ah, ao, ax, ih, iy, uh, uw, er, eh, el
2 l, w, r, y
3 f, th, sh
4 s, ch
5 v, dh, zh
6 z, jh
7 p, t, k
8 b, d, g
9 m, n, ng, en

10 sil, sp

Table 2.3: The phone categorisation scheme used by Deng & Ma (2000) for the VTR-to-
MFCC (articulatory-to-acoustic) mapping based on the TIMIT phonetic labelling system.
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Linear mapping

Examples using linear articulatory-to-acoustic mappings include (Zhou et al. 2003, Seide

et al. 2003, Ma & Deng 2004, Russell & Jackson 2005). In (Zhou et al. 2003, Seide et al.

2003, Ma & Deng 2004), a mixture of linear mappings was used to approximate the non-

linear mapping (MLP) previously described in (Deng 1998, Deng & Ma 2000). The same

mixture component is used for all frames of a speech unit in (Ma & Deng 2004), while

in (Zhou et al. 2003, Seide et al. 2003) the mixture component is chosen independently in

each frame. The linear mapping used in (Russell & Jackson 2005, Russell et al. 2007) is

estimated based on matched formant and acoustic data before the estimation of any other

model parameters takes place (see Section 4.4 for more details).

Although linear articulatory-to-acoustic mappings do offer some computational advan-

tages (especially during the model training stage), they are clearly less realistic than their

non-linear counterparts. In (Russell et al. 2007), for example, the authors found that their

linear formant-to-acoustic mappings rely heavily on the band-energy type of data, which is

linearly related to the acoustic representation, and are not actually using the formant fre-

quency information. This result exposes the limitations of linear mappings and provides

empirical evidence of the need for non-linear formant-to-acoustic mappings.

2.5 Summary

This chapter reviews a variety of approaches which attempt to characterise speech dy-

namics. Section 2.3 discusses the family of SHMMs and Section 2.4 outlines various HDMs.

SHMMs provide an improved model of feature dynamics at the segment level, relative to

a frame-based HMM, in the surface, acoustic representation of speech. Trajectory-based

SHMMs model dynamics by means of some form of trajectory in the acoustic space. Many

different types of trajectory have been reviewed, including constant, linear, higher order

polynomial and non-parametric. A linear dynamical system can be used as a general acous-

tic model, which includes many of the other acoustic models as special cases.
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HDMs have theoretical advantages to model coarticulation and long-span dependencies

over the entire utterance in an articulatory-related intermediate layer. An HDM can be in-

terpreted from the perspective of a state-space model, in which the state equation describes

the smooth motion of the articulators, which is projected to the acoustic layer through an

articulatory-to-acoustic mapping. Most HDM approaches use linear target filtering as a

model for the hidden dynamics and artificial neural networks as the non-linear mapping

function in the observation equation.



Chapter 3

Speech data

The purpose of this chapter is to provide a detailed description of the speech data used in

this thesis work. Two types of data have been used: acoustic data and formant data, and these

are described in Sections 3.1 and 3.2, respectively. Section 3.3 then gives a short description

of the speech corpora used in this research.

3.1 Acoustic data

In current ASR systems, feature extraction is an important component because the out-

come of speech signal analysis is the foundation of the subsequent acoustic modelling and

testing. The aim of front-end processing is to transform the speech waveform into a sequence

of acoustic feature vectors. The ideal acoustic features would:

• reflect the human speech production mechanism - e.g., the source-filter model.

• reflect knowledge of the human peripheral auditory system, e.g., the non-linearity of

the human perceptual frequency scale.

• maintain all perceptually important information while suppressing other unimportant

information (e.g., phase or noise).

• be computationally efficient to allow real-time applications.

As in previous study on MSHMMs (Russell & Jackson 2005, Russell et al. 2007) and many

other ASR systems, mel-frequency cepstral coefficients are chosen as the acoustic features

52
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in this research. In this work, the calculation of MFCCs is performed using standard tools in

HTK, as described in the following paragraphs.

The speech waveform is first divided into equally spaced (10ms spacing) and overlapping

short segments of fixed duration of 25ms, based on the underlying assumption that the shape

of the vocal tract (and hence the speech spectral characteristics) are approximately stationary

over an interval of 20-30ms. Assume that each segment contains N speech samples {sn :

s1, s2, . . . , sN}. A Hamming window function is then applied to taper the samples in each

segment so that discontinuities at the segment edges are attenuated (Young et al. 2005). The

Hamming window function is given by

s
′
n =

{
0.54− 0.46cos

(
2π(n− 1)

N − 1

)}
sn. (3.1)

Next, a Discrete Fourier Transform (DFT) is applied to the windowed speech waveform,

resulting in a N/2-point complex spectrum. The modulus is taken to produce the power

spectrum, with the effect of removing the phase information from the acoustic representation,

which is of little perceptually importance. Then a logarithm is applied to the power spectrum

to generate the log-power spectrum, sometimes referred to as the short-term spectrum. The

use of a logarithm is motivated by results from psycho-acoustics which show that loudness is

perceived on a logarithmic scale (see, e.g., Moore, Glasberg & Vickers (1999)). In addition,

the use of the logarithm has the effect to compress the dynamic range.

So far, each speech segment is represented by a N/2-point log-power spectrum, which

is distributed linearly on the frequency scale. However, psycho-acoustic experiments show

that the perceptual frequency scale is not linear but non-linear (see, e.g., Zwicker & Fastl

(1999)). One approximation to this non-linearity of perceptual scale is the so-called mel-

scale, which is approximately linear up to about 1,000Hz and logarithmic above 1,000Hz.

A popular approach to converting a value f in Hertz into mels is given by O’Shaughnessy

(1987) as:

Mel(f) = 2595log10(1 +
f

700
). (3.2)
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A mel-scale triangular filter bank (Young et al. 2005) is then used to smooth the log-

power spectral estimates to produce a mel-scale log-power spectrum. A finite number M of

triangular filters are chosen and arranged equally spaced along the mel-scale, which, given

the correct bandwidth (≈ 100 mels), translate into critical band filters on the linear fre-

quency scale. The mel-scale filter bank produces an M -point mel-scale log-power spectrum,

in which each point {mj} (1 ≤ j ≤ M ) is a weighted sum of the log-power spectral coeffi-

cients, representing the spectral magnitude in the corresponding filter bank channel j.

Finally, a discrete Cosine transform (DCT) is applied to the mel-scale log-power spec-

trum, resulting in a set of M mel frequency cepstral coefficients {c1, . . . , cM}, where

ci =

√
2

M

M∑
j=1

mjcos
(πi
M

(j − 0.5)
)

(3.3)

and {mj} (1 ≤ j ≤ M ) denote the filter bank amplitudes. The DCT has the effect of

compressing the spectral information into the lower order coefficients and it also decorre-

lates them allowing the subsequent statistical modelling to use diagonal covariance matrices

(Young 1995). In this research, the first 12 MFCCs {c1, . . . , c12} plus c0 (which is propor-

tional to the average log power spectrum component value) are used as the basic acoustic

feature vector. Dynamic features (∆ and ∆2 parameters) are also used in some experiments

in this study, which are calculated based on Equation (2.2).

3.2 Formant data

3.2.1 Formants in ASR

It has been known for many years that formant frequencies are important in determining

the phonetic content of speech sounds (Holmes & Garner 2000). For example, the first

three formant frequencies are sufficient to discriminate all English vowels and semivowels

(Peterson & Barney 1952). In fact, experts in spectrogram reading (Zue 1991) can often

crack the ‘code’ behind the speech signal by observing the formant structure in the speech
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spectrogram alone with a high degree of reliability. Moreover, formant frequencies are of

primary importance for speech perception. It is found that an overall 10% change in formant

frequencies makes a dramatic change, though the change is primarily in one’s perception of

the characteristics of the speaker rather than of the phonetic content. For example, a 30%

increase in the frequency of F1 results in the sentence originally spoken in a British accent

to be perceived by some to be spoken by an Australian. Formant frequencies above F3 and

formant bandwidths, though, have little perceptual effect (Hunt 1987).

Formant dynamics are closely correlated with dynamics of the principle articulators, such

as tongue, lips and jaw. Generally speaking, the lower the value of F1 is, the closer the tongue

is to the roof of the mouth. On the other hand, the F2 value is proportional to the frontness

or backness of the highest part of the tongue during the production of the vowel. Therefore,

formant trajectories in the speech spectrogram (again see Figure 1.2 on page 9) tell us about,

roughly, how the shape of the vocal tract changes with time.

Despite the phonetic significance of formants, formant frequencies or/and amplitudes

alone as feature vectors in ASR is rare. This is partly because that automatic estimation of

formant frequencies is difficult and prone to error. While formants are reasonably well de-

fined for voiced sounds, a formant for unvoiced sounds (such as some stops and fricatives)

may be so weak as a consequence of weak excitation that it causes no peak in the spectrum.

Formant estimation for nasal sounds poses another difficulty, since the basic speech produc-

tion theory does not strictly apply to this type of speech sounds because of the concurrent

spectral zeros. In addition, the chosen formant representation may not contain sufficient

information on its own for accurate speech recognition (Russell & Jackson 2005).

In practice, formant information is usually used as a supplement to acoustic features

to aid speech recognition. Several authors have confirmed that an appropriate combination

of formant features and acoustic features could provide some recognition performance ad-

vantages over the traditional, cepstrum features only approach (Holmes, Holmes & Garner

1997, Garner & Holmes 1998, Holmes & Garner 2000, Wilkinson & Russell 2002). Other re-

searchers took advantage of the formant information in an intermediate space to explicitly ac-
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count for dynamics. Examples include (Deng 1998, Deng & Ma 2000, Zhou et al. 2003, Rus-

sell & Jackson 2005, Russell et al. 2007), as described in hidden dynamic models in Sec-

tion 2.4.3. Indeed, the fact that formants are closely related to both acoustics and articulation

makes them a good choice for the intermediate representation in HDMs.

The particular type of formant data employed in this work is the 12-dimensional PFS

control parameters, which belongs to one of three alternative formant-based intermediate

representations studied previously in a linear/linear MSHMM. The use of this special type

of formant-based representation sets this research apart from others because the 12 PFS con-

trol parameters are originally from a formant synthesiser. This is actually a more immediate

motivation for the development of an MSHMM as a unified model for speech recognition

and synthesis. The rest of this section first describes what the 12 PFS parameters are (Sec-

tion 3.2.2), and then shows how these parameters are calculated (Section 3.2.3) and how they

are initially used in a formant synthesiser for speech synthesis (Section 3.2.4).

3.2.2 The 12 PFS control parameters

Number Parameter description
1 FN : Frequency of ‘low frequency’ formant (default value 250Hz)
2 ALF : Amplitude of FN in dB
3 F1: Frequency of first formant (in 25 Hz steps)
4 A1: Amplitude of first formant in dB
5 F2: Frequency of second formant (in 50 Hz steps)
6 A2: Amplitude of second formant in dB
7 F3: Frequency of third formant (in 50 Hz steps)
8 A3: Amplitude of third formant in dB
9 AHF : Amplitude in high frequency region (centred on 3,500 Hz) in dB
10 V : Degree of voicing (1=completely unvoiced, 63 = fully voiced)
11 F0: Fundamental frequency on logarithmic scale
12 MS: Glottal-pulse mark-space ratio

Table 3.1: The 12 parallel formant synthesiser control parameters. Taken from (Russell,
Zheng & Jackson 2007).

The 12 PFS control parameters are summarised in Table 3.1. Among the 12 parame-

ters, the first 9 parameters reflect the spectral shape of the vocal tract, while the remaining 3
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parameters define the sound source. These 12 parameters are generated from the Holmes for-

mant analysis toolkit (Holmes 1998, Holmes 2001), which is described in Section 3.2.3. For

the first and twelfth parameters (i.e., FN and MS in Table 3.1), the Holmes formant analyser

currently returns fixed values. The tenth and eleventh parameters, i.e., degree of voicing V

and fundamental frequency F0, are obtained based on multi-channel autocorrelation analysis

(Holmes 1998), which will be described in more detail in Section 3.2.4.

Figure 3.1 compares the 13 MFCCs and 12 PFS parameters of an example TIMIT sen-

tence “Where were you while we were away?” (sx9), spoken by speaker msjs1. Recall

that in the wide-band speech spectrum of the same utterance (see Figure 1.2 on page 9), we

observed that formant trajectories, especially the formant trajectories for F1, F2 and F3, are

mostly smoothly time varying due to the constraints of the human vocal tract. The 12 PFS

control parameters, as shown in Figure 3.1 (b), demonstrate this smoothness again, as most

of the 12 PFS parameters vary slowly and smoothly. On the other hand, the corresponding

13 MFCCs, especially the higher order coefficients, may often vary rapidly and erratically,

as can be seen in Figure 3.1 (a). The comparison between these two types of data in Fig-

ure 3.1 shows the advantage of modelling dynamics directly in a formant-based domain.

Many phenomena which may be characterised simply in terms of formant transitions (or

formant trajectories) are often exhibited in the acoustic domain as complicated paths which

span several different frequency bands. This is a principal motivation for the incorporation

of such a formant-based representation in our MSHMMs.

3.2.3 Formant analysis

There are a number of techniques to automatically estimate formant frequencies from

acoustic speech signals. The conventional method of estimating formant frequencies is based

on the standard LPC technique (Markel & Gray 1976). The underlying assumption of the

LPC formalism is that the human vocal tract can be modelled as a linear filter with a small

number of poles but no zeros in its transfer function. Apparently, this assumption is untrue

for nasal sounds due to the introduction of zeros caused by the inclusion of the nasal cavity
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Figure 3.1: (a) The 13 MFCCs {c1, c2, . . . , c12, c0}, displayed from top to bottom. (b) The
12 PFS control parameters. Features derived from the TIMIT utterance “Where were you
while we were away?” (sx9), spoken by speaker msjs1.
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into the vocal tract. This is one of the objections to LPC for feature extraction in speech

recognition. As far as this research is concerned, the J. N. Holmes formant analyser (Holmes

2001) is used to extract the formant information, which is described in detail in this section.

The Holmes formant analyser

The Holmes formant analysis toolkit (Holmes 1998, Holmes 2001) automatically trans-

forms a speech waveform into three alternative formant-based parameterisations. All these

three representations have been used in the previous experimental work on a linear/linear

MSHMM, which are referred to as 3FF, 3FF+5BE and 12PFS, as described in Section 4.5.

The following description of the calculation of the 12 PFS control parameters largely

follows that of Holmes (2001). An important feature of the Holmes formant analyser is

that the direct measurement of formant frequencies is replaced with a matching process.

Figure 3.2 shows the main steps in formant estimation using the Holmes formant analyser.

The speech signal is sampled at 8,000 samples per second, which gives a bandwidth

of 4KHz. Pitch-synchronous Fourier analysis is applied to generate a 31-dimensional log

power spectral vector for every 10ms of input speech, representing frequencies from 125 Hz

to 3875 Hz. At the heart of the Holmes formant analyser is a ‘codebook’, which contains

one hundred and fifty reference spectra. These reference patterns represent the range of sets

of formant frequencies which occur in all possible speech sounds. The number of reference

spectral cross-sections may vary, though it is found that one hundred and fifty is adequate

(Holmes 2001). Each reference spectrum in the codebook is associated and stored with one

or possibly more sets of the first three formant frequencies, which have been determined by

a human expert from examination of the corresponding spectral cross-section.1

For each input spectrum, a shortlist of reference spectra from the codebook is selected

based on the comparison in terms of general aspects of their shape. In (Holmes & Holmes

2001), this is achieved by selecting six candidates from the codebook which have the lowest

squared Euclidean distances with the input spectral cross-section. Ideally, every entry in

1The use of alternative sets of formant frequencies for a reference spectrum happens when it is impossible
to be certain which spectral peak should be associated with each of the formants.



CHAPTER 3. SPEECH DATA 60

Reference spectra 
(Codebook) 

Selected shortlist

Euclidean 
comparison

DP Frequency
warping

Input spectrum

Best matching
reference spectrum

Intermediate 
formant estimate 

Frequency
warping

Intermediate 
formant estimate

Fine frequency
adjustment

Formants output

DP time
smoothing

Figure 3.2: Figure showing the main steps of estimating formant frequencies using the
Holmes formant analyser.

the codebook should be considered throughout the whole formant analysis process until the

formant frequencies for the unknown spectrum are assigned. However, using a sub-set of

the codebook (i.e., the shortlist) for further analysis can significantly reduce the computation

associated with the matching process.

Once the shortlist is chosen, a more detailed comparison is made between the input spec-

tra and each reference spectrum in the shortlist. This involves the use of dynamic program-

ming (DP) (Bellman 2003) to undertake constrained, non-linear frequency warping. As a

result, the best matching reference spectrum in the shortlist is found, which gives the mini-
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mum DP distance with the input spectrum. The formant frequencies associated with this best

matching reference pattern are adjusted according to the frequency warping and the results

are used as formant frequency estimates for the input cross-section.

The formant frequencies are further refined to take account of the shape of the input

spectrum near to the chosen formants to obtain more accurate formant estimates. For exam-

ple, parabolic interpolation is employed to find a frequency between the two spectral points

either side of the determined formant frequency, such that the frequency so found is at the

highest point of a parabola which passes through the spectral cross-section at the determined

formant frequency and at its two neighbouring frequencies (Holmes 2001).

Finally, DP time smoothing is used to choose a unique set of formant frequencies at

each time t, taking into consideration the continuity constraints of the formant trajectories

prior to and subsequent to time t. This is motivated by the fact that for each reference

spectrum in the codebook, there are possibly more than one set of stored formant frequencies.

Sometimes the best matching reference spectrum for a particular input frame may give only

one unique set of formant frequencies, while a neighbouring frame may give alternative sets

of formant frequencies. Moreover, in the case that multiple best reference spectra are chosen

from the selected shortlist, there will be a number of sets of formant estimates to choose

from. The DP based time smoothing therefore selects between alternative sets of formant

frequencies derived from all members of the shortlist to produce formant trajectories that

have the minimum discontinuity in time.

Given the formant frequencies obtained from the DP time smoothing, the corresponding

formant amplitudes are determined from input cross-section amplitudes at estimated formant

frequencies. The output of the formant frequencies and amplitude are generated every 10ms.

3.2.4 Formant synthesis

Formant synthesis is based on a formant level description of the vocal tract transfer func-

tion. Unlike the conventional waveform concatenation synthesis, which generates speech

by concatenating stored examples of actual speech from a database (Hunt & Black 1996),
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no corpus of recorded human speech samples is needed at runtime in formant synthesis. A

number of formant synthesisers have been developed in the past (Holmes et al. 1964, Hun-

nicutt & Klatt 1987). This section describes a formant synthesis system based on the classic

HMS formant synthesiser (Holmes et al. 1964), developed at the Joint Speech Research Unit

(JSRU), in the UK. The HMS formant synthesiser is also used in this research to generate

speech, as described in Chapter 6.

Text-to-phone
conversion

Synthesis-by-ruleText Parallel formant
synthesiser

Speech

Figure 3.3: Block diagram showing the main components of the JSRU synthesis-by-rule
formant synthesis system.

The JSRU formant synthesis system is a rule-based synthesiser which comprises three

main components, as shown in Figure 3.3. Firstly, a rule-based text-to-speech component

converts orthographic text into a sequence of phonetic element, each of them corresponding

to an entry in the talker table2. These rules are often referred to as pronunciation rules

or letter-to-sound rules. It should be noted that phonetic elements and phonemes are not

equivalent here. Some phonemes are represented by two vowel-like elements, for example,

diphthongs. Other phonemes, such as stops, are treated as a sequence of three elements,

corresponding to the period of closure, the period of high energy at the beginning of the

release, and the period of diminished energy at the end of the release (Holmes et al. 1964).

Secondly, the role of the synthesis-by-rule component is to generate a sequence of syn-

thesiser control parameters from a stream of phonetic elements obtained in the previous

stage. A talker table is the key information source at this stage, which contains parameters

that specify each phonetic element. For each phonetic element the talker table contains the

duration and target frequencies and amplitudes of the first three formants which characterise

2The talker table is described in the following paragraph. In the original work (Holmes et al. 1964), there
are totally 50 phonetic elements.
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Figure 3.4: Second formant transition for the phonetic element sequence [we] according to
the Holmes-Mattingly-Shearme synthesis-by-rule system (from Holmes & Holmes (2001)).

that speaker’s target instantiation of the sound during its steady-state period. Moreover, a set

of rules governing transitions to and from these target values are also specified and stored in

the table, such as the internal duration (ID) and external duration (ED), the fixed contribu-

tion to the boundary value and the proportion of the target frequency which contributes to its

boundary value.

For each input phonetic element, a sequence of sets of synthesiser control parameters

must be calculated in order to synthesise that sound. The number of such sets of parameters

is equal to the duration of the element. The synthesiser control parameter values are deter-

mined using information contained in the talker table for the current phonetic element and

its immediately preceding and following elements in the input sentence. For example, linear

interpolation rules are applied to ensure smooth formant trajectories are generated, which is

achieved by calculating a boundary value during the transition from one target to another.

Figure 3.4 shows an example of the interpolation rules applied to the second formant

transition for the phonetic sequence [we] as in the word well. The talker table for the phonetic

element [w] has the following parameters for the formant frequency F2:

• The target frequency - 750Hz

• Four other parameters which control the transition out of the phone [w]

– The fixed contribution to the boundary value - 350Hz
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– The proportion of the target frequency (steady-state value) of the adjacent ele-

ment which contributes to its boundary value - 0.5

– The internal duration (i.e., the duration of the transition before the boundary) -

40ms

– The external duration (i.e., the duration of the transition after the boundary) -

100ms

Since the target value for F2 of the phonetic segment [e] is 2,000Hz, the boundary value F b
2

of F2 in the transition from [w] to [e] is given by the fixed contribution from [w] plus the

given proportion of the following target frequency, i.e., F b
2 = 350 + 0.5× 2000 = 1350.

Finally, the parallel formant synthesiser described in (Holmes et al. 1964), as shown in

Figure 3.5, is used to synthesize speech given a sequence of synthesiser control parameters.

This formant synthesiser is also used in the research presented in this thesis to generate

synthetic speech. The parallel formant synthesiser consists of a series of three resonators,

arranged in parallel, which correspond to the first three formants of the vocal tract. Energy of

higher frequency is represented by a fourth resonator. The formant resonators are configured

in parallel to enable separate mixing of the voiced and unvoiced excitation for each formant,

with potential advantages in generating high quality synthetic speech. A sequence of 12 PFS

control parameters is sent to the parallel formant synthesiser every 10 ms to generate speech.

(The 12 PFS control parameters are listed in Table 3.1 on page 56.)

For formant synthesis, it is very important to get the excitation right. The source of the

excitation for the filters is determined by a voicing control. The voicing control is given in

the talker table for the current phonetic element and remains the same for the duration of

that element. For voiced excitation a waveform with a particular fundamental frequency F0

is used, whereas for unvoiced excitation a random noise source is used. In the original work

(Holmes et al. 1964), the series of fundamental frequency values is derived by measuring a

spectrogram of a human version of the utterance to be synthesized, or is simply estimated.

The fundamental frequency F0 is normally specified in the input sentence once for each

elements, and is subject to linear interpolation at the boundaries between adjacent elements.
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Figure 3.5: Schematic diagram of a parallel formant synthesiser. Reproduction of the figure
in (Russell 2002).

Later work reported in (Holmes 1998) described a method to estimate fundamental frequency

F0 based on multi-channel autocorrelation analysis, as explained below.

Short-time autocorrelation is a well-established method for estimation of the F0 because

of the signal’s tendency to resemble itself with a delay corresponding to the fundamental

frequency. In (Holmes 1998), the speech is filtered into eight separate frequency bands,

representing the lowest 500 Hz and seven overlapping band-pass channels each about 1000

Hz wide. The outputs of all the band-pass channels are full-wave rectified and band-pass

filtered between 50 Hz and 500 Hz. Autocorrelation functions are calculated for the signals

from all eight channels, and these functions are combined with appropriate weights. The

highest peak (when several consecutive peaks are of about the same height, the earliest peak

is the required one) in the combined autocorrelation function is at the fundamental period.

Copy synthesis, where the synthesiser control parameters are derived directly from a nat-

ural utterance and then used to re-synthesise that speech, has shown that given a appropriate
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set of synthesiser control parameters, a parallel formant synthesiser can generate extremely

high quality speech which is almost indistinguishable from the natural (Holmes 1973). The

implication of this result is that the robotic synthetic speech quality, which is typically as-

sociated with this type of synthesiser, is because of the errors introduced by the processes

which convert a string of text into a sequence of synthesiser control parameters, rather than

shortcomings of the parallel formant synthesiser (Russell 2003). Hence, the major challenge

in formant synthesis is to obtain appropriate synthesiser control parameters. In addition,

Holmes (1989) shows that, at least for female voices, an additional higher frequency formant

leads to a significant improvement in the quality of the synthetic speech.

3.3 The TIMIT speech corpus

All experimental work presented in this thesis is based on TIMIT. The TIMIT speech

corpus is widely used in ASR research. The corpus contains read speech of 630 speakers (438

males and 192 females), divided into 8 dialect regions, which represent 8 different dialect

areas of the United States. Ten phonetically-balanced sentences, including 2 fixed dialect

sentences (SA sentences) which are designed to reflect dialectal variants of the speakers, are

read by all 630 speakers.

Not all data in TIMIT were used in previous work on MSHMMs. For example, the

MSHMM proposed in (Russell & Jackson 2005) was trained and therefore tested on data

from the male subjects only of the TIMIT corpus. Although later work on the MSHMM

(Russell et al. 2007) used data from female speakers of TIMIT, this data was only used to

build gender-dependent models for female speakers. The reason for using gender-dependent

(rather than gender-independent) models in the MSHMM framework is to reduce the vari-

ability that the experimental MSHMM system would need to accommodate. As we know,

one simple approach to overcoming the variability problem in speech pattern modelling is

to remove it. For example, speaker-dependent systems are often used to avoid inter-speaker

variability. Given the TIMIT database, using gender-dependent data such as male data can

remove the inter-gender variability so that the resulting model may be more accurate in char-



CHAPTER 3. SPEECH DATA 67

acterizing the underlying mechanisms for the current task domain. Another reason for using

the data of male speakers only is that initially there was a concern that formant analysis (since

the intermediate layer of MSHMMs is based on formant frequencies) for female speakers is

more difficult than for male speakers because of their relatively higher pitch (Holmes 2001),

and therefore may introduce errors and other sources of variability which could deteriorate

the model. However, Russell et al. (2007) show that there is no evidence that performance

for female speech is affected by difficulties with formant analysis.

On the other side, a major goal of the MSHMM is to seek a more efficient means of

modelling coarticulation, without the need for a large amount of training data. In doing so,

the MSHMM includes a formant-based intermediate layer where dynamics can be modelled

simply, and makes a couple of simple assumptions, such as a fixed, linear trajectory in the

intermediate layer to model dynamics and a single Gaussian PDF in the acoustic domain to

account for acoustic variability (see Section 4.2). However, these simplifying assumptions

are less realistic and may lead to a model which is not sufficiently flexible to accurately deal

with speech data which contain a wide range of variability sources. Therefore, focusing on a

slightly constrained task domain (such as the gender-dependent male system as described in

(Russell & Jackson 2005)) is a valid strategy for the development of this type of MSHMMs,

especially at the early stage of this model.

The focus of this research is still on the MSHMMs for male speakers, though female

data are also used. In particular, recognition results are presented for MSHMMs which are

built on the full TIMIT training set (including both male and female speakers). This is the

first time in the context of the MSHMM that gender-independent models are used. It would

be interesting to see how the increased amount of training data and the added degree of

variability (introduced by the gender) affect the performance of the MSHMM.

3.4 Summary

This section describes in detail the speech data used in this study. As in previous re-

search on MSHMMs, MFCCs are employed as acoustic features, and all the 12 PFS control
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parameters are used as formant features. These two types of data are calculated by using the

HTK and the Holmes formant analyser (see Section 3.2.3), respectively. The TIMIT corpus

of read speech is used for all experiments presented in this work.

The use of 12 PFS control parameters (see Table 3.1) is a distinguishing feature of this

research. These parameters are originally used for formant synthesis, as described in Sec-

tion 3.2.4. Formant synthesis is a model-based approach to speech synthesis, which builds

on a formant level description of the vocal-tract transfer function. Phonetic units are hand-

crafted and parameters (such as formant frequencies and amplitudes) are stored in a talker

table, which can be updated as critical listening suggests. The formant synthesiser control

parameters are derived by rules, in conjunction with data from the talker table. Linear inter-

polation rules are typically used to ensure that smooth formant trajectories are generated.



Chapter 4

Multiple-level segmental HMMs

4.1 Introduction

This chapter presents a detailed description of the framework chosen for this research:

the multiple-level segmental HMM. The key features of a general multiple-level segmental

HMM include:

• a segmental HMM framework, which offers

– an improved model of dynamics in which the relationship between speech frames

within a segment can be modelled explicitly in terms of a trajectory model

– a tractable mathematical framework with straightforward training and recogni-

tion algorithms

• an intermediate layer, which provides an articulatory-related space where dynamics

and coarticulation can be dealt with directly and naturally

• an articulatory-to-acoustic mapping, which transforms the articulator dynamics or for-

mant transistions at the intermediate layer into the acoustic realisation of speech.

Specifically, this chapter covers all theoretical aspects of a linear/linear MSHMM (Russell

& Jackson 2005, Russell et al. 2007), the first implementation of an MSHMM, including the

formulation of the model (Section 4.2), the segmental Viterbi decoder (Section 4.3) and the

model parameter estimation algorithm (Section 4.4). Finally, Section 4.5 provides some of

the previous experimental results and conclusions.

69
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4.2 Formulation of the linear/linear MSHMM

From the perspective of mathematics, a linear/linear MSHMM (Russell & Jackson 2005)

is derived from a linear FTSHMM (Gish & Ng 1993, Deng et al. 1994, Holmes & Russell

1999, see Section 2.3.4 on page 30) by incorporating an intermediate ‘articulatory’ layer. A

linear/linear MSHMM M has a finite number of N states S = {s1, . . . , sN}. Each state

sj ∈ S (1 ≤ j ≤ N ) is associated with a midpoint vector cj and a slope vectormj in the D-

dimensional intermediate space. The midpoint and slope vectors have the same dimension

as that of the intermediate layer. These two parameters specify a linear trajectory in the

intermediate space. For example, a τ -length segment trajectory is given by

f j(t) = (t− t̄)mj + cj, (4.1)

where t̄ = (τ + 1)/2 is the midpoint of the start and end time points of the segment. In

addition, the MSHMMM is also associated with one of K phone-class-dependent, linear,

articulatory-to-acoustic mappings, W k, where k ∈ {1, . . . , K}. It should be noted that the

mappingW k is model-dependent, rather than state-dependent, which is ‘shared’ by all states

in the MSHMMM.

The linear trajectory f j in the intermediate layer is projected onto the acoustic space

via the linear articulatory-to-acoustic mapping W k. The transformed trajectory W k(f j) in

the acoustic layer is also linear because of the linear nature of both the trajectory f j and

the mapping W k. Comparison is then made frame by frame between the unknown acous-

tic observations and the transformed trajectory W k(f j). The probability of the acoustic

observation sequence oτ1 = {o1, . . . ,oτ} given state sj is (ignoring any duration probability)

bj(o
τ
1) =

τ∏
t=1

N
(
ot|W k

(
f j(t)

)
,Σj

)
, (4.2)

where N
(
ot|W k

(
f j(t)

)
,Σj

)
denotes a Gaussian PDF with mean W k

(
f j(t)

)
and covari-

ance matrix Σj , evaluated at ot.
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Suppose that an observation sequence O = {o1, . . . ,oT} comprises several segments.

Now consider the problem of computing the probability p(O|M) of O generated by the

MSHMMM. To simplify notation, the underlying state process is assumed to be a left-to-

right model. Given the MSHMM M, the observation sequence O is generated via a state

sequence (or segmentation) lN1 = {l1 × s1, . . . , lN × sN}, where li × si denotes a duration

li spent in state si for each i ∈ {1, . . . , N}, and l1 + l2 + . . . + lN = T . Therefore, the

probability ofO givenM is

p(O|M) =
∑
lN1

p(O, lN1 |M) =
∑
lN1

p(O|lN1 ,M)p(lN1 |M), (4.3)

where the sum is over all possible segmentations, and

p(O|lN1 ,M) =
N∏
i=1

p
(
o
t(i)
t(i−1)+1|li, si

)
=

N∏
i=1

bi
(
o
t(i)
t(i−1)+1

)
, (4.4)

p(lN1 |M) = p(lN |sN)
N−1∏
i=1

p(li|si)ai,i+1 = dN(lN)
N−1∏
i=1

di(li)ai,i+1, (4.5)

where t(i) is the ending time of the ith segment, li = t(i) − t(i − 1) the ith segment length

or the state duration for state si, and di the state duration distribution for state si. The term

bi
(
o
t(i)
t(i−1)+1

)
can be calculated by using Equation 4.2 applied to the segment ot(i)t(i−1)+1.

4.3 The segmental Viterbi decoder

The segmental Viterbi decoder is used in both estimation of the MSHMM model parame-

ters and recognition. Before going into the detail of the segmental Viterbi decoder, it is worth

having a brief review of the Viterbi algorithm for conventional HMMs for comparison.

