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Abstract

Remote electronic voting has long been considered a panacea for many of the problems with

existing, paper-based election mechanisms: assurance that one’s vote has been counted as cast;

ability to vote without fear of coercion; fast and reliable tallying; improvement in voter turnout.

Despite these promised improvements, take-up of remote electronic voting schemes has been

very poor, particularly when considering country-wide general elections.

In this thesis, we explore a new class of remote electronic voting protocols: speciêcally, those

which êt with the United Kingdom’s requirement that it should be possible to link a ballot to a

voter in the case of personation. We address the issue of revocable anonymity in electronic voting.

Our contributions are threefold. We begin with the introduction of a new remote electronic vot-

ing protocol, providing revocable anonymity for any voter with access to an Internet-connected

computer of their choice. We provide a formal analysis for the security properties of this protocol.

Next, we are among the êrst to consider client-side security in remote electronic voting, providing

a protocol which uses trusted computing to assure the voter and authorities of the state of the

voter’s machine. Finally, we address revocable anonymity more generally: should a user have

the right to know when their anonymity has been revoked? We provide a protocol which uses

trusted computing to achieve this.

Ultimately, the work in this thesis can be seen as a sound starting point for the deployment of

remote electronic voting in the United Kingdom.
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1 Introduction and
Motivation

I consider it completely unimportant who in the party
will vote, or how; but what is extraordinarily important is
this—who will count the votes, and how.

— Josef Stalin

Designing electronic voting protocols is notoriously difficult: so much so, that despite a wide

breadth of work in the êeld, very few electronic voting systems have been deployed on a country-

wide basis. Indeed, early forays into electronic voting have resulted in widespread criticism of

the election process, and questions as to the reliability and trustworthiness of machines used to

process votes (Mercuri, 2002; Cranor, 2001; Jorba et al., 2003; Chaum et al., 2005; Dill et al.,

2003). In the United Kingdom, despite considerable research into the deployment of electronic

voting, and a number of local trials, it seems unlikely that a practical solution will be deployed in

the near future.

The main difficulty in designing suitable e-voting protocols is in the satisfaction of an ever-

growing, apparently contradictory set of requirements: foremost, one must preserve the secret

ballot: i.e., a voter’s vote must remain unlinkable to them. Compounding the set of requirements
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ascribed to traditional, paper-ballot elections (such as those currently used in the UK), however,

is an extra set of requirements, augmented by security researchers over the past twenty years.

Requirements that are not enforced in current election practices (such as individual veriêability:

the ability to verify that one’s vote is counted as cast—a notion which does not currently exist in

the UK) form an important part of the criteria by which any new electronic voting protocol is

deemed to be acceptable.

Much recent researched has focused on the design of remote voting protocols: namely, those

that do not restrict the physical location of the voter, instead allowing them to use any Internet-

connected machine to vote. The appeal of remote voting lies mainly in the beneêt it offers:

increased turnout of marginal voters—those that are politically engaged, but unwilling or unable

to visit polling stations. However, the cost is clear: a decrease in the trustworthiness of the

environment in which one votes means more work is required to satisfy the aforementioned

requirements.

Working to increase the ‘security’ of an electronic voting protocol often increases its com-

plexity. Thus we are left with the juxtaposition of novice end-users, who are unwilling to trust

protocols which use complex cryptography, and security researchers, who include said cryptog-

raphy so that e-voting protocols are trustworthy. As we will discuss, cryptography is a necessary

factor in any remote e-voting scheme.

The electoral systems of the United Kingdom (and New Zealand) are somewhat unique, in

that they have an unusual legal requirement: it must be possible for an authority to trace a voter

from their ballot, given the appropriate legal permission (Blackburn, 1995; Jonker and Pieters,

2010). Typically, such permission is given in the case of personation (say, for example, a voter

attempts to fraudulently vote on behalf another voter who has died, or is otherwise unable to

vote). It is for this reason that in the UK, ballots are numbered:

Present practice in the UK involves the ballot papers carrying an inconspicuous iden-
tiêcation number…The voter number, as given in the electoral register, is recorded
on the counterfoil when the voter is given her ballot paper in the voting station
(Randell and Ryan, 2005, p. 3)

In keeping with research in surrounding computer security êelds, we term the ability to trace vot-
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ers revocable anonymity. This thesis is concerned with the design of trustworthy remote electronic

voting protocols, which provide revocable anonymity.

1.1 Approach

The aim of this thesis is to explore the design and feasibility of remote electronic voting protocolswhich

permit revocable anonymity, as required in UK general elections. Here, we provide an outline of

the approach we take to solving this problem.

We begin with an extensive analysis of the problem domain: êrst, we explore the requirements

which we strive to satisfy, then discussing much of the most important work in electronic voting

in recent history. We address protocols designed under a number of methodologies, including

paper-based, “end-to-end veriêable” protocols. We then proceed to explore several research

questions, leading to a number of contributions:

Remote Electronic Voting with Revocable Anonymity Above, we noted that one driving

factor of electronic voting is the ability for voters to participate remotely, over the Internet. One

expected beneêt of this is increased overall turnout. However, the ability to vote remotely is

seemingly in direct contrast with the requirement for one’s vote to remain private, and for voters

to remain uncoercible. In the UK, we have a further requirement: the ballot must be in some way

linkable to the voter, given the necessary authority. Our primary contribution is the design of

two remote election protocols, which permit revocable anonymity: the êrst protocols to provide

a practical manner in which to do this, without any extra hardware requirements.

Integrating Trusted Computing with Electronic Voting A particular problem with many

existing election protocols is that they trust the state of the machine the voter uses. What if

the machine is compromised? It then becomes the ‘weak link in the chain’, allowing man-in-

the-middle style attacks on the voter. Our work considers the introduction of trusted computing

(speciêcally, use of the TPM) in order to assure the trustworthiness of an unknown, remote voting

client. Again, we are the êrst to consider this and to provide a detailed protocol speciêcation.
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Auditable Anonymity Revocation An interesting sociological issue arises from revocable anon-

ymity: should a user who is traced be able to determine that this is the case? Continuing from

our work on the use of trusted computing in electronic voting, we explore the issue of how a

voter might be notiêed if her anonymity is revoked. We detail a protocol which uses the TPM

to provide such assurances, and which in fact could be used for any area of computer security in

which revocable anonymity is an issue.

Formal Protocol Veriêcation We extensively verify our work using ProVerif, an automated

reasoning tool based upon the applied pi calculus, drawing on the work of several authors in the

êeld of formal veriêcation. We formalise a number of our requirements in the language, testing

that each is satisêed.

1.2 Thesis Organisation

This thesis is organised in a further seven chapters, as follows.

Chapter 2: Background Information We begin with a summary of the requirements and

properties which we wish to satisfy in our work. This is followed by a detailed discussion of

electronic voting protocols and systems from the past 25 years. We adopt the approach of dividing

the protocols according to the cryptographic primitives on which they are based: blind signatures,

mix networks, and homomorphic encryption and tabulation of votes. We separately address

paper-based protocols such as Prêt-à-Voter, which often use a combination of these preliminaries,

but adopt them in a markedly different manner.

Chapter 3: Preliminaries In Chapter 3, we discuss the cryptographic primitives and notation

which we use, as well as elaborating on some other preliminaries: namely, trusted computing and

the direct anonymous attestation protocol.

Chapter 4: Revocable Anonymity in Electronic Voting In this chapter, we discuss the êrst

of our protocols, which integrates remote, coercion-resistant and veriêable electronic voting with
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revocable anonymity. We believe this protocol to be the êrst work which achieves these properties,

and thus the êrst to be suitable to a UK election scenario.

Chapter 5: Using Trusted Computing We next discuss the design of a related protocol, which

uses the TPM (in particular, the DAA protocol) to ensure the trustworthiness of a remote client.

Again, the protocol provides (optional) revocable anonymity.

Chapter 6: Making Anonymity Auditable In Chapter 6, we explore whether it is possible

for a voter whose anonymity is revoked to be informed of this fact. We discuss the related work

of a number of authors, and then again use the TPM to produce a solution.

Chapter 7: Formalisation of Security Properties Our penultimate chapter provides an ex-

tensive formal security analysis of the protocol discuss in Chapter 4. We adopt the applied pi

calculus and the automated reasoning tool ProVerif, in combination with the work of a number

of authors on the formalisation of security properties in electronic voting, to prove the security

of our êrst protocol.

Chapter 8: Conclusions and Future Work Finally, we conclude the thesis, and make com-

ment on future avenues for further work.

Remarks on Notation

In this work, as with much other work in computer security, we adopt the convention that the

legitimate, honest voter is female. Speciêcally, she is denoted Alice. Where necessary, a non-

speciêc party that Alice communicates with is named Bob. Other named entities are generally

referred to in a sans-serif typeface, or with a single letter, viz. A. Cryptography and mathematical

calculations are denoted by italicised serif type, except where we refer to functions that we have

already deêned, such as the generation of a designated-veriêer signature, denoted in sans-serif

type, viz. DVSignAlice→Bob(m). The only exception to this is where we discuss commands in the

TPM’s application programming interface, which are denoted in slab-serif text, viz. TPM_Quote.
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Finally, we adopt a “message sequence chart” approach when protocols by way of a diagram.

In the êgure below, the protocol being represented involves the encryption of a message m with

Bob’s public key being sent to Bob. Bob replies with his signature on the plaintext m.

Figure 1.1 An example protocol diagram

{m}Bob

sign
Bob

(m)

Alice Bob



2 Background
Information

Chapter Overview

In Chapter 1, we introduced the topic of this thesis, and the motivation for its completion. In this

chapter, we continue to introduce the thesis by way of a detailed discussion of relevant background

material. For a thesis combining remote electronic voting with revocable anonymity, there is a

considerable amount of relevant material.

We begin with a discussion of electronic voting, starting with a discussion of the most im-

portant requirements of a remote electronic voting protocol, covering many of the important

aspects of recent electronic voting protocols, and summarising the reasons why these protocols

are not suitable for our aims. We then discuss the many ways in which anonymity and revocable

anonymity are enforced in security protocols.

Revocable anonymity is not a notion that has previously been considered with regard to

electronic voting. However, it has been addressed in depth in other areas, such as electronic

commerce, where there is a wide breadth of work. We discuss this work in depth, focusing on a
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number of important works, and then ênish the chapter with a discussion of Trusted Computing

and the Trusted Platform Module, which are of critical importance to us for one of the protocols

presented later.

2.1 Remote Electronic Voting with Revocable Anonymity:
Requirements

Before we begin to discuss previous work in electronic voting, we discuss, in Table 2.1, what we

consider to be the most important requirements for any new remote electronic voting protocol,

having considered a wide breadth of work in the êeld. For each requirement, we give a brief

description.

The three properties voter privacy, receipt-freeness and coercion-resistance, which we can loosely

group as all being privacy-related, are increasingly strong forms of the requirement that a voter

should not be linkable to her vote. Intuitively, however, some of these properties present an

obvious conëict. A voter needs to be able to identify that her vote was counted as cast (Individual

Veriêability). Yet, how can she do so without gaining enough information to also prove to

a coercer how she voted, thereby breaking Voter Privacy (and its related properties, Receipt

Freeness and Coercion Resistance)? One approach, as we discuss later, is for the authorities to

produce a proof which convinces the voter, but no-one else—by virtue of the fact that the voter

could produce the proof herself. Remote Voting presents a clear clash with Coercion Resistance:

it is far more difficult to prevent a voter proving to a coercer how she is voting when she is

not physically isolated in a known, trusted location. Further, as Chevallier-Mames et al. (2006)

note, unless all voters on the electoral roll participate in the election, Universal Veriêability is

incompatible with Voter Privacy.

The extra properties that we add (revocable anonymity, and coercion resistance in the physical

presence of a coercer) further complicate the requirements: if a voter’s anonymity is revoked, is

only that voter affected? Can she determine that she has been traced? To what extent can we

require that an election protocol must be resistant to a physical coercer, standing over the shoulder
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Table 2.1 Summary of Properties and Requirements

Property Description

Correctness and
Eligibility

Only eligible voters should be able to vote, and there should be
no trace of the protocol resulting in a successfully counted vote,
by Alice, for candidate i, that did not begin with Alice voting
for i

Uniqueness Only one vote per voter should be counted
Receipt-Freeness The voter should be given no information which can be used to

demonstrate how they have voted, once voting is complete
Coercion-Resistance It should not be possible for a voter to prove how they voted or

are voting, even if interacting with a coercer during voting
“Invisible Absentee”
Coercion-Resistance

Strictly a subproperty of coercion-resistance: the voter should
remain resistant to coercion even in the physical presence of a co-
ercer

Individual Veriêability A voter should be able to verify that their vote has been counted
correctly. Also known as Voter Veriêability.

Universal Veriêability Any observer should be able to verify that all votes have been
counted correctly. Sometimes worded as “the published out-
come is the sum of all votes”

Fairness No-one can gain any information about the tally (or partial tally)
of the election until the end of the voting process

Voter Privacy
(Anonymity)

Neither the authorities nor any other participant should be able
to link any ballot to the voter having cast it, unless the protocol
to revoke anonymity has been invoked1

Revocable Anonymity It should be possible for an authorised entity to reveal the identity
of any single voter, by linking her ballot to her

Remote Voting Voters should not be restricted by physical location (i.e., it
should be possible to vote over the Internet)

of the voter? This latter property, invisible absentee coercion-resistance, could be seen to have its

roots in the notion of duress passwords (Clark and Hengartner, 2008; Stefanov and Atallah, 2010),

an idea which has received little direct research attention.

Many electronic voting protocols have claimed to satisfy the above properties. In the next

section, we discuss what we consider to be the most important protocols in the êeld.

1Note that voter privacy is never achieved in the strongest possible sense: if all voters were to vote the same way,
then all votes are identiêed. Hence we say that no-one should learn more than that which is obtained from the tally.
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2.1.1 The Capabilities of the Coercer

An interesting question to consider is what the coercer, in the context of the properties above, is

able and unable to do in our work. We begin by noting that, importantly, the coercer is not able

to simulate the voter for the entire duration of the voting protocol. For us, we guarantee this by

requiring that the voter’s registration must be done in-person—a requirement that is placed upon

many related electronic voting protocols. This means that the coercer is not able to witness for

certain any of the private information which is given to the voter at the start of the protocol (secret

keys, or random values which the voter chooses or is allocated in order to prove the authenticity

of her vote). It follows that the attacker can alsonot simulate any party who is responsible for issuing

keypairs to Alice—as we will discuss in Section 4.5, such an ability, in many standard electronic

voting protocols, would again allow the attacker to simulate Alice entirely.

As a direct consequence, the coercer is never certain of whether any information provided to

him by the voter or not is valid (i.e., the voter is ‘coerced’), or fake (i.e., the voter is ‘cheating’—we

deêne these terms further in Section 7.5.3—by simply claiming that a given value is valid, when

it is in fact not). At any point after registration, the coercer is able to simulate the voter—but

cannot determine whether his vote is counted or not without being certain that he holds the

correct private key for a voter. However, we note that the legitimate voter is always able to

vote once unobserved. This is an assumption widely believed to be the minimal requirement for

coercion-resistant voting: if we did not have it, the coercer could trivially simulate all of the

voter’s attempts to vote, or simply suppress her voting entirely.

The coercer is able to simulate any authority in our protocols, except for the judge (whom

we trust out of necessity), and subject to the trust assumptions placed on each of our protocols

(see Sections 4.3.2, 5.2.2 and 6.2). We use threshold decryption to ensure that a quorum of

collaborating members of an authority group is required to decrypt votes, or generate threshold

signatures. If any quorum is of size t for a group size n, we assume that the coercer can corrupt

up to t− 1 members of that group, including himself if appropriate. Where our communication

channels are public, the coercer can read a message on any channel, and decrypt it subject to

having the correct decryption key. He can intercept any message and later replay it, and can
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temporarily block any message (though we assume resilient channels, to achieve liveness). Finally,

the coercer is able to inject data into the channels arbitrarily.

2.2 A Brief History of Electronic Voting

In this section, we discuss a number of protocols important to the history of electronic voting. As

we will discuss later, these protocols can generally be divided into a number of categories, relating

to the cryptography that they use, or the type of election protocol (paper-based, veriêable paper

trail, and so on).

Despite a considerable amount of research in the êeld of e-voting, it has enjoyed little real-

world, large-scale success: electronic voting terminals (or DRE—Direct Recording Electronic

voting—machines) introduced in the United States have been criticised on numerous occasions,

and proven to be insecure (Dill and Castro, 2008; Dill et al., 2003; Bannet et al., 2004; Kohno

et al., 2004; Mercuri, 2002; Bannet et al., 2004), as has its attempt at a remote electronic voting

protocol for use by the military, SERVE (Jefferson et al., 2004). The British government, however

enthusiastic (even stating in 2002 that “by 2011, much of the ground should have been prepared

for an e-enabled election” (Local Government Association, 2002, p. 1)), has thus far failed to

implement a credible electronic voting solution, but has made some effort in this direction (Storer

and Duncan, 2005, 2004). Indeed, one of the only countries considered to have successfully ad-

dressed electronic voting in national elections is Estonia, having held national electronic elections

in 2005 (Madise and Martens, 2006).

We will consider, in this section, why electronic voting has not been as successful as it arguably

should have been, and what can be done to improve uptake. We êrst begin with a discussion

of important developments in the êeld. Electronic voting protocols can be placed into one of

four categories, based on the methods used to record and transmit votes, and to elicit anonymity

and veriêability. Earlier protocols are frequently based on the blind signature primitive, originally

invented by David Chaum for use in digital cash protocols (Chaum, 1982, 1985, 1988). Many

more protocols use mix networks, again a primitive introduced by Chaum (Chaum, 1981), to
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elicit voter anonymity. A third popular technique, eliciting both simple tallying techniques and

strong voter anonymity, is in using homomorphic encryption to encrypt and sum ballots. Finally,

we have a number of paper-based and E2E (“end-to-end”, universally veriêable) protocols, which

either involve the user voting on paper, or having access to some sort of voter veriêable paper

trail (VVPAT) as evidence of their vote being cast. Strictly speaking, these protocols often use

techniques from the previous three categories. However, because of the substantial differences in

how voters vote here, we discuss them separately.

2.2.1 Blind Signature-Based Protocols

Many early electronic voting protocols (and some more recent) are based on the blind signature

primitive invented by Chaum (1982) (Dini, 2003; Chang and Lee, 2006; Chen et al., 2004). A

blind signature is one in which the content of the message being signed is kept hidden from the

signer (envision a message being placed in a carbon-lined envelope, and then the envelope being

signed by someone with no knowledge of the contents). It follows that the “blinding” can then

be removed, giving a signed unblinded plaintext message. A typical message m would be signed

using a regular RSA signature scheme by calculating md mod N, where d is the secret signing

key, and N is the public modulus. The typical RSA blind signature would proceed by selecting a

random blinding factor v, coprime with N as follows for a message m. Then:

m′ := mve mod N

s′ := (m′)d mod N

where e is the public exponent. Note that m′ was signed with no knowledge of m, to give s′. The

signed, unblinded message can easily be recovered:

s := s′ · v−1 mod N

:= md mod N
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because ved ≡ v. Note that it is not possible for the signer to link the blinded signature to the

unblinded one, without knowledge of v. Some consideration has been given to fair blind signatures,

which alleviate this problem somewhat (Claessens et al., 2003). Blind signature-based protocols

are also inherently incompatible with universal veriêability, since the authorities are generally able

to add spurious ballots to the tally (a notion known as ballot stuffing).

2.2.1.1 Chaum: Unconditionally Secret Ballots

Chaum’s early work on electronic voting suggests a protocol in which the following properties

are satisêed:

1. A voter’s privacy/anonymity is only violated by cooperation of all other voters

2. Voters can ensure that their ballots are counted

3. Voters wishing to disrupt an election can only cause a small delay before being ejected

In the protocol he details, Chaum provides unconditional security against tracing the senders of

messages, and uses blind signatures to do this. The protocol involves a voter, Alice and organisation

Admin, and follows the order below for issuing a ballot:

1. Admin broadcasts to all participants:

• A security parameter s

• Another integer parameter n

• An RSA modulus N

• A prime number d > N

• n random units of the ring of residue classes mod N (‘units mod N’), vj where j ∈

{1, . . . , n}

2. Alice sends to Admin M = (mi,j) : mi,j ≡ vπi(j)r
d
i,j where i ∈ {1, . . . , s}, with πi random

permutations of {1, . . . , n}, and ri,j random units mod N
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3. Admin sends back to Alice C, a ‘random nonempty proper subset’ of {1, . . . , s}

4. Alice sends to Admin:

• An element k ∈ {1, . . . , s} \ C

• P = (pi,j) where pi,j = πi(j) for i ∈ C

• pi,j = π−1
k (πi(j)) for i /∈ C

• Q = (qi,j) where qi,j ≡ ri,j for i ∈ C

• qi,j ≡ rk.π−1
k (πi(j))r

−1
i,j for i /∈ C

5. Admin veriêes that each row of P is a permutation of {1, . . . , n}; that mi,j ≡ vpi,jq
d
i,j for

i ∈ C, and that qdi,j ≡ mk.pi,jm
−1
i,j for i /∈ C

Step 1 above forms only the preliminary phase of the election, and is done only once. Admin also

broadcasts an assignment of an outcome to each vi.

During the registration phase, each voter communicates with Admin. If Admin agrees that the

voter can register, then voter Alice and Admin conduct the ballot issuing protocol given above.

This results in a tuple of n elements mk,i, of which the voter selects one, denoted bl for the lth

voter. The ênal result of the registration phase is the set of bl. Disputes can still be made at this

stage without revealing votes.

Finally, in the voting phase, Admin broadcasts the dth roots of all of the bl values. The lth voter

can then recover the dth root on a vi value by dividing the dth root of bl by the corresponding

rh,j. The voter then (anonymously) broadcasts the root of the vi recovered. The ênal number of

votes for each candidate is the number of dth roots of vi values corresponding to that candidate

(Chaum, 1988, pp. 178–180)

This protocol is, of course, rather complex. More importantly, there is a security risk in

only using one Admin—a large degree of trust is placed on this entity, which could misbehave

and thereby disrupt the election. This would not result in incorrect results, as voters can verify

that their votes are counted, but would lead to the election being voided. As Chaum suggests,
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the protocol is robust (but as noted by Fujioka et al. (1993), it is not fair, as intermediate election

results can be determined by the authorities, nor does it guarantee privacy if the voter complains).

2.2.1.2 FOO, and Related Protocols

Any treatment of electronic voting protocols would be incomplete without a discussion of Fujioka

et al.’s protocol (1993), commonly termed FOO. Based on the earlier work of Chaum (1988) on

blind signatures, it is generally accepted to be one of the êrst credible (fair, anonymous) electronic

voting protocols, and has spawned many descendants.

The FOO’92 scheme includes voters, an administrator and a counter (which could be a public

bulletin board). Voters and the counter communicate via anonymous channels (implemented by

a mix network, for example). The protocol uses a bit-commitment scheme, a standard signature

scheme, and a blind signature scheme. As in the paper, the following notations are used. Note that

the authors do not detail how each primitive (e.g., bit-commitment scheme, signature scheme,

blinding technique) is implemented:

Vi: Voter i

A: Administrator

C: Counter

ξ(v, k): Bit-commitment scheme for message v using key k

σi(m): Voter Vi’s signature scheme

σA(m): Administrator’s signature scheme

χA(m, r): Blinding technique for message m using salt r

δA(s, r): Technique to retrieve a message from a blind signature

IDi: Voter Vi’s identity

vi: Voter Vi’s vote

The protocol proceeds in six stages, which the authors brieëy deêne:

1. Preparation The voter êlls in a ballot, encrypts and blinds it and sends it to the administrator

2. Administration The administrator signs the blinded message and returns it
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3. Voting The voter unblinds the signed encrypted vote obtaining a signed vote, and anony-

mously sends it to the counter

4. Collecting The counter publishes the ballots received

5. Opening The voter sends a decryption key for the vote anonymously to the counter

6. Counting The counter counts the votes and announces the results

The scheme seems thus far to be quite elegant and simple. The authors now go into more detail

about how it works—this detail is summarised below.

Preparation

1. Voter Vi selects a vote vi and completes a ballot xi = ξ(vi, ki) using a random ki

2. Vi calculates message ei using blinding algorithm ei = χ(xi, ri)

3. Vi signs si = σi(ei) and sends the tuple ⟨IDi, ei, si⟩ to Admin

Administration

4. Admin checks that Vi is authorised to vote. If not, the tuple is rejected.

5. If Vi is authorised, Admin checks that Vi hasn’t already voted (applied for a signature)1. If

Vi has voted, the tuple is rejected

6. Admin checks the signature si on ei usingVi’s public key. If it is valid, Admin signs di = σA(ei)

and sends di as a certiêcate of authorisation to Vi

7. At the end of this stage, Admin announces the number of voters who were given authori-

sation to vote, and publishes the list of allowed ⟨IDi, ei, si⟩ tuples2

1It should be noted that in this manner, Admin is able to form a list of entities who have voted. This should be
avoided if possible, as it is a small breach of anonymity.

2Again, this makes the fact that a voter applied to vote public, and is therefore undesirable—the voter’s ID should
be hidden in some way.
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Voting

8. Vi unblinds the received signature of ballot xi by yi = δ(di, ri)

9. Vi then checks that yi is a valid signature on xi. Else, vi claims that the signature is invalid

by showing ⟨xi, yi⟩ to Admin1

10. Vi sends ⟨xi, yi⟩ to the counter through some anonymous channel

Collecting

11. Counter C checks the signature yi on xi using Admin’s public key. If the check is successful,

C forms a vote number l and enters ⟨l, xi, yi⟩ onto a list.

12. Once all voters have voted, C publishes the list, such that all voters will be able to access it,

and all voters will be able to verify that each xi is legitimately authorised by Admin.

Opening

13. Vi checks that the number of ballots on the list is equal to the number of voters (i.e., all

voters requesting signatures have to vote). If not, a voter Vi can use his blinding factor ri to

prove this to Admin.

14. Vi checks that their ballot is on the list, otherwise using the ⟨xi, yi⟩ values they have as proof

15. Vi sends the key ki with the vote number l to C through the anonymous channel

Counting

16. C opens xi = ξ(xi, ki) using ki for the vote numbered l, and retrieves vi. It checks that vi is

a valid vote, then adds the vote to the list

1Note that showing this pair does not give Vi’s identity if done over an anonymous channel. However, arguably
the voter would have to authenticate herself to Admin again to prove that the value of yi was meant to be a signature
on xi and wasn’t just, for example, made up. This means that again, Vi’s identity is potentially released.
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17. The ênal tally is simply the number of votes for each candidate, which is announced at the

end of the counting stage.

This protocol is noted for being particularly elegant, efficient and secure. There is no way for

the public to disrupt the election, nor for the voter to change their mind1; it is not possible to

double-vote, and, because the voter’s ID value is only given to Admin, there is no way to link Vi

and vi, provided anonymous channels are used to communicate with at least one party. Further,

counting is only done at the end of the voting stage (Fujioka et al., 1993, p. 249), meaning that

the counter cannot inëuence the vote by releasing tally information. This means that fairness is

maintained. What is more, the system provides no receipt of voting to the voter (merely a proof

that their vote is permitted, without detailing what the vote is), meaning that receipt-freeness is

maintained. The protocol is not, however, coercion-resistant: neither are many of its descendents.

However, the protocol does suffer from a number of problems. As the authors suggest, if

Admin is found to have committed any fraud, then the entire voting process is voided. This is not

overly surprising, but is highly inconvenient. Perhaps, if several administrators (with a single list

of voters) worked as a group, then a smaller proportion of voters could be asked to recast their

votes instead.

The assumption of anonymous channels would presumably involve mix networks, and so

cannot be considered an issue. However, the stages in which the election is conducted are prob-

lematic. FOO is a three-phase protocol, in which all voters must synchronise at the end of each

phase: the administration phase must be complete before voters can check the list and vote; the

collecting phase must be complete before voters can check for their votes on the list and submit

their ⟨l, ki⟩ tuples. Note further that voters are actively involved in interaction with the authori-

ties during tallying as well as voting, which is particularly inconvenient—voters are, in the current

system, apathetic at best; a system requiring them to return twice or more to complete their vote

is unlikely to be accepted.

The other issue is that the protocol is not coercion-resistant —an adversary could easily tell a

voter to vote a certain way if they were voting remotely, and the bit-commitment scheme means

1This presents a problem: one way to avoid voter coercion is to allow a change of mind!
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that said voter is then unable to void her previous vote and vote again. Further, as noted by Ray

et al. (2001), the encrypted ballot, cast by the voter, contains her signature (meaning that the

ballot can be identiêed). This removes anonymity from the voter. A ênal point is that no voters

are able to abstain—if someone does, then the authorities can conspire to vote on the abstainer’s

behalf.

Furthermore, as the authors state, the Tallier issues a signed receipt to the voter. This allows

the voter to prove that they voted, if not how (the paper does not go into detail).

As mentioned earlier, a number of protocols have been spawned from FOO (Herschberg,

1997; Cranor and Cytron, 1997; Foster et al., 2006). Sensus (Cranor and Cytron, 1997) has

received particular attention. The protocol claims to solve some of the problems with FOO: the

voter does not have to participate in the ênal tallying stage (and does not need to synchronise

with other voters after voting), and the voter can explicitly state that they choose to abstain. As

in FOO, it is still possible for invalid votes to be added to the tally by the tallier, who may be

dishonest (note that the authors claim that the voter only needs to trust the pollster); further, this

is only detected by “any party who checks the authenticity of the validation certiêcates for all

ballots”. For a large voting population, this is completely unrealistic and would take too much

time.

Cranor and Cytron make a number of strong assumptions about their protocol, which draw

question to its applicability:

• The authors assume that a vote cannot be traced to its voter by tracing packets sent over

the network—hence, an anonymous channel which does not show even the presence of

communication is assumed

• The voter is assumed to use a computer in which it is “not possible for clear text messages

to be intercepted”, hence no part of the system can be ‘hacked’

• The authors assume that messages from voters “will not arrive at the validator and tallier in

the same order”, else unlinkability between votes and voters is clearly violated if the tallier

and validator collude
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The protocol is a close implementation of FOO, adapted for a real-world scenario by the

introduction of a pollster—an agent that executes “cryptographic and data functions” on the voter’s

behalf (who must therefore be trusted). This in itself is a security issue, as is the authors’ admission

that, given two identical ballots, only one would be counted. Note further that although a voter

can state that they wish to abstain, a misbehaving voter may deliberately not indicate this. Such

misbehaviour again allows authorities to conspire to vote on that voter’s behalf. Finally, as noted by

Dini (2003), if the machine the voter uses crashes between contacting the validator and receiving

a certiêcate back, the voter is never able to vote.

2.2.2 Mix Network-Based Protocols

Mix networks (Chaum, 1981) are a cryptographic primitive designed to simulate an anonymous

channel between two endpoints, through a chain of proxy servers. They can be divided into two

types: decryptionmixes and re-encryptionmixes. Decryption mix networks are the sort êrst proposed

by Chaum, but both types work on a similar principle. In order to anonymously send a message

m from Alice to Bob, Alice sends the message, encrypted in some way, to an intermediate mix proxy

mi. A number of other participants, each with their own messages for other destinations, do the

same. When the mix proxy has received a sufficient number of messages, it forwards them in a

random order to the next stage of the chain (which could be the intended destination, or another

mix, depending on the desired level of anonymity). The way in which messages are handled

at each mix in the mix cascade is where decryption and re-encryption mix networks differ. In a

decryption mix, Alice must not only know the public key of her intended recipient, but also all of

the public keys for each intermediate mix proxy. She êrst encrypts the message with Bob’s public

key, and then that, plus the destination of the message (Bob), with the mix which will receive the

message before Bob does, then the one before that, and so on. In Chaum’s work, a random seed

ri is added at each stage; this is not necessary for probabilistic encryption schemes:

{rn, {rn−1, {...{r2, {r1, {r0,m}Bob, Bob}mix0}mix1 ...}mixn−2}mixn−1
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Alice begins by forwarding the encrypted message to mixn−1, who removes the êrst layer of

encryption, giving

{rn−1, {...{r2, {r1, {r0,m}Bob, Bob}mix0}mix1 ...}mixn−2}

and then forwards the ciphertext tomixn−2. The process continues until Bob receives and decrypts

the message. Note that only one member of the mix cascade needs to be honest in order for Alice

to remain anonymous, even if all other mixes collude. One of the main failings of decryption

mixes, however, is that a single mix failure causes the message to be lost (as, at some stage, it will

be not be realistically possible to decrypt it). Solutions to this problem involving a threshold mix

using ElGamal threshold decryption have been presented (Jakobsson, 1998). The work required

by the message originator is also proportional to the number of mixes.

The alternative re-encryption mix networks rely on public-key encryption schemes that permit

re-encryption, such as ElGamal (discussed in Sections 3.1.1 and 3.1.4). Alice, the originator of the

message m, does not need to know the number of mixes in the cascade, and only one encryption

is required of Alice. She encrypts m with the public key of the mix itself, and forwards the

ciphertext to the êrst mix server. This server takes a batch of input ciphertexts, re-encrypts

them using some random seed, and forwards a random permutation of these re-encryptions to

the next mix server. When the exit mix (the last mix server) receives the batch of ciphertexts, a

quorum of cooperating mix servers can jointly decrypt the ciphertext, thence forwarding it to its

destination. Re-encryption mix networks are clearly more robust, and require less work for the

message originator. Much work has been done on further increasing this robustness (Jakobsson

et al., 2002; Boneh and Golle, 2002; Holle et al., 2002; Golle et al., 2004; Wikström, 2005; Sako

and Kilian, 1995) by making mix networks veriêable: i.e., able to prove that they are handling

inputs in the correct manner.

Many election schemes assume the availability of an anonymous channel (including FOO,

discussed earlier), implicitly meaning a mix network of some sort. Here, we discuss some of the

most important protocols which use mix networks to ensure voting security.
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2.2.2.1 Sako & Kilian

The Sako-Kilian protocol (Sako and Kilian, 1995) was the êrst to use ElGamal re-encryption to

provide a provable, universally veriêable mixnet for electronic voting. Although the protocol does

not assume a physical voting booth (an assumption which would rather hinder remote voting),

it does assume the existence of a private, physical untappable channel, which is extremely hard to

create.

The authors êrst explain a standard zero-knowledge bit commitment scheme, involving a

prover committing to a value b by generating a pair (B, Sb), where B is a “blob”, and is sent to

the veriêer. The prover can later apply a protocol open to B by sending Sb to the veriêer, which

allows the veriêer to generate b using the two values B, Sb. The bit-commitment scheme used by

Sako and Kilian is such that it is computationally infeasible to generate another Sb such that b can

be obtained in any other way. A chameleon blob is one that allows the veriêer, on input (B, b), to

generate the correct Sb. The protocol uses chameleon blobs to allow the veriêer to forge proofs.

Sako and Kilian’s protocol details a universally veriêable mix network, whose security is en-

sured by forcing each mix server to prove that messages are being correctly processed. For brevity,

and as it is not appropriate to the focus of this work, we do not discuss this here.

Protocol The protocol is summarised by the authors in four steps:

1. First, for each voter i, the ênal counting center posts encryptions of 1-votes and 0-votes

(note that this protocol therefore only allows for elections with two possible outcomes, in

its basic form). The center commits, using chameleon bit commitments, to the random

ordering of these votes, and proves the pairs are correctly constructed. He opens the order-

ing to the voter (i.e., reveals the order by applying open to the chameleon commitment),

through the aforementioned untappable channel

2. Each mix server shuffles the two votes for each voter, committing to that shuffle using

chameleon commitments, and proving the correctness of every shuffle, again revealing this

shuffle to the voter on the untappable channel
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3. The voter, keeping track of the initial ordering and how the order was permuted by each

mix, knows which vote is which, and can submit one of these votes

4. All votes are sent to the counter using a veriêable mix network, and thence tallied.

Sako and Kilian provide a more detailed set of implementation steps:

Constants

p = kq+ 1 (p, q prime);

g = (g′)k mod p (g′ is a generator,

mod p)

Centre j’s public key yj = gxj mod p

Centre j’s secret keys xj

Voter i’s public key αi = gai

Voter i’s secret key ai

1-vote m1

0-vote m2

The protocol proceeds as follows:

1. The last mix centre, n, executes the following for each voter i:

• Commit a random bit string π(i,n) length l + 1 using public key αi. Let π(i,n)k denote

the kth bit of this string.

• Generate v0 = (Gn,Mn) = (gr2n ,m0.yr2n). G and M represent two parts of the message

sent to each mix; r is a random number, which is fresh for each message pair.

• Generate v1 = (G′
n,M

′
n) = (gr2n−1 ,m1.yr2n−1). In both of the above, y represents

∏
yi.

• Place (v0, v1) if π(i,n)1 = 0 and (v1, v0) otherwise. Prove that the placed pair is a

combination of 1-vote and 0-vote in a similar technique to those described previously,

l times (l is a security parameter)

2. The centre reveals to the voter which vote is the 1-vote, by decommitting π(i,n)

3. The next centre, n− 1, execute the following with each voter i:
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• Commit a random bit string π(i,n−1) length l + 1 using public key αi. Let π(i,n−1)
k

denote the kth bit of this string.

• Generate (Gn−1,Mn−1) = (Gn.gr2(n−1) ,Mn.yr2(n−1)).

• Generate (G′
n−1,M

′
n−1) = (Gn.gr2(n−1)−1 ,M′

n.y
r2(n−1)−1). (Gn,Mn) and (G′

n,M
′
n) are

votes for voter i sent from the previous mix centre.

• Centre n− 1 places the votes in this order if π(i,n−1)
1 = 0, and reversed otherwise. He

proves that the pair is a combination of 1- and 0-votes.

4. The centre reveals how he placed the votes by decommitting π(i,n−1).

5. Steps 3 and 4 are repeated for mix n− 2, and on to the êrst mix centre.

6. The voter, who can compute which vote is a 1-vote and which is a 0-vote, submits the

vote he wishes to make to the êrst centre, which routes it back to the last one (counting

centre) through a universally veriêable mix channel

7. After the last centre reveals the permuted votes, anyone can compute the number of votes

m0 and m1

(Sako and Kilian, 1995, pp. 400–01)

Despite the protocol’s achievements, it does have problems. In the form presented here, it supports

only two-way voting, and requires a considerable amount of work from the voter. Further, as

noted by Michels and Horster (1996), a coercer must not collude with any mix, or else the tally is

at risk of being incorrect. One might further bring the scalability of the protocol into question,

and also its applicability to remote voting, given the strong requirement of an untappable channel.

2.2.2.2 Juels, Catalano and Jakobsson: Coercion-Resistant Electronic Elections

The work of Juels et al. (2005), known as the ‘JCJ’ protocol, is widely regarded as being seminal

in the êeld of remote electronic voting, and has spawned a popular implementation, Civitas

(Clarkson et al., 2008). Their scheme requires only an anonymous channel, and uses mix networks

to permute votes and voter credentials, ensuring voter anonymity. Juels et al. are the êrst to
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provide a stronger model of real-world attacks, which must be considered in any remote voting

protocol:

• Randomisation A coercer tells a voter to submit random ballot material. Thus, although

neither voter nor attacker learns the vote, the choice of the voter is nulliêed. The authors

note that the protocol due to Hirt and Sako (2000) is susceptible to this attack.

• Forced Abstention The attacker forces the voter to refrain from voting

• Simulation The attacker forces the voter to divulge her private key after registration but

before voting. Thus, the attacker can simulate the voter’s actions

Preliminaries When the voter Vi casts her ballot, she identiêes herself with a digital signature,

or some interactive authentication protocol. At this time, the voter incorporates a concealed

credential, an encryption of a secret σ, provided to her by a registrar. The tallying authority

T performs a blind comparison between these credentials, and a list L of encrypted credentials

which are published by a registrar R, leading to veriêcation without revealing the identity of the

voter. This method means that a coerced voter can give the attacker a fake credential σ̃, without

demonstrating that the credential is invalid.

