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1 Introduction

This progress report is submitted under a contract between the Special Project Office of DARPA
and Lawrence Livermore National Laboratory. The Project Manager at DARPA is Dr. Michael
Zatman. Our purpose under this contract is to investigate interactions between electromagnetic
waves and a class of buried targets located in multilayered media with rough interfaces.

In this report, we investigate three preliminary problems. In each case our specific goal is to
understand various aspects of the electromagnetic wave interaction mechanisms with targets in
layered media. The first problem, discussed in Section 2, is that of low-frequency electromagnetic
backscattering from a tunnel that is cut into a lossy dielectric half-space. In this problem, the
interface between the upper (free space) region and the lower (ground) region is smooth. The
tunnel is assumed to be a cylindrical free-space region of infinite extent in its axial direction and
with a diameter that is small in comparison to the free-space wavelength. Because its diameter
is small, the tunnel can be modeled as a buried “wire” described by an equivalent impedance per
unit length.

In Section 3 we extend the analysis to include a statistically rough interface between the air
and ground regions. The interface is modeled as a random-phase screen. Such a screen reduces
the coherent power in a plane wave that is transmitted through it, scattering some of the total
power into an incoherent field. Our analysis of this second problem quantifies the reduction in
the coherent power backscattered from the buried tunnel that is caused by the roughness of the
air-ground interface.

The problem of low-frequency electromagnetic backscattering from two buried tunnels, par-
allel to each other but at different locations in the ground, is considered in Section 4. In this
analysis, we wish to determine the conditions under which the presence of more than one tunnel
can be detected via backscattering.

Section 5 concludes the report with a summary of the investigations discussed herein and
recommendations for future work on problems of this class.
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2 Electromagnetic Backscattering from a Tunnel in a Lossy
Half-Space

We consider electromagnetic backscattering from a buried wire.1 The wire is located in the half-
space z < 0, in which the relative permittivity is 6r. The wire is parallel to the y-axis and is
located at position x = 0, z = −d. A perpendicularly-polarized plane electromagnetic wave is
incident on the half-space from the free-space region z > 0. The incident electric field is (the
time dependence exp(jωt) is assumed)

Eyi(x, z) = E0e
−jk0(x sin θi−z cos θi) (1)

in which θi denotes the angle of incidence with respect to the positive z-direction and k0 is the
free-space wavenumber. The electric field Ey transmitted into the lower medium is easily shown
to be

Eyt(x, z) = T (θi)E0e
−jk0(x sin θi−z

√
6r−sin2 θi ) (2)

where the transmission coefficient T (θi) is

T (θi) =
2 cos θi

cos θi + 6r − sin2 θi
(3)

Next consider the electric field radiated into the upper free-space region by the filamentary
current I0 on a buried wire located at (0,−d). Write the electric field in the upper and lower
regions in terms of Fourier integrals as

Ey>(x, z) =
I0
2π

∞

−∞
A(kx)e

−jkxx−jkz0zdkx (4)

Ey<(x, z) =
I0
2π

∞

−∞
e−jkxx B(kx)e

jkzgz + C(kx)e
−jkzg|z+d| dkx (5)

where kz0 = k20 − k2x and kzg = k206r − k2x; the functions A(kx) and B(kx) are to be deter-
mined. The function C(kx) is known; it is given by

C(kx) = −k0Z0
2kzg

(6)

in which Z0 denotes the intrinsic impedance of free space. The term involving C(kx) in the
integral in eq. (5) above is the electric field directly radiated by the filamentary current, and the
term involving B(kx) represents the field that is reflected back into the ground by the air-ground
interface. We have

I0
2π

∞

−∞
e−jkxxC(kx)e−jkzg|z+d|dkx = −jk0Z0I0

4j
H
(2)
0 (kgρ

I) (7)

in which kg = k0
√
6r is the propagation constant in the lower medium and ρI = x2 + (z + d)2

denotes the distance from the wire axis to the observation point in the lower medium.