4.3.1 The Viterbi algorithm for conventional HMMs

Given a sequence of T acoustic observations O = {o1, . . . ,oT} and a conventional

HMM M of N states {s1, . . . , sN}, a state sequence x̂T1 = {x̂1, . . . , x̂T} of length T is said
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to be the optimal state sequence if the probability ofO generated byM via the state sequence

x̂T1 is maximal over all possible state sequences {xT1 } of length T

x̂T1 = arg max
xT
1

p(O, xT1 |M). (4.6)

The probability p(O|M) ofO generated by M can then be approximated by

p̂(O|M) = max
xT
1

p(O, xT1 |M) = p(O, x̂T1 |M). (4.7)

The standard solution in current ASR systems to compute the optimal state sequence x̂T1

and the corresponding probability p̂(O|M) is the Viterbi algorithm (Viterbi 1967, Forney

1973). Viterbi decoding is a breadth-first search scheme in which all candidate hypotheses

are pursued in parallel. Define

α̂i(t) = max
x1,...,xt

p(o1, . . . ,ot, x1, . . . , xt, xt = si|M) (4.8)

as the joint probability of the partial observation sequence {o1, . . . ,ot} and the partial op-

timal state sequence x̃t1 = {x̃1, . . . , x̃t} and the final observation in this sequence, ot, is

generated by state si, i.e., xt = si. It follows that α̂i(t) can be computed efficiently using the

following recursive equation

α̂i(t) =


πibi(o1) for t = 1,

max
j

(
α̂j(t− 1)ajibi(ot)

)
for t > 1,

(4.9)

where aji is the state transition probability from state sj to state si, πi the initial state prob-

ability, and bi(ot) the output PDF for state si, evaluated at ot. Apparently, the probability

p̂(O|M) is given by

p̂(O|M) = α̂N(T ). (4.10)

The optimal state sequence x̂T1 can be retrieved provided that at each time t and state i, a

record is kept of the state j which corresponds to the maximum at time t− 1.
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4.3.2 The segmental Viterbi decoder

For a segmental HMMM, the principle of the Viterbi algorithm still applies. By analogy

with the notation for the Viterbi algorithm used in the case of a conventional HMM, let

α̂i(t) = max
x1,...,xt

p(o1, . . . ,ot, x1, . . . , xt, xt = si, xt+1 6= si|M) (4.11)

be the maximum joint probability of the partial acoustic observation sequence {o1, . . . ,ot}

and the partial optimal state sequence x̃t1 = {x̃1, . . . , x̃t} when the final observation in this

sequence, ot, is generated by state si, i.e., xt = si. In addition, the condition xt+1 6= si

ensures that only segments which are complete at time t are considered.

The segmental version of the Viterbi decoder is given by Russell & Jackson (2005)

α̂i(t) = max
j

max
τ

 πjbj(o
τ
1) for t = τ,

α̂j(t− τ)ajibi(o
t
t−τ+1) for t > τ,

(4.12)

where πj is the probability that the state sequence begins in the jth state, bi(ott−τ+1) the ith

segmental state output PDF evaluated at the segment ott−τ+1, τ the state duration (1 ≤ τ ≤

τmax), where τmax is the maximum state duration. Ideally, τmax should be sufficiently large to

accommodate all corpora. Unfortunately, this would lead to increased computational com-

plexity. As a compromise, the smallest maximum state duration that will work is chosen, and

in practice, this depends on the given corpus. For the TIMIT corpus used in our experimental

work, τmax is set to 15 frames, which is sufficient to accommodate all TIMIT phones.

In conventional HMMs, in order to compute α̂i(t), only states which could be occupied

at previous time t − 1 are considered. However, the segmental Viterbi decoder has to take

account of all possible segment duration, τ , and the evaluation of the segmental state output

probabilities, bi(ott−τ+1). Figure 4.1 shows the computation of the probability α̂i(t) in seg-

mental Viterbi decoding based on the state-time trellis. The time complexity of the standard

Viterbi algorithm is O(N2T ), where N and T are the number of states and the sequence

length, respectively. The segmental viterbi algorithm has a time complexity of O(N2Tτmax)
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Figure 4.1: State-time trellis interpretation of the calculation of the probability α̂i(t) in seg-
mental Viterbi decoding, in which all possible segment durations τ ∈ {1, . . . , τmax} and the
corresponding segmental state output probabilities, bi(ott−τ+1), should be considered.

or O(N2T 2) when there is no restriction on the state duration (i.e., τmax = T ). Russell

(2005) proposed two methods to reduce the computational complexity in SHMM decoding

for recognition: segmental beam pruning and duration pruning.

Segmental beam pruning

For each time t, let î(t) = arg max
i
α̂i(t). Given a bean threshold ξb > 0, state j at time t

is pruned if

|log
(
α̂î(t)(t)

)
− log(α̂j(t))| ≥ ξb. (4.13)

The right-hand side of Equation (4.12) is not evaluated at time t − τ if all its predecessor

states j are pruned at t− τ . Moreover, if all state i’s predecessors are pruned at time s, then

Equation (4.12) is not computed for t = s+ 1, . . . , s+ τmax.

Duration pruning

Given a speech segment oes (1 ≤ s < e ≤ T ), a duration pruning threshold ξd > 0 is used

in such a way that bi(oe
s) is not evaluated if di(e− s+ 1) ≤ ξd, where di is the state duration

distribution for state si.

Of course, there is a trade-off between computational cost and recognition performance
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for segment models. On a context-dependent phone recognition task on TIMIT, for example,

Russell (2005) showed that a 95% reduction in the number of segment probability calcula-

tions is achieved at the cost of a 3% increase in PER, with ξb = 90 and ξd = 0.05.

4.4 Linear/linear MSHMMs parameter estimation

Linear/linear MSHMMs training has two separate stages. Firstly, a set of formant-to-

acoustic mappings is estimated, which remain fixed thereafter. Secondly, the other model pa-

rameters are estimated based on the formant-to-acoustic mappings learned in the first stage.

Section 4.4.1 and Section 4.4.2 describe these two steps respectively.

4.4.1 Estimation of the formant-to-acoustic mappings

The formant-to-acoustic mapping is phone-category-dependent, so that each phone cate-

gory has a separate mapping. In general, the phone set is partitioned into K categories (the

number of categories K varies, depending on the particular phone categorisation schemes).

Therefore, a set of K formant-to-acoustic mapping {W 1, . . . ,WK} is obtained. All map-

pings are linear and estimated using ‘matched’ sequences of formant and acoustic data for

each phone category, as described below.

Let R = {r1, . . . , rT} and O = {o1, . . . ,oT} be matched sets of M -dimensional for-

mant and N -dimensional acoustic vectors corresponding to a particular phone category k.

The formant-to-acoustic mappingW k for this phone category is an N ×M matrix, which is

estimated by minimizing the error E between the two matched setsR andO

E = (O −W kR)>Σ−1(O −W kR), (4.14)

whereO is the N × T matrix whose tth column is ot, andR is the M × T matrix whose tth

column is rt. > and −1 denote the transpose and inverse respectively, and Σ is the covariance

matrix. In the case where Σ is assumed to be diagonal, with diagonal elements denoted by
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σn (1 ≤ n ≤ N ), Equation (4.14) becomes

E =
N∑
n=1

1

σn

T∑
n=1

(ont −W kr
n
t )2, (4.15)

where ont andW kr
n
t are the nthelements of ot andW krt, respectively. Therefore, minimis-

ing E is equivalent to minimising

Ẽ = (O −W kR)>(O −W kR). (4.16)

This is a standard least-squares problem in linear algebra, with solution

W k = OR†, (4.17)

where R† is the pseudo-inverse of R (see, e.g., Bishop (1995)) which can be computed by,

e.g., Singular Value Decomposition (SVD) (Golub & Kahan 1965, Golub & Loan 1996).

4.4.2 Estimation of the model trajectory parameters

Once the estimation of the formant-to-acoustic mappings is complete, the formant data

are discarded and only the acoustic data are used for the estimation of the other model pa-

rameters, including the model trajectory parameters (i.e., the midpoint vector c and the slope

vector m), the covariance matrix Σ and the state duration distribution d. The maximum

likelihood estimation of these MSHMM parameters are obtained using a version of the EM

algorithm based on segmental Viterbi decoding (implemented in SEGVit), including the fol-

lowing main steps:

1. Define an initial MSHMM model setM0.

2. Compute the optimal state sequence betweenM0 and training data O using the seg-

mental Viterbi decoder.

3. SegmentO using the optimal state sequence.
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4. Re-estimate model parameters based on the segmentation to give a new model setM1,

such that p(O|M0) ≤ p(O|M1).

5. ReplaceM0 withM1 and repeat from steps 2.

The whole process results in a sequence of models M0, . . . ,Mn in such a way that

p(O|M0) ≤ p(O|M1) ≤ . . . ≤ p(O|Mn). This process terminates when the difference

|p(O|Mn) − p(O|Mn−1)| falls below some threshhold ε (and possibly remains below ε

over some pre-determined time interval), or a maximum number of iterations is reached.

The rest of this section lists various fomulae employed for the model trajectory parameters

re-estimation.

MSHMM re-estimation fomulae of the trajectory parameters

The derivation of the re-estimation fomulae for the ML estimations of the midpoint and

slope largely follows that in (Russell & Jackson 2005). Firstly, consider a single segment

oτ1 = {o1, . . . ,oτ}. The state output probability of the sequence of acoustic feature vectors

oτ1 given state sj with linear articulatory-to-acoustic mappingW k and covariance matrix Σj

is given by Equation (4.2) on page 70. This probability can be written as follows according

to the definition of a Gaussian PDF

bj(o
τ
1) =

1√
(2π)N |Σj|

τ∏
t=1

exp
{
− 1

2

(
ot −W kf j(t)

)>
Σ−1
j

(
ot −W kf j(t)

)}
, (4.18)

where N is the dimensionality of the acoustic observation vector ot. For the multivariate

Gaussian densities, maximising the likelihood is equivalent to minimising the Malhalanobis

distance E as below

E =
τ∑
t=1

((
ot −W kf j(t)

)>
Σ−1
j

(
ot −W kf j(t)

))
. (4.19)

Therefore, the maximum of the likelihood function can be found from the point at which E’s

gradient is zero.
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ML estimation of the midpoint Assume that wn is the nth row of the mapping W k. We

calculate the derivative

∂E

∂cn
=

τ∑
t=1

∂

∂cn

((
ot −W kf j(t)

)>
Σ−1
j

(
ot −W kf j(t)

))
= 2

τ∑
t=1

wnΣ−1
j

(
ot −W kf j(t)

)
. (4.20)

Based on Equation (4.20) and the definition of the trajectory f j(t) (see Equation 4.1), it can

be shown that at the optimum

wnΣ−1
j

τ∑
t=1

(
ot −W k

(
mj(t− t̄) + ĉj

))
= 0. (4.21)

Since
∑τ

t=1(t− t̄) = 0, the above equation becomes

wnΣ−1
j

τ∑
t=1

ot −wnΣ−1
j

τ∑
t=1

W kĉj = 0. (4.22)

From a matrix point of view, Equation (4.22) can be written as

ĉj =
1

τ
(W>

k Σ−1
j W k)

−1W>
k Σ−1

j

τ∑
t=1

ot =
1

τ
(ΨjW k)

†Ψj

τ∑
t=1

ot, (4.23)

where Ψj = Σ
−1/2
j and † denotes the pseudo-inverse.

ML estimation of the slope Similarly, the ML estimation of the slope mj can be found

by calculating

∂E

∂mn

=
τ∑
t=1

∂

∂mn

((
ot −W kf j(t)

)>
Σ−1
j

(
ot −W kf j(t)

))
= 2

τ∑
t=1

(t− t̄)wnΣ−1
j

(
ot −W kf j(t)

)
. (4.24)
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At the optimum, the above equation is zero, which yields

wnΣ
−1
j

( τ∑
t=1

(t− t̄)ot −W k

τ∑
t=1

m̂j(t− t̄)2 −W k

τ∑
t=1

cj(t− t̄)
)

= 0. (4.25)

Again, since
∑τ

t=1(t− t̄) = 0, equation (4.25) reduces to

wnΣ
−1
j

τ∑
t=1

(t− t̄)ot −wnΣ
−1
j W k

τ∑
t=1

m̂j(t− t̄)2 = 0. (4.26)

As before, the above equation can be re-arranged in the following matrix form as

m̂j =
1

τ∑
t=1

(t− t̄)2

(W>
k Σ−1

j W k)
−1W>

k Σ−1
j

τ∑
t=1

(t− t̄)ot

=
1

τ∑
t=1

(t− t̄)2

(ΨjW k)
†Ψj

τ∑
t=1

(t− t̄)ot. (4.27)

Recall that in the above equations, t̄ = (τ + 1)/2 is the midpoint of the start and end time

points. Equations (4.23) and (4.27) are just for a single segment. Now suppose that we

have a training observation sequence O = {o1, . . . ,oT} of length T and the corresponding

optimal state sequence x̂T1 . Let Tj be the total number of frames spent in state sj and Jj

be the number of occurrences of the state sj in x̂T1 . Suppose that tsi and tei are the start and

end times for the ith occurrence of state sj in x̂T1 , respectively, and t̄i = (tsi + tei )/2 is the

midpoint of the two points tsi and tei . In this case, it can be shown that the ML estimates of

the midpoint ĉj and slope m̂j for state sj are given by:

ĉj =
1

Tj

Jj∑
i=1

tei∑
t=tsi

(ΨjW k)
†Ψjot, (4.28)

m̂j =

Jj∑
i=1

tei∑
t=tsi

(t− t̄i)(ΨjW k)
†Ψjot

Jj∑
i=1

tei∑
t=tsi

(t− t̄i)2

. (4.29)
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In summary, given an annotated training utterance and a force-aligned optimal state se-

quence computed using the segmental Viterbi algorithm, the difference between the trans-

formed state trajectory values W k(f j) and the actual feature vectors are used to estimated

the covariance Σj in the acoustic domain. On the other hand, an acoustic segment corre-

sponding to a state j is then ‘pulled back’ (Russell et al. 2007) into the articulatory domain

using the pseudo-inverse matrixW †
k, and used to estimate new values for the trajectory mid-

point and slope parameters. As can be seen in Equations (4.28) and (4.29), the ML estimates

of the trajectory parameters in the articulatory domain are those which give the best linear

fit to the (pseudo) inverse-transformed acoustic observation vectors, taking account of the

covariance information in the matrix Ψj .

4.5 Previous experimental work and main findings

In the previous experimental work on a linear/linear MSHMM (Russell & Jackson 2005,

Russell et al. 2007), the following three types of intermediate representation are investigated:

• the first 3 formant frequencies (3FF)

• first 3 formant frequencies plus 5 frequency-band energy (3FF+5BE)

• the 12 PFS control parameters from HMS formant synthesiser (12PFS)

and these parameters have been described in Section 3.2.3 on page 59, when formant ana-

ysis is reviewed. In addition, five formant-to-acoustic mapping schemes have been studied,

as shown in Table 4.1.1 They are referred to as 1A, 6B, 10C, 10D and 49E, respectively.

The letters A, B, C, D and E denote the five different mapping schemes, and the numbers

preceding them indicate the number of distinct mappings within each mapping scheme.

Linear/linear MSHMMs phone classification results on the TIMIT corpus were reported

in (Russell & Jackson 2005), which were limited to male subjects of the TIMIT corpus in

order to reduce variability caused by different gender of speakers. Experiments were con-

ducted using both CI (using the TIMIT 49-phone set, see appdendix A) and CD MSHMMs
1These categorisations of the phones are suggested by Jackson et al. (2002).
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1A all phones
6B vowels, {hh, l, r, w, y}, nasals, {dh, f, s, sh, th, v, z, zh}

{ch, jh}, {b, cl, d, vcl, dx, epi, g, k, p, q, sil, t}
10C vowels, {epi, q, sil}, {hh, l, r, w, y}, nasals, {ch, s}

{sh, f, th}, {dh, v, zh}, {jh, z}, {cl, k, p, t}, {b, d, vcl, dx, g}
10D vowels, {epi, q, sil}, {dx, el, l, r, w, y}, nasals, {vcl}, {cl}

{b, d, g, jh}, {ch, k, p, q, t}, {dh, v, z, zh}, {f, hh, s, sh, th}
49E 49 individual phones

Table 4.1: The five formant-to-acoustic mapping schemes used in the linear/linear MSHMM
experimental framework. B. linguistic categories; C. as in (Deng & Ma, 2000); D. discrete
articulatory regions. ‘nasals’ and ‘vowels’ denote the sets {en, m, n, ng}, and {aa, ae, ah, ao,
aw, ax, ay, eh, el, er, ey, ih, ix, iy, ow, oy, uh, uw}, respectively. TIMIT symbols are used in
this table.

(1400 triphones), with or without a language model. Three formant-based intermediate rep-

resentations and five formant-to-acoustic mapping schemes were considered. The baseline

phone classification experiments were conducted using FTSHMMs, with no intermediate

layer (Holmes & Russell 1999, Jackson & Russell 2002). This type of linear trajectory

segmental HMMs (i.e., linear FTSHMMs, as discussed in detail in Section 2.3.4) provides

the theoretical upper bound for the performance of all the linear/linear MSHMMs systems.

(Russell & Jackson (2005) showed how a linear/linear MSHMM is derived from a linear FT-

SHMM, in which a linear trajectory in the acoustic domain was realised in the intermediate

layer and transformed into the acoustic layer using a linear mapping.) The main findings of

previous experimental work are summarised as follows.

• In general, the best phone classification accuracy is obtained by increasing either the

dimension of the intermediate layer or the number of articulatory-to-acoustic map-

pings.

• The theoretical upper bound can be achieved, provided that the intermediate layer is

sufficiently rich, or the articulatory-to-acoustic mapping is sufficiently flexible.

• It is demonstrated that the triphone MSHMM system with the 3FF intermediate rep-

resentation and 49 articulatory-to-acoustic mappings has 25% fewer parameters and

gives superior performance, compared with the conventional HMM system.
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Russell et al. (2007) continued to work on linear/linear MSHMMs. This time, they pre-

sented phone recognition results for both male and female speakers using triphone MSH-

MMs (the number of triphone models for male and female speakers are 1364 and 660 re-

spectively) with a bigram language model on the TIMIT corpus. The experiments were

divided into two categories, within-gender and cross-gender experiments. Again, the base-

line phone recognition experiments were conducted using linear trajectory FTSHMMs, with

no intermediate layer. The results of within-gender experiments followed the same trend as

the phone classification results reported in (Russell & Jackson 2005). In addition, it is found

that there is no evidence that performance for female speech is affected by difficulties in

formant analysis for female speakers.

4.6 Summary

This chapter gives a detailed account of the MSHMM framework, which this thesis work

builds upon. The theory of a linear/linear MSHMM is reviewed carefully, including model

components, the segmental Viterbi decoding algorithm and the model parameter estimation

algorithm. At the end, this chapter describes the previous experimental framework, high-

lighting some of the important experiment results for a linear/linear MSHMM.

Within the general MSHMM framework, there is certainly room for development of

many kinds. As has been discussed in Chapter 1, one of the limitations of a linear/linear

MSHMM is the use of piecewise linear trajectories to model formant dynamics. The goal of

this research is to extend the linear/linear MSHMM to incorporate an improved, non-linear

trajectory model of formant dynamics. Of course, there are many ways to generate smoothed

non-linear trajectories, as described in Chapter 2. However, the particular approach adopted

in this research is the SPG algorithm (Tokuda, Kobayashi & Imai 1995), which is detailed in

the next chapter.



Chapter 5

Non-linear trajectories generation

5.1 Introduction

This chapter first describes the technique used in this research to generate the non-linear

trajectory for modelling formant dynamics, i.e., the speech parameter generation algorithm

(Tokuda, Kobayashi & Imai 1995), then goes on to discuss the trajectory HMM method

(Tokuda et al. 2003) since the formulation of the trajectory HMM is closely related to the

SPG technique. These two algorithms are described in Sections 5.2 and 5.3, respectively.

One of the most successful applications of the SPG algorithm is HMM-based speech synthe-

sis, which is outlined in Section 5.4.

5.1.1 Motivation behind Tokuda’s algorithms

In Section 2.2.3, the use of dynamic features in HMMs to account for temporal feature

dynamics is reviewed. Despite its practical benefits in improving performance for a wide

range of applications, the use of dynamic features results in inconsistency in HMM assump-

tions. In a conventional HMM, it is assumed that both the static and dynamic parameters are

simultaneously constant and possibly non-zero within a state occupancy. However, the con-

stant static parameters within states should have caused all delta parameters to be zero. On

the other hand, the non-zero delta parameters within a state occupancy should have resulted

in time-varying static parameters.

In recognition of both the popularity of the use of dynamic features in speech pattern

83
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modelling and the inconsistency caused by the inclusion of these dynamics parameters in

standard HMMs, Tokuda and colleagues have been working on a principled approach which

aims at alleviating the inconsistency introduced by the use of dynamic features in conven-

tional HMMs. As a starting point, Tokuda, Kobayashi & Imai (1995) began their research

on seeking a method to ‘synthesise’ a smoothed, non-linear speech parameter sequence

from HMMs which include both static and dynamic features. The key motive behind this

algorithm is that the speech parameter sequence sought after should be regulated by the

constraints between static and dynamic features. Otherwise, a sequence of piecewise con-

stant mean vectors is generated. The SPG algorithm in effect performs an utterance-level

smoothing on the piecewise constant mean trajectory, taking account of the constraints be-

tween static and dynamic features, together with the covariance information. As a result, a

smoothed, non-linear trajectory which is most consistent with static and dynamic constraints

is synthesised in the static feature space.

The generated non-linear speech parameter trajectory was initially used in HMM-based

speech synthesis (Masuko, Tokuda, Kobayashi & Imai 1996), which can significantly im-

prove the quality of the synthetic speech. Minami, McDermott, Nakamura & Katagiri (2002)

also applied this speech parameter generation technique to speech recognition by rescor-

ing an N -best list, with positive results (18.2% reduction in word error rate) obtained on a

speaker-independent recognition task relative to HMMs. Later work (Tokuda et al. 2003)

found that the standard HMM can be transformed into a new trajectory model – namely, the

trajectory HMM – by assuming the non-linear speech parameter trajectory to be the mean for

the static observation sequence corresponding to an utterance. Such an approach can over-

come the limitations of the piecewise stationarity and independence assumptions in HMMs.

5.1.2 Relationships between static and dynamic features

Before going into the detail of Tokuda’s algorithms, it is useful to examine the relation-

ships between static and dynamic features. LetO = {o1, . . . ,oT} be a sequence of T speech

observations (e.g., mel-cepstra). Assume that each speech vector ot consists of both a static
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feature vector ct and dynamic feature vectors ∆ct, ∆2ct. The delta and delta-delta coef-

ficients can be computed using Equation (2.2) on page 20, which is re-stated as below for

completeness.

∆ct =

Θ∑
θ=1

θ(ct+θ − ct−θ)

2
Θ∑
θ=1

θ2

, (5.1)

∆2ct =

Θ∑
θ=1

θ(∆ct+θ −∆ct−θ)

2
Θ∑
θ=1

θ2

, (5.2)

where Θ determines the length of the regression window. Suppose that the static feature

vector ct is of dimension D (therefore, ot is of dimension 3D). Note that the calculation

of ∆ and ∆2 parameters at any time t requires a number of preceding and following speech

feature vectors, so it is necessary to make some adjustment to the above fomulae when

computing ∆ and ∆2 at the beginning and end of the feature vector sequence. A simple

solution to this end-effect problem is to replicate the first or last feature vector as many times

as required.

The expanded observation sequence O and the static observation sequence C can be

rewritten as:

O = [o1, . . . ,oT ]> , (5.3)

C = [c1, . . . , cT ]> , (5.4)

where

ct = [ct(1), . . . , ct(D)] , (5.5)

ot =
[
ct,∆ct,∆

2ct
]
. (5.6)

Assume that all vectors are row vectors by default. SoO = [o1, . . . ,oT ]> becomes a 3DT×1

column vector andC becomes a DT × 1 column vector. Now defineW as a linear mapping

which transforms the sequence of static feature vectorsC into the augmented formO, which
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includs both static and dynamic feature. Then the relationship between O and C can be

represented in a matrix form

O = WC. (5.7)

The mappingW is a 3DT ×DT matrix which can be expanded as below

W =



I O O O O O . . . O O O O O O

−1
2
I 1

2
I O O O O . . . O O O O O O

−1
4
I O 1

4
I O O O . . . O O O O O O

O I O O O O . . . O O O O O O

−1
2
I O 1

2
I O O O . . . O O O O O O

1
4
I −1

2
I O 1

4
I O O . . . O O O O O O

O O I O O O . . . O O O O O O

O −1
2
I O 1

2
I O O . . . O O O O O O

1
4
I O −1

2
I O 1

4
I O . . . O O O O O O

. . .

O O O O O O . . . O O O I O O

O O O O O O . . . O O −1
2
I O 1

2
I O

O O O O O O . . . O 1
4
I O −1

2
I O 1

4
I

O O O O O O . . . O O O O I O

O O O O O O . . . O O O −1
2
I O 1

2
I

O O O O O O . . . O O 1
4
I O −1

2
I 1

4
I

O O O O O O . . . O O O O O I

O O O O O O . . . O O O O −1
2
I 1

2
I

O O O O O O . . . O O O 1
4
I O −1

4
I



,

where I and O denote the D ×D identity matrix and D ×D zero matrix, respectively. For

the illustration ofW , Θ in Equations (5.1, 5.2) is set at the value of 1. The top block ofW ,

over the first horizontal line, contributes to the computation of ∆c1 and ∆2c1. The second

block (between the first and second horizontal lines) is used to compute ∆c2 and ∆2c2. In
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general, the tth block is used to compute ∆ct and ∆2ct. The end-effect is also shown in

W when calculating the first two and final two speech feature vectors ∆c1, ∆2c1, ∆c2,

∆2c2 and ∆cT−1, ∆2cT−1, ∆cT , ∆2cT . Note the difference between the top and bottom two

blocks and the rest of the blocks inW .

5.2 The speech parameter generation algorithms

Several versions of the SPG algorithm have been developed to solve different prob-

lems (Tokuda, Kobayashi & Imai 1995, Tokuda, Masuko, Yamada, Kobayashi & Imai 1995,

Tokuda et al. 2000). The speech parameter generation problems were summarised in (Tokuda

et al. 2000) as:

1. given an HMMM and a state sequence x = {x1, . . . , xT}, maximize p(O|x,M) with

respect toO.

2. given an HMMM, maximize p(O, x|M) with respect toO and x.

3. given an HMMM, maximize p(O|M) with respect toO.

For all three problems, the constraint O = WC is imposed. The first two problems were

dealt with in (Tokuda, Kobayashi & Imai 1995, Tokuda, Masuko, Yamada, Kobayashi &

Imai 1995) and the third problem was discussed in (Tokuda et al. 2000).

The first case is at the heart of the SPG algorithms because the other two cases are built

on the first one. This is also the one applied to the research presented in this thesis. In the

first SPG problem, it is assumed that a state sequence x = {x1, . . . , xT} is given. In other

words, the problem is to find a sequence of T static speech parameters Ĉ, such that

Ĉ = arg max
C

p(O|x,M) = arg max
C

p(WC|x,M) (5.8)

under the constraint ofO = WC.

Assume that each state of M is associated with a single Gaussian PDF (the Gaussian

mixture version of the speech parameter generation algorithm was described in (Tokuda,
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Masuko, Yamada, Kobayashi & Imai 1995, Tokuda et al. 2000)). Let µxt
and Σxt be the

1×3D mean vector and 3D×3D covariance matrix associated with state xt. N (ot|µxt
,Σxt)

denotes the multivariate Gaussian PDF, with mean µxt
and diagonal covariance Σxt , evalu-

ated at ot. The probability p(O|x,M) of a sequence of T observations O = {o1, . . . ,oT}

generated by the HMMM via the state sequence x is given by

p(O|x,M) =
T∏
t=1

N (ot|µxt
,Σxt) = N (O|µx,Σx), (5.9)

where

µx = [µx1
, . . . ,µxT

]>, (5.10)

Σx = diag [Σx1 , . . . ,ΣxT
]. (5.11)

Taking the the logarithm of p(O|x,M), we have

log p(O|x,M) = −1

2
O>Σ−1

x O +O>Σ−1
x µx +Kx, (5.12)

where

Σ−1
x = diag [Σ−1

x1
, . . . ,Σ−1

xT
], (5.13)

and Kx is a normalisation constant which is independent of O (see Equation 5.26). Obvi-

ously, p(O|x,M) is maximised with respect to O when O = µx without the constraint of

O = WC; that is, the speech parameter vector sequence becomes a sequence of the mean

vectors.

Now taking into account the relationships between O and C (Equation 5.7), maximis-

ing the probability p(O|x,M) with respect to the augmented observation sequence O is

equivalent to maximising it with respect to the static observation sequenceC. By expanding

log p(O|x,M) = log p(WC|x,M) according to the definition of a Gaussian distribution,
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differentiating with respect to C, and setting the partial derivative to zero

∂log p(WC|x,M)

∂C
= 0, (5.14)

a set of linear equations are obtained, which can be written as

RxC = rx, (5.15)

where

Rx = W>Σ−1
x W , (5.16)

rx = W>Σ−1
x µx. (5.17)

The new static feature vector sequence Ĉ, which maximizes p(O|x,M) under the con-

straints given byO = WC, can now be obtained by solving Equation (5.15).

The second speech parameter generation problem attempts to maximise p(O, x|M) =

p(O|x,M)P (x|M) with respect to O under the constraint O = WC, taking account of

all possible state sequence x. This is computationally impractical due to the huge number

of possible state sequences. However, if the optimal state sequence is known, this problem

is equivalent to maximising the probability p(O|x,M) with respect to O, which reduces

the first speech parameter generation problem. The optimal or sub-optimal state sequence

can be derived using the standard Viterbi algorithm or the algorithm described in (Tokuda,

Kobayashi & Imai 1995, Tokuda, Masuko, Yamada, Kobayashi & Imai 1995). Given the

optimal state sequence, the speech parameter sequence can be obtained using the algorithm

developed for case 1.

As for the third case, the problem is to maximize p(O|M) with respect to O. Tokuda

et al. (2000) proposed an EM-type algorithm to find the critical point of the likelihood func-

tion p(O|M). In this algorithm, the auxiliary function of the current speech parameter se-
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quenceO and a new parameter vector sequenceO
′

is given by

Q(O,O
′
) =

∑
all x

p(O, x|M) log p(O
′
, x|M). (5.18)

Tokuda et al. (2000) showed that by substituting O
′

which maximises the Q function (5.18)

for O, the likelihood increases unless O is a critical point of the likelihood. Under the

constraint O
′

= WC
′
, C

′
(i.e., the static parameter sequence of O

′
) which maximises

Q(O,O
′
) can be obtained by solving a set of equations which has the same form of Equa-

tion (5.15). As a result, the solution for the third speech parameter generation problem

involves iterations of the forward-backward algorithm and the speech parameter generation

algorithm for the case that the state sequence is known.

Having outlined the three types of SPG algorithms, it can be seen that different algo-

rithms target different problems. The choice of the particular SPG algorithm is therefore up

to the specific application at hand and should be chosen carefully. As far as this research

is concerned, the goal is to develop and assess an improved, non-linear trajectory model,

relative to a piecewise linear trajectory model as used in previous MSHMMs. Therefore,

it is the non-linearity of the algorithm that is of greatest interest to this work. Among the

three SPG algorithms, only the original SPG algorithm, i.e., the first one, actually performs

the non-linearization. The other two algorithms both revolve around the first algorithm. In

all cases the non-linear speech parameter sequence is generated by using the first algorithm

for which the state sequence is known. For these reasons, the first SPG algorithm is most

suitable for this research and therefore is chosen for this thesis work.

5.3 The trajectory HMM algorithm

Given a standard HMMM and a state sequence x = {x1, . . . , xT} of length T , a new

trajectory C̄x is calculated in the static feature space, which provides the best fit under the

static and dynamic constraints. Assume that this new trajectory C̄x is the mean vectors, the

standard HMMM can be transformed into a trajectory model, denoted as M̄, for which the
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output probability of an observation sequence O becomes the function of the corresponding

static feature sequence C. The relationship between the standard HMMM and the corre-

sponding trajectory HMM M̄ is given by

p(O|x,M) = Kxp(C|x,M̄), (5.19)

where Kx is a state-sequence-dependent normalisation constant in order to give a valid PDF.

In case that each state output PDF in the standard HMM M is Gaussian with a diagonal

covariance, the new trajectory HMM p(C|x,M̄) is also Gaussian.

5.3.1 The formulation of the trajectory HMM

The formulation of the trajectory HMM is closely related to the SPG algorithm described

in Section 5.2. As will be seen, many of the equations and results are identical. In a standard

HMMM, the probability of a sequence of speech observation vectors O = {o1, . . . ,oT}

givenM is

p(O|M) =
∑
x

p(O|x,M)p(x|M), (5.20)

where the sum is taken for all possible state sequences x of length T . Assume that the speech

feature vector ot at time t consists a static feature vector ct and dynamic feature vectors ∆ct

and ∆2ct. The relationship between the static features and dynamic features is regulated by

O = WC and the probability p(O|x,M) is given by Equation (5.9).

SubstitutingO = WC for Equation (5.9)

p(O|x,M) = p(WC|x,M) = N (WC|µx,Σx) = KxN (C|C̄x,P x), (5.21)

where µx and Σx are given by Equations (5.10,5.11), respectively and C̄x is given by

RxC̄x = rx. (5.22)
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P x,Rx and rx are given by

P x = R−1
x , (5.23)

Rx = W>Σ−1
x W , (5.24)

rx = W>Σ−1
x µx. (5.25)

respectively. Finally, the normalisation constant Kx is given by

Kx =

√
(2π)DT |P x|√
(2π)3DT |Σx|

exp
{
− 1

2

(
µ>x Σ−1

x µx − r>xP xrx
)}
. (5.26)

where D is the dimension of the static feature vectors C.

Omitting the normalisation constant Kx in Equation (5.21), the new trajectory HMM M̄

is formed. The probability of the static feature sequence C given the new model M̄ is

p(C|M̄) =
∑
x

p(C|x,M̄)p(x|M̄), (5.27)

where

p(C|x,M̄) = N (C|C̄x,P x). (5.28)

There are a number of differences between the standard HMM M and the newly de-

rived trajectory HMM M̄. Firstly, the mean sequence C̄x of the trajectory HMM given by

Equation (5.22) is exactly the same as the speech parameter trajectory generated by using the

SPG technique (see Equation 5.15). This indicates that the mean vector sequence of the new

trajectory model may vary within in a state duration, which is constrained by the relationship

between static and dynamic parameters. As a result, the state output probability of observing

the static part of the output vector changes during a state occupancy, and is affected by statis-

tics of neighboring states. Therefore, the trajectory HMM can alleviate two shortcomings of

the standard HMM: constant statistics within an HMM state duration and the independence
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assumption of observations given the state sequence.