The list of participants begins with a set of RegistrarsR = {R1,R2, . . . ,RnR} who issue keys

and credentials. Further, a set of Talliers T = {T1,T2, . . .TnT} who process and count votes, and

a set of voters V = {V1,V2, . . .VnV} where i is an identiêer for voter Vi. A bulletin board BB

is assumed as explained before, which voters can read only once the voting process is complete.

The authors deêne a candidate slate C to be an ordered set {c1, c2, . . . , cnC}, each of which is a

potential voter choice. A candidate is identiêed by an index j. A vector X, such that xj is the

number of votes for j, is the tally.

The authors’ protocol makes use of threshold cryptography (as described in Section 3.1.1)

and a Plaintext Equivalence Test tool PET, which allows comparison of two distinct ciphertexts

to determine the equality of their plaintexts, without revealing those decryptions. Finally, the
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system uses a standard re-encryption mix network, and non-interactive zero knowledge (NIZK)

proof technique. The protocol follows êve stages.

Protocol Setup Keypairs are generated for the registrar and tallier, the public parts of which are

distributed.

Registration Having proved eligibility to vote, Vi receives from R a random value σi ∈U G,

which represents the voter’s credential (G is an algebraic group described in more depth by the

authors). This might be generated in a distributed manner between several registrars. R then adds

Si = EPKT [σi], where E represents a polynomial-time ElGamal encryption (and D the reverse) to

a voter roll, L. L is maintained on the bulletin board and signed by R.

Slate Publication R publishes a candidate slate C containing unique identiêers for all the candi-

dates, with an election identiêer ϵ.

Voting To vote, a voter casts a ballot for cj containing two ciphertexts—one on her choice cj, and

one on the credential σi. The intricacies of this vote are left to the paper. The voter includes an

NIZK proof of knowledge for cj and σi, amongst other data.

Tallying To tally the ballots in BB, T :

1. Checks the proofs of correctness for each ballot. Let A1 and B1 denote the list of ciphertexts

on candidates and credentials respectively.

2. Performs PETs on all ciphertexts in B1, removing ballots with the same value—this prevents

double-voting. Let A′
1,B

′
1 respectively denote the resulting ciphertexts.

3. Applies a mix network to A′
1,B

′
1 using the same permutation scheme for both, giving

A2,B2.

4. Applies the mix network to L, the voter roll, then compares each value of B2 to the ci-

phertexts of L using PET. A3 is the resulting vector of votes which were made by valid

voters.

5. Publishes the decryptions of all ciphertexts of A3, i.e., the ênal tally.
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(Juels et al., 2005, p. 71–2)

It should be noted that a voter is able to deceive a coercer by merely providing an incorrect

σi value at the time of voting. In this manner, the voter is conêdent her vote won’t be counted,

but the coercer may be convinced otherwise. She can then vote at another time correctly. Note,

however, that JCJ (and Civitas, discussed below) cannot protect from a coercer who stands over

the shoulder of the voter to observe her behaviour, as she must execute a protocol which generates

fake credentials. This is something which we aim to address in our work.

The authors themselves note that the scheme is impractical for large-scale elections, as it has

an overhead for tallying authorities which is quadratic in the number of voters (this is mainly

due to the inefficiency of the PET). The PET (Jakobsson and Juels, 2000) is, in fact, the main

cause for criticism of the JCJ protocol: it involves several rounds of pairwise blind comparisons

between all ballots and all credentials, making the tallying portion of the protocol particularly

inefficient, and questioning the practicality of the protocol on a large scale. Smith (2005) later

proposed alterations which improve efficiency, but introduce undesirable properties (such as ballot

collisions) and a security ëaw, as discussed by Weber et al. (2007), who suggested modiêcations

which are now also considered broken, as an attacker is able to determine whether a vote with

a known credential is counted or not. Research into removing the quadratic complexity (with

respect to the number of votes) of the scheme is ongoing (Clark and Hengartner, 2011; Spycher

et al., 2011).

2.2.2.3 Civitas

Civitas (Clarkson et al., 2008) is a real-world implementation of JCJ, discussed above. The scheme

is a direct implementation of the scheme, with a few exceptions: Civitas distributes registration

trust between several tellers, allowing production of credential shares; it uses multiple “ballot

boxes” rather than bulletin boards, and importantly, it gives concrete consideration to the scala-

bility of the scheme. Like JCJ, Civitas has a number of trust requirements, some of which affect

the real-world practicality of the scheme.

Foremost, users must trust their voting clients. As we discuss in Chapter 5, this is a strong
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assumption, and not always a wise one: viruses could easily affect a user’s vote without their

knowledge. The “ballot boxes” must be—at least in part—trustworthy, in that they return all

votes to the tabulation tellers.

Unfortunately, Civitas does not change the way in which credentials and votes are tallied

using PETs, meaning the scheme is as inefficient as that which preceded it. The authors note

that, even with division of the electoral into smaller, more manageable voting wards, tabulation

and duplicate credential/vote elimination is still expensive (Clarkson et al., 2008, p. 362).

2.2.2.4 Helios

Helios (Adida, 2008) is a remote election scheme based on the premise that some elections “do

not suffer from nearly the same coercion risk as high-stakes government elections” (Adida, 2008,

p. 335). As such, it is a scheme designed for low-coercion environments, which focuses more

strongly on election integrity than on coercion-resistance. The protocol is based on the earlier

Simple Veriêable Elections by Benaloh (2006) (itself based on the Sako-Kilian mixnet, discussed

above), which we will discuss êrst.

Benaloh’s work begins with the idea that complex cryptographic voting protocols are often far

too difficult for non-specialists to understand, and hence deliberately abstracts away cryptography

from the protocol he suggests. His work uses threshold encryption (speciêcally of the ElGamal

variety) to ensure voter privacy, as does much work since. Benaloh’s work continues with a

discussion of an interactive proof method used in ballot tallying in his protocol, by which any

observer can verify that the election was conducted correctly. The aim is to prove that two sets

of encrypted ballots consist of the same votes (i.e., one may be a reencryption of the other). We

begin with a set B of encrypted ballots, with the aim of ‘shuffling’ these ballots blindly (Benaloh,

2006, p. 3):

1. Each ballot Bi ∈ B is re-encrypted randomly to form B′
i

2. The set of re-encrypted ballots {B′
1,B

′
2, . . . ,B

′
m} is randomly permuted to give B′

3. A collection of n additional sets of ballots B1,B2, . . . ,Bn is generated in the same manner
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4. A set of n challenge bits c1, c2, . . . , cn is generated

5. For each i where ci = 0, Bi is shown to be equivalent to B by revealing the re-encryption

and permutation data. For each i where ci = 1, Bi is shown to be equivalent to the original

re-encrypted set B′ by composing the re-encryption and permutation data used to create

Bi with that used to create B′, and revealing the composition

This interactive proof method removes the possibility of proving equivalence of any Bi to both B

and B′. The scheme can be made non-interactive using a standard Fiat-Shamir heuristic (Fiat and

Shamir, 1986). Now, with the original ballot set stripped of identifying information, any party

can generate their own shuffle, which is accompanied by a proof that the result set is equivalent.

The ênal, encrypted shuffling can be decrypted by a quorum, allowing tallying.

Casting an actual vote is discussed at a rather high level. Benaloh discusses an in-person voting

scheme only, in which the vote-creation device produces an encrypted ballot (in the form of a

magnetic card, with the encrypted vote also printed on the front) for the voter’s choice. The

voter then signs in and swipes the magnetic card through a reader which stores his encrypted vote

with her name. The magnetic card is then used as the voter’s receipt, with which she can later

verify his vote was cast (but cannot prove how she voted). Benaloh goes on to discuss various

auditing options, including the option to immediately decrypt any ballot before casting.

Of course, this scheme is open to problems. Foremost, listing of the voter’s identity with an

encrypted vote allows a coercer to see that a voter has voted, meaning forced-abstention attacks

are possible. Further, as noted in later work by Benaloh (2007), many other coercion attacks are

possible: a voter could be given an encrypted ballot in advance; chain voting is possible1; a single

vote-buyer could generate several encrypted ballots and remove them for later coercion of vote-

sellers. Benaloh provides a number of solutions to this problem—for a voting-booth scenario—in

his 2007 work.

1Chain voting is where a vote-buyer obtains a blank ballot, completes (but doesn’t submit) it, and leaves the
polling station. He gives this to a vote-seller, with some form of remuneration, and requests that it is cast—he can
verify this later. The vote-seller then returns later with another blank ballot for the buyer, allowing continuation of
the chain.
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Helios (Adida, 2008; Adida et al., 2009) is related to the protocol discussed above, êrst in that

a voter can produce ballots before authenticating herself in any way, and is only identiêed at the

point of voting. Note that this means that anyone is able to test the validity of the ballot creation

protocol. As Helios is a remote voting protocol, ballot production is in the form of a hashed

ciphertext, which can be audited by the voter, who can acquire the plaintext and randomness

used in the encryption and hash. She can continue to generate and verify fresh ballots, or seal a

ballot by discarding the randomness and plaintext. Only then does she authenticate and submit

her vote. Note that the ballot is not signed before casting, and that the voter can see the hash

of her vote before it is sealed. Both of these issues can give rise to coercion in more at-risk

environments; Helios deliberately avoids considering this problem.

Helios, like Benaloh, assumes that encrypted cast votes are listed next to their voter’s name on

a bulletin board. Some proportion of voters and auditors must check the correctness of the board

(though, as noted by Neff (2003), very little auditing is actually required to elicit high conêdence

in election results). Helios shuffles all encrypted ballots and proves shuffling after the election

closes, as with Benaloh’s protocol. Finally, it decrypts each ballot, provides a decryption proof for

each, and tallies the election. It seems apparent that this method of decryption, proof and tallying

would be ineffective for a large election (but perhaps these are not considered by Helios, for the

same reasons discussed above).

Adida’s closing comments reëect Helios’ stance that coercion resistance is often “futile from

the start”, namely because with any voting scheme (remote or otherwise), the voter gains little

assurance of the software running on the election server, or client. As noted by Adida, a possible

solution to this lies in hardware-rooted attestation (trusted computing). Note that as they stand,

neither Helios nor the protocol on which it was based are receipt-free.

2.2.3 Homomorphic Encryption-Based Protocols

Homomorphic encryption schemes are extremely common in electronic voting protocols, for a

simple reason: they allow efficient re-encryption and threshold decryption, and permit tallying

of an election without the decryption of any single vote. Homomorphic encryption is also
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commonly used as a simpler method to ensure universal veriêability of the tally. We discuss the

ElGamal threshold encryption scheme, as well as the consequences of its homomorphic nature,

more in Section 3.1.1, and so only summarise it here.

Given a generator g for an appropriate cyclic group G of order q (where p, q are suitably large

primes and q divides (p − 1)), we select a private key s at random, a public key h = gs, and a

random α ∈R {0, . . . , q− 1}. An encryption of a message m is then constructed as

(x, y) = (gα, hα · m) = (gα, gαs · m)

Note that the holder of s (or a quorum who share it) is the only person who can decrypt this

value without the calculation of a discrete logarithm. Now, if we take two ciphertexts

(x0, y0) = (gα, gsαm0) (x1, y1) = (gβ, gsβm1)

the product of those ciphertexts, viz. (X,Y) =
1∏
i=0

(xi, yi), is equal to

(X,Y) = (gα · gβ, gsαm0 · gsβm1)

= (gα+β, gs(α+β)(m1 · m2))

i.e., the product of the encryption of m1 and the encryption of m2 is the encryption of m1m2. It

is for this reason that ElGamal is known as a multiplicative homomorphic cryptosystem. If we carefully

design the format of m, we can create a protocol which allows votes to be tallied without revealing

any single vote: for example, choose m = gM
i−1

. Then if i is the index of the candidate being

selected, an encrypted vote for candidate 2 would be represented as (x, y) = (gα, hα · gM1
). When

multiplied together, two votes for candidate 2 would equal (x, y) = (gα, hα ·g2M1
). In this manner,

the tally is built up as more votes are multiplied.

Note that many protocols which use homomorphic encryption still assume the availability of

some anonymous channel (such as that provided by a mix). The reason for separation here is that

the manner in which votes are accrued and tallied is different.
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2.2.3.1 Benaloh and Tuinstra: Receipt Free Secret Ballot Elections

Benaloh and Tuinstra (1994) were among the êrst to use homomorphic encryption in an election

protocol. They were also the êrst to develop and implement the notion of receipt-freeness. Their

paper discusses an important point—voting booths have the interesting property that they require

a voter’s vote to stay secret—meaning that it is impossible for a voter to be coerced. They go

on to discuss that many existing protocols at the time failed because they allowed a voter to take

a receipt saying how they voted. While desirable for the voter, this leads to the elimination of

the ability of the voter to deceive someone else about his vote. Hence the authors introduce the

property of receipt-freeness (Benaloh and Tuinstra, 1994, p. 544): a voter is able to vote without

fear of recrimination, as no receipt or other proof of how they voted is given back to them. It

should be noted that the presence of a êxed voting booth, as the authors suggest, could be seen

to somewhat trivialise the problem of uncoercibility—after all, if a voter is forced to vote from a

set location where they can be monitored, then it is hard for them to be coerced. However, the

authors dismiss this:

Even if we assume the presence of voting booths, the task of conducting an election in
which privacy is maintained, coercion is impossible, and yet the tally is publicly veri-
êable is difficult. [Current paper-based voting systems] offer no mechanism whereby
voters can develop true conêdence in the accuracy of the tally (Benaloh and Tuinstra,
1994, p. 545)

Despite the fact that this paper is almost 20 years old, this point is still accurate—in the UK, voters

have no way whatsoever of guaranteeing that their vote is actually counted. Hence Benaloh and

Tuinstra suggest that the following three properties should be satisêed:

• Privacy No participant other than a voter should be able to determine the value of the

vote cast by that voter

• Uncoercibility No voter should be able to convince any other participant of the value of

its vote

• Correctness Every participant should be convinced that the election tally accurately rep-

resents the “sum” of the votes cast



2.2. A Brief History of Electronic Voting 33

Model Benaloh and Tuinstra introduce a set of voters, where each voter has two processes, V0

and V1 (in this respect, the protocol is similar to earlier work (Benaloh and Yung, 1986)). The

tally t of the election is the number of voters who ran the V1 protocol. The tally is correct if

tL ≤ t ≤ tH where tL is the number of V1 executions and tH is the total number of voters, less

those who ran V0 (Benaloh and Tuinstra, 1994). The authors assume the existence of private and

public channels, and a random number beacon.

A voting system is deêned as correct by Benaloh and Tuinstra if, with m voters, “specially

designated output common to all participants who follow correct protocols gives a common

correct tally” with probability at least 1− m
2N for some security parameter N. Further, the system

is private if no dishonest protocols can permit any participant to distinguish between voters running

V0 and V1, with probability at least 1
2 +

1
2N (Benaloh and Tuinstra, 1994).

Protocol The authors’ protocol uses only one tallying authority, which has the ability to decrypt

all votes. A ballot is an ordered pair, in which a random order encrypted 0 and 1 are stored, created

by the voting authority. A beacon is used to prove that this ballot is legitimate, as described in

Benaloh and Yung’s earlier protocol (1986, discussed above); the interactive proof provides a small

amount of information regarding the random ordering of 0 and 1 in the ballot, allowing the voter

to choose which half of the ballot to use for the vote.

We note the introduction of two encryption primitives: if z1 is an encryption of x1, and

z2 of x2, then there are two functions ⊗ and ⊘, where z1 ⊗ z2 is an encryption of (x1 + x2),

and z1 ⊘ z2 is an encryption of (x1 − x2). These are properties of homomorphic encryption as

mentioned earlier (Benaloh and Tuinstra, 1994). The protocol follows seven steps, involving a

voting authority, voter and randomness beacon:

1. Authority Encrypt N+ 1 (security parameter N) pairs (xi, yi) where 0 ≤ i ≤ N, such that

each xi ∈ E(0) and each yi ∈ E(1) where E is a polynomial-time public key encryption

function. For each i, let αi = min{xi, yi} and βi = max{xi, yi}. Reveal the pairs (αi, βi).

2. Voter Enter the voting booth



34 Chapter 2. Background Information

3. Authority For each i in 0 ≤ i ≤ N, let ci be the decryption D(αi) of αi. Transmit, over a

private channel, the ci value to the Voter

4. Beacon Generate N bits bi for 1 ≤ i ≤ N; send them over a public channel

5. Voter Leave voting booth

6. Authority For all i such that bi = 0, open (αi, βi) by revealing the decryptions D of each,

together with a certiêcate pair (D′(αi),D′(βi)). For all i where bi = 1, connect (α0, β0) to

(α1, β1) by revealing either D′(αi ⊘ α0) and D′(βi ⊘ β0) if D(αi) = D(α0), or the pair

D′(αi ⊘ β0),D′(βi ⊘ α0) if D(αi) = D(β0) (i.e., if D(αi ⊘ β0) = 0)

7. Voter To cast a 0-vote, let v = α0 if c0 = 0, else let v = β0. To cast a 1-vote, let v = β0 if

c0 = 0, else let v = α0. Send v over a public channel. The result of the election is the tally

of V0 versus V1 executions.

It should be noted that this protocol actually only requires one interaction from the voter, in the

form of transmission of one bit. The authors note that as no third party can distinguish a 0-vote

from a 1-vote, uncoercibility is obtained. Their proof is quite long, so is omitted here for brevity.

Benaloh and Tuinstra discuss a couple of problems with their protocol, but others seem to

arise. Firstly, a dishonest authority could disrupt the election. This could be avoided by using

several authorities, which would all have to collude to disrupt the election and determine how any

voter voted. However, a single failure would cause the whole protocol to fail. The other obvious

problem is that, in the version of the protocol given here, the authority gains full knowledge of

how every voter voted. This is, of course, unsatisfactory. This is avoided using several authorities.

There is a further problem that there is no provision whatsoever for a 1-out-of-L general

election—i.e., selecting from a number of candidates. Further, the authority could, in the voting

booth, “fail to offer a voter the information needed to complete the interaction” (Benaloh and

Tuinstra, 1994, p. 550), while claiming that it had. A possible solution, the authors note, is to

provide two receipts, one fake, for the voting process.

Of course, the most serious problem is that the protocol does nothing to protect against
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coercion by a party having some control over the voting authorities—further, if we do not assume

a voting booth, coercion is simple. As the authors note:

…a physical separation of the voter from possible coercive agents is fundamental to
any uncoercible election protocol (Benaloh and Tuinstra, 1994)

This quote can perhaps be misinterpreted. Though it seems to be correct that the voter and

coercer should at some point be separate, this need not be for the entire election, and may only

need to be during registration and during the casting of a single vote. This is the stance we adopt

later.

Hirt and Sako (2000) note that Benaloh and Tuinstra’s protocol does not actually provide

receipt-freeness—the voter is able, should they wish to, to generate a receipt for themselves, as a

result of the properties of the mechanism used for multi-authority voting (the vote is distributed

using secret-sharing). The reader is directed to the authors’ paper (Hirt and Sako, 2000, p. 548)

for a more in-depth explanation.

2.2.3.2 Cramer et al.: Multi-Authority Secret Ballot Elections

The work of Cramer et al. (1996) proposes a homomorphic scheme based on the principles of

previous work by Benaloh and Yung, but using the discrete logarithm assumption. The pro-

tocol begins with a homomorphic encryption scheme—an extension of the work of Pedersen

(1992)—that provides a proof of validity. The scheme is similar to a standard ElGamal encryp-

tion scheme. Encryption of a vote v ∈ Zq proceeds with a random α ∈R Zq by computing

B = gαhv, for random, independent values of g, h. This B is later opened by revealing v and α.

Note that for any two encryptions B1,B2 of values v1, v2, B1B2 is an encryption of v1+v2, making

the system homomorphic. The authors detail a zero-knowledge proof of validity for any ballot b

(where v ∈ {1,−1}): this proof protocol is detailed in Figure 2.1.

Given the proof protocol, Cramer et al. (1996) detail the election protocol for a two-candidate

election. We begin with n authorities A1, . . . ,An, and m voters V1, . . . ,Vm, where a quorum of

t < n authorities is required to reveal any single vote. Each voter then prepares a masked vote bi as

follows:
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Figure 2.1 Encryption and Proof of Validity for a ballot b in Cramer et al. (1996)
Verifier

b, a1, a2

c
c ∈R Zq

d1, d2, r1, r2

d1 + d2

?
= c

gr1
?
= a1(bh)

d1

gr2
?
= a2(b/h)

d2

Voter

v = −1v = 1

b := gαh

a1 := gr1 (bh)−d1

α, r1, d1, w2 ∈R Zq

b := gα/h

a1 := gw1

a2 := gw2

d2 := c − d1

r2 := w2 + αd2

a2 := gr2 (b/h)−d2

d1 := c − d2

r1 := w1 + αd1

α, r2, d2, w1 ∈R Zq

1. The voter selects bi ∈ {1,−1} and calculates Bi = gαihbi for some random αi, and computes

the proof as detailed in Figure 2.1. The voter then calculates

Gi(x) = αi + αi1x+ . . .+ αi,t−1xt−1

Hi(x) = bi + βi1x+ . . .+ βi,t−1xt−1

where αil, βil, l ≤ t ∈R Zq. The voter commits to these by calculating Bil = gαilhβil .

2. The voter posts Bi, its proof of validity and all of the commitments to the bulletin board.

All participants verify the correctness of Bi.

3. The voter sends each authority’s share (aij, bij) = (Gi(j),Hi(j)) to each authority Aj using a

private channel (the authors do not suggest whether the channel should be untappable).

4. Aj checks that his share is valid by checking that

gaijhbij = Bi
t−1∏
l=1

Bj
l

il.

5. To cast a vote, Vi posts si ∈ {1,−1} to the bulletin board, such that vi = sibi gives the

desired vote.
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Tallying of the election then involves all authorities participating:

1. Each Aj posts Sj =
m∑
i=1

aijsj and Tj =
m∑
i=1

bijsi.

2. Each tallier checks each authority’s (Sj,Tj) by checking that

gSjhTj =
m∏
i=1

(
Bi

t−1∏
l=1

Bj
l

il

)si

and then from any t pairs (j,Tj) where (Sj,Tj) are correct, every tallier can compute the

tally as

T =
∑
j∈A

Tj
∏

l∈A\{j}

l
l− j

,

where A is any quorum set of t.

Note that the election scheme is compatible only with a two-way election. The authors suggest

an extension to multiway elections, in which each voter simply produces several votes by running

several instances of the protocol above in parallel (which is clearly not practical), or in which the

ballot form is altered. It seems apparent that this scheme involves a considerable amount of work

for the voter, even in the case of two-way elections—nevertheless, it is important as a grounding

for future work by Cramer et al..

2.2.3.3 Cramer, Gennaro and Schoenmakers

The ‘CGS’ voting protocol Cramer et al. (1997) is an extension of earlier work (Cramer et al.,

1996) for which the voter’s work is linear with respect to a security parameter k. The work is

more efficient for each participant by a factor of n (where n is the number of tallying authorities).

As opposed to the scheme discussed above, in the CGS protocol, the voter need only submit

a single ElGamal encryption of their ballot, plus a proof of its validity. The protocol, as usual,

assumes the availability of a standard bulletin board (broadcast channel with memory), and a

threshold ElGamal cryptosystem which uses Lagrange coefficients to reconstruct a secret, as in

many protocols.
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The paper notes that, since standard ElGamal is a multiplicative homomorphic encryption

scheme, the product of any two ciphertexts c1c2 is actually the encryption of the product of their

plaintexts, m1m2. In order to obtain an additive homomorphism (i.e., that the product of the

ciphertexts is the encryption of m1 + m2), the authors alter their encryption operation so that a

message m is now encrypted as hαGm (where G is a known generator of the group Gq used in

the scheme), meaning that a product of ciphertexts would indeed be the encryption of m1 + m2.

The downside of this change (which is similar to one we use in our work) is that a single discrete

log calculation is required for decryption of the message, which is considered a hard operation.

For small messages, however, the computation can be done efficiently, as noted by Cramer et al.

(1997, p. 10).

The authors go in to introduce a proof of validity: namely, a proof that shows that any ciphertext

is an encryption of either m0 or m1—where these are the two possible candidate selections for a

ballot—without revealing which message is encrypted. If an encryption of a message is taken to

be

(x, y) = (gα, hαm) m ∈ {m0,m1}

Then to show that (x, y) is a valid ballot, the prover must provide a witness-indistinguishable

proof of knowledge of the relation given by

logg x = logh(y/m0) ∨ logg x = logh(y/m1)

For a two-candidate election, the proof, and ballot, are formed in an interactive manner as demon-

strated in Figure 2.2 (note that the method is similar to that of Cramer et al. (1996)). Note that

this proof can be made non-interactive using the standard Fiat-Shamir heuristic: we extend the

proof to a k−candidate election in Section 3.1.3, and use it in our work in Chapters 4 and 5. In

the protocol in Figure 2.2, for a êxed generator G, message m1 is represented as G, and m0 as 1
G .

A ballot is then (x, y) = (gα, hαGb) for some b ∈R {1,−1}:

Given the protocol above, non-interactivity can be obtained by hashing a combination of the

êrst message to the Veriêer and some unique information (viz. the voter’s identity) to give the
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Figure 2.2 The CGS Proof of Validity for a two-party election ballot (x, y) (Cramer et al., 1997,
p. 9)

Voter

v = −1v = 1

α,w, r1, d1 ∈R Zq

x := gα; y := hαG

a1 := gr1xd1

α,w, r2, d2 ∈R Zq

x := gα; y := hα/G

b1 := hr1 (yG)d1
a1 := gw; b1 := hw

a2 := gr2xd2

Verifier

c
c ∈R Zq

d1, d2, r1, r2

x, y, a1, b1, a2, d2

a2 := gw; b2 := hw

d2 := c − d1

r2 := w − αd2

b2 := hr2 (y/G)d2

d1 = c − d2

r1 := w − αd1

d1 + d2

?
= c

a1

?
= gr1xd1

b1
?
= hr1 (yG)d1

a2

?
= gr2xd2

b2
?
= hr2 (y/G)d2

challenge c. A voter casts the ballot by submitting the ballot (x, y), the proof above, and a value

e ∈ {1,−1}, such that v = be gives the required vote.

After voting is complete, each proof of validity is checked, and the authorities calculate the

product

(X,Y) =

(
l∏

i=1

xi,
l∏

i=1

yi

)

from all ballots (xi, yi). The authorities jointly decrypt the product in the standard manner, giving

W = GT as the result, where T is equal to the difference between yes and no votes. The value

of T can be determined using O(l) modular multiplications.

Note that the protocol is applicable only to a two-party scenario: however, the authors extend

it to a k-way election by suggesting the selection of several generators Gi, one for each candidate,

instead of only using one. This leaves a ênal tally W = GT1
1 . . .GTK

K , where the Tis are the ênal

tally. The authors note that the computation of the necessary discrete log is still “feasible for

reasonable values of l and K” (Cramer et al., 1997, p. 11)

This protocol has some particularly appealing features, and lends itself well to adaptation. We

use some of those features in our own work, and note that the CGS scheme has been used for

the basis of many protocols—one of which is due to Hirt and Sako (2000). It should be noted
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that, as mentioned by Hirt and Sako, CGS is not a receipt-free protocol, but can be made receipt

free with small modiêcations.

2.2.3.4 Hirt and Sako: Efficient Receipt-Free Voting

The scheme due to Hirt and Sako (2000) is strongly rooted in the work of Cramer et al. (1997).

Indeed, the authors propose a 1-out-of-L (electoral candidates) voting scheme based on the CGS

protocol. We begin again with a standard threshold ElGamal cryptosystem, modiêed such that a

some γ such that G = ⟨γ⟩ : γ ̸= g is used to form an encrypted vote v ∈ V as (x, y) = (gα, hαγv)

(Hirt and Sako, 2000, p. 554). The authors note that for L−party elections, choosing the form of

v is a challenge, drawing on the work of Cramer et al. (1996) to set V = {1,M,M2, . . . ,ML−1}

where M is the maximum number of voters. Tallying again involves the computation of the

discrete log of γT, having complexity O(
√
M

L−1
) (Cramer et al., 1997).

The paper is one of the êrst, in our research, to use ElGamal reencryption to ensure ballot

secrecy: namely, given a ciphertext (x, y), we can obtain a reencryption of the same plaintext (xf, yf)

by selecting a value β ∈R Zq and forming (xgβ, yhβ), where β is then a witness of the reencryption.

Given this action, the paper also introduces two techniques: the 1-out-of-L reencryption proof, which

proves that the reencryption of an encrypted vote e is contained in the list e1, . . . , eL, and the

designated veriêer reencryption proof, which proves in a witness indistinguishable manner that an

encrypted vote e′ is a reencryption of another vote e.

1-out-of-L Re-encryption Proofs For a given vote (x, y), the authors wish to prove that there

is a reencryption (xf, yf) of the vote in the list of all reencrypted votes (x1, y1), . . . , (xL, yL). The

proof proceeds as follows:

1. The prover selects d1, . . . , dL and r1, . . . , rL at random, and calculates

ai =
(xi
x

)di
· gri bi =

(
yi
y

)di

· hri for i = 1, . . . ,L

then sends these values to the veriêer. These commit the prover to di, ri for all i above, but
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not for i = f: af, bf commit the prover to w = βdf + rf, meaning that the prover can still

change df and rf after.

2. The veriêer sends a challenge c ∈R Zq to the prover, who modiêes df such that c = d1 +

. . . + dL, modiêes rf such that w = βdf + r + f and sends all di, ri (for 1 ≤ i ≤ L) to the

veriêer.

3. The veriêer now merely tests whether

c = d1 + . . .+ dL

ai =
(xi
x

)di
· gri for all i

bi =
(
yi
y

)di

· hri for all i

Note that we can again use the Fiat-Shamir heuristic to convert the proof into a non-interactive

one, where c is a hash of all a and b values with x, y and all xi, yi values.

Designated Veriêer Re-encryption Proofs A designated veriêer re-encryption proof is a tech-

nique to prove, only to a designated veriêer, that some reencryption (xf, yf) is a reencryption of

a speciêc ciphertext (x, y). The protocol uses the veriêer’s public key in proof construction (and

thus secret key in veriêcation), and is given in both interactive and non-interactive forms. As we

use, and discuss, DVRPs in depth in Section 3.1.4, we do not cover them further here, but refer

the reader to this section.

Protocol The protocol detailed in Hirt and Sako (2000) is rather high-level, but is similar in

spirit to the CGS protocol. It assumes the existence of private, one-way untappable channels

between authorities and voters (a particularly strong assumption, given the way in which this

protocol uses those channels during voting). As long as a quorum of t < n authorities remain

honest throughout the protocol, it remains fair and private, and the protocol is receipt-free. Note

that the paper assumes that the authorities are assumed not to collude with a coercer, unless the

voter knows at least one honest authority.
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The protocol begins with each possible vote being encrypted deterministically, with the ci-

phertexts being publicly known. The êrst authority shuffles the list by reencrypting its ciphertexts

and permuting it, then submits it to the next authority, who does the same, and so on. Each

authority provides (to the voter, via an untappable channel) a proof of how the list was reen-

crypted and permuted and (to the public) a proof of how the list was permuted only. Namely,

the authority provides the voter with a DVRP for each of the reencrypted vote choices v in V ,

and makes public a 1-out-of-L proof of re-encryption for every reencrypted vote choice.

Hence, at the end of the shuffling, the voter will be able to relate the list’s original order to

its current one, and thus pick the encryption representing her desired vote. Note that the private

nature of the required untappable channel (even with respect to an in-person observer) means that

no-one but the voter knows which ciphertext relates to which candidate, as the voter receives

the speciêc permutation and re-encryption proofs used for her ballot. The voter then simply

announces which of the encrypted votes ei she wishes to cast.

The chosen encrypted vote is, presumably, added to the public bulletin board. Votes are added

homomorphically in the style shown above to give the ênal tally. The paper does not suggest

whether a random reencryption and permutation of each vote choice is done for each voter, or

whether each voter receives the same permutation and re-encrypted set of votes. In the latter

case, a security problem clearly exists; in the former, this seems like a remarkably expensive way

in which to generate votes. The assumption of an untappable channel during voting also someone

negates the possibility of the protocol being applicable to remote voting.

In later work, Hirt (2001) developed a related protocol which used a trusted “third-party

randomiser” to minimise the shuffling work done by the authorities. Lee and Kim (2002) and

Lee et al. (2004) extend this work, replacing the randomising party with a “Tamper-Resistant

Randomiser” (smart card). Though offering an attractive solution, all of these ideas introduce

a further layer of required trust, and those which use smart cards introduce a further layer of

expense (particularly in the case of remote e-voting). Any attempt to drive the implementation

of electronic voting should not create disincentives to implementation in this way.
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2.2.3.5 ‘Paillier’ Election Protocols

Those protocols using homomorphic encryption discussed so far exclusively use ElGamal en-

cryption. However, alternative encryption systems, such as that of Paillier (1999) should also be

considered. The Paillier cryptosystem offers a small advantage in efficiency, and has been adapted

to a threshold version (Fouque et al., 2000). We note, however, that Paillier encryption-based

schemes can often be less efficient than ElGamal-based schemes, as a larger security parameter is

required for the same level of security (Hirt, 2010).

The Paillier cryptosystem begins with n = pq, a standard RSA modulus of two large prime

numbers. Next, g is an integer of an order a multiple of n mod n2. The public key is (n, g) and

the secret key is λ(n), where λ(n) = lcm((p − 1)(q − 1)). Encryption of a message m ∈ Zn

involves random selection of some x ∈ Z∗
n , and calculation of c = gmxn mod n2. Decryption is

via the equation m = L(cλ(n) mod n2)
L(gλ(n) mod n2

mod n, where L, given the values {u < n2|u = 1 mod n},

computes L(u) = u−1
n (Paillier, 1999). Using threshold decryption requires the use of a distributed

key generation algorithm among authorities to create a single public key, and shares of the private

key. Each server runs a partial decryption of any ciphertext, generating a proof of the decryption,

then forwards these shares to an entity which combines them (a concise version of the combination

algorithm is given by Baudron et al. (2001)).

As we do not use the Paillier cryptosystem in our work, we detail only one exemplar protocol:

that of Baudron et al. (2001). The protocol lists a number of entities: voters, local authorities (who

collect a subset of all ballots, for a single local area), regional authorities (who receive all local

authority results for a region), the national authority (who collects regional results), and a trusted

time stamp, guaranteeing when a voter has voted. Again, a bulletin board is used, and the scheme

uses a number of proofs of knowledge: that given an encrypted message c = gmxn, the prover

convinces a veriêer that he knows m; that the contents of an encryption can be proven to lie

within a set of messages (i.e., a proof of validity); and that two encryptions can be proven to have

the same plaintext (a PET).
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Protocol The protocol begins with each authority publishing, on its own bulletin board, its pub-

lic keys. The national authority uses a key pk, the regional authority pki, and the local authority

pki,j (envisage a tree structure). If ℓ is the number of voters, the authors deêne M = 2⌈log2 ℓ⌉.

A voter begins by selecting the three public keys of the national, regional and local authorities

appropriate to him. He uses each public key to encrypt a value Mm, with m denoting his vote

(m ∈ {1, . . . , k} for k candidates), giving three ciphertexts cn, cr, cl. He generates proofs that each

ciphertext contains a valid vote, then creates a PET which proves that each of the ciphertexts

encrypt the same vote.

Tallying êrst involves the local authorities verifying all of the proofs, which have been posted

to the bulletin board together with the voters’ names and votes and signed by the time-stamp

server. The local authorities then compute the product of the correct votes, and threshold-

decrypt the tally for their own sub-tallies. These local tallies are published to the regional bulletin

boards, along with the product of the elements on the local boards. The regional authorities are

then able to calculate their own tallies (given the ciphertexts generated for them), and compare

these with the local tally results, and the same for the national authority.

The protocol has several assumptions which must be satisêed. Foremost, in order to satisfy

receipt-freeness and coercion resistance, the authors require a physical tamper-resistant device to

hide the random data used during voting, or a secret, untappable channel between every voter

and a ‘randomiser’ (Pointcheval, 2000).

Though the use of several levels of authority is an elegant way to reduce complexity, it seems

that the redundancy created by each level checking the previous one’s work somewhat mitigates

any advantage. The protocol relies on a time-stamp server to prevent fairness being broken (i.e.,

to mitigate the issue that local authorities release partial tallies before the ênal tally is counted),

and requires every voter to generate three votes, and three proofs (one of which is a PET, which

is very expensive, as discussed in earlier sections).

Many other homomorphic encryption schemes exist in the literature (Kiayias and Yung, 2002,

2004; Schoenmakers, 1999; Damgård et al., 2010, for example); for brevity we do not address

these further. The advantages of using a homomorphic cryptosystem are self-evident: computing
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a product of all ballots is efficient and quick, and can be done by any observer of the bulletin

board. Though (when using a modiêed form of ElGamal) tallying requires a discrete logarithm

calculation, for small numbers of ballots this can be done quite efficiently (the baby-step-giant-

step algorithm due to Shanks (1971) is an exemplar method). In our work, we use homomorphic

encryption (in the form of the modiêed ElGamal scheme presented earlier) to form and tally

ballots.

2.2.4 Paper-Based Protocols

The ênal class of e-voting protocol that we will discuss is paper-based protocols. These protocols,

typiêed by prêt-à-voter, which we discuss êrst, generally involve the voter visiting a polling station

and marking their ballot in some way on paper, submitting this, and electronically verifying that

the ballot has been cast at a later time. One of the advantages of paper-based protocols is that

they generally produce a paper ‘receipt’ with which the user (but no observer) can verify their

vote later. This is proposed as an improvement on the current scheme used in many countries,

where voters simply visit a polling station, cast a vote, and receive no receipt or means to verify

that their vote was counted. Even with DRE systems currently in place, the voter “can only trust

in the assurances of the manufacturers…that their vote will be [counted]” (Chaum et al., 2005).

Chaum (2004) êrst proposed a cryptographic paper voting protocol in which voters use a

DRE machine, as in many existing electoral systems. In his scheme, however, the candidate

selected by the voter also appears on a separate “printer” screen. Upon conêrming a selection,

the voter is allowed to select one of two rolls of paper from the printer, which acts as a receipt.

The pattern printed on the paper is akin to an “unreadable and seemingly random pattern of tiny

squares” (Chaum, 2004), not readable on its own, but able to create a readable image showing

the voter’s selection when superimposed upon the other, machine-retained receipt. This style of

information encoding is known as visual cryptography (Naor and Shamir, 1995), a notion that has

been built upon in later protocols (Chaum et al., 2007).

The voting machine keeps a copy of the receipt electronically, and then sends it to the election

website some time later, deleting the half of the receipt left in the machine. In order to later check
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that a vote was cast, one would enter the receipt’s serial number on the website, checking that the

receipt matches that being held by the voter. The reader is referred to Chaum’s work for further

information on tallying, as the techniques used (save for vote shuffling using mixes) are outside

of the scope of this thesis.

2.2.4.1 Prêt-à-Voter

Prêt-à-Voter (Chaum et al., 2005) is a seminal protocol in the êeld of paper-based electronic

voting protocols. The scheme uses a more regular representation of a vote than that of Chaum

(above), with ballot papers that are printed in advance, and separable down the middle of the

sheet. One clear advantage of this sort of scheme is that it is familiar to voters, and relatively

simple to understand.

Setup and Voting We begin with a representation of the ballot form. Several ballot talliers are

each allocated two keypairs, whose public parts are certiêed. The left half of a ballot form lists

candidates, and the right half has boxes into which the voter makes her selection:

Figure 2.3 Ballot format in Prêt-à-Voter

Bob
Rosie
Frank

Gemma
8x5b9R

The order in which the candidates are listed is not êxed: in fact, it is different on every ballot,

and the permutation used is encrypted (multiple times) in the value 8x5b9R shown in the êgure.