The tangential magnetic field component Hx is obtained from Ey via

Hx(x, z) =
1

jk0Z0

∂Ey
∂z

(8)

1By “wire” we mean a cylindrical obstacle whose radius is small compared to the wavelength. It is not
necessarily a perfect conductor.
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Making Ey and Hx continuous at z = 0 and solving for A(kx) and B(kx), we obtain

A(kx) = C(kx)e
−jkzgd 2kzg

kz0 + kzg
(9)

B(kx) = C(kx)e
−jkzgd kzg − kz0

kz0 + kzg
(10)

so that the electric field radiated into the free-space region by the wire is

Ey>(x, z) = −k0Z0I0
2π

∞

−∞
e−jkxxe−jkzgd−jkz0z

dkx
kz0 + kzg

(11)

Now we evaluate the integral above in the far zone using the method of steepest descents. We
find

Ey>(ρ, θ) ∼ − jk0Z0I0√
8πjk0ρ

T (θ)e−jk0ρ−jk0d
√
6r−sin2 θ (12)

The radiated power density, normalized by the incident power density, is given in the far zone
by

Sr
Si
= k20

Z0I0
E0

2
1

8πk0ρ
|T (θ)e−jk0d

√
6r−sin2 θ|2 (13)

We can define an equivalent backscattering width f as

f = lim
ρ→∞ 2πρ

Sr
Si θ=θi

(14)

whence we obtain

f = k0
I0Z0
2E0

2

T (θi)e
−jk0d

√
6r−sin2 θi

2

(15)

It remains to determine the relation between the wire current and the incident electric field.
The total electric field Ey on the wire surface at ρ = a is equal to Z

I
wI0, where Z

I
w denotes the

wire impedance per unit length (for a perfectly conducting wire, ZIw = 0). We have

I0
2π

∞

−∞
B(kx)e

−jkzgd + C(kx)e−jkzga dkx +Et(0,−d) = Z IwI0 (16)

This equation is easily solved for the wire current. We find

I0 =
T (θi)E0e

−jk0d
√
6r−sin2 θi

jk0Z0ζn
(17)

in which the normalized impedance per unit length ζn is given by

ζn =
ZIw
jk0Z0

+
1

4j
H
(2)
0 (kga) +

1

2π

∞

−∞
e−2jkzgd

kzg − kz0
kzg + kz0

dkx
2jkzg

(18)

The scattering width f is therefore

f =
|T (θi)|4
k0|2ζn|2 e−jk0d

√
6r−sin2 θi

4

(19)

In the limiting case where the wire is perfectly conducting and situated in free space, the
scattering width reduces to

f→ 4

k0|H(2)
0 (k0a)|2

(20)
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or, since k0a << 1,

f→ 4π2

k0[4 ln
2(γk0a/2) + π2]

(21)

in which γ = 1.781 . . . is the exponential of Euler’s constant.

Equivalent Impedance Per Unit Length of a Tunnel

The equivalent impedance per unit length of a cylindrical free-space region of radius a in a
medium of relative permittivity 6r is easily shown to be

Z Iw =
jk0Z0

π(k0a)2(6r − 1) (22)

when k0a is small compared to unity. To derive this result, consider the problem of plane-wave
scattering from a cylindrical free-space region in a medium of relative permittivity 6r. (The
axis of the cylindrical region is taken to be the z-axis for this calculation.) When k0a is small
compared to unity, the electric field Ez just outside the cylinder is given by

Ez>(ρ) = E0J0(kgρ) +AH
(2)
0 (kgρ) (23)

and inside the cylinder
Ez< = BJ0(k0ρ) (24)

in which the constants A and B are to be determined. The magnetic field Hφ is obtained from

Hφ(ρ) =
1

jk0Z0

∂Ez
∂ρ

(25)

Making Ez and Hφ continuous at ρ = a and solving for A, we obtain

A = E0
kgJ0(k0a)J

I
0(kga)− k0J I0(k0a)J0(kga)

k0J I0(k0a)H
(2)
0 (kga)− kgJ0(k0a)H(2)

0

I
(kga)

(26)

The equivalent current is simply

Ieq = 2πaHφ,sc(a) =
2πa

jk0Z0
AkgH

(2)
0

I
(kga) (27)

and the electric field at ρ = a is

Ez(a) = E0J0(kga) +AH
(2)
0 (kga) (28)

The equivalent impedance per unit length is

ZIw = Ez(a)/Ieq (29)

from which we obtain, substituting as appropriate and taking the limit as k0a and kga become
small, the result given in eq. (22).

