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Abstract

A Study of Factorization and a Measurement of CP

Violation

Bryan Dahmes

We report on a study of the decay B̄0 → D∗+ωπ− with the BABAR detector

at the PEP-II B-factory at the Stanford Linear Accelerator Center. Based on a

sample of 232 million B0B̄0 decays collected between 1999 and 2004, we measure

the branching fraction B(B̄0 → D∗+ωπ−) = (2.88±0.21(stat.)±0.31(syst.))×10−3.

We study the invariant mass spectrum of the ωπ− system in this decay. This

spectrum is in good agreement with expectations based on factorization and the

measured spectrum in τ− → ωπ−ντ . We also measure the polarization of the D∗+

as a function of the ωπ− mass. In the mass region 1.1 to 1.9 GeV we measure the

fraction of longitudinal polarization of theD∗+ to be ΓL/Γ = 0.654±0.042(stat.)±

0.016(syst.). This is in agreement with the expectations from heavy-quark effective

theory and factorization assuming that the decay proceeds as B̄0 → D∗+ρ(1450)−,

ρ(1450)− → ωπ−.

Furthermore, we present the results on the time-dependent CP asymmetry in

neutral B meson decays to the CP eigenstate J/ψKL. The measurements use a

data sample of about 88 million Υ(4S) → BB̄ decays collected between 1999 and

ix



2002 with the BABAR detector. We study events in which one neutral B meson is

fully reconstructed in the J/ψKL final state and the other B meson is determined

to be either a B0 or a B̄0 from its decay products. The amplitude of the CP

asymmetry, which in the Standard Model is proportional to sin 2β, is derived

from the decay-time distributions in such events. We measure sin 2β = 0.723 ±

0.158(stat.)±0.086(syst.), which is consistent with Standard Model expectations.

Professor C. Campagnari

Dissertation Committee Chair
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Chapter 1

Introduction to the Standard
Model

Our understanding of particle physics, obtained from several decades of re-

search, has been collected into what is commonly referred to as The Standard

Model of particle physics. Up to this point, the Standard Model has been very suc-

cessful in describing the behavior of matter in our universe. The electromagnetic

and weak interactions of matter have been satisfactorily described by Glashow,

Salam, and Weinberg [1], and the origin of mass can be explained by the Higgs

mechanism [2]. Quantum Chromodynamics (QCD) summarizes the strong inter-

actions between quarks. Only gravity escapes understanding within the context

of this model. Standard Model predictions have repeatedly been verified by ex-

perimental data without any significant inconsistencies.

Although extensive in its treatment of matter, the Standard Model is not

without its shortcomings. For example, there are several parameters that are not
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Chapter 1. Introduction to the Standard Model

predicted by the Standard Model and must therefore be determined by experi-

ment. They include

• The masses of the six quarks (u, d, c, s, t, b) and three leptons (e, µ, τ). Neu-

trino masses, recently determined to be non-zero [3], must also be deter-

mined by experiment.

• The coupling strengths of the strong and electroweak interactions.

• The parameters associated with the Higgs mechanism.

• The four parameters of the CKM matrix (which will be discussed more fully

in Section 6). There are also four parameters needed to describe the neutrino

mixing matrix.

There are also several features of the Standard Model that are currently unex-

plained. We list some of these questions below:

• Why are there only three quark generations, and why is there such a large

variation in the quark and lepton masses?

• Why does the weak interaction prefer left-handed particles?

• The CP violation seen in the interaction of quarks is not enough to ex-

plain the dominance of matter in the universe [4]. What accounts for this

discrepancy?

2
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• What is the nature of neutrinos? Are they majorana particles?

In addition, it is likely that physics at the next energy scale (beyond 1 TeV) will

produce new results that are not consistent with our current understanding. Par-

ticle masses originate due to interactions with the Higgs field, but the realization

of this field in Nature is not understood. The Standard Model prediction of a sin-

gle scalar Higgs boson is unsatisfying, as it introduces the need to adjust model

parameters precisely in order to agree with observations. Without any mecha-

nism for this fine-tuning, several questions are left unanswered. Consequently, it

is possible that the Higgs boson(s), when (and if) found, will not coincide with

the Standard Model.

Existing data suggest that the Standard Model accurately describes physical

phenomena observable today, and yet we anticipate there will be a breakdown of

our understanding in the near future. As a result, there are two primary tasks to

accomplish:

1. Precision tests of Standard Model predictions. If the Standard Model is

incomplete, at some point physical data will disagree with expectations.

2. Improve the predictive power of the Standard Model. By increasing theo-

retical understanding of physical processes, comparisons with experimental

data will be more meaningful.

3
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In this thesis, I will address each of these tasks with two separate analyses. In

Chapters 2-3 and 5, I will summarize my study of B̄0→ D∗+ωπ− decay. This

study provides a good laboratory to test factorization in B meson decay. In

Chapters 6-8, I study B0 → J/ψ KL decay in order to obtain the CP Violating

parameter sin 2β. Each of these analyses were performed on data obtained from

the BABAR detector located at the Stanford Linear Accelerator Center. I briefly

describe this experiment, and the BABAR detector, in Chapter 4.

1.1 The Electroweak Interaction

The theory of the electroweak interaction merges the electromagnetic and weak

forces on matter. This feat is made possible by the introduction of massive force

carriers, W± and Z0, for the weak force in the same fashion that the photon me-

diates the electromagnetic interaction. In this sense, the coupling strength of the

weak interaction is similar to the electromagnetic interaction, but its effectiveness

is reduced at low energies (E � mW,Z) because of the large mass of the W± and

Z bosons.

The existence of the charged W boson allows flavor-changing currents within

the weak interaction. This behavior is responsible for nuclear β decay, in which

a neutron (n = udd) decays into a proton (p = uud) when d → uW ∗, followed

4



Chapter 1. Introduction to the Standard Model

by W ∗ → e−ν̄e. The long lifetime of the neutron (τn ∼ 15 minutes) is due in

part to the energy scale of the interaction: as mn −mp �MW , the interaction is

suppressed.

The weak interaction is also responsible for the (relatively) long lifetimes for

other particles. If we consider the lightest meson, the pion, we see that the lifetime

of the charged π± is ∼ 10−8 seconds, while π0 → γγ in about 10−16 seconds.

While the neutral pion may decay electromagnetically to two photons, in order to

conserve charge the charged pion must decay weakly.

One of the interesting aspects of the weak force is that it acts on a mixture

of quark states. As a result, as long as the process is kinematically allowed, an

up-type quark may interact with any down-type quark. At BABAR, this means

that while the decay of B mesons proceed primarily through b→ cW ∗, b→ uW ∗

transitions also occur (at less than 1% of the b → cW ∗ rate). As mt � mb,

the (favored) weak interaction between b and t quarks can only occur in off-shell

(virtual) loop processes, such as b→ t∗ → s. The strength of these transitions are

described by the CKM matrix in the Standard Model, which will be discussed in

Section 6.2.
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1.2 The Strong Interaction

Quantum Chromodynamics (QCD), which describes the interactions between

quarks, is a local gauge theory whose formulation was motivated by the success of

Quantum Electrodynamics (QED). Before the discovery of quarks, it was known

that there must exist some “strong” force that is capable of binding protons and

neutrons within the nucleus of an atom. As it became evident that the supposedly

fundamental nucleons were composite particles made up of quarks, the forces

governing quarks needed to be understood.

Quarks have an electric charge, and quarks can also interact weakly with other

quarks. In this sense, they are similar to more familiar particles, such as the

electron. However, unlike the electron, quarks possess an additional charge, known

as color, which subjects them to the effects of the strong force.

The strong force was only “discovered” recently due to the following reasons:

• All leptons are colorless and are therefore “blind” to the effects of the strong

interaction.

• Hadrons, which are formed from either a quark-antiquark pair (qq̄′) or a

quark/antiquark triplet (qq′q′′ or q̄q̄′q̄′′), are colorless objects.

• Ignoring top, strong interactions between quarks keep them confined within

hadrons [5].
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As quarks are never found in a “free” state, it was difficult to predict their behavior

before they were observed.

Quarks were first discovered in scattering experiments at SLAC [6], This work

led to the realization that the proton and neutron are composed of three quarks:

p = uud and n = udd,

where the u (up) quark has electric charge +2
3
e, and the d (down) quark has

charge −1
3
e, where e is the magnitude of the electron charge. Further research led

to the discovery of four more quarks. The results are summarized in Figure 1.1.

mtop = 174.3 ± 5.1 GeV

mbottom = 4.6 to 5.1 GeV

mcharm = 1.15 to 1.35 GeV

mstrange = 80 to 130 MeV

mup = 1.5 to 4 MeV

mdown = 4 to 8 MeV

(shown at 10× mass scale)

(shown at 10× mass scale)

Charge 2
3
e

Charge −1
3
e

Figure 1.1: The quarks of the Standard Model, where the relative sizes shown
indicate the relative mass of each quark. The up and down quarks are shown at
10× scale.

All hadrons are composed of some combination of quarks and anti-quarks. In

this thesis, I will study some of the properties of the B0 meson (b̄d), but this work

7



Chapter 1. Introduction to the Standard Model

also involves charm (D(∗) = cd̄ or cū, J/ψ = cc̄), strange (K = sū or sd̄), or light

(π and ω, composed of u and d and their antiparticles) mesons.

By observing the production rate of e+e− → hadrons, we concluded that the

color charge is a triplet charge. As a result, we refer to the color charge of quarks as

either red, green, or blue. Colored quarks combine to form color-neutral baryons

(such as p, n, Λ, etc.); mesons are formed from a color/anti-color combination of

a quark and an anti-quark (such as a blue u + anti-blue d̄ = π+).

Within a hadron, complicated strong interactions are taking place between

quarks. These interactions are responsible for holding the hadron together. Within

the proton, the two up quarks (both with charge +2
3
e) would be electromagneti-

cally repelled from each other if not for the strong interaction between them. The

force due to the color charge of the quarks overrides the electromagnetic force and

keeps the proton stable.

1.2.1 Strong force computations

Although we know the strong interaction plays a vital role in the natural world,

our ability to understand this force is currently limited. The tremendous success

of QED, which accurately describes electromagnetic interactions, led to hopes that

a similar model could be used to parametrize the strong interaction.
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In QED, electromagnetic interactions arise as the result of an exchange of

(virtual) photons between charged objects. As the photon is massless, the range

of the electromagnetic force is infinite. The coupling strength of the photon to

charges is small compared to unity, α ∼ 1/137. Accurate theoretical predictions

of electromagnetic interactions can be calculated perturbatively by expanding the

calculations in powers of the coupling constant.