By way of an example, the authors discuss a simple election in which, rather than a random

permutation, names are listed according to a cyclic shift of an initial order: if we assume that the

original order is “Gemma, Bob, Rosie, Frank”, then a shift of 1 gives the ordering “Bob, Rosie,

Frank, Gemma”, as above. The value (or onion) 8x5b9R is then simply an encryption of ‘1’ (note

that in practice, the ordering is indeed a random permutation). The voter makes her selection
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in the standard way, and then detaches the left half, which is destroyed. The right half reveals no

information to any observer:

Figure 2.4 A separated, completed ballot in Prêt-à-Voter

7

8x5b9R

This receipt is fed into a voting terminal, which sends the selected value (3 in this case,

if we begin at 0) and the onion to the talliers, and returns it to the voter as a receipt. The

talliers progressively decrypt the onion to eventually give the required shift from the original

ordering (which even the voting terminal cannot know), allowing the original shift, 1, and the

determination of the voter’s vote for Gemma.

The Ballot Form We return to the way in which the ballot form (speciêcally, the onion) is

generated. The authors begin by stating that the electoral authority generates a unique random

seed sequence of 2k values (for k talliers), g0, g1, g2 . . . g2k−1. A hash is then applied to each of the

germs gi, with the result being modulo v, for v candidates, giving di : i = 0, 1, . . . , 2k − 1. The

offset for any ballot form is then

θ =
2k−1∑
i=0

di mod v.

It was mentioned earlier that each tallier has two keypairs. This is because each tallier performs

two decryption mixes, one for each key. The onion is then formed of a nested encryption of

each germ under each tallier’s public keys, where tallier i has public keys pk2i and pk2i+1:

Onion = D2k = {g2k−1, {g2k−2, {. . . , {g1, {g0,D0}pk0}pk1 . . .}pk2k−3}pk2k−2}pk2k−1

The talliers progressively decrypt the onion, beginning with the outermost two layers being

removed by the êrst tallier. On the bulletin board, the êrst column shows the receipt as cast by

the voter (allowing the voter to verify their vote has been cast). Tallier k− 1 stores the position
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of the cast vote as r, and then manipulates (ri,Di) for all i, where Di is an ith level onion. The

value r2k is the position at which the voter original placed her mark (0-3, in the êgures above).

Talliers progressively accept a list of (r,D) values from the previous tallier, decrypting and

shuffling twice and then passing along the new (r,D) list to the next tallier. So, for each (r2i,D2i)

pair in the input, tallier i− 1:

1. decrypts the êrst layer using his êrst secret key sk2i−1, giving germ g2i−1 and onion D2i−1

2. hashes the germ, and takes the result mod v to give d2i−1 = hash(g2i−1) mod v

3. calculates r2i−1 = r2i − d2i−1 mod v

4. forms (r2i−1,D2i−1)

The tallier now shuffles the list and posts the result to its middle column on the bulletin board.

The tallier repeats the process using his other private key sk2i−2, shuffles again and sends this new

list to the next tallier, who repeats the whole process again.

When all talliers have done this, the ênal output will be pairs (r0,D0) as in the Onion value

above, giving the ênal votes in the original ordering. The actions of a single tallier are represented

in Figure 2.5, and a single vote’s progress through all talliers’ mixes is shown in Figure 2.6.

Figure 2.5 A Single Tallier in Prêt-à-Voter (Chaum et al., 2005)

Telleri+1 Telleri Telleri−1

A useful property of the original Prêt-à-Voter scheme is that it is open to auditing by any

interested party. Auditors are able to sample a random subset of all printed ballots to ensure that

the onions are correctly formed, and, as detailed in the paper, concerned voters could in fact

create ‘dummy ballots’, in which the voter’s vote is sent to the talliers, the onion is decrypted,

and the vote is returned to her for veriêcation (of course, the vote is voided). This provides the
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Figure 2.6 A Vote’s Full Progression in Prêt-à-Voter (Chaum et al., 2005)
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voter with assurance that her actual vote will be counted. Should the voter not wish to cast an

actual vote, she could also simply have the ballot machine send off the onion, and return the shift

value. As the authors note, however, all of the voter-auditing options are subject to attacks, if the

ballot-printing authority colludes with any of the talliers.

It is also possible to audit the actions of each tallier, asking each tallier to reveal either the

outgoing or incoming link for each of the (r,D) pairs in his list (random partial checking). We

refer the reader to the original paper (Chaum et al., 2005) for more details here.

It should be noted that the protocol, though elegant and appealing (especially to to non-

technical voters) has some issues. Some method must be used to ensure that voters who are

permitted ‘dummy votes’ are not able to cast more than one ballot for real, and to ensure that chain

voting is less of a risk. Some forced manner in which to destroy the left-hand-side of the ballot is

essential (the authors address this in future work). The fact that the scheme uses a decryption mix

network is also a point of failure: although privacy of the voter is assured if even one of the mixes

is honest, failure of any mix means that no ballots encrypted whose onions are partially encrypted

with its keys will be decryptable. We must also trust that the authority responsible for ballot

creation can be trusted entirely. The authors claim that the protocol is “readily [adaptable] to

remote voting” by distributing ballot forms by post. Naturally, in environments where coercion

is a risk, this is not the case.

2.2.4.2 Prêt-à-Voter: Re-encryption Mixes

A later version of Prêt-à-Voter (Ryan and Schneider, 2006) introduces a number of êxes to the

issues present in the original protocol. It uses ElGamal encryption rather than RSA, allowing the

use of re-encryption mixes, rather than decryption mixes. The êrst êx to the original protocol
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is that ballot forms are now generated by a set of l clerks, where each contributes to the seed,

and all would need to collude to obtain the ordering of the candidates. We begin with a set of

decryption talliers, holding shares of the private counterpart of a standard ElGamal public key

(p, α, βT) (the notation used in the paper; (q, g, h) in standard notation, with G = ⟨g⟩ known).

These talliers, like those in the original scheme, decrypt the onion after voting. The authors also

deêne a set of Registrars with private key shares for the public key (p, α, βR), where the public

key is used to construct each ballot.

Clerk C0 generates a batch of seeds s0i at random, and thence a batch of pairs of onions, by

encrypting each s0i such that an additive homomorphism is possible. For some γ generator of the

appropriate group, then, C0 generates

(αx
0
i , β

x0
i
R · γ−s

0
i ), (αy

0
i , β

y0i
T · γ−s

0
i ),

for random values x0
i , y

0
i . Each of the remaining clerks now re-encrypts each pair, permutes the

list and transmits it to the next clerk. This gives two ênal onions, the registrar and tallier onions,

where the si values in both should match. Note that only a collusion of all clerks could lead to

the original seed values being revealed (but a threshold of registrars could cooperate to obtain the

seed).

Ballot Creation The ballot itself can now be stored digitally, in an encrypted manner. Voters

now receive a ballot of the form:

Figure 2.7 Empty Ballots in Prêt-à-Voter with Re-Encryption

onionL onionR

A device in the voting booth reads the êrst onion, onionL, and decrypts it (this may be done

in a non-distributed manner, by storing the key in the machine, or in a threshold set of registrars).
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The seed s is obtained from the onion, and it is used to derive the permutation of candidates to

print on the left hand side of the ballot:

Figure 2.8 Ballot Ready for completion in Prêt-à-Voter with Re-Encryption

Rosie
Gemma 7

Frank
Bob

onionL onionR

Now, providing the booth device does not see the right-hand onion, it will not be able to link

the candidate list with the Tallier onion, which will be on the voter’s receipt. Voting proceeds

as before: the voter selects a candidate (Gemma, here); the left-hand strip is destroyed, and the

voter casts their vote with an official observing, at a different machine. Again, the vote is stored

as (r, onionR)—where this time the onion is equal to (αy, βyT · γ−si). The authors note that it

would also be feasible to generate another receipt, retained by electoral officials, to later check

should problems arise (cf. the VVPAT system proposed by Mercuri (2002)).

Once votes are submitted (i.e., pairs (r,D)), an immediate issue is how to re-encrypt the pairs

whilst providing privacy to the voter. As noted by Ryan and Schneider, re-encrypting only the

onion is not sufficient. Hence, for a simple cyclic shift of ballot indexes, the authors suggest

‘absorbing’ r into the onion, viz. (αy, βT · γ r−si): i.e., an encryption of the term r − si. Now,

the r value is encoded into the onion, and so the onion can be re-encrypted alone by a standard

re-encryption mix network. Once mixing is complete, a threshold of decryption talliers is then

able to extract the plaintext values from the onion, giving several terms γ r−si mod p. The authors

note that despite the apparent intractability of calculation of the discrete log of each of these terms,

the manner in which they select the s values (from a binomial distribution) makes search of Z∗
p

very efficient.

The way in which ballot forms are printed on demand, of course, removes the ability to

audit them before the election (or, indeed, after). One solution is a two-sided ballot (Ryan

and Schneider, 2006, p. 323), which, for brevity, we do not discuss here. The random partial



52 Chapter 2. Background Information

checking approach suggested for original Prêt-à-Voter is still appropriate, however, where the

re-encryption seed is revealed by each mix.

Again, the issue of remote voting with Prêt-à-Voter is a complex one with respect to coercion.

One of the authors’ suggestions is akin to that of the credentials used in the JCJ protocol (Juels

et al., 2005): a voter simply casts a credential (invalid if coerced) with his vote, where the validity

of a credential is not apparent to an in-person observer. How voters receive these credentials is not

discussed; nevertheless, this idea is similar to one which we use in our own work.

2.2.4.3 Derivatives of Prêt-à-Voter

Many extensions of the two Prêt-à-Voter protocols discussed above have been developed, and

are still being developed today. In Ryan (2007), a version of Prêt-à-Voter is developed which

presents a human-readable paper trail to the voter, marked with a ballot identiêer number which

is unlinked to the ballot. The scheme seems attractive, but, as noted by the paper, is subject to

the same potential issues as all VVPAT-based schemes: coercion is more likely, and corruptions

(possibly deliberate) of the paper audit count could lead to the digital count being questioned

(even when correct). It seems that work required to mitigate these problems, as well as to set up

the VVPAT in the êrst place, makes the scheme rather unrealistic.

Scratch & Vote (Adida and Rivest, 2006) uses Paillier encryption with Prêt-à-Voter-style

ballots. Each ballot form is augmented with a 2D barcode containing an encryption of the

candidate ordering, and “scratchable” surface protecting a plaintext ordering of the candidates

on the ballot: in order to audit a ballot, the voter scratches the surface and veriêes its contents

publicly against the barcode value, voiding the ballot in the process. To cast a ballot, the scratch-

strip is removed unscratched by an electoral officer, rendering the remaining ballot unlinkable to

any candidate.

Prêt-à-Voter schemes have also been developed which support write-in ballots (Schneider

et al., 2011)—long a problem for coercion-resistant elections, single transferable vote elections

(Xia et al., 2007), and code voting (Ryan and Teague, 2009). This last version of the protocol

involves sending a physical sheet of ‘codes’ to each voter (by postal mail, for example), where
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each candidate has a random ‘voting code’, and the letter has a single ‘acknowledgement code’.

The voter then logs onto a website to cast his ballot, providing the ballot ID number from the

letter with the appropriate voting code. The voting server then interacts with a quorum of

trustees in order to return the acknowledgement code, which is veriêed against that on the letter.

Note that this scheme is receipt-free, but also prevents the voter from seeing exactly how her

vote was recorded (as opposed to traditional code voting, where every candidate has a speciêc

acknowledgement code). Of course, the scheme can also not defend against an over-the-shoulder

observer, except if the voter has the opportunity to vote once unobserved. The idea of ‘securely’

transmitting the code sheet to the voter, whilst also preventing the voter receiving multiple fake

code sheets from an adversary (a postal office worker who deliberately intercepts her mail, say) is

also questionable.

2.2.4.4 ThreeBallot

ThreeBallot (Rivest and Smith, 2007), and its closely related relatives VAV and Twin, were de-

signed to provide the security guarantees of traditional cryptographic voting, but without cryp-

tography. We will discuss ThreeBallot here.

The protocol, like Prêt-à-Voter and Punchscan (see Section 2.2.4.5), is from a class known as

“End-to-End (E2E) Veriêable” protocols, which produce cryptographically secured ballots, ballot

receipts, and auditability at every stage of the election, such that the results can be independently

veriêed. Though ThreeBallot uses no cryptography, it is typically classed as E2E because of the

properties it offers.

The protocol begins with a voter receiving a ‘multi-ballot’: three paper ballots on separate

sheets (a voter might select these ballots from a bin full of empty ones). An example is given in

Figure 2.9.

Each ballot is identical, but each has a unique (machine-readable) ballot ID on the bottom.

To vote for a candidate, the voter êlls in any two (but only two) of the ‘bubbles’ next to that

candidate. To vote against a candidate, the voter êlls in only one bubble for that candidate. If any

candidate has zero or three bubbles êlled in, the ballot is void. Note that the scheme (based on
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Figure 2.9 A ThreeBallot multi-ballot (Rivest and Smith, 2007).
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approval voting) allows approval of more than one candidate. In Figure 2.10, we vote only for

Gemma.

Figure 2.10 A completed ThreeBallot multi-ballot, voting for Gemma.
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The voter then submits her ballots to a ‘checker’ which validates her submissions, and allows

her to select one of the ballots as a receipt. This ballot is reprinted onto different paper, and this

copy is returned to the voter. All three ballots are dropped into a ballot box. It is at this point

that a number of assumptions are made: the voter must “secretly and arbitrarily” select a ballot

for a receipt, the machine must not remember which she chooses, and the voter must sign her

name to indicate having voted (until which point, the vote must not be cast).

At the close of the election all ballots are posted on a bulletin board, and can be publicly

veriêed. The voter can check for her receipt ballot in the list. The tally is such that each

candidate’s total is increased by the number of voters (i.e., even candidates with 0 votes have a

tally of n for n voters).

At êrst glance, ThreeBallot appears to be an attractive protocol. Unfortunately, it is subject to
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several problems and attacks: from a usability perspective its demands upon the user are considered

far too extensive (consider an election with more than 50 candidates, where the rules on how

to vote apply!), and the system is entirely dependent on the reliability and trustworthiness of the

‘checker’ machine. Further, the protocol is subject to a number of security attacks. First, since

the ballot ID is used to identify each ballot, the protocol implies that each voter only remembers

the ID on the receipt she retains. This is a naïve assumption. More worrying is an attack in

which an adversary with access to the ballot box can alter the outcome of the election in his

favour—without detection—by buying receipts from voters with a êlled bubble only for him,

and altering ballots with single marks for other candidates to have single marks for him (Appel,

2006). These problems all cast something of a negative light on ThreeBallot, which is now seen

as a non-practical protocol for large-scale elections.

2.2.4.5 Punchscan

The Punchscan system (Fisher et al., 2006; Popoveniuc and Hosp, 2010), originated by Chaum,

is a paper-based voting system which claims not to rely on complex machinery of the sort used

by Prêt-à-Voter and ThreeBallot. An exemplar Punchscan ballot is shown in Figure 2.11.

Figure 2.11 Completed ballot, voting for Gemma, in Punchscan

Select a candidate:
1084

A Gemma
B Frank

B A

In the êgure, the ballot consists of two pieces of paper. The top layer lists the candidate names

and which letters they relate to, with the letters being randomly chosen. The bottom layer has

the same letters, in random order, visible through holes in the top layer. To make a selection, a
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voter makes a mark using a ‘bingo’-style ink dauber, such that the diameter of the ink blot is larger

than that of the hole, leaving ink on both sheets. One layer (committed to before the election) is

destroyed; the other is submitted and scanned as the vote, and is returned to the voter as a receipt.

The scanned ballot is uploaded to a website which the voter can visit. Note that neither layer

reveals the vote on its own.

To tally the vote, the system uses a Punchboard to determine the order of the candidates on the

ballot. The Punchboard is a set of three tables, the permute, decrypt and result tables. The permute

table stores the identity of the ballot, the ordering of the top and bottom layers, commitments to

these, and the mark that was made by the voter. In the decrypt table, the mark made on the ballot

is translated into the actual vote, according to any differences in ordering between the top and

bottom layers. Rows from the permute table are mixed (permuted) before entering the decrypt

table, and permuted again afterwards, making the whole process rather like the action of a mix

network. The result table simply stores the ênal vote from each row.

Note that if the Punchboard were to be released to the public, any vote could be linked back

to its voter; however, if the board were kept secret, votes could be altered by an adversary in the

decrypt table (Fisher et al., 2006). As a compromise, the full board, encrypted, is released, and

parts of it are audited at random, to make signiêcant changes noticeable.

The Punchboard is audited before the election, by selecting half of the ballots listed on it

and decrypting (spoiling) the ballot information on those rows. This information is made public,

making the integrity of the Punchboard universally veriêable (with high probability). When

the election is complete, auditors select and decrypt either the left or right half of the decrypt

table, revealing either transformations from original ballots to their intermediate decryptions, or

transformations from the intermediate to the end vote (thus not revealing any one path from

encrypted ballot to vote).

The authors note a number of trust requirements: foremost, the device used to print the

ballots must be trusted to do so according to the permute table. The software present in the

device used to process votes at each polling station must run trusted software. Popoveniuc and

Hosp (2010) provide a number of security proofs for the manner in which the auditability of
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Punchscan makes its integrity unquestionable, and the manner in which it satisêes voter privacy

(anonymity). The protocol is clearly receipt-free (and E2E veriêable), and despite small issues

with its usability in deployment (Essex et al., 2007), the system seems promising. Again, one

must question how we would apply remote voting to Punchscan, and further whether revocable

anonymity could work in any remote implementation.

2.2.4.6 Scantegrity I and II

Scantegrity (Chaum et al., 2008b) were originally designed as enhancements for standard optical

scan voting systems (with the idea that voters do not change their method of voting), minimising

any increase in cost at polling stations already using optical scan. Scantegrity is in fact much

like Punchscan, on which it is based: the main difference is that the ballot sheet itself does not

change, with the exception of a bar-coded serial number being printed on a perforated corner of

the ballot (‘chit’), which the voter uses together with the letter relating to her selected candidate

in order to verify her vote. The way in which dispute resolution relies on the trustworthiness of

the polling station officer to not link a voter to a vote is, however, questionable, and an attacker

can force the voter to produce a pre-speciêed receipt.

The protocol was quickly superseded by Scantegrity II (Chaum et al., 2008a), which is what

we will discuss here. The protocol does not rely on paper chits, or on election officials in the case

of dispute resolution. It requires no extra polling station equipment, apart from a small change to

how ballots are printed. However, the system unconventionally introduces invisible ink and decoder

pens to the voting process. Ballots are designed as shown in Figure 2.12a.

A ballot with a detachable base, each part tagged with the same identity number, are prepared.

Each candidate’s bubble has a unique random sequence of characters (a conêrmation code) written

inside it in invisible ink: hence, when the voter êrst sees the ballot, none of the codes are visible.

The voter marks her choice using a special ‘decoder’ pen, which makes the conêrmation code

visible—see Figure 2.12b. An optical scanner detects the dark mark made by the pen, but does

not interpret the conêrmation code. If the voter wishes to later verify that her vote was counted, she
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Figure 2.12 Scantegrity II ballots
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(b) Completed ballot with receipt de-
tached

writes the conêrmation code on the bottom portion (her receipt), taking it with her. Note that

the conêrmation codes for candidates not selected must remain secret.

Before the election, a quorum of authorities share a seed for a random number generator,

then generating enough pseudorandom conêrmation codes for all candidates on all ballot papers.

These values are entered into a table P, in the order generated by the random number generator.

P contains a row for every ballot, linking conêrmation codes to candidates for each ballot by

its ID number, and hence is kept secret throughout. Another table, Q, contains each ballot’s

conêrmation codes in rows (one row per ballot), with the order of those codes permuted, and their

candidate links removed. The values in Q are committed to, and those commitments published.

A table R contains a row for every conêrmation code from Q, with a ëag to denote whether

a vote is present for that row, and link between the row and column in table Q (viz “row 2,

column 1”), and a row and column in table S. This ênal table simply contains a column for every

candidate, where every cell is a ëag, set to true if a vote is present. Commitments to Q and R

are published, and the full table S is published.

The voter is able to select two ballots when voting, deliberately voiding one for use as an

audit ballot. The ballot used for voting has its receipt stamped by an election official, and the

audit ballot receipt is stamped as voided. After voting is complete, values are entered into R

according to the opened values in Q. Election officials, like in Punchscan, audit the process by
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either opening the Q-pointer, or the S-pointer, in R, for every row of the table, at random. For

spoiled ballots, officials open both of these pointers, as well as the commitments. The standard

assumptions about a small number of audited ballots leading to high election integrity guarantees

apply here: we refer the reader to Chaum et al. (2008a) for more details, and diagrams of the

tallying process.

Scantegrity and Scantegrity II are more examples of interesting paper-based, E2E systems

which seem very promising for ‘polling station’, in-person elections. Again, however, Scantegrity

II seems to make some rather strong assumptions: foremost, to us, is the notion of “invisible ink”.

It seems hard to believe that a reliable system for printing ink which could both not be seen at

all by the naked eye, and also become immediately visible when drawn over with certain inks,

could be developed. Indeed, as the authors note, any such ink would change the reëectivity of

the surface on which it was used. The use of such technology naturally makes systems such as

this inappropriate for remote voting, but the techniques used to achieve veriêability are relevant

nonetheless.

2.2.5 What is Wrong with e-Voting?

Given the breadth of work which has now been covered, we consider an obvious question: with

so many electronic voting protocols and systems, what is wrong with electronic voting? Take-up

has been extremely poor, with many countries deciding against an implementation of electronic

voting in the near future, and some organisations in the UK staunchly opposed to it (Open Rights

Group, 2007).

Randell and Ryan (2005) suggest that the ultimate goal of electronic voting is to “develop an

e-voting scheme that is both secure and sufficiently understandable to gain as high a level of public

trust as is achieved by a number of existing manual voting schemes, such as that in current use in

the UK” (Randell and Ryan, 2005). This is a very important point—as has already been discussed,

no voting system will be successful unless it is trustworthy and trustable by the general public. As

Cranor suggests, “simultaneously achieving security and privacy in electronic polls is a problem

that must be solved if the Internet is to be used for serious large-scale…elections”(Cranor, 1996).
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To some extent, these problems have been solved, but not while satisfying other problems in

electronic voting, such as the balance between remote elections and coercion resistance.

2.2.5.1 Current Problems

As Jorba et al. (2003) discuss, “The wealth of problems in current electronic voting systems has

led to a shake in public conêdence in electronic voting in general” (Jorba et al., 2003). The

authors refer to the êasco surrounding the aforementioned US Presidential elections, but one can

clearly see that problems surround both paper and electronic voting. Postal voting in the UK is

wide open to fraud or coercion, and it is desirable to trace those who deliberately break the law

in these situations—revocable anonymity is an ideal solution.

Unfortunately, attempts at large-scale electronic voting have thus far been prone to failure.

The most serious example is that of the US Presidential elections in Florida, in 2000. The

equipment concerned was found to be faulty, ballots were often confusing; there were mistakes

in the actual recording of votes, and problems with missing ballots. All of these failures apparently

led to up to 6 million votes being lost (Jorba et al., 2003). As Chaum et al. (2005) note when

discussing the American DRE system, “With…[the] DRE,…the voter at best gets some form of

acknowledgement of the way they cast their vote. After that, they can only hope that their vote

will be accurately included in the ênal tally” (Chaum et al., 2005). It is hardly surprising that the

public have lost trust in such systems.

The problems with the US elections in 2000 are further described by Mercuri (2002). She

notes that currently, the public will be unwilling to adopt a system unless it is sufficiently close to

what was available before. Speciêcally, she suggests a human-readable paper trail (VVPAT) with

every vote, noting that there must be “a way to backtrack vote totals from actual ballots that came

from…legitimate voters”(Mercuri, 2002, p. 46). Protocols such as that of Ryan (2007) provide

some form of paper trail. We question the relevance of a paper trail to remote, Internet-based

voting protocols, however: indeed, Paul and Tanenbaum (2009) suggest that a return to using

paper ballots is arguably “a return to the problems that prompted the use of electronic machines”

in the êrst place. Although paper ballots have a deênite place in modern elections, we believe
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that a system allowing users to vote over the Internet is critical to higher turnout. We posit that,

as suggested by Bochsler (2010), though remote, Internet voting may not dramatically increase

turnout by disaffected voters immediately, it will increase participation by those voters that are

engaged, but merely unwilling to participate by traditional means. This done, with time, we feel

that turnout using a remote election system would substantially increase.

Volkamer and Krimmer (2006) note that, due to the large number of security requirements of

Internet (electronic) voting which have yet to be satisêed, a large-scale application of electronic

voting is still a long way away (Volkamer and Krimmer, 2006). Indeed, Weber et al. (2007)

and Liaw (2004) state that before any successful electronic election system can be implemented,

a plethora of problems, including vote selling and coercion, have to be addressed. Until these

problems are solved, along with satisfaction of the trustworthiness requirement for public use,

electronic voting will not be successful. It seems somewhat odd, on this note, that several systems

have been designed which appear to satisfy the requirements of electronic voting, but none have

been used on a large scale. This is perhaps due to a combination of complacency in the current

paper systems, unwillingness to adopt a new scheme considering the cost associated with it, and

a lack of conêdence in cryptographic security.

If governments are to adopt any remote election system, perhaps the most prevalent problem

is the complexity of existing protocols. Many of those protocols discussed above have a high

level of complexity to the user. That complexity is perhaps necessary in order to satisfy the

demanding security requirements that voters have, and it can possibly be mitigated by front end

software which “hides” much of the cryptography. Whether this in itself is acceptable to the

security community is an important point, but the satisfaction of the end user is more important:

many end-users are likely to be satisêed with a solution which appears user-friendly and offers

a guarantee of their vote being counted. In fact, it is the satisfaction of the user which is most

pivotal to the success of electronic voting:

Many individuals expressed concerns over the security and privacy of e-voting and
felt that substantial reassurance would need to be offered by the government prior to
implementation. Establishing and maintaining public conêdence in the security and
privacy of the electoral system appears to fundamental [sic] in achieving legitimacy
for e-voting (Local Government Association, 2002, p. 5)
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Some users, naturally, will require a stronger guarantee that their privacy is ensured, and their

vote is counted as cast:

It is not difficult to imagine a simple, stand-alone device which offers a rich user
interface but has no responsibilities beyond providing the voter with an encrypted
ballot…how then are voters to gain conêdence that these devices are accurately cre-
ating encrypted ballots which reëect their intentions? (Benaloh, 2006, p. 2)

Until we can satisfy the stringent requirements of the most cautious end users, electronic voting

is likely to remain unsuccessful.

2.3 Anonymity and Revocable Anonymity

Part of the aim of this thesis is to consider the application of revocable anonymity to electronic

voting. This is a notion which has not been considered before, despite receiving considerable

attention in other computer security êelds. In this section, we will brieëy consider what is meant

by ‘anonymity’ and revocable anonymity, particularly with regard to electronic voting, and how

these requirements might be realised, considering their implementations in related êelds.

From the perspective of digital transactions, anonymity can be deêned as the ability to hide

a user’s identity, under all circumstances, for any transactions. Pointcheval (2000) splits anonymity

into two parts:

• Unlinkability: It should not be possible to link two transactions made by the same user

• Untraceability: It should not be possible to match any transaction to a given user

It should be noted, of course, that a protocol providing untraceability alone is not sufficient. If

a user’s transactions are linkable, then it is possible to trace them. Pointcheval goes on to split

anonymity into strong and weak, where it is, respectively:

• Not possible to guess a link between a transaction and customer (except with negligible

probability), or

• Possible to guess or know such a link, but not to prove it (except with negligible probability)
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Pointcheval (2000, p. 6)

Further, Guan et al. (2002) discuss anonymity as being categorised by who is anonymised: sender

anonymity protects the identity of the sender (which is what one would prefer for electronic vot-

ing); receiver anonymity protects the receiver, and mutual anonymity protects both. This distinc-

tion is important when considering any system providing anonymity. Naturally, in an electronic

voting protocol, we are interested only in sender anonymity.

Anonymity is essential in many digital protocols. Marx (1999) discusses several reasons for

providing anonymity in a generic sense, many of which can be applied to electronic voting:

1. To facilitate the ëow of information—for example, anonymity crime report lines

2. To obtain personal data for research—for those that would not usually give such information

away

3. To encourage attention to the content of a message—i.e., to encourage a counter to look

at the vote, rather than the voter

4. To obtain a resource or encourage action involving illegality—this is a negative issue, but

nevertheless, as von Solms and Naccache (1992) conêrm, a valid reason for anonymity

5. To protect strategic economic interests

6. To protect one’s time, space, and person—e.g., having an ex-directory telephone number

7. To aid judgements based on speciêed criteria—e.g., permitting the vote of an ex-criminal

in an unbiased manner

8. To protect reputation

9. To avoid persecution based on one’s actions

10. ‘Traditional expectations’—the author suggests the invention of the caller ID system in the

US, but this can be applied to voting. Voters generally expect their vote to be anonymous.
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Marx (1999, p. 102)

It is apparent that having a system which is completely anonymous is often dangerous. In the

case of electronic commerce, this could lead to the ‘perfect crime’, in which an adversary can

blackmail a user to make a transaction, without fear of recrimination (von Solms and Naccache,

1992). However, in other êelds, a completely anonymous system is also a dangerous thing. In

distributed computing, one might use anonymity to prevent other users (possibly competitors)

from knowing anything about a job submitted to a computing grid: as Ciaraldi et al. (2000) note,

the lack of identiêability in a distributed transaction can mean that “neither the distributor of

a computation nor the client in a computation can know with assurance with whom they are

communicating”(Ciaraldi et al., 2000, p. 195). They go on to note that knowing a distributor’s

identity is often crucial to assure the safety of a distributed process. Further, knowing the identity

of a client may be crucial, because of the potential trustworthiness of the clients (Ciaraldi et al.,

2000).

In systems providing anonymous access to the Internet, full anonymity can again be a dan-

gerous thing:

On the one hand, users are concerned about their privacy, and desire to anonymously
access the network. On the other hand, some organizations are concerned about how
this anonymous access might be abused (Claessens et al., 2003)

…anonymity can facilitate socially unacceptable or even criminal activities because
of the difficulties in holding users accountable (Marx, 1999)

It is for these reasons that some sort of revocable anonymity, or partial identiêability, are proposed

for all digital protocols, and in this case, electronic voting. Again, Marx gives several reasons why

one might need identiêability:

1. Accountability—it must be possible to punish someone who commits a crime. If this

threat of punishment is not there, then those originally not likely to commit a crime may

be tempted to do so.
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2. To judge reputation—one might determine the validity of someone’s vote based on some

identifying characteristic about them1

3. To aid efficiency and improve service

4. To guarantee interactions that are distanced or mediated by time or space—in the case of

voting, one may wish to guarantee that one’s vote has been counted. This justiêes the use

of a receipt, but receipts unfortunately open a voting system to coercion. Hence a balance

has to be drawn.

(Marx, 1999)

It is clear that some balance needs to be drawn. It could be argued that all digital protocols could

beneêt from anonymity. However, those same protocols need some mechanism to trace and

punish those who commit a crime. In the case of electronic voting, one might wish to punish

a voter deliberately attempting to vote twice. To some degree, though, the reasons for revocable

anonymity in electronic voting almost do not matter: the British electoral system requires that a

voter can be linked to their ballot, and hence a solution which does this is required.

Having satisêed that revocable anonymity is useful, it can also be a bad thing. Davida et al.

(1997), discussing revocable anonymity in digital cash, notes that blackmailing is a possible problem.

Consider motoring: the steering wheel lock has reduced unattended car theft, but has increased

car-jacking, where the car is entered (and the driver removed) while it is being driven. Similarly,

if a system is available by which a voter can prove they have been blackmailed, the criminal may

have to kill the voter to prevent his being caught. This seems rather drastic for a protocol in

which the most a coercer can gain is a single vote per instance of blackmailing, but the example

is still valid.

Deêning the Degrees of Anonymity It is appropriate to consider the degree to which a user

of an electronic protocol remains anonymous. Shields and Levine (2000) deênes several levels of

anonymity between an attacker and user, based on the work of Reiter and Rubin (1999):

1. Provably Exposed: The attacker can prove that Alice is the initiator of a transaction
1Admittedly, this reason contrasts with reason 7 justifying anonymity!



66 Chapter 2. Background Information

2. Exposed: The attacker is convinced that Alice is the initiator, but there is some possibility

that she is not.

3. Probable Innocence: Alice appears no more likely to be the initiator than to not be, but appears

to be more likely than all other entities

4. Beyond Suspicion: Alice appears to be no more likely to be the initiator than any other entity

5. Absolute Privacy: The attacker cannot determine the presence of any communication

(Shields and Levine, 2000, p. 35)

Clearly, when trying to enforce a secret ballot election, we need a protocol which either provides

beyond-suspicion-anonymity or absolute privacy for Alice. This requirement is tempered by the

issue that Alice may need to be linked back to her ballot: as a result, there must be some route by

which Alice can be unquestionably identiêed, but only by a trusted, authorised entity.

2.3.1 Approaches to Remote Anonymity

We now brieëy discuss approaches to the provision of (revocable) anonymity in various êelds

in computer security. We begin by addressing two general pieces of work, and then focus on

electronic commerce (as we discuss later, electronic voting can be seen as a type of electronic

commerce).

2.3.1.1 Self-Scrambling Anonymizers

Pointcheval (2000) introduces two concepts in his paper, anonymity providers and revocation centers,

which are analogous to trusted third parties. Anonymity providers “certify re-encrypted data after

having been convinced of the validity of the content, but without knowing anything about the

latter” (Pointcheval, 2000). In the êeld of digital cash—which we discuss in Section 2.3.1.3—this

might guarantee that a coin is that of a certiêed legal user. The identity of this user is protected

until revoked by a revocation center. Pointcheval raises the important point that anonymity

providers could charge for their service; clearly, in electronic voting this would not be appropriate,
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but in many communications, users may not want to pay for anonymity, as they feel it isn’t

necessary.

Pointcheval’s paper, which is written with a view to digital cash, discusses the problem of

double spending, which originated as a result of blind signatures:

…a crucial problem came from over-spending, which refers to the situation in which
a user spends the same coin two or more times. An inherent quality of digital data
is that perfect copies are easy to make; therefore such fraud cannot be avoided, but
just detected in the best case. Then…detection is done later. However, what may
be done if the coin in completely anonymous? (Pointcheval, 2000, pp. 1–2)

This is a very important point, which is analogous to the situation in electronic voting. A voter

could in theory vote twice, if they have been given some digital token with which to do so.

Hence it is necessary to revoke their anonymity. Pointcheval discusses a later work of Chaum

et al. (1990), which uses cut-and-choose: the user’s identity is stored in the coin in such a way that

spending the coin twice automatically reveals the identity of the user. Such a solution could be

used in electronic voting; however it should be noted that this is an inefficient idea.

Pointcheval’s scheme uses the idea of designated veriêer undeniable signatures, including an un-

deniable proof scheme as follows:

• A key generation algorithm K which outputs random secret and private keys

• A proof algorithm P(sk,m) which, on an input m, outputs an ‘undeniable’ signature s on

m. This proof does not on its own convince anyone; one has to interact with the owner of

sk.

• A conêrmation algorithmConfirmation(sk, pk,m, s), between the signer and veriêer, where

the signer proves validity of the pair (m, s) to the veriêer

• A disavowal algorithm Disavowal(sk, pk,m, s) where the signer tries to prove that (m, s) is

not a valid pair

(Pointcheval, 2000, p. 4)

It should be noted that, except with negligible probability, it is not possible to succeed in both

Confirmation and Disavowal.
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As mentioned, Pointcheval’s protocol is in the context of digital cash. It begins with with-

drawal; a revocably anonymous coin is a certiêed message which includes the user’s public key.

In this case, the coin may be the user’s public key pkAlice encrypted with the revocation center’s

public key: c = {pkAlice, r}RC, where r is a random value. The user then signs a message containing

this encryption, her public key and r: σ = signAlice(pkAlice, r, c) and sends this to the bank.

Of course, the bank is now able to see everything about Alice, and hence veriêes that the

signature σ is valid, then returns a certiêcate pair (Certc, c) to Alice. Alice then uses a self-scrambling

anonymizer to transform her ciphertext c into something different, thereby protecting her identity.

She re-encrypts her coin c = {pkAlice, r}RC into c′ = {pkAlice, r + t}RC, which is possible via the

ElGamal encryption scheme used. Next, she provides an undeniable signature s, using c as a public

key associated with secret key (skAlice, r), stating the equivalence of c and c′.

This new c′, along with c, Certc and the signature proving equivalence are sent to the anonymity

provider, which is convinced that:

• c was converted to c′ by Alice

• c is equivalent to c′

• Alice won’t later be able to deny the relation between c and c′ (because of s)

The anonymity provider will then return a new certiêcate Certc′ , guaranteeing the authenticity

of the coin.

Alice then spends a coin simply by proving that she owns it, by providing a signature demon-

strating knowledge of the secret key (skAlice, r) (Pointcheval, 2000, pp. 6–9). As a property of

the way coins are formed, double-spending (or two attempts at anonymising the same coin) will

result in Alice’s public key being revealed by a simple decryption.

The reader is directed to the appropriate paper for a more in-depth discussion of how this

protocol works; it is summarised here for brevity. However, the idea is a good one—in voting, a

user could obtain a token allowing her to vote, and then transform it into one which prevents her

identity being disclosed (except by a revocation center, if she attempts to vote twice, for example).
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2.3.1.2 Pseudonymity

The êrst author to suggest the use of pseudonymity was Chaum (1985), whose digital payment

system suggested the use of several different pseudonyms for each user, where a pseudonym is

simply some transformation of a user’s identity1. Importantly, as Lysyanskaya et al. (2000) note,

“each organization may know a user by a different pseudonym, or nym. These nyms are unlinkable:

two organizations cannot combine their databases to build up a dossier on the user” (Lysyanskaya

et al., 2000, p. 242). Further, a user can demonstrate possession of a credential to an organisa-

tion without revealing anything about the credential to that party. The authors proceed to give

examples of several pseudonym systems, but note a common problem: “there it little to motivate

or prevent a user from sharing his pseudonyms or credentials with other users”(Lysyanskaya et al.,

2000), as in the example of an online magazine subscription.

Hence, Lysyanskaya et al. (2000) introduce the concept of all-or-nothing sharing. Each user

has a master public key; the user should desire to keep the corresponding secret key secret. For

example, the key may be registered with an authority as that user’s master signing key, so that

anyone having possession of the key would be able to forge signatures. Hence, the authors’

system has the property that if a Alice shares a credential with Bob, she automatically shares her

master secret key with him.

In the paper, the authors propose a certiêcation authority, which simply enables a user to

prove that his pseudonym corresponds to some master public key, whose owner can only share

the credential by sharing his master secret key. Firstly, a user registers with a CA, giving his master

public key and true identity, and demonstrating knowledge of the corresponding private key in

some way. The user’s nym with the CA is hence his public key. The CA returns a credential

stating that the user is valid.

A user with such a credential is then able to register with an organisation. He does this in a

secure interactive way. Both parties engage in a protocol NG, where both submit the public key

1Of course, in the simplest case, a pseudonym can be a completely different value, whose correspondence with
a user’s identity is stored at some trusted third party.
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pkO of the organisation, and each respectively submit their public and private master keys1. The

protocol outputs a nym N for the user with organisation O.

When the user, U, later wishes to communicate with an O, he supplies a proof of knowledge

of (pkU, skU, SIUU,O), where SIUU,O is secret information supplied to the user when requesting a nym

via NG for O. In order for the user to gain a credential for U to interact with O, both undergo a

credential issue procedure, to which the user submits his nym N and public and secret keys, along

with the public key of the organisation and SIUU,O. The organisation inputs their public and secret

keys, and the secret information SIUN,O it received as part of the NG protocol. The user will

receive a credential CU,O for use with that organisation, and the organisation will receive some

private information relating to that credential.

2.3.1.3 Digital Cash and Electronic Commerce

We now discuss the approach taken in digital cash to revocable anonymity. We ênd this particu-

larly relevant, as we believe that electronic voting can be classiêed simply as a type of electronic

commerce. We clarify by way of an example. In electronic commerce, a user is issued a number

of coins (payment tokens). These coins either have intrinsic value, being êat currency, or effect a

transfer of funds from one account to another when spent. Either way, they are usually encoded

in some way with the user’s identity. A user is allowed to spend a coin only once, where the

act of spending is backed by a fundamental principle of digital cash: your payment should be

untraceable to you, and multiple payments should be unlinkable to each other. However, if you

commit a crime with your digital cash, authorised entities should be able to trace you.