Numerical Results

The computation of the scattering width is straightforward. The normalized impedance per
unit length ζn given in eq. (18) includes a known term for ZIw, the Hankel function, and the
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Figure 1: Normalized scattering width of PEC “tunnel” vs. frequency for very dry soil and
universal soil. Soil parameters are 6ri = 7 and σ0 = 10

−4 S/m for the very dry soil and 6ri = 40
and σ0 = 10

−2 S/m for the Universal soil; the geometrical parameters are a = 5 meters, d = 50
meters, θi = 0.

integral that represents the field reflected back to the wire by the air-ground interface. That
integral can be written in the form

I(k0d, 6r) = 1

2π

∞

−∞
e−2jkzgd

kzg − kz0
kzg + kz0

dkx
2jkzg

=

1

2π

∞

0

e−2k0d
√
u2−6r

√
u2 − 6r −

√
u2 − 1√

u2 − 6r +
√
u2 − 1

du√
u2 − 6r

(30)

The integral is now easily evaluated numerically.

We show some representative results in Figures 1 through 5. The scattering width of the
tunnel is normalized by that of a PEC pipe of the same radius in free space and is plotted as
a function of frequency or incidence angle. The burial depth is assumed to be 50 m and the
tunnel radius is 5 m. The incidence angle is 0 degrees. The relative permittivity of the ground is
expressed in terms of a high-frequency relative permittivity 6ri and a low-frequency conductivity
σ0 as [1]

6r =
√
6ri + σ0Z0/(jk0)

2

. (31)

Figures 1 and 2 compare the normalized scattering widths of a PEC “tunnel” and an air-
filled tunnel vs. frequency for very dry soil and universal soil, respectively. We note that the
normalized scattering widths decrease as frequency increases. Furthermore, we find that the
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Figure 2: Normalized scattering width of air filled tunnel vs. frequency for very dry soil and
universal soil. Soil parameters are 6ri = 7 and σ0 = 10

−4 S/m for the very dry soil and 6ri = 40
and σ0 = 10

−2 S/m for the Universal soil; the geometrical parameters are a = 5 meters, d = 50
meters, θi = 0.
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Figure 3: Normalized scattering width of air filled tunnel vs. frequency for very dry soil; soil
parameters are 6ri = 7 and σ0 = 10

−4 S/m; the geometrical parameters are a = 5 meters, d = 50
meters, θi = 0.

normalized scattering widths drop rapidly as the soil moisture content increases. This means
that it could be very difficult to find deeply buried underground targets as the soil moisture
becomes large.

Figure 3 displays the dependence of the normalized scattering width of an air-filled tunnel on
signal frequency for very dry soil.

Figures 4 and 5 depict the normalized scattering widths of a PEC “tunnel” and an air-
filled tunnel vs. frequency for very dry soil and universal soil, respectively. Both demonstrate the
property that the backscattered signal strengths decrease as the incidence angle becomes greater.

3 Rough-Surface Effects on Electromagnetic Scattering from
a Tunnel in a Lossy Half-Space

In this section we discuss the reduction in coherent backscattered power when the interface
between the upper air region and the lower dielectric region is rough.

The interface is modeled as a random-phase screen. The mean air-ground interface is located
at z = 0; the region z > 0 is air and the region z ≤ 0 is ground, with (generally complex) relative
permittivity 6r. The actual air-ground interface is the surface z = ∆(x, y). We assume that the
random process ∆(x, y) is homogeneous in the wide sense, with expected value ∆(x, y) = 0 and
variance ∆2.
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Figure 4: Normalized scattering width of PEC “tunnel” vs. incidence angle for very dry soil. Soil
parameters are 6ri = 7 and σ0 = 10

−4 S/m; f = 1MHz; the geometrical parameters are a = 5
meters, d = 50 meters.
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Figure 5: Normalized scattering width of air filled tunnel vs. incidence angle for very dry soil.
Soil parameters are 6ri = 7 and σ0 = 10−4 S/m; f = 1MHz; the geometrical parameters are
a = 5 meters, d = 50 meters.
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Using this model, one can show (see, e.g., [2]) that the coherent amplitude of the electric field
of a plane wave transmitted across the screen is reduced by the factor