Secondly, in the trajectory HMM, the spectral parameter vector sequence C is mod-

elled by a mixture of Gaussians whose dimensionality is DT , since, in general, the product

of mixtures of Gaussians is a (possibly rather large) mixture of Gaussians. Thirdly, while in

HMMs the covariance matrix is assumed to be diagonal, the covariancesP x of the newly de-

rived trajectory HMM are generally full. This provides a means of capturing the inter-frame

dependencies introduced by the use of dynamic features, though at the cost of increased

parameterisation and computational complexity.

5.3.2 Relationships between the two techniques

The previous sections discuss the SPG technique and the trajectory HMM method pro-

posed by Tokuda et al. Given an HMM and a state sequence, the SPG algorithm aims to

solve the problem of minimising the mean square error between the training data C and the

generated speech parameter trajectory Ĉ. On the other hand, the trajectory HMM defines an

alternative PDF N (C|C̄x,P x), which is a function of the static parameters, rather than the

augmented parametersO. This new PDF is obtained by normalising the probability function

N (WC|µx,Σx) given by the standard HMM

N (C|C̄x,P x) =
1

Kx

N (WC|µx,Σx), (5.29)

where the nomalisation constant is chosen to give a valid PDF

Kx =

∫
RDT

N (WC|µx,Σx)dC, (5.30)

such that ∫
RDT

N (C|C̄x,P x) = 1. (5.31)

The new mean trajectory C̄x is exactly the same as the speech parameter trajectory Ĉx

obtained by the SPG algorithm.
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In both the SPG algorithm and the trajectory HMM algorithm, the mapping W between

static and dynamic features plays an important role. Without this constraint, the SPG algo-

rithm simply produces a sequence of piecewise constant mean vectors. On the other hand,

given the mappingW and a sequence of static parameters C, the corresponding augmented

feature vectors O is completely determined. In other words, the mapping W contains all

the information about the dynamic features (∆ and ∆2). For this reason, it is possible to

integrate out the dynamic features while still preserving the ‘dynamic’ information as long

as the mappingW is retained in the trajectory HMM.

5.3.3 Comparisons between the trajectory HMM and the MSHMM

Chapter 4 describes the MSHMM and this chapter (Section 5.3) discusses the trajectory

HMM. This section attempts to investigate the relationships between an MSHMM and a tra-

jectory HMM because, intuitively, there are many similarities between these two approaches.

The MSHMM and the trajectory HMM are both shown in Figure 5.1 for comparison, and

Table 5.1 lists and compares corresponding elements of the two models.

MSHMM Trajectory-HMM
State process Segmental HMM Standard HMM
‘Intermediate’ space Formant Static features (C)
Observed space Static features (C) Augment features (O)
Mapping(s) W k, phone-class-dependent W , single fixed

Linear, least-squares Linear, deterministic
Trajectory form Piecewise linear Smoothed nonlinear

Table 5.1: Comparison between a linear/linear MSHMM and a trajectory HMM.

The MSHMM is based on the segmental HMM framework, which incorporates explicit

state duration models. This offers some advantages in modelling state durations compared to

the trajectory HMM, which is derived from a standard HMM. Both an MSHMM and a trajec-

tory HMM have two different, though related, speech representations. In an MSHMM, these

are the acoustic representation and the formant-based intermediate representation, while in

a trajectory HMM these correspond to augmented acoustic observations and static acous-

tic observations. In both cases, though, a fixed, linear mapping W is used to link the two
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W

Acoustic layer (e.g., MFCCs)

Synthetic acoustic layer

Formant-to-acoustic mapping

Formant-based intermediate layer

Finite state process

(a)

W

Augmented acoustic 
feature space O

Static acoustic feature 
space C

Finite state process

Δ2C

ΔC

C

O=WC

(b)

Figure 5.1: Comparison between a linear/linear MSHMM and a trajectory HMM. (a) A lin-
ear/linear MSHMM. (b) A trajectory HMM. The piecewise linear trajectories in the formant-
based intermediate layer in (a) represent formant dynamics. The continuous trajectory in the
static acoustic feature space in (b) represents the mean of the observation vector sequence
(note that only a single dimension is shown here for simplicity).
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speech representations. However, in the trajectory HMM, this mapping W is a 3DT ×DT

matrix which is dependent on the length T of the state sequence and the dimension D of

the static acoustic observation vector. In MSHMMs, the formant-to-acoustic mapping W

is an N ×M matrix (where N is the dimension of the acoustic space and M denotes the

dimension of the formant space), which is estimated based on the least-squares technique

and is also phone-class-dependent.

Both approaches have model trajectory parameters in the ‘intermediate’ layer (if we can

think of the static feature space in the trajectory HMM as a special type of ‘intermediate’

layer). The ML estimation of the parameters in both models can be obtained by using a

Viterbi-type training algorithm based on the EM technique. (Zen et al. (2007) gave a de-

tailed account of the training algorithm for the trajectory HMM.) The main difference is,

of course, that piecewise linear trajectories are used in a linear/linear MSHMM while the

parameter trajectory in the trajectory HMM is smooth and non-linear. Obviously, the non-

linear trajectories are more realistic in describing feature dynamics or formant transitions

than piecewise linear trajectories. This is a major advantage of the trajectory HMM method,

though at the cost of increased computational complexity. Another drawback of the trajec-

tory HMM approach is the lack of an appropriate decoder. To date, recognition work using

the trajectory HMM have almost universally resorted to the N -best list rescoring paradigm.

5.4 HMM-based speech synthesis

5.4.1 Overview of HMM-based speech synthesis

HMM-based speech synthesis (see, e.g., Yoshimura (2002)), is an alternative speech syn-

thesis approach which has grown in popularity over the last decade. Performance of HMM-

based speech synthesis continues to improve due to the emergence of new algorithms, such as

the SPG algorithm (Tokuda, Kobayashi & Imai 1995, Tokuda et al. 2000) and the trajectory

HMM technique (Tokuda et al. 2003, Zen et al. 2007), as discussed in Sections 5.2 and 5.3,

respectively. Table 5.2 shows speech synthesis evaluation results for English comparing two
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Year
2007 2008 2009 2010

System MOS WER MOS WER MOS WER MOS WER
Natural 4.7 - 4.8 22 4.9 14 4.8 12
Festival 3.0 25 3.3 35 2.9 25 3.0 23
HTS 2005 - - 2.9 33 2.7 23 2.5 18

Table 5.2: Comparing the results of the benchmark systems for English from 2007 to 2010
in the Blizzard Challenge. ‘MOS’ means mean naturalness score and WER means word
error rate in percent using semantically unpredictable sentences. Data taken from (King &
Karaiskos 2010).

different synthesis approaches to natural speech in the Blizzard Challenge project1 from 2007

to 2010. HTS (HMM-based speech synthesis system) consists of a class of open-source soft-

ware tools for research in HMM-based speech synthesis,2 and the University of Edinburgh’s

Festival Speech Synthesis System (see, e.g., Clark, Richmond, Strom & King (2006)) is one

of the most successful waveform concatenation systems based on unit selection, which pro-

vides state-of-the-art synthesis performance. The listening test results presented in Table 5.2

show that the overall naturalness of the HMM-based synthesis (HTS 2005) can be compa-

rable to the concatenative synthesis system (Festival), though both are significantly lower

than the natural speech. As far as the intelligibility of the synthetic speech is concerned, the

HMM-based approach has been consistently producing more intelligible (with lower WERs)

synthetic speech than the Festival-based unit selection system.

A typical HMM-based speech synthesis system was described in (Tokuda, Zen & Black

2002). Generally speaking, HMM-based synthesis has two main stages: training and syn-

thesis. First, CD HMMs are automatically trained on a large speech database in a similar

manner to ASR. In the synthesis stage, the appropriate set of HMMs are concatenated ac-

cording to the input label sequence, and a sequence of speech parameters are generated from

these HMMs based on the SPG algorithm (Tokuda et al. 2000, as described in Section 5.2).

These two stages are described in Section 5.4.2 and Section 5.4.3, respectively.

1The Blizzard Challenge is an international evaluation of corpus-based speech synthesisers on the same
data open to any participant. Visit http://festvox.org/blizzard/index.html for more details.

2The ‘T’ in HTS stands for ‘triple’, i.e., H Triple S (HMM-based Speech Synthesis System). HTS was
initially developed at the Nagoya Institute of Technology and and Tokyo Institute of Technology by K. Tokuda,
H. Zen, T. Toda, J. Yamagishi, A. Black and T. Nose. Available online: http://hts.sp.nitech.ac.jp/.
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5.4.2 Training

Training in HMM-based speech synthesis is very similar to that in speech recognition. In

both cases, the standard ML criterion is typically used to estimate the model parameters for

a set of context-dependent phone-level HMMs on a large amount of speech data,

Λ̂ = arg max
Λ

p(O|W ,Λ), (5.32)

where Λ, O and W denote the model parameters, training data and reference transcripts,

respectively. As in speech recognition, the resulting speaker-independent models are often

adapted to a particular speaker in HMM-based speech synthesis so that a variety of voice

characteristics may be obtained. In fact, voice adaptation is one of the major advantages of

HMM synthesis over traditional concatenative synthesis. Although there are many similar-

ities in speech recognition and HMM-based synthesis training, the following issues require

extra attention in HMM-based speech synthesis.

Duration modelling

In standard HMMs, the state duration is implicitly given by a geometric model, which

is inappropriate for modelling state duration. Alternative duration distributions have been

investigated in the past to provide a more realistic state duration model for ASR (see Sec-

tion 2.2.2 on page 19 for a variety of explicit duration models). Most HMM-based speech

synthesis systems also employ explicit duration distributions to improve the duration mod-

elling. In the HMM-based speech synthesis system described in (Yoshimura, Tokuda, Ma-

suko, Kobayashi & Kitamura 1998, Yoshimura et al. 1999), for example, state duration for

each HMM was modelled by a single multivariate Gaussian distribution, whose dimensional-

ity equals the number of states of the HMM. The nth dimension of the state duration density

represents the nth state of the HMM (the HMM is assumed to be a left-to-right model with

no skip). The use of a continuous duration distribution like Gaussian allows the speaking

rate of the synthetic speech to change easily.



CHAPTER 5. NON-LINEAR TRAJECTORIES GENERATION 99

Spectrum and pitch modelling

In HMM-based speech synthesis, not only spectral parameters (such as mel-cepstral coef-

ficients and their time derivatives) but also excitation parameters (e.g., logF0 and its delta and

delta-delta coefficients) are encoded in the HMM. The feature vector ot therefore consists

of both spectral parameters ct and excitation parameters et, augmented with their respective

dynamic features. The spectral vector ct are obtained by using a mel-cepstral analysis tech-

nique described in (Fukada, Tokuda, Kobayashi & Imai 1992), which allows speech to be

re-synthesised from these mel-cepstral coefficients using the mel log spectrum approxima-

tion (MLSA) filter (Imai 1983).

The spectral and excitation parameters are modelled simultaneously as separate data

streams using CD phone-level HMMs. It is straightforward that the mel-cepstral coefficients

can be modelled using continuous density HMMs. However, the modelling of the excitation

parameter F0 requires special treatment because for unvoiced speech sounds, F0 is usually as-

sumed to be undefined. As a result, the F0 observation data combines one-dimensional con-

tinuous values for voiced regions and a discrete symbol representing ‘unvoiced’. In this case,

a simple continuous distribution is inappropriate to model F0. Tokuda, Masuko, Miyazaki

& Kobayashi (1999) suggested a multi-space probability distribution (MSD) HMM to deal

with the F0 pattern modelling in HMM-based speech synthesis. One option is to use a 1-

dimensional Gaussian PDF to characterise F0 patterns from the ‘voiced’ space and a discrete

mass function for unvoiced space. In other words, the state output distribution in the MSD-

HMM for F0 is a combination of continuous and discrete distributions.

Contextual modelling

In speech recognition systems, context-dependent models, for example triphones, are

commonly used to deal with contextual effects such as coarticulation. In HMM-based speech

synthesis, the notion of ‘context’ has a much broader meaning. Both phonetic and prosodic

contexts (such as rhythm, intonation and stress) are taken into account, resulting a set of

full context models. Due to the increased number of contextual factors, a stream-dependent
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decision-tree based context clustering technique was used (see, e.g., Yoshimura et al. (1999))

to enable robust estimation of model parameters. Such an approach allows the distributions

for spectral parameters, pitch parameters and the state duration to be clustered independently

because the spectrum, pitch and duration each have their own influential contextual factors.

5.4.3 Synthesis

In the synthesis part, a text analyser converts an arbitrarily given text to a context-based

label sequenceW . Based on this label sequenceW , a composite HMM Λ is constructed by

concatenating the appropriate set of CD HMMs. Given the label sequenceW and the com-

posite HMM Λ, the speech synthesis problem is to generate a sequence of speech parameters

Ô, such that

Ô = arg max
O

p(O|W ,Λ) = arg max
O

∑
all x

p(O, x|W ,Λ), (5.33)

where the sum is over all possible state sequence x. The above equation can be approximated

by

Ô ≈ arg max
O

max
x

p(O|x,Λ)p(x|W ,Λ), (5.34)

or,

x̂ = arg max
x

p(x|W ,Λ), (5.35)

Ô= arg max
O

p(O|x̂,Λ). (5.36)

The probability of p(x|W ,Λ) can be written as

p(x|W ,Λ) =
N∏
j=1

dj(τj), (5.37)

where N is the number of states of the HMM Λ, dj the state duration distribution of state

j and τj the state duration. In other words, to solve Equation (5.36), it is equivalent to
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determine the ‘optimal’ state durations of the composite HMM Λ. In case dj is Gaussian,

i.e., dj(τj) = N (τj|µj, σj), the probability p(x|W ,Λ) is maximised when τj = µj , ∀j ∈

{1, . . . , N}. That is to say, the optimal state sequence x̂ is the one in which the state duration

for each state takes the value of the mean for that state.

Once the state sequence is determined, the speech parameters (including both mel-cepstral

coefficients and pitch parameters) can be obtained by using the SPG algorithm (Tokuda

et al. 2000), which is described in Section 5.2. Finally, speech is synthesised by passing

the generated mel-cepstral coefficients and pitch parameters through the MLSA filter.

5.4.4 Voice characteristics conversion

One of the major advantages of HMM-based speech synthesis is that diverse voices can

be produced easily using speaker adaptation techniques (Masuko, Tokuda, Kobayashi &

Imai 1997, Tamura, Masuko, Tokuda & Kobayashi 1998). A recent example of applying

adaptation techniques to HMM synthesis can be found in (Yamagishi et al. 2009). Yam-

agishi pioneered the use of ‘average voice models’ (Yamagishi, Ogata, Nakano, Isogai &

Kobayashi 2006) for HMM-based speech synthesis and investigated various model adap-

tation approaches to speech synthesis which can be used to generate a diversity of voices,

emotion and styles (Yamagishi, Kobayashi, Tachibana, Ogata & Nakano 2007).

5.5 Summary

This chapter describes a number of techniques proposed by Tokuda and colleagues. The

non-linear formant trajectories used in this study to model formant dynamics are generated

by using the SPG algorithm, which is described in Section 5.2. A prerequisite of this algo-

rithm is that both static and dynamic features must be included in HMMs. Given a particular

state sequence, the SPG algorithm can be used to ‘smooth’ the sequence of piecewise con-

stant mean vectors, resulting in a non-linear trajectory in the static feature space. In fact,

it is the constraints between static and dynamic features that ensure smooth transitions be-
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tween neighbouring frames and states in the generated trajectory. Without the constraint, the

generated speech parameters are just a sequence of piecewise constant mean vectors.

The trajectory HMM is a recent variant of a standard HMM. Under this new trajectory

model, an alternative PDF is defined on the set of static acoustic observations, whose mean

vector is constrained by the relationship between static and dynamic features. The mean

vector sequence is identical to the speech parameter sequence generated by using the SPG

algorithm. That is to say, the mean vector changes within a state occupancy, and is also

constrained at the state boundaries. The relationships between the trajectory HMM and the

SPG algorithm, the standard HMM and the MSHMM are investigated.

The SPG algorithm was initially proposed to build HMM-based speech synthesisers,

which generate speech directly from HMMs themselves. Many techniques developed in ASR

can be readily ‘shared’ in HMM-based speech synthesis. Training involves simultaneously

modelling of spectral, excitation and durational parameters. In particular, the MSD-HMM

can be used to model pitch patterns, which employs separate distributions to model voiced

(continuous distributions) and unvoiced regions (discrete distributions). Contextual factors

are built into the models, which are extended from phonetic only, as in recognition, to include

a great diversity of phonetic and prosodic contexts, leading to a set of ‘full-context’ HMMs.

The SPG algorithm is used to generate a smoothed speech parameter sequence.

Both formant synthesis (see Section 3.2.4) and HMM-based synthesis are based on the

vocoding technique (albeit with different vocoders) so that the the quality of the synthetic

speech is, in general, not as natural as those generated by concatenative synthesisers (which

are based on actual human speech samples). However, both formant synthesis and HMM

synthesis require no use of the large database of actual speech samples in run-time as in

concatenative synthesis systems. Therefore, the resulting systems are relatively small, which

may be more attractive in situations where memory and computational power are especially

limited, such as in embedded systems. In addition, formant synthesis and HMM-based syn-

thesis can generate synthetic speech which is mostly reliably intelligible and rarely exhibits

the acoustic glitches that commonly plague concatenative systems.



Chapter 6

Synthesis using non-linear trajectories

6.1 Introduction

The premise of this research is that the use of a non-linear trajectory model of formant dy-

namics will lead to improvements in performance for both speech synthesis and recognition,

relative to a piecewise linear trajectory model. This chapter reports experiments and results

on speech synthesis using a non-linear trajectory model of dynamics, and speech recogni-

tion experiments and results based on a non-linear trajectory model of formant dynamics are

presented in Chapter 7. In either case, the non-linear formant trajectories are generated by

using the SPG algorithm described in Chapter 5. It should be noted that the emphasis of the

synthesis work is to study and evaluate the non-linear trajectory model of dynamics from the

perspective of speech synthesis, rather than to develop a state-of-the-art speech synthesiser.

Both formant-based speech synthesis and HMM-based speech synthesis have been dis-

cussed in this thesis. The synthesis work presented in this chapter can be thought of as lying

somewhere in between these two approaches. A basic HMM-based speech synthesis sys-

tem is built, in which the HMMs are trained on 12 PFS control parameters, augmented with

their dynamic features. This (excluding dynamic features) is essentially the intermediate

representation of an MSHMM. A distinct feature of this work is that the speech parameter

generation algorithm is applied to the 12 PFS data and followed by formant synthesis. In the

context of an MSHMM, this study takes a first step towards the goal of a unified model for

speech recognition and synthesis.

103



CHAPTER 6. SYNTHESIS USING NON-LINEAR TRAJECTORIES 104

The rest of this chapter is organised as follows. Section 6.2 gives a detailed account of

the speech synthesis system developed for this research and measures used for evaluation.

Experimental results and analysis are provided in Section 6.3.

6.2 Method

The flow chart shown in Figure 6.1 outlines the main components and steps involved

in the text-to-speech (TTS) conversion. Orthographic text is converted into a sequence of

phonetic segments using a pronunciation dictionary. Each phonetic segment in the phonetic

segment sequence is associated with a corresponding HMM in the HMM store, which is a

collection of standard HMMs built on 12 PFS control parameters and their dynamic features.

Two types of formant synthesiser control parameter sequences are generated, namely piece-

wise constant PFS control parameters and non-linear, smoothed PFS control parameters. The

latter is generated by using the SPG algorithm. The HMS parallel formant synthesiser is used

to convert the 12 PFS control parameter sequence into speech.

6.2.1 Data

The TIMIT training set was divided into two parts based on the gender of the speakers

so that synthesis models for both male and female speakers can be built. The training set

for male speakers consists of 326 male speakers and the female set comprises 136 female

speakers (10 sentences spoken by each speaker). Each waveform file was downsampled

to 8KHz and analysed by the Holmes formant analysis toolkit to generate a sequence of

12-dimensional PFS control parameters.1 The resulting 12 PFS control parameters were

then converted to the HTK format to be compatible with HTK.2 The application of the SPG

algorithm (see Section 5.2) requires both static and dynamic feature vectors. Therefore, the

original 12 PFS control parameters were augmented with ∆ and ∆2 coefficients, based on

Equations (5.1, 5.2) using HTK, resulting in a sequence of 36-dimensional feature vectors.
1The Holmes formant analyser and the calculation of the 12 PFS control parameters are described in detail

in Section 3.2.3 on page 59.
2Thanks to Martin Russell for providing the source code for PFS-to-HTK conversion.
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Input text
(word sequence)

Pronunciation
dictionary

Text-to-phone conversion

PFS-based
HMMs store Phone sequence

Phone to PFS control
parameters conversion

PFS control parameters

Parallel formant synthesiser

Speech

Figure 6.1: Flow chart showing the main steps involved in the text-to-speech conversion.

6.2.2 Text-to-phone conversion

The TTS system can take any sequences of phonetic segments as input, though for word

input a conversion is needed in the first place. A text-to-phone converter was built to trans-

form a word string into a sequence of context-sensitive phonetic labels using the TIMIT

phonetic lexicon. This dictionary contains all English words (a total of 6,232 words) that

appear in the TIMIT text material. The pronunciations contained in the TIMIT lexicon are

based on the original 64-phone set. These pronunciations are modified to be compatible with

the 49-phone set (see appendix A), as used in previous work (Russell & Jackson 2005).

The size of the TIMIT dictionary is fairly small for a practical speech synthesis system.

However, as stated before, the goal is to evaluate the non-linear trajectory model by means

of speech synthesis, rather than to develop a state-of-the-art speech synthesiser. From this

perspective, the TIMIT dictionary is adequate for this research.
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6.2.3 Model sets

A variety of models were built for speech synthesis experiments. These models are

gender-dependent so that they can be divided into two broad categories: models for male

speakers and models for female speakers. Within either category, the baseline is a set of

speaker-independent (SI) phone-level CI 3-state left-to-right single Gaussian HMMs. Com-

plexity were then gradually added to develop more sophisticated models. Briefly speaking,

the following three options have been investigated. Firstly, triphone CD models were built

to improve the contextual modelling in the HMMs. Secondly, the 3-state single Gaussian

topology of HMMs was extended to include more states per phone (ranging from 3 to 6-state

per phone). Thirdly, the SI models were adapted to a particular speaker to build speaker-

dependent (SD) models. All these models were built and trained using HTK.

Baseline models

A set of 49 3-state left-to-right (with no skips) single Gaussian CI HMMs, including a

model for silence (‘sil’), was built based on the TIMIT 49-phone set. Firstly, 49 identical

HMMs was created, in which all of the Gaussian densities were set to have zero means with

unit variances. These 49 models were then initialized using the label files provided with

TIMIT. Next, the model parameters were optimized using the standard forward-backward

algorithm (Dempster et al. 1977, Liporace 1982), which is implemented in the HTK tool

HERest. For each training utterance, a composite HMM is created based on the corre-

sponding label file in such a way that the individual phone HMMs corresponding to each

label in the transcript are concatenated together to form a single, composite model. Then

the forward and backward probabilities for the composite HMM are calculated. Given the

forward and backward probabilities, the probabilities of state occupation at each time frame

are computed, and the sums needed to form the weighted averages are accumulated in the

normal way of HTK. The model parameters will not be updated until all training utterances

have been processed. Then, the new parameter estimates are computed from the weighted

sums for all HMMs in the model set.
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Context-dependent models

Context-dependent triphone HMMs were constructed based on the 49 CI models. The

use CD models led to a significant increase in the number of models and parameters. In

order to enable robust model parameters estimation, similar states were tied using a phonetic

decision tree (Young, Odell & Woodland 1994). The resulting triphone model set comprised

6575 physical models. Model parameters were re-estimated using the forward-backward

algorithm, as in the case of CI model parameters estimation.

HMMs with more states

The models obtained so far are 3-state single Gaussian models. These models might not

be ideal for speech synthesis and can be refined further by increasing the number of states

per model or using more mixtures per state. Since mixture components can be considered as

a special form of sub-state in which the transition probabilities are the mixture weights, this

research opts to use more states per model to improve the HMMs. The number of states per

model varies from three to six, as it was observed that models with more than six states often

cause problems in parameter estimation due to insufficient training data.

Speaker-dependent models

In speech recognition, it is common practice to adapt the SI models to obtain a set of

speaker-dependent (SD) models, which are trained on, and subsequently used to recognise,

the speech of a single speaker. Maximum likelihood linear regression (MLLR) (Leggetter &

Woodland 1995) or MAP adaptation are commonly used for speaker adaptation. Using SD

models, the target speaker’s characteristics can be modelled more accurately and hence the

recognition performance is substantially improved. Lee & Giachin (1991) showed that error

rates for SD systems are typically two to three times lower than equivalent SI systems. As

far as HMM-based synthesis is concerned, model adaptation is of great interest because one

can generate synthetic speech which, in principal, sound like a particular individual’s voice

(see, e.g., Yamagishi & Kobayashi (2007a), Yamagishi et al. (2009)).
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Model adaptation using MLLR MLLR adaptation involves estimation of a set of linear

transformation matrices, which are used to adapt the model mean vectors to maximise the

likelihood of the adaptation data. The number of the transformation matrices depends on

the amount of available adaptation data. When only a small amount of adaptation data is

available, a global transformation may be used. Given a continuous HMM with Gaussian

state output PDFs, each state sj is fully defined by the mean vector µj = [µ1, . . . , µD]> and

the covariance matrix Σj (D is the dimension of the acoustic observation space). Using the

MLLR technique, the adapted mean µ̂j is given by

µ̂j = Wξj, (6.1)

where W is a D × (D + 1) linear transformation matrix which maximises the likelihood

of the adaptation data. ξj is the extended (D + 1) × 1 mean vector, defined as ξj =

[ω, µ1, µ2, . . . , µD]>, where ω is a bias offset. Leggetter & Woodland (1995) reported MLLR

adaptation experiment results on the Resource Management RM1 database. It has been

shown that just three adaptation utterances (equivalent to an average of 11s of speech per

speaker) can result in improvement in recognition rates using a global transformation. When

more adaptation data is available, the performance gradually improves and it is also possible

to train multiple transforms.

Model adaptation using MAP Maximum a posteriori estimation provides a means of in-

corporating prior information of the parameters to be estimated in the model training process.

Given a training observation sequenceO = {o1, . . . ,oT}, the MAP estimation of the model

parameters ΛMAP is obtained by

ΛMAP = arg max
Λ

P (Λ|O) = arg max
Λ

p(O|Λ)P (Λ), (6.2)

where P (Λ) is the prior probability of Λ. As can be seen, if P (Λ) ≡ constant, which

corresponds to a non-informative prior, Equation (6.2) reduces to the standard maximum-
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likelihood approach. For MAP adaptation, the SI model parameters are usually used as the

informative priors. Given the SI model mean µ and the adaptation speech data mean µ̄,

following the HTK implementation, the state mean is updated by

µ̂ =
ψ

ψ + χ
µ̄+

χ

ψ + χ
µ, (6.3)

where χ is a weighting of the a priori knowledge (i.e., the SI model parameters) to the

adaptation speech data and ψ is the occupation likelihood of the adaptation data. It can be

seen from Equation (6.3) that if the occupation likelihood of the adaptation data ψ is small,

the estimated mean µ̂will be close to the SI model mean µ. For this reason, MAP adaptation

generally requires more adaptation data than MLLR adaptation.

Both MLLR and MAP were used in the speech synthesis experiments. Speaker adapta-

tions have been used in HMM-based synthesis in the past (Tamura et al. 1998, Yamagishi

& Kobayashi 2007a, Yamagishi et al. 2009), though they are usually used in the spectral

domain. In the synthesis experiments described here, model adaptation is directly applied to

the formant domain. One of the potential advantages of adaptation in the formant domain is

that the results maybe more interpretable. For example, adapting an adult acoustic model to

a child’s speech should results in predictable changes in formant frequencies (Russell 2004).

6.2.4 Generation of formant synthesiser control parameters

Given a set of HMMs and a phone sequence, the synthesis problem is to generate a

sequence of 12 PFS control parameters from the HMMs, which is then used to drive the

parallel formant synthesiser. It has been shown in Section 5.4.3 that the synthesis part in

HMM-based speech synthesis can be divided into two stages: 1) to decide an ‘optimal’

state sequence x̂ given the model Λ and the phone sequence P to be synthesised, such that

x̂ = arg max
x

p(x|P ,Λ), and 2) to generate a sequence of speech parameters Ô based on the

optimal state sequence x̂, such that Ô = arg max
O

p(O|x̂,Λ). For 1), if the state duration for

each state is known, then the state sequence can be derived. Hence, the problem is actually

to determine the state duration for each state.
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Two methods have been studied in this research to generate a sequence of 12 PFS control

parameters from HMMs, which result in two types of formant synthesiser control parameters.

In the first method, two simplifying assumptions are made in generating the synthesiser

control parameter sequence. Firstly, the state sequence is decided based on the expected

state duration. Suppose that the self-transition probability for state si of an HMM is aii,

where the model corresponds to a phone in the phone sequence P . Since the state duration

in the HMM follows a geometric distribution, the expected duration li for state i is given by

li = 1
1−aii

. The state duration for the rest of the states can be determined in the same way.

Based on the expected state duration, the state sequence x̂ for the phone sequence P can be

obtained as x̂ = {s1× l1, . . . , sN× lN}, where si× li denotes a duration of li spent in state si,

and N is the number of states in the composite model corresponding to the phone sequence.

The second simplifying assumption is that the state mean vectorµi is generated each time

the state si is visited. That is to say, the synthesis control parameters generated is a sequence

of state mean vectors Ô = {µ1 × l1, . . . ,µN × lN}, where µi × li denotes a li-length

sub-sequence speech parameters with the same value µi generated by state si (based on the

piecewise stationarity assumption of HMMs). For these reasons, the resulting synthesiser

control parameters using the first method are referred to as piecewise constant synthesiser

control parameters in this thesis.

The second type of synthesiser control parameters is generated based on the same state

sequence obtained in the first approach, i.e., x̂ = {s1× l1, . . . , sN × lN}. However, this time

the SPG algorithm (as described in Section 5.2, case 1) is applied to generate a non-linear,

smooth trajectory of PFS control parameters given the state sequence x̂. Speech synthesiser

control parameters generated using this approach are referred to as non-linear trajectory PFS

control parameters.

Of course, the duration model in HMMs is poor, and the state sequence derived using

the above approach is certainly not ideal for speech synthesis. State-of-the-art HMM-based

synthesisers usually employ explicit duration distributions, as discussed in Section 5.4.2,

to improve duration modelling. However, the objective of this research is not to build a
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state-of-the-art HMM synthesiser but to build a non-linear trajectory model, and synthesis is

chosen as another way to assess this non-linear trajectory model. Although the state sequence

obtained by using the approach described above is less realistic, it provides a baseline for the

development of a non-linear trajectory model, and it is the behavior and performance of this

non-linear trajectory model that we are interested in this research, rather than maximizing

the quality of the synthetic speech.

6.2.5 Synthetic speech evaluation

Intelligibility and naturalness are two important factors when evaluating speech synthe-

sis performance. Naturalness describes how closely the synthetic speech sounds like human

speech, while intelligibility is the ease with which the output is understood (He 2001). Since

model adaptation is used in this research, similarity is an important indicator which deter-

mines the effectiveness of the adaptation. Therefore, intelligibility, naturalness and similarity

are the three criteria used in this research to evaluate the synthetic speech.

Subjective measures are most commonly used in synthetic speech evaluation. After all,

there is no better way to evaluate a synthetic speech than to actually listen to it. However,

subjective tests are typically expensive to run and results are usually not reproducible. Ob-

jective tests are often used to overcome these disadvantages of subjective tests. The results of

objective tests on their own may not be as valid as subjective test results, but they can be very

useful to supplement subjective tests. Both subjective and objective measures are employed

in this study. For subjective tests, a total of 20 native English speakers participated in the

subjective experiments.

Intelligibility test

Only subjective measures were used in the intelligibility test since objective measures

are usually designed to predict speech quality rather than intelligibility. The Diagnostic

Rhyme Test (DRT) (Voiers 1977, Pratt 1984) is chosen to evaluate the intelligibility of the

synthetic speech. DRT is a word level speech intelligibility test which is designed to test
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Attribute Word-pair examples
Voicing veal - feel
Nasality meat - beat
Sustension vee - bee
Sibilation zee - thee
Graveness weed - reed
Compactness yield - wield

Table 6.1: Example word-pairs used in the DRT test.

the intelligibility of consonants which are at initial positions of words. There are totally 96

word-pairs in DRT, which are divided into 6 groups to test 6 different acoustic features (or

attributes) in the initial consonant, i.e. Voicing, Nasality, Sustension, Sibilation, Graveness

and Compactness, as shown in Table 6.1. The full 96 word-pairs are taken from (Pratt 1984),

which are listed in Appendix B.

Each participant was provided with the same 96 word-pairs list. A recording was pre-

pared beforehand, which contained a string of 96 synthetic words, each randomly chosen

from the corresponding word-pair in the list. Each time a word was played, the participant

chose a word from the corresponding word-pair that he/she thought was correct. Intelligibil-

ity is measured as the number of correct answers divided by the number of all words (96).

Each subject was asked to do the test twice, one based on piecewise constant synthesiser

control parameters and the other based on non-linear trajectory parameters, though the sub-

ject had no idea which test was based on piecewise constant control parameters or non-linear

trajectory parameters. The models used to generate these synthesiser control parameters are

baseline models for male speakers (see Section 6.2.3).

Naturalness test

Both subjective and objective measures are used in the naturalness test. In the subjec-

tive naturalness test, each subject hears 20 synthetic utterances, in which 10 utterances are

based on piecewise constant synthesiser control parameters and the other 10 are based on

non-linear trajectory synthesiser control parameters. Baseline models for male speakers are

used to generate these synthesiser control parameters. The listener is asked to give their sub-
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jective impression on the overall quality of the speech using the mean opinion score (MOS)

method, i.e., ‘Excellent/Good/Fair/Poor/Bad’. Subjects are prompted to take account of

factors such as naturalness, listening effort, speaking style, comprehension problems, pro-

nunciation, speaking rate and voice pleasantness at the beginning of the test. Each subject

hears a different set of 20 synthetic utterances.