Electronic voting can be seen as a version of electronic commerce with stronger requirements.

Here, each user (voter) is given a single ‘coin’, which equates to that user’s right to vote. When

the user votes, they spend the ‘coin’, negating their right to vote again2. After this point, the

result of the transaction is that the voter’s vote is counted (rather like a service provided by the

spending of a coin in electronic commerce). Of course, there are many differences between

1The authors mention a ‘secure anonymous channel’—it is assumed that this is possible via a mix, or one of the
other mechanisms described earlier.

2We note that a user may be permitted to ‘double-spend’ here, with the caveat that only their last transaction
(vote) is counted.
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electronic commerce and voting, but many similarities too, which at least merit the discussion of

approaches to anonymity provision in digital cash.

Digital cash is a êeld that has not received a lot of attention in recent years: at the time of

its inception, it could essentially have been described as a solution to a problem that customers

didn’t realise existed: how to make secure, anonymous payments.

Users of physical cash are rightly happy with their method of payment—it is secure, anony-

mous, and ubiquitous. However, remote payment is generally done by credit card. Again cus-

tomers are happy with doing this, but perhaps without good reason. As Chaum et al. (1990)

discussed several years ago, digital payment by credit card remains an act of faith for many:

Each part is vulnerable to fraud by the others, and the [credit] cardholder in particular
has no protection against surveillance (Chaum et al., 1990, p. 319)

Despite the article being written nearly twenty years ago, this point remains valid. The very

nature of credit and debit cards allows all transactions to be traced, and it is very easy to defraud

a payee, using a fake or ‘cloned’ card. There are further problems:

Despite their widespread use and market penetration, [credit cards] have a number of
signiêcant limitations …, including lack of security, lack of anonymity, inability to
reach all audiences due to credit requirements, large overhead with respect to pay-
ments, and the related inefficiency in processing small payment amounts (Jakobsson
et al., 1999, p. 43)

In fact, the ênal problem mentioned above—the making of small payments, whether in person

or over the Internet—is one that has still not been satisfactorily solved: credit card transaction fees

mean that many businesses are unwilling to accept credit card payments under a certain threshold

value. RFID small-value payment systems like PayWaveTM1 and PayPassTM2 have mitigated these

issues to some degree.

Despite these problems, the public are still willing to use credit cards for electronic payment.

Thankfully, at least in Britain, in-roads have been made against these problems, through the

use of Chip and PIN (which has not been as successful as hoped against fraud, as discussed by

1http://www.visa.co.uk/en/products/contactless.aspx
2http://www.paypass.com/
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Anderson et al. (2005)) and the RFID systems mentioned above, for small amounts of money

(Card Technology Today, 2007). Nevertheless, neither of these ideas provide any anonymity

for the user, and arguably a legitimate user should have the right to make their transactions

untraceable:

From an ethical…perspective, giving someone the ability to conduct payments should
not go hand-in-hand with knowing their whereabouts, their spending patterns, and
their personal preferences (Jakobsson et al., 1999, p. 46)

This lack of anonymity is not only a problem from a personal perspective. When a customer

makes a payment, the merchant has full access to their card details. With these details, a dishonest

merchant could clone the customer’s card. This problem is clearly exacerbated by Internet pay-

ment, where not only the merchant, but anyone with the ability to intercept a poorly encrypted

payment protocol, has access to the user’s data.

Hence current methods of electronic payment require a high level of trust, between the cus-

tomer and merchant (bidirectionally), and between the bank and all parties. Of course, trust is

needed in any digital protocol, but providing anonymity to a customer at least gives them some

safeguard against fraud.

Early work by Chaum (1982) proposed the êrst ‘digital cash’ system, using blind signatures

to effect unconditional anonymity for the spender. Whilst the protocol was better at providing

anonymity for Alice than anything currently used, it is actually too good at making Alice anony-

mous. In fact, once she has obtained a coin from the bank, there is no way for anyone to trace

her, on an application level. This is unacceptable—she is both subject to blackmail herself, and

able to perform fraud by double-spending coins, for example. We have already discussed how

total anonymity can lead to the ‘perfect crime’ (Pointcheval, 2000).

Jakobsson and Yung: Revokable Versatile Electronic Money The work of Jakobsson and

Yung (1996) seems particularly apt in its work on anonymity for the user. The authors rightly

suggest that it is not always appropriate to provide full anonymity, and it is further dangerous to

trust one entity with anonymising a user’s identity, thus meaning that two or more should be

used:
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In order to allow funds to be traced, frozen and revoked, absolute anonymity has to
be excluded. But we do not wish tracing to be possible at the whims of the bank,
as transaction analysis can be used or sold for direct marketing…Therefore, we will
split the tracing function between the bank and a consumer rights organization, the
ombudsman (Jakobsson and Yung, 1996)

The ombudsman works in collaboration with the Bank to revoke anonymity, only when provided

with sufficient evidence to do so by a Judge. As a result, if a coin includes a user’s identity, it

must be encrypted and signed with both the ombudsman and bank keys. This dual signature

veriêcation scheme means that it is neither possible for any party to obtain a customer’s identity

without co-operation of both parties, nor is it possible for any single party to mint money.

Like most digital cash protocols, the Jakobsson and Yung protocol is split into three phases:

withdrawal, spending and deposit. Since the focus of this thesis is not on digital cash protocols, we do

not provide a full description of the protocol: instead, we refer the interested reader to diagrams

representing each phase of it, in Figures 2.13, 2.14 and 2.15.

For us, the relevant part of the protocol is in how Alice’s identity is protected, and how

her anonymity is revoked. As such, we brieëy summarise these aspects of the protocol. In the

withdrawal phase, where Alice’s coins are minted, she selects session keys—KB for communication

with the bank, Bank, and KO for the ombudsman, Ombudsman. She encrypts each session key

with its counterpart’s public key, and doubly encrypts her identity using the public key of the

bank, and session key with the ombudsman. All session keys, and the symmetric encryption of

the public part of the coin y and double-encryption of her identity, are sent to the bank.

The bank veriêes Alice’s identity, creates a session number and sends the ombudsman’s session

key, symmetric encryption of y and the double-encryption of Alice’s identity to the ombudsman,

who can derive his session key, the encryption of Alice’s identity under the bank’s public key, and

a signature on y. The process by which the coin is then joint-generated with the bank is irrelevant

for us. The key point is that, once the withdrawal is complete, the bank stores the transaction

number, Alice’s identity, and the double-encryption of her identity; the ombudsman stores the

transaction number, session key, y and Alice’s identity encrypted for the bank. To spend a coin,

Alice sends y with her blindly signed coin s (see Figure 2.13) to Bob. Given this information at

a later point, the ombudsman and bank can cooperate to obtain Alice’s identity (see Figure 2.15)
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(Jakobsson and Yung, 1996). This rudimentary method of requiring multiple layers of encryption,

and therefore the agreement of several parties, to protect Alice’s anonymity, is important to our

work.

Figure 2.13 Coin Withdrawal in Jakobsson and Yung (1996)
Alice Bank Ombudsman

KB,KO, x ∈R Zq

y := f(x)

Verify id

Derive KB

n ∈R Zq

σ := signOmb(y)

{id}Bank

Verify id received

Blind signature protocol→ s

Verify s

Store (n, y,KO, {id}Bank)

{s}
Sym
(Alice,Omb)

{s}
Sym
(Alice,Omb)

Decrypt, verify s

Derive KO, y, {id}

Store with n, id, {{id}Bank}
Sym
(Alice,Omb)

{KB}Bank, {KO}Omb, {y}

Sym
(Alice,Omb)

,

{{id}Bank}
Sym
(Alice,Omb)

, {id}Bank

{KO}Omb, {y}

Sym
(Alice,Omb)

, {{id}Bank}
Sym
Alice,Omb

, n

Figure 2.14 Coin Spending in Jakobsson and Yung (1996)
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Kügler and Vogt: Auditable Tracing So far, we have made the case for revocable anonymity

in a variety of protocols, including electronic voting. One of the most pressing problems with

revocable anonymity, however, is the fair tracing problem: “no-one is able to control the legal usage

of tracing, leading to the possibility of illegal tracing” (Kügler and Vogt, 2002, p. 137). To some

degree, if we can trust that only a certain entity will have the key(s) required to revoke anonymity,

then we can be assured that privacy is protected. However, what if this is not the case? What if a
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Figure 2.15 Coin Deposit and Anonymity Revocation in Jakobsson and Yung (1996)
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voter’s anonymity is revoked with no clear reason, or by an unauthorised entity? Kügler and Vogt

(2003, 2001, 2002) present a protocol which does not prevent this “illegal tracing”, but instead

all anonymity revocation detectable by the traced person. They term this notion “optimistic fair

tracing”. The theory behind this idea is that the threat of being detected deanonymising users is

enough of a disincentive to rogue authorities to prevent it happening.

Here, we focus speciêcally on Kügler and Vogt (2003), a protocol designed for tracing revo-

cation in digital cash. Though the protocol itself is not directly usable by us, many of the ideas

presented in it are. Indeed, we discuss the idea of auditable anonymity revocation extensively in

Chapter 6.

The protocol is based around the notion that when a customer ‘withdraws funds’ from the

bank, essentially minting coins, she does so by encrypting her identity with some tracing key.

In many protocols, there is a single tracing key for all coins and customers. In this protocol, a

different public tracing key is issued for every customer, where these keys have a limited validity

and must regularly be renewed. This allows two types of tracing:
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• Coin tracing, where the withdrawn coins of a customer are deanonymised, so the bank

recognises them when they are spent, and

• Owner tracing, where the coins deposited by a suspicious merchant are deanonymised,

identifying their withdrawer (for example, tracing someone who makes a purchase from a

known drug dealer).

Both of these are possible in the protocol, provided that the bank knows the private tracing key for

the customer, and merchant, respectively. Whether or not the bank does know this key depends

on the key generation parameter, a notion which will be deêned later. Once a tracing key has

expired, the bank reveals the parameter, enabling the customer or merchant to see if they were

traced.

When the bank creates a tracing key (of which the customer is given the public counterpart),

it creates a user certiêcate, which contains the user’s identity, public tracing key, activation and

expiration dates, transaction value limit and a symmetric encryption of the parameter used to

generate the tracing key. We hence have customer and merchant certiêcates, used to withdraw and

deposit coins respectively. Once certiêcates become invalid, the customer or merchant asks the

bank for the symmetric key used to encrypt the key generation parameter, and can request a

tracing certiêcate from the bank (a user certiêcate, signed by a judge, authorising tracing).

The bank issues coins during the generate phase, and accepts them for deposit in the accept phase

(we refer to Figure 2.16 for an example). The activation and expiration dates of any customer

certiêcate must be during the generate phase of a single coin’s generation. The audit date for

the customer certiêcate, is always a certain time period d (in Figure 2.16) after the end of the

accept phase for this coin’s generation. Likewise, the activation and expiration dates of a merchant

certiêcate must be within the accept phase of the coin’s generation. The audit date is always a

certain time period t after the merchant certiêcate expires.

In the diagram, coin tracing is undetectable for the time d, and owner tracing undetectable

for time t. Authorities can use these time frames to conduct criminal investigations.

Note that the protocol only permits a coin to be traced if the bank explicitly enabled coin trac-

ing before its withdrawal. This is something of a disadvantage: not only is revocable anonymity not
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Figure 2.16 Kügler and Vogt’s Auditable Anonymity Revocation Scheme.
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possible without a priori knowledge of who is to be traced, but auditing of this deanonymisation

isn’t possible either.

We now brieëy describe the setup part of the scheme (Kügler and Vogt, 2003, p. 273–6),

which implements a standard ElGamal encryption scheme using a cyclic group Gq, with three

pseudo-random generators g0, g1, g2. Given a secret key x ∈ Zq and public keys y = gx, y1 =

gx1, y2 = gx2, the values G, g, g1, g2, y, y1, y2 are published. We now focus only on how coin tracing

and minting are implemented. New customers register a public key gC with the bank, where

gC = gxs : xs ∈R Zq. The bank assigns the customer a public coin tracing key yC along with

a customer certiêcate, where yC = gxC2 : xC ∈R Z∗
q . Note, however, that if the customer is

not to be traced, yC is calculated as gxCC instead, meaning that the bank cannot know the discrete

logarithm of yC to the base g2.

The secret value xC is encrypted symmetrically in the customer certiêcate (the authors note

that one xC is used in every generation of coins, for all customers). When xC is later publicly

revealed during the audit period, all customers can determine if their coins are traceable (a cus-

tomer knows they have been traced if yC ̸= gxCC ). Any customer who have been traced can request

a signed certiêcate authorising this action from the judge The authors note that the tracing key,
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used to encrypt the customer’s identity, can be proved to have been used correctly using a standard

proof of equality of discrete logarithms, due to Chaum and Pedersen (1992).

As the focus of this thesis is not on digital cash, we do not dwell further on how the spending

and deposit mechanisms of the protocol work, instead referring the interested reader to the origi-

nal paper (Kügler and Vogt, 2003). For us, the interesting part of this work is in how the spender’s

anonymity is revoked: i.e., if the customer can show that a key to decrypt her identity was ever

created, then she can assume that the bank had this intention. The protocol seems to rely on the

honesty of the bank, and on the bank’s knowledge of who to trace before coins are even minted

(with the exception of double-spenders, who are identiêed automatically through revelation of

a number of values). In electronic voting, this scenario seems inappropriate: double-voting is

not the only reason that a voter might need to be traced, and the electoral authorities cannot

expect to know who to trace beforehand. We discuss our thoughts on this problem (sometimes

identiêed as the ‘digital envelope’ problem) in Chapter 6.

2.4 Trusted Computing and the TPM

As we will discuss further in Section 3.2.1, trusted computing is still something of a controversial

concept in some circles. A trusted computer can be deêned as one which, by a number of methods,

can prove that it is running certain software, and behaving in a certain manner, without reliance

on the end-user.

As noted by Challener et al. (2008), there are many reasons why an authority may wish to

be convinced of the trustworthiness of a remote machine: viruses, phishing attacks, badly coded

software which is subject to leaks, and eavesdropping are all commonplace. Some of these issues

can be mitigated with strong encryption practices, but then, how are the keys used for encryption

to be stored? This is one of the founding ideas of trusted computing—it assumes that, at some

point, software will be compromised. As such, it provides some trusted hardware—the Trusted

Platform Module, or TPM—which protects security.

The TPM (the means of providing trusted computing on which we will focus) was designed
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by the Trusted Computing Group, and is currently on version 1.2 of its speciêcation (TCG,

2011a,b,c). It ensures the security of private keys and detection of malicious code via three main

functions:

• Public key authentication. The TPM has a secure random number generator, and func-

tionality to generate keypairs, encrypt, decrypt, sign and verify values. Private keys are

generated in the chip, and not accessible outside of it (keys may be stored in external stor-

age, but are encrypted by the TPM).

• Integrity measurement. Although private keys are secured, one has to ensure that mali-

cious code can still not access them. Thus, the TPM has a number of platform conêguration

registers (PCRs), which store hashes of conêguration values measured at boot. The TPM

can be used to encrypt certain values such that they can only be decrypted by a computer

whose TPM’s PCRs are in a certain state (this is known as sealing).

• Attestation. A machine with a TPM is able to use its private keys to sign its PCR values,

allowing that machine to prove its trustworthiness to a remote machine. This can be done

anonymously, via a protocol known as DAA (Brickell et al., 2004).

(Challener et al., 2008, p. 10)

2.4.1 TPM Structure

The components of a generic TPM are given in Figure 2.17. Note the two types of storage in

the TPM: persistent and volatile. In persistent storage, the endorsement key and storage root key are

stored. The former of these is an RSA keypair created and stored when the TPM is manufactured.

The private part of this key is never released from the TPM. The key is used during the assignment

of an owner to a TPM, when a storage root key is generated: again non-migratable to other TPMs

(with some exceptions), this key is the root of a number of keys associated with the protected

storage function of the TPM.

A number of other keys can be created by the TPM. Of these, binding keys are used to

encrypt data such as symmetric keys; signature keys are used to create standard RSA signatures,
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Figure 2.17 TPM Structure (TCG, 2011a)
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and identity keys are used in a non-migratable manner, generated inside the TPM, either to sign

PCR values or to sign other keys as being non-migratable. For us, Attestation Identity Keys

(AIKs) are particularly important, and form a vital part of anonymously identifying a user’s TPM

in the Direct Anonymous Attestation protocol (see Section 3.2.2 for further information).

A key component of the TPM for our work is the platform conêguration registers (PCRs). These

are in volatile memory, and are used to attest to the state of a machine. When the machine is

booted, initially the registers store zeroes, but can then be manipulated via the TPM_Extend

operation. To extend a PCR by a value x is to concatenate x to the current value of the PCR,

and then store the SHA-1 hash of this new value back in the PCR. Because of the hashing

algorithm used, it is assumed that one cannot manually force a PCR to be in a certain state, or

revert to another state, thus making the registers a sound base from which to verify the state of a

machine (Challener et al., 2008, p. 37).

One of the TPM’s key functionalities is to encrypt a value such that it can only be decrypted

by a TPM whose PCRs are in a deêned state (effected by the TPM_Seal operation):

It is possible to infer that a machine is in a state consistent with a certain set of PCR
values if it is able to decyrpt a particular value that was locked to that PCR state
(Challener et al., 2008, p. 38)
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Another of the TPM’s operations, TPM_Quote, allows the TPM to report the state of a requested

PCR, allowing inference of the state of a machine. We use this functionality in our work.

2.4.2 Interaction with the TPM

As is perhaps clear from the previous section, the Trusted Computing Group deêne a êxed API

for interaction with the TPM (TCG, 2011c). The API document is very informative on these

commands, and we hence refer the interested user to it. For our purposes, we give an example of

a full TPM command, the aforementioned TPM_Quote, which returns a signed report of PCR

values:

TPM_Quote(tag,paramSize,keyHandle,externalData,targetPCR,authHand,

authLastNonceEven,nonceOdd,continueAuthSession,privAuth)

From the high level at which we interact with the TPM in our work, we are not concerned

with the intricate details of each command. As such, we abstract away much of the detail, leaving

only the important parts of the command. In the case of the TPM_Quote command, we leave

only the externalData parameter deêned, assuming default values for the remaining parameters:

TPM_Quote(. . . , ca, . . .)

In our work, we make no alterations or additions to the commands deêned in the TPM API.

2.4.3 Summary of TPM Commands Used

In our work in Chapters 5 and 6, we use a subset of the TPM’s API commands. Though, for

brevity, we do not go into depth about the intricacies of each, in Table 2.8 we explain the purpose

of the commands we use. As already discussed, the API commands are the only way in which the

operating system and its software can interact with the TPM, which essentially acts as a “black

box”.
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Table 2.8 Summary of TPM Commands Used (TCG, 2011c)

Command Description
TPM_DAA_Join Begins the DAA Join protocol, discussed in Section 3.2.2.3: estab-

lishes parameters in the TPM for a particular issuer, allowing the
TPM to be certiêed as a member of a particular group

TPM_DAA_Sign Begins the DAA Sign protocol, discussed in Section 3.2.2.3: pro-
duces a DAA signature on a message, convincing the message veri-
êer anonymously that the signer was a member of a particular group

TPM_Quote Cryptographically reports requested values from the TPM’s PCRs,
using a key to sign a statement giving the value of the PCR together
with a challenge nonce

TPM_Extend Adds a new measurement to a particular PCR. This is done by
hashing the current value of the PCR concatenated with the new
value. As a result of the hash function used, it is computationally
infeasible to obtain a given PCR value in more than one way

TPM_CreateWrapKey Creates an asymmetric keypair, bound to a speciêc PCR state (such
that a message encrypted—or bound—using the public key, can only
be decrypted by TPM whose PCRs are in the designated state

TPM_LoadKey2 Loads a key into memory for further use
TPM_Seal Encrypts a message using a given key, according to a speciêc PCR

state in which any decrypting platform must be
TPM_UnSeal The reverse of the TPM_Seal command, which decrypts a cipher-

text only when the TPM’s PCRs are in the designated state
TPM_IncrementCounter Increment one of the TPM’s built in monotonic counter values

2.5 Summary

In this chapter, we have introduced the requirements for remote electronic voting systems, adding

our own requirement for UK-speciêc elections: namely, revocable anonymity. We have discussed

both a variety of electronic voting protocols, and a number of approaches to provision of revocable

anonymity in other êelds, such as digital cash. Finally, we discussed trusted computing and the

TPM, something which we use extensively in Chapters 5 and 6. As noted earlier, no existing

work explicitly considers revocable anonymity in electronic voting: this is likely because it is a

notion which is not appropriate to many countries’ electoral systems. Nevertheless, the UK’s

legal requirement to be able to link a ballot to a voter motivates us to provide a solution.

One might wonder whether revocable anonymity could simply be “bundled” into an existing

electronic voting protocol. That is not the focus of this thesis. Though we could try to alter
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existing protocols, we feel that there is no suitable protocol from which to start: for us, the closest

protocol to meeting the needs of UK elections is JCJ (Juels et al., 2005), and the system based upon

it, Civitas (Clarkson et al., 2008). However, despite considerable research, no secure alternative

to the multiple rounds of inefficient plaintext equivalence tests has yet been found, making the

protocol inappropriate for wide-scale deployment. JCJ, like many other remote voting protocols,

also relies upon the trustworthiness of the machine the voter uses. This is an issue which we

address in Chapter 5.

In the next chapter, we discuss the primitives we will use in our work, including cryptographic

protocols and primitives, and trusted computing.
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3 Preliminaries

Chapter Overview

In this chapter, we introduce a number of primitives and technologies which are needed for the

rest of the thesis.

3.1 Cryptographic Primitives

We assume the availability of the following cryptographic primitives. Note that we are work-

ing in the formal model, not in provable security. Therefore we make the assumption that the

cryptography in the primitives below is perfect.

3.1.1 Threshold ElGamal Encryption Scheme

For the majority of our work, we use a standard ElGamal encryption scheme, under a q-order

multiplicative subgroup Gq = ⟨g⟩ of Z∗
p , generated by an element g ∈ Z∗

p , where p and q are

suitably large primes, and q divides (p− 1). The security of the encryption scheme depends on
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the holding of the Computational Diffie-Hellman (CDH) assumption in Gq: that is to say that for

a chosen cyclic group G of order q, randomly chosen generator g, and a, b ∈R {0, . . . , q − 1},

given

(g, ga, gb),

it must be computationally intractable to compute gab. We may infer that ElGamal is semantically

secure if the Decisional Diffie-Hellman (DDH) assumption holds in G: that is to say that for a

chosen cyclic group G of order q, randomly chosen generator g and random a, b ∈ Zq, given

ga, gb, the value gab must be indistinguishable from any other value gc ∈ Zq.

Both the CDH and DDH assumptions are stronger forms of the discrete logarithm assumption,

that given a generator g, large prime p, and a value x, derivation of e such that ge ≡ x mod p is

computationally hard (Schneier, 1996, p. 540).

We now explain how encryption works in the ElGamal cryptosystem, and then discuss the

differences between decryption and threshold decryption.

3.1.1.1 Key Generation

All agents a in the protocol have a private key sa ∈ {0, . . . , q − 1} of which only they have

knowledge. Each agent has a corresponding public ha = gsa where g is a known generator of

the subgroup. The public key consists of this ha along with G, g, q. Public keys are common

knowledge to all users.

3.1.1.2 Encryption

In order to encrypt a message m in the encryption scheme we use, a random value α ∈ {0, . . . , q−

1} is selected. The ciphertext is then constructed as

(x, y) = (gα, hα · m) = (gα, gαsa · m)

Note that, where the nature of an encryption is unimportant (e.g., where the random exponent,

or cryptosystem, is irrelevant), we also denote by {m}k the encryption of a message m with key
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k. Now, given the secret key sa and ciphertext (x, y), the recipient can calculate gαsa = xsa , and

thencem by dividing y by this value. Without the secret key, the calculation of a discrete logarithm

is required in order to decrypt y.

3.1.1.3 Threshold Decryption

In our work, we use a (t, n)-threshold decryption scheme analogous to that of Cramer et al.

(1997), which uses earlier work by Pedersen (1991). The objective of a threshold cryptosystem

is clear:

…to share a private key among a set of receivers such that messages can only be
decrypted when a substantial set of receivers cooperate (Cramer et al., 1997, p. 5)

The problems solved, then, are the joint generation of a secret key by multiple, mutually dis-

trusting parties, and thence the joint decryption of a ciphertext. Joint key generation (Pedersen

(1991) in Cramer et al. (1997)) involves each authority Aj being dealt a share sj ∈ Zq of a secret

value s. Public commitments hj = gsj are released. The secret s can be recovered from any set Λ

of t < n shares (a quorum of t out of n members), using Lagrange coefficients λj,Λ:

s =
∑
j∈Λ

sjλj,Λ; λj,Λ =
∏

l∈Λ\{j}

l
l− j

The public key h = gs is publicly announced, and no single participant therefore learns s.

To decrypt a ciphertext (x, y), each participant broadcasts wj = xsj and a zero knowledge proof

that logg hj = logx wj. A quorum of legitimate authorities is able to work together to recover the

message m as

m = y/
∏
j∈Λ

w
λj,Λ
j

In our work, we use a threshold cryptosystem when decrypting votes, to ensure that only a

suitably-sized quorum of authorities can decrypt a ciphertext. Combined with our choice of

cryptosystem, this means that no single vote is observed by any tallier. An interesting question is

how many of the set of authorities constitutes a quorum (i.e., how many must cooperate in order

to decrypt a ciphertext). As Benaloh (2006) notes, the number should be high enough to prevent
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a small subset colluding to break privacy, but low enough that a small number of “discontented

trustees” are still able to prevent the completion of an election by not cooperating. Clearly, any

quorum size needs to be determined empirically before the election.

3.1.1.4 ElGamal as a Homomorphic Cryptosystem

It is an important factor of our work that the ElGamal cryptosystem is a multiplicative homomorphic

cryptosystem. This is to say that given two ciphertexts:

(x0, y0) = (gα, gsαm0) (x1, y1) = (gβ, gsβm1)

the product of those ciphertexts, viz. (X,Y) =
1∏
i=0

(xi, yi), is equal to

(X,Y) = (gα · gβ, gsαm0 · gsβm1)

= (gα+β, gs(α+β)(m1 · m2))

i.e., the product of any number of ciphertexts is equal to the encryption of the product of the

plaintexts. As with much work in electronic voting, we use this to our advantage: choosing the

form of the plaintext carefully allows secure tallying of votes, such that it is possible to accurately

determine the tally, whilst not showing how any one voter voted. We discuss this more in

Chapters 4 and 5.

3.1.2 Strong Designated Veriêer Signature Scheme

Designated Veriêer signatures and proofs have a long history (Jakobsson et al., 1996), and extensive

use in the êeld of e-voting. We adopt the designated veriêer signature scheme of Saeednia et al.

(2003) due to its efficient nature, but others would be acceptable. We use designated veriêer

signatures to enable a prover (Bob, or any one of the êrst-round tellers in our case) to prove a

statement to a veriêer (Alice) by proving the validity of a signature:

Let P(B,A) be a protocol for [Bob] to prove the truth of the statement Ω to [Alice].
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We say that P(A,B) is a strong designated veriêer proof if anybody can produce
identically distributed transcripts that are indistinguishable from those of P(A,B),
except for Bob (Saeednia et al., 2003, p. 43)

However, Alice is unable to prove the signature’s validity to anyone else, on the grounds that she

could have produced it herself (Saeednia et al., 2003, p. 43).

The parameters for the scheme are the same as those for ElGamal encryption: large primes

p and q, such that q|(p − 1); a generator g ∈ Z∗
p of order q, and a one-way hash function hash

that outputs values in Zq. Every user a has a secret key sa and a corresponding public key ha = gsa

mod p.

In order to generate a designated veriêer signature on a message m for Alice, Bob selects

k ∈R Zq, e ∈R Z∗
q and calculates

c = hkAlice

r = hash(m, c)

v = ke−1 − rsBob mod q

The triple (r, v, e) is now the signature of m (Saeednia et al., 2003). We denote this designated

veriêer signature as DVSignBob→Alice(m), where the signature is generated by i.

Alice is able to verify the signature’s correctness by checking the equation

hash(m, (gvhrBob)
esAlice mod p) ?

= r

Clearly, no-one other than Alice can verify the signature (veriêcation uses her private key). How-

ever, Alice is able to select a random v′ ∈ Zq, r′ ∈ Z∗
q and simulate the entire transcript herself (the

reader is directed to the authors’ paper for proof of this). As a result, Alice could have generated

the signature herself, and no third party will be convinced of the validity of any signature from

Bob that Alice claims to be valid (Saeednia et al., 2003, p. 45).
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Even if Alice reveals her secret key to a third party, she cannot convince that party of the va-

lidity of the signature, since she herself could have simulated the signature transcription. Further,

no party is able to reveal the contents of the signature without Alice’s secret key.

3.1.3 Proof of Equality of Discrete Logarithms

In order to prevent an attack in our voting scheme, we require that the voter demonstrates to a

veriêer that her vote is of the correct form (without revealing what the vote is).

As we discuss later, a voter’s vote is of the form (x, y) = (gα, hαT2
gM

i−1
) where α ∈R Zq, M is

the maximum number of voters and i represents the position in the list of candidates of the voter’s

chosen candidate. Alice needs to prove, in zero knowledge, that she is sending to the bulletin

board some value for y where the exponent of g is in {M0, . . . ,ML−1} where L is the number of

candidates. If we did not have such a proof, any voter could spoil the election by adding spurious

coefficients to the exponent, thereby voting several times.

We hence show that the ballot (x, y) is of valid form, as speciêed in the parameters of the

election:

(x, y) = (gα, hαT2
m) : m ∈ {gM0

, . . . , gM
L−1}

Cramer et al. (1997) demonstrate this via a witness indistinguishable proof of knowledge of the

relation:

logg x = loghT2
(y/m0) ∨ logg x = loghT2

(y/m1)

for an election with only two candidates (Cramer et al., 1997).

This proof of validity is described for an interactive, two-candidate scenario in Cramer et al.

(1996), Cramer et al. (1997) and Hevia and Kiwi (2004). Using the Fiat-Shamir Heuristic

(Fiat and Shamir, 1986), the authors convert the interactive protocol into a non-interactive one

(Cramer et al., 1997). However, the scheme provided in these papers is for votes with only two

possible outcomes.

The proof of validity for a two-candidate scenario, where a vote (x, y) = (gα, hαm) : m ∈

{m0,m1} and the prover knows the value of m, holds, proving that (x, y) is of the proscribed form,
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providing Alice submits a vote v ∈ {m0,m1}, as it provides a witness-indistinguishable proof for

the relation given above. The prover knows a witness for either the left or right part, according

to the choice of m.

We can extend the two-candidate scenario to L candidates, providing a proof for the relation

given by

logg x = loghT2
(y/gM

0
) ∨ . . .

. . . ∨ logg x = loghT2
(y/gM

L−1
)

We adapt the non-interactive proof of ballot validity to a scheme for a multi-candidate elec-

tion. In Figure 3.1, we give a generalised adaptation (G-PEQDL) of the above proof of equality

of discrete logarithms scheme where Alice votes for candidate k (1 ≤ k ≤ L) with (x, y) =

(gα, hαgM
k−1

). This is the only place where we extend one of the primitives we use, and as such

we provide a proof, analogous to that of Cramer et al. (1997), for our extension. We note that

similar proofs for 1-out-of-L election schemes already exist (Lee and Kim, 2000; Hirt and Sako,

2000)—our work was merely developed independently to suit our own voting protocols. We use

the notion of a binding encryption scheme (Cramer et al., 1996). A binding encryption scheme is

one in which any encryption can be opened only one way.

Theorem 1. (Security of Generalised PEQDLs) Under the discrete logarithm assumption, the

encryption scheme we use is binding in that an encryption can be opened in only one way.

Furthermore, the G-PEQDL is a witness-indistinguishable proof of the relation given by

logg x = loghT2
(y/gM

0
) ∨ . . . ∨ logg x = loghT2

(y/gM
L−1

)

Proof. If an encryption of a ballot can be opened in two different ways, i.e., if for an encryption

pair (x, y) = (gα, hαm), values α, α′ and v, v′ can be presented such that y = hαgv = hα
′
gv

′
, where

α ̸= α′ and v ̸= v′, it follows that logg h =
v− v′

α− α′ , which contradicts the Discrete Logarithm

Assumption.

Like the proof provided by Cramer et al. (1997) for their two-candidate vote scenario, our

generalised proof of equality—essentially the same as the two-candidate scenario expanded to L

candidates—is, by the results of Cramer et al. (1994), a witness-indistinguishable proof of knowl-

edge that the voter knows logg x, described by the relation above. The G-PEQDL is hence
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specially sound: i.e., given two conversations between prover and veriêer in which the initial ai, bi

messages remain the same, but the challenge, and thus di, ri messages change, a witness can be

extracted for each conversation in polynomial time. In particular, the dk and rk can always be

chosen such that veriêcation succeeds for any value of the hash function challenge c.

Further, the protocol is special honest veriêer zero-knowledge: i.e., given an honest veriêer, and

any randomly chosen challenge c, the protocol produces a conversation indistinguishable from the

space of all conversations between honest prover and honest veriêer in which c is the challenge.

We êrst consider the interactive version of the proof, in which c is chosen uniformly at random

by the veriêer, and sent to Alice after she sends (x, y, a1, . . . , aL, b1, . . . , bL). Alice replies with

(d1, . . . , dL, r1, . . . , rL), and the veriêcation proceeds as in the non-interactive version. Honest

veriêer zero-knowledge holds because, for random c and di : 1 ≤ i ≤ L; i ̸= k, and random

ri : 1 ≤ i ≤ L, we can simulate a conversation between the honest veriêer and the prover, by

choosing ai and bi to satisfy the equations given in Figure 3.1. Since c can be chosen freely in

the interactive version, we get special honest veriêer zero knowledge. The Fiat-Shamir heuristic

used to produce the non-interactive version preserves this property.

We now demonstrate an execution trace of the G-PEQDL protocol. Referring to the pro-

tocol (Figure 3.1), Alice generates the values α, ω and ri, di (for i = 1, . . . , k− 1, k+ 1, . . . ,L) at

random, where she has voted for the kth candidate out of L.

She uses x = gα, y = hαT2
gM

k−1
as with her actual vote (note that the value of α does not

change), and proceeds to generate ak = gω, bk = hωT2
. All other ai for 1 ≤ i ≤ L are calculated as

grixdi , and all other bi ← hriT2
( y
gMi−1 )di .

Finally Alice generates

c← hash(hAlice, x, y, a1, b1, . . . , aL, bL)

Using this value she can generate dk by subtracting all other di values from c, and ênally

rk ← ω − αdk. Alice sends all a, b, d and r values to the veriêer.

The veriêer now generates c in the same way (note that this value is not sent to him), and

trivially this c should equal the sum of all di, as Alice manipulated dk to make this the case. The

veriêer now checks each value of ai, bi:
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1. For all ai̸=k, bi̸=k: ai trivially equals grixdk and bi trivially equals hriT2
( y
gMi−1 )di , as these values

were calculated in the same manner by Alice

2. For ak:

(a) The value Alice calculates is ak = gω

(b) The veriêer makes the comparison:

ak
?
= grkxdk

?
= gω−αdkgαdk

?
= gω−αdk+αdk

?
= gω

which succeeds if Alice is honest.

3. For bk:

(a) The value Alice calculates is bk = hωT2

(b) The veriêer makes the comparison:

bk
?
= hrkT2

(
y

gMk−1 )
dk

?
= hω−αdk

T2
(
hαAliceg

Mk−1

gMk−1 )dk

?
= hω−αdk

T2
hαdkT2

?
= hω−αdk+αdk

T2

?
= hωT2

which succeeds if Alice is honest.

The only way that Alice could be dishonest to her advantage is to make y equal to (for ex-

ample) hαg30M
k−1

, thereby voting 30 times. Similarly she could attempt to vote for more than
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one candidate (y = hαgM
k−1+Mk−2

), or could attempt to harm the voting tally of a candidate,

whilst voting also for her own (y = hαg10M
k−1−9Mk−2

). These attacks cannot work. In the veriê-

cation phase, bk could not be equal to hrkT2
( y
gMk−1 )

dk if the value of the exponent of g in y is not in

{M0,M1, . . . ,ML−1}. Thus, one or more calculations for bi would fail, and the proof would be

rejected.

Figure 3.1 Our generalised non-interactive proof of ballot validity for a vote for candidate k
Verifier

ai = gri xdi for i = 1, . . . , L

Check:

c← hash(hAlice, x, y, a1, b1, . . . , aL, bL)

bi = hri ( y

gMi−1
)di for i = 1, . . . , L

c
?
=

X

i

di

rk ← ω − αdk

dk ← c−
X

i6=k

di

c← hash(hAlice, x, y, a1, b1, . . . , aL, bL)

bi ← hri ( y

gMi−1
)di

ai ← gri xdi

For 1 ≤ i ≤ L; i 6= k :

bk ← hω

ak ← gω

y ← hαgMk−1
x← gα

(i = 1, ..., k − 1, k + 1, . . . , L) ∈R Zq

Select α, ω, ri, di

aL, bL, dL, rL〉

〈a1, b1, d1, r1, . . . ,

G-PEQDL =

Alice

3.1.4 Designated Veriêer Re-encryption Proofs

The properties of the ElGamal encryption scheme allow re-encryption (randomisation) of cipher-

texts. Given a ciphertext (x, y), another agent is able to generate (xf, yf) = (xgβ, yhβ) : β ∈R Z∗
q .

It is known that given two ElGamal ciphertexts, without knowledge of the private key or the

re-encryption factor β, determining any re-encryption relationship between the ciphertexts is

hard under the DDH assumption.

In our protocol, we use an ElGamal re-encryption to preserve the voter’s anonymity. How-

ever, the voter needs to have some conviction that her vote has been counted (individual ver-

iêability). We achieve this via a Designated Veriêer Re-encryption Proof (DVRP): such a proof

convinces Alice that a given re-encrypted ciphertext is equivalent to that she generated, whilst

not convincing any third party. We adopt the scheme used by Lee et al. (2004); Lee and Kim

(2002) and Hirt and Sako (2000): if (x, y) = (gαhαm) is a ciphertext of a message m as described
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above, (xf, yf) = (xgβ, yhβ) is a re-encryption of (x, y). The prover, P (the agent that does the

re-encryption) needs to demonstrate to Alice that (xf, yf) is equivalent to (x, y) in such a manner

that m is not revealed, and this proof is not transferable. P therefore does the following:

1. Selects d, j, u ∈R Zq

2. Calculates (a, b) = (gd, hdP) and σ = gjhuAlice, where hAlice is Alice’s public key as before.

3. Calculates c = hash(a, b, σ, xf, yf) and z = d− β(c+ j)

4. Sends (c, j, u, z) to Alice

Alice then merely needs to verify that

c = hash(gz(
xf
x
)c+j, hz(

yf
y
)c+j, gjhuAlice, xf, yf)

As detailed by Hirt and Sako (2000), Alice is able to generate this proof for herself as she knows

her own private key (σ is a trapdoor commitment for j and u), meaning that no-one (other than

Alice) can be convinced by it. Indeed, Alice can insert ‘fake’ proofs into any communication

meant for her, to fool observers.

3.1.5 Signature Scheme

We assume the availability of a standard signature scheme in our work. Though we could use the

ElGamal signature scheme described in ElGamal (1985), it is rarely used in practice. Instead we

suggest the Digital Signature Algorithm (National Institute of Standards and Technology, 2009),

based on the original ElGamal scheme.

Parameters The system requires a hash function hash. We select a value p of length L, where L

is a multiple of 64; q, a prime factor of p− 1 of length N (between 160 and 256 bits, dependent

on the value of L); g = h(p−1)/q mod p, where h < p − 1 such that g > 1; x < q and y = gx

mod p. The values p, g, q are public; the private key is x and the public key is y.
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Signature Generation To sign a message m, Alice selects k < q and generates r = (gk mod p)

mod q; s = (k−1(hash(m) + xr)) mod q, then sends the signature, denoted signAlice(m) = (r, s),

to Bob.