As an example of the success of this method, consider the anomalous magnetic

moment of the electron. According to the Dirac equation, the magnetic moment

of the electron is given by

µ = −g e

2m
S (1.1)

where e and m represent the charge and mass of the electron, respectively. The

spin of the electron is described by S. The Dirac equation predicts g = 2 for

a fundamental particle. Experimentally, the value of g exceeds two by a small

amount, and it turns out that this difference can be perturbatively accounted for

in QED. Expanding in powers of the coupling strength α, we find

g − 2

2
=

1

2

(α
π

)
− 0.32848

(α
π

)2

+ 1.19
(α
π

)3

+ · · ·

= (11596524 ± 4) × 10−10,
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up to O(α3) [7]. This prediction is in excellent agreement with the experimental

value of (11596521.9 ± 0.04) × 10−10 [8]. By exploiting the strength of the elec-

tromagnetic coupling, QED predictions can be tested to extraordinary accuracy.

Our natural aim is now to apply this approach to strong interactions in the

hopes that this method will prove successful when dealing with colored particles.

In QCD, the photon is replaced by a collection of messenger particles known as

gluons. These gluons are massless, like the photon. However, while the photon

is electrically neutral (and therefore cannot carry charge), the gluons are colored

objects. A natural consequence of this trait is that gluons interact with each

other. As our goal was to perturbatively expand QCD calculations in powers of

the coupling strength, the self-interacting gluons present an interesting twist with

respect to our work in QED.

Serious problems develop when we consider the coupling strength of the strong

interaction, αs. In QED, the small size of α allowed electromagnetic interactions

to be calculated perturbatively. In the strong interaction, the coupling strength

is often comparable to unity, as can be seen in Figure 1.2. At high energies, when

the quark is essentially free, αs is small compared to unity, and QCD calculations

can proceed perturbatively. However, at low energies, when quarks are bound

within hadrons, αs is large. This makes perturbative calculations impossible, as

higher order terms would actually dominate over the simplest ones.

10
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0

0.1

0.2

0.3

1 10 10
2

µ GeV

α s
(µ

)

Figure 1.2: Summary of the values of αS as a function of measurement energy.
Figure taken from [8].

As a result, our hopes to exploit the success of QED in order to develop

and manipulate a theory of the strong interaction are left unfulfilled. Although

QCD allows us to understand the nature of the strong interaction, it is difficult

to accurately predict the behavior of quarks with this theory, especially at low

energies. Significant progress in this area has been made using lattice QCD [9],

but we still hope to discover ways to reasonably simplify QCD interactions in

order to gain insight into strong phenomena.
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Chapter 2

Weak decays of the B meson

Theoretical calculations involving the strong interaction are naturally quite

complicated. Perturbative calculations of QCD are not useful at low energies

when quarks are bound within hadrons. As a result, it is advantageous to consider

interactions when strong force effects can be minimized.

2.1 Leptonic Decay

All hadrons, with the exception of the proton, are observed to have finite

lifetimes. By studying the decay of various hadrons, we can gain insight into the

interactions between quarks.

Let us first consider the simplest case of the leptonic decay of a meson, where

the initial state quarks annihilate in the decay and produce only leptons in the

final state. As a result, all the complications associated with strong interactions

are limited to the initial state.

12



Chapter 2. Weak decays of the B meson

u

d̄

W+

νµ

µ+

Figure 2.1: Sample leptonic decay π+ → µ+νµ.

Let us consider the specific case of π+ → µ+νµ decay, which is shown in

Figure 2.1. In this case, the pion (with momentum q) is comprised of a ud̄ pair

which eventually meet at a point. When this happens, these quarks annihilate

via a virtual W ∗, followed by W ∗ → µ+νµ. Because the µ and νµ have no color

charge, they do not interact strongly with each other or with the initial quarks.

This simplifies our calculation of the amplitude for this decay, as the matrix

element can be expressed as the product of hadronic and leptonic currents:

M =
G√
2
Vud〈0|Jµ|π+〉 · ū(p)γµ(1 − γ5)v(k), (2.1)

where p(k) is the 4-momentum of the µ(νµ), and q = p + k. G is the Fermi

coupling constant, and Vud is the relevant CKM element. As the π+ has no spin,

the only 4-vector that can be used to construct the current Jµ is the initial pion

13
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4-momentum (qµ). Consequently, we can express the hadronic current as

〈0|Jµ|π+〉 = −iqµf(q2) ≡ −iqµfπ, (2.2)

where f is a function of the Lorentz scalar q2. As q is the 4-momentum of the

pion, we have q2 = m2
π, and so f(m2

π) ≡ fπ is a constant.

At this point, we are able to calculate the leptonic decay rate of the pion. We

obtain

Γ(π+ → µ+νµ) =
G2

8π
f 2
π mπm

2
µ(1 −

(
mµ

mπ

)2

)2. (2.3)

In this fashion, our understanding of QCD processes may be tested by comparing

theoretical predictions of decay constants to experimental values.

It is also possible to remove the effects of the strong interaction entirely in

some calculations. If we consider the decay π+ → e+νe, we expect

Γ(π+ → µ+νµ)

Γ(π+ → e+νe)
=

(
me

mµ

)2 (
m2
π −m2

e

m2
π −m2

µ

)2

= 1.2 × 10−4. (2.4)

This value is in good agreement with experimental results.

2.1.1 Hadronic τ decay

We may extend our treatment of leptonic decay to include hadronic decays of

the µ and τ leptons. In this case, the τ → W ∗ντ transition is understood, and

the hadronization of the W ∗ → qq̄′ system can be parametrized as above. If we

14
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τ− ντ

W −

d

ū

Figure 2.2: Sample hadronic decay τ− → π−ντ .

consider the decay τ+ → π+ντ (see Figure 2.2), we obtain

Γ(τ+ → π+ντ ) =
G2

16π
f 2
πV

2
udm

3
τ

(
1 − m2

π

m2
τ

)2

. (2.5)

We may also generalize our results, by considering the decay τ → Xντ , where X

is some hadronic system. In this case, we find [10]

dΓ

dm2
X

=
G2|Vqq′|2
32π2m3

τ

(m2
τ −m2

X)2(m2
τ + 2m2

X)vX(m2
X), (2.6)

where Vqq′ describes the relevant CKM element. The function vX characterizes

the physics involved in the formation of the hadronic system X, and must be

determined from experiment. The CLEO collaboration has measured vX(m2
X) in

the case where X is a system of two to four pions [11, 12].

In each of these cases, the effects of the strong interaction are limited to func-

tions which depend on the square of invariant mass of the hadronic system (recall

15
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d̄

b c

W −

µ−

ν̄µ

Figure 2.3: Sample semileptonic decay B̄0 → D∗+µ−ν̄µ.

that fπ = f(m2
π)). These functions can be determined from experiment, and can

be used to verify QCD predictions obtained from various theoretical models.

2.2 Semileptonic Decay

In the previous Section, we discussed the leptonic decay of mesons, where the

complications due to the strong interaction are absent in the final state. This

simplifies the theoretical treatment of these decays, allowing for meaningful cal-

culations to be performed for leptonic decays. In this Section, we will discuss

decays that include both leptons and hadrons in the final state. Semileptonic

decays, as shown in Figure 2.3, allow us to determine the effects of the strong

interaction on the weak decay of quarks.
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As leptons are not affected by color forces, the effects of the strong interaction

are limited to the hadronic current. As a result, the complicated QCD interactions

between initial and final state quarks can be parametrized in terms of form factors.

These form factors are functions of q2, the square of the mass of the virtual W .

By reducing the treatment of the hadronic current to a number of form factors

which depend on q2, theoretical estimates of semileptonic processes become more

robust.

Another simplification of semileptonic decays occurs if the process involves

heavy quarks. For b→ c�ν� decays, reliable predictions can be made using Heavy

Quark Effective Theory (HQET). This theory explores the behavior of QCD in

the limit of infinite quark mass, as b and c quark masses are large compared to

the light quarks u, d, and s. In the infinite mass limit, the heavy quark is isolated

from the treatment of the light quarks in a hadronic system. This allows b → c

transitions, such as B → D(∗)X decay, to be expressed in terms of a universal form

factor ξ(v · v′), known as the Isgur-Wise function [13]. This form factor depends

on the four-velocities (not momenta, as the mass of the heavy quarks is dropped)

of the initial (v) and final-state (v′) heavy quarks. At present, this function must

be determined experimentally, such as through a measurement of the B → D∗�ν�

rate as a function of q2.
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Corrections to HQET due to non-infinite quark masses are typically small for

b → c transitions. In Figure 2.4 we present the extreme kinematic conditions for

the semileptonic decay of a B meson. At maximum q2, the D(∗) is produced at rest

in the frame of the parent B meson, and the mass of the �ν� system is greatest.

In this situation, the B → D(∗) form factors are largest. If q2 is minimized, the

hadronic system containing the c quark has its largest possible momentum in the

B rest frame. In this case, the B → D(∗) rate is expected to be minimized. From

Table 2.1, we see that the change in the recoil energy of the hadronic system is

small. As the assumptions of HQET mimic the actual physics in this case, HQET

provides a good theoretical framework for reliable calculations of the hadronic

system in semileptonic B decay.

q2 (GeV2) γD∗

q2
min ≈ 0 1.50
m2
π 1.50

m2
K 1.49

m2
D 1.34

m2
D∗ 1.31

q2
max ≈ 10.7 1.00

Table 2.1: Relativistic boost factor γ = (M2
B + m2

D∗ − q2)/(2MB ·mD∗) of the
D∗, computed in the B rest frame, for B → D∗�ν̄� transitions as a function of q2.
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(a)

(b) q2 = q2
max

(c) q2 = q2
min

b

c

c
q̄

q̄

q̄

�−

�−
ν̄�

ν̄�

Figure 2.4: Kinematic extremes for b → c�−ν̄� decay (Figure taken from Ref-
erence [14]). In (a), the b quark in the (bq̄) meson decays in its rest frame. In
(b), the c quark is produced at rest relative to the parent b, and the �ν̄� pair are
emitted back to back. This maximizes q2. In (c), which depicts the minimum q2

configuration, the c quark is produced with maximum momentum, and �ν̄� are
nearly collinear in the b rest frame.
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2.3 Hadronic Decay

If we consider the decay of the B meson, the strong interactions between quarks

must be handled with some care. We have seen that in the case of leptonic decay,

such as B+ → τντ , QCD effects can be summarized by a decay constant. In the

case of semileptonic decays of the B meson, such as B0 → X�+ν�, complicated

effects from strong interactions can be parameterized by form factors, which are

functions of the square of the mass of the �ν� system. Assuming the hadronic

system X contains a heavy c quark further simplifies calculations, paving the way

for meaningful studies of these decays. However, the vast majority of B decays

proceed without producing a lepton in the final state. We must boldly confront

the complexities of the strong interaction in these decays in order to gain the most

insight out of B physics.

Hadronic (or non-leptonic) decays of the B still involve the weak decay of the

b quark (b→ cW ∗), but in this case the virtual W creates a quark-antiquark pair.

Consequently, the final state of these B decays is composed entirely of quarks. In

this case, all of the final state particles interact strongly with each other, and it is

very difficult to isolate and understand QCD effects. See, for example, Figure 2.5.
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d̄

b c

W−

d

ū

Figure 2.5: Sample hadronic decay B̄0 → D+π−. Note that in this process, all
final state quarks can interact with each other.