As for objective measures, Perceptual Evaluation of Speech Quality (PESQ) is used to

assess the quality of the synthetic speech. PESQ is an objective method for end-to-end

speech quality assessment of narrow-band and wide-band telephone networks and speech

codecs (Rix, Beerends, Hollier & Hekstra 2001). PESQ was developed by KPN Research,

the Netherlands and British Telecommunications (BT), and was officially approved as In-

ternational Telecommunication Union (ITU)-T recommendation P.862.3 In a typical PESQ

test, a reference speech signal and a degraded speech signal are both transformed into psy-

chophysical representations which approximate human perception. Their perceptual distance

is calculated and mapped to give a PESQ-MOS score, which can be transformed to produce

a MOS-LQO (listening quality objective, an estimation of subjective listening quality using

an objective measurement technique) score. The PESQ software used in this research is

the reference implementation of ITU-T P.862, P.862.1 and P.862.2, enclosed in ITU-T P.862

Annex A (2005).

In the naturalness test, PESQ is employed to measure quality for synthetic speech used

in the subjective experiments such that the correlation between the subjective results and

PESQ results can be analyzed. In addition, PESQ is used to evaluate synthetic speech which

are generated from many different types of models, including male/female models, CI/CD

models and models with different number of states. In this case, using a subjective measure

would be impractical because of the large number of situations. For PESQ experiments on

synthetic speech generated from gender-dependent models, 128 utterances from 16 male

speakers in the TIMIT core test set and 128 utterances (64 from the core test set and 64

randomly chosen) from 16 female speakers in the TIMIT test set are chosen as the reference

speech. The final PESQ score is the average of the 128 synthetic utterances.

3Visit http://www.itu.int/rec/T-REC-P.862/en for more details on the ITU-T P.862 recommendation.
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Mimicry test

The use of MLLR and MAP techniques for speaker adaptation is described in Sec-

tion 6.2.3. The purpose of the Mimicry test is to evaluate the performance of these techniques

for speech synthesis. Specifically, the Mimicry test aims to test the perceptual similarity be-

tween an individual’s original speech and the synthetic speech, which is generated from a

set of models adapted to that individual. (Again, baseline models for male speakers are used

in the mimicry test.) By perceptual similarity, it means to test whether the listener thinks

that the two utterances are spoken by the same speaker. In this experiment, the similarity is

measured on a subjective scale of 1− 10, where 10 means the two utterances are spoken by

exactly the same speaker and 1 indicates that they are spoken by two completely different

speakers.

original speech              semi-synthetic speech             synthetic speech

Figure 6.2: The Mimicry test using semi-synthetic speech as a ‘bridge’ between the original
speech and the synthetic speech.

Subjective tests are conducted to evaluate the perceptual similarity. A trial experiment

showed that direct comparison between original speech and synthetic speech was very diffi-

cult due to the low quality of the synthetic speech. As a compromise, ‘semi-synthetic’ speech

is introduced as an intermediate type of speech to assist the comparison between original

speech and synthetic speech, as shown in Figure 6.2. A semi-synthetic utterance is obtained

in two stages. Firstly, the original speech is passed through the Holmes formant analyser to

derive a sequence of 12 PFS control parameters. Secondly, these formant synthesiser control

parameters are sent to the HMS parallel formant synthesiser to re-synthesise the so-called

semi-synthetic speech. This process is also known as copy synthesis (Holmes 1989). As a

result, the comparison of the perceptual similarity is made firstly between an original utter-

ance and a semi-synthetic utterance, and then between the semi-synthetic utterance and the
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S - S
Ori - Semi S - D

D - D
Semi - Syn MLLR

MAP

Table 6.2: A summary of the Mimicry test.

synthetic utterance.

Both MLLR and MAP adaptation techniques are used in the Mimicry test. Moreover, the

number of adaptation utterances varies, so that the effect of the amount of adaptation data

on the similarity perception can be monitored. In the TIMIT speech corpus, each subject

speaks only 10 sentences. Therefore, the maximum number of adaptation utterances is 9 in

the mimicry test. The number of adaptation utterances is chosen as 0 (without adaptation),

5, 9 and 9̄, where 9̄ indicates that the model set is adapted to a different speaker using 9

adaptation utterances from that speaker.

The Mimicry test is summarized in Table 6.2, which can be divided into two sub-tests,

namely ‘Ori - Semi’ and ‘Semi - Syn’. The first sub-test, ‘Ori - Semi’, intends to evaluate

the similarity based on an original utterance and a semi-synthetic utterance. It was hoped

that this sub-test would give good results as a semi-synthetic speech is obtained using copy

synthesis of the original speech. In this sub-test, each subject hears 10 utterance pairs. Each

utterance pair contains an original utterance and a semi-synthetic utterance. There is no

adaptation involved in this sub-test. The test utterance pairs are split into three categories,

referred to as S-S, S-D and D-D, according to the text material of the sentences (what is being

said) and the speaker identity (who is saying). The first letter (S or D) indicates the same

or different speakers, and the second letter indicates the same or different utterances. The

first group (S-S) includes an original utterance and a semi-synthetic utterance from the same

speaker saying the same sentence. In the second group (S-D), the sentences are different

but they are spoken by the same speaker (or semi-synthesised by using the same speaker’s

utterance). Finally, ‘D-D’ means the utterance pair contains different sentences and they are

obtained from different speakers. The 10 utterances that each subject heard is a mixture of

utterances from the above three categories.
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The second sub-test of the Mimicry test is referred to as ‘Semi - Syn’, which tests the per-

ceptual similarity between semi-synthetic speech and synthetic speech. Each subject hears

eight utterance pairs, each containing a semi-synthetic utterance and a synthetic utterance.

The eight synthetic utterances are generated using a combination of different adaptation tech-

niques (either MLLR or MAP) and different number of adaptation utterances (0, 5, 9 and 9̄).

In this sub-test, each utterance pair uses the same sentence. The 8 utterance pairs cover all

possible combination of adaptation techniques and number of adaptation utterance, including

4 utterances based on MLLR using 0, 5, 9 and 9̄ adaptation utterances and 4 utterances based

on MAP using 0, 5, 9 and 9̄ adaptation utterance. Each subject hears 8 different utterance

pairs, and a different set of 8 utterance pairs is provided for each subject. It is expected that

the perceptual similarity would increase as the number of the adaptation utterances increases.

In the case where nine adaptation utterances from another speaker are used, it is expected

that there would be a significant drop in the similarity between the synthetic speech and the

semi-synthetic speech.

Finally, PESQ is used to assist in the mimicry test. In this case, it is interesting to find out

whether the use of more adaptation utterances can lead to improved synthetic speech quality.

6.3 Synthesis evaluation experiment results and analysis

This section presents synthesis evaluation experiment results and analysis. All subjective

experiment results are compiled taking account of information from all of the 20 individuals.

Experiment results for DRT and Naturalness test are presented in Sections 6.3.1 and 6.3.2,

respectively, with an analysis of these two experiments presented in Section 6.3.3. The

Mimicry test results and analysis are presented in Sections 6.3.4 and 6.3.5, respectively.

6.3.1 DRT results

The DRT results are shown in Figure 6.3. There is no surprise that the intelligibility of the

synthetic speech based on non-linear smooth trajectory formant synthesiser control parame-
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Figure 6.3: (a) The DRT results for synthetic speech generated by using piecewise constant
and non-linear smooth trajectory synthesiser control parameters. (b) The DRT results an-
alyzed in terms of individual acoustic attribute, where ‘PC’ stands for piecewise constant
synthesiser control parameters and ‘TRAJ’ means non-linear, smooth trajectory synthesiser
control parameters.
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ters is higher than synthetic speech generated using piecewise constant control parameters,

with word accuracies of 70% and 67% respectively, as can be seen in Figure 6.3(a). Statisti-

cal significance test results will be presented in Section 6.3.3.

In order to find out which of the 6 acoustic attribute contributes most to the overall results,

a detailed analysis of the DRT results is conducted and the results are shown in Figure 6.3(b).

The average scores for each individual acoustic attribute are presented and comparison is

made between the two types of synthesiser control parameter sequences. Figure 6.3(b) shows

that the average scores for the ‘voicing’ attribute are approximately the same for synthetic

speech generated by both piecewise constant and non-linear trajectory synthesiser control

parameters. In the case of ‘nasality’, however, the use of non-linear trajectory synthesiser

control parameters results in a slightly lower intelligibility score, compared with speech

generated by piecewise constant control parameters. These results seem to suggest that there

is no benefit of using non-linear trajectory synthesiser control parameters in discriminating

voiced/unvoiced and nasal/oral sounds with this particular type of speech synthesis.

The results for the rest of the 4 acoustic attributes, i.e., sustension, sibilation, graveness

and compactness, follow the same trend, with non-linear trajectory control parameters giving

higher scores than piecewise constant synthesiser control parameters. In addition, it can be

seen from Figure 6.3(b) that among the 6 acoustic attributes, ‘sibilation’ gives the best score,

while ‘sustension’ provides the lowest score for non-linear, smooth synthetic speech. For

piecewise constant control parameters, ‘sustension’ still gives the lowest score but ‘nasality’

gives the highest score.

6.3.2 Naturalness test result

The results for the naturalness test are straightforward and comply with what was ex-

pected before the test. Figure 6.4(a) shows the result for subjective naturalness test. The

use of non-linear trajectory synthesiser control parameters yields a higher score, 45%, while

the use of piecewise constant synthesiser control parameters produces a score of 35.9%.

Objective naturalness test results for the same set of synthetic speech data are presented in
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Figure 6.4: (a) Subjective naturalness test results. (b) Objective naturalness test results,
where ‘PC’ stands for piecewise constant synthesiser control parameters and ‘TRAJ’ means
non-linear, smooth trajectory synthesiser control parameters.

Figure 6.4(b). As can be seen, the objective PESQ results confirm the subjective results as

shown in Figure 6.4(a), in which synthetic speech generated using non-linear trajectory syn-

thesiser control parameters give a higher PESQ score than synthetic speech generated using

piecewise constant synthesiser control parameters.

As with the DRT experiments, the emphasis in the naturalness experiments is on the

relative performance of the non-linear trajectory model and the piecewise constant model.

Both subjective and objective naturalness test results clearly demonstrate the superiority of

a non-linear trajectory model. However, as can be seen from Figure 6.4, the overall quality

of the synthetic speech is poor. Of course, the direct reason would be that the formant

synthesiser control parameters generated from HMMs are inappropriate because it is known
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that given an appropriate set of synthesiser control parameters, a parallel formant synthesiser

can generate high quality synthetic speech (Holmes 1973). There are a number of reasons

which might help to explain the poor overall quality of the synthetic speech.

Firstly, automatic estimation of formant frequencies are prone to errors. Errors occur-

ring at the formant analysis stage are non-recoverable and inevitably introduce errors to the

acoustic models. Inaccurate acoustic models will certainly degrade the quality of the syn-

thetic speech. Secondly, the acoustic models used in the synthesis experiments summarized

in Figure 6.4 are baseline HMMs for male speaker (3-state CI single Gaussian HMMs), while

state-of-the-art HMM-based synthesis systems use a large set of CD models to account for

contextual factors. Thirdly, no prosodic structure is included in the speech synthesis system.

For these reasons, the overall quality of the synthetic speech is rather disappointing.

Improved models have been built for both male and female speakers, as discussed in

Section 6.2.3, and these models have been used to generate synthetic speech. Figure 6.5

summarizes the PESQ results for synthetic speech generated from a variety of models, in-

cluding CI and CD models, models with different number of states, and models for both

male and female speakers. For each model set, two types of synthetic speech are generated

by using the piecewise constant model and the non-linear trajectory model. Each data point

in Figure 6.5 is the average PESQ-LQO score of 128 synthetic speech utterances for either

male or female speakers (see Section 6.2.5 on page 112 for the description of this test).

A number of observations can be made based on the results presented in Figure 6.5.

First, objective test results for male synthetic speech are better than female results. A likely

reason is that there are more training utterances for male speakers (3260 utterances) than

for female speakers (1360 utterances) in the TIMIT database. Therefore, model parameters

are estimated more accurately for the male system. Second, the use of CD models can

improve the synthetic speech quality, relative to the use of CI models, provided that CD

model parameters are well estimated. Since there is less training data for female speakers,

CD model parameters for female are not as well estimated as in the case of male. As a

result, the performance gain when moving from CI to CD models is relatively small in the
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Figure 6.5: Objective naturalness test results for synthetic speech generated from various
model sets. In the legend, F/M indicates female or male, and CI/CD denotes context-
independent or context-dependent. PC/TJ refers to piecewise constant or non-linear tra-
jectory synthesis control parameters.

female case (see F-CI-PC and F-CD-PC) than in the male case (see M-CI-PC and M-CD-

PC), and when 4-state per phone is used, CD models for female actually degrade the quality

of the synthetic speech than corresponding CI models. This can also be counted as the data-

sparsity problem, which the non-linear trajectory model aims to overcome. Third, in most

cases, increasing the number of states in the HMM can lead to improvement in the PESQ

score, though the improvement is modest. It appears that HMMs with 4-state per phone

would give the best result for the male system, while optimal performance is achived by

using 5-state per HMM for the female system. Although the use of more states per HMM

allows for a finer description of the underlying state process, data-sparsity problems worsen

when the number of states increases because more training data is required. For example,
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the objective results for female system see a significant decrease in PESQ score when the

number of state turns from 5 to 6, as shown in Figure 6.5, indicating that the advantage due

to the use of more states per phone has been compromised by insufficient training data.

Last but not least, it is not surprising that the use of a non-linear trajectory model can

improve the quality of the synthetic speech over a piecewise constant model (see M-CI-

PC and M-CI-TJ, M-CD-PC and M-CD-TJ in Figure 6.5). This has already been seen in

results shown Figure 6.4, where only CI models are used. When CD models are also used,

as shown in Figure 6.5, it is interesting to see that a non-linear trajectory CI model can

outperform a CD model with piecewise constant means (see M-CI-TJ and M-CD-PC). This

result is of great importance, as it shows that the non-linear trajectory model is accounting

for contextual effect such as coarticulation, which CD models are designed to account for.

From the perspective of coarticulation modelling, the advantage of the non-linear trajectory

approach is that it requires far few model parameters (the same as a typical CI system) than

the conventional CD models. Therefore, the data-sparsity problem can be alleviated.

6.3.3 DRT and Naturalness test results analysis

First of all, a statistical significance test is used to find out whether the differences be-

tween the experimental results based on synthetic speech generated from the piecewise con-

stant model and those generated from the non-linear trajectory model are significant or not.

Statistical significance analysis

The non-linear trajectory PFS control parameters are generated by using the SPG al-

gorithm, which in effect performs an utterance-level smoothing on the piecewise constant

synthesiser control parameters. Therefore, each observation in one sample (measures based

on the piecewise constant model) is paired with a matched observation in the other sample

(measures based on the non-linear trajectory model). This is a typical before-and-after sce-

nario, for which a paired t-test is a suitable statistical significance test. For this test to be

valid, the differences for the matched-pairs should be approximately normally distributed.
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Therefore, for small samples, a normality test (such as a Kolmogorov-Smirnov test or a Lil-

liefors test) is usually performed in order to test the validity of the paired t-test before it

actually takes place.

A one-tailed paired t-test is used to test the null hypothesis that the true mean of differ-

ence d̄ between two samples is zero, i.e., H0 : d̄ = 0, against the alternative hypothesis,

H1 : d̄ > 0, by computing

t =
d̄

sd/
√
n
, (6.4)

where n is the sample size (or the number of pairs) and sd is the standard deviation of the

differences between observations of the two samples. This t-statistic is compared to a t-

distribution with a df = n − 1 degrees of freedom to find the p-value of the paired t-test.

If the p-value associated with t is low (e.g., < 0.05), there is evidence to reject the null

hypothesis and accept the alternative hypothesis. Therefore, we can conclude that there is

evidence that there is a significant difference in means across the paired observations.

d̄ sd df t p
DRT 2.9 5.2 19 2.49 0.01
Naturalness 4.55 4.29 19 4.75 < 0.001

Table 6.3: t-test results for DRT and subjective Naturalness test.

For DRT and subjective naturalness test results, 1-tailed paired t-tests are performed and

the results are summarized in Table 6.3. A significance level of 0.05 is used for the statistical

test. Given the low p-values for the DRT results (0.01) and Naturalness results (< 0.001),

there is strong evidence that, on average, the use of the non-linear formant trajectory model

does lead to significant improvements in both intelligibility and naturalness of the synthetic

speech.

As for objective naturalness test as shown in Figure 6.5, a series of 1-tailed paired t-tests

were conducted and these results are presented in Table 6.4. Many different types of models

are considered in these results, such as male/female, CI/CD, PC/TJ (piecewise constant/non-

linear trajectory models) and models with different number of states. As can be seen, when

models are based on 3-state per phone, the use of a non-linear trajectory model leads to
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Model set/State No. 3 4 5 6
Male CI-PC vs. CI-TJ < 0.01 < 0.01 < 0.01 < 0.01

CD-PC vs. CD-TJ < 0.01 0.18 0.09 < 0.01
CD-PC vs. CI-TJ < 0.01 0.18 0.56 < 0.01

Female CI-PC vs. CI-TJ < 0.01 0.08 0.09 0.32
CD-PC vs. CD-TJ < 0.01 0.03 0.02 0.36
CD-PC vs. CI-TJ 0.03 < 0.01 0.24 0.51

Table 6.4: t-test p-values for the objective naturalness test results as shown in Figure 6.5.
CI/CD denote context-independent or -dependent models, and PC/TJ refers to piecewise
contant or non-linear trajectory models. Numbers in boldface indicates that there is signifi-
cant difference between the two results given a significance level of 0.05.

significant improvement in quality of the synthetic speech, relative to a piecewise constant

model, for both CI and CD models, and both male and female speakers. More importantly,

we have observed that, as can be seen in Figure 6.5, a non-linear trajectory CI model (denote

as CI-TJ) outperforms the corresponding piecewise constant CD model (or CD-PC) in the

naturalness test. In the significance test reported here, these improvements are proved to be

statistical significant, as shown in Table 6.4 (see the rows corresponding to CD-PC vs. CI-

TJ for both male and female). This is an encouraging result, as it shows that the CI-based

non-linear trajectory models can not only model coarticulation, but also work better than the

conventional CD models, with only a fraction of parameters of the CD models.

As has been discussed before, increasing the number of states per phone can improve the

quality of the synthetic speech, though this improvement is often compromised by the size

of the available training data, especially when CD models are used. This is also reflected

in the t-test results as shown in Table 6.4, as improvements (when moving from piecewise

constant to non-linear trajectory models) in quality of the synthetic speech generated from

models with more than 3 states per phone are often not significant.

A closer look at the non-linear trajectory

The power of the non-linear trajectory model is largely due to the smoothing effect of

the speech parameter generation algorithm (see Section 5.1.1 for the smoothing in the SPG

algorithm; Section 3.2.3 also describes the DP smoothing used in Holmes formant analyzer),

which reduces most discontinuities, particularly those between the boundaries of adjacent



CHAPTER 6. SYNTHESIS USING NON-LINEAR TRAJECTORIES 125

(a)

(b)

(c)

Figure 6.6: (a) Wide-band speech spectrogram for the synthetic speech generated by us-
ing piecewise constant PFS control parameters. (b) Wide-band speech spectrogram for the
synthetic speech generated by using non-linear trajectory PFS control parameters. (c) Wide-
band speech spectrogram for an original TIMIT utterance, spoken by speaker mdab0, down-
sampled to 8 KHz. In all cases, the sentence is ‘She had your dark suit in greasy wash water
all year’ (sa1).
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phones, which typically occur in the synthetic speech generated by piecewise constant syn-

thesiser control parameters, as can be seen in Figure 6.6(a). Figure 6.6(b) demonstrates

improved modelling of formant transitions due to the use of the SPG algorithm, as the for-

mant trajectories become smoothed and continuous, relative to the corresponding formant

trajectories shown in Figure 6.6(a), which are based on the piecewise constant model.

The speech parameter generation algorithm gives smooth trajectories, but it remains un-

clear whether or not they match actual formant trajectories in real speech. A more detailed

comparison between actual formant trajectories in real speech and those generated by us-

ing the SPG algorithm is performed and depicted in Figure 6.7. The example real speech

utterance is taken from TIMIT – “Are you looking for employment?” (sx229), spoken by

speaker mdab0. The actual formant trajectories, indicated by the thin lines in Figure 6.7, are

obtained by using the Holmes formant analyser, as described in Section 3.2.3. The thick lines

in Figure 6.7 represent formant trajectories which are automatically generated from HMMs

by using the SPG algorithm. Formant trajectories for the first three formant frequencies F1,

F2 and F3 are all shown in this figure.

As can be seen in Figure 6.7, the formant trajectories generated from HMM by using

the SPG algorithm are continuous and, in general, smoother than actual formant trajectories,

though in many cases they are fairly close, especially for the second formant frequency F2.

Conventional HMMs use CD models to account for contextual effects. It should be noted

that the non-linear trajectories shown in Figure 6.7 are generated from CI models, and the

example utterance is taken from the test set so that it was not used to train the HMMs. For

these reasons, it is safe to say that the improved modelling of formant dynamics is due to

the use of the non-linear formant trajectories generated by the SPG algorithm. So far, we

have some experimental evidence that the use of non-linear formant trajectory is able to

account for coarticulation effects from the perspective of speech synthesis, and this will be

investigated further in the speech recognition experiments described in the next chapter.

For DRT, which tests the intelligibility of an individual consonant sound, the overall

improvement resulted from the use of non-linear trajectory models is not as significant as
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Figure 6.7: The first three formant trajectories in real speech and synthetic speech. In all
sub-figures, the thin lines indicate formant trajectories in real speech (calculated by using
the Holmes formant analyser), while the thick lines represent formant trajectories generated
from HMMs by using the speech parameter generation algorithm. The real speech is a TIMIT
utterance “Are you looking for employment” (sx229), spoken by speaker mdab0.

that of the naturalness test. In DRT, the synthesis is based on isolated words, which usually

consists of just three phonemes. The smoothing effect of the speech parameter generation

algorithm may be more easily overshadowed by other factors, for example noise or poor

quality, than in a longer context (e.g., at the sentence level). Moreover, the speech generation

algorithm can sometimes be too ‘good’ that over-smoothed trajectories are generated, which

results in ‘muffled’ synthetic sounds (Black et al. 2007). This could have an adverse effect

on the intelligibility test.

The effect of over-smoothing can be also seen in Figure 6.7, which exhibits a rather flat

formant trajectory for F3. Although the ‘over-smoothed’ sounds may not be a problem in the

naturalness test, they may cause confusion in the intelligibility test as the realisation of each
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individual phone segment is affected excessively by the neighbouring phones. Therefore,

the identity of the target phone may be blurred. In this case, the piecewise constant synthetic

speech may be more intelligible because the synthetic sound is not affected by its context,

though it may sound more robotic. To reduce the over-smoothing effect, a modified SPG

algorithm based on the global variance was proposed (Toda & Tokuda 2001).

Correlation between subjective and objective measures

Both subjective and objective (PESQ) measures have been used to assess the naturalness

of the synthetic speech, as shown in Figure 6.4. The objective measure chosen for the natu-

ralness test is PESQ, which has been successfully used to evaluate speech quality for a wide

range of conditions. PESQ results have shown high correlation with subjective MOS for

various types of distortions (Rix et al. 2001, Hu & Loizou 2008). PESQ has also been used

to evaluate the intelligibility of the synthetic speech in HMM synthesis (Valentini-Botinhao,

Yamagishi & King 2011), though it is more successful in predicting quality.

Figure 6.8 presents two scatter plots to aid the analysis of the correlation between sub-

jective and objective evaluation results on the quality of the synthetic speech. The top plot

shows the naturalness test results based on the piecewise constant model, and the bottom plot

is based on results for the non-linear trajectory model. Both plots show positive correlation

between MOS and PESQ-LQO scores. In addition, Pearson’s correlation coefficients are

calculated based on the following formula

r =

∑N
n=1(Xn − X̄)(Yn − Ȳ )√∑N

n=1(Xn − X̄)2
∑N

n=1(Yn − Ȳ )2

, (6.5)

where Xn and Yn are the subjective and objective scores respectively, X̄ and Ȳ the average

subjective and objective scores respectively, and N = 20 is the sample size. The correlation

coefficients for the piecewise constant model (corresponding to the top plot in Figure 6.8) and

the non-linear trajectory model (the bottom plot in Figure 6.8) are 0.67 and 0.78, respectively.

These results confirm the positive correlation between the subjective and objective results.
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Figure 6.8: Scatter plots of subjective and objective results for the naturalness test for syn-
thetic speech generated using the piecewise constant model (top plot) and the non-linear
trajectory model (bottom plot).

6.3.4 Mimicry test results

The mimicry test results are summarized in Figure 6.9. Figure 6.9(a) shows the percep-

tual similarity between an original utterance and a semi-synthetic utterance. The meaning

of the semi-synthetic speech is explained in Section 6.2.5 on page 114. It can be seen from

Figure 6.9(a) that, even for the first group (S-S), i.e., the same speaker saying the same ut-

terance, the similarity score between original speech and semi-synthetic speech is 56.8%,

which suggests that the semi-synthetic speech has already lost some information about a

speaker’s voice characteristics. In addition, it can be seen that there are no significant dif-

ferences between the test results for groups S-D and D-D, with scores of 33.5% and 33.6%

respectively. This indicates that the perceptual similarity between an original utterance and

a semi-synthetic utterance drops sharply when the utterances are different (i.e., the content

of the sentence), irrespective of whether they are from the same or different speakers.

Figure 6.9(b) shows the perceptual similarity between semi-synthetic speech and syn-
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Figure 6.9: (a) Perceptual similarity between original speech and semi-synthetic speech. S-
S: same speaker - same utterance; S-D: same speaker - different utterances; D-D: different
speaker - different utterances. (b) Perceptual similarity between semi-synthetic speech and
synthetic speech based on HMMs adapted to the same and different speakers. 9̄: HMMs
adapted to a different speaker with 9 adaptation utterances.
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thetic speech based on HMMs adapted to the same and different speakers with different

numbers of adaptation utterances. Number ‘0’ means there is no adaptation; that is, speaker

independent models are used to generate synthetic speech. First of all, Figure 6.9(b) shows

that the perceptual similarity falls when the model set is adapted to a different speaker (de-

noted by 9̄), which was expected before the test. However, the results of the mimicry test

using MLLR and MAP adapted to the same speaker are not expected. In the case that MLLR

is used for speaker adaptation, the perceptual similarity score first increases when moving

from SI models to SD models with 5 adaptation utterance, then decreases as the number of

adaptation utterances increases from 5 to 9. When the MAP adaptation technique is used,

the similarity falls from 57.5% to 48.5% as the number of adaptation utterance turns from 0

(i.e., SI models) to 5, and then increases to 53.5% when 9 adaptation utterances are used.

6.3.5 Mimicry test results analysis

As has been explained in Section 6.2.5, the goal of the similarity test is to determine

whether the two utterances are spoken by the same speaker or not. The participants were

therefore told to focus on the voice characteristics of the speakers, rather than the sentences

that they heard. However, it was found that direct comparison between the original speech

and the synthetic speech was very difficult due to the poor quality of the synthetic speech.

Hence semi-synthetic speech was introduced as an intermediate type of speech for compari-

son between the original speech and the synthetic speech.

Original v.s. Semi-synthetic analysis

The similarity test result between the original speech and the semi-synthetic speech

becomes interesting due to the use of different utterances for original and semi-synthetic

speech. First of all, the first and second column in Figure 6.9(a) demonstrate how the use

of different utterances affects the similarity test result. The similarity score decreases signif-

icantly when the utterances are different for the original speech and semi-synthetic speech,

even though they are indeed from the same speaker. This seems to suggest that the content
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(or what is being said) has a significant effect in determining the speaker identity.

Furthermore, the second and third column in Figure 6.9(a) show the similarity results of

either the same or different speakers saying different utterances for original speech and semi-

synthetic speech respectively. It can be seen that these two similarity scores are virtually the

same. That is to say, the change of the speaker identity (hence the change of speaker voices)

has no effect for this type of similarity test.

The above dilemma may be accounted for in the following two aspects. Firstly, it might

be that the quality of the semi-synthetic speech is not good enough to preserve the important

information about the speaker’s voice characteristics. The result from the first column in

Figure 6.9(a) proves this to some extent, with a similarity score of only 57%. However, the

semi-synthetic speech is generated from a sequence of synthesiser control parameters which

are derived from the original speech using the Holmes formant analyser. In principle, the

synthesiser control parameters obtained in this way (also known as copy synthesis) should

be fairly good. Secondly, given the poor quality of the synthetic speech, the participants may

be overwhelmed by the effect of the use of different utterances and could not make sensible

judgments on the speakers’ voice characteristics. Therefore, even though the speaker is

different, as shown in the second and third column in Figure 6.9(a), the similarity results

remains approximately the same, due to the use of different utterances.

Recently, NIST has conducted a test of Human Assisted Speaker Recognition (HASR)

(Greenberg, Martin, Doddington & Godfrey 2011), which involves a limited number of chal-

lenging trials (15 in HASR1, 150 in total), which are selected carefully by automatic pro-

cessing and human listening. Each trial consists of two speech audio recordings, including

an interview recorded over a microphone channel, and a phone conversation recorded over

a telephone channel, both collected by the LDC. These recordings contain different chan-

nels, different speaking styles and obviously, different content. An participant is required to

make a decision (true or false) on whether the same speaker was presented in both of these

two recordings in order to complete a trial. In addition, the participant needs to give a con-

fidence score on the choice, where a higher score indicates that the participant has greater
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confidence that the same speaker was presented in both audio recordings. The trial-by-trial

results of the 15 HASR1 trials for all 20 participating systems are summarised in (Greenberg

et al. 2011). These results clearly show that, in difficult cases, humans have trouble making

the correct choice. For example, a majority of the 20 HASR systems had an incorrect de-

cision for 5 of the 15 trial. In addition, it is also noted that automatic speaker recognition

systems outperform the HASR systems on the same HASR2 trials.

The NIST HASR results suggest that humans are not as good as one might expect in

recognising who is speaking, especially under difficult conditions. The mimicry test de-

scribed in this chapter is similar to the NIST HASR test in that both tests focus on predicting

whether the two audio recordings are spoken by the same speaker or not. In either test, the

test sentences spoken by the speaker(s) are different. The major difference between the NIST

experiment and the mimicry test is that only real human spoken utterances are used in the

NIST test, while synthetic utterances are also used in this mimicry test. The NIST results

show that humans often have difficulty in recognising speakers, even though two real human

speech utterances are provided. It is therefore not surprising that it becomes more difficult

to recognise speakers given a synthetic speech, as shown in this mimicry test.

Semi-synthetic v.s. Synthetic analysis

The similarity test results between semi-synthetic and synthetic speech are presented in

Figure 6.9(b) and analysed as follows.

MLLR v.s. MAP For speech recognition, MLLR generally performs better with small

amount of adaptation data and MAP adaptation gradually catches up when more adaptation

data is available (Young et al. 2005). This ‘rule of thumb’ seems still applicable in this

similarity test between semi-synthetic speech and synthetic speech, in which MLLR-based

synthetic speech outperforms MAP-based synthetic speech, with at most a 10% difference

between the similarity scores (when 5 adaptation utterances are used), as shown in Fig-

ure 6.9(b).
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The use of different speakers data Initially, the motivation of using 9 adaptation utter-

ances from a different speaker is to contrast the result of using the adaptation data from

the same speaker. It was expected that the use of 9 adaptation utterances from a different

speaker would result in a drop in the similarity score. The similarity test results shown in

Figure 6.9(b) confirm this, illustrated as the case 9̄, where the model set is adapted to another

speaker using 9 adaptation utterances from that speaker. Actually, for either MLLR or MAP

adaptation, the similarity score of using 9 different adaptation utterances is the lowest, as

shown in Figure 6.9(b).

Unexpected drop in the similarity scores It can be seen from Figure 6.9(b) that the in-

crease of the number of adaptation utterances from the same speaker results in decreasing

similarity scores, while it was expected that the similarity would increase when more adapta-

tion data is available. In case the MAP adaptation is used, the similarity first decreases when

5 adaptation utterances are used and then increases as the number of adaptation utterances

increases from 5 to 9.

The drop in the similarity scores with increasing number of adaptation utterances is unex-

pected. A possible explanation is that the amount of adaptation data (less than 10 utterances)

is too small so that the overall trend of the change in similarity with respect to the number

of adaptation utterances has not yet emerged with less than 10 adaptation utterances. The

increase in the similarity score as the number of adaptation utterances increases from 5 to

9 for the case of MAP adaptation is a first sign. However, the limitation on the maximum

number of adaptation utterances is due to the TIMIT speech corpus used in the experiment,

in which each speaker speaks at most 10 utterances.

A similar subjective similarity experiment was conducted and reported by (Yamagishi &

Kobayashi 2007b). Five-point scale was used, i.e., Very similar, Similar, Slightly Similar,

Dissimilar, Very Dissimilar. MLLR was employed in their experiment to adapt the so-called

average-voice-based model (Yamagishi 2006) to a target speaker. The number of adaptation

utterances varied from 5, via 10, 20, 50, 100, 150, 250, 350 to 450. The authors found that

approximately 100 utterances were required to represent the target speaker and synthesise
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speech appropriately in their HMM-based speech synthesis system. When the number of

adaptation utterances was smaller than 20, the average score was below the ‘slightly similar’

scale, which comply with the results reported here.

It is interesting to compare these results with that of speech recognition. For speech

recognition, only 3 adaptation utterances (equivalent to an average of 11 sec of speech per

speaker) can result in improvement in recognition rates using a global transformation in

MLLR adaptation (Leggetter & Woodland 1995). For HMM-based speech synthesis, it

might be the case that more adaptation utterances should be available before the trend of

the change in the perceived similarity becomes stable.

Despite the above argument on the lack of adaptation data, it should be confessed that the

quality of the synthetic speech plays an important role in all subjective listening experiments.

For example, the similarity test results might be different, provided that the quality of the

synthetic speech is good. However, the effort that would be involved in building a better

synthesiser is beyond the project.

Evaluating model adaptation using PESQ

An objective measure may be useful to aid the analysis of model adaptation for HMM-

based speech synthesis. As in the case of the naturalness test, PESQ is employed to evaluate

synthetic speech generated from SI and SD models with different number of adaptation utter-

ances. The test data is the same as that used in the ‘semi-synthetic vs. synthetic’ experiment.