Veriêcation To verify a signature, Bob computes w = s−1 mod q, u1 = (hash(m) ·w) mod q,

u2 = (rw) mod q, and v = ((gu1 · yu2) mod p) mod q. If v = r, the signature is valid.

3.1.6 Threshold Signature Scheme

In order to ensure that eligibility and uniqueness are always satisêed in our protocol, we employ a

(t, n)−threshold signature scheme during the voting phase of the protocol. A threshold signature

scheme works in a similar way to a threshold decryption scheme: of n possible talliers, t must

collude to generate a signature on a message. The scheme that we adopt is not of great conse-

quence, but the one used by Harn (1994) has good veriêcation properties and êts in well with

the exponential ElGamal cryptosystem that we use:

The scheme, like other threshold schemes, is based on the perfect secret sharing scheme of

Shamir (1979). We begin with some values agreed by all group members:

1. p, a large prime modulus;

2. q, a prime divisor of p− 1;

3. α, where α = h(p−1)/q mod p, h is a random integer between 1 and p − 1 and α > 1. α

is a generator of order q in GF(p). The values p, q, α are the public values; the ai values are

secret.

3.1.6.1 Key Generation

Each member i selects two integers, zi, xi at random from [1, p− 1] and computes a public key as

yi = αzi mod p. The pair xi, yi are then that member’s public key, with zi his secret key. Each

member then needs to use the same pre-agreed (t, n− 1)−secret sharing scheme to distribute his

key to the other group members. To do this, member i selects a (t−1)th-degree polynomial fi(x),
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where fi(0) = zi mod q, and computes fi(xj) mod q, and the corresponding public yi,j = αfi(xj)

mod p, for each other member uj.

3.1.6.2 Signature Generation

If considering a (t, n)−threshold encryption system, we note that a threshold (t)-sized quorum of

members is required to collude in order to decrypt a ciphertext. In a threshold signature scheme,

t members, indexed 1, 2, . . . t, are required in order to sign a message. Each member i begins

by signing the message using a secret key which they choose at random, ki ∈R [1, q − 1], and

computes a public value ri as ri = αki mod p. The public value ri is distributed publicly.

When all of these ri values are available, each member can calculate

r =
t∏

i=1

ri mod p

Each member i can then use his own zi and ki, and the secret fj(xi) for j = t + 1, t + 2, . . . , n to

sign the message m, by solving the equation

si =

{
zi +

n∑
j=t+1

fj(xi) ·

(
t∏

k=1,k̸=i

−xk
xi − xk

)}
· m′ − ki · r mod q

for si ∈ Zq, m′ = f(m). An assembly clerk (or, indeed, the signature’s intended recipient) is sent

{m, si}, where {ri, si} is i’s partial signature on m. When the clerk has received an {ri, si}, he

validates its authenticity using i’s public signature keys, as well as yj,i for j = t+ 1, t+ 2, . . . , n to

assert the equality yi
(

n∏
j=t+1

yj,i

) t∏
k=1,k̸=i

−xk
xi − xk



m′

= rriα
si mod p

where m′ = f(m).

When t partial signatures are received by the clerk, the full signature can be generated as {r, s},

where r was already calculable and s =
t∑

i=1

si mod q.
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3.1.6.3 Signature Veriêcation

As with a non-threshold scheme, the signature can be veriêed by anyone with access to the group

public key y, by asserting the equality

ym
′
= rrαs mod p

3.2 Other Preliminaries

3.2.1 Trusted Computing

The concept of trusted computing is still rather controversial in some circles. A trusted computer

is one that, through the use of a trusted platform module (TPM), and other technologies such as

memory curtaining, sealed storage and remote attestation, removes reliance on the end user to prove

that his computer contains a tamper-resistant module, with which communications can be trusted

to be authentic. The TPM is designed to be tamper-proof. The beneêts of its use for remote

applications requiring secure information ëow and data handling are clear.

In the êeld of remote electronic voting (that is, voting from any internet-connected terminal),

for example, we might require that a user can only vote from a machine that is running the correct

voting software, for obvious reasons. We could do this by providing each voter with a bootable

operating system ‘live CD’-type disc1.

However, we naturally still require that the voter using the trusted machine remains anonymous,

whilst still being able to demonstrate that the machine she is voting from is trustworthy.

Interaction with the TPM is permitted only through a list of predeêned commands, given

in the TPM’s API, as discussed in Section 2.4. We do not modify these commands in any way,

and denote the use of one of them as such. TPM commands are generally invoked directly

by the host machine, or by a remote machine via an encrypted transport session. For brevity we do

1We note that, as suggested by Fink et al. (2009), security of any system that obtains software and private keys
from removable media is vulnerable to compromise. This issue can be mitigated by having the TPM compare a
publicly known signed hash of the intended executable code with a hash the TPM itself generates. In fact, the user
could make this comparison.
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not elaborate on the structure of, or commands of the TPM API here. The reader is directed to

(TCG, 2011a,b,c; Challener et al., 2008) for further information. For now, it is sufficient to state

that actions performed by the TPM are trustworthy.

3.2.2 Direct Anonymous Attestation

Attestation in our context is the idea is that some veriêer wishes to be convinced that Alice is using

a machine which contains a valid, permitted TPM, and that (later) this TPM can prove that Alice’s

machine is running the correct software. However, the identity of the user or of the speciêc TPM

should not be revealed, as this would make her transactions linkable (Brickell et al., 2004). As

stated by Brickell et al. (2004), a possible solution to this problem was to give all TPMs the same

keypair to sign and encrypt, thereby making all transactions indistinguishable. Of course, this

solution would never work.

Hence, the Trusted Computing Group’s êrst solution was to use a Privacy Certiêcation Au-

thority as a trusted third party for every authentication. This naturally introduces problems: the

CA would have to be permanently available, and it would have to be trusted.

Direct Anonymous Attestation (DAA) is the solution that the TCG accepted, and is currently

built into the TPM speciêcation. The DAA protocol is complex, and we advise that the uniniti-

ated reader consult Brickell et al. (2004) for a full explanation. On a high level, DAA is split into

three sub-protocols: join, sign and verify. In the join protocol, a host and a TPM gain attestation on

a secret value, chosen by the TPM, demonstrating that the host’s machine contains a valid TPM.

In the sign protocol, the host and TPM anonymously prove that they gained this attestation, and

produce a DAA Signature on some message (generally a key). This signature is veriêed in the

ênal stage of the protocol.

For our purposes, we use DAA as follows. Alice, wishing to vote, engages in the DAA join

protocol with the registrar, R, using a pseudonym NR randomly generated by her TPM. R will

check that Alice is eligible to vote, and then issue her a certiêcate proving this fact.

Once Alice has obtained her certiêcate in our join protocol, she is free to (at any time after-

wards) form a different pseudonym NT with which to vote, and then authenticate herself to T
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using the DAA sign protocol. T will employ the DAA verify protocol, and then require that Alice

proves the state of her machine in some way, and, providing her machine’s state is correct, will

accept her vote for further processing.

The Direct Anonymous Attestation protocol (Brickell et al., 2004) is used to allow a remote

Trusted Platform Module (TPM) to anonymously attest to the state of the machine in which it

resides. In our context, it is particularly important that the attestation is anonymous—it is with

this feature that we allow a voter to vote. The DAA protocol uses a novel technique to detect

duplicate requests (in our case, votes), and to blacklist rogue TPMs.

We êrst point out some of the notation used by the authors (Brickell et al., 2004), and then

discuss the DAA protocol in more detail.

3.2.2.1 Notation

In order to permit the selection of the high and low order bits of some integer x, the authors

denote LSBu(x) to be x− 2u⌊ x2u ⌋, and CARu(x) to be ⌊ x2u ⌋, for some u. For example, if (xk . . . x0)b

is the binary representation of x =
∑
i=0

k2ixi (e.g., (1100)b is the binary representation of 12), then

LSBu(x) is the integer corresponding to the u least signiêcant bits of (xk . . . x0). CARu(x) is the

binary representation of x, right-shifted by u bits. Note hence that x ∈ N = LSBu(x)+2uCARu(x).

It is these functions that are later used to split a value f into two parts, f0 and f1.

A common scheme is adopted to represent proofs of knowledge, without discussing the detail

of those proofs. The line

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ (u ≤ α ≤ v)}

represents a zero-knowledge proof of knowledge of α, β, γ ∈ N, such that y = gαhβ and ỹ = g̃αh̃γ ,

where u ≤ α ≤ v (Brickell et al., 2004).
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3.2.2.2 The CL-Signature Scheme

The DAA scheme is based on the Camenisch-Lysyanskaya (CL) signature scheme (Camenisch and

Lysyanskaya, 2003). The scheme is mentioned here for completeness. A special RSA modulus

n = pq, p = 2p′ + 1, q = 2q′ + 1 (p, q, p′, q′ all prime) is chosen, followed by R0, . . . ,RL−1, S,Z

from the group of quadratic residues modulo n, QRn. The secret key is p; the output public key

is (n,R0, . . . ,RL−1, S,Z).

Given that ℓm is a parameter, and the messages space is the set {(m0, . . . ,mL−1) : mi ∈

±{0, 1}ℓm}, on input of a message m = m0, . . . ,mL−1, a random prime e is chosen with a random

number v, then the value A is computed such that Z ≡ Rm0
0 . . .RmL−1

L−1 S
vAe mod n (this is a gen-

eralisation of the way in which A is calculated in DAA, shown in Section 3.2.2.3). The signature

on m is then (A, e, v). Veriêcation is via checking that this equivalence holds for a given message.

3.2.2.3 The DAA Protocol

The protocol has three participants: the Host (who, working with her TPM, attests to the state

of her machine); the Issuer, who permits the host to join (gain attestation), and the Veriêer, who

determines whether the host indeed gained certiêcation.

Issuer Setup

1. The issuer chooses an RSA modulus, n = pq as described above, and a generator g′ ofQRn.

It selects x0, x1, xz, xs, xh, xg ∈ [1, p′q′] and generates:

g := g′xg , h := g′xh , S := hxs ,

Z := hxz , R0 := Sx0 , R1 := Sx1

(all mod n).

2. The issuer proves non-interactively that the values above are calculated correctly (proving

that each of the values in the key lie in the correct subgroups), then generates a group

of prime order, by choosing primes ρ,Γ such that Γ = rρ + 1 for some r with ρ which
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does not divide r (more details are given in the paper). Next it chooses γ′ ∈R Z∗
Γ and sets

γ = γ′(Γ−1)/ρ mod Γ.

3. The public key is declared as (n, g′, g, h, S,Z,R0,R1, γ,Γ, ρ); (p, q) is stored as the private

key.

The Join Protocol

From a high level, the join protocol is where a host (and its TPM) gain attestation on a secret

value chosen by the TPM, from an Issuer. Each issuer has a basename bsnI (I for “Issuer”, resp. V

for “Veriêer”), and an associated value ζI = (HΓ(1 ∥ bsnI))(Γ−1)/ρ mod Γ, where H, HΓ each

represent hash functions.

The TPM veriêes the ζI value supplied by the host, by ensuring that ζρI ≡ 1 mod Γ, and

generates two random values f0, f1, and a number of other values, by splitting an initial random

secret f:

f = H(H(DAAseed ∥ H(PK′
I)) ∥ cnt ∥ 0) ∥ . . . ∥ H(H(DAAseed ∥ H(PK′

I)) ∥ cnt ∥ i) mod ρ,

f0 = LSBℓf(f); fi = CARℓf(f); v
′ ∈R {0, 1}ℓn+ℓ∅ ; U = Rf0

0R
f1
1S

v′ mod n; Ni = ζ
f0+f12

ℓf

I mod Γ

DAASeed is a random seed used for calculation of f by the TPM, PK′
I is a long-term public

key of the Issuer, and cnt relates to the number of times the TPM has run the join protocol. All

values ℓx are DAA security parameters, deêned further by the authors. i is equal to ⌊ℓρ + ℓ∅
ℓH

⌋ (1,

with the default security parameter values). NI is the pseudonym the Issuer will know the TPM

by. U, NI are sent to the issuer via the host.

The Issuer checks whether NI represents a rogue (i.e., non-trustworthy) TPM, and checks

whether the pseudonym has been used before. If not, the TPM and issuer engage in a signature

proof of knowledge of the values (f0, f1, v
′). The authors represent such a proof of knowledge in

a high-level manner, where the protocol

SPK{(f0, f1, v
′) : U ≡ ±Rf0

0F
f1
1S

v′ mod n ∧ NI ≡ ζ
f0+f12

ℓf

I mod Γ

∧ f0, f1 ∈ {0, 1}
ℓf+ℓ∅+ℓH+2 ∧ v′ ∈ {0, 1}ℓf+ℓ∅+ℓH+2}(nt||ni)

represents a signature proof of knowledge of the values f0, f1, v
′ such that the assumptions given are
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satisêed, using the nonces ni and nt. If successful, the Issuer chooses v̂ and a prime e at random,

and computes v′′ = v̂+ 2ℓv−1 (ℓv is a security parameter), and

A =

(
Z

USv′′

)1/e

mod n

sending (A, e, v′′) to the host with a proof of A’s correctness, in the form of a proof of knowl-

edge of d such that d ≡ ±( Z
USv′′

)d mod n. The host forwards v′′ to the TPM, which calculates

v = v′′ + v′ and stores (f0, f1, v).

The Sign Protocol

Now that the host and TPM have gained an attestation credential on f0, f1, they can prove this

to a veriêer. The aim is for the platform to sign a message m (in our case, an Attestation Identity

Key—AIK, used to sign further messages).

We begin again by generating ζV = (HΓ(0 ∥ bsnV))(Γ−1)/ρ mod Γ, where bsnV is, in our

case, the basename of the talliers. The TPM veriêes ζV, and the host selects w, r at random,

computing

T1 = Ahw mod n; T2 = gwhe(g′)r mod n

The TPM computes NV using the same method as for NI, then sends it to the host. The host

and TPM now produce a signature proof of knowledge that T1,T2 commit to a certiêcate that

was computed using NV.

This done, the host generates a signature

σ = (ζV, (T1,T2),NV, c, nt, (sv, sf0 , sf1 , se, see, sw, sew, sr, ser))

where nt is a nonce and c is a hash containing the message m, and sends this to the Veriêer. The

details of the calculation of each s value are given in the original paper. Veriêcation is simply a

matter of checking the signature’s correctness, the correctness of ζV, and whether NV represents

a rogue TPM.
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In our protocol, we use (as is suggested in the paper) a fresh Attestation Identity Key (generated

by the TPM) as the message m which is DAA-signed by the host and the TPM. Once the Talliers

have an authenticated copy of this key, the TPM can sign its internal registers to prove their state,

and therefore to attest to the state of the machine.

3.2.3 Physical and Virtual Monotonic Counters

In the work we present in Chapter 6, one of the most important capabilities of the TPM is

the availability of secure monotonic counters. Monotonic counters are tamper-resistant counters

embedded in the TPM, which, once incremented, cannot be reverted to a previous value: this

reduces the likelihood of replay attacks, for many applications (Sarmenta et al., 2006).

Unfortunately, the 1.2 version of the TPM, being a low-cost piece of hardware, has only four

monotonic counters, of which only one can be used in any boot cycle. As noted by Sarmenta

et al., the intention here was to implement a higher number of virtual monotonic counters on

a trusted operating system. Trusted operating systems are a requirement we would rather not

enforce, however. The work of Sarmenta et al. (2006) demonstrates the creation of an unbounded

number of virtual monotonic counters with a non-trusted OS.

A virtual monotonic counter is a mechanism (in untrusted hardware or software) which stores

a counter value, and provides two commands to access it: ReadCounter, which returns the current

value, and IncrementCounter, which increases the counter’s value. The counter’s value must be

non-volatile, increments and reads must be atomic, and changes must be irreversible. Note that

virtual monotonic counters are not stored on the TPM, but instead on untrusted storage, allowing

a far higher number of simultaneous counters to be used.

The manner in which Sarmenta et al. (2006) implement their solution means that the counter

is not tamper-resistant, but merely tamper-evident. This is sufficient for our purposes, as an

attempt to tamper with such a counter can be seen by any observer as an illicit attempt to modify

its value. The counter produces veriêable output in the form of unforgeable execution certiêcates, via

a dedicated attestation identity key (AIK) for each counter. The counter uses this key, together

with nonces, to produce signed execution certiêcates to send to users.
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In the implementation of virtual monotonic counters suggested by Sarmenta et al. (2006, p.

31), the counter mechanism is stored in full on the host (rather than on the host’s TPM), and

supports the following functions:

• CreateNewCounter(nonce): returns a CreateCertificate containing the ID number of the

counter, and the nonce given as a parameter

• ReadCounter(CounterID,Nonce): returns a ReadCertificate containing the value of the

counter, the counter’s ID and the given nonce

• IncrementCounter(CounterID,Nonce): increments the counter, and returns an IncrementCer-

tificate containing the new value of the counter, counter ID and nonce

• DestroyCounter(CounterID,Nonce): destroys the counter.

In this work, we assume availability of the virtual monotonic counters deêned by Sarmenta et al..

To avoid use of commands that are not included in the TPM API, we adopt the êrst, log-based

scheme which they deêne (Sarmenta et al., 2006, p. 32). As noted earlier, the TPM has a limited

number of physical monotonic counters, of which only one at a time can be used. The log-based

implementation of virtual monotonic counters uses a physical monotonic counter as a “global

clock”, where the time t is simply the value of the physical counter at a given time.

The value of a virtual monotonic counter is then the value of the global clock at the last time

the virtual counter’s IncrementCounter command was executed. This consequently means that the

value of a counter each time it is incremented cannot be predicted deterministically—we can

merely say with certainty that the value of the counter will only monotonically increase. As we

discuss further in the Chapter 6, this does not present a problem for us.

The IncrementCounter operation is then implemented using the TPM_IncrementCounter

TPM API command, inside an exclusive, logged transport session, using the counter’s ID and the

client’s nonce (viz. hash(CounterID||nS)) to prevent replay. The result of the ênal operation, a

call to TPM_ReleaseTransportSigned, is a data structure including the nonce, and a hash of

the transport session log, which is used to generate an IncrementCertificate.
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The ReadCounter operation is more complex, and involves the host (idp, for us) keeping an

array of the latest increment certiêcates (Sarmenta et al., 2006, p. 33) for each virtual counter,

returning the right one when the client requests it. In order to prevent reversal of the counter’s

value, however, the host must send the current time certiêcate, the current increment certiêcate,

and all of the previous increment certiêcates. Veriêcation of the counter’s value then involves

checking that each previous increment certiêcate is not for the counter whose ID has been re-

quested.

We do not go into further implementation speciêcs, but instead refer interested readers to

Sarmenta et al. (2006, p. 32) for further information.

3.2.4 Anonymous Channel

Due to the nature of the DAA protocol (Brickell et al., 2004), we need to use of some sort of

anonymous channel during the voting phase (not doing so would lead to Alice’s pseudonyms

being linkable, and her vote therefore being traced). Due to the nature of our work in Chapter

5, we need this channel to be bidirectional, so that Alice can receive proofs of her vote having

been counted. We note that standard mix networks are not designed to receive replies, but onion

routing-based networks are (Dingledine et al., 2004). Like much work in electronic voting,

however, we deliberately do not specify how the anonymous channel is created, but note that it

is only important that a user’s communications through the channel are anonymous: untappable

channels are not required.

3.3 Summary

In this chapter, we have introduced a number of the preliminaries which we require for our work,

including our own work on a generalisation of the two-candidate proof of discrete logarithm

equality to L candidates. We have extensively discussed the TPM’s DAA protocol, which we

use in Chapter 5. In the next chapter, we discuss our êrst protocol on electronic voting with

revocable anonymity.



4 Revocable
Anonymity

in Electronic Voting†

Chapter Overview

In this chapter, work on a remote electronic voting protocol providing revocable anonymity to

voters, which was presented in December 2009 (Smart and Ritter, 2009), is discussed.

The chapter details a remote electronic voting protocol which satisêes several properties con-

sidered important in electronic voting. This leads to two main contributions:

• A secure voting protocol allowing a quorum of authorities to link a ballot to its voter

(revocable anonymity), whilst achieving coercion-resistance and legitimate voter privacy

• A novel method of allowing the voter to achieve coercion-resistance without anonymous

channels or tamper-resistant devices, through designated-veriêer signatures

†This chapter is an extended version of work presented at the Fifth International Conference on Information
Systems Security (Smart and Ritter, 2009).
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The protocol discussed in this chapter achieves the above properties, as well as the stan-

dard electronic voting properties (completeness, uniqueness, coercion-resistance, fairness, and

legitimate-voter privacy).

4.1 Chapter Structure

In Section 4.2, we give a simple schematic and a high-level description for our êrst protocol. In

Section 4.3, we give the participants, trust model and threat model for our work. We present the

protocol in Section 4.4, and provide an analysis of the security properties claimed in Section 4.5.

Note that a formal analysis of the protocol is given in Chapter 7.

4.2 Protocol Schema

We present a two-phase protocol, where voters do not need to synchronise between phases they

are actively involved in. Our reasoning for splitting into two phases is to preserve the anonymity

of the legitimate voter, henceforth referred to as Alice. In the êrst phase, voters receive eligibility

tokens with designated veriêer signatures, and form ElGamal encryptions of ballots, submitting

them to a bulletin board. A member of a semi-trusted tallier group re-encrypts Alice’s vote.

In the second phase, Alice receives a designated veriêer proof of re-encryption (along with

some other fake proofs of re-encryption), and her re-encrypted vote is posted to another bulletin

board with an encrypted version of her identity. Alice can then check her vote has been included,

or contact a Judge otherwise.

Once all votes are posted to the second bulletin board, a tally is calculated and announced. A

simple schematic diagram of the protocol is given in Figure 4.1.
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Figure 4.1 A schematic for our protocol.

Voters

BB1 BB2

Final Tally
T1 T2

Judge (External)

4.3 Protocol Model

4.3.1 Participants

Our protocol is modelled with 5 kinds of participants. A participant (agent) is an interactive,

probabilistic, polynomial-time computation. All agents are able to communicate via a network,

which is not secure or anonymous in any way.

The participants are as follows:

• Voters. The protocol allowsM voters vi ∈ {v0, v1, ..., vM−1} to vote. Alice is an honest voter

who wishes to vote anonymously. She is able to vote many times, but once unobserved.

Eligible voters’ public keys are publicly known.

• First Round Bulletin Board/First Round Talliers. Our protocol uses two separate bulletin

boards. A standard bulletin board is a public broadcast channel with memory. The êrst

bulletin board we use is writable only by voters. All voters send an encrypted vote and

signed proof of validity to this board, which we denote as BB1.

The êrst-round talliers T1 are a semi-trusted group of agents1, each possessing an ElGamal

secret key sT1 in its entirety, which any one of them can use to remove the êrst layer

of encryption on Alice’s vote2. We assume that each instance would be busy enough,

and that votes would be batched before sending to BB2, so that timing attacks would be

1We discuss our need for trusting T1 later in this Section.
2The size of T1 would need to be determined empirically depending on the size of the electorate. Since each

member of the group has a copy of the same key, the size only affects how much of a bottleneck (in terms of
computational power) T1 is.
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ineffective. Our justiêcation for having multiple members of T1 is to prevent a bottleneck

of computational power, but if this problem were ignored, we could equally substitute the

group for a single entity.

The êrst round talliers are responsible for ensuring that Alice’s vote is valid according to

the set of valid possible votes, not coerced, and not a double-vote. They are unable to see

Alice’s actual vote token. T1 also encrypts Alice’s identity, should anonymity revocation be

required. They issue Alice with vote validity tokens during registration.

• Second Round Bulletin Board/Second Round Talliers. The second bulletin board BB2

is viewable by all users of the protocol, and writable only byT1. It lists only the re-encrypted

(valid) votes in a random permutation. The votes themselves, (x, y), are encrypted with

the public key of the second round talliers.

The second-round talliers are a group of agents (disjoint from T1) who decrypt the ballots

listed on the second round bulletin board using threshold ElGamal with a shared key sT2 .

The second round talliers will also publish the ênal tally.

• Anonymity Teller Group. As well as each being separate groups T1,T2, the tallier groups

form part of a larger group which deals only with the voter’s anonymity. This group

contains an equal number of members of T1 and T2 and is simply denoted T. As such,

it has a public key gsT and associated private key sT, where the private key is distributed

amongst all members as before. In this case, to decrypt, a quorum of a size tid, greater than

the size of either T1 or T2, will need to collude to decrypt. Note that this decryption is

only ever needed when a voter’s identity needs to be traced, as our protocol is optimistic.

Further, a voter’s anonymity cannot be revoked without the agreement of the quorum and

the Judge.

• Judge. The Judge is an entity of the protocol that is rarely used. She has two purposes:

1. If Alice cannot ênd her re-encrypted vote on the public bulletin board, she asks the

Judge for veriêcation.
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2. The Judge also authorises anonymity revocation (having been presented with appro-

priate evidence of the need for revocation) in order to deliberately link a ballot to a

voter, by applying her private key for a decryption.

Note that the Judge is only used in a minority of cases, i.e., where a voter’s identity needs to

be revealed, or Alice cannot ênd her vote on the bulletin board. The Judge, understandably,

is trusted. We note that she could equally be formed from a coalition of mutually distrusting

parties, disjoint from T1/T2, and selected by the electoral authorities. However, we see the

Judge more in terms of a physical arbiter of justice in a court of law.

4.3.2 Trust Model

We make the following assumptions in our protocol:

1. All parties trust that T1 will not reveal the link between a ballot (x, y) and its re-encryption

(xf, yf)

2. All parties trust that T1 will perform valid encryptions of each voter’s identity, to afford

anonymity revocation

3. The Judge and T2 trust that T1 will only sign and post to BB2 ballots which are valid

4. The Judge trusts that T1 will accurately and honestly send any data requested by it, to the

Judge

5. All participants trust that the Judge will only authorise revocation of anonymity in appro-

priate circumstances

6. Alice trusts that she will receive one (and only one) valid voting token, along with several

invalid ones, from the êrst-round talliers during registration.

7. Alice trusts the Judge to honestly state whether votes have been counted

8. All parties trust that voter identities will be stored correctly (and securely) on the second-

round bulletin board
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Note that we have already assumed that: T1 will batch votes before sending to BB2, to prevent

timing attacks; Alice can vote once unobserved; and a t-sized quorum of T2 will not collude to

break fairness or decrypt ballots until voting is over.

4.3.2.1 (Partially) Trusting T1

The purpose of the êrst-round talliers is to check the eligibility of Alice to vote and to re-encrypt

Alice’s vote before it is posted to the second bulletin board. To achieve anonymity, we need to

partially trust T1. This means that we trust that T1:

• will not reveal the link between Alice’s ballot (x, y) and her re-encrypted ballot (xf, yf),

except by request of the Judge;

• will make valid encryptions of voter identities when forming id tags;

• will act honestly in communications with the Judge (no other honest communications are

required than those stated here);

• will only sign and post to BB2 ballots which are valid

Note therefore that T1 at no point has access to Alice’s unencrypted vote. We further do not trust

T1 to reliably send communications—if messages do not arrive as expected, the voter can detect

this.

We believe that the trust we have placed in T1 is the minimum assumption necessary to assure

the properties we wish to satisfy.

4.3.3 Threat Model

In this section, we consider the potential threats that could affect our protocol, based on the

attacker’s capabilities. We address how these threats are managed in Section 4.4. As to the as-

sumptions we make about the attacker’s strength based on the strength of the cryptography we

use, we assume perfect cryptography.
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Note that in our protocol, the attacker can assume the role of any entity (except the Judge). He

is able to corrupt up to t− 1 talliers where collusion is required to decrypt messages (and t is the

threshold size for that quorum). All channels are public, so the attacker can:

1. Read messages

2. Decrypt and read any message m, subject to having the correct decryption key s for an

encrypted message (gα, gαsm)

3. Intercept messages

4. Inject bad ballots in the êrst phase, and spurious messages generally

5. Temporarily block messages (although we assume resilient channels for liveness)

4.4 Protocol

Our êrst voting protocol has four stages:

Figure 4.2 Our protocol. Dashed lines indicate a non-compulsory part of the protocol (com-
plaints). Note that the êrst communication (T1 → Alice) is in-person.

Check δ, G-PEQDL

id = (gφ, h
φ

T
h

φ

Judge
hAlice)

β ∈ Zq :

Any member of T1:

(xf , yf )← (xgβ , yhβ)

(Semi-Trusted T1)
BB1

(xf , yf , id),

Tally

(T2)
BB2

Choose α ∈R Zq

SignJudge(x, y)

〈(δ0, DVSignT1
(δ0)), . . .

BB2

Judge Alice

Query

δA, hAlice}T1

{(x, y),SignAlice(G-PEQDL),(x, y)←

(gα, hα
T2

gMi−1

)

Look up 〈(x, y), β〉{β}Judge for (x, y)

DVSignJudge(hAlice)

Store (x, y, β)

SignT1i
(hash(xf , yf , id))

(x, y), SignAlice(x, y)

(δn−1, DVSignT1
(δn−1))〉,vcid

signT1
(x, y),

Verify

signT1 (x, y)

DVRP0,. . . ,DVRPl,



114 Chapter 4. Revocable Anonymity in Electronic Voting

Stage 1: Ballot Validity Tokens

The protocol begins with Alice registering in person to vote (this would be with T1). At this point,

she receives a random number of values δi, which are generated at the point of registration. Each has

a designated veriêer signature DVSignT1→Alice(δi) paired with it, which has been generated by a

member of T1. However, only one of these signatures is valid (clearly, only the voter with the

correct private key can verify this fact1). Alice hence receives a string

⟨(δ0,DVSignT1
(δ0)), (δ1,DVSignT1

(δ1)), . . . , (δn−1,DVSignT1
(δn−1))⟩

The coercion-resistance Alice enjoys increases with n (i.e., the probability that the attacker can

guess the correct δ value decreases with n).

Note that Alice would be able to generate designated veriêer signatures at her liberty. Alice is

able to calculate which of the signatures is valid for the value paired with it, and the tallier stores,

on a private electoral roll (accessible only to T1) the valid δ value for Alice with her name. If

Alice votes under coercion, since she received a random number of δ values, an observer cannot

force her to use all values (she could conceal one or more, or arbitrarily insert values). Hence she

simply votes using invalid δ values.

If she later votes without coercion2, she sends the correct δ value with her vote as a ‘proof ’ of

validity. Upon checking for eligibility, the talliers simply check Alice’s submitted δ value against

the correct one stored on the private electoral roll . If she were to send a value for which the

DV-Signature was incorrect when sent to her, this would alert the êrst-round talliers that her vote

was made under coercion, which would alter their response to her. However, a coercer would

not be able to distinguish a valid δ value from an invalid one, as he has no way of determining

whether Alice herself made the designated veriêer signature, or indeed whether the signature is

valid.

1Note that in Figure 4.2, Alice also receives a token vcid. In practice, she would remember this value, and use
it to demonstrate to her computer that she was not being coerced, rather than having to verify designated veriêer
signatures herself. To some degree, however, the real-world implementation of our work is outside of the scope of
this thesis.

2We assume that Alice is able to vote unobserved, but she only needs to do this once.
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Stage 2: Encrypted Vote Posting

As with other voting protocols using homomorphic encryption, we choose the form of the ballot

in such a way that decryption of all ballots multiplied together leads to a simple tally of votes. A

vote for the ith candidate is given as gM
i−1

, where M is the maximum number of voters.

Voter Alice selects a value α ∈R Zq, and encrypts her vote for candidate i using the public key

of the second round talliers, to give (x, y) = (gα, hαT2
gM

i−1
). She groups this with the correct δ value

δA, and her public key hAlice. Finally, she calculates the Generalised Proof of Equality of Discrete

Logarithms (see Section 3.1.3) for her ballot (x, y) to prove that the vote is of correct form, and

produces a standard DSA signature on this. This tuple ⟨(x, y), SignAlice(G-PEQDL), δA, hAlice⟩ is

encrypted with the public key of the êrst-round talliers, and posted to the êrst round bulletin

board, BB1.

Stage 3: Validity Checking

Once Stage 2 is complete, any member T1i of T1 removes the êrst layer of encryption on each

vote on the êrst-round bulletin board, supplying an appropriate proof of correctness if required

by the authorities. That tallier then:

1. veriêes that the vote is legitimate, by ensuring that the δ value given is the one stored

with Alice’s name on the private electoral roll1. Note that because the votes themselves are

encrypted for T2, the êrst-round talliers cannot see how a voter votes — merely that a voter

has attempted to vote.

2. veriêes the G-PEQDL supplied with the ballot (x, y) to determine that Alice’s vote is a

single vote for a single valid candidate in the election

Once the validity of a ballot is assured, and any invalid ballots are disposed of, T1i re-encrypts

(x, y) with a random factor β to give (xf, yf). That member also encrypts Alice’s public key by

doing the following:

1We presume that the private electoral roll is made inaccessible (or unconvincing) to coercers. We could accom-
plish this with designated veriêer signatures.
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• Select a random ϕ ∈R Zq

• Using the joint public key for both sets of talliers hT, and the Judge’s public key, form

id = (gϕ, hϕTh
ϕ
JudgehAlice).

The tallier then continues. He:

3. generates a signature on hash(xf, yf, id), and concatenates this with (xf, yf, id) to form the

ênal message string.

The tallier responsible for the re-encryption sends Alice a designated-veriêer re-encryption proof

(DVRP) that her vote has been included on the public bulletin board as (xf, yf), along with a

number of other correct DVRPs, which are not valid for Alice (only she will be able to determine

this), but are valid for other votes on BB2. Note that if Alice’s sent δ value were invalid, the tallier

would send Alice only DVRPs which were invalid for her (but still represented votes actually

on BB2), meaning that an attacker could not determine whether her vote was invalid simply by

observing messages received by Alice. As before, Alice would be free to insert seemingly valid

DVRPs into the communication. The tallier also sends Alice a signature of her original vote,

signT1
(x, y).

The tallier will then personally store the values ⟨(x, y), β⟩, and mark on the private electoral

roll that Alice has voted (for example, by adding a signature of her public key). This information

will never be released, except to the Judge as proof that Alice’s vote was counted. The tuple

⟨xf, yf, id, signT1
(hash(xf, yf, id))⟩ is posted to the second-round talliers’ bulletin board. Alice is

able to check the second bulletin board to ensure her vote appears and the signature on it is valid,

but cannot convince anyone else of this fact (nor can she decrypt the re-encrypted vote). Any

entity can check that a vote on the bulletin board is valid by verifying the signature for the hash

of that vote.

Stage 4: Tallying

Once all DVRPs have been sent to their respective voters, it is simple for the second-round talliers

T2 to decrypt votes. First, each ⟨(xf, yf), id⟩ is checked against its signed hash. Those not matching
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are ignored in tallying. A quorum of t talliers jointly decrypt a product

(X,Y) = (
l∏

j=1

xfj ,
l∏

j=1

yfj)

(without any single member having access to the private key, as discussed in Section 3.1.1), and

then post the product to a publicly viewable place. The quorum threshold-decrypt the resulting

tally, giving gr1M
0+r2M1+...+rLML−1

, and r1, . . . , rL as the ênal tally, via the calculation of a single

discrete logarithm. Note that any party can verify that any vote must have been correct, by

comparing each published hash to the values given with it.

Anonymity Revocation

We have built into our protocol the ability to recover a voter’s identity after the voting process is

complete, but only with the co-operation of the Judge and a quorum of T, the anonymity group.

When Alice’s vote is submitted to BB2, part of it is a token id = (gϕ, hϕTh
ϕ
JudgehAlice) If, in the tallying

phase of the protocol, any ballot is found to be illegal (or if, for any other reason, anonymity has

to be revoked), a quorum of members of the anonymity tallier group T need to collude (note that

the tid value for this threshold decryption should be higher than the size of either T1 or T2).

hϕTh
ϕ
JudgehAlice
gϕsT

= hϕJudgehAlice

The Judge must now be sent the token, with appropriate evidence justifying anonymity revoca-

tion. The Judge can then divide by gϕsJudge to give the voter’s identity.

Voter Complaints

A disadvantage of using designated-veriêer re-encryption proofs is that Alice cannot prove the

validity of the proof she receives from the êrst-round talliers that her vote has been re-encrypted

as (xf, yf), which she may need to do if she cannot ênd her re-encrypted vote on BB2.

A solution we might adopt would be for Alice to receive a 1-out-of-L re-encryption proof
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(Hirt and Sako, 2000), which is requested byAlice after all votes are posted to the board. However,

such a proof is quite laborious and would allow an attacker to see that Alice’s vote was counted.

Instead, Alice sends her original (x, y) to the Judge, along with signT1
(x, y) as proof that she did

indeed submit that vote. The Judge requests the stored β from the êrst-round talliers, and can

then use this to check that Alice’s vote was counted. If Alice’s vote is counted, the Judge sends

her a designated veriêer signature for her public key, hAlice. Otherwise, she makes the designated

veriêer signature invalid. Only Alice can determine this fact, and can again insert valid signatures

arbitrarily. If Alice’s vote is shown to have not been counted, we could also allow her to collude

with the Judge to submit a vote a second time—in this manner, if her vote is again not counted,

the Judge can take further action.

4.5 Analysis

In this section, we provide a short list of the properties that this protocol satisêes. In Chapter 7,

we go into considerably more detail by providing several formal models for the protocol, proving

via the tool ProVerif that we satisfy many of the properties which we claim. Some properties

(such as remote voting) cannot be tested formally, but it should be clear to the reader that these

properties are achieved.

4.5.1 Coercing Alice by Selecting Her Keypair

We consider a potential attack to the protocol in which, rather than Alice using a private key

of her choice, she is provided with a public key (or complete keypair) with which to vote. We

consider êrst a situation in which the coercer provides alice with a public key (h′Alice = gs
′
Alice), and

uses his own copy of the corresponding private key s′Alice in order to generate signatures where

required, and decrypt designated veriêer signatures and DVRPs sent to her. We can avoid this

attack during in-person registration: we simply have Alice interactively prove knowledge of the

secret key, thus ensuring that she possesses both secret and private keys.

In the case where the coercer provides Alice with a public and private key to use, the situation
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is somewhat different. Foremost, we might argue that this allows the coercer to simulate Alice

entirely, which contradicts our earlier discussion on the capabilities of the coercer, in Section

2.1.1. Nevertheless, if we assume that this could happen, then Alice would possess the required

keypair with which to interactively prove knowledge of the private key, meaning that the coercer

could read designated-veriêer messages sent to her. We can take one of two approaches to mitigate

this issue. The êrst is to simply decide that the attacker is not permitted to force keys in this manner

(this is the approach that we adopt in this work). An effective way of enforcing this requirement

is to have a fresh voter keypair generated for Alice, either at registration, or at some other point

in time—receipt of a keypair need not be related to voting at all. However, in the latter case,

we would require that T1 needs to be certain of the origins of Alice’s public key: perhaps she

needs to undergo an interactive proof knowledge of the private key, and the key itself is certiêed

as having been produced for Alice. The former case, where Alice’s keypair is generated for her

freshly during registration, is more interesting. If the registrar generates Alice’s keypair entirely,

then we must assume that the registrar cannot be a coercer, else the coercer would have full

knowledge of Alice’s keypair anyway. A sensible alternative is to have Alice’s keypair generated

using two sources of randomness: one controlled by Alice, and the other controlled by another

party—perhaps T1, or perhaps some other Certiêcate Authority, external to the protocol. We

must again assume that the coercer is not able to control the registrar, if the registrar generates

randomness for Alice’s keypair, but this time, we need only be concerned if the coercer can also

access to Alice’s own source of randomness. In practice, many protocols of this type suffer from

a similar weakness: if the coercer can, directly or otherwise, obtain Alice’s secret data, then the

coercer can simulate Alice entirely, making the whole effort futile. For this reason, as discussed

earlier, we assume that the coercer cannot simulate the registrar in order to gain Alice’s registration

secrets.