As it is difficult to make meaningful theoretical predictions which involve the

strong interaction, it might be tempting to ignore these processes. It is therefore

useful to include some benefits associated with hadronic decay processes. First,

hadronic decays can be fully reconstructed with relative ease, as all daughter

particles leave a detectable signature. In the previous classes of B decay, the

neutrino escapes detection, and so part of the event is missing in reconstruction.

Although this is not a fatal problem, the ability to reconstruct a B meson can

increase the precision of a measurement. Second, hadronic decays account for

roughly three-fourths of all B meson decays. The sum total of hadronic decays

are a combination of multiple distinctive processes. This provides a laboratory

to test many interesting physics processes (one such example, CP violation, will

be discussed later). One other obvious reason is that our goal as physicists is to

21



Chapter 2. Weak decays of the B meson

test the Standard Model of particle physics. The effects of non-Standard Model

physical processes might be missed if we do not have a good understanding of the

strong interaction. For this reason, we should be thankful that there are many

hadronic B decays!

Although there are several advantages to studying hadronic decays, there are

some significant complications that must be addressed. In the previous Sections,

we were able to break the decay of the B into parts: a leptonic current and a

hadronic process that could be described using form factors or decay constants.

For hadronic decays, the quarks produced from the virtual W interact with each

other, but they also “see” the strong charge of the remaining quarks from B

decay. If any meaningful conclusions can be drawn from these decays, we need to

circumvent these complications or find a way to deal with them.

In this thesis, I study two hadronic decay modes of the B0 meson, B̄0→ D∗+ωπ−

and B0 → J/ψ KL. My analysis of B̄0→ D∗+ωπ− decay provides a good labo-

ratory to test the factorization hypothesis, which simplifies the complexities of

QCD interactions. These conclusions help strengthen a model that is used to

make predictions involving many different hadronic decays. Following this work,

I will focus on the study of CP violation in the B0 → J/ψ KL system, which

manages to bypass many of the complications of the strong interaction.
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Factorization

Within the framework of the Standard Model, hadronic weak decays of the B

meson are dominated by the b → cW ∗ transition, where quarks are produced in

the decay of the virtual W (see Figure 2.5). QCD interactions between final state

quarks can be separated into two categories:

1. Short distance effects due to hard (high-momentum) gluon exchange be-

tween quarks. These effects can be accounted for, down to a cutoff scale µ

typical for the interaction, using perturbative methods and renormalization

group techniques [15].

2. Long range effects due to soft gluon exchange below the scale µ. These

exchanges account for the binding of quarks into hadrons.
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We assume that the two scales can be separated [16]. This leads to the effective

Hamiltonian [17] (where we neglect penguin contributions)

Heff(b→ cūd) =
G√
2
VcbV

∗
ud

[
c1(µ)(d̄u)(c̄b) + c2(µ)(c̄u)(d̄b)

]
(3.1)

for b → cW ∗, with W ∗ → ūd, where the Wilson coefficients c1(µ) and c2(µ)

account for the hard-gluon effects in the interaction down to a scale µ = mb, and

(ūd) represents the V −A color-singlet current ūγν(1−γ5)d. The long range QCD

effects, described by form factors and decay constants, need to be related in some

way to the four-quark operators (d̄u)(c̄b) and (c̄u)(d̄b).

It has been proposed that the long range QCD effects can be factorized for

selected hadronic decays, which dramatically simplifies theoretical calculations.

In this Chapter, I will present an overview of this hypothesis.

3.1 Näıve Factorization

The motivation for factorization was originally presented by Bjorken [18]. As

an example, let us consider B̄0 → D+π− decay. The ūd pair which forms the π−

is produced as a color singlet state from the virtual W . In the rest frame of the

parent B̄0, the ūd → π− system is moving rapidly with respect to the remaining

cd̄ system (the d̄ is the spectator antiquark from the B̄0). If the motion of the

ūd pair is “fast enough”, these quarks could escape the interaction region without
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influencing the hadronic system formed by the cd̄ pair. Although this cannot be a

valid description of the decay, as it ignores long range QCD interactions between

quarks, it may be close enough to allow theoretical predictions to be reasonably

accurate.

In the case of B̄0 → D+π−, which proceeds primarily through the color-favored

spectator diagram (Figure 2.5), the decay amplitude can be factorized into a

product of two hadronic currents [19]:

A(B0 → D+π−) =
G√
2
VcbV

∗
ud · a1〈π−|(d̄u)|0〉〈D+|(c̄b)|B̄0〉. (3.2)

The B → D matrix element is identical to that encountered in semileptonic decay,

and therefore this component can be expressed in terms of the B → D form factor.

The creation of a pion from vacuum can be described in terms of the pion decay

constant fπ (see Equation 2.2). The coefficient a1 describes the physics necessary

to make Equation 3.2 exact. It is worth noting that in the absence of QCD effects,

a1 = 1. QCD corrections modify the value of a1, which we will discuss below.

Let us take a moment to examine the behavior of the W ∗ → ūd→ π− transi-

tion. In the rest frame of the parent B, the fast moving ūd pair, created at a point

from the virtual W decay, is composed of quarks moving with nearly equal veloc-

ities. These quarks will hadronize in the typical hadronization time τh ∼ 1 fm/c,

multiplied by the boost factor γ ∼ 16.6. As a result, the pion hadronization oc-

curs at a distance far removed from the remaining quarks. Near the interaction
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region, the ūd pair behaves as a colorless point-like particle, and therefore should

minimally interact with the cd̄ system. In this case the assumptions made by fac-

torization are very reasonable, and thus we would expect the B0 → D+π− decay

process to be dominated by factorizable contributions.

If we examine the effective Hamiltonian in Equation 3.1, we can separate weak

hadronic B decays into three classes [20]:

1. Class I decays dominated by an external spectator Feynman diagram. These

decays, such as B0 → D+π−, are color favored. In this case, the QCD

coefficient a1 can be expressed as

a1 = c1(µf) + ζc2(µf) (3.3)

where ζ ∼ 1/Nc (Nc is the number of quark colors), and µf is the factor-

ization point. At µf ∼ mb, the calculated values for the Wilson coefficients

are c1(mb) = 1.12 and c2(mb) = −0.29 [15], so we expect a1 ≈ c1 for these

decays.

2. Class II decays dominated by an internal spectator diagram. These decays

are color suppressed, and the spectator antiquark hadronizes with a quark

produced from virtual W decay. In decays such as B̄0 → D0π0, the relevant

QCD contribution is given by

a2 = c2(µf) + ζc1(µf). (3.4)
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The suppression of c1 relative to c2 in this case makes factorization highly

dependent on the value of µf and ζ .

3. Class III decays are the result of an interference between a1 and a2 ampli-

tudes, such as in B− → D0K− decay.

We see that the näıve factorization model only applies in the case of Class I decays,

as it requires quarks produced from the virtual W to be ignored by the remaining

quarks. In Class II or III decays, this assumption does not hold. In these cases,

factorization may still be on relatively stable theoretical footing provided the decay

products of the B are sufficiently energetic. In any case, the simple motivation for

factorization is expected to fail as the mass of the virtual W system increases. If

we can no longer assume that the quarks from theW decay are fast moving relative

to the remaining decay products, we would expect significant QCD interactions

to be present.

3.1.1 Tests of näıve factorization

Obviously, if we are meant to take the factorization hypothesis seriously, some

useful results must be obtained from experiment. In this Section, we will consider

some tests of the näıve factorization hypothesis.
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Our näıve factorization model is best suited for interactions with high momen-

tum transfer (see Figure 2.4(c), and replace the �ν� pair with qq̄′) based on the

idea of color transparency. As there is no clear boundary for this motivation, we

can test predictions based on factorization as the mass of the virtual W decay

products increases. One such test uses the ratios of various hadronic B decays.

If we return to the equation for the decay amplitude for B0 → D+π−, where

we have assumed that factorization holds (Equation 3.2), we find that

A(B0(p) → D+(p′)π−(q)) =
G√
2
VcbV

∗
ud · a1〈π−(q)|(d̄u)|0〉〈D+(p′)|(c̄b)|B̄0(p)〉

=
G√
2
VcbV

∗
ud · a1(−ifπqµ)

×(F1(q
2)

[
(p+ p′)µ − m2

B −m2
D

q2
qµ
]

+F0(q
2)
m2
B −m2

D

q2
qµ), (3.5)

where the four-momentum of the pion q = p+p′. When we evaluate Equation 3.5

further, we find that the term proportional to F1(q
2) vanishes:

A(B0(p) → D+(p′)π−(q)) = −i G√
2
VcbV

∗
uda1fπ(m

2
B −m2

D)F0(m
2
π). (3.6)

Semileptonic B decays give almost no information about the form factor F0(q
2),

but fortunately we may determine F0(q
2) in the limit that the mass of the b and

c quarks are infinite. We may express the form factor F0 in terms of the Isgur-

Wise function ξ(v · v′) using HQET [21]. This method may be extended to other

hadronic B decays, as the traditional form factors are all related to the Isgur-Wise
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function in the infinite quark mass limit. As a result, by taking the ratio of various

hadronic B decays, the QCD parameter a1 in Equation 3.6 cancels and we are

able to make several predictions.

Some predictions for Class I decays using the model discussed in Reference [22]

include:

BF (B̄0 → D+π−)

BF (B̄0 → D∗+π−)
= 1.04 [1.00 ± 0.12]

BF (B̄0 → D+ρ−)

BF (B̄0 → D∗+ρ−)
= 0.88 [1.13 ± 0.24],

where the experimental values [8] are given in parentheses. Similarly, we may

make predictions for decays where the meson produced by the virtual W differs

in the two decay modes:

BF (B̄0 → D∗+π−)

BF (B̄0 → D∗+ρ−)
= 0.88

(
fπ
fρ

)2

= 0.34 [0.40 ± 0.07],

where the predictions are again in agreement with experimental results. In this

case, we have taken the decay constants of the charged π and ρ mesons

fπ = 130.7 ± 0.4 MeV and fρ = 210 ± 1 MeV,
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where fπ is obtained from π → µ+νµ decay, and fρ is calculated from τ− → ρ−ντ

decay [8]. Extending our treatment further, we find

BF (B̄0 → D∗+a−1 )

BF (B̄0 → D∗+ρ−)
= 1.20

(
fa1
fρ

)2

BF (B̄0 → D+D−
s )

BF (B̄0 → D+π−)
= 1.02

(
fDs
fπ

)2

.

If we combine these predictions with the experimentally-determined branching

fractions found in Reference [8], we find

fa1 = (1.26 ± 0.19) · fρ = 260 ± 40 MeV

fDs = (1.69 ± 0.33) · fπ = 220 ± 40 MeV,

which agree with experimental results. This result is perhaps a bit of a surprise,

as the Ds can no longer be considered “light” (it contains a heavy c quark), and

so the assumption of color transparency breaks down. Nevertheless, we see that

these predictions based on the näıve factorization model have been verified by

experiment at the 10-20% level.