F = E e−jq(kx0,ky0)∆(x,y) (32)

in which kx0 and ky0 are the transverse propagation constants of the plane wave and the function
q is given by

q(kx0, ky0) = _ k206r − k2x0 − k2y0 − k20 − k2x0 − k2y0 (33)

with k0 denoting the free-space wavenumber, and _ denotes the real part. If we further assume
that the random process ∆(x, y) is Gaussian, it is easy to show that

F = e−q
2(kx0,ky0)∆2/2 (34)

In the problem of backscattering from a buried target, the electromagnetic wave passes
through the rough interface twice. Denoting the angle of incidence by θ and assuming that
the incident plane wave is given by

Eyi(x, z) = E0e
−jk0(x sin θ−z cos θ) (35)

we have

q(kx0, ky0) = k0_ 6r − sin2 θ − cos θ) (36)

The coherent backscattered electric-field amplitude is therefore reduced by the factor

F 2 = exp −k20∆2_2 6r − sin2 θ − cos θ (37)

The backscattered power density, and thus the backscattering cross-section (or, in the case of
a tunnel, the backscattering width), is reduced by the factor |F |4. We remark that the phase-
screen model is valid only when the phase shift imposed by the screen is small. The above result,
therefore, is valid only for a “slightly rough” air-ground interface. The trend in the reduction of
the backscattering cross-section, however, is clearly shown.

It should also be noted that a portion of the equivalent current induced on the buried tunnel
results from reflection by the air-ground interface of the field that is radiated by the tunnel.
Incorporating the rough-surface effects into the appropriate term in the normalized impedance
per unit length ζn given in eq. (18), we have

ζn =
Z Iw
jk0Z0

+
1

4j
H
(2)
0 (kga) +

1

2π

∞

−∞
e−2jkzgd exp −2_2[kzg]∆2 kzg − kz0

kzg + kz0

dkx
2jkzg

(38)

We remark that the reflection effect is very small over the parameter range of interest for the
buried-tunnel problem.

Computations of the backscattering width are performed as in previous section, with the
modification described above made in eq. (18), and the overall result multiplied by the factor
|F |4, as discussed in the foregoing.
Figures 6 and 7 compare the normalized scattering width of a PEC “tunnel” and an air-

filled tunnel vs. frequency with and without the rough interface present. Figure 8 shows the
normalized scattering width of an air-filled tunnel vs. the variance of the rough surface. These
figures indicate that the roughness effects are very limited, even when the standard deviation of
the roughness is large, since the frequency is so low.
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Figure 6: Normalized scattering width of PEC “tunnel” vs. frequency with and without the
rough surface interface for very dry soil. Soil parameters are 6ri = 7 and σ0 = 10−4 S/m; the
geometrical parameters are a = 5 meters, d = 50 meters, θi = 0, variance ∆2 = 1 m
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Figure 7: Normalized scattering width of air filled tunnel vs. frequency with and without the
rough surface interface for very dry soil. Soil parameters are 6ri = 7 and σ0 = 10−4 S/m; the
geometrical parameters are a = 5 meters, d = 50 meters, θi = 0, variance ∆2 = 1 m
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Figure 8: Normalized scattering width of air filled tunnel vs. the rough surface variance. Soil
model is very dry soil: 6ri = 7 and σ0 = 10

−4 S/m; f = 1MHz; the geometrical parameters are
a = 5 meters, d = 50 meters, θi = 0.
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4 Electromagnetic Backscattering from Two Tunnels in a
Lossy Half-Space

In this section, we consider electromagnetic backscattering from two tunnels in a lossy half-space.
The tunnels are modeled as buried wires. The wires are located in the half-space z < 0, in which
the relative permittivity is 6r. The region z > 0 is free space. The wires are parallel to the
y-axis and are located at positions x = x0, z = −d0 and x = x1, z = −d1. A perpendicularly-
polarized plane electromagnetic wave is incident on the half-space from the free-space region
z > 0. Proceeding as in Section 2, we find for the backscattered electric field in the far zone of
the free-space region

Ey>(ρ, θ) ∼ − jk0Z0√
8πjk0ρ

T (θ)e−jk0ρ·

I0e
−jk0(x0 sin θ+d0

√
6r−sin2 θ) + I1e−jk0(x1 sin θ+d1

√
6r−sin2 θ) (39)

where the currents I0 and I1 are to be determined.