The second approach which we might have adopted to securing Alice’s registration is to allow

the coercer to force public keys, but strengthen the way in which Alice is assured of which δ

value—out of those she is sent in the êrst communication between T1 and her—is valid. Cur-

rently, we use designated veriêer signatures on each δ value, where the single value which has
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a ‘correct’ designated veriêer signature is the ‘valid’ δ value. If we replace this communication

with an interactive zero-knowledge proof of which δ value is correct, we then give Alice further

ability to deceive the coercer: note that zero-knowledge proof transcripts can be simulated post

facto, meaning that Alice is easily able to generate fake proofs to fool the coercer—after in-person

registration has occurred—as to which δ is valid. A similar approach to proving credential validity

was used by Benaloh and Tuinstra (1994), and later by Neff (2004) in the MarkPledge system.

Given the added complications of the second solution (in assurance that a given vote has been

cast, and the added effort required by Alice in registration), we require that the coercer cannot

force keypairs in this protocol.

4.5.2 Properties Satisêed by First Protocol

The protocol described in this chapter satisêes the properties listed below. We use the Dolev-Yao

model and hence assume that the cryptographic operations presented in Chapter 3 are perfect;

in other words the intruder is not able to break any of the these cryptographic algorithms but is

able to intercept, change and delete all messages. We assume resilient channels to obtain liveness

properties.

1. Eligibility Only eligible voters should be able to vote.

2. Uniqueness Only one vote per voter should be counted

3. Receipt-Freeness The voter should be given no information which can be used to demon-

strate to a coercer how or if they have voted, after voting has occurred

4. Coercion-Resistance It should not be possible for a voter to prove how they voted or even

if they are voting, even if they are able to interact with the coercer during voting

5. Veriêability

(a) Individual Veriêability A voter should be able to verify that their vote has been

counted correctly
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(b) Universal Veriêability Any observer should be able to verify that all votes have been

counted correctly

6. Fairness No-one can gain any information about the result of the tally until the end of the

voting process and publication of votes

7. Vote Privacy Neither the authorities nor any other participant should be able to link any

plaintext ballot to the voter having cast it, unless the protocol to revoke anonymity has been

invoked

(a) Revocable Anonymity It should be possible for an authorised entity (or collaboration

of entities, for us) to reveal the identity of any single voter by linking his ballot to him.

8. Remote Voting Voters should not be restricted by physical location

It should be noted that even in the event that T1 were not trusted and became compromised,

vote privacy, fairness, and individual veriêability (in so much that Alice can ensure her vote is

counted), are still satisêed—these are not dependent on trusting T1. The fact that Alice uses

the public key of T2 to encrypt her vote means that a corrupt T1 would have no access to it

whatsoever. Receipt-freeness and coercion-resistance are satisêed in that Alice still cannot show

how she votes.

The assumptions we make on T1 make it unnecessary to require assumptions made in other

approaches on remote electronic voting, e.g. anonymous, often untappable channels (Sako and

Kilian, 1995; Fan and Sun, 2008; Fujioka et al., 1993; Hirt, 2001; Cramer et al., 1996)1, availability

of a trusted Smart-Card or ‘randomiser’ to perform re-encryptions and proofs thereof (Lee et al.,

2004; Hirt, 2001; Fan and Sun, 2008), or the assumption that the voter cannot be observed at

all during voting. It should be noted that using a Smart-Card to re-encrypt instead of T1 would

affect other properties, such as eligibility and remote voting.

1Note that the êrst stage of our protocol involves in-person registration, which one might class as an ‘untappable
channel’. In order to prevent Alice being simulated entirely by an attacker, this part of the protocol must be carried
out by Alice alone. Unlike many other voting protocols, however, only registration must be done in this way.
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4.6 Summary

In this chapter, we have introduced a protocol providing remote electronic voting with revocable

anonymity. The protocol allows for simple and anonymous tallying of votes, whilst also permitting

an authorised judge to request anonymity revocation on any ballot.

The protocol has a number of advantages: we achieve a novel method of providing coercion-

resistance, even in the presence of a coercer; the protocol is the êrst to discuss revocable anonymity

in electronic voting, as required by the UK; we achieve a voter- and universally-veriêable tally

through the encryption and re-encryption methods which we use. However, it has some short-

comings. Firstly, the amount of trust required in the êrst set of talliers—though acceptable in

a real-world scenario, we believe—is quite high, and something we we would like to reduce.

Moreover, although this protocol is for a remote electronic voting scenario, it, like many other

remote protocols, does not consider the security of the remote machine Alice votes from. This

means, for example, that a rogue machine could claim to accept Alice’s vote, and provide her

with apparently correct validations of the proofs sent to her, but in fact vote on her behalf for

another candidate. In this scenario, the ‘weak link in the chain’ becomes Alice’s machine.

In the next chapter, we introduce another protocol, which harnesses the security guarantees

provided by trusted computing and the TPM, in order to provide some assurances to the voter and

the authorities as to the state of Alice’s machine.



5 Using Trusted
Computing‡

Chapter Overview

In this chapter, we build on the work discussed in Chapter 4, discussing a coercion-resistant

electronic voting protocol which satisêes a number of properties previously considered contra-

dictory. We introduce trusted computing as a method of ensuring the trustworthiness of remote

voters, and provide an extension to our protocol allowing revocable anonymity. The protocol

introduced in this chapter solves a number of the issues with the work presented in Chapter 4,

including that of excessive trust in the êrst round of talliers. The protocol is a modiêed version of

work presented at WISSec 2010 (Smart and Ritter, 2010), and is to be presented at Autonomic

and Trusted Computing 2011 (Smart and Ritter, 2011).

We introduce the êrst practical work on a remote electronic voting protocol which uses trusted

computing (speciêcally, the TPM and Direct Anonymous Attestation protocol). A number of

‡This chapter is an extended version of work presented at the Eighth International Conference on Autonomic
and Trusted Computing (Smart and Ritter, 2011). An earlier version was presented at WISSec 2010.
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existing works discuss the applicability of trusted computing and the TPM to electronic voting.

We are the êrst to extend this to remote electronic voting whilst also providing a detailed protocol

to do so, leading to several contributions:

• A remote voting protocol allowing authorities to be convinced of the state of the voter’s

machine, and allowing anonymity revocation via the TPM

• A protocol allowing Alice to remain anonymous, whilst satisfying her eligibility to vote via

a novel use of the DAA protocol

• A novel method of allowing the voter to achieve coercion-resistance, whilst also achieving

veriêability even in the physical presence of a coercer, such that one cannot determine even

if a voter has voted (a notion we name invisible absentee coercion-resistance), through the use

of designated veriêer re-encryption proofs

• An extension to the protocol allowing a voter to be traced to her vote, should the legal

need arise, but only with the co-operation of a judge.

5.1 Chapter Structure

We have already discussed all of the primitives we use in Chapter 3. Presently, we introduce the

schema for our second protocol, and then in Section 5.2, we give the participants, trust model

and threat model for our work. In Section 5.3 we present our second protocol. We then provide a

security analysis for the protocol in Section 5.4. We summarise the achievements of the protocol

in Section 5.5.

5.1.1 Protocol Schema

We present a three-phase protocol, where voters do not need to synchronise between phases. In

the êrst phase, our legitimate voter, Alice, registers in person to vote, and selects a random number

of (paper) validity cards showing printed values δi, one of which (δA) she chooses at random. This
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Figure 5.1 A schematic for our protocol. Alice begins by receiving validity tokens δ, in person.
Dotted lines indicate optional communication

2. 〈δ0, . . . , δA, . . . , δr〉
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Voter vi,

TPM

δA will denote her vote as non-coerced. In the next phase, she and her trusted platform module

(TPM) execute the DAA Join protocol (Brickell et al., 2004) and receive a certiêcate proving her

eligibility to vote (the certiêcate is split into three parts, divided between Alice and her TPM).

In the ênal phase, Alice and her TPM execute the DAA Sign protocol in order to complete

her vote, which is sent as an ElGamal encryption with a proof of its validity. Voting authorities

execute the DAA Verify protocol, after which Alice’s vote is re-encrypted, and she receives back

a designated veriêer proof of that re-encryption, encrypted for her TPM. Should Alice need to,

she can request assistance from the Judge if she cannot ênd her re-encrypted vote on the reported

bulletin board, who may collaborate with her to cast a vote.

A simple schematic diagram of the protocol is given in Figure 5.1.

5.2 Protocol Model

5.2.1 Participants

Our protocol is modelled with four kinds of participants. All participants are able to communicate

via a network, which is not untappable.
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• Voters. The protocol allows M voters

vi ∈ {v0, v1, . . . , vM−1}

to vote. Alice is an honest voter who wishes to vote anonymously. She can vote an un-

limited number of times, but must be able to vote once unobserved. Voters’ public keys are

known to all participants.

• Administrator. The (in-person) administrator A is a single entity, responsible for ensuring

that Alice receives a random number of paper validity cards containing validity tokens δj. We

expand upon this in the next section. A is responsible for identifying Alice (say, via an ID

card), but not for determining her eligibility to vote.

• Registrar. The registrar R is a single agent, possessing a secret key sR. Note that we

assume a bottleneck will not occur here, but we could equally use a group of identical

registrar agents to mitigate such a problem (though we would thereby, of course, increase

the risk of data leakage).

The registrar is responsible for ensuring, via the DAA Join protocol, that Alice is eligible to

vote, and has not attempted to register already. The registrar will send Alice a voter group

membership certiêcate, with which she can prove to the talliers that her vote is permitted.

• Talliers. The talliers, T = {T1, . . . ,Tn}, are a group of agents (disjoint from R) who

authorise the addition of each submitted ballot to the bulletin board, BB, via the DAA sign

and verify protocols. Each tallier has a copy of a secret key sT, with which he determines

the validity of votes, and a share of a secret key sTv , with which he collaborates with a

quorum of T in order to decrypt the end tally, once the election is ênished. These keys

are unrelated—we use them to ensure that no single teller has access to an individual vote.

T are also responsible for re-encrypting valid votes, and sending proof of this to Alice.
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5.2.2 Trust Model

We make the following assumptions in our protocol:

1. The TPM and the manufacturers of the TPM (the root of trust), are trusted to behave as

intended by the protocol

2. All parties trust that T will not reveal the link between a ballot (x, y) and its re-encryption

(xf, yf)

3. All voters trust that the validity of any given δ value will not be revealed by A, except to

members of T via a designated veriêer signature

4. All parties trust that each voter will only be permitted to submit one validity card to the

secured box for each election

5. All parties trust that R will not issue group membership certiêcates to ineligible voters, and

will only do so once for eligible voters

6. All participants trust that the Judge will only authorise revocation of anonymity in appro-

priate circumstances

7. Alice trusts the Judge to honestly state whether votes have been counted

5.2.3 Threat Model

We now consider the potential threats that could affect our protocol, based on the attacker’s

capabilities. We address how these threats are managed in Section 5.3. Note that, as mentioned

earlier, we assume perfect cryptography.

In our protocol, the attacker can assume the role of any entity, except the Judge or A. He is

able to corrupt up to t − 1 talliers where collusion is required to decrypt messages (and t is the

threshold size for that quorum). All channels are public (the channel between Alice and the talliers

is tappable, but anonymous), so the attacker can:
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1. Read messages

2. Decrypt and read any message m, subject to having the correct decryption key s for an

encrypted message (gα, gαsm)

3. Intercept messages

4. Inject bad ballots in the voting phase, and spurious messages generally

5. Temporarily block messages (although we assume resilient channels for liveness)

5.3 Protocol

Our protocol has three stages. Diagrams of these are given in Figures 5.2, 5.3 and 5.4:

In-Person Registration (Fig 5.2) In order to begin voting, Alice êrst has to apply in person to

vote, with the administrator A. This can be at any point before the election. It is at this stage

that her identity is conêrmed. Once her identity is conêrmed, Alice is told to select a number,

r, of validity cards from a box. r is generated randomly by A when Alice’s identity is conêrmed,

and she is observed selecting (at least) r face-down cards from the box. Alice is free to select a

further, arbitrary, number of cards. These cards are simply pieces of paper with a perforation

down the middle, and the same value δj : j ∈ {0, . . . , r − 1} printed on each side. Alice selects

(mentally) one of the cards, whose δ value, δA, will denote her intended vote. She separates the

card along the perforation, and places half of it into a secure box, retaining the other half. The

bin must be designed to accept only one card per voter. Designing such a bin is an interesting

challenge. One solution is to have the administrator A ‘reset’ the box for each voter after having

conêrmed their identity. Alice then selects a random number of cards, and places one in the box.

The box weighs the card before accepting it, preventing ‘stuffing’, and then locks itself until reset

again. The physical implementation of such a bin is very much outside of the scope of this work,

however, and so we do not discuss it further.

With the remaining cards, Alice separates each card and places one half of each card into a

shredder. Again, we should ensure that Alice destroys half of each validity card that she has not
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chosen to denote her intended vote (as is the case with protocols such as Prêt-à-Voter, discussed

in Section 2.2.4.1).

Alice leaves in-person registration with several halves of validity cards. She has a mental note

of which is valid (and could, in fact, discard or hide that one), but cannot prove which is valid to

any observer. As she took a random number of cards, an observer cannot force her to vote once

with every card she selected. Note that only A has access to the secure box, and that the voter

has no way to prove how many cards she selected.

As an interesting aside, the reader may note that there is actually no side-effect of Alice not

destroying half of each unwanted validity card in this way. Let us assume that Alice destroys none

of the card halves. She therefore leaves the polling station with several whole cards, and one half

of a card (whose other half is in A’s secure box). No coercer is able to determine if the total

number of cards Alice has is indeed the total number she was allocated, plus the further number

she chose to take: the most that can be determined is that the ‘whole’ cards do not show δA.

Indeed, Alice may have thrown away, or otherwise concealed, the card which does show the δA

value. As we will discuss later, the proofs which Alice receives from the talliers as to her vote being

tallied are êrstly encrypted for her TPM only, and secondly only readable by Alice, meaning that

the coercer can never gain information about the validity of any δ value.

A related attack which we consider is that of “chain registration” (cf. chain voting): the

coercer has access to two voters, under the assumption that voters now do not destroy the halves

of their unwanted cards. With the êrst voter, he asks for all of the ‘complete’ cards (i.e., those

which have not been divided). Now, he gives those cards to the next voter, asking her to select the

δ value on one of those to vote with, instead of any that she will receive as part of the registration

process. The question then follows: can the coercer determine that the voter has indeed voted

the way he requested, having knowledge of which δ value she chose to denote a valid vote?

Again, this attack cannot succeed. As we will discuss later, when Alice votes, she sends her single

δ value as part of her vote. The value is checked for validity, and the validity of a given value

is denoted by a valid designated veriêer signature on that value, which the coercer will not be

able to verify. When a vote is recorded on the tally, it is re-encrypted randomly. Proofs of this
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Figure 5.2 In-Person Registration
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re-encryption are veriêable only by Alice, and are encrypted using a PCR-bound TPM key to

begin with. This means that only Alice, working with her TPM, can verify that any vote appears

on the tally. Though the effect of this is that Alice does not in fact need to destroy the unwanted

validity card halves, in the current version of our protocol, to minimise complexity, we enforce

that she should do so.

We note that our approach to voter registration is unconventional for a remote electronic

voting scheme. However, it removes the unrealistic requirement for an untappable channel to the

administrator (like that suggested by Clarkson et al. (2008)), and considerably reduces the trust

we need to place in A (he now only knows which δ values are valid, not for whom, so we need

only ensure that he does not release this information).

Join (Fig 5.3) Alice and her TPM, TPMAlice, execute the TPM Join protocol: this is as with

the DAA Join protocol (Brickell et al., 2004), which we discuss in depth in Section 3.2.2.3. Alice

êrst forms a value ζR, using the basename of the registrar, and sends this to her TPM. The TPM

checks the validity of the value, selects random values v′, f0, f1 and forms a commitment to them,

U, and a pseudonym NR with which to allow the registrar to identify Alice. U,NR are sent

back to Alice, who sends them to R. The communication channel with R does not need to be

anonymous. We however adopt the requirement of (Brickell et al., 2004) that the channel must

be ‘authentic’ between TPMAlice and R: i.e., the registrar must be sure that it is communicating

with the correct TPM. Such authenticity can be achieved using the TPM’s endorsement key (EK)

for initial communications (Brickell et al., 2004).
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Figure 5.3 The Join protocol, where Alice registers to vote.
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R checks to see whether Alice has already applied to vote, or whether the TPM she is voting

from has been designated rogue. If not, TPMAlice and R engage in a signature proof of knowledge

protocol, with the TPM as the prover. The TPM proves knowledge of f0, f1 and v′, the blinding

factor in U.

Once this is complete, R generates Alice’s membership certiêcate:

(A, e, v′′) : A←
(

Z
USv′′

)1/e

mod n

We refer to Figure 5.3, Section 3.2.2 and (Brickell et al., 2004) for more detail. This certiêcate

demonstrates the voter with pseudonym NR’s eligibility to vote, without revealing her identity.

Note that we do not need anonymity in the êrst part of the protocol—in fact, since R needs to

identify Alice on the electoral register, this part of the protocol could not be anonymous. Instead,

we need to ensure that there is no way to link the information gained by Alice in the Join protocol

with the information she imparts in the Vote protocol, by using two different pseudonyms to

identify Alice in the registration and voting phases, and an anonymous channel in the voting

phase.

The certiêcate is sent to Alice. She then stores most of it, and forwards v′′ to TPMAlice, which

can calculate v← v′ + v′′, and store (v, f0, f1).

Voting (Fig 5.4) The protocol by which Alice and her TPM vote is shown in Figure 5.4. If
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we assume that Alice can be tracked by an attacker with a global view of the network (and thus,

the ability to see the IP address Alice votes from), then we must use an anonymous channel to

preserve Alice’s coercion-resistance and privacy. Although using any form of anonymous channel

is undesirable, we do gain the valuable property that the machine Alice votes from can not be

traced. Voting proceeds as follows:

First, we begin with an execution of the DAA Sign protocol (denoted as such in Figure 5.4).

Alice and her TPM form tokens with which she can prove possession of a credential supplied byR.

First, as with the Join protocol, Alice forms a value ζT, and sends this to TPMAlice. Meanwhile, she

generates two tokens T1, T2, which are used to demonstrate to T that she possesses a certiêcate

making her a member of the ‘voters’ group, without revealing the certiêcate itself (Brickell et al.,

2004). Next, TPMAlice forms a pseudonym NT with which Alice can vote (note that NT ̸= NR),

then sends this to Alice. She forwards NT to T, and then T, Alice and TPMAlice engage in a

signature proof of knowledge, with Alice and her TPM producing a signature proving that T1

and T2 commit to a certiêcate, and “[her pseudonym NT] was computed using the secret key

going with that certiêcate”(Brickell et al., 2004). Alice’s TPM generates an attestation identity key

(Brickell et al., 2004) AIKAlice which is sent to T as part of this signature, and will be used to

prove authenticity of later messages. Note that this AIK is not linkable to Alice in any way, and

the communication with T, being over an anonymous channel, is similarly unlinkable (Brickell

et al., 2004).

With the Sign protocol complete, T can then query Alice’s TPM as to the state of her machine.

To do this, any member Ti of T begins an encrypted transport session between itself and Alice’s TPM

directly (note that Alice does not see the result of any transactions that occur here). Ti selects

a challenge nonce cv, and requests a hash of the current state of the TPM’s registers, using the

command TPM_Quote, and including the challenge. The TPM responds with the appropriate

data. If Ti is satisêed that the machine is in the correct state, it requests that the TPM create a new

keypair, bound to the correct TPM register (PCR) states. This means that, when a decryption is

needed using this key, it can only occur if the TPM’s PCRs are in the correct state. We denote



5.3. Protocol 133

the handle of this key as kA, and note that the key is asymmetric, the private part being accessible

only to the TPM.

Next, Alice generates a fresh ElGamal keypair, (sv, hv = gsv). She then sends a message

votetoken to T. votetoken contains Alice’s vote, in the form of an exponential ElGamal

encryption (x, y) = (gα, hαTvg
Mi−1

), where she is selecting the ith candidate, her chosen δA value

(should she be voting according to her own wishes) or any other δ value (if she is being coerced),

the public part of the aforementioned key hv, and the G-PEQDL proof that her vote is for one

valid candidate only. The tallier Tk that receives Alice’s vote now checks whether it was sent under

coercion. To do this, he sends δ, signT(δ) to A. A checks whether the δ value received is in the

secure box, and if so, sends a correct designated veriêer signature of the value, DVSignA→Tk(δ).

If the δ value is not found in the box (meaning Alice sent a vote under coercion), an incorrect

designated veriêer signature is returned to T. Again, only Tk can determine this, and cannot

prove this fact to an observer.

Once Alice’s vote is determined to be non-coerced, her G-PEQDL proof is checked by Tk. If

this is invalid, her vote is discarded. If the G-PEQDL is correct, Alice’s vote is re-encrypted using

a re-encryption factor β ∈R Zq. If her vote was not coerced, Alice is sent a tuple of designated

veriêer proofs of re-encryption (DVRPs), produced using the public key hv Alice generated earlier.

One of these is valid for Alice’s re-encrypted vote; the others are valid for other votes already on

the bulletin board1. Each DVRP is separately encrypted using the public part of the wrap key

kA which Alice’s TPM generated. This means that Alice is free to generate re-encryption proofs

herself (the nature of the proof is such that the entity for whom the proof is designated can use

her private key—sv in this case—to generate further DVRPs), to fool coercers.

The re-encrypted (xf, yf) is sent to a threshold of talliers in T, along with the re-encryption

factor and the G-PEQDL proof. If that threshold agree, they jointly generate a signature on

(xf, yf), and the vote and its signature are placed on the bulletin board.

If Alice’s vote was coerced, Alice is sent several DVRPs as before. However, this time they are

all valid for votes on the bulletin board that are not Alice’s.

1Vote submissions are batched so that there are always enough votes on the bulletin board to do this.
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Note that the DVRPs Alice receives use a key which she freshly generated (to prevent her

being identiêed). Each DVRP is encrypted with a key for which only the TPM has the private

part. As a consequence, Alice needs to load the correct key into the TPM (using TPM_LoadKey2),

and then requests the TPM to decrypt each DVRP ciphertext, using TPM_UnSeal.

At this point, it should be noted that the keypair kA generated by the TPM was bound to a

certain set of PCR states. If this set of states is not in place at the time of DVRP decryption with

TPM_UnSeal, decryption cannot occur. This ensures not only that Alice still uses the same TPM,

but also that no rogue software is executed after Alice casts her vote.

Alice can then check to see if any one of the DVRPs represent valid re-encryptions, checking

the bulletin board. Note that every re-encryption will be on the bulletin board, but only Alice

can be convinced that any vote is hers. If she does not ênd her vote, Alice may contact the Judge,

who will contact T. The Judge may further allow Alice to vote again, under his supervision.

When voting is complete, votes are tallied by T:

(X,Y) = (
l∏

j=1

xfj ,
l∏

j=1

yfj)

This product is calculable by any observer. The ênal tally is calculated by a quorum (size t) of

T colluding to decrypt this product, giving gr1M
0+r2M1+...+rLML−1

, and r1, . . . , rL as the ênal tally.

Note that since every vote is threshold-signed on the bulletin board, observers are convinced that

every vote is genuine.

Anonymity Revocation (Fig 5.5) The changes that we make to the protocol in Figure 5.4

in order to provide revocable anonymity are quite simple. We begin with a small change to the

registration protocol. Once the DAA Join part of the protocol is complete, the registrar R sends

Alice an encryption of her ID with the Judge’s public key, id = {id}Judge. R also sends a signature

of this encryption, SignR(id) to Alice.

The voting protocol completes the DAA Sign protocol as before. Alice then sends the en-

cryption and signature thereof to T, who verify the signature and store the ciphertext. She then

extends a TPM PCR with the value of id using TPM_Extend (this is equivalent to hashing the

current value of the chosen register, concatenated with id). T can ensure Alice has done this, by
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Figure 5.4 The Voting Protocol vote1 (without revocable anonymity). Terms are explained in
Section 3.2.2.

AliceTPMAlice Talliers (T) Administrator (A)

New w, r

T2 ← gwhe(g′)r mod n
T1 ← Ahw mod n

NT

Verify σ on AIKAlice

Verify ζT
Check if this NT has voted

ζT

NT

New cv challenge

(nt||nv||b||AIKAlice),AIKAlice

SPK{(f0, f1, v, e, w, r, ew, ee, er) : . . .}

σ

Encrypted Transport Session

TPM Quote(...,externalData=cv,...)

TPM CreateWrapKey(binding,PCR INFO,kA,...)

DAA Sign

mod Γ
ζT ← (HΓ(0||bsnT))

(Γ−1)/ρ

Check ζT

NT ← ζf0+f12
ℓf

mod Γ

δA

Verify G-PEQDL
Verify sig and registers

If δA valid:

DVSign
A→T

(δA)

Post to BB

(xf , yf ) = (xgβ , yhβ)
Get threshold signature

anon. channel

counttoken‡

votetoken†

DVRPi

k times:

Generate fresh keypair
(sv, hv = gsv )

‡ : counttoken = 〈kA, {DVRP0}kA
, . . . , {DVRPk}kA

〉, one valid for hv if δA correct

† : votetoken = 〈(x, y) = (gα, hα
Tv

gMi−1
),G−PEQDL, hv, δA〉

TPM LoadKey2(kA,...)

TPM UnSeal({DVRPi}kA
,...,kA)



136 Chapter 5. Using Trusted Computing

ensuring that the value received from TPM_Quote is that which would be expected for a correct

machine state concatenated with the encrypted ID value.

Voting then proceeds as normal: Alice’s identity is re-encrypted by T and printed on the

bulletin board next to her vote. Should revocation be required, a member Tk of T sends the tuple

id to the Judge, along with appropriate evidence justifying revocation. The Judge is then free

to revoke Alice’s anonymity and take further action against her. Note that in order to preserve

Alice’s anonymity, we add a trust requirement that R does not collude with T to reveal Alice’s

identity, and always provides the correct identity for a voter (since R is trusted to perform the

DAA Join protocol correctly, this is not a large increase in trust). Note that Alice could later

contact the Judge to determine whether her anonymity had been revoked or not. This does not,

to us, constitute full auditability, as Alice needs to contact a third party to audit her vote. We

discuss approaches to achieving auditable revocable anonymity in the next chapter.

Figure 5.5 Changes to the Voting Protocol vote2 (with revocable anonymity)
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5.3.1 Choosing Values for Validity Cards

One might consider what form the δ values printed on the validity cards actually take. In order

to minimise the memorisation demands placed on the voter, the values must be simple (or mem-

orable) enough to be ‘human-friendly’. At the same time, they must be complex enough that

brute-force guessing attacks would be ineffective. In the version of the protocol presented here,

each δ value is randomly chosen from some ênite set of integers. Equally, however, we could

choose from a set of dictionary words, or even—with some caveats—allow the voter to select

the values on the cards herself. We would prefer to avoid this option, as humans are notoriously

bad at making random decisions, and Alice could be forced to choose certain values by a coercer.

That said, she could easily comply with such a demand, and then insert her own chosen value,

memorising it, submitting it as her chosen δA, and destroying or hiding the counterpart card.

5.4 Analysis

The following properties are those satisêed by this protocol. These properties are what we con-

sider to be the most important properties in electronic voting. For each property, we give an

informal sketch of security proofs for the protocol. We assume the correctness of various crypto-

graphic primitives and assumptions (discussed in Chapter 3)—note that although these primitives

assume the provable security model, we work in the formal model, thus assuming that cryptog-

raphy is perfect. We make no further assumptions about, or changes to, the primitives that we

use.

Property 1 (Correctness and Eligibility). Only eligible voters should be able to vote. Further, there is

no trace of the protocol resulting in a successfully counted vote, from Alice, for candidate i, that did not begin

with Alice voting for i, and there is only one trace that did begin with Alice voting for i

To prove this requirement, we need to demonstrate that there is no way any two or more

parties can collude to defraud Alice or the authorities. Nor is it possible for Alice to collude with

another voter or coercer. We consider collusions between the parties shown in Table 5.1, and

discuss them below. Bob represents any other voter, or coercer.



138 Chapter 5. Using Trusted Computing

i. Alice and any other voter or coercer (Bob). We consider an attack in which Alice colludes with

an attacker to attempt to vote several times, or claim that her vote was not counted.

When Alice attempts to vote, part of her voting token is our G-PEQDL proof that for her

vote (x, y), y ∈ {hαTvg
M0
, . . . , hαTvg

ML−1} where L is the number of candidates. For any vote

to be accepted by T, this proof must hold. Hence, Alice cannot vote for more than one

candidate in any one vote casting.

Further, she cannot vote more than once—we have from Trust Assumption 5 that R will

not permit Alice to register more than once, and from the protocol that a quorum of T

would have to collude to permit two votes from the same voter. Alice is also unable to

claim that her vote was not counted—the talliers are always able to show which vote was

re-encrypted to appear on the bulletin board, if requested to do so by a judge. Further, the

Judge can request that the talliers produce DVRPs using her public key, instead. The Judge

is then able to verify that Alice’s vote has appeared on the bulletin board.

ii. Alice and the Administrator. We consider an attack in which Alice and A collude to provide

her with multiple valid δ tokens. Such an attack violates Trust Assumption 4, and so is not

considered further.

iii. Alice and the Registrar. We consider an attack in which R allows Alice to register more than

once, or to register if she is not eligible. Such an attack violates Trust Assumption 5, and so

is not considered further. In the revocable anonymity protocol vote2, R may send Alice a

different identity. This violates the trust assumption which we added to this protocol.

iv. Alice and one Tallier. We consider an attack in which Alice colludes with a second round

tallier to request that her vote is altered. Since any modiêcations to votes require the

Table 5.1 Possible Collusions in our Second Protocol

Bob A R Ti

Alice i ii iii iv
R v vi vii viii

Tj ̸=i ix x xi xii
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agreement of a quorum of t < n members of T, this attack is not possible. Further,

modiêcations after posting to the bulletin board are not possible, since each re-encrypted

vote is posted with its signed hash to the board.

v. Registrar and a Coercer. In this attack, the registrar would collude with a coercer to provide

Alice with more than one certiêcate with which to vote, or to provide her with an invalid

certiêcate. The êrst attack violates Trust Assumption 5, and the second would immediately

be detected by Alice and her TPM.

vi. Registrar and the Administrator. The Administrator is only responsible for issuing voters with

validity cards, something which has nothing to do with registration. As a result, there is no

valid attack here.

vii. Registrar and Registrar. As there is only one registrar, this attack is not possible. It would

also not be possible for R on his own to affect the election: we have already stated that

he cannot collude with Alice or a coercer, and attempting to provide invalid certiêcates to

voters would be detected immediately by the voters themselves, who could complain to a

Judge.

viii. Registrar and one Tallier. In this attack, R would generate an invalid certiêcate for Alice and

collude with T such that the certiêcate was accepted. Since the values generated by R

for the certiêcate are not directly seen by T this attack would fail. It also violates Trust

Assumption 5. R could not force Ti to reject a certiêcate, for the same reason.

Note that in the protocol vote2, including revocable anonymity, we add a trust assumption

to ensure that Alice’s identity will not be revealed to the talliers by R. This nulliêes any

collusion between the registrar and talliers.

ix. A Coercer and one Tallier. A coercer may attempt to force a tallier to accept a fraudulent vote,

or to modify one. Both of these would require a signature from a quorum of T, which

means that collusion with a single tallier would be ineffective.
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x. One Tallier and the Administrator. In this attack, a tallier would collude with the administrator

(and possibly a coercer) to reveal a list of valid δ values, and the names associated with

them. We have from the protocol that the administrator never sees who selected each δ

value. Further, the validity of any δ value will not be revealed by A, except via a designated

veriêer signature (meaning the recipient of the signature cannot prove the validity of any δ

value).

xi. One Tallier and the Registrar. See (viii).

xii. Any two Talliers. A quorum of t < n talliers is required to effect any change in the tally.

Hence, no attack is possible here.

Collusion of more than two parties. Note that it follows from the discussion above that collusion of

more than two parties to defraud Alice or the authorities is similarly ineffective. Any attempt to

alter Alice’s vote, or to allow her to vote multiple times at once, would require the cooperation

of a quorum of T—something which, as with all voting schemes using threshold cryptography,

we assume is unlikely. We trust that R will not allow Alice to register more than once, and we

also note that Alice working with any number of coercers would have no effect (subject to the

assumptions above): i.e., any collusion involving more than two parties will reduce to the same

collusions described above, which either require a quorum of cooperating talliers, or already break

one of our trust assumptions.

Property 2 (Uniqueness). Only one vote per voter should be counted We have from the protocol that,

during in-person registration, Alice can only place one validity card into the secure box. Trust

Assumption 4 states that Alice can only receive one such card. As such, given that a particular δ

value will only be accepted once when the Talliers come to group-sign a re-encrypted vote, Alice

can only vote once per election. Similarly, she is given only one group membership certiêcate in

the join phase, and so cannot vote twice there, either—we trust that Alice’s TPM will not allow

her to generate more than one pseudonym.

Finally, when Alice comes to vote, she submits a G-PEQDL proof that her vote (x, y) is such
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that y ∈ {hαTvg
M0
, . . . , hαTvg

ML−1} where L is the number of candidates. She can therefore not vote

for more than one candidate in an election.

Property 3 (Coercion-Resistance). It should not be possible for a voter to prove how they voted or even

if they are voting, even if they are able to interact with the coercer during voting We have from the protocol

that Alice receives a random number of validity cards at in-person registration. She halves each

card, putting half of only one card into a secure box. She discards the remaining halves, and

remembers which was her valid number (she is advised to discard the half of her ‘valid’ card that

isn’t in the box).

Alice has no way to prove to a coercer that the δ value she submits her vote with is valid.

Since she may have thrown away the correct card, the coercer can force her to vote using all

of the values she holds. However, the proofs that Alice receives back are intended for a fresh

keypair whichAlice generated (meaning she can generate such proofs herself, and a coercer cannot

determine this fact). As such, there is no way for an in-person observer to force Alice to vote

in any particular way, as she can fool that coercer into believing that votes on the bulletin board

represent re-encryptions of a vote she cast.

Property 3.1 (Invisible Absentee Coercion-Resistance). It should not be possible for a voter to show

if they have voted, even in the presence of a physical coercer We extend our deênition of Coercion

Resistance to include invisible absenteeism—that is, even in a remote voting system, as long as

Alice can vote once unobserved, a coercer physically standing behind her cannot tell if she has

successfully voted or not.

This property is satisêed by our system because of the nature of the proofs Alice receives

when she votes. She receives in return, over an anonymous channel, only a tuple of designated

veriêer re-encryption proofs, which only she can interpret. Alice can then observe the bulletin

board without an in-person observer knowing whether she has genuinely found her vote, or is

pretending to look for (xf, yf) pairs which she put into a DVRP generated by herself.

Property 4 (Receipt Freeness). The voter should be given no information which can be used to demonstrate

to a coercer how or if they have voted, after voting has occurredReceipt-freeness is strictly a sub-property
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of coercion resistance. The only proof sent to Alice of her vote is in the form of designated veriêer

re-encryption proofs, which can only be read by her. As a result, she cannot demonstrate to any

observer how she votes, so receives no receipt.

Property 5 (Individual Veriêability). A voter should be able to verify that their vote has been counted

correctly When Alice submits her vote (x, y) (over an anonymous channel), it is encrypted using a

random seed α. If valid, the vote is re-encrypted using a random seed β, giving (xf, yf), and it,

with a threshold signature of its hash, is posted to the bulletin board.

Alice receives back from the talliers a random number of designated veriêer proofs of re-encryption,

which prove, to a designated veriêer, how a re-encryption occurred. All of these DVRPs are valid

for votes that are on the bulletin board, and one of them is valid for Alice’s vote, if and only if the δ

value she supplied with her vote was valid. The veriêer of the DVRP is Alice, using a key which

she freshly generated before voting. Since Alice can observe whether each DVRP is correct, she

can ascertain whether a DVRP which is correct for her represents a ballot which is on the bulletin

board.

Note that all of the (xf, yf) pairs Alice receives are listed on the bulletin board: only Alice can

determine if her vote is one of them. If not, she can contact the Judge, who will allow her to

vote again under supervision.

Property 6 (Universal Veriêability). Any observer should be able to verify that all votes have been counted

correctlyWe have from the protocol that every vote posted to the bulletin board is threshold-signed

by a quorum ofT. Hence, invalid votes are not posted to the bulletin board. The talliers announce

the product (X,Y) of all votes. As all votes are shown on the bulletin board, any observer is able

to calculate this product for themselves, and also to verify that any individual vote was authorised

by a quorum of talliers.

Property 7 (Fairness). No-one can gain any information about the tally until the end of the voting process

The phased structure of the protocol implies that it is fair. Observation of any single vote is not

possible at the talliers’ end, since a quorum of T have to agree to decrypt a vote. Similarly, the

product of all votes, leading to information on the full tally, will not be decrypted until a quorum

of T agree, which they will not until all votes are entered.
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Note that it is also impossible to break fairness from the voter’s end of the protocol: we have

from Properties 3, 4 and 5 that no information about the state of any vote can be gained by the

attacker, even after the election is complete (exempting the small probability of a tally representing

a 100% vote for one candidate).

Property 8 (Vote Privacy). Neither the authorities nor any other participant should be able to link any

ballot to the voter having cast it, unless the protocol to revoke anonymity has been invoked Alice casts her

vote in votetoken over an anonymous channel. Hence, as long as no identifying data is provided

with her vote, it is not possible to link Alice to her ballot.

As such, we now discuss the form of Alice’s ballot. When Alice registers to vote, her TPM

provides her with a pseudonym NR, with which to identify herself. Communications with R

are in the clear, meaning Alice’s machine can be identiêed. However, when she votes (i.e., uses

the DAA sign protocol), her TPM generates a completely different pseudonym NT, which is then

proven to represent the same values Alice gained attestation on. Any further transactions with T

are signed with a fresh attestation identity key or another asymmetric key, generated by the TPM

and unlinkable to Alice. The talliers send Alice back Designated Veriêer Re-encryption Proofs,

and this is the end of their interaction with her. As long as we trust the anonymous channel to be

anonymous, they cannot link her to her ballot. We already have from the properties above that

no other observer can link Alice to her ballot, either.

In the vote2 version of the protocol, with revocable anonymity, whenever Alice’s identity is

transmitted to T, it is encrypted with the Judge’s public key as id = {id}Judge. This encryption is

done by R, whom we trust to operate correctly. Thus, unless the protocol to revoke anonymity

is invoked by the Judge, Alice’s anonymity is preserved.

Property 8.1 (Revocable Anonymity). It should be possible for an authorised entity (or collaboration

of entities, for us) to reveal the identity of any single voter by linking her vote to her We have from

Property 8 thatAlice’s privacy is maintained at all times by the protocol, unless the Judge authorised

revocation. In this case, a member of T contacts the Judge with appropriate evidence to justify

revocation. We must of course assume that the Judge only revokes anonymity under suitable

circumstances.
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Property 9 (Remote Voting). Voters should not be restricted by physical locationOur protocol permits

Alice to vote from any location with a computer that has a TPM, provided she has registered at

some point beforehand, and can vote once unobserved. Note that our protocol also prevents an

observer from knowing if Alice has voted successfully, even if the observer is physically watching

Alice.

5.5 Summary

In this chapter, we have presented the second of our electronic voting protocols, detailing a novel

solution which uses trusted computing to assure the security of a remote voting client. Again,

we achieve the optional availability of revocable anonymity, using the TPM to ensure that the

identity Alice when voting is indeed hers. We satisfy all of the standard properties required of

e-voting protocols.

An interesting side effect of revocable anonymity in our protocols so far is that the traced voter

has no way of knowing she has been traced, and can thus not hold the authorities to account in

case of fraudulent deanonymisation. In the next chapter, we introduce a protocol which solves

this problem.



6 Making Anonymity
Auditable*

Chapter Overview

A number of êelds in computer security consider the anonymity of protocol users to be of critical

importance: in digital cash and electronic commerce, it is important that rogue users should not

be able to trace the spender of a coin, or to link coins that user has spent with each other. In

anonymous fair exchange protocols, multiple parties exchange items with one another, whilst

wishing to remain anonymous (sometimes for obvious reasons). In electronic voting, the voter

must remain unlinkable to their vote.