3.1.2 Factorization predictions for D∗ polarization

For B → D∗XV decay, where XV is a vector meson, the factorization hypothe-

sis implies the vector meson should be equivalent to the �ν pair from semileptonic
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decay. Consequently, the polarization of the D∗ produced in hadronic B → D∗XV

decay should be equal to the D∗ polarization in semileptonic decay at q2 = m2
XV

.

We can therefore use a precise measurement of the D∗ polarization in hadronic

B → D∗XV decays to test the factorization hypothesis [23].

The polarization of the D∗ is a measure of the fraction of longitudinally po-

larized D∗ mesons produced in B meson decay,

ΓL
Γ

=
|H0|2

|H0|2 + |H+|2 + |H−|2 , (3.7)

where H0,±(q2) represent the amplitudes for helicity 0, ±1. These amplitudes can

be expressed in terms of the B → D∗ form factors, and evaluated in the limit

of infinite b quark mass using HQET. Longitudinal polarization is expected to

dominate at low q2 as the high-momentumD∗ is recoiling against a nearly collinear

�ν system. At maximal q2 the D∗ is produced at rest, making all polarization

states equally likely.

In Figure 3.1 we present D∗ polarization measurements for various B0 →

D∗XV decays made by CLEO [24, 25], Belle [26] and BABAR [27], and compare

them to predictions based on factorization and HQET, extrapolated from B̄0 →

D∗+�−ν̄ form factor results [28]. We can see that, even as q2 increases, there is

good experimental agreement with theoretical expectations.
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Figure 3.1: The fraction of longitudinal polarization as a function of m2
X ,

where X is a vector meson. We show measurements (indicated by open cir-
cles) of B̄0 → D∗+ρ− [24], B̄0 → D∗+ρ′−(1450) [25], B̄0 → D∗+D∗− [26], and
B̄0 → D∗+D∗−

s [27]. The shaded region represents the prediction (± one standard
deviation) based on factorization and HQET, extrapolated from the semileptonic
B̄0 → D∗+�−ν̄ form factor results [28].
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3.2 Test of Factorization using B̄0→ D∗+ωπ−

The factorization model is a theoretical “shortcut” that provides a means to

determine the behavior of energetic weak hadronic decays of B and D mesons.

This approach is reasonably successful for Class I decays of the B meson, as

discussed in Sections 3.1.1 and 3.1.2. In these tests, we see that the primary

motivation of color transparency seems to work very well in two-body B → D(∗)X

decays, where X is a light meson.

However, it is known that factorization cannot truthfully describe strong in-

teraction effects in weak decay because it ignores the long range interactions be-

tween quarks due to the exchange of low-momentum (soft) gluons. If we include

factorization-violating terms in the effective Hamiltonian, we may rewrite Equa-

tion 3.2 in the following way:

〈Dπ|Heff |B〉 =
G√
2
VcbV

∗
ud(c1(mb) + ζc2(mb))

× 〈π−|d̄γµ(1 − γ5)u|0〉〈D+|c̄γµ(1 − γ5)b|B̄0〉 + · · · , (3.8)

where ζ ∼ 1/3. The B → D(∗) matrix element is determined from semileptonic

decay and the formation of the pion can be described using hadronic τ decay, as

mentioned in Section 2.1.1:

dΓ(τ → πντ )

dm2
X

=
G2|Vud|2
32π2m3

τ

(m2
τ −m2

π)
2(m2

τ + 2m2
π)vπ(m

2
π). (3.9)
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In Equation 3.8, the Wilson coefficients c1 and c2 are evaluated at the factorization

scale µ = mb. In order for factorization to work as a viable theory, the scale

dependence of the effective Hamiltonian must be eliminated. In order to cancel

this scale dependence, we need to introduce “non-factorizable” contributions to

the decay amplitude, which are represented by the ellipsis in Equation 3.8.

It is important to estimate (or even better, to explicitly determine) the ef-

fect of contributions beyond the näıve factorization approach. The experimental

tests listed in Sections 3.1.1 and 3.1.2 are designed to search for a breakdown of

factorization at different values of q2 = m2
X by evaluating several two-body B

decays.

If we examine hadronic τ decay in order to determine the behavior of the

W ∗ → X system, the vX(m2
X) term in Equation 3.9 (where X = π) holds even

if X is composed of more than one final state particle. As a result, we may take

X to be a multi-body final state. The benefit of this approach is that the fac-

torization hypothesis can be tested over a broad q2 range, rather than at discrete

points determined by meson masses. In this case, the factorization prediction

becomes [29]

dΓ(B → D(∗)X)/dm2
X

dΓ(B → D(∗)�ν̄�)/dm2
X

= 3π (c1(mb) + ζc2(mb)) vX(m2
X)(1 + δNF ) (3.10)
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for B → D(∗)X decays. Non-factorizable contributions are contained in the pa-

rameter δNF . Before proceeding further, it is useful to spend some time discussing

the expected behavior of δNF .

3.2.1 δNF in the 1/Nc expansion

As factorization ignores the color of the quarks produced by the virtual W , it

is instructive to rewrite the Hamiltonian in a way that restores this dependence.

In this case, the QCD coefficients a1 and a2 for the decay amplitude from näıve

factorization are replaced as follows:

a1 → aeff1 =

(
c1(µ) +

c2(µ)

Nc

)
[1 + ε1(µ)] + c2(µ)ε8(µ)

a2 → aeff2 =

(
c2(µ) +

c1(µ)

Nc

)
[1 + ε1(µ)] + c1(µ)ε8(µ). (3.11)

The hadronic parameters εi(µ) parametrize the non-factorizable contributions to

the hadronic matrix elements. The subscript refers to the color structure of the

operators in the hadronic matrix elements. These functions depend on the par-

ticles involved, and hence their nature is process dependent. Without loss of

generality, we may define the εi(µ) functions such that the scale dependence of

aeffi is removed. As a result,

A(B̄ → D(∗)X) =
G√
2
VcbV

∗
ij · aeff1 〈X|(q̄iqj)|0〉〈D(∗)|(c̄b)|B̄〉. (3.12)
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becomes an exact expression for the amplitude of Class I B̄ → D(∗)+X decay,

where aeff1 must be determined from experiment.

In order to place factorization on a more stable theoretical foundation, it is

useful to determine the nature of the hadronic parameters εi(µ), and hence the

coefficients aeffi . One approach has been to expand the functions εi(µ) in powers

of 1/Nc, where Nc is the number of colors. Physically, Nc = 3, and so higher order

terms are not strongly suppressed, but it is useful to examine the behavior of the

factorization model when we set Nc → ∞.

If we consider the large-Nc limit in QCD [30], we discover that [31]

ε1 = O(1/N2
c ) and ε8 = O(1/Nc), (3.13)

independent of the scale µ where factorization is assumed to hold. As a result,

|ε1| contributions vanish, while terms that include ε8 can be more significant.

Similarly, we may determine the behavior of the Wilson coefficients at the

factorization scale. For µ = mb, we find

c1(mb) = 1 +O(1/N2
c ) and c2(mb) = O(1/Nc). (3.14)

To lowest order, this implies aeff1 ≈ 1 and aeff2 ≈ c2(mb) + ζc1(mb) in B decays,

where ζ ≡ 1/Nc+ ε8(mb). As ε8(mb) = O(1/Nc), in principle the value of ζ should

be considered as an unknown parameter. However, the success of factorization

for B → Dπ transitions implies that ζ ≈ 1/3, and it is believed that the process
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dependence of ζ is small: ∆ζ ∼ ∆E/mb, where ∆E is the difference in the energy

release in different B decay channels (and is smaller than 1 GeV for W ∗ → light

meson) [31].

At the lowest order in the 1/Nc expansion, the results are in good agreement

with näıve factorization, with a1 = c1 + c2/Nc replaced by aeff1 ≈ 1, and a2 =

c2 + c1/Nc replaced by aeff2 ≈ c2 + ζc1, with ζ ≈ 1/Nc. Higher order terms in the

1/Nc expansion account for corrections to näıve factorization. As the corrections

to factorization can be summarized by the variation in ζ for different B decays,

the 1/Nc expansion predicts that corrections to factorization should remain small

as the mass of the light meson system increases [31, 32].

3.2.2 δNF in perturbative QCD

In the previous Section, we saw that factorization is justified in the limit

of a large number of colors. Unfortunately, this approach oversimplifies QCD,

as Nc → ∞ is a far cry from Nc = 3 in the physical world. Additionally, as

factorization assumes that no gluons are exchanged below µ ∼ mb, final state

interactions are forbidden in the näıve framework.

It would be nice if factorization could be strengthened with more rigorous

treatment of hadronic B decay. In this fashion, we can take advantage of the

heavy mass of the b quark and treat the interaction perturbatively [33]. Let us
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Tij

ΦM

B
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Figure 3.2: Graphical representation of Equation 3.15. Figure taken from Ref-
erence [33].

consider the weak decay B → D(∗)X, where X is a “light” meson taken to have

mass near the QCD scale, ΛQCD � mb. At the lowest order in ΛQCD/mb, we may

express the transition matrix element of an operator Oi in the weak Hamiltonian

as follows:

〈D(∗)X|Oi|B̄〉 = ΣjFj(m
2
X)

∫ 1

0

duTij(u)ΦX(u), (3.15)

where Fj(m
2
X) denotes the B → D(∗) form factors, and ΦX(u) describes the behav-

ior of the quark-antiquark state forming the final-state X meson with momentum

fraction u. These quantities summarize the non-perturbative contributions to the

interaction, while the hard-scattering function Tij(u) can be calculated perturba-

tively. Equation 3.15 is represented graphically in Figure 3.2.
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Any hard gluon exchange is accompanied by one power of αs. The α0
s-order

contribution to Tij(u) is independent of u and as a result Equation 3.15 reproduces

näıve factorization at leading order. Corrections to factorization are introduced

through gluon interactions. Single-gluon exchange diagrams are shown in Fig-

ures 3.3 and 3.4. The diagrams in Figure 3.3 do not need to be calculated, as

they are already contained in the calculation of the B → D(∗) form factors and

the X decay constant. The diagrams in Figure 3.4 describe the “non-factorizable”

contributions to B → D(∗)X decay. These diagrams are contained in Tij(u) and

contribute at order αs. Each diagram in Figure 3.4 violates factorization if the glu-

ons exchanged are soft. Complicating matters further, we find that each diagram

is also infrared divergent. Fortunately, the divergences cancel in the sum of the

diagrams. This is seen as a technical manifestation of Bjorken’s argument for color

transparency [18]. Hard gluons that interact with the quarks formed from the vir-

tual W ∗ will affect the formation of the escaping meson. These “non-factorizable”

contributions depend on the involved mesons.