The total electric field Ey in the lower medium is the sum of (i) the portion of the incident
field that is transmitted into the lower medium, given by eq. (2); (ii) the electric field radiated by
the current I0 at (x0,−d0) and reflected back into the lower medium by the interface at z = 0,
as in eq. (5); and (iii) the electric field radiated by the current I1 at (x1,−d1) and reflected back
into the lower medium by the interface at z = 0. The boundary condition to be imposed on the
surface of each wire is that the electric field and the wire current be related by an equivalent
impedance per unit length ZIw via the two relations

Ey(x0,−d0) = ZIw0I0 (40)

and
Ey(x1,−d1) = ZIw1I1 (41)

in which, as was shown in Section 2, the impedances per unit length are given by

ZIw0 =
jk0Z0

π(k0a0)2(6r − 1) (42)

ZIw1 =
jk0Z0

π(k0a1)2(6r − 1) (43)

with a0 and a1 denoting the radii of the two tunnels.

The total electric field in the lower medium is given by

Eyt(x, z) = T (θi)E0e
−jk0(x sin θi−z

√
6r−sin2 θi )+

I0
2π

∞

−∞
e−jkx(x−x0) B(kx)ejkzg(z−d0) + C(kx)e−jkzg |z+d0| dkx+

I1
2π

∞

−∞
e−jkx(x−x1) B(kx)ejkzg(z−d1) + C(kx)e−jkzg|z+d1| dkx (44)

which we write in the form

Eyt(x, z) = Et(x, z) + I0ey0(x, z) + I1ey1(x, z) (45)
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Imposing the conditions in eq. (40) and (41), we obtain the system of equations for the unknown
currents

ZIw0 − ey0(x0,−d0) −ey1(x0,−d0)
−ey0(x1,−d1) ZIw1 − ey1(x1,−d1) · I0

I1
=

Et(x0,−d0)
Et(x1,−d1) (46)

from which we obtain

I0 =
1

D
{[ZIw1 − ey1(x1,−d1)]Eyt(x0,−d0) + ey1(x0,−d0)Eyt(x1,−d1)} (47)

I1 =
1

D
{[ZIw0 − ey0(x0,−d0)]Eyt(x1,−d1) + ey0(x1,−d1)Eyt(x0,−d0)} (48)

with
D = [ZIw0 − ey0(x0,−d0)][ZIw1 − ey1(x1,−d1)]− ey0(x1,−d1)ey1(x0,−d0) (49)

It is convenient to express the wire currents in terms of the incident electric field E0 as I0,1 =
jk0f0,1E0/(jk0Z0), where the definitions of the parameters f0,1 (which have dimensions of length)
are obvious from the foregoing. Then from (39), we have for the far-zone field backscattered into
the upper region

Ey>(ρ, θ) ∼ − jk0E0√
8πjk0ρ

T (θi)e
−jk0ρ·

f0e
−jk0(x0 sin θi+d0

√
6r−sin2 θi) + f1e

−jk0(x1 sin θi+d1
√
6r−sin2 θi) (50)

The backscattered power density, normalized by the incident power density, is therefore given by

Sr
Si
=

1

8πk0ρ
|T (θi)|2 ·

k0f0e
−jk0(x0 sin θi+d0

√
6r−sin2 θi) + k0f1e−jk0(x1 sin θi+d1

√
6r−sin2 θi)

2

(51)

and the equivalent backscattering width feq = 2πρSr/Si is

feq =
1

4k0
|T (θi)|2 · k0f0e−jk0(x0 sin θi+d0

√
6r−sin2 θi) + k0f1e−jk0(x1 sin θi+d1

√
6r−sin2 θi)

2

(52)

Computational Considerations

In this section we present formulas to aid in the numerical evaluation of the backscattered electric
field and the equivalent backscattering width. We can express the normalized admittances in the
form

jk0f0 =
T (θi)

D (ζ1 + η11)e
−jk0(x0 sin θi+d0

√
6r−sin2 θi) − η10e

−jk0(x1 sin θi+d1
√
6r−sin2 θi) (53)

jk0f1 =
T (θi)