However, designers of each of these classes of protocol must consider that there are sometimes

occasions when a user’s anonymity must be revoked — a coin might be maliciously double-spent,

or used for an illegal purchase; a party could renege on their promise as part of an exchange

protocol; a voter may attempt to vote twice, or may not be a legitimate voter at all. The point of

*This chapter is an extended version of work presented at the Fifth International Conference on Trust and Trusted
Computing (Smart and Ritter, 2012).
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this chapter is not to consider for what reason anonymity revocation is required, though: instead,

we suggest that, generally speaking, users whose anonymities are revoked should be made aware

of this fact. In this chapter, we present a solution to this problem, which is essentially a digitized

version of the “sealed envelope problem” discussed in Ables and Ryan (2010).

Let us consider the physical, paper abstraction of the problem. Alice lives in a country where

it must be possible to link her identity to her vote (though only authorised entities should be

able to make this distinction). When she collects her ballot paper, her identity is sealed inside

a tamper-evident envelope, and the serial number of her ballot paper is written on the outside.

The envelope is stored securely. Alice votes. Some time later, for whatever reason, someone

may wish to trace Alice’s ballot back to her. After the election, Alice may wish to see whether

her anonymity has been revoked or not. To do this, she merely requests to see the appropriate

envelope from the authorities (i.e., that with her ballot serial number on it), and veriêes that the

envelope is still sealed.

We can apply this abstraction to a number of other êelds, and it particularly makes sense

when considering payment for goods (we discuss this more in Section 6.4). However, digitising

the (auditable) sealed envelope is not at all trivial: it is intuitively not possible to simply give

the authorities an encrypted copy of Alice’s identity: if the key is provided with the ciphertext,

then Alice has no way to know whether it has been used. If the key is not provided, then the

authorities cannot do anything with the ciphertext anyway, without contacting Alice (who, as a

rogue user, may deliberately fail to provide information) (Ables and Ryan, 2010). As a result, we

must consider that some sort of trusted platform is required, in order for Alice to be convinced

that her anonymity has not been revoked. In this chapter, we detail a protocol which uses trusted

computing—speciêcally, the TPM—to assure Alice in this way.

Related Work

The work presented in this chapter is potentially relevant to a wide range of êelds where revocable

anonymity is important: digital cash, fair exchange, and electronic voting. We do not speciêcally

address any of these areas in this chapter, as the way in which they use the identity of the user is
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unimportant to us: it is the similarity in the need for the user’s anonymity that matters. Very little

existing work considers auditable revocable anonymity: as we discussed in Chapter 2, Kügler

and Vogt (2003) describe an electronic payment protocol in which the spender of a coin can

determine (within a êxed period) whether their anonymity is revoked or not. Although the

protocol is attractive, it requires knowledge a priori of who is to be traced—something which is

not possible in êelds such as electronic voting. More generally, Moran and Naor (2010) discuss

many high-level theoretical implementations of cryptographic “tamper-evident seals”, but do not

go into detail as to how these would be realised (and seemingly place a lot of trust in the entity

responsible for generating seals).

Ables and Ryan (2010) discuss several implementations of a “digital envelope” for the storage

of escrowed data using the TPM. Their second solution is appealing, and uses a third party with

monotonic counters. However, their solution allows only a single envelope at a time to be stored

(as the TPM only permits the usage of one monotonic counter at a time), and also would require

Alice herself to generate her identity (something which would not be appropriate for us).

The work of Sarmenta et al. (2006) on virtual monotonic counters using a TPM is crucial to

our work, as we use a new virtual monotonic counter for each anonymous user, allowing each

to track their own anonymity. We discussed virtual monotonic counters more in Section 3.2.3.

Motivation and Contribution

In this chapter, we introduce a new protocol, not tied to any speciêc class of user-anonymous

security protocols (electronic commerce, voting, et cetera), which uses the TPM to assure a user

of whether or not their identity has been revealed: a property we name non-repudiation of anonymity

revocation. Our motivation is clear: if we are to have protocols providing anonymity revocation,

then it must be possible for a user to determine when their anonymity is revoked. The reasoning

for this is twofold: not only does a user have the right to know when they have been identiêed

(generally, as a suspect in a crime), but the fact that anonymity revocation is traceable is also

beneêcial:
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…the detectability of inappropriate actions and accountability for origination suffices
to prevent misbehaviour from happening (Weber and Mühlhäuser, 2011, p. 5)

Though protocols exist in electronic commerce which permit this (Kügler and Vogt, 2003, for

example), the techniques used are not widely applicable, for reasons discussed above. We consider

preliminary discussions of “escrowed data” stored in a digital envelope which use monotonic counters

(Ables and Ryan, 2010), and discuss the use of virtual monotonic counters (Sarmenta et al., 2006) to

allow multiple tokens to be securely stored by a single entity.

6.1 Chapter Structure

Having already discussed trusted computing and the TPM in Section 2.4, and monotonic counters

in Section 3.2.3, in Section 6.2, we discuss our trust requirements for the protocol, which itself

is presented in Section 6.3. We address the applicability of the protocol to different computer

security discourses in Section 6.4, and give a short discussion on the security of the protocol in

Section 6.5. Finally we conclude.

6.2 Trust Model

In this chapter, we make the following trust assumptions:

1. Alice and the identity provider idp—deêned below—trust the TPM in Alice’s machine, by

virtue of it attesting to its state (and therefore, the state of Alice’s machine)

2. All users trust idp, by virtue of it attesting to its state (and therefore, the state of idp’s

machine)

3. The judge is trusted to only authorise anonymity revocation where necessary

In a strict sense, it is not necessary for users to deliberately place trust in any TPM (whether it

is in the identity provider’s machine, or the user’s): both the user’s and the identity provider’s

TPMs have the ability to verify the correctness of the other’s TPM and host machine, where the
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Figure 6.1 Our Revocation Audit Protocol.

ReadCertificate

ReadCertificate

signidp({id}s)

(pkI , skI ) :=

TPM LoadKey2(kI , . . .)

id := {id}pkI

Nonce nc

CreateCounter(nc)
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signJudge(id, CounterID, nS)
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IDP-PCR INFO:=TPM Quote(. . . ,ca,. . . )

ALICE-PCR INFO:=TPM Quote(. . . ,ci,. . . )

(pkTA, skTA) :=

TPM CreateWrapKey(binding,IDP-PCR INFO,kI,...)

ReadCounter(CounterID,na)

TPM UnSeal(id, kI )

TPM LoadKey2(kTA, . . .)

TPM UnSeal(idm, kTA)

{m,CounterID,id, signidp(hash(id||CounterID))}s

{id, CreateCertificate, signidp(hash(id||CounterID))}pkTA

idm =

TPM CreateWrapKey(binding,ALICE-PCR INFO,kTA,...)

TPM itself is assumed to be a tamper-resistant hardware module. Instead, therefore, any trust we

place must be in the manufacturer of the TPM, to construct such a device according to its correct

speciêcation.

6.3 Protocol

We begin by explaining our protocol from a high level, and then go into more implementation

speciêc detail. Note that we assume the availability of standard public key cryptographic tech-

niques, hashing and signature protocols. Our scenario is as follows. Alice wishes to engage in a

user-anonymous protocol with a service provider, s: Alice normally remains anonymous, but s has

some interest in revoking her anonymity under certain circumstances (s can obtain a signed re-

quest for the user’s identity from a judge). Alicewould like to know whether or not her anonymity

has been revoked at some point after her interaction with s is complete.

In order to present a solution, we introduce a third party, the identity provider, idp. The
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identity provider runs trusted hardware, and attests to the state of his machine in an authenti-

cated encrypted transport session with Alice’s TPM. Once Alice is assured that she can trust idp’s

machine, and idp is likewise assured of the trustworthiness of Alice’s machine, idp generates a

virtual monotonic counter speciêcally for Alice’s identity, using a nonce sent by Alice. He then

encrypts Alice’s identity using a key generated by Alice’s TPM. This is concatenated with a cer-

tiêcate produced by the creation of the counter, hashed, and signed. The signature, certiêcate

and encrypted ID—which we will refer to as a pseudonym—are sent to Alice, encrypted with a

binding wrap public key to which only her TPM has the private counterpart.

Alice now reads the counter generated for her. She can then send whatever message is neces-

sary to s, along with the particulars of the counter relating to her ID, and idp’s signature thereof.

The service provider is able to verify the validity of the signed hash on Alice’s identity, and can

store it for further use.

Should s request to view Alice’s identity, he contacts idp with a signature generated by a

judge, on the pseudonym and particulars of the certiêcate (the details originally sent to him).

The protocol dictates that idp êrst increments the virtual monotonic counter associated with the

certiêcate received, and can then load the appropriate key, and decrypt Alice’s identity. Alice is

later able to request the value of her monotonic counter once again, allowing her to determine

whether or not her anonymity was revoked.

6.3.1 Implementation Steps

We now present a more detailed implementation. A diagram for the protocol is give in Figure

4.2. The protocol can be split into two stages: in the êrst, Alice registers her identity with idp,

and receives a pointer to a virtual monotonic counter back. In the second, she interacts with s,

who may wish to obtain her identity. She is then able to audit this process.
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6.3.1.1 Stage 1

Alice begins with her TPM and the TPM of the identity provider, idp, engaging in an encrypted

transport session1. She invents a nonce, ca, and challenges idp’s TPM to reveal the state of a number

of its platform conêguration registers (PCRs—a set of protected memory registers inside the TPM,

which contain cryptographic hashes of measurements based on the current state of the host system;

see Section 2.4), using the TPM_Quote command (with ca being used for freshness). Alice can use

this information to determine if the TPM is in a suitable state (i.e., if its host machine is running

the correct software). The identity provider’s TPM does the same with Alice’s TPM, using a

different nonce ci. In this manner, both platforms are assured of the trustworthiness of the other.

Alice proceeds to have idp’s TPM generate a fresh binding RSA keypair kI = (pkI, skI) using

the TPM_CreateWrapKey command, binding the key to the PCR information she acquired.

This ensures that only a TPM in the same state as when the TPM_Quote command was executed

is able to open anything sealed with pkI. Similarly, idp’s TPM has Alice’s TPM generate a binding

wrap keypair kTA = (pkTA, skTA), where the private key is accessible only to Alice’s TPM.

Next, idp receives a nonce nc from Alice. He then creates a virtual monotonic counter (Sarmenta

et al., 2006), which he ‘ties’ to Alice’s identity, using the CreateNewCounter command with nc.

This returns a CreateCertificate, detailing the ID number of the counter, CounterID, and the

nonce used to create it. idp proceeds to produce a pseudonym id = {id}pkI for Alice, an encryption

of her identity (which we assume it knows) using the TPM_Seal command and the binding wrap

key pkI. id and the ID of the counter, CounterID, are concatenated and hashed. The signed hash,

pseudonym id and the aforementioned CreateCertificate are sent to Alice, encrypted with the

binding wrap key pkTA generated for her TPM. The ID provider stores CounterID and id locally.

Alice has her TPM decrypt the message she receives, and then veriêes the hash. Note that only

Alice’s TPM, in the correct state, can decrypt the message sent to her.

Finally, Alice generates a fresh nonce na, and contacts idp to request the value of the counter, via

1We note that idp could also undergo direct anonymous attestation (Brickell et al., 2004) with Alice to attest to the
state of his machine. However, this is unnecessary for us, as neither Alice nor idp need to (or could) be anonymous
at this stage.
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the ReadCounter(CounterID, Nonce) command. She receives back a ReadCertificate containing

the counter’s value, the CounterID and the nonce she sent.

6.3.1.2 Stage 2

The second stage, which can happen at any time in future, is where Alice communicates with

whichever service provider she chooses (note that she may choose to use the same id token with

multiple service providers, or may generate a new token for each—it would obviously be sensible

to do the latter, to prevent linkability between service providers). Where Alice’s message (which

might be a tuple containing her vote, or a coin, or some exchangeable object) is represented by

m, she sends the tuple

{m,CounterID, id, signidp(hash(id||CounterID))}s

to s. Note that the whole message is encrypted with the public key of the service provider,

preventing eavesdropping. The message m is further processed (how is outside of the scope of this

chapter). The signed hash is examined to conêrm that it is indeed a valid signature, by idp, on

the pseudonym and Counter ID provided. The service provider can then store ⟨CounterID, id⟩

for later use.

Now, Alice can, at any point, check the value of her virtual monotonic counter. The service

provider may wish to discover her identity, and so will seek a signed request from a judge, gen-

erating a nonce nS. He sends this request, signJudge(id, nS,CounterID), to idp. Note that in order

to decrypt Alice’s pseudonym, idp must use the key kI—bound to the correct state of his TPM’s

PCRs—whichAlice selected. This means that he needs to be in the correct state. He begins by in-

crementing Alice’s virtual monotonic counter using the command IncrementCounter(CounterID,

nS), and then loads the appropriate key kI using the TPM_LoadKey2 command. He can then de-

crypt Alice’s identity using TPM_UnBind. Finally, idp returns id, encrypted for s. Again, what s

does with Alice’s identity is outside of the scope of this chapter.

At any later time, Alice can check the virtual monotonic counter value, by contacting idp and
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executing the ReadCounter command with a fresh nonce n′a. If idp was correctly following the

protocol (which, using a veriêed TPM, he must have been), Alice will know if her identity has

been revealed by whether the value of the counter has increased.

A key point of the protocol is that the identity provider is automatically trusted to follow it,

as a consequence of the encrypted transport session in Stage 1. When Alice quotes the PCRs

of the identity provider’s TPM, she makes it generate a key bound to the correct machine state

that it is currently in (presumably, Alice would terminate any session where an erroneous result

of TPM_Quote was reported). Even if idp were to become corrupted after the encrypted trans-

port session, this corruption would alter its TPM’s PCRs, protecting Alice’s identity from rogue

decryption.

6.4 Applicability

In this section, we discuss some use cases for the protocol: as mentioned earlier, we believe it to

have a number of areas of applicability. Here we focus on digital cash and electronic voting, two

classes of protocol where anonymity is critical.

6.4.1 When Does Alice Request a Pseudonym?

We mentioned in Section 6.3.1.2 that Alice is free to have idp generate an unlimited number

of pseudonyms for her, or just one, depending on her preference. Common sense dictates that,

should Alice wish the services she interacts with to be unable to link her transactions together, she

should generate a fresh pseudonym for each service she uses. For services which a user uses only

once (say, participating in an election), this solution is sufficient. For those which she uses multiple

times—such as spending multiple coins in a digital cash system—we consider whether a solution

requiring Alice to contact idp multiple times for different pseudonyms is suitable. Digital cash

protocols such as (Jakobsson and Yung, 1996) typically secure a spender’s identity by encrypting it

with a key to which only one, trusted, entity has access. When coins are withdrawn, the identities

of those coins are stored with the encrypted ID of their owners in a database. Consequently, as
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in Jakobsson and Yung (1996), though the digital coin itself does not contain Alice’s identity, it

contains pointers which which her identity can be looked up in the database.

We note that, in Jakobsson and Yung (1996), whenever Alice withdraws a coin, she encrypts

her identity using fresh symmetric keys for two separate parties: the Bank and the Ombudsman,

both of whom have to cooperate to later retrieve her anonymity. In fact, our protocol êts very well

into this model. Alice still selects two fresh symmetric keys, but now encrypts not her plaintext

ID, but the tuple

⟨CounterID, id, signidp(hash(id||CounterID))⟩,

obtained from idp. As idp is trusted to legitimately produce signatures on identities, the Bank and

Ombudsman can trust the encrypted ID to be legitimate, and issue the coin as before. Should

revocation be required, the Bank now simply contacts idp, allowing Alice to determine that this

has occurred.

The advantage here is that Alice’s withdrawn coins remain unlinkable—her ID is not encoded

into them, and every instance of her ID stored by the Bank is not only encrypted with the key idp

generated for it, but also with session keys generated by Alice. We note, of course, that Jakobsson

and Yung (1996) is now quite dated. However, it represents a class of digital cash protocol in

which the spender’s identity is stored encrypted in a database, and is used here for its simplicity.

A range of other digital cash systems could use our protocol in the same way (Camenisch et al.,

1997; Chen et al., 2011; Tan, 2011; Wang and Lu, 2008), or by simply storing the pseudonym in

the coin (Fan and Liang, 2008; Fuchsbauer et al., 2009; Hou and Tan, 2005; Pointcheval, 2000).

6.4.2 Digital Cash Examples

If we take any digital cash protocol where the identity of the coin spender is in some way encrypted

(whether stored on a remote server (Jakobsson and Yung, 1996) or encoded into the coin itself

(Pointcheval, 2000)), we can envisage a situation in which a user either spends a digital coin

twice, or participates in an illegal transaction. An authority will have some interest in this, and

thus requests that the Bank trace the coins spent by the user, in order to identify her.
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In the case of the protocols listed above, the identity of the user is simply decrypted (albeit by

two separate authorities in the êrst case). The user has no way to know that she was traced, until

she is apprehended! Now, we modify each protocol such that:

• in the case of protocols where the spender ID is encoded onto the coin, the coins instead

contain the user’s identity—encrypted using the wrap key made for idp—and the Coun-

terID, with the signed hash of both;

• in the case of a database storing the spender ID, with a lookup value in each key, we proceed

as discussed above, with the spender providing the idp-encrypted ID token which is then

stored in the database.

This done, the coin spender knows that each coin can only be linked back to her with the coop-

eration of idp, who (since he is following the protocol) must increment the appropriate counter,

allowing the spender to know if she is identiêed. Note that a protocol providing revocation au-

ditability already exists (Kügler and Vogt, 2003), but requires knowledge a priori of who is to be

traced, making the protocol unsuitable for other applications.

6.4.3 Electronic Voting Example

Our work on revocable anonymity in electronic voting, described in Chapters 4 and 5, stores the

voter’s identity in an encrypted manner in the ballot. If instead we store the encrypted ID, with

the CounterID and signed hash of both, we achieve the same property as above: if the authorities

need to trace a voter, they contact the identity provider. If a voter is traced, they know that they

will be able to determine this was the case, because the identity provider will have incremented

their virtual monotonic counter.

An interesting problem is how to deal with coercion resistance: if Alice receives an encrypted

identity from idp, and then sends it to a vote tallier who places it on the bulletin board unchanged,

then a coercer can see that Alice has voted (this is undesirable if we wish to prevent forced-

abstention attacks). In protocol vote2, permitting revocable anonymity, revocation is effected by
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having Alice send the tuple ⟨id = {id}Judge, SignR(id)⟩ to the talliers. The ciphertext id is produced

by the registrar, R, during registration.

This is followed by an encrypted transport session between the voter’s TPM and a Tallier, in

which a sealing wrap key used to encrypt designated veriêer proofs of re-encryption is produced.

Our change to the protocol is again quite small. In the registration phase, once the “join” stage

of the protocol is complete, Alice sends her idp-encrypted id to R, who performs an ElGamal

encryption of it using the Judge’s public key. Before the talliers post this ciphertext to the bulletin

board, it is randomly re-encrypted. Should revocation be required, the co-operation of both the

Judge and idp is required, and Alice will again be able to see that this has occurred.

6.5 Analysis

In this section we brieëy discuss the security properties of the protocol. The main property that

we achieve is that Alice is always able to determine whether her anonymity is revoked or not

(non-repudiation of anonymity revocation). This property is satisêed as a result of the knowledge

that, having attested to the state of his TPM (and hence, the software being run on the host), idp

will either:

• act according to the protocol speciêcation, or

• be unable to decrypt Alice’s identity.

Our reasoning is as follows. If the Identity Provider adheres to the speciêcation, he generates a

counter for Alice’s identity using a nonce she supplies. He encrypts her identity using a keypair

which can only be used again by a TPM in the same state which Alice originally accepted.

The information that idp generates to send to Alice must be correct, otherwise idp is deviating

from the protocol. It follows that, when s requests Alice’s anonymity to be revoked, idp must êrst

increment the associated counter. If idp does deviate from the protocol, he will not be able to use

the same key kI later on to decrypt Alice’s identity, as that key is bound to his original TPM state

(which would change if different, or malicious, software were used).
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Thus, the most a rogue idp could achieve is suggesting Alice’s anonymity has been revoked

when it has not (i.e., tampering with the counter), opening up idp to further questioning (it is

hence not in the identity provider’s interest to lie to Alice in this way). Since the counter must

always be incremented before Alice’s identity is decrypted, Alice will always know when she has

been identiêed, by querying the counter.

We next consider Alice’s interaction with s. In her communication with s, Alice provides her

pseudonym and the counter ID tied to it, together with a signed hash of these values (as originally

provided to her by idp). This convinces s that the identity provided is genuine. This leads us to

the issue of eavesdropping attacks, allowing a user to illegitimately obtain the pseudonym of

another user, and thus ‘frame’ an innocent victim for a crime. Note that without identifying

Alice immediately, s cannot be further convinced that the pseudonym is indeed hers. However,

our protocol prevents this problem from arising: in the message idm sent from idp to Alice, Alice’s

pseudonym and counter information are encrypted using a binding wrap key, meaning that only

her TPM can obtain these values. The only other message where these two values are together

is in Alice’s communication with s, and here, the entire message is encrypted for s.

The message containing Alice’s actual identity is signed by idp before being sent back to s.

Hence, providing s trusts idp, he will always obtain Alice’s legitimate identity by following the

protocol. We might consider that s does not trust idp, in which case we could request that s and

idp also undergo some sort of attestation, like that between Alice and idp. In the case of the digital

cash example presented earlier, we could require that the Bank and Ombudsman each force idp

to attest to its state.

6.5.1 Trustworthiness of the Service Provider

Note that, as we have already mentioned, we do not consider how s behaves, as it is outside of the

scope of this protocol. However, we now discuss a possible course of action to prevent a rogue s

replaying the counter and pseudonym values sent to him by an honest user. In order to mitigate

this issue, we need to force the pseudonym’s actual owner to prove her ownership. We therefore
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alter some of the messages in the protocol (numbered according to Figure 4.2, where messages

10a–d come between messages 10 and 11):

7. idp→Alice: {id,CreateCertificate, signidp(hash(id ∥ hash(CounterID)))}pkTA

8. Alice→idp: {ReadCounter(CounterID, na)}pkI

9. idp→Alice: {ReadCertificate}pkTA

10. Alice→s: {m, id, hash(CounterID), signidp(id ∥ hash(CounterID))}s

10a. s→Alice: cctr

10b. Alice→s: hash(CounterID ∥ cctr)

10c. s→idp: id, cctr

10d. idp→s: hash(CounterID ∥ cctr)

11. s→idp: signJudge(id, nS)

These changes are appropriate if we wish to prevent a rogue s from gaining an ⟨id,CounterID⟩

pair with which to frame another user. We begin by altering what idp sends to Alice, such that

the signed hash now itself contains a hash of CounterID. Both the request and result of reading

the counter are encrypted for idp’s and Alice’s TPM respectively.

The messages from 10 onwards are the most important. Rather than sending her counter’s

ID in the clear for s, Alice sends a hash of it, which êts in with the signed hash provided by idp.

s now returns a challenge cctr, which Alice hashes with CounterID and returns. In 10c and 10d,

s sends the pair ⟨id, cctr⟩ to idp, who looks up id and returns a hash of its associated CounterID

concatenated with the challenge. This allows s to ensure that Alice really is the owner of the

pseudonym and counter ID she provided. No further changes are necessary, as this prevents s

from stealing Alice’s pseudonym and counter ID: s would be unable to generate message 10b as

he never sees CounterID in the clear. Note that consequently, message 11 also needs to change.
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In this section, we have discussed the security properties of our work. Note that changes

to mitigate against a corrupt service provider are only appropriate where untrustworthy service

providers are a risk—hence we do not include these changes in the main protocol.

6.6 Conclusions and Future Work

In this chapter, we have presented work on a protocol which allows users of a protocol providing

revocable anonymity to audit whether or not their anonymity is revoked. We have shown how

virtual monotonic counters can be used on an authenticated host to track anonymity revocation,

for use with any other class of security protocol requiring revocable anonymity. Further, we

addressed how to mitigate the actions of a corrupt service provider. This work makes signiêcant

steps in auditable anonymity revocation, a êeld which has not been considered in detail before.

There are factors which we would like to consider in future work. Some of those are mo-

tivated by the issues Sarmenta et al. discuss regarding log-based virtual monotonic counters in

Sarmenta et al. (2006). The counters are non-deterministic, being based on the single counter in

use by the TPM in any one power cycle. This means that counter increment values are unpre-

dictable—not a problem for our application, but potentially a cause of high overhead. Indeed,

the ReadCertificate for a counter would include “the log of all increments of all counters…since

the last increment”. The size of such a certiêcate could be substantial. Power failures mid-cycle

on idp could also cause the counters to become untrustworthy.

These issues are mitigated by the idea ofMerkle hash tree-based counters (Sarmenta et al., 2006,

pp. 34–6) which would require changes to the TPM’s API. It is for this reason that we did not

adopt this solution, but would instead look to it for future work. We would also like to consider

a formal analysis of the security properties of the protocol.

We feel the protocol we have presented has wide-ranging applicability to a number of user-

anonymous protocols—particularly those in digital cash and electronic voting—allowing all users

subject to revocable anonymity to be assured of whether or not they can be identiêed. In the

next chapter, we formalise a number of the requirements set out in Chapter 2 using the applied
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pi calculus and a modelling tool based upon it, ProVerif, in order to prove the security of one of

our protocols.



7 Formalisation of
Security Properties

Chapter Overview

In this chapter, we introduce the manner in which we prove the security properties of one of our

protocols. We model our protocol using the automated reasoning tool ProVerif (Blanchet, 2001;

Blanchet et al., 2005), a tool capable of proving reachability properties, correspondence assertions

and observational equivalences.

ProVerif takes as input protocol models deêned in the applied pi calculus (Abadi and Fournet,

2001), a language used to model concurrent systems, built explicitly for modelling cryptographic

protocols. We begin this chapter with a summary of our justiêcations for selecting ProVerif to

formalise our work. In Section 7.3, we discuss the applied pi calculus, and then move onto a

thorough discussion of ProVerif in 7.4. We then discuss how we have used ProVerif to formalise

the work discussed in Chapter 4, and prove a number of important security properties.
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7.1 Why Formal Modelling?

In this chapter, we explore our use of the applied pi calculus to formalise our requirements, and

prove the security of our work. Our decision to use formal modelling stems from the belief

that automated proofs more effectively guarantee that security properties are satisêed, without

the time-consuming process of interactive theorem-proving or alternative mathematical proofs

(which frequently lead to human error, introducing ëaws). Using a standard mathematical proof,

it is often difficult to prove a requirement in all possible situations, and is even more difficult to

‘prove’ that proof to an observer. Consequently, in our work we write a formal model for our

protocol, and then perform various tests upon it. This leaves us with two problems:

1. Writing a model that is close enough to the protocol being veriêed that important features

of it will not be missed, and

2. Formalising certain requirements is sometimes difficult, if not impossible. This is a separate

problem from the êrst: we begin by writing a model that is sufficiently close to the protocol

to capture its properties, disregarding any requirements we have. Only then do we consider

the speciêcation of the properties we are trying to prove, which may lead to a reformulation

of the model.

7.2 Why Applied Pi?

In this chapter, we use the applied pi calculus, and automated reasoning tool ProVerif, to show

that several properties are satisêed by the protocol in Chapter 4. We considered other languages:

CSP (Hoare, 1978) and CCS (Milner, 1989) to name two.

The π-calculus (Milner et al., 1992), an ancestor of the applied-pi calculus, added the abil-

ity to describe concurrent, changeable processes. Though powerful, the π-calculus alone was

not suitable for the properties being proved in our work, not least because it only permits the

transmission of channel names between processes. We might have chosen the spi-calculus (Abadi

and Gordon, 1999), which extended the π-calculus by providing a formal notation for reasoning
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about cryptographic protocols, giving primitives for simple cryptographic processes. The lim-

ited set of cryptographic primitives provided by the spi-calculus (for symmetric and asymmetric

encryption) meant that extensive work was required for each inclusion of new cryptographic op-

erations, however. Soon after, the spi-calculus was further extended into the applied-pi calculus,

which parameterised the spi-calculus using a signature and equation system for data structures,

allowing value passing and providing an equational theory over terms and functions. The calcu-

lus allows for the modelling of observational equivalence, reachability and correspondence-style

properties.

Our choice of calculus partially stems from the considerable amount of existing work in

formal analysis of electronic voting systems using the applied pi calculus (Kremer and Ryan,

2005; Delaune et al., 2006; Backes et al., 2008; Kremer et al., 2010). This has allowed us to draw

upon existing proof techniques. The calculus also has a number of automated reasoning tools

based upon it, including our choice, ProVerif, which allows not only for the proof of standard

reachability properties, but also (sometimes) for the proof of biprocess observational equivalence.

7.3 The Applied Pi Calculus

We begin with a discussion of the applied pi calculus, on which it is possible to base ProVerif ’s

input. The calculus is built upon the earlier pi calculus, adding functions and equations, and being

designed explicitly for the study of security protocols. Note that this section is adapted from the

work of Abadi and Fournet (2001).

7.3.1 Syntax and Semantics

The calculus deênes a signature Σ as a ênite set of function symbols, each with an arity (where a

function symbol with zero arity is a constant). Given the signature, and inênite set of names and

variables, terms are deêned by the grammar
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L,M,N,T,U,V ::= Terms

a, b, c, . . . , k, . . . ,m, n, . . . , s Name

x, y, z Variable

f(M1, . . . ,Ml) Function application

The symbol f represents the functions of Σ, and l is hence the arity of f.

A term is denoted as ground when it does not have free variables, and tuples u1, . . . , ul and

M1, . . . ,Ml are abbreviated to ũ, M̃, accordingly.

The grammar for processes is given next, where c is a channel name:

P,Q,R ::= Plain Processes

0 Null process

P | Q Parallel Composition

!P Replication

νn.P Name restriction

if M = N then P else Q Conditional

c(x).P Message input on channel c

c⟨N⟩.P Message output on channel c

The process 0 does nothing; P|Q represents process P running simultaneously with Q; !P behaves

as an inênite number of Ps running in parallel (cf. P|!P). The new construct νn.P makes a new,

private name n, and then behaves as P. Also of note are c(x).P and c⟨N⟩.P, which represent

the input and output of a message x and a term N, respectively, on channel c, followed by the

execution of P. This leads to a further extension of the calculus to allow for active substitutions:

A,B,C ::= Extended Processes

P Plain process

A | B Parallel Composition (as above)

νn.A Name restriction

νx.A Variable restriction

{M/x} Active substitution
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{M/x} represents the substitution replacing the variable x with term M, thus meaning that the

process νx.({M/x}|P) is exactly equivalent to let x = M in P.

The authors note that, as usual, names and variables have scope, delimited by restrictions

and inputs. fv(A), bv(A) represent the free (resp. bound) variables of extended process A, and

fn(A), bn(A) represent free (resp. bound) names. A process is closed when every variable is either

bound or deêned by an active substitution.

The authors deêne a frame as an extended process built up from 0 and active substitutions

{M/x} by parallel composition and restriction. The domain of a frame, dom(φ) (where φ, ψ rep-

resent frames), is the set of variables exported by that frame (variables x for which the frame

contains a substitution not under restriction on x). In order to map an extended process A to a

frame ψ(A), we replace every plain process in A with 0, giving an approximation of the static

information exposed to the attacker.

7.3.2 Operational Semantics

We discussed above the manner in which a signatureΣ is constructed. Abadi and Fournet progress

to give that signature an equational theory, i.e. an equivalence relation on terms, closed under

substitutions of terms for variables. A context is deêned as an expression with a hole, and an

evaluation context as a context whose whole is not under replication, a conditional expression, an

input or an output. A context C[_] closes A when C[A] is closed.

We begin with structural equivalence (≡), the smallest equivalence relation on extended pro-

cesses, such that
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P-0 A ≡ A | 0

P-A A | (B |C) ≡ (A |B) |C

P-C A |B ≡ B |A

R !P ≡ P | !P

N-0 νn.0 ≡ 0

N-C νu.νv.A ≡ νv.νu.A

N-P A | νu.B ≡ νu.(A |B) when u ̸∈ fv(A) ∪ fn(A)

A νx.{M/x} ≡ 0

S {M/x} |A ≡ {M/x} |A{M/x}

R {M/x} ≡ {N/x} when Σ ⊢ M = N

The authors further note that structural equivalence allows every closed extended process A to

be rewritten as a substitution and a closed plain process with restricted names: A ≡ νñ.{M̃/x̃} |P,

where P, M̃ have no free variables, and ñ are part of the free names of M̃.

Next, internal reduction (→) is the smallest relation on extended processes closed by structural

equivalence such that

C a⟨x⟩.P | a(x).Q → P |Q

T if M = M then P else Q → P

E if M = N then P else Q → Q for any ground M,N

such that Σ ̸⊢ M = N

7.3.3 Examples

In this section, we detail how the calculus might be used to model a number of different primitives.

We begin with the binary function symbol pair, for example, which represents a pair of values
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(cf. pair(M,N)), abbreviated to (M,N), and leading to unary symbols

fst((x, y)) = x

snd((x, y)) = y

We might also represent a one-way hash function, h, where the fact that h(M) = h(N) implies that

Σ ⊢ M = N, since the function is collision free. Other primitives include symmetric encryption,

viz.

dec(enc(x, y), y) = x

given a symmetric key y and message x, and asymmetric, probabilistic encryption, requiring the

introduction of two new unary primitives, to obtain the public and private counterparts of a key:

pdec(penc(x, pk(y), z), sk(y)) = x

given a message x, key y and random seed z (we note that omitting the z leads to deterministic

asymmetric encryption). Abadi and Fournet introduce an example of asymmetric encryption:

νs.(a⟨pk(s)⟩ | b(x).c⟨dec(x, sk(s))⟩)

We can read this as a fresh seed s being generated, and the public key from it being broadcast on

(the public channel) a. The second part of the process reads a value x on channel b, and outputs its

decryption using the secret key part of s. We ênally brieëy mention the binary function symbol

sign, ternary symbol check and constant ok:

check(x, sign(x, sk(y)), pk(y)) = ok

Of course, one is free to add function symbols to the language, as appropriate.
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7.3.4 Proof Techniques

The calculus enables a number of techniques to prove the equivalence (speciêcally, observational

equivalence) of two processes. Two processes are observationally equivalent when they cannot be

distinguished by any context. Thus, if we envisage the context as the attacker’s view, we may

state that various security properties can be claimed as a result of the observational equivalence of

two processes. We begin with the authors’ deênition of observational equivalence. Observational

equivalence (≈) is the largest symmetric relation R between closed extended processes with the

same domain, such that ARB implies

1. if A can emit a message on channel a (written A ⇓ a), then B ⇓ a

2. if A→∗ A′ then B→∗ B′ and A′RB′

3. C[A]RC[B] for all closing evaluation contexts C[_]

(Abadi and Fournet, 2001, p. 108)

Static equivalence (≈s) is the notion that two substitutions may be seen as equivalent when they

behave equivalently when applied to terms. Static equivalence can be seen as representing the

initial knowledge of the attacker.

In order to discuss processes which interact with their environment (cf. via input and output),

the authors also introduce a labeled operational semantics:

I a(x).P
a(M)−−→ P{M/x}

O-A a⟨u⟩.P a⟨u⟩−−→ P

O-A
A

a⟨u⟩−−→ A′ u ̸= a

νu.A
νu.a⟨u⟩−−−→ A′

S
A

α−→ A′ u not in α

νu.A
α−→ νu.A′

P
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A |B α−→ A′ |B

S
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′
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These semantics allow us to construct fairly complex models, such as the one in Figure 7.1,

which represents a simple encryption and decryption. In the example, knowledge of k released

to the attacker by the operation a⟨k⟩ is sufficient to compute M from its encryption.

Figure 7.1 A simple example of labelled transitions in the Applied Pi Calculus (Abadi and Four-
net, 2001, p. 109)

νk.a⟨enc(M, k)⟩.a⟨k⟩.a(z).if z = M then c⟨oops!⟩ νx.a⟨x⟩−−−−→ νk.({enc(M,k)/x} | a⟨k⟩.a(z).if z = M then c⟨oops!⟩)
νy.a⟨y⟩−−−−→ νk.({enc(M,k)/x} | {k/y} | a(z).if z = M then c⟨oops!⟩)

a(dec(x,y))−−−−−−→ νk.({enc(M,k)/x} | {k/y} | if dec(x, y) = M then c⟨oops!⟩)
−→ νk.({enc(M,k)/x} | {k/y}) | c⟨oops!⟩

Given the labeled semantics, the authors deêne labeled bisimilarity (≈l) as the largest symmetric

relation R on closed extended processes such that ARB implies

1. A ≈s B

2. if A→ A′, then B→∗ B′ and A′RB′

3. if A
α−→ A′, fv(α) is a subset of the domain of A and bn(α)∩ fn(B) = ∅ then B→∗ α−→→∗ B′

and A′RB′

The authors go on to prove that labeled bisimilarity and observational equivalence are the same

(≈=≈l): the reader is directed to Abadi and Fournet (2001) for further details. This is impor-

tant because we use labeled bisimilarity in order to prove observational equivalence of biprocesses.

Attempting to prove observational equivalence directly is challenging as one needs a quantiêca-

tion over all contexts. This is not the case for labeled bisimilarity, making proofs of the labeled

bisimilarity of biprocesses far simpler.

We can use the calculus to consider the effect of (and role of) the intruder in any security

protocol. For example, consider an election process in which voter vi casts a certain vote a, and

vj ̸=i votes b. If that process were to be observationally equivalent to one in which vi votes b and

vj votes a, we could reason that the attacker could not determine how any voter voted, thus

demonstrating voter privacy.

A limitation of using any hand-written calculus is that it is subject to almost inevitable human

error, and it is often laborious to prove any property. For this reason, we adopt the ProVerif
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tool, whose input can be in the form of the (typed) applied pi calculus, to automatically verify a

number of equivalences and reachability assertions.

7.4 Using Applied Pi with ProVerif

ProVerif (Blanchet, 2001) is an automated reasoning tool, capable of proving reachability prop-

erties, correspondence assertions and observational equivalences. It takes as input a model of a

protocol, written in the applied pi calculus, and translates this input into horn clauses. When

translating a protocol into ProVerif source, one must of course be careful to ensure that the pro-

tocol is sufficiently captured, whilst considering the limitations of the tool (for example, neither

it nor the underlying calculus can be used to model random numbers, repetition, et cetera). A

further difficulty is modelling the requirements which one wishes to prove, both in the calculus

and in ProVerif itself.

For the remainder of this chapter, we formally prove the security of our êrst protocol (dis-

cussed in Chapter 4). We have adopted the work of Kremer et al. (2010) in proving our protocol

to be individually and universally veriêable: these properties are modelled in terms of events and

proof of reachability properties, notions that have always been present in ProVerif.

Soundness properties (viz. eligibility, uniqueness, and inalterability) are modelled by corre-

spondence assertions in the work of Backes et al. (2008), which we adopt to prove not only those

requirements, but also coercion-resistance—and thence receipt-freeness and vote privacy—which

are modelled in terms of observational equivalences.

7.4.1 Proving Reachability Properties in ProVerif

A simple example of a reachability query in (typed) ProVerif is given in Figure 7.2, for a toy

protocol.

In the example, we create a channel comm, readable by all observers, and a channel privatecomm,

readable only by those given explicit access to it. The channel is excluded from the adversary’s
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Figure 7.2 Reachability in ProVerif

(* simple reachability example *)

free comm:channel.
free privatecomm:channel [private].

free mess:bitstring [private].
free privatemess:bitstring [private].

query attacker(mess).
query attacker(privatemess).
process

out(comm,mess);
out(privatecomm, privatemess)

knowledge. We create two free names mess and privatemess, both excluded from the adversary’s

knowledge initially.

In the protocol itself (everything below process), we output the message comm on mess (resp.

privatecomm on privatemess), and then above, query whether the adversary can derive either of

mess or privatemess. As expected, when ProVerif analyses the protocol, it determines that mess

can be derived by the adversary, but privatemess cannot.