This cancellation of soft gluon effects is only possible if the quark-antiquark

pair is nearly collinear. If the quarks from the W ∗ are produced in a very asym-

metric configuration, where one of the quarks carries most of the momentum of

the X system, the argument for color transparency breaks down. The probability
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Figure 3.3: Single-gluon exchange diagrams that do not violate factorization.
The weak decay of the b quark is represented by the black circle. Figure taken
from Reference [33].

Figure 3.4: Lowest order factorization-violating diagrams. The weak decay of
the b quark is represented by the black circle. Figure taken from Reference [33].
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for a single X meson, such as a pion, to form in this manner is suppressed by

factor of roughly (ΛQCD/mb)
2.

We note that gluon exchange diagrams involving the spectator quark, which

contribute to the hard scattering term in Figure 3.2, will also violate factoriza-

tion. However, if the gluon exchanged is hard, the large momentum transfered to

the spectator quark is not consistent with the formation of the D(∗) meson. In

the event that the gluon is soft, the non-factorizable contributions to the decay

amplitude are suppressed by a factor of (ΛQCD/mb) relative to the factorizable

contribution.

The perturbative QCD approach reproduces factorization in the decay B →

D(∗)X in the event that the quark-antiquark system hadronizes into an energetic

X state. In this case, the quarks are tightly packed, and carry similar momenta. If

these conditions are not met, the perturbative justification for factorization breaks

down. Factorization-violating soft gluon exchanges between quarks become sig-

nificant if the X system is asymmetric. This effect is suppressed in the formation

of a light X meson, but as the mass of the X system (assumed to be of order

ΛQCD) becomes comparable to mb, non-factorizable contributions are expected

to increase. If the X system is no longer light relative to the b quark mass, the

quarks from the W ∗ will be produced in an asymmetric state. In this case, soft
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gluon effects are expected to become significant, and factorization will begin to

break down.

3.2.3 Probing δNF with B̄0→ D∗+ωπ− decay

In Equation 3.10 we introduced the parameter δNF , which describes all non-

factorizable contributions to B → D(∗)X decay. In Sections 3.2.1 and 3.2.2 we

found that the näıve factorization picture of weak B decays can be justified in

different ways:

• The perturbative QCD picture of factorization expands the B decay am-

plitude in powers of mX/mb ∼ ΛQCD/mb. As the b quark is heavy, non-

factorizable contributions are suppressed for a light X system. As the mass

of the X system increases, non-factorizable contributions to the decay am-

plitude become significant. For this reason, we expect corrections to factor-

ization to grow with mX/EX , where EX is the energy of the X system [29].

• Factorization in the large-Nc limit does not depend on the mass of the

escaping X system. Expanding the B decay amplitude about the number of

colors, we find that non-factorizable contributions are suppressed as we take

Nc → ∞. In this picture, we do not expect the accuracy of factorization

predictions to decrease as mX increases.
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Factorization has already been tested on a variety of two-body B → D(∗)X

decays. Some of these results have been accumulated in Sections 3.1.1 and 3.1.2.

We see that the current experimental data agrees with factorization predictions

at the 10-20% level.

Rather than testing factorization at discrete points in kinematic space, namely

at q2 = m2
π, m

2
ρ, etc., we can use Equation 3.10 to test factorization over a

broad kinematic range using a final state system X containing two or more light

hadrons [29]. If we can assure ourselves that the decay of the virtual W is en-

tirely responsible for the light meson system in the final state, then we can test

factorization over a broad kinematic range. From Equation 3.9, we see that the

differential decay rate for B → D∗(nπ) can be anticipated using τ decay. CLEO

has measured vX(m2
X) for two- to four-pion final states [11, 12]. As the ρ dom-

inates two-pion final states, it is useful to examine the three- or four-pion final

states, which are not dominated by a single narrow resonance, in order to test

factorization throughout the region accessible in τ decay.

By comparing results for B → D∗(nπ) decay to predictions derived from fac-

torization, we may be able to extract the nature of the non-factorizable correc-

tions. As mX/EX = 0.24 at mX = m3ππ0 and increases to 0.70 at mx = mτ , order

mX/EX corrections should change significantly over the region made available
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by τ decay. This would help determine the role that perturbative QCD plays in

factorization.

In this thesis, I will examine the decay mode B̄0→ D∗+ωπ−, as suggested by

Ligeti, Luke, and Wise [29]. These results will be compared to predictions using τ

decay data, and will therefore be able to test factorization up to mωπ = mτ . This

mode provides an excellent laboratory to test factorization:

• The X = ωπ final state is not dominated by any narrow resonance. Con-

sequently, there is no sharp falloff in the differential decay rate from mX =

mω +mπ through mX = mτ . This serves as a good probe of order mX/EX

corrections to factorization.

• B̄0→ D∗+ωπ− decay is not expected to have large non-factorizable back-

grounds. If factorization holds, this decay is expected to proceed as indi-

cated in the Feynman diagram in Figure 3.5. As the ω has no charge, the

pion must be a product of the virtual W decay. In order for the heavy ω

(mω = 782.6 MeV) to be produced along with the D∗, the D∗ω state must

originate from the decay of a higher mass charm state, CD∗ω → D∗ω, pro-

duced in B decay. We can estimate the B → CD∗ωπ decay rate by searching

for B → CD∗ω�ν� and assuming factorization. This decay has not been seen,

and the rate is expected to be small in most models [34]. Consequently,
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we expect the decay to proceed as indicated in Figure 3.5 with minimal

contamination from non-factorizable diagrams.

• The presence of the ω simplifies experimental complications associated with

the reconstruction of B̄0→ D∗+ωπ− decay. Many charged particles and pho-

ton signatures must be successfully reconstructed within the BABAR detec-

tor [35] in order to obtain a clear picture of the event. The large multiplicity

associated with this decay raises the likelihood that random combinations

of particles may be mistaken for a true signal (B̄0→ D∗+ωπ−) event. This

possibility is reduced if we require a π+π−π0 combination to be consistent

with the experimentally-determined ω mass.

• The branching fraction for B̄0→ D∗+ωπ− is about 0.3%, which is quite

large for B meson decay. The large number of τ → ωπντ decays available

result in a precise factorization prediction (see Figure 3.6), and so the ability

to reconstruct a large number of B̄0→ D∗+ωπ− decays will increase the

precision of a test of factorization.

The B̄0→ D∗+ωπ− decay was first studied by the CLEO collaboration us-

ing 9.7 million BB̄ pairs produced at the Υ(4S) resonance at the Cornell Elec-

tron Storage Ring. They found BF (B̄0→ D∗+ωπ−) = (0.29 ± 0.03 (stat) ±0.04

(syst))% [25]. The plot of the differential decay rate is shown in Figure 3.6 using
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D∗+

ωπ−

B̄0

Figure 3.5: Feynman diagram for B̄0→ D∗+ωπ− decay, according to the factor-
ization hypothesis.

the CLEO data. Within experimental sensitivity, experimental results agree with

factorization predictions using τ → ωπντ decay data.
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Figure 3.6: Spectrum of the invariant mass squared of the ωπ system (m2
X) in

B̄0→ D∗+ωπ−. The black triangles are from CLEO data [25], and the red squares
are theoretical predictions based on τ -decay data [12]. There is an additional 9%
uncertainty in the B decay data from the overall normalization. Figure taken
from Reference [29].
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CLEO also studied the decay B̄0 → D+ωπ− in Reference [25]. By measuring

the polarization of the ω, they were able to determine that B̄0 → D+ωπ− decay

is dominated by B̄0 → D+ρ′(1450)−, followed by ρ′(1450)− → ωπ−. Due to the

presence of the vector D∗, it was not possible to verify that this is also the case

for B̄0→ D∗+ωπ− decay. However, if we assume that the ρ′(1450) also dominates

the D∗ωπ final state, we may use factorization to predict the polarization of the

D∗, as described in Section 3.1.2. For ωπ masses consistent with the ρ′(1450) (1.1

≤ mωπ < 1.9 GeV), CLEO measured found that (63 ± 9)% of all D∗ produced

in B̄0→ D∗+ωπ− decay were longitudinally polarized. This is consistent with

expectations from factorization and HQET (see Figure 3.1).

The BABAR experiment has accumulated more than twenty times the number of

BB̄ mesons used in the initial CLEO experiment. We can therefore substantially

improve the precision of the initial measurements. The increase in statistical pre-

cision is especially useful for large ωπ mass, where perturbative QCD factorization

predictions may be tested.

As a final note, we must not forget that in addition to the Feynman dia-

gram presented in Figure 3.5, B̄0→ D∗+ωπ− decay can also proceed as shown

in Figure 3.7. In this case, the D∗ωπ final state is produced through the color-

suppressed decay B̄0 → D∗∗0ω, followed by D∗∗0 → D∗+π−. As Figure 3.5 in-

terprets B̄0→ D∗+ωπ− as a Class I decay, factorization is well-motivated. If this
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d̄
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B̄0

Figure 3.7: Feynman diagram for the color-suppressed B̄0 → D∗∗0ω, D∗∗0 →
D∗+π− decay.

decay proceeds via Class II decay (Figure 3.7) at a significant rate, the factoriza-

tion interpretation for the decay becomes less clear.

During the course of the analysis, we discovered an enhancement of events for

D∗π mass in the region of 2.5 GeV. These events could be the result of resonant

D∗∗ → D∗π decay. Although the impact on our final result is small (as would be

expected for color-suppressed decay), it is important to keep this enhancement in

mind.
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The BaBar Experiment

The primary focus of the BABAR experiment [36, 37] is to measure CP -violating

asymmetries in the B meson system. This experiment makes use of the PEP-II

asymmetric e+e− storage ring located at the Stanford Linear Accelerator Center

(SLAC). A center of mass (CM) energy of 10.58 GeV is obtained by colliding

electron and positron beams with lab energies equal to 9 and 3.1 GeV, respectively.

The CM energy is equal to the mass of the Υ(4S) resonance, which decays almost

exclusively into BB̄ pairs. The asymmetric beam energies introduce a relative

velocity along the beam direction (z) between the lab and CM frames, described

by βγ = 0.56. This boost gives us the chance to determine the relative distance

between the decay positions of B and B̄ mesons. As the relative distance is related

to the difference in decay time, ∆z ≈ γβc∆t, we can extract time-dependent CP

violating asymmetries from B decay data.
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The BABAR and BELLE experiments [38] have been referred to as B factories

due to the large volume of Υ(4S) → BB̄ events produced by each experiment.

At design luminosity, L = 3 × 1033 cm−2 sec−1, the BABAR experiment produces

over 30 million BB̄ pairs every 107 seconds1. The experiment has consistently run

above design luminosity, resulting in 232 million Υ(4S) → BB̄ decays collected

between 1999 and 2004.

In this Chapter I will describe the BABAR detector and datasets used in physics

analysis for this thesis. The detector is described in detail elsewhere [35], but it is

useful to give a brief overview here, highlighting the features which facilitate the

analysis of the B̄0→ D∗+ωπ− and B0 → J/ψ KL decay modes. I will also briefly

discuss the simulated data used by these analyses.