D (ζ0 + η00)e
−jk0(x1 sin θi+d1

√
6r−sin2 θi) − η01e

−jk0(x0 sin θi+d0
√
6r−sin2 θi) (54)

in which
D = (ζ0 + η00)(ζ1 + η11)− η01η10 (55)

with

ζ0,1 =
ZIw0,1
jk0Z0

=
1

π(k0a0,1)2(6r − 1) (56)
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η00,11 =
1

π

∞

0

kzg − kz0
kzg + kz0

e−2jkzgd0,1
dkx
2jkzg

+
1

4j
H
(2)
0 (kga0,1) (57)

η01 = η10 =
1

π

∞

0

cos kx(x1 − x0) kzg − kz0
kzg + kz0

e−jkzg(d0+d1)
dkx
2jkzg

+

1

4j
H
(2)
0 (kg (x1 − x0)2 + (d1 − d0)2) (58)

The integral terms in the expressions for η00 and η11 represent the field that is radiated from a
wire and reflected back to the location of the same wire; the terms involving the Hankel functions
represent the field radiated from a wire, evaluated at the surface of that wire. The integral terms
in the expressions for η01 and η10 represent the field that is radiated from one wire and reflected
back to the location of the other wire; the terms involving the Hankel functions represent the
field radiated from one wire and evaluated at the surface of the other wire. The integrals are
easily evaluated numerically.

It is of interest to determine the conditions under which the two tunnels can be resolved using
observations of the equivalent scattering width. For simplicity, let us assume that the radii and
the depths of the two tunnels are the same, equal to a0 and d0 respectively. Assume also that
x0 = −s/2 and x1 = s/2 with s denoting the distance between the tunnel axes. Under these
conditions, the equivalent backscattering width becomes

k0feq = |T (θi)|4 e−jk0d
√
6r−sin2 θi

4 (ζ0 + η00) cos(k0s sin θi)− η10
(ζ0 + η00)2 − η210

2

(59)

All dependence on the separation between the tunnel axes is contained in the last factor of the
above equation: there is explicit dependence on s in the cosine function, and the factor η10 also
depends on s. In the present instance, we have

η10(s) =
1

π

∞

0

cos kxs
kzg − kz0
kzg + kz0

e−2jkzgd0
dkx
2jkzg

+
1

4j
H
(2)
0 (kgs) (60)

for s > 2a0.

It will be of interest to investigate the equivalent backscattering width as a function of inci-
dence angle, frequency, tunnel radius and depth, and tunnel separation.

Figures 9, 10, and 11 depict the normalized scattering widths of air-filled tunnels vs. incidence
angle for dry soil with the tunnels located at the same depth and different horizontal separation
s. From Figure 9, we observe that the normalized scattering widths have no sidelobe in the
incidence-angle range from −80◦ to 80◦ for s < 0.26λ0. As s approaches 0.26λ0, the sidelobes
begin to appear. This tells us that we might see an indication that two or more tunnels possibly
exist from observations of the normalized scattering width. From Figure 10, we observe that the
width of the main lobe becomes smaller and smaller as the separation s increases. From Figure
11, we observe that multiple sidelobes appear as the separation s becomes greater than one free
space wavelength.

Figure 12 plots the normalized scattering width of two air-filled tunnels vs. incidence angle
and frequency for very dry soil. We note that there is no sidelobe when the frequency is low
(equivalent to small separation compared to free space wavelength). As frequency increases, the
sidelobes appear (equivalent to large separation compared to wavelength). This plot confirms
the conclusions drawn from three previous figures.

Figure 13 depicts the normalized scattering width of two air filled tunnels vs. incidence angle
and horizontal separation for very dry soil. This figure further illustrates the results shown in
Figures 9, 10, and 11.
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Figure 9: Normalized scattering width of air-filled tunnels vs. incidence angle for very dry soil
with the tunnels located at the same depth and different horizontal separation s. Soil parameters
are 6ri = 7 and σ0 = 10

−4 S/m; f = 1MHz; the geometrical parameters are a0 = a1 = 5 meters,
d0 = d1 = 50 meters.
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Figure 10: Normalized scattering width of air-filled tunnels vs. incidence angle for very dry soil
with the tunnels located at the same depth and different horizontal separation s. Soil parameters
are 6ri = 7 and σ0 = 10