7.4.2 Proving Correspondence Assertions

If we modify the example given above, we can produce a fairly simple correspondence assertion,

as shown in Figure 7.3:

Most of the script is unchanged. However, we now read back in the message which we output

on comm. If that message is privatemess (it is not), we execute the event mess_received, followed

by second_event. Otherwise, we just execute the event second_event. Above the process, we

have written

query event(mess_received()) =⇒ event(second_event()).

This query analyses whether there is any execution of mess_received which does not occur after

second_event: it states that our assertion is that this is not the case: mess_received cannot be
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Figure 7.3 Correspondence Assertions in ProVerif

(* simple correspondence assertion *)
free comm:channel.
free privatecomm:channel [private].

free mess:bitstring [private].
free privatemess:bitstring [private].

event mess_received().
event second_event().

query event(mess_received()) =⇒ event(second_event()).

process
out(comm,mess);
out(privatecomm, privatemess);
in(comm, x:bitstring);
if x = privatemess then

event mess_received();
event second_event()

else
event second_event()
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witnessed without having witnessed second_event êrst. ProVerif correctly determines that this

assertion is correct. In fact, mess_received is unreachable: this can be determined separately with

the query query event(mess_received()).

7.4.3 Observational Equivalences

We may be able to reason about properties that cannot be expressed as reachability properties or

correspondence assertions using observational equivalences, where two processes P and Q have

the same structure, and differ only in the choice of terms. For example, in order to test whether

vote privacy is satisêed in a voting protocol, we would test whether a process in which voter v1

votes for candidate a and v2 votes for b is observationally equivalent to one in which v1 votes for

b and v2 for a.

The test for observational equivalence is denoted by the choice operator, as demonstrated in

Figure 7.4.

Figure 7.4 A non-observationally equivalent biprocess

(* simple observational equivalence *)
free comm:channel.
free vote_a, vote_b:bitstring.
process

out(comm, choice[vote_a, vote_b])

The script above models a simple biprocess in which on one side, vote_a is output, and on

the other, vote_b is output. Of course, this biprocess does not satisfy observational equivalence, as

the attacker can differentiate between the two names. If we (probabilistically) encrypt the vote,

by introducing functions encrypt and decrypt, and a reduction rule for them, then observational

equivalence is satisêed, as shown in Figure 7.5.

It should be noted that ProVerif ’s ability to prove observational equivalences is rather limited,

in that it can only prove that a biprocess exhibits observational equivalences. This often means

that certain models have to be reformulated as biprocesses in order to allow ProVerif to work

correctly.
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Figure 7.5 Observational equivalences in ProVerif

(* simple observational equivalence *)

free comm:channel.
free vote_a, vote_b:bitstring.

type secretkey.
type pubkey.
type exponent.

fun pk(secretkey):pubkey.
fun encrypt(bitstring, exponent, pubkey):bitstring.
reduc forall message:bitstring, alpha:exponent, sk:secretkey;

decrypt(encrypt(message, alpha, pk(sk)), sk) = message.

process
new alpha:exponent;
new sk_tallier:secretkey;
let pk_tallier = pk(sk_tallier) in
let enc_va = encrypt(vote_a, alpha, pk_tallier) in
let enc_vb = encrypt(vote_b, alpha, pk_tallier) in
out(comm, choice[enc_va, enc_vb])

7.5 Proof of Security Properties in Our Work

For the remainder of this chapter, we provide ProVerif-based proofs of various security prop-

erties for our êrst protocol (shown in Chapter 4). In order to do this, we adopt the work of

Kremer et al. (2010) and Backes et al. (2008). We split the requirements that we prove into

three categories: reachability properties (individual and universal veriêability), correspondence proper-

ties (soundness, uniqueness and inalterability), and observational equivalences (coercion-resistance,

receipt-freeness and vote-privacy).

7.5.1 Reachability Properties

In order to satisfy soundness (below), we need to show correspondences between certain events.

In order to satisfy veriêability (i.e., individual and universal), we need only show that certain

events are (or are not) reachable. For this, we adopt the work of Kremer et al. (2010). In their



7.5. Proof of Security Properties in Our Work 175

work, the authors add events to the applied pi calculus. Events are modelled as outputs f⟨M⟩,

where f ∈ F is an “event channel”, and input to this channel can only be in the form of “event

variables”, e, e′ (Kremer et al., 2010, p. 170).

The authors specify a reachability assertion as an event f⟨X̃⟩, where X̃ is a series of variables and

constants. If an adversary can expose this event, then the process containing it satisêes reachability.

Else, the process satisêes the unreachability assertion f⟨X̃⟩.

7.5.1.1 Formalising Veriêability

The authors formalise election veriêability in the form of three boolean tests, ΦIV,ΦUV and ΦEV.

Such a boolean test is an applied pi term, with free variables, which evaluates to true or false when

ground terms are substituted for the free variables. We do not consider the third test (eligibility

veriêability), as it is beyond the scope of this work. However, we produce tests, again written in

ProVerif, which correspond to the tests Kremer et al. use for individual and universal veriêability.

7.5.1.2 Test for Individual Veriêability

In their work, Kremer et al. deêne a boolean predicate test ΦIV to take parameters v (a vote), x̃

(a voter’s knowledge), y (the voter’s public credential), and z (the bulletin board entry for a vote).

ΦIV is a successful test if it allows a voter to identify her bulletin board entry; i.e., for all votes, if

the voter with a public credential D votes for candidate s then there must be an execution of the

protocol producing M̃ such that a bulletin board entry B satisêes

ΦIV{s/v,M̃/̃x,D/y,B/z}

Furthermore, the bulletin board entry determines the vote:

ΦIV{s/v,M̃/̃x,D/y,B/z} ∧ ΦIV{s′/v,M̃
′
/̃x,

D′
/y,

B/z} ⇒ (s = s′)

(Kremer et al., 2010, p. 171)

Finally, in order for individual veriêability to hold, all bulletin board entries must be distinct.
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7.5.1.3 Test for Universal Veriêability

The test ΦUV takes two parameters, v (a vote) and z (a bulletin board entry), and is suitable if

every bulletin board entry accepted by a voter (for the test ΦIV) is also accepted by an observer as

valid; i.e.:

ΦIV{s/v,M̃/̃x,D/y,B/z} ⇒ ΦUV{s/v,B/z}

Further, the observer correctly counts the vote: i.e., if the test ΦUV succeeds for two votes s, s′

with one bulletin board entry B, then they must be votes for the same candidate:

ΦUV{s/v,B/z} ∧ ΦUV{s′/v,B/z} ⇒ (s = s′)

(Kremer et al., 2010, p. 171)

In order to verify that a protocol is universally and individually veriêable, voters and observers

perform the tests ΦIVand ΦUVon the bulletin board, possibly also using information they have

derived from voting themselves.

7.5.1.4 The Voting Process

Kremer et al. deêne a voting protocol in the applied pi calculus. The protocol is deêned as a

voter process, V, a process K modelling honest administrators (which publishes public credentials

and distributes keys); a tuple of channels ã which are private, and a context A which performs

setup.

A voting process is hence speciêed as a tuple ⟨A,V,K[c⟨D⟩], ã⟩, where A and K are contexts

such that V,A,K do not contain event channels or variables, and D models public voter creden-

tials. v represents the value of the vote, and is not bound in A or V. The channel c is free (Kremer

et al., 2010, p. 174).

The authors note that votes are generated by a process G=̂!νs.((!b⟨s⟩)|c⟨s⟩), which selects a

vote and sends it to the voter (such that several voters can also receive this vote), also outputting
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it on a public channel. The process modelling a voting protocol VP is then

VP=̂νb.(A[!ν ã.((b(v).V)|K[c⟨D⟩])]|G)

Kremer et al. (2010) go on to deêne an augmented voting process VP+ as a voting process incor-

porating reachability assertions, such that

VP+=̂νb.(A[!ν ã, b′.(V̂|K̂)]|G|P)|Q

where

V̂ = b(v).V ◦ c(z).b′(y).(pass⟨(ΦIV, z)⟩|fail⟨ψ⟩)

K̂ = K[b′⟨D⟩|c⟨D⟩]

P = b(v′).b(v′′).c(x̃′).c(x̃′′).c(y′).c(y′′).c(z′).fail⟨ϕ′ ∨ ϕ′′⟩

Q = pass(e).pass(e′).fail⟨e1 ∧ e′1 ∧ (e2 = e′2)⟩

ψ = (ΦIV ∧ ¬ΦUV)

ϕ′ = ΦIV{v′/v,x̃
′
/̃x,

y′/y,
z′/z} ∧ ΦIV{v′′/v,x̃

′′
/̃x,

y′′/y,
z′/z} ∧ ¬(v′ = v′′)

ϕ′′ = ΦUV{v′/v,z
′
/z} ∧ ΦUV{v′′/v,z

′
/z} ∧ ¬(v′ = v′′)

where ΦIV is the boolean evaluation of the test ΦIV; e1, e2 represent projections of the pair received

on the pass channel; fail and pass are event channels, and the plain (linear) process P ◦ Q

represents an execution of P, followed by Q (Kremer et al., 2010, p. 174).

Note that in our work, we do not consider the test for eligibility veriêability (ΦEV), and hence

omit mentions of it from VP+. We leave investigation of this property in our protocol for future

work. The authors explain that the augmented voting process VP+ satisêes election veriêability

if the unreachability assertion fail⟨true⟩ is satisêed, and the reachability assertion pass⟨(true, x)⟩
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is satisêed, providing a number of variable constraints are satisêed (we refer the interested reader

to the work of Kremer et al.).

7.5.1.5 Veriêability in Our Protocol

In line with the ProVerif modelling which Kremer et al. do for a protocol similar to ours (that of

Juels et al. (2005)), we structure our model in terms of a number of equations and destructors to

represent encryption/decryption, designated veriêer signatures, designated veriêer reencryption

proofs, and the like. We then have a number of processes, representing the voter, T1, T2, a

nondeterministic vote generator, a keypair generator and processes which ascertain veriêability

and duplicate vote posting respectively. In this model, we only create two events, pass(bool) and

fail(bool), and require the reachability of pass(true), and unreachability of fail(true). The voter

process is shown in Figure 7.6. Of note are the points at which it executes the pass(true) event

(when the reencrypted vote received from the bulletin board is the same as that which Alice was

sent by T1, satisfying individual veriêability) and the fail(true) event (when the signature for an

encrypted ballot on the bulletin board does not match the hash of its purported encrypted vote,

i.e., failing universal veriêability).

Our veriêcation of universal and individual veriêability is further carried out by the processes

verifiabilitychecker and duplicatechecker, which correspond to P and Q respectively in the augmented

voting process VP+. Each process is executed according to the model code shown in Figure 7.7.

That is to say that there is an unbounded number of voters, instances of T1 and T2, and key

generators. There is one instance each of verifiabilitychecker and duplicatechecker. The former of

these works by reading two (individually veriêable) votes from two voter process executions, and

one bulletin board entry. If the bulletin board entry’s reencrypted vote is the same as the reen-

crypted vote sent by both voter process executions, then unless the underlying vote for each of

these is also the same, individual veriêability is not satisêed. Likewise, if both designated veriêer

reencryption proofs are valid for the same reencrypted vote from the bulletin board, then unless

the underlying vote is the same for both, universal veriêability is not satisêed: see Figure 7.8.
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Figure 7.6 The Voter process in our veriêability model

let voter(keychannel:channel, votechannel:channel, pk_t1:pubkey, pk_t2:pubkey,
pk_j:pubkey) =

new i:bitstring;
in(keychannel, sk_voter:secretkey);
let pk_voter:pubkey = pk(sk_voter) in
out(pch, pk_voter);
in(pch, (delta:bitstring, dvsig:bitstring));
if dvverify(dvsig, pk_t1, sk_voter) ̸= delta then
0

else
new alpha:exponent;

in(votechannel, vote:bitstring);
let encvote = encrypt(vote, alpha, pk_t2, three) in
new phi:exponent;
let t1msg = encrypt((encvote, delta, pk_voter), phi, pk_t1, three) in

out(ch, t1msg);
in(ch, enct1reply:bitstring);

let (reenc:bitstring, dvrp_a:bitstring) = decrypt(enct1reply, sk_voter) in
if dvrpverify(dvrp_a, encvote, reenc, sk_voter, pk_t1) = true then

in(bulletinboard, signedbbentry:bitstring);
let (reenc_received:bitstring, vote_and_encrypted_ID:bitstring,

signedhash:bitstring) =
verify(signedbbentry, pk_t2) in

((if reenc_received = reenc then
event pass(true); (* Result is individually veriêable *)
out(ch_pass, (true, reenc_received, i));
out(verifchannel, (sk_voter, dvrp_a, encvote, reenc, vote))

)
| (if reenc_received = reenc then

if verify(signedhash, pk_t1) ̸= hash(vote_and_encrypted_ID) then
event fail(true) (* Result is *not* universally veriêable *)

)).
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Figure 7.7 The main process in our veriêability model

process
new sk_t1:secretkey; let pk_t1:pubkey = pk(sk_t1) in out(ch, pk_t1);
new sk_t2:secretkey; let pk_t2:pubkey = pk(sk_t2) in out(ch, pk_t2);
new sk_j:secretkey; let pk_j:pubkey = pk(sk_j) in out(ch, pk_j);

( new votechannel:channel;
(
(!new keychannel:channel; (voter(keychannel, votechannel, pk_t1, pk_t2, pk_j)

| keygenerator(keychannel))
) | votegenerator(votechannel) | verifiabilitychecker(votechannel, pk_t2, pk_t1)
) |!t1(pk_t1, sk_t1, pk_t2, pk_j) |!t2(pk_t2, sk_t2, pk_t1, pk_j) | duplicatechecker()

)

The process duplicatechecker works by reading in any two messages from two voter process execu-

tions, on a special private channel ch_pass. If the reencryptions sent with both of these messages

are the same, then if the i value sent as the third part of the message is not the same, a duplicate

vote has been recorded, and individual veriêability cannot hold.

ProVerif successfully terminates with the model, claiming that there are no executions of the

event fail (i.e., it is unreachable), and that the event pass is reachable. This leads us to infer that

our protocol is both universally and individually veriêable.

7.5.2 Correspondences

We adopt the work of Backes et al. (2008) in order to prove soundness (i.e., uniqueness, eligibility

and inalterability) of our protocol. The authors formalise an election process as an unbounded

number of voters and trusted authorities, running in parallel and sharing some secrets. Voters can

be honest (always behaving according to speciêcation), corrupted (registering correctly but then

outputting all secrets) or ad-hoc (behaving arbitrarily between these two) (Backes et al., 2008, p.

196). The authors deêne an election process EP as a closed plain process:

EP ≡ νñ.(!Vhon|!Vcor|Vid1| . . . |Vidk|ID|A1| . . . |Am)

where νñ represents a sequence of name restrictions (which are secret), such that
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Figure 7.8 Disproving universal veriêability

let verifiabilitychecker(votechannel:channel, pk_t2:pubkey, pk_t1:pubkey) = (* P *)
in(verifchannel, (skv1:secretkey, dvrp1:bitstring, encvote1:bitstring, reenc1:bitstring,

vote1:bitstring));
in(verifchannel, (skv2:secretkey, dvrp2:bitstring, encvote2:bitstring, reenc2:bitstring,

vote2:bitstring));
in(bulletinboard, signedbbentry:bitstring);
let (reencvote:bitstring, vote_and_encrypted_ID:bitstring, signedhash:bitstring) =

verify(signedbbentry, pk_t2) in
(
(if reencvote = reenc1 then

if reencvote = reenc2 then
if vote1 ̸= vote2 then event fail(true)

) |
(if dvrpverify(dvrp1, encvote2, reencvote, skv1, pk_t1) = true then

if dvrpverify(dvrp2, encvote1, reencvote, skv2, pk_t1) = true then
if vote1 ̸= vote2 then event fail(true)

)).

1. for a private channel cid ∈ ñ and two sequential contexts1 Vreg,Vvote, Vhon ≡ cid(xid).Vreg[let

xv ∈ ṽ in Vvote]2, where ṽ is the set of valid votes;

2. for the corrupted voters, there exists a process Vc such that Vcor ≡ cid(xid).Vc;

3. there exists a process ID′, and a public channel cid−pub ̸∈ ñ such that

ID ≡ (!νid.cid⟨id⟩.cid−pub⟨id⟩. let xid = id in ID′)

| let xid = id1 in ID′| . . . | let xid = idk in ID′;

All id values are not public and distinct, and the channel cid is private. ID′ is the remainder

of the ID process, and contains no events.

4. there exists a public channel cvotes, a value i ∈ [1,m], a variable x, a process P, and a context

C such that

Ai ≡ C[cvotes⟨x⟩.P]
1A sequential context is deêned as a plain context which includes no replication or parallel composition.
2Note that we have already deêned the statement let x = M in P as being equivalent to the substitution

νx.({M/x}|P). The statement let xv ∈ ṽ in Vvote should be treated analogously.
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and cvotes occurs nowhere else in EP. Note that the index i of each administrator Ai is used

only to deêne the number of administrators that are used.

(Backes et al., 2008, p. 197)

The honest voter, Vhon, registers and receives an identity on cid, selects a valid vote and then casts

it. Corrupted voters simply register and then become controlled by the adversary. The authors

use an unbounded number of corrupted and honest voters. Ad-hoc voters vidi may or may not

follow the protocol, and are not replicated. The authors also deêne an election context, S, that

is a process with a hole which runs in parallel with the voters (Backes et al., 2008, p. 197).

Backes et al. deêne soundness in terms of correspondence assertions, where a causality relation

among events within a protocol is imposed and tested. Events and execution traces are introduced

to the applied pi calculus in Abadi et al. (2007). The authors annotate their election process EP

with several events:

1. newid(id): occurs once the issuer has given an identity id to a voter

2. startid(id) and startcorid(id): occur when the registration phase begins for any voter (honest

or otherwise)

3. beginvote(id,v): marks the start of the voting phase for a voter with ID id, casting vote v

4. endvote(v): occurs when the tallying of vote v has happened.

(Backes et al., 2008, p. 197)

Backes et al. therefore redeêne an annotated version of EP:

EP ≡ νñ.(!Vhon|!Vcor|Vid1| . . . |Vidk|ID|A1| . . . |Am)

such that

1. Vhon ≡ cid(xid).startid(xid).Vreg[let xv ∈ ṽ in beginvote(xid, xv).Vvote]

2. Vcor ≡ cid(xid).startcorid(xid).Vc
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3. for each i, eitherVidi ≡ startid(idi).V′
i whereV′

i contains at most one beginvote(idi, v) event,

or Vidi ≡ startcorid(idi).V′
i where V′

i has no event

4. ID is deêned as

ID ≡ (νid.newid(id).cid⟨id⟩.cid−pub⟨id⟩.let xid = id in ID′) |

newid(id1).let xid = id1 in ID′| . . . |newid(idk).let xid = idk in ID′

where newid(· ) does not occur elsewhere in EP, and ID′ has no event

5. Ai ≡ C[endvote(x).cvotes⟨x⟩.P], and C,P,Aj for j ̸= i do not contain any event

(Backes et al., 2008, p. 198)

In order to deêne soundness, Backes et al. state that the following conditions must be satisêed.

To illustrate the way in which the conditions are deêned, a trace t = t1 :: someevent(x) :: t2 ::

anotherevent(x) is a trace in which the event someevent for a parameter x is triggered, and the

event anotherevent is triggered, for the same x.

Deênition 7.5.1. Soundness (Backes et al., 2008, p. 198)

As is standard in related literature, soundness is split into three categories: inalterability (i.e.,

that no-one can change anyone else’s vote), eligibility (only eligible voters may vote) and non-

reusability/uniqueness (every voter may only vote once). The deênition of soundness which Backes

et al. (2008) deêne encapsulates these three properties. A trace t guarantees soundness if and only

if:

1. For any t1, t2, v such that t = t1 :: endvote(v) :: t2, there exist id, t′, t′′, t′′′ such that

(a) t1 = t′ :: startid(id) :: t′′ :: beginvote(id, v) :: t′′′ and t′ :: t′′ :: t′′′ :: t2 guarantees

soundness

(b) or t1 = t′ :: startcorid(id) :: t′′, and t′ :: t′′ :: t2 guarantees soundness

2. For any t1, t2, id where t = t1 :: startid(id) :: t2 or t = t1 :: startcorid(id) :: t2, neither

startid(id) nor startcorid(id) occur in t1 :: t2
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3. For any t1, t2, id where t = t1 :: startid(id) :: t2 or t = t1 :: startcorid(id) :: t2, newid(id)

occurs in t1.

Note that all traces of the protocol must satisfy the above in order for the protocol to be sound.

Each of the three properties of soundness in Deênition 7.5.1 are satisêed by the criteria above:

inalterability is modelled by the notion that every vote v for every occurrence of endvote(v) is pre-

ceded by an occurrence of beginvote(id, v); i.e., every cast vote was cast by some voter. Uniqueness

is modelled with an injective matching between endvote(v) and beginvote(id, v); i.e., there is ex-

actly one occurrence of a vote being cast by a particular voter for every vote v. Finally, eligibility

is tested by ensuring that there are no executions of beginvote(id, v) that were not preceded by

newid (and as such, followed by startid(id)) (Backes et al., 2008, p. 198).

7.5.2.1 Soundness in our Protocol

In order to verify that our protocol is sound, we need to ensure that Condition 1 of Deênition

7.5.1 is satisêed. ProVerif can check this condition automatically, and our model for this check

is to be found in the êle soundness.pv, discussed further in Section 7.5.4. In order to test

reachability properties such as those needed to assure soundness, one speciêes the execution of

an event with the line (for example) “event pkreceived(pk_v);”. This event can then be tested

for with the query command.

Of particular interest is the query

query k:pubkey, k′:pubkey, v:bitstring;

event(voteCounted(v)) =⇒

(

(inj-event(beginVote(k, v)) =⇒ inj-event(pkreceived(k)))

∨

inj-event(corpkreceived(k′))

).
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which relates directly to Condition 1 above: it states that for any public key k or corrupted voter

public key k′, and for any vote v, if the event voteCounted(v) is triggered (by the tallier process),

then either there was exactly one preceding execution of beginVote(k,v), which itself followed

one execution of pkreceived(k), or there was exactly one execution of corpkreceived(k′).

At a higher level, this means that for a vote to have been recorded by the talliers, either:

• that same vote must only have been cast once, by a voter who previously received a legiti-

mate public key, or

• a corrupted voter received a public key, and then sent all information to the coercer (who

presumably cast the vote).

On analysis of our model, ProVerif correctly terminates, stating that the query above is satis-

êed, proving that our protocol is sound (subject to the correctness of the model). The model of

our protocol to check for soundness can be found in the êle soundness.pv, discussed in Section

7.5.4.

7.5.3 Observational Equivalences

We again adopt the work of Backes et al. (2008) in order to prove a number of properties using

observational equivalences. In their work, Backes et al. note that coercion resistance captures:

1. Receipt-freeness—a coercer cannot force a voter to prove how they have voted (via a receipt)

2. Immunity to Simulation—A voter cannot be forced to provide secrets required to impersonate

her (since the coercer cannot determine if any secrets provided are real or fake)

3. Immunity to Forced-abstention—a coercer should not be able to tell whether a voter has voted

or not (note that in the authors’ work, this does not apply to an in-person coercer)

(Backes et al., 2008, p. 198)

The authors later demonstrate that coercion resistance implies both immunity to forced absten-

tion and receipt-freeness. As a result, we focus on proving the four aspects of coercion resistance
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deêned by the authors in our work. As with Backes et al., we denote coercion resistance as the

property that an attacker cannot distinguish between a voter that is coerced and provided legiti-

mate secret material to him, and a cheating voter that gives him fake secrets and then participates

in the vote normally. This means that the attacker cannot determine if or how a voter votes (as

Backes et al. note, immunity to forced-abstention implies vote privacy, under the assumption

that at least one other voter abstains from voting).

Based on their previous deênition of an election process EP:

EP ≡ νñ.(!Vhon|!Vcor|Vid1| . . . |Vidk|ID|A1| . . . |Am),

the authors deêne another voter process to represent a coerced voter, that registers as normal,

then forwards all secrets to the coercer, and abstains:

Vcoerced(c)
i ≡ let xid = i in Vreg[c⟨ũ⟩],

and a plain context Vfake representing a strategy for a voter to cheat a coercer, by providing him

with fake secrets:

Vcheat(c)
i ≡ let xid = i in Vreg[let xv = v′ in Vvote|Vfake[c⟨ũ⟩]].

(Backes et al., 2008)

Backes et al. note that intuitively, an election context S is coercion-resistant if the context running

with a coerced voter is observationally equivalent to the one with a cheating voter. However, on

one side a vote is cast, and on the other one is not. Introducing a second voter Vj does not solve

the problem:

S[Vcoerced(c)
i |Vj(v′)] ≈ S[Vcheat(c)

i (v′)|Vabs
j ],

where Vabs
j represents a voter that registers then abstains, balances the number of votes but is

still problematic. On the left hand side, the coercer receives real secrets; on the right, secrets

that cannot be used to cast a vote. Given that this cannot be solved by assuming which way the
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coercer will want to vote and balancing the votes in this way with a third voter, the authors adopt

a different solution.

Instead of using a third voter, Backes et al. use an extractor process which takes the voter the

coercer casts on behalf of Vi and tallies it directly. The extractor identiêes the vote cast by the

coercer, and on the right hand side casts it directly to the bulletin board, but on the left hand side

abstains (equivalent to the voter voting with invalid secrets). This means that the coercer’s vote is

always balanced. The extractor is deêned as a context

Ec1,c2,zk = let xid = k in Vreg[νm̃.(c1(x).P1|!c2(y).P2|C[if z ∈ ṽ then[ ]])]

for plain processes P1,P2, a sequential context C, and private channels between the coerced

voter and tallying authority, c1 and c2 respectively. If the coercer votes, the variable z holds that

vote. The result of using the extractor in the election processes is that coercion-resistance can be

expressed as the observational equivalence between the following:

S′[Vcoerced(c,c1)
i |Vj(v′)|Ec1,c2,zk [0]] ≈ S′[Vcheat(c,c1)

i (v′)|Vabs
j |E

c1,c2,z
k [cvotes⟨z⟩]].

In the êrst process, voter Vi complies with the coercer’s demands, providing her secrets then

abstaining. Vj votes v′, and the extractor process simulates a voter nullifying her vote. In the

second process, Vi cheats the coercer by providing incorrect secrets, and casts vote v′ herself. Vj

abstains, and the extractor tallies the vote that the coercer casts on behalf of Vi. Note that the

process Vcoerced(c,c1)
i is similar to the above Vcoerced(c)

i , except that the coerced voter now outputs her

secrets on channel c (for the coercer), and c1 (for the extractor) (Backes et al., 2008, p. 200).

In order to capture coercion-resistance completely, Backes et al. deêne êve criteria that an

election context must satisfy. An election process S is coercion-resistant if:

1. there exists an election context S′′ and two authorities A,A′ such that S ≡ S′′[A|[ ]], S′ ≡

νc1, c2.S′′[A′|[ ]], and νc2.(A′|!c2(x)) ≈ A
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2. S′[Vcoerced(c,c1)
i |Vj(v′)|Ec1,c2,zk [0]] ≈ S′[Vcheat(c,c1)

i (v′)|Vabs
j |E

c1,c2,z
k [cvotes⟨z⟩]] where v′ ∈ ṽ is a valid

vote

3. νc.S′[!c(x)|Vcheat(c,c1)
i (v′)|Vabs

j |E
c1,c2,z
k [cvotes⟨z⟩]] ≈ S[Vi(v′)|Vabs

j |Vabs
k ]

4. Let P = c(x̃).let xv = v in Vvote{x̃/ũ}, v ∈ ṽ, ũ = captured(Vreg), then

νc.S′[P|Vcheat(c,c1)
i (v′)|Vabs

j |E
c1,c2,z
k [cvotes⟨z⟩]] ≈

νc.S′[P|Vcheat(c,c1)
i (v′)|Vabs

j |E
c1,c2,z
k [cvotes⟨v⟩]]

5. S[Vinv−reg
i ] ≈ νcvotes.(!cvotes(x)|S[Vi(v)]) where v is a valid vote.

(Backes et al., 2008, p. 200)

As the authors further note, S′ differs only from the original election context S in that the tallying

authority outputs to the extractor in condition 1. Condition 2 represents the main equivalence

for coercion resistance. Condition 3 notes that if the coercer, having been cheated, abstains from

voting, then the extractor must abstain too; Condition 4 is that if the coercer casts a vote but

using invalid credentials, the extractor must tally that vote directly. Note that for any context C,

captured(C) deênes the set of names and variables that are in scope for the hole in C. Condition

5 ênally notes that votes cast with invalid secrets are ignored (Backes et al., 2008, p. 201). Backes

et al. go on to deêne immunity to forced abstention:

S[Vi(v)|Vabs
j ] ≈ S[Vabs

i |Vj(v)],

i.e., an attacker cannot distinguish between two processes, in which voter a votes in the êrst

process, and voter b in the second; and vote privacy:

S[Vi(v)|Vj(v′)] ≈ S[Vi(v′)|Vj(v)].

The authors go on to prove that if S guarantees coercion resistance, then S is also immune to

forced abstention attacks, and thence also implies vote privacy, under the assumption of a single
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other abstaining voter (Backes et al., 2008, p. 201). They also state that under the assumption of

an extractor being an acceptable abstraction of a third voter, coercion-resistance implies receipt-

freeness.

7.5.3.1 Coercion Resistance, Privacy and Receipt-Freeness in Our Protocol

Backes et al. demonstrate their work by producing applied pi and ProVerif models for the last

four of the above criteria for the JCJ protocol (Juels et al., 2005). As we have already stated, this

protocol is of a similar form to ours, and hence we were able to write similar models in ProVerif

to test for each part of coercion resistance.

Given the relative complexity of our protocol, we encountered a number of difficulties in

modelling some parts of it. For example, note our original equational theory for re-encryption:

fun reencrypt(bitstring, exponent):bitstring.

equation forall item:bitstring, alpha:exponent, beta:exponent, sk:secretkey;

reencrypt(encrypt(item, alpha, pk(sk)), beta) = encrypt(item, sum(alpha, beta), pk(sk)).

It should be clear that the variable item can be replaced with an encryption itself, hence

making (re-)encryptions of unbounded depth possible. In a complex protocol, this can cause

non-termination in ProVerif. Our solution was to limit the number of permitted re-encryptions

by including a series of re-encryption equations:

fun reencrypt(bitstring, exponent):bitstring.

equation forall item:bitstring, alpha:exponent, beta:exponent, sk:secretkey;

reencrypt(encrypt(item, alpha, pk(sk), three), beta) = encrypt(item, sum(alpha, beta), pk(sk), two).

reencrypt(encrypt(item, alpha, pk(sk), two), beta) = encrypt(item, sum(alpha, beta), pk(sk), one).

reencrypt(encrypt(item, alpha, pk(sk), one), beta) = encrypt(item, sum(alpha, beta), pk(sk), zero).

Although this limits the power of ProVerif, we feel it was a necessary and acceptable limitation:

further re-encryptions could in no way give further power to the attacker (the only apparent aim
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of further re-encryptions would be to somehow re-obtain the original ciphertext, which, given

the encryption scheme we use, is mathematically and computationally highly improbable).

As noted earlier, observational equivalences are tested using the choice operator in ProVerif.

Given that the models which test for coercion resistance are very long, we do not provide them

here in depth, but instead give an example of our use of the choice operator in Figure 7.9.

Figure 7.9 The choice operator in use

let voterchoice(ch_voter_issuer:channel, ch_voter_registrar:channel, pk_t1:pubkey,
pk_t2:pubkey, sk_vc:secretkey) =

let pk_vc:pubkey = pk(sk_vc) in
new noncevc:nonce;
out(ch_voter_registrar, (n1, noncevc, pk_vc));
in(ch_voter_registrar, (= n2,= noncevc, delta:bitstring, dvsig:bitstring));
if dvverify(dvsig, pk_t1, sk_vc) = delta then

in(chvote, vote:bitstring);
new fakedelta:bitstring;
let fakedvsig = fakedvsign(fakedelta, pk_t1, sk_vc) in
new alpha:exponent;
let encvote = encrypt(vote, alpha, pk_t2, three) in
new phi:exponent;
let t1msg = encrypt((encvote, choice[delta, fakedelta], pk_vc), phi,

pk_t1, three) in
out(comm, t1msg).

The example above models the choice of the voter to either vote using a genuine or fake δ

value. Each of the models for coercion resistance terminate successfully. In each case, ProVerif

claims that the suggested observational equivalence holds, leading us to infer that our protocol is

coercion resistant, and, by extension, permits voter privacy, is not susceptible to forced abstention

attacks, and is receipt-free, allowing for the abstraction of the third voter by the extractor.

7.5.4 Location of ProVerif Source Code

The ProVerif source êles relating to the models and proofs presented in this chapter can be found

at

http://mattsmart.co/research/proverif

At this address, six êles can be found, which each relate to a different test:

http://mattsmart.co/research/proverif
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Table 7.1 ProVerif Source Code Files

Filename Description
ivuv.pv Our model for individual and universal veriêability (Section 7.5.1.5)
soundness.pv Our soundness model (Section 7.5.2.1)
cr2.pv

Four models for parts 2–5 of the coercion-resistance, receipt-freeness and
privacy proofs (Section 7.5.3.1)

cr3.pv
cr4.pv
cr5.pv

7.6 Summary

In this penultimate chapter, we have presented an extensive discussion of the applied pi calculus,

and of the automated reasoning tool ProVerif, whose input may be in applied pi syntax. Using

the abilities of ProVerif (namely, proving reachability and correspondence assertions, and selected

observational equivalences), we have been able to prove that the protocol we discussed in Chapter

4 is universally and individually veriêable, sound, and provides voter privacy, receipt freeness and

coercion-resistance.

Whenever using formal veriêcation to prove the security properties of a protocol, one must

ensure that certain problems are solved. Foremost, the (ProVerif) model must accurately represent

the underlying protocol. In a language such as ProVerif, which only proves observational equiv-

alences when using speciêc model formulations, and has no means for representing persistent

storage, this is often a demanding requirement. Consequently, there is often a need to abstract

away the complexities of a protocol (such as exactly how a designated veriêer re-encryption proof

works) from the model, allowing the basic purpose of the function to remain. A similar problem

arises when formalising the requirements to be proved: how can one ensure that the formalisation

of a requirement accurately captures what is meant?

At present, our work has focused on the modelling and veriêcation of our êrst protocol,

as discussed in Chapter 4. We are keen to extend our work on formalisation to our trusted

computing-based protocol, as discussed in Chapter 5, and plan to consider this in future work.
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8 Conclusions

In this chapter, we conclude the thesis. We begin by reviewing the results and contributions

achieved by this thesis, and the lessons learned in pursuit of those results, and ênish with a dis-

cussion of avenues for future work.

This thesis presents three key contributions:

• A concise, readily implementable protocol to provide remote electronic voting for United

Kingdom national elections, allowing anonymity revocation in the case of personation;

• A remote electronic voting protocol which uses trusted computing (and Direct Anonymous

Attestation) to assure authorities (and the voter) of the state of a remote voter’s machine;

• A method by which remote users whose anonymity is revoked may be informed of this

fact, generalised for many types of security discipline.

It seems êtting to close this thesis by repeating the statement with which it opened: designing elec-

tronic voting protocols is difficult. In the face of ever-increasing security requirements—conëicting

with voters who wish to use an easily comprehensible system—producing a protocol which is

attractive to both voters and security researchers alike is a formidable challenge.
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In this thesis, we have striven to present work which satisêes this challenge. We began with

the introduction of a protocol which, with minimal trust in a set of tellers who are not able to

observe a vote, allows a voter to vote remotely, whilst unable to prove to a coercer whether how

(or even if) they are voting. Our assumption, as with our later work, is simply that the voter can

vote once unobserved, but an unlimited number of times otherwise, where her legitimate vote is

the one counted. We introduced a novel use of designated veriêer signatures, and an extension

of earlier work to provide a proof of ballot validity for 1-out-of-L elections, to allow the voter to

remain coercion-resistant.

The trust we placed in the êrst round of talliers in our êrst protocol was, we reasoned, the

minimal required amount of trust for our protocol, given no further assumptions. However, we

noted that this level of trust might be undesirable for a general election scheme. This prompted

our work into use of the TPM and the DAA protocol for remote anonymous authentication

of voter machines. In this work, we provided another novel method for voters to distinguish

coerced from non-coerced votes, without the requirement for the user to generate designated

veriêer signatures. Our work is the êrst to utilise the TPM of a remote voter’s machine to

allow her to vote from home, whilst also assuring authorities of the state of the machine. This

presents considerable avenues for future development, and a credible way in which to increase

voter turnout.

In both of our êrst two protocols, we provide the ability for authorities to determine the

identity of a voter from their ballot. This functionality is legally required in the United Kingdom.

However, both protocols failed to alert the voter as to when her anonymity was revoked. We

rectify this with our work in Chapter 6: we detail a generic protocol in which an anonymous

user interacts with a remote server—proved to be trustworthy—to encrypt her identity, such that

it can later be retrieved with sufficient authority. The nature of the deanonymisation is that the

user is automatically able to determine whether her identity has been traced or not. This protocol

is readily applicable to a number of security protocols, including that presented in Chapter 5. For

this reason, we do not apply it directly to our electronic voting protocols, but the speciêcs of this

application should be clear.
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In our ênal chapter, we drew on the work of several authors on the formalisation of security

protocols and their requirements in the applied pi calculus, a process calculus speciêcally designed

for reasoning about security protocols. We used the automated reasoning tool ProVerif to for-

malise our work from Chapter 4, drawing on recent work on formal veriêcation in e-voting to

prove a number of security properties. We are, to our knowledge, the êrst to prove as many

properties as we do in this manner.

8.1 Further Work

We consider our work on remote electronic voting to be deployable in the United Kingdom with

a small amount of extra effort, and here discuss extra steps which could be addressed in the future.

Our work on the use of trusted computing in e-voting (Chapter 5) relies on the availability

of a TPM in each voter’s machine. At the moment, despite the increasing prevalence of TPMs

in domestic computing environments, we are not yet ‘there’. As service providers further de-

mand secure communications with their users in the future, we envisage that the TPM will be

included in more and more machines. Clearly, any deployment would need to consider trust in

the makers of the TPM: a sensitive issue such as general elections means that one must be able to

unquestionably trust any entity which could have access to secret data (a voter’s vote, or identity).

Manufacturers residing in countries with a questionable interest in UK electoral results would

need to be carefully scrutinised. This aspect of future work is outside of the scope of this thesis,

however.

An issue to consider for future work on trusted computing in e-voting is how to allow more

than one voter to vote from a particular TPM—something which we do not currently consider.

We anticipate that one suitable approach would be for each voter from a given TPM to complete

a separate DAA join/sign protocol execution using fresh pseudonyms. However, allowing this

whilst also preventing a voter from voting multiple times is complex, and we hence leave it as an

interesting open question.

Another avenue for future work concerns our preliminary work on auditability of revocable
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anonymity, discussed in Chapter 6. We feel that virtual monotonic counters provide a promis-

ing method for satisfying the ‘digital envelope’ problem, and would like to further explore the

applicability of our auditability protocol to other security êelds, such as digital cash and fair ex-

change/contract signing. As the work discussed in Chapter 6 was not the main focus of this thesis,

we would like to spend further time formalising the security requirements of its area, and proving

the protocol correct.

This leads us to further work on proving the correctness of our protocols. The main focus of

this thesis is not on formal veriêcation. However, we would like to formally prove the security of

our second protocol. Though work has been done on formal veriêcation of the DAA protocol,

combining this with proving the security of our work is challenging. One must also bear in mind

the issue that, as the basic applied pi calculus and ProVerif do not cater for protocols which are

concerned with persistent state, an alternative approach to formalisation must be considered.

Our next step is to trial a small-scale implementation of the e-voting protocols we have devel-

oped, using a TPM simulator for the protocol in Chapter 5. We envisage that the contributions

in this thesis will aid work on the deployment of national electronic voting schemes in countries

concerned with remote voting, and particularly in the UK.
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