4.1 The BaBar Detector

Branching fractions for B meson decays are typically quite small. For exam-

ple, the branching fraction for B̄0→ D∗+ωπ−, which is relatively large, is about

0.3%. This implies that the BABAR detector must be able to fully reconstruct

a relatively small number of signal B decays in order to separate desired events

from background. For a time-dependent analysis such as B0 → J/ψ KL, it is also

1Experience teaches us that this is the typical operating period for an accelerator each year,
where a year is 3 × 107 seconds.
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necessary to determine the flavor of the other B in the event. These requirements

place several strict demands on the detector:

• A large, uniform acceptance. This is especially important in the forward

direction, as the CM frame is boosted relative to the lab frame.

• Excellent reconstruction efficiency for charged particles and photons down

to low momentum.

• Very good position, momentum and energy resolution throughout the de-

tector.

• Efficient particle identification, with a low rate of misidentification.

• Low levels of detector noise.

• Ability to operate reliably in a high radiation environment. This requires the

detector components to be able to withstand significant doses of radiation

as well as perform design tasks in high-background conditions.

In the following sections I will describe the various components of the BABAR

detector, shown in Figures 4.1 (cross section along the beam axis) and 4.2 (cross

section perpendicular to the beam axis). The description of each subsystem will

be motivated by the detector demands listed above. Most of the detector falls

within a 1.5 T magnetic field, which causes the charged particles to travel in
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Figure 4.1: A cross section of the BABAR detector viewed parallel to the beam
axis. Figure obtained from Reference [35].

curved paths within the detector volume. As a result, the tracking system is able

to reconstruct the momentum of charged particles with good resolution.

4.1.1 The Silicon Vertex Tracker

The Silicon Vertex Tracker (SVT) is essential for measurements involving time-

dependent observables. Located as close as possible to the interaction region, it

provides excellent position resolution on the decay vertex of B mesons. In addi-

52



Chapter 4. The BaBar Experiment

 

    

IFR Barrel

Cutaway
Section

Scale
BABAR Coordinate System

y

x
z

DIRC

DCH

SVT

3500

Corner
Plates

Gap Filler
Plates

0 4m

Superconducting
Coil

EMC

IFR Cylindrical
RPCs

Earthquake
Tie-down

Earthquake
Isolator

Floor

3-2001
8583A51

Figure 4.2: A cross section of the BABAR detector viewed perpendicular to the
beam axis. Figure obtained from Reference [35].

tion, the SVT and Drift Chamber (DCH) make up the charged particle tracking

system. In most cases, the SVT supplements the DCH measurements, but in the

event that a charged particle does not have enough momentum to reach the DCH,

its trajectory can still be determined using the information from the SVT.

The SVT is composed of five double-sided layers of reverse-biased silicon strip

detectors. On one side the strips run parallel to the beam direction, and the strips

on the other side of each sensor are perpendicular to the beam axis. Energy is

deposited by a charged particle as it traverses the silicon which produces electron-
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hole pairs in the silicon. These charges separate, due to the applied electric

potential, and collect at electrodes. The resulting signal provides excellent spatial

resolution, since the strip pitch varies from 50-110 µm in the inner three layers to

100-210 µm in layers 4 and 5. The spatial resolution for perpendicular tracks is

10-15 µm in the inner three layers, and about 40 µm in the outer layers.

In Figure 4.3 we present a cross section of the SVT perpendicular to the beam

direction. The inner three layers, located as close as possible to the interaction

region (32 to 54 mm from the beam axis), are essential for vertex measurements.

The outer layers, due to their distance from the interaction region (91-144 mm

from the beam axis), are better suited for pattern recognition and reconstruction

of low momentum charged particles. Along the beam axis, the SVT allows the B

decay vertex to be determined with a resolution of typically 40-80 µm, depending

on the decay mode. This resolution is sufficient for the time dependent analysis

of decays such as B0 → J/ψ KL.

As the SVT is the innermost detector, its acceptance must be as large as

possible without resulting in excess material near the interaction region. The

active portion of the SVT extends to within 20(30)◦ of the beam axis in the

lab frame in the forward (backward) direction, which amounts to a geometric

acceptance of 90% of the solid angle in the CM system. In order to reduce the

amount of material traversed by traveling particles, the SVT electronics are pushed
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Figure 4.3: A cross section of the BABAR SVT viewed perpendicular to the beam
axis. Layers 4 and 5 are divided into sublayers and placed at slightly different
radii. Figure obtained from Reference [35].

to the ends of the silicon sensors. As a result, the SVT material impeding particles

traversing the silicon is only a few percent of a radiation length.

4.1.2 The Drift Chamber

The BABAR Drift Chamber is the primary detector used to reconstruct charged

particles with momenta above 120 MeV. The DCH is composed of 40 layers of

small hexagonal cells filled with an 80:20 helium:isobutane mixture. Gold plated

wires run the 3 m length of each cell. As the gas is primarily helium, the material

in the path of the traveling particles is kept to a minimum. The wires and gas

of the DCH comprise less than 0.2% of a radiation length, and the entire DCH
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is made up of about 1% of a radiation length of material. This reduces multiple

scattering within the detector and improves momentum resolution measurements.

As a charged particle travels through the DCH, it ionizes the gas within the

relevant cells. The electrons released collect on high voltage sense wires in each

chamber after a small “drift” time of about a few hundred nsec. In 24 of the 40

layers, the wires are placed at small angles (40-80 mrad) relative to the beam axis

in order to obtain longitudinal position information. The position resolution for

a given DCH layer is typically better than about 0.2 mm.

Position and angle measurements near the interaction point are primarily de-

termined by the SVT, but the DCH dominates the measurement of transverse

momentum (pT ). The typical resolution is about

σpT /pT ∼ 0.0013 · pT + 0.0045,

where the transverse momentum is measured in GeV.

For low momentum charged particles, particle identification can be performed

in the DCH and SVT by measuring the energy lost as particles travel through

the detector volume. The mean rate of energy loss over distance (dE/dx) is a

function of the speed of the charged particle (β = v/c) and the properties of the

traversed material. In Figure 4.4 we present dE/dx in the DCH as a function

of charged particle momentum. For particles with enough transverse momentum
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to completely traverse the DCH, the DIRC (the Detector of Internally Reflected

Cherenkov light) provides vital information regarding particle identity.

Figure 4.4: Measurement of dE/dx in the DCH as a function of charged particle
momentum. The curves show the Bethe-Bloch predictions for particles of different
masses. Figure obtained from Reference [35].

4.1.3 The DIRC

In most cases, particle identity can be determined for low momentum particles

using dE/dx information from the DCH (and SVT). However, as momentum

increases, it becomes increasingly difficult to properly identify some particles.

The BABAR DIRC uses Cherenkov radiation to identify charged particles. The

DIRC is composed of 144 synthetic silica bars (17 mm × 35 mm × 4900 mm) that

run parallel to the beam axis at a distance of 80 cm from the interaction point.

Particles that escape the DCH (pT greater than about 250 MeV) will encounter
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the DIRC before reaching the calorimeter. If the charged particle speed exceeds

the speed of light in the silica bars, the particle will emit Cherenkov radiation.

This radiation will be released in a cone around the traveling particle, described

by

cos θc =
1

nβ
, (4.1)

where n = 1.474 is the index of refraction of the DIRC bars. The Cherenkov

threshold for various charged particles is given in Table 4.1. We see from this Table

that the Cherenkov threshold for kaons is well below where dE/dx measurements

in the DCH begin to have difficulty separating kaons from pions (about 700 MeV,

see Figure 4.4).

Particle mass (MeV) pC (MeV)
µ 105.66 97.6
π 139.57 128.9
K 493.68 455.9
p 938.27 866.4

Table 4.1: Momentum threshold (pC) for producing Cherenkov light for various
charged particles found at BABAR.

After Cherenkov radiation is emitted, at least some of the photons are inter-

nally reflected by the DIRC bars. As a result, the Cherenkov light travels down

the length of the bars to an array of nearly 12,000 photomultiplier tubes (PMTs)

fixed to a standoff box located in the backward region of the BABAR detector. The

DIRC assembly is shown in Figure 4.5. As the photons reach the end of the silica,
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they enter the standoff box which is filled with about 6000 l of purified water

(n ≈ 1.346). As the Cherenkov angle θC is preserved by reflection within the

bars, and a majority of the photons successfully traverse the silica-water barrier,

the ring of photons observed by the PMTs can be used to identify the charged

particle. In this way, the DIRC provides excellent (∼ 4σ) π/K separation from

the pion Cherenkov threshold up to particle momenta of about 4 GeV. This is

extremely useful at BABAR, as pions and kaons dominate the final states for B and

D meson decays.
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Figure 4.5: Diagram of the DIRC silica radiator bar and imaging region. Figure
obtained from Reference [35].
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4.1.4 The Electromagnetic Calorimeter

The Electromagnetic Calorimeter (EMC) measures electromagnetic showers

with excellent energy and angular resolution from about 30 MeV to about 9 GeV.

The measurement efficiency over this energy range is also excellent. (Energy

leakage in the EMC reduces the precision of the measured cluster energy at the

high energy limit by a few percent). The need to reconstruct π0 → γγ at energy

scales appropriate for B decay drives the energy resolution requirements of the

EMC. For particle energies common to BABAR, where the π0 typically has energy

below 2 GeV, π0 mass resolution is dominated by the EMC energy resolution.

In order to meet the standards imposed by reconstruction demands at the

Υ(4S), the EMC was built as a collection of 6580 thallium-doped cesium iodide

crystals. These crystals have a high light yield, small Molière radius, and short

radiation length. This allows for excellent energy and angular resolution while

simultaneously containing electromagnetic showers in a compact volume. The

energy and angular resolution for the BABAR EMC is given by

σE
E

=
2.32%

4
√
E(GeV)

⊕ 1.85%, and σθ = σφ =
3.87√
E(GeV)

mrad.

This results in a π0 mass resolution of about 6.5 MeV for π0 energies below 1 GeV.
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The polar angle coverage in the lab extends from 15.8◦ from the beam axis in

the forward end to 38◦ from the beam axis in the backward end. This amounts

to a solid angle coverage of 90% in the CM system.

4.1.5 The Instrumented Flux Return

Each of the detector subsystems described above are located within a 1.5 T

magnetic field. This field is necessary in order to accurately determine the mo-

menta of charged particles as they move through the detector. The Instrumented

Flux Return (IFR) uses the steel flux return of the magnet to identify muons and

detect neutral hadrons (such as KL).

The IFR is a set of layers of steel plates interspersed with instrumentation.

The steel plates increase in thickness from 2 cm (in the innermost plates) to 10

cm for the outermost plates. This provides position resolution as good as a few

mm in the inner region of the IFR, with increased stopping power as the plate

thickness increases.