Figure 6.10 shows the PESQ results on synthetic speech generated from adapted models with

respect to different number of adaptation utterances.

It should be noted that this is not an ‘objective version’ of the mimicry test but an objec-

tive quality test. The focus of this analysis is on the relationship between model adaptation

and the quality of the synthetic speech. As is well known, model adaptation has been suc-

cessful in improving speech recognition performance. Figure 6.10 clearly shows that model

adaptation is also useful in improving the quality of the synthetic speech. When models are

adapted using data from the same speaker, increasing the number of adaptation utterances
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Figure 6.10: Objective evaluation results on model adaptation based on PESQ.

(from 0 to 9) leads to consistently improved quality of the synthetic speech. In addition,

MLLR based adaptation works consistently better than MAP adaptation. Finally, it is inter-

esting to see that when the models are adapted to another speaker (corresponding to ‘9D‘ at

the right side of Figure 6.10), PESQ score also drops, as in the case of the subjective mimicry

test.

6.4 Summary

This chapter describes the research on modelling formant dynamics using a non-linear

trajectory model generated by the SPG algorithm. This non-linear trajectory model of for-

mant dynamics is assessed using the HMM-base speech synthesis paradigm. A basic HMM-

based TTS system was built on 12 PFS control parameters and their time derivatives. Two

kinds of synthesiser control parameter sequences were generated from HMMs, namely, the

piecewise constant PFS control parameters and non-linear trajectory PFS control parameters.

These two types of synthesiser control parameter sequences were used to synthesise speech
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from the Holmes parallel formant synthesiser.

Three types of human listening tests were conducted to assess the performance of the

non-linear trajectory model. In addition, PESQ is employed as an objective measure to eval-

uate the quality of the synthetic speech. Twenty subjectives participated in the subjective ex-

periments. Despite the poor overall quality of the synthetic speech, the DRT and naturalness

test results show that the use of the non-linear trajectory model of formant dynamics leads

to improvement in both intelligibility and overall quality of the synthetic speech, relative to

the piecewise constant model. Statistical significance tests confirmed that these improve-

ments are significant. The non-linear formant trajectories generate from HMMs have been

shown to match the actual formant trajectories in real speech fairly well, though sometimes

over-smoothing may occur. These results suggest that the non-linear trajectories generated

by using the parameter generation algorithm is able to account for contextual effects, such

as coarticulation.

Conventional speaker adaptation techniques, including MLLR and MAP, were employed

to generate adaptable synthetic speech. The similarity experiment attempted to test the sim-

ilarity of the voice characteristics between a real utterance and an adapted, synthetic speech.

However, experiment results show that these techniques (MLLR and MAP) are not partic-

ularly successful under this setting. Two main reasons have been spotted. Firstly, the low

quality of the synthetic speech poses a very challenging task for human listeners. Research

elsewhere indeed found that humans have trouble recognising speakers in difficult situation.

The second possible reason is the limitation on the amount of available adaptation data,

which is imposed by the particular corpus used in the test.



Chapter 7

Recognition using non-linear trajectories

7.1 Introduction

The previous chapter shows that the use of a non-linear trajectory model of formant dy-

namics can improve the performance for speech synthesis, compared to a piecewise constant

trajectory model. This chapter continues to assess the non-linear trajectory model of dy-

namics from the perspective of speech recognition. In a linear/linear MSHMM presented in

(Russell & Jackson 2005, Russell et al. 2007), formant dynamics are modelled as piecewise

linear trajectories and transformed into the acoustic layer using a set of linear articulatory-

to-acoustic mappings. For a given representation of the intermediate layer, it was hoped that

further improvements in recognition performance would be achieved by using non-linear

formant trajectories in the intermediate layer of MSHMMs.

As in the speech synthesis experiments described in Chapter 6, non-linear formant trajec-

tories are generated based on the speech parameter generation algorithm (Tokuda, Kobayashi

& Imai 1995, as described in Section 5.2). The formant-to-acoustic mappings remain linear

in this research, which is estimated based on matched sequences of acoustic and formant

data, as described in (Russell & Jackson 2005, see Section 4.4.1 on page 75). However, the

mapping parameters are re-estimated using the non-linear formant trajectories in order to

provide better fit between acoustic data and formant data. The resulting model is referred to

as a non-linear/linear MSHMM, and is represented in Figure 7.1.

As in (Russell & Jackson 2005, Russell et al. 2007), five ‘formant-to-acoustic’ map-

138
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Figure 7.1: A non-linear/linear MSHMM in which speech dynamics are modelled as non-
linear formant trajectories in the intermediate layer, and transformed into acoustic layer using
linear formant-to-acoustic mapping.

ping schemes (see Table 4.1 on page 81), based on different phone partition schemes, are

considered in order to investigate their effects on phonetic recognition performance. The

intermediate layer of the MSHMM, though, is restricted to the 12PFS representation only in

experiments described in this chapter.

The rest of this chapter is structured as follows. Section 7.2 describes the N -best list

rescoring scheme that is used to evaluated the new model. The MSHMM model sets used in

the rescoring experiments and model parameter esitmation are described in Section 7.3. Sec-

tion 7.4 provides a detailed description of the rescoring experiments. The rescoring results

and analysis are reported in Section 7.5.

7.2 N-best list rescoring

N -best list rescoring is commonly used when developing speech recognition systems.

The existence of an N -best list enables us to combine additional knowledge sources, such as
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complicated acoustic and language models, into the recognition process (Ostendorf 1991).

An N -best list contains N candidate recognition hypotheses for each test utterance, which

can be rescored and reordered using additional knowledge sources. N -best list rescoring

can be used to evaluate a new technique before investing the effort to implement a decoder.

Alternatively, a decoder may not be practically feasible. This research resorts to N -best list

rescoring to evaluate the new non-linear/linear MSHMMs.

7.2.1 N-best list rescoring overview

In the context of statistical modelling of speech patterns, the recognition problem is, in

general, to find the most likely word string Ŵ = {w1, . . . , wK} given a sequence of acoustic

observationsO = {o1, . . . ,oT}, such that the probability P (W|O) of the word sequenceW

given the acoustic evidenceO is maximised

Ŵ = arg max
W

P (W|O) = arg max
W

{
p(O|W)P (W)

}
, (7.1)

where p(O|W) and P (W) are determined by an acoustic model and a language model,

respectively. In an N -best list W̃ = {W̃1, . . . , W̃N}, each entry W̃n (1 ≤ n ≤ N ) represents

one possible interpretation of the unknown observation sequenceO.

Figure 7.2 shows the N -best list rescoring paradigm adopted in this research and the

relationships between different model sets and the N -best list. On the left side of Figure 7.2

is a set of conventional, triphone HMMs. The main role of these conventional HMMs in the

rescoring experiments is to generate an N -best list for each test utterance. In addition, these

standard HMMs can be used to produce an optimal state alignment for each hypothesis in

the N -best list. The MSHMMs on the right side of Figure 7.2, including both linear/linear

MSHMMs and non-linear/linear MSHMMs, are used to rescore the N -best list.

TheN -best rescoring is conducted as follows. Given anN -best list W̃ = {W̃1, . . . , W̃N}

for a test utterance O, a hypothesis W̃n (1 ≤ n ≤ N ) from the N -best list is taken and the

probability p(O|W̃n) of the test utterance given the hypothesis is calculated (the probability

calculation is described in Section 7.2.3). The probability calculation is repeated for every
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Figure 7.2: A schematic diagram of the N-best list rescoring paradigm.

hypothesis in the list W̃ and the results are recorded. A search is then made to find the

hypothesis which gives rise to the highest probability. Then the N -best list is reordered so

that this hypothesis is placed at the top of the list. This process is repeated for every test

utterance in the test set and its corresponding N -best recognition hypotheses. Once every

N -best list for every test utterance in the test set has been processed, the ‘top’ hypotheses in

the N -best lists for all test utterance are taken for further analysis.

7.2.2 N-best list generation

Two N -best lists are generated and used for rescoring in this research, and both lists are

generated using triphone HMMs with HTK.

1000-best list

The acoustic models used to generate the 1000-best list are gender-dependent1 triphone

HMMs, which are trained on data from all male speakers in the TIMIT training set, including

3260 utterances. The test set comprises all recordings of male speakers in the TIMIT core

test set (including 16 subjects, 128 utterances, excluding ‘sa1’ and ‘sa2’ sentences). Acoustic

features used in generating the 1000-best list are 13MFCCs (including the zeroth) plus ∆

1See Section 3.3 on page 66 for the motivation for gender-dependent models.



CHAPTER 7. RECOGNITION USING NON-LINEAR TRAJECTORIES 142

and ∆2 coefficients (25ms window, 10ms fixed frame rate). The calculation of MFCCs is

described in Section 3.1 and performed using HTK.

100-best list

The 100-best list is generated from triphone HMMs trained on data in the TIMIT full

training set, including 4620 training utterances for both male and female speakers. The

TIMIT core test set is used, including 16 males and 8 females, 192 utterances. As in the

generation of the 1000-best list, 13MFCCs plus ∆ and ∆2 coefficients are used as acoustic

features.

TIMIT bigram language model

A bigram language model is used in the generation of theN -best list. In a general bigram

language model, the probability of the kth word wk in the word sequenceW depends only

on the identity of the immediate previous word wk−1

P (wk|w1, w2, . . . , wk−1) ≈ P (wk|wk−1). (7.2)

The language model probability for the word sequenceW is calculated as follows:

P (W) = P (w1)
K∏
k=2

P (wk|w1, . . . , wk−1) = P (w1)
K∏
k=2

P (wk|wk−1). (7.3)

In principle, n-grams can be estimated using simple frequency counts of occurrences in the

training database. For example, the bigram probability P (wk|wk−1) for each word pair wk−1

and wk is given by

P (wk|wk−1) =
N(wk, wk−1)

N(wk−1)
(7.4)

where N(wk, wk−1) is the number of times that the word pair (wk−1, wk) occurs in all the

training label files, and N(wk−1) denotes the number of occurrence of the word wk−1 in the

training text.

Data sparsity is an ever-present problem in language modelling when using n-grams, be-



CHAPTER 7. RECOGNITION USING NON-LINEAR TRAJECTORIES 143

cause even for small vocabularies, many n-grams will either do not appear in the training

material or do not occur frequently enough to enable robust estimation of their probabili-

ties. Backing off is commonly used to deal with the data sparsity problem, in which the

probability for an unseen n-gram is replaced with a scaled lower order model probability.

For example, using back off, the probability of a missing trigram is replaced with a rescaled

bigram probability

P̂ (wk|wk−1, wk2) = B(wk−1, wk2)P (wk|wk−1), (7.5)

where B(wk−1, wk2) is a back off function included to ensure that P̂ (wk|wk−1, wk2) is prop-

erly normalised (Young 1995).

This research uses a phone level bigram language model with backing off, which is esti-

mated using all of the TIMIT phonetic label files in the training set using HTK.

N-best list generation and evaluation

N-best list type N-best decoding Phone accuracy (%) Sentence correct (%)
1000-best list 1-best 65.7 0

1000-best 77.9 0.78
100-best list 1-best 70.6 0

100-best 77.3 0.52

Table 7.1: N -best list evaluation results for the 1000-best list and 100-best list.

Given a set of triphone HMMs and a TIMIT bigram language model, the N -best list

is generated using the HTK decoder for each test utterance. For comparison purpose, some

preliminary experiments are conducted and results are shown in Table 7.1. The baseline pho-

netic recognition phone accuracies (i.e., the 1-best decoding) are 65.7% and 70.6% for the

1000-best list and the 100-best list, respectively. The upper bound of phone accuracy for the

1000-best list is 77.9%, which is based on the most accurate match among the 1,000 alterna-

tives and the corresponding reference label file. Therefore, this is the theoretical maximum

score the following N -best rescoring experiments can reach. Similarly, for the 100-best list,

this theoretical upper bound is 77.3%. Moreover, the sentence correct for the 1000-best list,
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based on the most accurate match, is 0.78%. In fact, only 1 correct label file at sentence-level

appears in the 1000-best lists. In the case of the 100-best list, there is also just 1 correctly

recognised sentence, which gives a sentence correct of 0.52%.

7.2.3 Segment probability calculation in MSHMMS

This section describes the probability calculation for each test utterance given a hypoth-

esis in the N -best list using either a linear/linear MSHMM or a nonlinear/linear MSHMM.

Suppose that an unknown test utterance corresponds to a sequence of acoustic feature vectors

O = {o1, . . . ,oT}. For a given hypothesis W̃m in the N -best list, this utterance can be ex-

plained via a state sequence s = {τ1×s1, τ2×s2, . . . , τN×sN}, where τ1 +τ2 +. . .+τN = T

and τn × sn denotes τn repetitions of state sn. In the intermediate space of an MSHMM, a

trajectory f of length T is defined as f = {f 1,f 2, . . . ,fN}, where fn is a trajectory ‘frag-

ment’ of length τn, associated with state sn. There are two types of trajectory, corresponding

to linear/linear MSHMMs and non-linear/linear MSHMMs, respectively.

• In the case of a linear/linear MSHMM, each trajectory fragment fn is a linear tra-

jectory, defined by a slope vector and a mid-point vector for state sn, as described in

Section 4.2.

• For a non-linear/linear MSHMM, f is a non-linear, continuous trajectory obtained

using the SPG algorithm based on the given state sequence s (See Section 5.2), and fn

is simply the section of the trajectory f which corresponds to state sn.

In either case, the probability of the test utteranceO given the hypothesis W̃m can be calcu-

lated as

p(O|W̃m) =
N∏
n=1

dn(τn)

( τn∏
t=1

N
(
oφn+t|W sn

(
fn(φn + t)

)
,Σn

))
, (7.6)

where φn =
n−1∑
i=1

τi denotes the time spent before entering state sn (φ1 = 0), dn the du-

ration PDF associated with state sn, and W sn the formant-to-acoustic mapping associated
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with state sn. Equation 7.6 forms the basis of the N -best list rescoring. In the rescoring

experiments described in Section 7.4, this equation is used to compute the probability of

each test utterance given each possible hypothesis in its corresponding N -best list for both

linear/linear and non-linear/linear MSHMMs.

7.3 MSHMMs used in rescoring

This section describes various MSHMM models used in the N -best list rescoring exper-

iments, including the training method of these models.

7.3.1 Speech data

Acoustic data

MSHMMs model parameters are trained on the static 13MFCCs (including zeroth), with-

out dynamic features. For the 1000-best list rescoring system, the recordings of all male

speakers in the TIMIT training set are used to train MSHMMs, comprising 3260 training

utterances. For the 100-best list rescoring system, the full TIMIT training set is used to train

MSHMMs, including 4620 training utterances. Up until now, only static acoustic features are

used in the framework of MSHMMs, while conventional state-of-the-art HMM systems also

employ dynamic features. This is because that an MSHMM is motivated by the belief that

the explicit modelling of dynamics in the articulatory-related intermediate space would pro-

vide an improved modelling of speech dynamics and therefore the dynamic features would

be not necessary. In addition, this is also one of the examples of speech modelling, rather

than speech description(see Section 2.2.3 on the use of dynamic features in HMMs).

Formant data

The intermediate layer of the MSHMMs concerned in this work is restricted to the

formant-based representation of the 12 PFS control parameters (See Table 3.1 on page 56

for the 12 PFS data), which are computed using the Holmes formant analyser and converted
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to HTK format (see Section 3.2.3 on page 59 for more details of the Holmes formant anal-

yser). The Holmes formant analyser generates one 12-dimensional PFS vector every 10ms.

7.3.2 MSHMMs model sets

linear/linear MSHMMs non-linear/linear MSHMMs
monophone triphone monophone triphone

1A
√ √ √ √

6B
√ √ √ √

10C
√ √ √ √

10D
√ √ √ √

49E
√ √ √ √

Table 7.2: A summary of the model sets used in the 1000-best rescoring experiments.

A variety of gender-dependent MSHMM model sets for male speakers are trained in

the 1000-best list rescoring experiments, as summarised in Table 7.2. All five formant-to-

acoustic mapping schemes described in (Russell & Jackson 2005) are considered in this

research. (These mappings are summarised in Table 4.1 on page 81.) Under each formant-

to-acoustic mapping scheme, a set of linear/linear MSHMMs are firstly built, including both

CI and CD triphone models. Based on these linear/linear MSHMMs, corresponding non-

linear/linear MSHMMs are derived by replacing the piecewise linear trajectories in the in-

termediate layer with non-linear formant trajectories.

For the 100-best list rescoring experiments, a similar set of models (as shown in Ta-

ble 7.2) are built. However, this time models are trained based on the full TIMIT training

set. In this case, the resulting models are gender-independent MSHMMs. This is the first

time in the context of our MSHMM framework that gender-independent models are used.

The motivation for the use of gender-dependent MSHMM has been stated earlier (see Sec-

tion 3.3 on page 66), mainly to reduce the variability in speech signals. Here the motivation

for using gender-independent MSHMMs is that the results may be put in a broader context,

as many phone recognition work on TIMIT present results on the TIMIT core test set using

gender-independent models. However, the use of data from both male and females speakers

to train MSHMMs does introduce additional variability, which could potentially ‘hurt’ the
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performance.

7.3.3 Linear/linear MSHMMs

Unless otherwise stated, the MSHMM training described in this section applies to both

gender-dependent or -independent MSHMMs.

Monophone MSHMMs training

The first step in building a CI monophone MSHMM system is to create a counterpart of a

conventional HMM model set. A three-state, left-to-right (no-skip) conventional monophone

HMM is built for each symbol in the TIMIT 49-phone set (see appendix A) using HTK.

Each state in the HMM is associated with a single Gaussian PDF with a diagonal covariance

matrix. The acoustic feature is 13MFCCs, without dynamic features. The model parameters

of the conventional HMMs are optimised based on the Baum-Welch algorithm implemented

in standard HTK tools, as described in Section 6.2.3.

Linear formant-to-acoustic mappings W k, where k ∈ {1, . . . , K}, are then estimated

using matched sequences of formant data (12PFSs) and acoustic data (13MFCCs) for each

of the five mapping schemes, as described in Section 4.4.1. Given a conventional HMM Mφ,

which represents a phone φ in phone class k, the corresponding MSHMMMφ is created and

initialised in the following steps:

1. The mid-point vector cj for state j ofMφ in the formant-based articulatory domain is

defined as cj = W †
kµj , where µj is the mean vector for state j of the HMM Mφ and

W †
k is the pseudo-inverse of the formant-to-acoustic mappingW k for phone class k.

2. The slope vectormj for the jth state ofMφ is set to zero.

3. The state duration PDF is uniform and the maximum state duration is set to 15 frames,

i.e., τmax = 15, which is based on an analysis of the TIMIT transcription files and is

sufficient to accommodate all phone labels in the TIMIT corpus.
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4. The variance vector νj for the jth state ofMφ in the acoustic domain is set equal to

the variance vector for the jth state of Mφ.

5. The articulatory-to-acoustic mappingW k and its pseudo-inverseW †
k are appended to

the modelMφ.

The mid-point and slope vectors of the above initial monophone MSHMMs are then re-

estimated based on Equations (4.28) and (4.29) using the Viterbi-type training algorithm, as

described in Section 4.4.2 on page 76. In the acoustic domain, the differences between the

transformed trajectory values and the real acoustic feature vectors are used to estimate the

covariance matrices.

Triphone MSHMMs training

Given the 49 monophone MSHMMs obtained above, a set of triphone MSHMMs are

created based on a simple ‘backoff’ scheme, which is shown in Figure 7.3. The key variable

in this ‘backoff’ scheme is the nmin parameter, which is a pre-determined integer indicating

the minimum number of occurrence of a triphone in the training text (converted to triphone

format) required to create a distict CD model. For example, if a triphone “a-b+c” appears at

least nmin times in the training data, it will be created in the triphone model set. Otherwise,

the corresponding left-context biphone “a-b” is considered. Similarly, if the number of in-

stances of the biphone “a-b” in the training set nbi is at least nmin, then “a-b” will be used in

the triphone model set. Otherwise, the corresponding monophone “b” is used instead.

Clearly, there is a tradeoff when choosing the value of nmin. On one hand, small values

of nmin result in a large number of triphone models and more accurate modelling of contex-

tual effects. On the other hand, the increased number of model parameters due to a small

value of nmin can always lead to data sparsity problems when estimating model parameters.

Moreover, the consequent computation for a large number of models is more expensive. A

study on the effects of different values of nmin for phone classification performance is pre-

sented in (Russell & Jackson 2005), which empirically demonstrates that nmin = 50 provides

necessary accuracy and efficiency. In the research presented in this thesis, nmin is also set
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Figure 7.3: The ‘backoff’ scheme for triphone MSHMMs construction.

to 50, giving a set of 926 CD MSHMMs for the gender-dependent male system, and 1230

CD MSHMMs for the gender-independent system. The triphone MSHMMs are constructed

by simply cloning monophones and their model parameters are then re-estimated using the

same algorithm as in the case of monophone MSHMM training.

7.3.4 Non-linear/linear MSHMMs

Once a set of linear/linear MSHMMs has been built (either CI or CD), the speech param-

eter generation algorithm (see Section 5.2) can be applied to generate smoothed non-linear

trajectories which then replace the piecewise linear trajectories in the intermediate layer of

linear/linear MSHMMs. As has been justified in Section 5.2, among the three alternative

SPG algorithms, the first algorithm is the key one that actually does the non-linearisation

work and the other two algorithms are extensions of the first SPG algorithm. Since the ob-
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jective of this research is to smooth and non-linearize the piecewise linear trajectories in

MSHMMs, the first speech parameter generation algorithm is most relevant and therefore is

chosen for this research.

Complexity of the SPG algorithms

ForN -best list rescoring, in principle, the three SPG algorithms are all valid, though each

having different computational complexity. For the first SPG algorithm in which the state

sequence is given, O(T 3D3) operations are need to solve Equation 5.15 (on page 89), where

T and D denote the length of the speech observation sequence and the dimensionality of the

static observation vector, respectively. Tokuda et al. (2000) showed that this complexity can

be reduced to O(T 3D) when a diagonal covariance is assumed, and it can be reduced further

to O(TDL2), where L denote the delta window size, by using the Cholesky decomposition

or the QR decomposition.

In the second SPG algorithm, the state sequence is unknown. A recursion similar to

the RLS algorithm was described in (Tokuda, Kobayashi & Imai 1995) to search for the

optimal state sequence, which has time complexity of O(T 2D) if diagonal covariances are

assumed. The third SPG algorithm is derived based on the EM algorithm, for which the time

complexity is known as O(N2T ) in the general case, where N is the number of states in the

HMM. Of course, the complexity of the first algorithm should be taken into consideration

when analyzing the overall complexity for both the second and third SPG algorithm because

the first algorithm is integrated into the other two algorithms.

Complexity is certainly an important factor when choosing an appropriate algorithm, and

the first SPG algorithm obviously has advantages in this respect compared with the other two.

However, the main reason that the first SPG algorithm is chosen for this research is that it

focuses right on the non-linearisation of the piecewise constant trajectories, which suits the

context of this research very well. The other two algorithms are less attractive because they

involve heavy computation in, for example, searching for the optimal state space, which is

not the focus of this work and could be done by some other means.
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Validation of the SPG algorithm implementation

The first SPG algorithm is used in this research, which is implemented using Matlab

(see Appendix D). Before the actual rescoring experiments start, it is necessary to validate

this implementation to confirm that it fulfills the requirements of this research. The most

important requirement is, obviously, that this algorithm can generate an appropriate non-

linear trajectory. An objective evidence or measure would be most credible, though it is

difficult to define the ‘appropriateness’ of a non-linear trajectory.

The method used in the validation experiments presented here is to predict the shape of

the generated trajectory under certain conditions/assumptions based on the knowledge about

this algorithm, and then compare the predicted trajectory with the one which is actually

generated using the software implementation. If the actually generated trajectory coincide

with what is expected, then we have confidence that the particular software implementation

meets our requirements.

In the SPG algorithm, two type of constraints are used to ensure smoothed trajectories

are generated. These can be seen from the following equation, which is used to find the

solution for the non-linear trajectory C

W>Σ−1
x WC = W>Σ−1

x M
>, (7.7)

where the definition of the symbols can be found in Section 5.2 on page 87. The first and

also the most important constraint is given by W , which is defined as O = WC, i.e.,

the matrix which transform static feature space into a larger space which includes both static

and dynamic features. Without this constraint, the generated trajectoryC will be a piecewise

constant mean vector sequence M of the HMMs, as can be seen from Equation (7.7). The

second constraint is integrated into the term Σx in Equation (7.7), i.e., the variances of the

model. The variance determines how far the generated trajectory lies from the mean. When

the variance is very small, for instance, it is expected that the generated trajectory will be

very close to the piecewise mean vectors.



CHAPTER 7. RECOGNITION USING NON-LINEAR TRAJECTORIES 152

0 50 100 150 200 250
5

10

15

20

25

30

35

Frame No.

F
2

F2Traj
F2Mean

Figure 7.4: Formant trajectories for F2 generated from HMMs using the SPG algorithm
implemented in this research. ‘F2Mean’ and ‘F2Traj’ are trajectories which are generated
without and with the constraints between static and dynamic features, respectively.

Based on the above discussions, we can test the software by changing some parameters in

W or Σx such that we can predict what the generated trajectory is going to look like. Then

we can validate the algorithm by comparing the true generated trajectory with the predicted

one. In doing so, firstly, the elements in the transform matrixW which correspond to the ∆

and ∆2 parameters are forced to be zero. This in effect disables the constraints of ∆ and ∆2

parameters, and therefore the generated trajectory should become a sequence of piecewise

constant mean vectors. On the other hand, in the case that the ∆ and ∆2 constraints are

applied, the generated trajectory is expected to be non-linear and smooth.

Figure 7.4 shows the generated formant trajectories for F2 from HMMs by using the

SPG algorithm. The thin line, denoted by ‘F2Mean’ in the plot, is generated by setting the

parameters in W which correspond to the delta and delta-delta coefficients to be zero. As
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predicted, this line (i.e., ‘F2Mean’) coincides exactly with the piecewise constant mean vec-

tor sequence. When the constraintO = WC is imposed, the piecewise constant trajectories

are smoothed to give a non-linear continuous trajectory, as shown by the thick line (denoted

by ‘F2Traj’) in Figure 7.4. In addition, Figure 7.4 shows the phenomenon of ‘target under-

shoot’ which is often seen in formant synthesis, where a particular target (or formant) is not

achieved due to the short duration of that target.

The next set of validation experiments concentrate on predicting the F2 trajectory based

on a single model ‘aa’ to gain a closer look at the behavior of the SPG algorithm. The

following validation test conditions are considered:

1. ∆ = 0 and ∆2 = 0: under this condition, i.e., no constraint between static and dynamic

features, the generated trajectory is expected to be the model means.

2. ∆ 6= 0 and ∆2 = 0: under this condition, the constraint of the ∆ parameters is applied

but there is no constraint on the ∆ parameters (because ∆2 = 0). It is expected that

the generated trajectory is smooth but not as smooth as that generated with both ∆ and

∆2 constraints.

3. ∆ 6= 0 and ∆2 = 0 and all variances are set at a small value 0.001: due to the small

variances, the generated trajectory is expected to be very close to the means of the

model.

4. ∆ 6= 0 and ∆2 6= 0: both the ∆ and ∆2 constraints are applied so that the generated

trajectory is expected to be the most smoothed among others.

5. ∆ 6= 0 and ∆2 6= 0 and all variances are set at a small value 0.001: due to the

small variances, the generated trajectory is expected to move towards the means of the

model.

The corresponding trajectories generated using the SPG algorithm under these conditions

are plotted in pair and shown in Figure 7.5. The trajectories F2A to F2E correspond to

validation conditions 1 to 5. F2A is presented in every subplot for comparison, since it is
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Figure 7.5: Formant trajectories for F2 generated from the HMM of the phone ‘aa’ by using
the SPG algorithm implemented in this research. In the legend, F2A corresponds to the
trajectory generated under the condition ∆ = 0 and ∆2 = 0. Similarly, F2B: ∆ 6= 0 and
∆2 = 0; F2C: ∆ 6= 0 and ∆2 = 0 and all variances at 0.001; F2D: ∆ 6= 0 and ∆2 6= 0; F2E:
∆ 6= 0 and ∆2 6= 0 and all variances at 0.001.

exactly the same with the model means (the RMSE between F2A and model means is 0,

as shown in Table 7.3). As can be seen in Figure 7.5, the generated trajectories coincide

with the predictions. In particular, subplot (b) and (d) look very similar, though in (b) F2C

is generated without the ∆2 constraint, and F2E in (d) is constrained by both the ∆ and ∆2

parameters. The small variances artificially used in both (b) and (d) ‘squeeze’ the trajectories

F2C and F2E towards the model mean, resulting in small RMSE scores between these two

generated trajectories and the models mean, as can be seen in Table 7.3. Also because of this

reason, the effect of the ∆2 constraint is less obvious in subplot (b) and (d). The trajectory

F2D in subplot (c) is generated with both ∆ and ∆2 constraints, and therefore is smoother

than F2B in (a) which is constrained only by ∆ parameters. (Note F2B and F2D are both
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F2A F2B F2C F2D F2E
RMSE 0 0.017 1.0e-7 0.021 1.66e-7

Table 7.3: RMSE between the model mean and different trajectories (F2A-F2E) generated
from the model ‘aa’ using the SPG algorithm implemented in this work under different vali-
dation conditions.

generated using the original variance of the model.) Reflected in Table 7.3, F2D has a slightly

higher RMSE than F2B, which is 0.021 and 0.017, respectively.

The validation experiment results confirm that the software implementation of the SPG

algorithm meets the requirements and can be used for the subsequent rescoring experiments.

In order to be able to use the SPG algorithm, a set of conventional HMMs is built on the

12 PFS data, augmented with ∆ and ∆2 parameters, using HTK. The parameters of these

PFS-based conventional HMMs are used to compute the non-linear trajectories. Given a

state sequence (as described in the next section) and this 12 PFS-based model set, the SPG

algorithm is applied to generate smooth formant trajectories. These non-linear trajectories

will be used to rescore the N -best list against the piecewise linear trajectories as used in

linear/linear MSHMMs.

7.4 Rescoring experiments

Having described theN -best list (Section 7.2) and the MSHMM model sets (Section 7.3),

this section describes the rescoring experiments using the N -best list and MSHMMs. The

description in this section is based on gender-dependent MSHMMs and the 1000-best list,

which also applies to gender-independent MSHMMs rescoring using the 100-best list. The

rescoring experiments can be divided into two categories: CI MSHMMs and CD MSHMMs

rescoring experiments, as described in Sections 7.4.1 and 7.4.2, respectively. In both cat-

egories, rescoring the N -best list using linear/linear MSHMMs is carried out first as the

baseline, followed by rescoring with non-linear/linear MSHMMs. In either category, it is

expected that the use of non-linear formant trajectories will result in improved recognition

performance compared with a piecewise linear trajectory model.



CHAPTER 7. RECOGNITION USING NON-LINEAR TRAJECTORIES 156

7.4.1 Monophone rescoring experiments

In monophone rescoring experiments, a set of 49 monophone MSHMMs corresponding

to the TIMIT 49-phone set, as described in Section 7.3.2 and Section 7.3.3, is used to rescore

the 1000-best list for each of the 128 test utterances.

Rescoring experiments with linear/linear MSHMMs

From Section 7.2.3 we know that, if a state sequence s corresponding to an N -best

list hypothesis W̃m is known, then Equation (7.6) can be used to calculate the probability

p(O|W̃m) of the unknown test utterance O given the hypothesis (and MSHMMs). For lin-

ear/linear MSHMMs rescoring, the state sequence s can be obtained by using the following

two different methods.

Constrained state sequences This type of state sequence is generated based on conven-

tional HMMs. It has been explained in Section 7.2.2 that the 1000-best list is generated

using a set of conventional triphone HMMs. For a given test utteranceO and its correspond-

ing 1000-best list, each 1000-best list hypothesis can be treated as the ‘transcription’ of the

test utterance O (though the transcription may contain errors). Then the optimal state se-

quence between the conventional HMMs and the test utteranceO is computed using ‘forced

alignment’ implemented in the HTK decoder, taking account of the phone boundaries spec-

ified in the 1000-best list. The resulting state sequence is referred to as a ‘constrained’ state

sequence. In the rescoring experiments, the monophone MSHMMs are forced to use this

constrained state sequence to calculate probabilities.

Unconstrained state sequences The second type of state sequence used in the monophone

MSHMMs rescoring experiments is the ‘unconstrained’ state sequence. The unconstrained

state sequence is generated based on monophone MSHMMs. The Viterbi alignment between

the monophone MSHMMs and the test utterance is performed using the ‘SEGVit’ toolkit.

The term ‘unconstrained’ is used to indicate that the phone boundary timings of each 1000-

best list hypothesis are ignored so that MSHMMs are free to choose duration length.
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Both constrained and unconstrained state sequences are used to rescore the N -best list in

linear/linear monophone MSHMMs rescoring experiments. However, only the constrained

state sequence is used in the non-linear/linear MSHMMs rescoring experiments, as the non-

linear trajectories are generated based on the constrained state sequences.

Rescoring experiments with non-linear/linear monophone MSHMMs

Rescoring the N -best list using non-linear/linear monophone MSHMMs is based on the

same constrained state sequence as used in the linear/linear MSHMMs rescoring experiments

and probabilities are calculated in the same way using Equation (7.6). Non-linear trajecto-

ries are first computed for each hypothesis in the 1000-best list based on the SPG algo-

rithm, taking account of the constrained state sequence and model parameters of PFS-based

conventional HMMs. When calculating probabilities using Equation (7.6) for linear/linear

MSHMMs, the value of the piecewise linear formant trajectories at time t is determined by

the corresponding MSHMM state occupied at time t. However, the value of the non-linear

formant trajectories at time t is just a data point of the non-linear trajectories at that time.

7.4.2 Triphone rescoring experiments

The 926 triphone gener-dependent MSHMMs for male speakers (Section 7.3.3) are used

to rescore the 1000-best list (Similarly, the 1230 CD gender-independent MSHMMs are used

to rescore the 100-best list.). The rescoring process for triphone MSHMMs is similar to the

monophone rescoring. In the triphone experiments, constrained state sequences are used.