−4 S/m; f = 1MHz; the geometrical parameters are a0 = a1 = 5 meters,
d0 = d1 = 50 meters.
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Figure 11: Normalized scattering width of air-filled tunnels vs. incidence angle for very dry soil
with the tunnels located at the same depth and different horizontal separation s. Soil parameters
are 6ri = 7 and σ0 = 10

−4 S/m; f = 1MHz; the geometrical parameters are a0 = a1 = 5 meters,
d0 = d1 = 50 meters.
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Figure 12: Normalized scattering width of air-filled tunnels vs. incidence angle and frequency
for very dry soil. Soil parameters are 6ri = 7 and σ0 = 10

−4 S/m; f = 1MHz; the geometrical
parameters are the horizontal tunnel separation s = 40 meters, a0 = a1 = 5 meters, d0 = d1 = 50
meters.
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Figure 13: Normalized scattering width of air filled tunnels vs. incidence angle and horizontal
separations for very dry soil. Soil parameters 6ri = 7 and σ0 = 10−4 S/m; f = 1 MHz; the
geometrical parameters are a0 = a1 = 5 meters, d0 = d1 = 50 meters.
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Figure 14: Normalized scattering width of air-filled tunnels vs. incidence angle and horizontal
separations with different tunnel depths for very dry soil. Soil parameters are 6ri = 7 and
σ0 = 10−4 S/m; f = 1MHz; the geometrical parameters are a0 = a1 = 5 meters, d0 = 70
meters, d1 = 10 meters.

22



−80
−40

0
40

80

0

0.5

1

1.5

2
−20

−10

0

10

20

θ
i
 (degrees)s/λ

0

N
or

m
al

iz
ed

 S
ca

tte
rin

g 
W

id
th

 (
dB

)

Figure 15: Normalized scattering width of air-filled tunnels vs. incidence angle and horizontal
separations with different tunnel radius for very dry soil. The soil parameters are 6ri = 7 and
σ0 = 10−4 S/m; f = 1MHz; the geometrical parameters are a0 = 25 meters, a1 = 5 meters,
d0 = d1 = 50 meters.

Figure 14 shows the normalized scattering width of two air-filled tunnels vs. incidence angles
and horizontal separations with different tunnel depths for very dry soil. The tunnel sizes are
the same. We find that the sidelobes appear at relatively larger separation compared to the case
in which the two tunnels are located at the same depth. Furthermore, the nulls are not as deep
and sharp as in the case shown in Figure 13. This indicates that the interference is weak. We
attribute this to fact that the scattered field strength contributed by the deeper tunnel is much
less than that of the shallow one so that the scattering field strength contribution is dominated
by the tunnel located closer to the air/earth interface. It is similar to the situation in which only
one tunnel is present.

Figure 15 shows the normalized scattering width of two air-filled tunnels vs. incidence angle
and horizontal separation with different tunnel radii for very dry soil. The tunnels are at the
same depth. It is evident that there is no sidelobe; little or no interference is taking place. The
larger tunnel dominates the scattering.

5 Concluding Remarks

In this report we have described the results of our initial investigations into problems of low-
frequency electromagnetic backscattering from one or more tunnels located in a lossy half-space,
in which the interface between the upper (air) and lower (ground) regions may be rough. The
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fact that the tunnels are assumed to have a diameter that is small in comparison to the free-space
wavelength allows us to model them as thin “wires” that are described by an equivalent impedance
per unit length. Use of this approximation makes the computation of the backscattered field a
relatively straightforward matter. We computed the backscattered electric field from one and two
tunnels, for the case of the smooth interface between air and ground, for a range of parameters
describing the signal frequency, tunnel depths and radii, incidence angles, and soil properties.

The inclusion of rough-surface effects was accomplished using the random phase-screen ap-
proximation for the rough interface. This approximation, which is applicable to the case in which
the standard deviation of the surface roughness is small compared to the wavelength, allows us
to quantify the reduction in the coherent power density transmitted through, or reflected by, a
rough interface. We computed the backscattered field from a single tunnel for the case in which
the air-earth interface was rough.

Further numerical investigations into the dependences of the equivalent backscattering length
on the various parameters describing the problem can now easily be performed using the analytical
results presented herein. In addition, it may be useful to consider problems for which the ground
region comprises a topsoil and a subsoil layer, possibly with a rough interface between these two
soil layers.
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