In Figure 4.6 we present an overview of the IFR. Until recently, the IFR

instrumentation was made up of resistive plate chambers (RPCs), which detect

particles via capacitive readout strips. Muon identification was made possible by

matching a signal in the IFR with a charged particle track in the DCH (and SVT),

and comparing the IFR material traversed by the candidate muon to expectations.
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Neutral hadrons, such as KL, were identified by clusters in the IFR not associated

with any charged track.

Figure 4.6: Overview of the IFR, including the barrel section as well as the
forward (FW) and backward (BW) end doors. The dimensions on the Figure are
given in mm. Figure obtained from Reference [35].

Over time, the quality of IFR measurements began to deteriorate as RPCs de-

veloped efficiency problems. This eventually led to the replacement of the RPCs in

the IFR more than a year after the B0 → J/ψ KL analysis (as documented here)

was completed. As the B̄0→ D∗+ωπ− analysis does not require measurements

from the IFR, neither analysis was significantly affected by detector modifica-

tions.
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4.1.6 Monte Carlo event simulation

At BABAR, Monte Carlo BB̄ events are generated using EvtGen [39], and con-

tinuum qq̄ (where q = u, d, s, or c) events are generated using JetSet [40]. The

response of the BABAR detector is simulated using the GEANT4 [41] program. In

each of the analyses covered here, event reconstruction efficiency is determined

from simulated Monte Carlo events. The event selection criteria is also optimized

using simulated signal and background events.

Whenever possible, the response of the Monte Carlo events is checked against

actual data. At times, it is necessary to make small corrections to results obtained

from Monte Carlo event samples in order to account for differences between data

and Monte Carlo. These include, but are not limited to, the following:

• The reconstruction of charged particles. Monte Carlo performance relative

to data is checked using a variety of control samples.

• The reconstruction efficiency of photons and π0 → γγ events is studied using

a control sample of π0 events obtained from τ decay.

• Particle Identification efficiency differences between Monte Carlo and data,

specifically focusing on the ability to separate kaons from pions, are deter-

mined using a control sample of D∗+ → D0π+, D0 → K−π+ events.
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• Event selection efficiency. At times, data and Monte Carlo events respond

differently to the event selection criteria. These differences vary as a function

of the applied cut and the analysis in question.

In all cases, Monte Carlo event behavior is found to be very similar to data.

Corrections are applied when necessary, and we assign a systematic uncertainty

in order to account for our understanding of any discrepancies.
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Analysis of B̄0→ D∗+ωπ− Decay

The analysis of B̄0→ D∗+ωπ− events was performed using 232 million Υ(4S) →

BB̄ decays accumulated between 1999 and 2004 with the BABAR detector located

at SLAC, and has been published in Reference [42]. The documentation of this

analysis proceeds as follows:

1. We first develop a set of event selection criteria in Section 5.1.

2. We discuss the observed signal yield and m2
X distribution in Section 5.2.

In this Section, we also introduce a background subtraction using the mass

sidebands of the ω. Kinematic distributions of interest, such as m2
X (where

X = ωπ), are obtained using this subtraction.

3. We discuss our treatment of the B̄0→ D∗+ωπ− reconstruction efficiency in

Section 5.3.
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4. Our results, and their associated systematic uncertainties, can be found in

Section 5.4, and concluding remarks can be found in Section 5.5.

5.1 Event Selection

The criteria for selecting B̄0→ D∗+ωπ− events were optimized based on studies

of off-resonance data and simulated BB̄ and continuum events. Whenever we

impose constraints on the event selection, the cut value chosen maximizes S2/(S+

B), where S represents the number of reconstructed signal B̄0→ D∗+ωπ− events

and B describes the expected number of background events.

5.1.1 Charged particle and π0 selection

We form charged particle candidates from signatures in the SVT and DCH.

We place the following requirements on these candidates:

• Charged particle candidates must have lab momentum below 10 GeV, and

transverse momentum (pT ) above 100 MeV.

• The charged particle candidate must come from the interaction region. In

order to be assured that this happens, we require that the reconstructed

track passes within 1.5 cm of the interaction point in the plane perpendicular

to the beam axis, and within 10 cm along the beam axis.
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• The charged particle candidate is required to leave a signature in at least 12

DCH layers.

• We relax these requirements in the case of the pion fromD∗± → D0π± decay.

At BABAR energies, this pion often has very low momentum (typically below

a few hundred MeV in the lab frame). In order to improve reconstruction

efficiency, we drop the minimal pT and DCH hit requirements for the soft

pion.

Energy deposits measured by the EMC that are not associated with any

charged particle track are considered photon candidates provided they have lab

energies of at least 30 MeV, and their signature in the EMC is consistent with

that of a photon. These candidate photons are used to form π0 → γγ candidates.

We require the lab energy of the two-photon system to be at least 200 MeV, and

115 ≤ mγγ ≤ 150 MeV. We determine the mass of the candidate π0 by assuming

the photons originate from the primary vertex. We then constrain the mass of

the π0 candidate to the nominal value (135 MeV) [8].

For each event, we take charged particle and π0 candidates and attempt to

build the desired B̄0→ D∗+ωπ− decay. We enumerate the reconstruction require-

ments below, which include requirements on the B and intermediate D(∗) and ω
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meson reconstruction, as well as additional criteria to reject backgrounds from

continuum qq̄ (where q = u, d, s, or c) events.

5.1.2 ω reconstruction

We reconstruct ω → πππ0 candidates from a pair of oppositely charged tracks,

assumed to be a π+π− pair, and a π0 candidate. The invariant mass of the π+π−π0

system is required to fall within 70 MeV of the nominal ω mass (782.6 MeV) [8].

This requirement is quite loose, as the natural width of the ω is Γ = 8.5 MeV, and

the experimental resolution is 5.6 MeV. The choice of a wide mass window for the

omega will become useful later, as the ω mass sidebands will be used extensively

in this analysis. Throughout this analysis, we label events as “signal” provided

the 3π mass lies within 20 MeV of the nominal ω mass. Events in which the ω

candidate satisfies 35 ≤ |mπππ0 −mPDG
ω | < 70 MeV, where mPDG

ω is the nominal

ω mass, are referred to as “sideband”.

In order to reduce the number of false ω candidates formed from random

combinations of pions, we impose one additional requirement on ω reconstruction

that is motivated by ω decay dynamics. We first define Dalitz plot [43] coordinate

axes

X =
3T0

Q
− 1, and Y =

√
3

(
T+ − T−

Q

)
,
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where T±,0 are the kinetic energies of the pions in the ω rest frame, and Q ≡

T+ + T− + T0. We then define the normalized distance from the center of the

Dalitz plot,

R ≡
√
X2 + Y 2

X2
b + Y 2

b

, (5.1)

where Xb and Yb are the location of the intersection between the line passing

through (0,0) and (X, Y ) and the kinematic boundary of the Dalitz plot. Since the

Dalitz plot density peaks at R = 0 [44], we require R < 0.85. This requirement is

93% efficient for signal B̄0→ D∗+ωπ− events, and rejects 25% of the combinatoric

background.

5.1.3 D(∗) reconstruction

We reconstruct D∗+ → D0π+ decay, where the D0 decays into one of the

following final states: K−π+, K−π+π0, or K−π+π−π+. Charge conjugate modes

are implied here and throughout this analysis.

We require the kaon candidate track used to reconstruct the D0 meson to

satisfy a set of particle identification criteria. Kaons are identified at BABAR using

ionization energy loss (dE/dx) measurements from the SVT and DCH and the

observed pattern of Cherenkov radiation in the DIRC. The kaon identification

efficiency depends on particle momentum and polar angle in the detector, and is
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typically 93%. These requirements provide a rejection factor of order 10 against

pions.

After identifying the kaon, we require the invariant mass of the D0 → K−π+,

K−π+π−π+ candidates to fall within 15 MeV of the nominal D0 mass (1865

MeV) [8], where the experimental resolution is about 6 MeV. In D0 → K−π+π0

decay, we require the D0 candidate mass to be within 25 MeV of the nominal

value, as the presence of the π0 degrades the resolution to about 10 MeV.

For D0 → K−π+π0 candidates, we also exploit the known properties of this

decay [45] to further reduce background. We calculate the square of the decay

amplitude (|A|2), and retain candidates if |A|2 is greater than 2% of its maximum

possible value. The signal efficiency of this requirement is 91%, and it rejects 20%

of the D0 → K−π+π0 combinatorial background. We construct D∗+ → D0π+

candidates by combining the D0 candidate with an additional charged particle

track that we assume is a pion. We require the measured mass difference ∆m ≡

m(D∗+)−m(D0) to be between 143.4 and 147.4 MeV, where the resolution on this

quantity is 0.3 MeV with some non-Gaussian behavior due to the reconstruction

of the low momentum pion.
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5.1.4 B̄0 reconstruction

We reconstruct B̄0→ D∗+ωπ− candidates by combining ω and D∗ candidates

with an additional pion track. We impose the following requirements on the

reconstruction of the B meson:

• We compute the energy-substituted mass for each B̄0 candidate:

mES ≡
√
E∗2

beam − �p∗
2

B, (5.2)

where E∗
beam is the beam energy and �p∗

2

B represents the momentum of the

B̄0 in the CM frame. This quantity peaks at mB0 for signal events, with an

experimental resolution of around 3 MeV. We retain candidates with mES

above 5.2 GeV, where mES > 5.27 GeV defines the signal region. The mES

sideband, where 5.2 < mES < 5.25 GeV, is a useful sample for studies of

background events.

• We also compute ∆E, defined as

∆E ≡ E∗
beam −E∗

B, (5.3)

where E∗
B represents the energy of the B̄0 in the CM frame. This quantity

peaks at zero for signal events. We select D0 → K−π+, K−π+π−π+ events

with −50 < ∆E < 35 MeV, and D0 → K−π+π0 events with −70 < ∆E <

40 MeV. The experimental resolution is about 25 MeV for D0 → K−π+π0
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events (20 MeV for the other modes), with non-Gaussian tails at negative

values due to energy leakage in the calorimeter.

We improve the quality of the B meson reconstruction by refitting the mo-

menta of the daughters of the B, taking into account geometric constraints. We

apply these constraints with the knowledge that the decay products of the B (as

well as the D∗, D0 and ω) must originate from a common point in space. The

entire decay tree is fit simultaneously in order to account for any correlations

between particles.

5.1.5 Continuum rejection criteria

We apply additional criteria to reject background from continuum events:

• The ratio of the 0th and 2nd Fox-Wolfram moments [46], R2, is required to

be below 0.5.

• We require | cos θB| < 0.9, where θB is the angle of the B with respect to the

e− beam in the CM frame. Signal BB̄ events follow a 1 − x2 distribution,

where x = cos θB, while background from continuum events tends to be flat

in this variable.

• We also construct a Fisher discriminant using the quantities L0 =
∑

i p
∗
i and

L2 =
∑

i p
∗
i cos2 α∗

i , where the sum is taken over all tracks and clusters not
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used to reconstruct the B candidate, p∗i is the magnitude of the momentum

of particle i, and α∗
i is the angle between its momentum and the thrust axis

of the B candidate in the CM frame. We calculate

F = 0.5319 − 0.1790 · L0 + 0.8465 · L2 (5.4)

and require F < 1.35. The requirements on cos θB and F are 95% efficient

for signal and reject nearly 40% of the continuum background.