Incompatibility between model sets

Before the triphone MSHMMs rescoring experiments start, the incompatibility problem

between the model sets of the triphone MSHMMs and the conventional triphone HMMs

must be solved. For monophone rescoring experiments, there is no such issue because both

MSHMMs and standard HMMs use the same 49 symbols, so that both constrained and un-

constrained state sequence can be used. However, the training of triphone MSHMMs is
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based on a ‘backoff’ scheme (see Section 7.3.3), while in HTK, decision-tree-based state-

tying is employed to train a set of standard triphone HMMs. Therefore, the sizes of the two

CD model sets (MSHMMs and HMMs) are different, with the triphone MSHMMs model set

having 926 models and the standard triphone HMMs model set having 19802 models (before

tying).

Due to the incompatibility problem between the model sets, the constrained state se-

quences generated using forced alignment based on the standard triphone HMMs model set

for each 1000-best list hypothesis contain many models that do not exist in the MSHMMs

triphone model set. A ‘backoff’-like method is used to map the unseen standard triphone

HMMs to the 926 triphone MSHMMs. For each standard triphone HMM ‘a-b+c’, a search is

made in the 926 triphone MSHMMs. If ‘a-b+c’ exists, the search stops and the next standard

triphone HMM is selected. Otherwise, the left-biphone ‘a-b’ is searched in the 926 triphone

MSHMMs. If ‘a-b’ exists, then the corresponding triphone MSHMMs for the standard tri-

phone HMM ‘a-b+c’ is defined as ‘a-b’. If neither ‘a-b+c’ nor ‘a-b’ exist in the MSHMMs

model set, then the corresponding triphone MSHMMs for the standard triphone HMM ‘a-

b+c’ is chosen as the monophone ‘b’. The frequency counts for the backoff of ‘a-b+c’ →

‘a-b+c’, ‘a-b+c’→ ‘a-b’ and ‘a-b+c’→ ‘b’ are 364, 10714 and 8497, respectively.

Rescoring using linear/linear MSHMMs

The constrained state sequence for each 1000-best list hypothesis is generated in the same

way as in the monophone rescoring experiment, based on a set of standard triphone HMMs.

The state sequences are converted into such a format that any unseen standard HMM is

replaced with its counterpart in the triphone MSHMMs model set, based on the model set

mapping described in the previous section. The resulting state sequence is referred to as a

transformed state sequence. The probability calculation is based on the transformed state

sequence and the triphone linear/linear MSHMMs, which is calculated in the same way as

in the monophone rescoring experiment.
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Rescoring using non-linear/linear MSHMMs

Rescoring the 1000-best list using non-linear/linear triphone MSHMMs is based on the

same state sequences used in the linear/linear triphone MSHMMs rescoring. However, the

non-linear formant trajectories for each 1000-best list entry must first be generated. This

involves training another set of standard triphone HMMs on formant data (12 PFS control

parameters plus delta and delta-delta parameters). The PFS-based triphone HMMs model

set is compatible with the MFCC-based triphone HMMs model set in that the same set of

triphone symbols are used. For each 1000-best list hypothesis and it’s corresponding state

sequence, the speech parameter generation algorithm is applied using parameters of PFS-

based triphone models to generate a non-linear formant trajectory.

For each 1000-best list hypothesis, the probability is calculated based on the transformed

state sequence and the non-linear formant trajectories, as is the case of the monophone non-

linear/linear MSHMMs rescoring in Section 7.4.1.

7.5 Rescoring experiment Results

This section presents experiment results for rescoring the N -best list. Monophone MSH-

MMs rescoring results are provided in Section 7.5.1, and triphone MSHMMs rescoring re-

sults are provided in Section 7.5.2. Section 7.5.3 gives a detailed analysis based on these

experiment results.

7.5.1 Monophone rescoring results

Linear/linear MSHMMs rescoring results

Tables 7.4 and 7.5 show the rescoring results for linear/linear monophone MSHMMs.

Note that constrained state sequences are used in experiments reported in Table 7.4, while

unconstrained state sequences are used in experiments presented in Table 7.5. The bottom

rows, denoted by Phone acc. (N+1), of both tables show the rescoring results after the correct

transcriptions are appended to the 1000-best lists.
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Mapping 1A 6B 10C 10D 49E
Phone accuracy 65.7 65.0 66.0 66.3 65.4
Phone acc.(N+1) 68.4 68.5 68.0 70.1 67.3

Table 7.4: Phone accuracy of rescoring using linear/linear monophone MSHMMs based on
constrained state sequences on different mapping schemes. The five formant-to-acoustic
mapping schemes are summarised in Table 4.1 on page 81.

Mapping 1A 6B 10C 10D 49E
Phone accuracy 65.3 65.8 66.1 66.4 66.4
Phone acc.(N+1) 67.8 68.4 69.7 68.6 70.4

Table 7.5: Phone accuracy of rescoring using linear/linear monophone MSHMMs based on
unconstrained state sequences on different mapping schemes.

Table 7.4 shows that the MSHMMs based on mapping ‘10D’ give the highest phone

accuracy, either without or with the reference transcriptions. However, Table 7.5 shows

that the highest phone accuracy is achieved using ‘49E’ scheme when unconstrained state

sequences are used. In the case when reference transcriptions are not included, the uncon-

strained rescoring results (Table 7.5) are generally better than the corresponding constrained

results. Furthermore, the rescoring results based on unconstrained state sequences in Ta-

ble 7.5 also show the trend that phone accuracy increases as the number of articulatory-to-

acoustic mappings increases, as observed in (Russell et al. 2007).

Adding the correct transcript to the N -best list yields higher phone accuracies, as can

be seen in Tables 7.4 and 7.5. When reference transcripts are included, the lowest phone

accuracy (67.3%) occurs when constrained state sequences are used under mapping scheme

49E, as shown in Table 7.4, while the highest phone accuracy (70.4%) is also achieved using

mapping 49E, though based on unconstrained state sequences (see Table 7.5). Even so, the

lowest phone accuracy (67.3%) when reference transcripts are included is still higher than

the highest phone accuracy (66.4%, unconstrained state sequence, 49E) when no reference

transcripts are included.

The inclusion of correct transcripts in the N -best list is not unusual (Picone et al. 1999,

Deng, Yu & Acero 2005). It provides an efficient means to find out how well the new

acoustic models can perform. In an extreme case, the ideal models would give a 100%
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phone accuracy in rescoring an N -best list which includes the reference transcript. In our

rescoring experiments, it can be seen that when the correct transcrits are included in the N -

best list, the monophone linear/linear MSHMMs would at best give a phone error rate close

to 30%.

Non-linear/linear MSHMMs rescoring results

Mapping 1A 6B 10C 10D 49E
MSHMM(old) 66.1 66.4 66.4 66.4 66.7
Mapping reest. 66.2 66.7 66.7 66.9 67.0

Table 7.6: Phone accuracy of rescoring with non-linear/linear monophone MSHMMs us-
ing constrained state sequences on different mapping schemes. ‘Mapping reest.’ means
MSHMM mappings are re-estimated.

Table 7.6 shows the results of rescoring the N -best list using non-linear/linear MSH-

MMs. MSHMM(old) means that the rescoring is based on the original MSHMM models,

while ‘mapping reest.’ indicates that an updated MSHMM model set, whose articulatory-to-

acoustic mapping parameters are re-estimated based on the non-linear formant trajectories,

is used for rescoring (see below).

Mapping re-estimation in non-linear/linear MSHMMs The original mappings in lin-

ear/linear MSHMMs are trained based on the matched sequences of 12 PFS control param-

eters and 13 MFCCs on the TIMIT training set. These mappings remain intact in the rescor-

ing experiments using linear/linear MSHMMs. However, in the non-linear/linear MSH-

MMs rescoring experiment, the role of the formant-to-acoustic mapping is to transform a

non-linear formant trajectory, instead of a piecewise linear trajectory as in an linear/linear

MSHMM, into the acoustic domain. Therefore, the original formant-to-acoustic mappings

are not necessarily appropriate in the non-linear/linear MSHMM rescoring experiments. It

might be beneficial if the formant-to-acoustic mapping is re-estimated based on matched se-

quences of non-linear formant trajectories in the 12PFS space and the 13-dimensional MFCC

features. In doing so, for each utterance in the TIMIT training set, a non-linear trajectory is

generated based on the speech parameter generation algorithm. Then the formant-to-acoustic
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mapping is re-estimated based on Equation (4.17), using matched sequences of non-linear

12 PFS-based trajectories and 13 MFCCs. As is shown in Table 7.6, the phone accuracies

increase for all mapping schemes after the formant-to-acoustic mappings are re-estimated.

This suggests that the re-estimated mapping provides a better fit between the acoustic fea-

tures and the non-linear formant trajectories.

Because the non-linear/linear MSHMMs rescoring is based on the same constrained state

sequence as in Table 7.4, the comparison should be made between Table 7.4 and Table 7.6.

It can be seen that non-linear/linear MSHMMs outperform linear/linear MSHMMs for every

mapping scheme, with at most a 4.9% reduction in phone error rate relative to linear/linear

MSHMMs under mapping ‘6B’. The non-linear/linear MSHMM also outperforms the lin-

ear/linear MSHMM whose rescoring is based on unconstrained state sequences (Table 7.5).

Table 7.6 also shows the trend that phone recognition performance increases as the number

of mappings increases, with the highest phone accuracy 67.0% reached under the mapping

scheme ‘49E’ (i.e., the mapping scheme having 49 mappings).

7.5.2 Triphone MSHMMs rescoring results

Linear/linear MSHMMs rescoring results

Table 7.7 shows the triphone rescoring results using linear/linear MSHMMs. The map-

ping scheme ‘1A’ gives the best phone accuracy 67.18% while mapping ‘6B’ gives the lowest

result 65.92%. The rescoring results for mapping schemes ‘10D’ and ‘49E’ are the same.

Mapping 1A 6B 10C 10D 49E
Phone accuracy 67.18 65.92 66.45 66.1 66.1

Table 7.7: Phone accuracy of rescoring with linear/linear triphone MSHMMs using con-
strained state sequences on different mapping schemes.

Non-Linear/linear MSHMMs rescoring results

Table 7.8 summarises the rescoring results using non-linear/linear triphone MSHMMs.

The triphone non-linear/linear MSHMMs rescoring results follow a similar trend as the
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monophone non-linear/linear MSHMMs rescoring results, where the models whose formant-

to-acoustic mappings are re-estimated give higher phone accuracies, except for the ‘49E’

mapping scheme.

Mapping 1A 6B 10C 10D 49E
MSHMM(old) 66.45 66.49 66.56 66.45 66.62
Mapping reest. 66.54 66.52 66.60 66.60 66.47

Table 7.8: Phone accuracy of rescoring with non-linear/linear triphone MSHMMs using con-
strained state sequences on different mapping schemes. ‘Mapping reest.’ means MSHMM
mappings are re-estimated.

7.5.3 Rescoring results analysis

In order to better interpret the rescoring results, the monophone MSHMMs and triphone

MSHMMs rescoring results are presented in Figure 7.6(a) and Figure 7.6(b), respectively,

together with the baseline result 65.7%, which is obtained by using standard HMMs. Specific

comments and detailed analysis on these results are presented in the following paragraphs.

Statistical significance test

First of all, a paired t-test (see Section 6.3.3 on page 122) is again used to aid analysis

of experimental results. As described before, the test set used in the N -best list rescoring

experiments comprises 128 utterances from 16 male subjects in the TIMIT core test set, each

subject speaking 8 sentences (excluding ‘sa1‘ and ‘sa2‘ sentences). These 128 test utterances

are divided into 16 groups based on the identity of the speaker; that is, each group contains

8 utterances spoken by one of the 16 speakers.

Phone recognition accuracies are re-computed on a speaker-by-speaker basis. These new,

speaker-dependent recognition results are then compiled and compared under a variety of

scenarios (e.g., comparison of rescoring results between MSHMMs with piecewise linear

trajectories and non-linear trajectories). The p-values for these paired t-test are summarised

in Table 7.9. This table will be referred to several times in the following discussion.
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Figure 7.6: (a) Monophone MSHMMs rescoring experiment results. (b) Triphone MSHMMs
rescoring experiment results.
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Mapping 1A 6B 10C 10D 49E
Monophone Cons. vs. uncons. 0.27 0.04 0.33 0.45 0.02
MSHMMs Linear vs. nonlinear 0.24 0.01 0.13 0.19 0.01

Ori. vs. newMap 0.37 0.17 0.17 0.23 0.27
Triphone Linear vs. nonlinear 0.06 0.34 0.36 0.07 0.16
MSHMMs Ori. vs. newMap 0.21 0.44 0.36 0.13 0.15
Mono vs. Tri Mono-linear vs. tri-linear 0.02 0.02 0.36 0.36 0.02

Mono-nonlinear vs. tri-linear 0.11 0.32 0.36 0.21 0.13
Mono-nonlinear vs. tri-nonlinear 0.34 0.43 0.43 0.41 0.25

Table 7.9: Paired t-tests for rescoring results. This table shows the p-values for a variety of
paired t-tests. Underlined p-values indicate that there are significant differences between test
results with a conventional significance level p < 0.05. Abbreviations:
Cons.: constrained state sequence used in rescoring
Uncons.: unconstrained state sequence used in rescoring
Linear: piecewise linear formant trajectories used in MSHMMs
Nonlinear: nonlinear formant trajectories used in MSHMMs
Ori.: original formant-to-acoustic mappings used in rescoring
NewMap: formant-to-acoustic mappings re-estimated
Mono-linear & mono-nonlinear: monophone MSHMMs using piecewise linear trajectories
or nonlinear trajectories
Tri-linear & tri-nonlinear: triphone MSHMMs using piecewise linear trajectories or nonlin-
ear trajectories

Non-linear trajectory model v.s. linear trajectory model

Table 7.10 shows the relative improvement in phone accuracy that results from using

non-linear formant trajectories instead of linear formant trajectories in the intermediate layer

of both monophone MSHMMs and triphone MSHMMs, taking account of different formant-

to-acoustic mapping schemes. Both monophone and triphone MSHMMs benefit from the use

of non-linear formant trajectories in most cases. For example, the monophone rescoring re-

sults show that 4.9% and 4.6% reduction in phone error rates for the mapping schemes ‘6B’

and ‘49E’, repectively, are achieved by using non-linear formant trajecotries. Paired t-tests

show that these two improvements are significant, as can be seen in Table 7.9, indicated by

underlined p-values in the row of ‘monophone MSHMMs–linear v.s. nonlinear’. However,

an exception occurs in the triphone rescoring experiments when the mapping scheme ‘1A’ is

used, with the phone accuracy for linear/linear MSHMMs higher than the non-linear/linear

MSHMMs (as can be seen in Figure 7.6(b)), though a paired t-test discovers that this differ-
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ence is not significant.

Mapping 1A 6B 10C 10D 49E
Monophone 0.8% 2.6% 1.1% 0.9% 2.4%
Triphone -1.0% 0.9% 0.2% 0.8% 0.6%

Table 7.10: Relative improvement in phone accuracy by using non-linear formant trajecto-
ries instead of linear formant trajectories in the intermediate layer of both monophone and
triphone MSHMMs with regard to different articulatory-to-acoustic mapping schemes.

The comparison between rescoring results using linear and non-linear formant trajecto-

ries confirms our expectation that the use of the non-linear formant trajectories (generated

by the speech parameter generation algorithm) in an MSHMM can result in improved recog-

nition performance, relative to a piecewise linear trajectory model as used in linear/linear

MSHMMs. Moreover, in some cases, e.g., in mappings ‘6B’ and ’49E’ for CI MSHMMs,

this improvement is statistically significant.

As can be seen from Table 7.10, the performance gain (resulted from the use of non-linear

formant trajectories in the intermediate layer of the MSHMM) for the monophone MSHMM

system is greater than that for the triphone MSHMM system. This is also supported by

the results of the statistical significance test (see the two rows in Table 7.9, ‘monophone

MSHMMs–linear vs. nonlinear’ and ‘triphone MSHMMs–linear vs. nonlinear’), which

show that except for monophone MSHMMs in ‘6B’ and ’49E’, the rest of MSHMMs, ei-

ther monophone or triphone, do not demonstrate this statistical significance in performance

improvement.

In Section 6.3.3, it was argued that the non-linear trajectory generated by the speech pa-

rameter generation algorithm might be capable of modelling coarticulation effects, evidenced

by the results of the intelligibility and naturalness tests. The speech spectrogram (Figure 6.6

on page 125) shows smooth formant trajectories, which are able to match the actual formant

trajectories in real speech quite well (see Figure 6.7 on page 127). In those speech synthesis

experiments, only CI models were used. In the speech recognition experiments presented

here, both CI and CD models are used. CD models (e.g., triphones) are designed to account

for contextual effects, such as coarticulation, by taking into consideration the immediate
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preceding and following neighbours of a given phone. In practice, improved recognition

performance can almost certainly be achieved when using triphone models instead of mono-

phone models.

In the rescoring experiments reported here, however, contextual effects might have been

characterised by: 1) nonlinear formant trajectories, or 2) CD MSHMMs. The different level

of performance gain for monophone and triphone systems due to the use of non-linear trajec-

tories seems to suggest that the use of the non-linear formant trajectories is a more effective

means in modelling contextual effects than CD models for MSHMMs. To find out whether

this is the case, rescoring results between the monophone and triphone systems are compared

and analysed, as described below.

CI model v.s. CD model

It was expected that the use of triphone MSHMMs in the rescoring experiment would

result in further recognition improvement compared to monophone MSHMMs. To find out

to what extent the use of triphone MSHMMs improve the rescoring results, monophone and

triphone rescoring results are compared. The comparison is divided into three categories: lin-

ear/linear MSHMMs rescoring, nonlinear monophone MSHMMs vs. linear triphone MSH-

MMs and non-linear/linear MSHMMs rescoring, as described below.

Linear/linear MSHMMs rescoring For linear/linear MSHMMs rescoring, in which piece-

wise linear trajectories are used in both monophone and triphone MSHMMs, it can be seen

from Figure 7.7 that triphone MSHMMs outperform monophone MSHMMs for all mapping

schemes but the ‘10D’ scheme. When the mapping scheme ‘1A’ is used, for instance, the tri-

phone phone accuracy is 1.5% higher than the monophone phone accuracy. Rescoring based

on other mapping schemes, such as ‘6B’,‘10C’ and ‘49E’, also benefit from the use of CD

triphone models, though the improvement for these mapping schemes are all less than 1.5%.

Paired t-test results (Table 7.9, row ‘mono vs. tri–mono-linear vs. tri-linear’) show that

the use CD models instead of CI models results in statistically significant improvements for
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Figure 7.7: Comparison between monophone and triphone MSHMMs rescoring results using
linear/linear MSHMMs.

mappings 1A, 6B and 49E, but not for 10C and 10D. There is no surprise that the triphone

system outperforms the monophone system because triphone MSHMMs contain contextual

information that CI monophone MSHMMs do not. However, what happens if the piecewise

linear trajectories in the monophone MSHMMs are replaced by non-linear trajectories, while

triphone MSHMMs still use piecewise linear trajectories? Do CD linear/linear MSHMMs

still outperform ‘upgraded’ nonlinear/linear monophone MSHMMs? This is discussed in the

next set of comparison.

Nonlinear trajectory monophone MSHMMs vs. linear trajectory triphone MSHMMs

We now compare rescoring results between nonlinear/linear CI monophone MSHMMs (map-

ping re-estimated) and linear/linear CD triphone MSHMMs. The only difference between

this comparison and the comparison described in the previous paragraph is that the mono-

phone models now contain some contextual information due to the use of smoothed, nonlin-

ear formant trajectories in the intermediate layer.

As can be seen in Table 7.11, nonlinear trajectory monophone MSHMMs outperform

linear trajectory triphone MSHMMs for all mapping schemes but 1A, though paired t-tests
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Mapping 1A 6B 10C 10D 49E
Monophone 66.2% 66.7% 66.7% 66.9% 67%
Triphone 67.18% 65.92% 66.45% 66.1% 66.1%

Table 7.11: Comparison of rescoring results between nonlinear monophone MSHMMs
(mapping re-estimated) and linear triphone MSHMMs.

(Table 7.9, row ‘mono vs. tri–mono-nonlinear vs. tri-linear’) show that there are no signifi-

cant differences between monophone and triphone results for all mapping schemes. In other

words, monophone MSHMMs using nonlinear formant trajectories can produce similar level

of performance as that of triphone MSHMMs using piecewise linear trajectories.

Based on the analysis of rescoring results between CI MSHMMs and CD MSHMMs so

far, we learn that

• when piecewise linear trajectories are used in both monophone and triphone MSH-

MMs, CD triphone MSHMMs perform consistently better than CI monophone MSH-

MMs.

• when nonlinear trajectories are used in monophone MSHMMs and piecewise linear

trajectories are retained in triphone MSHMMs, there are no significant differences

between CI and CD MSHMMs rescoring results.

The combined analysis implies that the smoothing of non-linear formant trajectories in the

intermediate layer of an MSHMM is capturing the contextual effects that CD MSHMMs

are designed to accommodate. This is due to the use of the speech parameter generation

algorithm. Obviously, the main advantage of a monophone system over a triphone system is

fewer models and parameters, hence faster training and decoding. The main disadvantage of

conventional CI models is that they are less accurate than CD models because no contextual

information is taken into account. However, the use of non-linear formant trajectories in

CI MSHMMs provides a means of contextual modelling, while retaining the advantages of

parameterisation and computation of CI models. A practical disadvantage of the non-linear

trajectory approach is that the generation of the nonlinear trajectories is computationally

expensive.
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Non-linear/linear MSHMMs rescoring The last set of comparison between monophone

and triphone MSHMMs rescoring results focuses on the use of the nonlinear formant trajec-

tories, as shown in Figure 7.8. In these experiments, non-linear formant trajectories, rather

than piecewise linear trajectories, are used in both monophone and triphone MSHMMs.

Figure 7.8(a) compares rescoring results using non-linear formant trajectories in both

monophone and triphone models without re-estimating the formant-to-acoustic mapping. It

can be seen that the triphone rescoring results outperform monophone rescoring results for

the four mapping schemes ‘1A, 6B, 10C, 10D’, though the improvement is modest. For

the mapping scheme ‘49E’, monophone MSHMMs performs slightly better than triphone

HMMs. However, the comparison between rescoring results using non-linear/linear MSH-

MMs for monophone and triphone models with re-estimated articulatory-to-acoustic map-

pings is a different story, as shown in Figure 7.8(b). It can be seen that, except for the

mapping scheme ‘1A’, monophone MSHMMs perform better than triphone MSHMMs after

the formant-to-acoustic mappings are re-estimated.

Paired t-tests show that none of these differences between monophone and triphone

MSHMMs rescoring results based on nonlinear formant trajectories is statistical significance,

with or without formant-to-acoustic mappings re-estimated (Table 7.9, row ‘mono vs. tri–

mono-nonlinear vs. tri-nonlinear’ gives the paired t-test results when formant-to-acoustic

mappings are re-estimated).

In summary, the comparison between monophone and triphone MSHMMs rescoring re-

sults shows that, in the case that non-linear formant trajectories are used in both monophone

and triphone MSHMMs, the use of CD models does not improve recognition performance

over CI MSHMMs. Based on the above analysis, one possible explanation is that nonlinear

smooth formant trajectories accommodate contextual effects so that the use of CD triphone

models has less effects.
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Figure 7.8: Comparison between monophone and triphone MSHMMs rescoring results using
non-linear formant trajectories in the intermediate layer. (a) The articulatory-to-acoustic
mappings are not updated. (b) The articulatory-to-acoustic mappings are re-estimated based
on the non-linear formant trajectories of the training utterances.
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Advantages of formant-to-acoustic mapping re-estimation

Table 7.12 shows relative improvements due to the re-estimation of the formant-to-

acoustic mapping for both monophone MSHMMs and triphone MSHMMs. When nonlinear

formant trajectories are used, both monophone and triphone MSHMMs benefit from the re-

estimation of the articulatory-to-acoustic mappings. The re-estimated mapping is computed

using matched sequences of acoustic data and nonlinear trajectory formant data. As a re-

sult, the re-estimated mapping provides a better fit between the acoustic data and nonlinear

formant trajectories. Note that the use of the re-estimated mappings in the ‘49E’ scheme of

the triphone experiment yields a slight lower phone accuracy. However, paired t-tests (see

Table 7.9, rows ‘monophone MSHMMs–ori. vs. newMap‘ and ‘triphone MSHMMs–ori.

vs. newMap’) reveal that none of these differences in recognition performance caused by

mapping re-estimation is statistical significance.

Mapping 1A 6B 10C 10D 49E
Triphones 0.1% < 0.1% < 0.1% 0.2% -0.2%
Monophones 0.2% 0.5% 0.5% 0.8% 0.4%

Table 7.12: Relative improvement in phone accuracy by using articulatory-to-acoustic map-
ping re-estimation for monophone and triphone MSHMMs rescoring experiment.

Although investigating alternative formant-to-acoustic mapping is out of the scope of

this thesis, it should be noted that linear mappings are not appropriate to model the re-

lationship between formant-based and acoustic representations of speech, which is non-

linear per se (Russell et al. 2007). Even with linear mappings, the use of articulatory-to-

acoustic mappings that are ‘pre-trained’ on matched data is unlikely to be optimal (Russell

& Jackson 2005).

Comparison between constrained and unconstrained state sequences

In CI linear/linear MSHMMs rescoring experiments, both constrained and unconstrained

state sequences are used, as described in Section 7.4.1 on page 156. The main difference

between constrained and unconstrained state sequences is that the generation of constrained

state sequences uses phone boundaries based on standard HMMs, while the generation of
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unconstrained state sequences is based on MSHMMs, ignoring information about phone

boundaries.

Mapping 1A 6B 10C 10D 49E
Constrained 65.7% 65.0% 66.0% 66.3% 65.4%
Unconstrained 65.3% 65.8% 66.1% 66.4% 66.4%

Table 7.13: Comparison of CI linear/linear MSHMMs rescoring results using constrained
and unconstrained state sequences.

The rescoring results using CI linear/linear MSHMMs based on constrained and un-

constrained state sequences are shown in Table 7.13. As can be seen, unconstrained state

sequences give higher phone accuracies than constrained state sequences for all mapping

schemes but 1A. A possible reason is that performance for mapping scheme 1A, which has a

single mapping for all phone class, is less reliable than other phone-class-dependent mapping

schemes (see the discussion below on different mapping schemes). Paired t-tests (Table 7.9,

row ‘monophone MSHMMs–cons. vs. uncons.’) show that differences between phone ac-

curacies for mapping schemes 6B and 49E are statistically significant.

In generating unconstrained state sequences, no phone boundary timings are specified

in the transcripts. That is to say, only phone labels are provided when performing Viterbi

alignment. In this case, the MSHMMs are free to choose any legitimate durations. The

improvement in rescoring results resulting from the use of unconstrained state sequences

demonstrate the advantage of the improved duration modelling in the MSHMM framework,

relative to standard HMMs.

Comparison between different mapping schemes

An important conclusion drawn from previous work on linear/linear MSHMMs is that

phone classification and recognition performance can be improved by increasing the ‘rich-

ness’ of the formant-to-acoustic mapping, and the most reliable mapping scheme which gives

the best performance is 49E (Russell & Jackson 2005, Russell et al. 2007). In the 49E map-

ping scheme, a total of 49 mappings are used, and each of the 49 phone-level models has a

separate formant-to-acoustic mapping, which is estimated based on the match sequences of
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Figure 7.9: The effect of different formant-to-acoustic mapping schemes on recognition per-
formance for non-linear/linear MSHMMs.

formant and acoustic vectors corresponding to that phone (see Table 4.1 on page 81).

For non-linear/linear MSHMMs, it is worthwhile to find out whether the above lin-

ear/linear MSHMM conclusion on different mapping schemes is still applicable. Figure 7.9

shows the effect of different formant-to-acoustic mapping schemes (A-E) on recognition

performance for non-linear/linear MSHMMs. Firstly, for both non-linear/linear CI and CD

MSHMMs, the best performance is indeed achieved when the mapping scheme 49E is used,

and the mapping scheme 1A gives worst performance in either case. These results confirm

the reliability of the mapping scheme 49E, as in the case of the linear/linear MSHMMs, and

demonstrate the limitation of using a single linear mapping for all phone class (i.e., 1A).

Provided that there are sufficient training data, ideally, we want to use as many as possi-

ble formant-to-acoustic mappings, each tailored to an individual model, to achieve best fit

between formant and acoustic data.

Secondly, the differences in performance among mapping schemes 6B, 10C and 10D are

not significant. In fact, for non-linear/linear CI MSHMMs, mapping schemes 6B, 10C and
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10D give virtually the same phone accuracy 66.4%. For CD MSHMMs, the phone accuracy

increases from 6B to 10C, and then drops slightly when 10D is used, though in all cases, the

phone accuracy is around 66.5%. Similar tendency of performance for these three mapping

schemes can be also found in previous results on linear/linear MSHMMs (see Russell &

Jackson (2005)). A direct reason could possibly be that the numbers of distinct mappings

for these three mapping schemes are 6, 10 and 10, respectively, not very different from each

other. Moreover, some of the mappings (e.g., those for vowels and nasal, see Table 4.1 on

page 81) are actually same across these three mapping schemes. Therefore, it is not suprising

that these three mapping schemes (6B, 10C and 10D) give similar level of performance.

Finally, the motivation for the use of phone-class-dependent mapping schemes 6B, 10C

and 10D is described in (Russell & Jackson 2005). For example, categorisation 6B is moti-

vated by different linguistic classes, while categorisation 10D is motivated by a classification

of speech production mechanisms into discrete features based on source-filter theory. The

scheme 10C is proposed by Deng & Ma (2000), which is based on different manner of ar-

ticulation. Although each of these three categorisations has sound theoretical motivation,

the performance may be compromised by the limitation of the linear mappings to transform

knowledge at production level onto acoustic space, which is certainly a invalid assumption

since the relationship between formant and acoustic representations is not linear (Richards

& Bridle 1999, Russell et al. 2007). Re-estimating formant-to-acoustic mappings based on

matched non-linear formant trajectories and acoustic vector sequences, as described in Sec-

tion 7.5.3 on page 172, might be helpful in improving the match between these two speech

representations and hence recognition performance. However, this is an ad hoc rather than

essential solution since the linearity of the formant-to-acoustic mapping is unchanged.

Comparison to the standard HMMs recognition result

The standard HMMs recognition result is shown in all figures presented in this section

as a baseline result. It can be seen from Figure 7.6 that all triphone rescoring results are

higher than the standard HMMs recognition result. The monophone rescoring results for



CHAPTER 7. RECOGNITION USING NON-LINEAR TRAJECTORIES 176

non-linear/linear MSHMMs exceed the standard HMMs result, while for linear/linear mono-

phone MSHMMs, only the mapping schemes ‘10C’ and ‘10D’ give higher phone accuracies

than standard HMMs, with ‘1A’ giving exactly the same result as standard HMMs.

One-sample t-tests are performed to assess the statistical significance between the mean

values of various MSHMMs rescoring results and the baseline result of standard HMMs.

However, the t-test results discover that none of these differences is statistically significant.

Further development on MSHMMs is required if the ultimate goal is to achieve improved

performance compared with state-of-the-art HMM-based ASR systems.

TIMIT core test set experiment results

Up until now, research on MSHMMs have been exclusively based on gender-dependent

models (Russell & Jackson 2005, Russell et al. 2007). The motivation for using gender-

dependent models rather than gender-independent models in MSHMMs is described in Sec-

tion 3.3 on page 66, where the speech data (i.e., TIMIT) used for this research is intro-

duced. Since this thesis work builds on the linear/linear MSHMM described in (Russell &

Jackson 2005, Russell et al. 2007), it is natural that the emphasis of this research is also

placed on the gender-dependent MSHMMs to demonstrate the effect of introducing a non-

linear formant trajectory model. Therefore, the discussions and analysis on recognition ex-

periments reported in this chapter have by far concentrated on rescoring the 1000-best list

using the gender-dependent MSHMMs for male speakers.

In the speech recognition research community, however, a well-known benchmark test

is phonetic recognition on the TIMIT core test set (which contains 24 speakers, 2 male

and 1 female from each of the 8 dialect region, giving a total of 192 test utterances). For

comparison, a second N -best list is also used in the recognition experiments, which is a

100-best list generated based on the TIMIT core test set (see Section 7.2.2), in addition

to the 1000-best list for male speakers. Experiment results on this standard test set can

be appreciated in a broader context of this field, allowing us to measure the distance in

performance between our system and those best performing systems in the field.
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Figure 7.10: 100-best list rescoring results on the TIMIT core test set using gender-
independent MSHMMs. (a) CI MSHMMs rescoring results. (b) CD MSHMMs rescoring
results. In the legend, LIN and NONLIN denote linear trajectory or non-linear trajectory
model, respectively, and ‘101’ means the reference label file are included in the 100-best list.

Rescoring the 100-best list on the TIMIT core test set requires a set of gender-independent

MSHMMs built on the full training set of the TIMIT database (using data for both male and

female speakers), as described in Section 7.3. As has been stated before, this is the first

time in the context of the MSHMM that gender-independent models are used. Figure 7.10

summarises results for resocring the 100-best list using gender-independent MSHMMs on

the TIMIT core test set. A variety of model sets are considered, including CI and CD mod-

els, linear/linear MSHMMs and non-linear/linear MSHMMs (denoted by LIN and NONLIN

respectively), and all five formant-to-acoustic mapping schemes (1A-49E). In addition to the

100-best list rescoring results, the corresponding 101-best list results (indicated by ‘101’)

are also presented in Figure 7.10. The 101-best list is generated by appending the reference
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label file to the original 100-best list.

The TIMIT core test set experiment results show that non-linear/linear MSHMMs out-

perform linear/linear MSHMMs in most cases, as can be seen in Figure 7.10. Statistical

significance tests are also performed to aid the analysis of recognition results. When the ref-

erence label files are not included in theN -best list, paired t-test results reveal that significant

improvements in recognition performance are achieved under mapping schemes 49E for CI

MSHMMs, and 6B and 10D for CD MSHMMs. In the case that the reference label files are

also included in the N -best list, significant improvements are obtained for non-linear/linear

CD MSHMMs for all mapping schemes, with at most 46% reduction in PER relative to

linear/linear CD MSHMMs under the mapping scheme 49E. These results clearly demon-

strate the advantage of adopting a non-linear trajectory model in the intermediate layer of

MSHMMs.

Method (Author) Phone accuracy (%)
CD triphone HMMs (Lamel & Gauvain 1993) 69.1
CI hybrid HMM/ANN (Robinson 1994) 73.9
Bayesian triphone HMMs (Ming & Smith 1998) 74.4
Anti-phone, heterogeneous classifiers (Halberstadt & Glass 1998) 75.6
HTMs (Deng & Yu 2007) 75.2
Augmented conditional random fields (Hifny & Renals 2009) 73.4
Deep belief networks (Mohamed, Dahl & Hinton 2012) 79.3

Table 7.14: Some of the best phone recognition results on the TIMIT core test set in the
literature.

Some of the best phone recognition results on the TIMIT core test are provided in Ta-

ble 7.14. The best published phone accuracy on the TIMIT core test set so far is 79.3%

based on deep belief networks (Mohamed et al. 2012). In this work, the best result obtained

on the same test set is 70.4% (in the case of non-linear/linear CI-MSHMMs under mapping

49E), which is higher than the result reported by (Lamel & Gauvain 1993) but lower than

others. In addition, the best MSHMM result in this work is comparable to the baseline HMM

system result on the TIMIT core test set, which is 70.6% phone accuracy, as can be seen in

Table 7.1 on page 143. The results shown in Table 7.14 represent the state-of-the-art, which

are clearly superior to the best result presented here. However, the focus of this work has
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been put on the relative performance of the non-linear trajectory model compared with the

linear trajectory model. It is believed that a non-linear trajectory model of dynamics like the

one developed in this study is essential in order to build a more advanced model which can

compete with the state-of-the-art in the future.

7.6 Summary

This chapter presents an experimental study on using non-linear smooth formant trajec-

tories in place of piecewise linear trajectories to model speech dynamics in the MSHMM

framework. Tokuda’s speech parameter generation algorithm is used to generate non-linear

formant trajectories, and the resulting nonlinear/linear MSHMMs are evaluated and com-

pared to linear/linear MSHMMs based on the N -best list rescoring paradigm.

Both CI and CD MSHMMs are used in the rescoring experiments to test the effective-

ness of the nonlinear trajectory model of formant dynamics. Experiment results are reported

and analysed, aided by statistical significance tests. Analysis of the results reveals that, in

general, the use of a nonlinear trajectory model of dynamics in an MSHMM can lead to sig-

nificantly improved recognition performance compared with an MSHMM using piecewise

linear trajectories.

For gender-dependent MSHMMs, a careful comparison between CI and CD models is

conducted which:

• confirms the superiority of CD MSHMMs over CI MSHMMs when piecewise linear

trajectories are used in the intermediate layer in both cases,

• discovers that the smoothing in nonlinear formant trajectories is modelling contextual

effects that CD models are designed to account for, evidenced by the similar level (in

the sense of statistical significance) of recognition performance given by CI MSHMMs

using nonlinear trajectories and CD MSHMMs using piecewise linear trajectories,

• finds out that there is no statistically significant difference between CI MSHMMs and

CD MSHMMs rescoring results when nonlinear formant trajectories are used in both
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cases.

Linear/linear CI MSHMMs benefit from using unconstrained state sequences in rescoring

(mappings 6B and 49E, in particular, give statistically significant improvements), while non-

linear/linear MSHMMs benefit from re-estimation of formant-to-acoustic mappings (though

not statistically significant). Inter-mapping comparison confirms the finding in (Russell

et al. 2007) that best recognition performance is obtained by increasing the number of

formant-to-acoustic mappings. Finally, a one-sample t-test shows that there is no statisti-

cal significance between the baseline HMM result and MSHMMs rescoring results.



Chapter 8

Conclusions

8.1 Individual contributions and main findings

The primary goal of the research presented in this thesis, as stated in Chapter 1, is to

extend the work previously carried out by Russell et al. (Russell & Jackson 2005, Russell

et al. 2007) to develop an improved, non-linear trajectory model of speech dynamics, relative

to a piecewise linear trajectory model, within the framework of a multiple-level segmental

HMM. This thesis describes an investigation into a particular type of non-linear trajectory

model, in which smooth trajectories are generated by using Tokuda’s speech parameter gen-

eration method. This study exploits the application of this non-linear trajectory model of

formant dynamics to both speech synthesis and speech recognition.

8.1.1 Speech synthesis

The application of the speech parameter generation algorithm to HMM-based speech

synthesis is certainly not original: see, for example, (Yoshimura99,Tokuda00,Tokuda02), in

which the speech parameter generation algorithm is used directly in the acoustic domain to

generate smoothed mel-cepstral parameters. A major contribution of the speech synthesis

work presented in this thesis derives from the application of the speech parameter generation

algorithm directly to a particular type of formant data: the 12-dimensional parallel formant

synthesiser control parameters and the use of the classic HMS parallel formant synthesiser

to generate speech.

181
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In the context of an MSHMM, this study takes a first step towards the goal of a ‘unified’

model for speech recognition and synthesis. This research investigates the application of

the speech parameter generation algorithm at a deeper, production level (i.e., the formant

domain) to model speech dynamics. The particular type of intermediate representation con-

cerned in this work comprises all 12 PFS control parameters, which, provided that these pa-

rameters are sufficiently accurate, can be used to generate high quality synthetic speech with

a formant synthesiser. From this perspective, the novelty of the synthesis work presented

in this thesis is that the proposed non-linear trajectory model is potentially suitable for both

speech recognition and synthesis, and its synthesis performance is evaluated as another way

of assessing the model.

In this research, the application of the speech parameter generation algorithm in the for-

mant domain results in non-linear, smoothed formant trajectories. These continuous, non-

linear formant trajectories have been shown to be able to account for the coarticulation and

transitions between neighbouring phones, and match actual formant trajectories in real hu-

man speech quite closely. This is advantageous over a piecewise linear trajectory model

previously studied in an MSHMM, and should be able to overcome the limitation of no

continuity constraints between adjacent segments in a piecewise linear trajectory model.

In the HMM-based TTS system built in this research, in which the 12 PFS control param-

eters and their time derivatives are used as feature vectors in HMMs, two kinds of formant

synthesiser control parameter sequences have been investigated:

1. piecewise constant 12 PFS control parameter sequences derived directly from HMMs

based on mean vectors and self-transition probabilities,

2. non-linear 12 PFS control parameter sequences, obtained by using the speech param-

eter generation algorithm based on the same state sequence as in 1.

The Holmes parallel formant synthesiser is employed to synthesise speech from these two

types of synthesiser control parameter sequences.

Both subjective and objective tests were conducted to evaluate the synthetic speech in

terms of intelligibility, overall quality and perceptual similarity between original speech and
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synthetic speech generated by using speaker adaptation techniques (both MLLR and MAP

are used). Twenty human listeners participated in the subjective tests. Based on the experi-

ment results and statistical significance analysis, the following conclusions are reached:

• Overall, the quality of the synthetic speech is low. The reasons and suggestions for

further improvement will be discussed in Section 8.2. The poor overall quality poses

a major challenge in virtually all subjective listening experiments, especially in the

mimicry test in which test participants are required to recognise speakers.

• For both intelligibility and naturalness tests, despite the low quality of the synthetic

speech, the use of non-linear formant synthesiser control parameter trajectories leads

to statistically significant improvement in performance, relative to the use of piecewise

constant PFS control parameter sequences. This demonstrates the benefit of using a

non-linear trajectory model of formant dynamics for speech synthesis.

• There is few convincing evidence in the subject mimicry test in support of this partic-

ular type of non-linear trajectory model in generating adapted synthetic speech using

conventional adaptation techniques such as MLLR and MAP.

The mimicry test is worth mentioning here since it does raise many interesting questions.

To reduce the effect of the poor overall quality of the synthetic speech, an ‘intermediate’ type

of synthetic speech, called semi-synthetic speech, is introduced to assist the comparison

between original speech and synthetic speech. The semi-synthetic speech is generated by

copy synthesis based on the synthesiser control parameters derived directly from the original

speech. Even so, the similarity results between original and semi-synthetic speech have

shown to be disappointing (on average, 56.8%, when the same sentence is used in both

original and semi-synthetic speech). When different sentences are used for original and

semi-synthetic speech, the similarity scores drops futher to about 33%. On the other hand, the

comparison between semi-synthetic speech and synthetic speech did not show the expected

trend that the similarity increases as the number of adaptation utterances increases. It is

suspected that the limitation on the maximum number of adaptation utterances (maximum
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10 utterances per speaker in TIMIT) and the poor overall quality of the synthetic speech

contribute most to the poor result. In addition, these results seem to conform with the recent

NIST human-assisted-speaker-recognition evaluation results (Greenberg et al. 2011), which

also show that humans are not very good at recognising who is speaking in difficult cases.

PESQ results show that model adaptation can improve the quality of the synthetic speech.

8.1.2 Speech recognition

A key contribution of this research is the development of a new class of nonlinear/linear

MSHMMs, and the evaluation of the new model through extensive recognition experiments.

A nonlinear/linear MSHMM is an extended version of a linear/linear MSHMM, in which

speech dynamics are modelled as non-linear trajectories in the formant-based intermediate

layer, which are then transformed into the acoustic layer via a set of one or more linear

formant-to-acoustic mappings. Compared to a linear/linear MSHMM, the main advantage

of a nonlinear/linear MSHMM is the use of an improved, nonlinear trajectory model of

formant dynamics, which can overcome the limitation of no continuity constraints between

piecewise linear trajectories in a linear/linear MSHMM. Such a non-linear trajectory model

of dynamics seeks to provide an active account for the coarticulation and formant transitions,

which we believe are important to describe the properties of speech patterns.

The new nonlinear/linear MSHMM is tested against a linear/linear MSHMM based on

theN -best list rescoring paradigm on TIMIT. Both context-dependent and context-independent

MSHMMs, combined with five different formant-to-acoustic mapping schemes, are used in

the rescoring experiments.

The rescoring results show that the use of non-linear formant trajectories in MSHMMs

achieves a reduction in phone error rate in most cases, with at most a 4.9% relative re-

duction in phone error rate (in the case of monophone, mapping 6B, see Table 7.10 on

page 166), compared to MSHMMs using linear formant trajectories. Statistical significance

tests show that nonlinear/linear MSHMMs give significant improvements in phone accu-

racy compared to linear/linear MSHMMs when context-independent models are used under
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mapping scheme 6B and 49E. Moreover, the recognition phone accuracy of nonlinear/linear

MSHMMs can be further improved by re-estimation of the formant-to-acoustic mapping

using the non-linear formant trajectories generated for the training utterances.

The rescoring results for context-independent and context-dependent MSHMMs follow

different patterns. It has been noticed that context-independent MSHMMs benefit more than

context-dependent MSHMMs from the use of non-linear formant trajectories in the interme-

diate layer. To find out the role of nonlinear trajectory model in the MSHMM, comparison

of rescoring results is made between monophone and triphone MSHMMs under three con-

ditions: 1) piecewise linear trajectories are used in both monophone and triphone models, 2)

nonlinear trajectories are used in monophones and piecewise linear trajectories are retained

in triphones, and 3) nonlinear trajectories are used in both monophones and triphones. The

main conclusions drawn from the comparison are:

• Under condition 1), context-dependent models outperform context-independent mod-

els, with three mapping schemes giving statistically significant improvements. This is

expected since context-dependent models contain contextual information that context-

independent models do not.

• Under conditions 2) and 3), there are no statistically significant differences between

rescoring results of context-independent and context-dependent MSHMMs. In partic-

ular, under condition 2), monophone MSHMMs using nonlinear trajectories have been

shown to produce similar level of performance than triphone MSHMMs using piece-

wise linear trajectories. These results demonstrate that the use of non-linear smooth

formant trajectories in the intermediate layer of MSHMMs is accounting for contex-

tual effects (e.g., coarticulation) that triphones are designed to accommodate, so that

the use of context-dependent models now has less effect.

Experiment results on the TIMIT core test set also demonstrate the superiority of using

a non-linear trajectory model for MSHMMs. When the reference transcription are included

in the N -best list, a 46% reduction in PER was achieved for non-linear/linear CD MSHMMs

relative to linear/linear CD MSHMMs under the mapping scheme 49E. The best phone ac-
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curacy (70.4%) is comparable to the conventional CD HMMs system, though is lower than

the state-of-the-art.

8.2 Suggestions for future work

In this research, the investigation of using a non-linear trajectory model of speech dy-

namics has yielded some promising results. There is certainly room for further research in

the future.

8.2.1 Generating non-linear trajectories directly from MSHMMS

In this research, all non-linear formant trajectories are generated from an auxiliary set of

conventional HMMs that are trained on 12 PFS control parameters and their time derivatives.

For a given state sequence, this model set is designed to provide essential model parameters

(e.g., means, covariance matrices) to compute the non-linear smooth trajectory based on the

speech parameter generation algorithm.

In most cases, however, the state sequence used in calculating the nonlinear trajectory

for each hypothesis of the N -best list is determined based on another set of MFCC-based

standard HMMs which is used to generate the N -best list. These state sequences are called

constrained state sequences due to the use of phone boundary timing in the forced align-

ment. In linear/linear monophone MSHMMs rescoring experiments, a different type of state

sequence, referred to as unconstrained state sequences, is also studied, which is generated

based on MSHMMs without using phone boundaries. It has been shown that the use of

unconstrained state sequences can result in statistically significant improvement in recog-

nition performance under certain mapping schemes, relative to the use of constrained state

sequences.

Based on the above consideration, it is desirable that everything, including state se-

quences and non-linear trajectories, can be generated directly from a set of MSHMMs. In do-

ing so, MSHMMs can be directly used to generate a sequence of set of nonlinear, smoothed
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12 PFS control parameters for speech synthesis. The determination of the state sequence, i.e.,

the unconstrained state sequence, given an N -best list hypothesis and the MSHMM model

set is straightforward. However, the main difficulty is how to apply the speech parameter

generation algorithm directly to MSHMMs, in particular the definition of the transform W

as in Equation (5.7) (i.e.,O = WC) on page 86.

In the current implementation of (linear/linear) MSHMMs, only static features (13 MFCCs)

are used in the acoustic domain so that it is impossible to define W in the acoustic domain.

In the intermediate formant domain, each state is specified by a mean vector and a slope

vector, whose dimensions are the same as that of the intermediate space. One possibility is

to treat the means as the static features, and slopes as the delta parameters. However, both of

the mean and slope vectors are estimated based on the EM algorithm during model training

and their relationship can not be simply determined using a deterministic and fixed trans-

form, as defined by Equation (5.7) in the original version of the speech parameter generation

algorithm. In fact, each state in a linear/linear MSHMM would have a different transform

between the mean and slope vectors. Therefore, a possible research question is how to re-

define the relationship between the mean and slope vectors in an MSHMM and how to adapt

the speech parameter generation algorithm accordingly to this new relationship?

8.2.2 Improving overall synthetic speech quality

Although maximum overall quality of the synthetic speech is not the objective of this

research, there are a number of ways to improve the overall quality of the synthetic speech.

It is believed that the improved quality of synthetic speech would yield some more positive

results for the synthetic speech evaluation experiments, especially for the mimicry test. The

synthetic speech is generated using the HMS parallel formant synthesiser, which can produce

high quality synthetic speech given appropriate synthesiser control parameters. Therefore,

efforts should be guided to improve the quality of the formant synthesiser control parameters.

The formant synthesis control parameters used in this research are generated from HMMs,

and the HMMs are trained on 12 PFS control parameters, which in turn are computed using
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the Holmes formant analyser. Therefore, there are two possible directions to improve the

quality of the synthesiser control parameters. One option is to improve the accuracy of the

formant estimation by improving the Holmes formant analyser. Holmes formant analyser

was written to run on a very low powered computer, and the design of the formant analysis

algorithm is compromised by this. With more computing power, it should be possible to, for

example, increase the size of the codebook of pre-labeled spectra and formant frequencies so

that more robust estimation of formant frequencies can be achieved. The second possible di-

rection is to improve the quality of the acoustic models. For example, (Zen et al. 2007) found

that the use of the trajectory HMM improved the naturalness of synthetic speech, relative to

standard HMMs.

Another major limitation of the current speech synthesis system is the lack of a proper

prosodic structure. Prosodic structure includes durational structure, the appropriate insertion

of pauses, intonation and stress. No synthesis system can produce natural sounding synthetic

speech unless an appropriate prosodic structure is incorporated. One possibility to extract

these prosodic factors is via feature extraction functions of the Festival speech synthesis

system.

8.2.3 Non-linear/non-linear MSHMMs

In the context of a multiple-level segmental HMM, both a simple linear/linear MSHMM

(Russell & Jackson 2005, Russell et al. 2007, see Figure 1.1 on page 6) and a more ad-

vanced non-linear/linear MSHMMs (Hu & Russell 2008, Hu & Russell 2010, see Figure 7.1

on page 139), have been investigated. The former uses piecewise linear trajectories in the

formant-based intermediate layer to model dynamics, while the latter uses non-linear con-

tinuous trajectories to account for formant dynamics. In both cases, one or more linear

formant-to-acoustic mappings are used to transform the piecewise linear or non-linear for-

mant trajectories in the intermediate layer into the acoustic layer.

The main drawback of the above approaches is the use of linear formant-to-acoustic map-

ping, which is estimated based on matched acoustic and formant data (see Section 4.4.1).
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Acoustic layer

Synthetic acoustic layer

Articulatory-to-acoustic mapping

Articulatory layer

Finite state sequence

ANNs

Figure 8.1: A non-linear/non-linear multiple-level segmental HMM in which the dynamics
are modelled as non-linear trajectories in the intermediate layer and transformed into the
acoustic layer using a non-linear articulatory-to-acoustic mapping.

Several studies have shown that the relationships between formants and spectrum-based

acoustic representation are indeed non-linear (Richards & Bridle 1999, Russell et al. 2007).

Therefore, a possible direction for future work is to develop a non-linear/non-linear MSHMM,

as shown in Figure 8.1, in which formant dynamics are modelled as non-linear trajectories

in the intermediate layer and then transformed into the acoustic layer using a non-linear

formant-to-acoustic mapping in the form of artificial neural networks.

In view of the unsuitability of a linear formant-to-acoustic mapping, research on alterna-

tive, non-linear mapping has been described by a number of authors. Examples include the

use of one MLP (Richards & Bridle 1999) or more MLPs (Deng 1998, Deng & Ma 2000,

in which 10 MLPs are used) in hidden dynamic models to transform dynamics in the hid-

den layer to the acoustic layer (see Section 2.4.4 on page 49). Research at the University of

Birmingham has investigated the use of one or more RBF networks (Jackson et al. 2002, Lo

& Russell 2003, Lo 2004) for the non-linear formant-to-acoustic mapping, which yielded



CHAPTER 8. CONCLUSIONS 190

modest improvements.

Training an MLP- or RBF-based non-linear formant-to-acoustic mapping using matched

formant and acoustic data is straightforward, though the optimisation of the model trajectory

parameters is not. In (Deng 1998), the learning algorithm for the model parameters is based

on the generalised EM algorithm with E-step accomplished by extended Kalman filtering

(EKF) (a review of the Kalman filtering in speech recognition is provided in (Ostendorf

et al. 1996)). It is possible to investigate these techniques in the context of our multiple-level

segmental HMMs.

The non-linear/non-linear MSHMMs shoud have theoretical advantages of both the non-

linear trajectory model of dynamics and the non-linear formant-to-acoustic mapping. Un-

der such a model, contextual effects and coarticulation could be modelled naturally in the

formant-based intermediate layer, and the relationships between the formant and acoustic

descriptions of speech are represented more accurately. Provide that the intermediate layer

is based on the 12 PFS control parameters, the resulting non-linear/non-linear MSHMMs

has the potential to provide both high accuracy speech recognition and high quality speech

synthesis.

Obviously, the introduction of the non-linear mappings, combined with the non-linear

trajectories, could lead to a tremendous increase in computational load. The N -best list

rescoring scheme could be initially used to evaluate these new non-linear/non-linear MSH-

MMs before an effort is made to develop an appropriate decoder.

8.2.4 Gaussian mixture MSHMMs

The MSHMM presented in this thesis uses a single fixed trajectory in the intermediate

layer to model formant dynamics and a single Gaussian PDF in the acoustic layer to model

acoustic variability. Modern LVCSR system usually employ Gaussian mixture densities to

improve acoustic modelling. Another possible direction for future work is to build a Gaus-

sian mixture MSHMM.

As a starting point, consider a linear PTSHMM, in which a speech segment is charac-
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terised by a ‘noisy’ linear trajectory (see Section 2.3.3). For simplicity, suppose that the

trajectories are constant (i.e., slope=0). In this model a state i has two PDFs:

1. The extra-segmental variability PDF, bi, which is assumed to be Gaussian with mean

νi and variance ηi.

2. The intra-segmental variability PDF, whose mean is the trajectory value and variance

is Σi.

Under this model, the joint density of a τ -length speech segment oτ1 = {o1, . . . ,oτ} and a

trajectory f given state i has the form

p(oτ1,f) = p(oτ1|f)p(f) = p(f)
τ∏
t=1

p(ot|f(t)), (8.1)

and

p(oτ1) =

∫
f

p(oτ1,f)df =

∫
f

p(f)
τ∏
t=1

p(ot|f(t))df , (8.2)

where the integral is taken for all possible trajectories.

Normally the extra-segmental density p(f) is assumed to be Gaussian, i.e., p(f) =

N (f |νi,ηi). It is straightforward to extend this single-mixture model to a GMM. Letting

p(f) =
K∑
k=1

wikN (f |νik,ηik), (8.3)

where wik, νik and ηik are mixture weight, mean and variance for the i-th mixture compo-

nent, respectively, and
∑K

k=1wik = 1. Then substituting this mixture PDF in Equation (8.2)

p(oτ1) =
K∑
k=1

wik

∫
f

N (f |νik,ηik)
τ∏
t=1

p(ot|f(t))df . (8.4)

In this case, instead of modelling a segment as a noisy trajectory, a segment is modelled as

a set of K alternative noisy trajectories, each with its own prior probability (i.e., the GMM

weights wik).

Modelling the intra-segmental variability PDF using a GMM is more difficult. In the
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standard model this PDF is centred on the current trajectory value f(t). For a single Gaussian

PDF this is simple to achieve by just choosing the current trajectory value f(t) to be the PDF

mean (as can be seen in Equation 8.1). However, a GMM does not have a single mean so

this is not possible. An alternative view of the standard model is that the intra-segmental

PDF is just a ‘noise’ PDF (with mean zero) and we add the current trajectory value to the

mean at each point of the trajectory. So it may be possible to define the ’noise’ process to

be a fixed GMM, and then at each time t add the trajectory value f(t) to each of the GMM

means (Russell 2012).

In a fixed trajectory SHMM (see Section 2.3.4), the extra-segmental PDF variance is

fixed at zero so that the trajectory associated with a state is fixed. For a fixed trajectory

model, Equation (8.2) becomes

p(oτ1) = p(oτ1|f) =
τ∏
t=1

p(ot|f(t)), (8.5)

Where f is the fixed trajectory associated with the state. For the GMM equivalent of a fixed

trajectory SHMM, each state would be associated with a set of K trajectories {f 1, . . . ,fK}

each with a prior probability {wi1, . . . , wiK} and
∑K

k=1wik = 1, such that

p(oτ1) =
K∑
k=1

wikp(o
τ
1|fk) =

K∑
k=1

wik

τ∏
t=1

p(ot|fk(t)). (8.6)

Now assume that the trajectory fk is realised in the formant-based intermediate layer

and projected to the acoustic layer using a formant-to-acoustic mapping W , then the above

equation can be written as

p(oτ1) =
K∑
k=1

wik

τ∏
t=1

p
(
ot|W

(
fk(t)

))
=

K∑
k=1

wik

τ∏
t=1

N
(
ot|W

(
fk(t)

)
,Σi

)
, (8.7)

where Σi is the covariance matrix for state i. Equation 8.7 defines a Gaussian mixture

MSHMM which could be investigated further in the future. It is assumed that the principle

of the model parameter estimation algorithm for the existing MSHMMs still applies.
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As with conventional HMMs, one would expect the above mixture model to give supe-

rior performance, relative to the single mixture model. However, the number of parameters

of the mixture model given by Equation 8.7 goes up proportionally to the number of mix-

ture components K, and hence more training data is required to accurately estimate model

parameters, especially when context-dependent models are used. The underlying motivation

for probabilistic trajectory-based SHMMs is to replace the reliance on statistical models with

large numbers of parameters by a more compact model that aims to capture speech dynamics

more accurately. By following the above GMM-based routine we are returning to trying to

solve the problem ‘conventionally’ by using large numbers of parameters.

8.3 Concluding remark

Some technologies portrayed as common in 2001: A Space Odyssey have indeed materi-

alised in the 2000s, for example, small, portable, flat-screen devices like the iPad. However,

the challenge of building an intelligent machine that can speak naturally and respond prop-

erly to spoken language, as displayed by HAL, remains enormous. Of course, there are many

possible directions one can choose to attack the problem. This study made an attempt to de-

velop a unified model for both speech recognition and synthesis. The search for the ultimate

speech models continues...
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TIMIT phone set

A.1 TIMIT 49-phone set

Phone Example Folded Phone Example Folded
iy beat en button
ih bit ng sing eng
eh bet ch church
ae bat jh judge
ix roses dh they
ax the b bob
ah butt d dad
uw boot ux dx butter
uh book g gag
ao about p pop
aa cot t tot
ey bait k kick
ay bite z zoo
oy boy zh measure
aw bough v very
ow boat f fief
l led th thief
el bottle s sis
r red sh shoe
y yet hh hay hv
w wet cl(sil) (unvoiced closure) pcl,tcl,kcl,qcl
er bird axr vcl(sil) (voiced closure) bcl,dcl,gcl
m mom em epi(sil) (epinthetic closure)
n non nx sil (silence) h#,#h,pau

q
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A.2 TIMIT allowable confusions

The table below shows the TIMIT allowable confusions (Lee & Hon 1989) when evalu-

ating the recognition results, leading to the TIMIT 39-phone set.

TIMIT equivalent labels for evaluation
{sil, cl, vcl, epi}

{el, l}
{en, n}
{sh, zh}
{ao, aa}
{ih, ix}
{ah, ax}
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Appendix B

The DRT 96 word-pairs list

The tables below contais 96 word-pairs used in the DRT test, which are taken from

(Pratt 1984).

Voicing Nasality Sustension
Voiced Unvoiced Nasal Oral Sustained Interrupted

veal feel meat beat vee bee
bean pean need deed sheet cheat
gin chin mitt bit vill bill
dint tint nip dip thick tick
zoo sue moot boot foo pooh

dune tune news dues shoes choose
voal foal moan bone those doze
goat coat note dote though dough
zed said mend bend then den

dense tense neck deck fence pence
vast fast mad bad than dan
gaff calf nab dab shad chad
vault fault moss boss thong tong
daunt taunt gnaw daw shaw chaw
jock chock mom bomb von bon
bond pond knock dock vox box
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Sibilation Graveness Compactness
sibilated Unsibilated Grave Acute Compact Diffuse

zee thee weed reed yield wield
cheep keep peak teak key tea

jilt gilt bid did hit fit
sing thing fin thin gill dill
juice goose moon noon coop poop
chew coo pool tool you rue
joe go bowl dole ghost boast
sole thole fore thor show so
jest guest met net keg peg

chair care pent tent yen wren
jab gab bank dank gat bat

sank thank fad thad shad sag
jaws gauze fought thought yawl wall
saw thaw bong dong caught taught
jot got wad rod hop fop

chop cop pot tot got dot
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Appendix C

Publications

Two conference papers were published during the period of this thesis work:

• Hu, H. & Russell, M.J. (2008), Speech recognition using non-linear trajectories in a

formant-based articulatory layer of a multiple-level segmental HMM, in ‘Proc. IN-

TERSPEECH 2008’, Brisbane, Australia, pp. 2422-2425.

• Hu, H. & Russell, M.J. (2010), Improved modelling of speech dynamics using non-

linear formant trajectories for HMM-based speech synthesis, in ‘Proc. INTERSPEECH

2010’, Makuhari, Chiba, Japan, pp. 821-824.

These two papers are also attached for reference.
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Abstract

This paper describes how non-linear formant trajectories, based
on ‘trajectory HMM’ proposed by Tokudaet al., can be
exploited under the framework of multiple-level segmental
HMMs. In the resultant model, named anon-linear/linear
multiple-level segmental HMM, speech dynamics are modeled
as non-linear smooth trajectories in the formant-based inter-
mediate layer. These formant trajectories are mapped into the
acoustic layer using a set of one or more linear mappings. The
N -best rescoring paradigm is employed to evaluate the perfor-
mance of the non-linear formant trajectories. The rescoring
results on TIMIT corpus show that the introduction of non-
linear formant trajectories results in improvement on recogni-
tion phone accuracy compared with linear trajectories.
Index Terms: speech recognition, non-linear formant trajecto-
ries, segmental HMMs

1. Introduction
The purpose of this paper is to determine whether the use of
smooth, non-linear formant trajectories in a multiple-level seg-
mental HMM (MSHMM) can result in improved speech recog-
nition performance compared with a MSHMM using linear for-
mant trajectories. In a multiple-levellinear/linear segmental
HMM previously presented in [1], the relationship between the
underlying symbolic and surface acoustic (e.g. MFCCs) rep-
resentations of a speech signal is regulated by an intermediate
‘articulatory’ layer. Figure 1 (a) shows the structure of a lin-
ear/linear MSHMM. States of the underlying Markov process
are associated with piecewise linear trajectories in the interme-
diate layer, which are mapped into the acoustic layer using a
linear articulatory-to-acoustic mapping. The results of phonetic
classification experiments on TIMIT show that, even with this
simple linear/linear MSHMM system, speech recognition per-
formance can achieve the upper bound of an appropriate fixed
linear-trajectory acoustic segmental HMM (FT-SHMM), which,
in turn, can outperform a conventional HMM [2]. It was hoped
that further improvements in performance relative to a conven-
tional HMM could be achieved by using appropriate non-linear
models of dynamics, alternative articulatory representations or
non-linear articulatory-to-acoustic mappings.

One of the limitations of the linear/linear MSHMM is the
use of linear trajectories. A linear trajectory is simply char-
acterized by a mid-point and a slope vector, which are of the
same dimension of the intermediate layer. No continuity con-
straints are applied across the segment boundaries. Although
a piecewise linear model provides an adequate ‘passive’ ap-
proximation to the formant trajectories, it does not capture the
active dynamics of the articulatory system. Many alternative
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Figure 1:A multiple-level segmental HMM (MSHMM) in which
the relationship between the symbolic and acoustic represen-
tations of a speech signal is regulated by an intermediate
formant-based layer: (a) a linear/linear MSHMM, (b) a non-
linear/linear MSHMM

intermediate-layer models of dynamics have been proposed,
e.g., [3, 4, 5, 6, 7, 8]. In addition, it has been noted that a linear
articulatory-to-acoustic mapping is inadequate in general [3].

In this paper, non-linear formant trajectories are generated
based on Tokuda’s ‘trajectory HMM’ method [9]. For con-
sistency with the linear/linear MSHMM described in [1], the
articulatory-to-acoustic mappings are also linear, but the map-
ping parameters are re-estimated based on the non-linear tra-
jectories data. The resultant model is referred to as anon-
linear/linearMSHMM, and is shown in Figure 1(b).

Five ‘formant-to-acoustic’ mapping schemes, based on dif-
ferent phone categories [1, 10], are considered in order to in-
vestigate their effects on the system performance. Phonetic
recognition experiments on TIMIT are performed to compare
the performance of non-linear trajectories and linear trajecto-
ries. As an appropriate decoder for non-linear/linear MSHMMs
is not yet available, anN -best list rescoring paradigm, where
N = 1, 000, is employed to evaluate the effectiveness of the
non-linear formant trajectories.

The rest of this paper is organized as follows. Section 2 de-
scribes the formant-based intermediate layer. Section 3 briefly
explains the speech parameter generation algorithm to produce
non-linear trajectories. Speech recognition experiments and re-
sults are shown in Section 4 and 5. Conclusions and future work
are presented in the final section.



2. Formant-based intermediate layer
The intermediate layer presented in [1] is based on formant fre-
quencies, ranging from the simplest form which just consists of
the first three formant frequencies to a 12 dimensional represen-
tation using the 12 parallel formant synthesiser (PFS) control
parameters. Experimental results show that the performance
improves either as the dimension of the intermediate represen-
tation or the number of mappings is increased [10]. This paper
concentrates on the 12 PFS control parameter representation, re-
ferred to as12PFS, which are produced by Holmes-Mattingley-
Shearme (HMS) formant analyser [11]. The 12 PFS control
parameters are listed in Table 1.

No. Parameter description

1 FN: Freq. of ‘low freq.’ formant (default 250Hz)
2 ALF: Amplitude of FN in dB
3 F1: Freq. of first formant (in 25 Hz steps)
4 A1: Amplitude of first formant in dB
5 F2: Freq. of second formant (in 50 Hz steps)
6 A2: Amplitude of second formant in dB
7 F3: Freq. of third formant (in 50 Hz steps)
8 A3: Amplitude of third formant in dB
9 AHF: Amp. in high freq. region in dB
10 V: Degree of voicing
11 F0: Fundamental freq. on logarithmic scale
12 MS: Glottal-pulse mark-space ratio

Table 1:The 12 parallel formant synthesiser (PFS) control pa-
rameter representation, 12PFS, in the intermediate layer of a
MSHMM.

It has to be confessed that this is a relatively simple
‘articulatory’ representation compared to those presented in
[3, 4, 5, 6, 7, 8]. Also, strictly speaking, it is only implicitly
articulatory by nature. However, a major motive of incorpo-
rating such an intermediate layer is to allow speech dynamics
to be modelled simply and directly in an articulatory-related
space, which is capable of supporting both recognition and syn-
thesis. Indeed, it has been demonstrated that given a sequence
of appropriate PFS control parameters, extremely high quality
speech can be produced using a parallel formant synthesiser.
This suggests that a MSHMM, whose intermediate layer is the
12PFSrepresentation, can be used for trainable model-based
speech synthesis. This motivates the concept of ‘unified’ model
for speech recognition and synthesis proposed in [12].

3. Trajectory modelling
The non-linear formant trajectories in this paper are generated
based on the ‘trajectory HMM’ method [9]. Most state-of-the-
art automatic speech recognition (ASR) systems use static and
dynamic features (e.g. delta and delta-delta coefficients) to
accommodate temporal dynamics. Although the employment
of dynamic features improves the performance of HMM-based
speech recognizers, their use leads to inconsistencies in a con-
ventional HMM, where it is assumed that both the static and
dynamic parameters can be simultaneously constant and non-
zero. The motivation for ‘trajectory HMM’ is to alleviate this
inconsistency between static features and dynamic features of a
conventional HMM. A trajectory, which is most consistent with
the static and dynamic constraints is synthesised in the static
feature vector space. In fact, the new trajectory is exactly the
same as the speech parameter trajectory generated by using the

speech parameter generation technique in [13]. A detailed de-
scription of the algorithm appears in [13], where it is referred to
as case 1, but a brief explanation is given here for completeness.

Let O = {o1, ..., oT } be a sequence of speech observations
andS = {s1, ..., sT } a fixed state sequence of an HMMM .
Assume that the speech vectorot consists of both a static feature
vector ct and dynamic feature vectors∆ct, ∆2ct. The delta
and delta-delta coefficients are computed using the following
formulae, whereθ is set to 1 in this paper.

∆ct =
ct+θ − ct−θ

2θ
(1)

∆2ct =
∆ct+θ − ∆ct−θ

2θ
(2)

Let W be the linear transform matrix which transforms the
sequence of static parameter vectorsC into an ‘augmented’ se-
quence of static plus dynamic vectorsO. Then the above for-
mulae can be written as

O = WC (3)

For a given state sequenceS, the speech parameter gener-
ation problem is to determine the parameter sequenceC which
maximizeP (O|S, M) with respect toC under the constraints
(3). By setting

∂logP (WC|S, M)

∂C
= 0 (4)

a set of equations are obtained. For detailed representation of
the transform matrixW and equation (4), refer to [13]. The
non-linear trajectories used in this paper are obtained by solving
equation (4). This speech parameter generation technique forms
the basis of HMM-based speech synthesis described in [13].

4. Experiment methods
4.1. Speech data

The male part of the TIMIT corpus is used for all experiments.
The training data includes all male utterances from the TIMIT
training set (3,252 utterances) and the test data includes utter-
ances from male speakers in TIMIT core test set (128 utter-
ances, excluding ‘sa1’ and ‘sa2’ sentences). 13 MFCCs, in-
cluding zeroth, are used as the acoustic features for MSHMMs
training and evaluation. They are produced using HTK with 25
ms window, 10ms frame rate. 39 MFCCs, including∆, ∆2 co-
efficients are also used in the experiments. The 12 PFS control
parameters are produced by the HMS formant analyzer, con-
verted to HTK format and augmented with∆ and∆2 coeffi-
cients, resulting in a representation of 36 dimensional features.

4.2. N-best list

An N -best list whereN = 1, 000 is generated using a set of
standard decision-tree based triphone HMMs built using HTK,
which consists of 1,000 most likely hypotheses for each test
utterance. The triphone model set is built on 39 MFCCs (in-
cluding∆ and∆2 coefficients). The baseline phone accuracy
(1 best decoding) is 65.7%. The upper bound phone accuracy
for theN -best list is 77.9%, which is based on the most accu-
rate match from the 1,000 alternatives with the reference label
files. Therefore, this is the theoretical maximum score the fol-
lowing N -best rescoring experiments can reach. The optimal
state sequence for eachN -best list hypothesis can be produced
using forced alignment with HTK.



4.3. Model sets

Five linear/linear monophone MSHMM model sets are built on
the TIMIT corpus using 13 MFCCs (static features only), based
on different articulatory-to-acoustic mapping schemes. The
MSHMM model parameters are optimized using an estimation-
maximization (EM) scheme based on segmental Viterbi decod-
ing [1], implemented as part of the ‘SEGVit’ toolkit.

A all data
B vowels,{hh,l,r,w,y}, nasals,{dh,f,s,sh,th,v,z,zh}

{ch,jh}, {b,cl,d,vcl,dx,epi,g,k,p,q,sil,t}
C vowels,{epi,q,sil}, {hh,l,r,w,y}, nasals,{ch,s}

{sh,f,th}, {dh,v,zh}, {jh,z}, {cl,k,p,t}, {b,d,vcl,dx,g}
D vowels,{epi,q,sil}, {dx,el,l,r,w,y}, nasals,{vcl}, {cl}

{b,d,g,jh}, {ch,k,p,q,t}, {dh,v,z,zh}, {f,hh,s,sh,th}
E 49 individual phones

Table 2: Definitions of the phone categories: B. linguis-
tic categories; C. as in [6]; D. discrete articulatory re-
gions. ’nasals’ and ’vowels’ denote the sets{en,m,n,ng},
and {aa,ae,ah,ao,aw,ax,ay,eh,el,er,ey,ih,ix,iy,ow,oy,uh,uw} re-
spectively.

The formant-to-acoustic mapping schemes considered in
this paper include all five mapping schemes described in [1],
ranging from a single ‘phone-independent’ mapping to 49
‘phone-dependent’ mappings. The five mapping schemes are
referred to as 1A, 6B, 10C, 10D and 49E respectively (number
of mappings followed by phone partition), as is shown in Table
2. The mappings are estimated by minimizing the error between
matched sequences of formant and acoustic data. For exam-
ple, assume thatf = {f1, ..., fT } andy = {y1, ..., yT } are
formant and acoustic sequences corresponding to a particular
phone class, then the mappingW is calculated by minimizing
the errorE as follows:

E =

TX

t=1

‖Wft − yt‖2 (5)

In practice, the mappings are pre-computed using the
TIMIT corpus before estimation of the MSHMM model param-
eters. A bias, which is set to ‘1’, is added to 12 PFS control
parameters to accommodate offsets.

4.4. Segment probability calculation

Suppose that the unknown utterance corresponds to a sequence
of acoustic feature vectorsy = y1, ..., yT . For a given entry
in theN -best list, this utterance corresponds to a state sequence
s = τ1×s1, τ2×s2, ..., τN ×sN , whereτ1+τ2+ ...+τN = T
and τn × sn denotesτn repetitions of statesn. A trajec-
tory f of length T is defined in the intermediate space as
f = f1, f2, ..., fN , wherefn is a trajectory ‘fragment’ of length
τn. In the case of a linear/linear MSHMM eachfn is a linear
trajectory, defined by a slope and mid-point value for statesn,
as in [1]. For a non-linear/linear MSHMMf is a single, contin-
uous trajectory obtained using the ‘trajectory HMM’ method,
andfn is simply the section off which corresponds to statesn.
The probability ofy is then given by:

p(y) =

NY

n=1

dn(τn){
τnY

t=1

N(yφn+t; Wsn(fn(yφn+t)), σn)}

(6)

whereφn =
Pn−1

i=1 τi, N(y; µ, σ) denotes a multivariate Gaus-
sian probability density function (PDF), with meanµ and diag-
onal covarianceσ, andσn anddn are the (acoustic) variance
and duration PDF associated with staten. The state duration
PDF was uniform with the maximum state duration set to 15
frames (τmax = 15).

4.5. Rescoring with linear/linear MSHMMs

For comparison purpose, the baseline experiment is to rescore
the N -best list using linear/linear MSHMMs. Rescoring with
linear/linear MSHMMs is quite straightforward. For a given
state sequence, equation (6) is used to calculate the probability
of a sequence of acoustic features. Each hypothesis in theN -
best list is rescored and the one with the highest probability is
recorded for evaluation.

It is worth noting here that this paper considers two types of
state sequences1, ..., sN . One is generated using conventional
HMMs, with HTK. Phone boundaries are specified as a conse-
quence of the forced alignment. This is referred to as a ‘con-
strained’ state sequence. In this case the MSHMM is forced to
use the same state sequence. The other, ‘unconstrained’ state
sequence is produced, ignoring the conventional HMM bound-
ary timing, with ‘SEGVit’. Both are used in turn to rescore
theN -best list with linear/linear MSHMM. However, only the
constrained state sequence is used in the non-linear rescoring
experiment.

4.6. Rescoring with non-linear/linear MSHMMs

As the non-linear trajectories are realized in the articulatory-
based space, a set of conventional monophone HMMs (single
Gaussian) are built on 36 dimensional PFS control parameters
(12 PFS control parameters plus∆ and∆2 coefficients) using
HTK. To rescore with non-linear/linear MSHMMs, non-linear
trajectories are generated for eachN -best list hypothesis. The
state sequence is a constrained state sequence, which is the same
as that used in the constrained linear/linear MSHMMs rescor-
ing. Given this state sequence, the non-linear trajectory can be
directly generated using the technique described in Section 3.

5. Experiment Results
5.1. Linear/linear MSHMMs rescoring results

Tables 3 and 4 show the rescoring results for linear/linear MSH-
MMs, where the state sequence used in Table 3 is constrained
and the unconstrained state sequence is used in Table 4. The
third rows of the tables show the rescoring results after the (cor-
rect) reference transcriptions are added to theN -best lists.

Mapping 1A 6B 10C 10D 49E

Phone accuracy 65.7 65.0 66.0 66.3 65.4
Phone acc.(N+1) 68.4 68.5 68.0 70.1 67.3

Table 3:Phone accuracy of rescoring with linear/linear MSH-
MMs using constrained state sequence on different mapping
schemes

Table 3 shows that the MSHMM based on mapping ‘10D’
gives the highest phone accuracy, either without or with the
reference transcriptions. However, for the unconstrained sys-
tem Table 4 shows the highest phone accuracy is reached using
‘49E’ scheme. In case reference transcriptions are not included,



Mapping 1A 6B 10C 10D 49E

Phone accuracy 65.3 65.8 66.1 66.4 66.4
Phone acc.(N+1) 67.8 68.4 69.7 68.6 70.4

Table 4:Phone accuracy of rescoring with linear/linear MSH-
MMs using unconstrained state sequence on different mapping
schemes

the unconstrained rescoring results (Table 4) are generally bet-
ter than the corresponding constrained results. Furthermore, the
unconstrained rescoring results in Table 4 also show the trend
that phone accuracy increases as the number of articulatory-to-
acoustic mappings increases.

5.2. Non-linear/linear MSHMMs rescoring results

Mapping 1A 6B 10C 10D 49E

MSHMM(old) 66.1 66.4 66.4 66.4 66.7
Mapping reest. 66.2 66.7 66.7 66.9 67.0

Table 5: Phone accuracy of rescoring with non-linear/linear
MSHMMs using constrained state sequence on different map-
ping schemes. Mapping reest. means MSHMM mappings are
re-estimated.

Table 5 shows the results of rescoring theN -best list using
non-linear/linear MSHMMs. MSHMM(old) means the rescor-
ing is based on the original MSHMM models, while ‘mapping
reest.’ indicates that an updated MSHMM model set, whose
articulatory-to-acoustic mapping parameters are re-estimated
relative to the non-linear trajectories, is used for rescoring.

The mapping re-estimation is also based on equation 5. The
original mappings are trained based on the matched sequence of
12 PFS control parameters and 13 MFCCs in the TIMIT train-
ing set. However, instead of using the original 12 PFS control
parameters, the mappings are re-trained based on a sequence
of smooth non-linear trajectories data derived from using the
same algorithm discussed in Section 3. For each utterance in
the TIMIT training set, non-linear trajectories are generated in
the same way with aN -best list hypothesis. Therefore, the re-
trained mapping is based on matched sequences of non-linear
smooth trajectories in 12PFS space and 13 dimensional MFCC
vectors. As is shown in Table 5, the phone accuracies increase
for all mapping schemes after the mappings are re-trained. This
suggests that the re-estimated mapping provides a better fit be-
tween the acoustic features and non-linear formant trajectories.

Because the non-linear/linear rescoring is based on the
same constrained state sequence as in Table 3, the comparison
should be made between Table 3 and Table 5. It can be seen
that non-linear/linear MSHMMs outperform the linear/linear
MSHMM in every mapping scheme, with at most a 2% re-
duction of error rate for mapping ‘6B’. The non-linear/linear
MSHMM also outperforms the linear/linear MSHMM whose
rescoring is based on unconstrained state sequences (Table 4).
Table 5 also shows the trend that performance increases as the
number of mappings increases. As can be seen, the highest
phone accuracy is 67.0% under the mapping scheme 49E.

6. Conclusions and future work
This paper has shown that the use of non-linear formant trajec-
tories achieves a reduction in phone error rate on TIMIT, al-

though the improvement is modest. Hence it can be argued that
the use of non-linear formant trajectories improves the recog-
nition performance, compared with piecewise linear trajecto-
ries. This paper also compares the performance of different
articulatory-to-acoustic mapping schemes and the constrained
and unconstrained state sequences in the rescoring experiments.

The model sets used in this paper comprise monophone
MSHMMs. Of course, the results of a triphone experiment
would be more interesting and this experiment is ongoing. It
is hoped that rescoring the sameN -best list using triphone
MSHMMs would give a higher score of phone accuracy. How-
ever, the monophone results presented in this paper show that
the MSHMM performance can be improved by using richer
class of non-linear smooth trajectories and more sophisticated
acticulatory-to-acoustic mappings.

In the future, a short term goal is to evaluate the non-linear
formant trajectories using context-dependent triphone MSH-
MMs. TheN -best rescoring paradigm will still be used at this
stage. A longer-term goal is to develop a Viterbi type decoder
for the training and evaluation of non-linear/linear MSHMMs.
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Abstract
This paper describes the use of non-linear formant trajectories
to model speech dynamics. The performance of the non-linear
formant dynamics model is evaluated using HMM-based speech
synthesis experiments, in which the 12 dimensional parallel for-
mant synthesiser control parameters and their time derivatives
are used as the feature vectors in the HMM. Two types of for-
mant synthesiser control parameters, named piecewise constant
and smooth trajectory parameters, are used to drive the clas-
sic parallel formant synthesiser. The quality of the synthetic
speech is assessed using three kinds of subjective tests. This
paper shows that the non-linear formant dynamics model can
improve the performance of HMM-based speech synthesis.
Index Terms: Dynamics, HMM synthesis, speaker adaptation

1. Introduction
The purpose of this study is to investigate the use of non-
linear formant trajectories to improve the dynamics model for
speech processing. From this perspective, the starting point of
this research is a linear/linear multiple-level segmental HMM
(MSHMM) [1], in which dynamics are modelled as piece-
wise constant, linear trajectories in a formant-based articula-
tory layer, as is shown in Figure 1. These linear formant trajec-
tories are then transformed into the acoustic space using one
or more linear articulatory-to-acoustic mappings. The inter-
mediate layer presented in [1] is based on formant frequencies,
ranging from the simplest form which just consists of the first
three formant frequencies to a comprehensive representation us-
ing the 12 parallel formant synthesiser (PFS) control param-
eters [2]. Alternative intermediate-layer models of dynamics
have also been studied in the past, such as [3, 4], which pro-
vide much complex models of dynamics. A major motivation
for incorporating such a formant-based intermediate layer into
a MSHMM is to allow speech dynamics to be modelled simply
and directly in an articulatory related space without compromis-
ing the recognition performance. Indeed, both phonetic classifi-
cation [1] and recognition [5] results on TIMIT show that, even
with this simple linear/linear MSHMM system, speech recogni-
tion performance can achieve the upper bound of a fixed linear-
trajectory acoustic segmental HMM. In other words, the incor-
poration of such an intermediate layer does not ‘hurt’.

One of the limitations of the above linear/linear MSHMM
system is the use of linear trajectories to model dynamics. Al-
though a piecewise linear model provides an adequate ‘passive’
approximation to the formant trajectories, it does not capture
the active dynamics of the articulatory system. Moreover, no
continuity constraints are considered across the segment bound-
aries. This motivates the work in [6], which demonstrates that

the phone recognition accuracy can be further improved by us-
ing non-linear formant trajectories to model dynamics. In [6],
the non-linear trajectories are generated by using the speech pa-
rameter generation algorithm described in [7].

W

acoustic layer (e.g., MFCCs)

synthetic acoustic layer

articulatory-to-acoustic mapping
articulatory layer

finite-state process

Figure 1: A linear/linear multiple-level segmental HMM.

This research builds on the work in [6] to evaluate the per-
formance of the non-linear model of dynamics in a HMM-based
speech synthesis paradigm. A simple HMM-based speech syn-
thesis system is built, in which the HMMs are trained on 12 PFS
control parameters and their time derivatives. It was hoped that
the 12 PFS control parameters, which are conventionally used
for formant synthesis, would also be useful for HMM-based
speech synthesis, and the non-linear dynamics model presented
in [6] for speech recognition would be beneficial for HMM syn-
thesis as well. Both HMM-based speech synthesis [7] and the
use of formant information for HMM-based speech synthesis
[8] have been studied in the past. In either case, the speech
parameter generation algorithm is used to produce smoothed
cepstral or formant trajectories. The emphasis of this research,
however, is to study the effect of the non-linear dynamics model
for HMM-based synthesis, rather than to develop a state-of-the-
art synthesis system. Compared with other HMM-based syn-
thesis systems, a novelty of the HMM-based synthesis system
developed in this research is the use of the 12 PFS control pa-
rameters, which combine both source and filter parameters in
a compact form, to train the HMMs and the use of a parallel
formant synthesiser to synthesize speech.

This research has implications for developing unified, train-
able models which can support both recognition and synthe-
sis within the framework of a MSHMM, whose intermediate
layer is based on 12 PFS control parameters. In principle, these
parameters are sufficient to create a ‘talker table’ to define a
‘voice’ for a formant synthesiser. If speaker adaptation tech-
niques such as MLLR or MAP are used to operate in the formant
domain to adapt the model to an individual’s speech, the resul-
tant synthetic speech should sound like that individual. More-
over, adaptation in the articulatory layer should result in more
interpretable changes in formant frequencies.

The rest of this paper is organized as follows. Section 2



briefly reviews the speech parameter generation algorithm to
generate non-linear trajectories. Speech synthesis experiments
and results are shown in Section 3 and 4. Conclusions and fu-
ture work are presented in the final section.

2. Speech parameter generation algorithm
The non-linear formant trajectories used to model dynamics in
this research are generated based on the speech parameter gen-
eration technique [7]. A detailed description of this algorithm
appears in [7], where it is referred to as case 1, and a brief re-
view is provided here for completeness.

Let O = {o1, . . . ,oT } be a sequence of speech observa-
tions and S = {s1, ..., sT } a fixed state sequence of a HMM
M. Assume that the speech vector ot consists of static feature
vector ct and dynamic feature vector ∆ct, ∆2ct. The delta and
delta-delta coefficients are computed using the following equa-
tions, where θ is set to 1 in this paper.

∆ct =
ct+θ − ct−θ

2θ
,∆2ct =

∆ct+θ −∆ct−θ
2θ

. (1)

Let W be the linear transform matrix which transforms the se-
quence of static parameter vectors C into an ‘augmented’ se-
quence of static plus dynamic vectors O. Then the above equa-
tions can be written as

O = WC. (2)

For a given state sequence S, the speech parameter generation
problem is to determine the parameter sequence C which max-
imize P (O|S,M) with respect to C under the constraints (2).
By setting

∂ logP (WC|S,M)

∂C
= 0, (3)

a set of linear equations are obtained. The non-linear PFS con-
trol parameters used in this research are obtained by solving
equation (3). The speech parameter generation technique has
now been widely used in HMM-based speech synthesis systems
to improve the naturalness of the synthetic speech due to the
smoothing effect of the algorithm.

3. Speech synthesis experiments on TIMIT

Speech parameter
generation from HMMs

(Tokuda et al. 2000)

Parallel formant synthesiser
(Holmes et al. 1964)

SpeechText

Figure 2: Diagram showing the HMM-based speech synthesis
system developed in this research.

Figure 2 shows the HMM-based TTS synthesis system de-
veloped for the experimental purpose of this research. An or-
thographic English word string is converted into a sequence of
12 PFS control parameters based on a set of HMMs, which are
trained on 12 PFS control parameters and their time derivatives.
Synthesized speech is then produced by sending generated PFS
control parameters to the parallel formant synthesiser.

3.1. Speech data and model set

The TIMIT corpus, downsampled to 8KHz for compatibility
with the formant analyser, was used for all experiments. The
training data included all male utterances from the TIMIT train-
ing set (3,252 utterances, 8 utterances discarded due to the data

corruption). Each training utterance was computed using the
Holmes formant analyzer to generate corresponding 12 PFS
control parameters, and then converted to HTK format and aug-
mented with ∆ and ∆2 coefficients, resulting in a representation
of 36 dimensional feature vectors with a 10 ms frame rate. 49
three-state, left-to-right (no-skip) single Gaussian monophone
HMMs were built on 36 PFS control parameters using HTK.

3.2. Generation of formant synthesiser control parameters

Given a set of HMMs trained on 36 PFS control parameters and
a phone sequence, the synthesis problem is to generate a se-
quence of 12 PFS control parameters from HMMs, which are
then used to drive the parallel formant synthesiser. An appro-
priate set of 12 PFS control parameters is crucial for the quality
of the synthetic speech. [9] has shown that given appropriate
synthesiser control parameters, a parallel formant synthesiser
can generate extremely high quality speech which is almost
indistinguishable from natural speech. The synthesis problem
can be solved in two steps: 1) to decide an optimal state se-
quence S given a HMM model set Λ and a phone sequence
W , and 2) based on the optimal state sequence S, generate a
sequence of speech parameters o, which maximizes the prob-
ability p(o|S,Λ). For 1), if the state duration for each state
is known, then the state sequence can be obtained. Hence, the
problem is to determine the state duration for each state. Two
methods have been used in this research to generate 12 PFS
synthesiser control parameters from HMMs.

In the first approach, two assumptions are made in order to
simplify the synthesis problem. Firstly, the state sequence is
decided based on the expected state duration, which is deter-
mined by the self-transition probability of each state. Secondly,
the state mean vectors are assumed to be the output observation
vectors. The resulting synthesiser control parameters generated
in this way are referred to as piecewise constant PFS control
parameters.

The second approach is based on the same state sequence
as above. However, the dynamic constraints imposed by the dy-
namic features, i.e., ∆ and ∆2 coefficients, are considered and
the speech parameter generation algorithm described in Sec-
tion 2 is applied to generate a sequence of non-linear, smooth
PFS control parameters. Speech synthesiser control parameters
generated in this way are referred to as smooth trajectory PFS
control parameters.

3.3. Synthetic speech evaluation methods

In order to evaluate the quality of the synthetic speech and more
importantly, to assess the effect of the non-linear formant trajec-
tories, three types of subjective listening tests were conducted
to evaluate different aspects of the synthetic speech. 20 native
English speakers (10 females and 10 males) were invited to par-
ticipate in the test.

3.3.1. Diagnostic Rhyme Test

The Diagnostic Rhyme Test was performed to test the intelligi-
bility of consonants in words’ initial positions. 96 word-pairs,
which are taken from [10], are used in the DRT to test 6 single
acoustic features (or attributes), i.e., Voicing, Nasality, Susten-
sion, Sibilation, Graveness and Compactness.

3.3.2. Naturalness test

The naturalness test aims to evaluate the overall quality of the
synthetic speech in sentence level. Each subject is given 20



synthetic utterances and asked to give their subjective impres-
sion on the overall quality of the speech using the mean opinion
score (MOS) method, i.e., ‘Excellent/Good/Fair/Poor/Bad’.
Subjects are prompted to take factors into account such as nat-
uralness, listening effort, speaking style, comprehension prob-
lems, pronunciation, speaking rate and voice pleasantness etc.
at the beginning of the test. Each subject is given a different set
of 20 synthetic utterances.

3.3.3. Mimicry Test

The purpose of the Mimicry test is to test the perceptual simi-
larity between an individual’s original speech and the synthetic
speech, which is generated from a set of models adapted to that
individual’s speech. In other words, it tests how likely the lis-
tener thinks the two utterances are spoken by the same speaker.
In this experiment, the similarity is measured in 1 − 10 scales,
where 10 means the two utterances are spoken by exactly the
same speaker and 1 indicates that they are spoken by two com-
pletely different speakers. ‘Semi-synthetic’ (or copy synthesis)
speech is used as an intermediate speech to make the compari-
son between original speech and synthetic speech, which is gen-
erated by passing the original speech through the Holmes for-
mant analyzer to derive a sequence of 12 PFS control parame-
ters, which are then sent back to the parallel formant synthesiser
to generate synthetic speech.

Both MLLR and MAP adaptation techniques are used in the
Mimicry test. In addition, the number of adaptation utterances
varies. Since each subject speaks 10 sentences in the TIMIT
corpus, the maximum number of adaptation utterances is 9 in
this experiment. The number of adaptation utterances is cho-
sen as 0 (without adaptation), 5, 9 and 9̄, where 9̄ means the
model set is adapted to a different speaker using 9 adaptation
utterances from that speaker.

4. Experiment results
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Figure 3: (a) DRT test results. (b) Naturalness test results.

It can be seen from Figure 3(a) that the intelligibility of
non-linear trajectory based synthetic speech is higher than syn-
thetic speech based on piecewise constant PFS control param-
eters, with word accuracy percentages of 70% and 67% re-

spectively. The naturalness test result follows the same trend,
in which non-linear trajectory based synthetic speech gives a
higher score, 45%, while piecewise constant control parame-
ters based synthetic speech scores 35.9%, as is shown in Fig-
ure 3(b). A 1-tailed paired t-test was performed to determine
if the non-linear dynamics model was effective and the results
are summarized in Table 1. An alpha level of 0.05 was used for
all statistical tests. Given the small values of p, there is strong
evidence that, on average, the use of the non-linear formant tra-
jectories does lead to improvements on intelligibility and natu-
ralness of the synthetic speech. Moreover, a detailed analysis

M SD df t p
DRT 2.9 5.2 19 2.49 0.01
Naturalness 4.55 4.29 19 4.75 < 0.001

Table 1: t-test results for the DRT test and naturalness test.

of the DRT results is shown in Figure 4, in which the average
scores for each individual acoustic attribute are presented and
comparison is made between two types of synthesiser control
parameters. It can be learnt from these results that there is no
benefit of using the speech parameter generation algorithm in
discriminating voiced/unvoiced and nasal/oral sounds with this
particular type of speech synthesis. The results for the rest of
the acoustic attributes, i.e., sustension, sibilation, graveness and
compactness, follow the same trend, with non-linear, smooth
synthetic speech giving higher scores than piecewise constant
synthetic speech. In addition, a paired t-test discovers that only
the differences between the two types of synthetic speech for
attributes ‘sustension’ and ‘compactness’ are significant.
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Figure 4: DRT test results shown in individual acoustic at-
tribute, where ‘PC’ stands for piecewise constant synthesiser
control parameters and ‘TRAJ’ means non-linear, smooth syn-
thesiser control parameters.

The Mimicry test results are summarized in Figure 5. Fig-
ure 5(a) shows the perceptual similarity between an original
utterance and a semi-synthetic speech. It can be seen that,
even for the first group (S-S), i.e., same speaker saying the
same utterance, the similarity score between original speech and
semi-synthetic speech drops to 56.8%, which suggests the semi-
synthetic speech lost some information about speaker’s charac-
teristics. In addition, it can be noticed that there is no significant
differences between the test results for groups S-D and D-D,
with scores of 33.5% and 33.6% respectively. This indicates
that the perceptual similarity between an original utterance and
a semi-synthetic utterance drops sharply when the utterances
are different (i.e., the content of the sentence), even though they
are from the same speaker.
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Figure 5: (a) Perceptual similarity between original speech and
semi-synthetic speech. S-S: same speaker - same utterance; S-
D: same speaker - different utterances; D-D: different speaker
- different utterances. (b) Perceptual similarity between semi-
synthetic speech and synthetic speech based on HMMs adapted
to the same or different speaker. 9̄: HMMs adapted to a different
speaker with 9 adaptation utterances.

Figure 5(b) shows the perceptual similarity between semi-
synthetic and synthetic speech based on HMMs adapted to the
same and different speakers with different number of adap-
tation utterances. Number ‘0’ means there is no adaptation,
i.e., speaker independent models are used to generate synthetic
speech. Figure 5(b) shows that the perceptual similarity falls
when the model set is adapted to a different speaker (denoted
by 9̄), which is a reasonable result. However, the results of
the mimicry test using MLLR and MAP adapted to the same
speaker are unexpected. The perceptual similarity score de-
creases as the number of adaptation utterances increases when
MLLR is used. When the MAP adaptation technique is used,
the similarity falls from 53.5% to 48.5% as the number of adap-
tation utterance turns from 0 to 5, and then returns to 53.5%
when 9 adaptation utterances are used.

5. Conclusions and future work
This paper shows unambiguously that the use of non-linear for-
mant trajectories to model dynamics can improve both intel-
ligibility and the overall quality of the HMM-based synthetic
speech. The non-linear model of dynamics, generated using
speech parameter generation algorithm, is particularly useful
in improving the overall quality of the synthetic speech with
longer contexts, e.g., at sentence level, as shown in the Natu-
ralness test. This is largely due to the smoothing effect of the
algorithm, which in practice reduces the discontinuities, partic-
ularly between the boundaries of adjacent phones, which typi-
cally occur in the synthetic speech based on piecewise constant
synthesiser control parameters.

In order to produce adaptable voices, conventional speaker
adaptation techniques, including MLLR and MAP, were em-
ployed to generate adapted synthetic speech. However, these
techniques proved to be unsuccessful in the Mimicry test. A
possible explanation is that, while as few as 3 adaptation ut-
terances can result in improvement in the recognition accuracy,
the amount of the adaptation data might be too small for HMM-
based speech synthesis and for this particular type of Mimicry
test. However, this is due to the limitation of the TIMIT cor-
pus. For speech recognition, MLLR is generally performs bet-
ter with small amounts of adaptation data and MAP gradually
catches up when more adaptation data is available. This rule
of thumb seems still applicable in the similarity test, in which
MLLR-based synthetic speech outperforms MAP-based syn-
thetic speech, with at most a 10% difference between the sim-
ilarity scores (when 5 adaptation utterances are used), as can
be seen in Figure 5(b). Compared to other HMM-based speech
synthesis systems, e.g., HTS developed at Nagoya Institute of
Technology [11], the overall quality of the synthetic speech is
fairly poor. Although the purpose of this work is to develop
dynamics model and naturalness is not the highest priority, the
overall quality of the synthetic speech can surely be improved
by adding prosodic structure and using context-dependent mod-
els.

Future work includes building a TTS synthesis system
based on a set of multiple-level segmental HMMs, whose in-
termediate layer is based on 12 PFS control parameters, and
generating formant synthesiser control parameters from these
MSHMMs. Comparison can then be made between the syn-
thetic speech generated by using HMMs and MSHMMs.
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Appendix D

Software Tools

D.1 Tools used in this research

A number of software tools are used in this thesis work. These include:

• SEGVit. SEGVit is a toolkit for MSHMMs training and testing. SEGVit was written

by Martin Russell at the University of Birmingham in C under Linux.

• Holmes formant analyser, developed by John Holmes, which is used to automatically

derive a sequence of 12PFS control parameters from a waveform file.

• Holmes formant synthesiser, developed by John Holmes. This synthesiser is used to

generated synthetic speech from a sequence of 12PFS parameters.

• HTK. HTK is used for standard HMMs training,N -best list generation and evaluation.

• Matlab. Matlab is used to implement the speech parameter generation algorithm, esti-

mate formant-to-acoustic mapping for MSHMMs, and perform statistical significance

test. In addition, some of the graphs used in this thesis are produced using Matlab.

• PESQ. The reference implementation for ITU-T Recommendations P.862, P.862.1,

P.862.2, Version 2.0 for PESQ is used to perform objective evaluation of the synthetic

speech developed. The software is developed jointly by KPN Research, the Nether-

lands and British Telecommunications.
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• HTML, ASP & Javascripts. These are used to build a speech synthesis evaluation

system for subjective tests.

• Perl. Perl is used to deal with speech label files, textual analysis for the TTS system

and file manipulation.

• Excel. Some figures in this thesis are drawn using Microsfot Excel.

• MikTex LATEXsystem and TeXnicCenter editor are used to write this thesis under Mi-

crosoft Windows.

D.2 Softwares developed for this research

D.2.1 The speech parameter generator

This software is developed to generate a sequence of speech parameters given a state

sequence and a set of HMMs using Tokuda’s speech parameter generation algorithm. This

program is implemented using Matlab since it involves lots of matrix operations. The pseudo

code for this program is provided below:

START program

INITIALIZE length to zero

INITIALIZE mean to zero

INITIALIZE variance to zero

INITIALIZE count to 1

INITIALIZE template transform matrix for a single vector

SET transform matrix to template transform matrix

READ a state sequence

FOR each state in the state sequence

CALCULATE state duration

ADD state duration to length

APPEND state mean to mean

APPEND state variance to variance
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ENDFOR

WHILE count < length

SHIFT template transform matrix to the right by one column

APPEND template transform matrix to transform matrix

ADD 1 to count

ENDWHILE

A = transform matrix transpose * variance inverse * transform matrix

b = transform matrix transpose * variance inverse * mean transpose

COMUPTE C by solving A*C=b using QR decomposition

WRITE C as the speech parameter sequence

END program

D.2.2 MSHMMs N-best list rescoring

This program is developed to rescore an N -best list using a set of MSHMMs, which is

written in C programming language, as patch code to SEGVit. The pseudo code for this

program is list below:

START program

INITIALIZE count to zero

GET the size of the nbest list N

CREATE array of size N to hold probabilities for nbest list

INITIALIZE probability array to zero

INITIALIZE temp probability to zero

READ MSHMM model set

READ nbest list

FOR each line in nbest list

IF line contains speech file name

EXTRACT speech file name

READ speech data

READ trajectory data if doing non-linear MSHMM rescoring

ELSEIF line equals a dot
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ADD 1 to count

SET the count-1 element of array to temp probability

RESET temp probability to zero

FREE speech data

FREE trajectory data

IF count = N

SEARCH the array to find the highest probability

WRITE the index of the highest probability

RESET all elements in probability array to zero

RESET count=0

ENDIF

ELSE

READ start time, end time, model name and state number

FOR each model in the MSHMM model set

IF model matches model name

CALCULATE segment probability

ADD segment probability to temp probability

ENDIF

ENDFOR

ENDIF

ENDFOR

END program
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