5.1.6 Cut-based corrections to the Monte Carlo

Each of the above selection requirements rejects some fraction of signal events

in addition to background. Signal event loss is often minimal, but we must take

care to ensure that this loss is well understood, as it influences the event recon-

struction efficiency.

In order to adjust the Monte Carlo event sample to account for any discrepan-

cies found relative to data, we compare the response of data with respect to Monte

Carlo for each selection requirement. We then determine the relative difference

between data and Monte Carlo, and assign a correction factor to the Monte Carlo:

εCorr =
εData

εMC
. (5.5)
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We summarize the individual corrections to the Monte Carlo in Table 5.1. We

apply a correction factor to signal Monte Carlo events (εCorr) equal to 0.948 for

D0 → Kπ, 0.922 for D0 → Kππ0, and 0.994 for D0 → K3π.

Variable Correction (εData/εMC) Uncertainty (%)
mω 1.032 1.0
R none 2.1
mD0 none 1.0
Rel. wgt. 0.927 (Kππ0) 3.3 (Kππ0)
∆m none none
θB + F 0.945 1.9
mES none none
∆E 0.972 (Kπ), 1.020 (Kππ0), 1.019 (K3π) 2.0

Table 5.1: Summary of the cut-based corrections applied to the Monte Carlo.
Unless otherwise specified, the correction applies to all D0 decay modes.

5.1.7 Arbitration

Each of the criteria discussed above were applied in order to help preferentially

select reconstructible B̄0→ D∗+ωπ− decays instead of background. However, even

after all our cuts are applied, we still expect that random combinations of charged

and neutral particles will sneak into our event sample. On average, 1.7 signal

candidates are present after all cuts in B̄0→ D∗+ωπ− Monte Carlo events where

at least one reconstructed event passes all of our analysis requirements.

In an attempt to reduce the impact these multiple candidates could have on

our final event sample, we impose a χ2 selector to choose a “best” candidate, based
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on the difference between the measured and known values, and the experimental

resolution, of the D0 mass and the mass difference ∆m:

χ2 ≡
(
mD0 −mPDG

D0

σD0

)2

+

(
∆(mD0π −mD0) − ∆mPDG

D∗−D0

σδm

)2

. (5.6)

We then select the candidate with the lowest χ2. The mass of the ω is not included

in this calculation in order to avoid introducing a bias in the ω mass distribution,

as this distribution will be used extensively in later studies.
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5.2 Observed Events

In the previous Section we outlined our event selection criteria. In this Section,

we will elaborate on the mES and omega mass (mω) requirements and introduce

a background subtraction using the mass sidebands of the ω.

5.2.1 mES distribution

In Figure 5.1, we present themES distribution for reconstructed B̄0→ D∗+ωπ−

candidates in data. The mES distribution for candidates in the mω signal region

are fit to the sum of a threshold background function [47] and a Gaussian centered

at the B0 mass. The 2.8 MeV Gaussian width is determined from studies of Monte

Carlo simulated decays. We find 2461 ± 69 signal events in the Gaussian peak

above mES = 5.27 GeV.

It is clear from the results of Figure 5.1 that we must view this yield with

some degree of skepticism. The mES distribution for the mω sideband region

demonstrates that there is a background component, which peaks at the B0 mass,

that is not well described by the threshold background function. Monte Carlo

studies indicate that roughly one-third of this background is composed of signal

B̄0→ D∗+ωπ− decays where the ω → πππ0 decay is misreconstructed, such as

when one of the pions from the ω is lost, and a pion from the other B decay is
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Figure 5.1: mES distributions for candidates with reconstructed ω mass in the
signal (points) and sideband (shaded histogram) regions. The distribution for
events in the sideband region has been rescaled to match the expected background
in the mω signal region. The fitted function is described in the text.

substituted in reconstruction. The remaining background is from B̄0→ D∗+(4π)−

decays, where no ω → πππ0 decay is present.

5.2.2 mω distribution

We present the mω distribution for B̄0→ D∗+ωπ− candidates in data, with

mES > 5.27 GeV, in Figure 5.2. The data is modelled by the sum of a linear

background and a Voigtian function, where a Voigtian function is the convolution

of a Breit-Wigner function with a Gaussian. The width of the Breit-Wigner is

fixed to the nominal ω width (Γ = 8.5 MeV), and the remaining terms are allowed
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to float in the fit. We find 1799±87 events in the Voigtian in the mω signal region,

compared to 2461 ± 69 events obtained from the mES fit in Figure 5.1.
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Figure 5.2: Distribution of reconstructed mω for events with mES > 5.27 GeV
(points) and events in the mES sideband (5.20 < mES < 5.25 GeV, indicated
by the shaded histogram). The superimposed fit is described in the text. The
events from the mES sideband have been scaled to the expected background from
an mES fit to events with |mω −mPDG

ω | < 70 MeV (i.e., the range shown in this
figure).

The apparent “drop” in the yield is due the removal of background events

which mimic the mES behavior of well-reconstructed signal decays. In Figure 5.2,

we include the mω distribution for events in the mES sideband (5.20 < mES <

5.25 GeV). This background distribution is scaled to the expected number of
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background events above mES = 5.27 GeV in a fit to the mES distribution where

we require |mω −mPDG
ω | < 70 MeV. The difference between the number of events

seen in data away from the mω peak and the predicted background from the mES

sideband is due to background events that peak in mES.

The signal yield from the mω distribution is only valid if it turns out that the

background is indeed linear in mω. This requires that there are no background

sources that include real ω → πππ0 decays. From the results of Figure 5.2, we can

see that there is not a significant source of real ω decays in the background, but it

would be useful to be more thorough. We examined and fit the mω distribution for

mES sideband events in data as well as Monte Carlo simulations ofBB̄ background

events, and we find that the mω distributions for each of the background samples

are well modelled by linear functions. There is no evidence that real ω decays are

present in the background, and we estimate that this component can affect the

signal yield, extracted from the fit in Figure 5.2, by (at most) a few percent.

5.2.3 mω sideband subtraction

Although well-reconstructed B̄0→ D∗+ωπ− decays populate the (mES,mω) sig-

nal window, backgrounds from poorly reconstructed signal decay, B̄0→ D∗+(4π)−

events, and random combinations of particles still populate the signal region. In

this analysis, we are interested in studying several distributions for B̄0→ D∗+ωπ−,
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such as the square of the invariant mass of the ωπ system (m2
X). Measurements

of these distributions must account for the presence of background in our event

sample.

In Section 5.2.2 we learned that selecting real ω decays in our sample is equiva-

lent to selecting well-reconstructed B̄0→ D∗+ωπ− decays. With this information,

we use events reconstructed in the mω sidebands to remove the effects of the

background in the mω signal region on a statistical basis. As the background is

modelled by a linear function, we find the number of observed signal events is

given by

Nrec(m
2
X) = Srec(m

2
X) −

(
4

7
β

)
·Brec(m

2
X), (5.7)

where Srec and Brec represent the number of events reconstructed in the mω signal

and sideband regions, respectively. The fraction 4
7

is used to normalize the mω

sideband region to the signal area. This fraction assumes a linear model for the

background distribution, and hence the quantity β is introduced to correct for

any possible bias introduced by this assumption. Ideally, β is equal to one.

5.2.4 Testing sideband subtraction

In Figure 5.3 we examine the impact of the mω sideband subtraction on sig-

nal Monte Carlo events. We see that the events in the sideband account for

B̄0→ D∗+ωπ− decays that are poorly reconstructed in the signal region. By ap-
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plying an mω sideband subtraction, the effects of this background are statistically

removed, leaving only well-reconstructed signal events.
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Figure 5.3: mES and ∆m2
X distributions for signal Monte Carlo, where ∆m2

X

is the difference between generated and reconstructed m2
X values in simulated

B̄0→ D∗+ωπ− events, provided mES > 5.27 GeV. The events from the mω side-
band region (solid red) have been scaled to match the expected background in
the mω signal region (black), where we assume β = 1. All D0 decay modes are
combined in these plots.

Our next aim is to test the behavior of the sideband subtraction for m2
X using

various background samples in Monte Carlo as well as the mES and ∆E sidebands

in data:

• −100 ≤ ∆E < −80 MeV, 70 ≤ ∆E < 100 MeV for D0 → Kππ0;

• −100 ≤ ∆E < −70 MeV, 60 ≤ ∆E < 100 MeV for D0 → Kπ, K3π.
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As real ω decays should be absent from each background sample, the post-

subtraction m2
X distribution is expected to be featureless and statistically con-

sistent with zero events. These tests were grouped according to the decay mode

of the D0. The results of each test were in agreement with expectations. As

an example, we present the results of the mω sideband subtraction for the mES

sideband sample, with all D0 decays combined, in Figure 5.4. We conclude from

these results that we can successfully remove the effects of all backgrounds from

events reconstructed in the mω signal region using events reconstructed in the ω

mass sidebands.

5.2.5 Kinematic corrections

The range of invariant mass for the π+π−π0 system differs in the mω signal

and sideband regions. Consequently, the mω sidebands have slightly different

kinematic limits for the energy of the ω candidate. This effect can bias our results

at kinematic extremes, as illustrated in Figure 5.5. In this Figure, we examine

the energy of the πππ0 (“ω”) system in the B rest frame using B± Monte Carlo

events. The difference between the high and low mω sidebands and the mω signal

region are noticeable.

To correct for this effect, we linearly rescale the ω energy, m2
X , etc., in the ω

mass sidebands so that their kinematic limits match those in the mω signal region.
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Figure 5.4: m2
X distributions for the mES sideband data sample. All D0 decay

modes have been combined in this Figure. The top plot gives the m2
X distribution

for the mω signal (open squares) and sideband (red circles) regions. The mω

sideband has been scaled to match the expected background in the signal region.
The bottom plot shows the results of the sideband subtraction. We correct the
m2
X distribution in the mω sidebands as described in Section 5.2.5, and we assume

β from Equation 5.7 is equal to one.

This correction eliminates the structure in EB
ω near the kinematic limit, as shown

in Figure 5.6, without changing the shape of the distribution. The impact of this

correction is less dramatic for the m2
X distribution (also shown in Figure 5.6), as

m2
X(EB

ω ) does not vary significantly near the kinematic limit.
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Figure 5.5: EB
ω distributions for different mω regions, using B± Monte Carlo.

All D0 decay modes have been combined in these plots, and the mω sideband
distributions have been normalized to the number of events in the signal region.
The EB

ω region between the lines on the left plot is examined in more detail at
right.
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Figure 5.6: mω sideband-subtracted EB
ω (top) and m2

X (bottom) distributions
using B± Monte Carlo, where we assume β from Equation 5.7 is equal to one.
All D0 decay modes have been combined in these plots. At left the results are
shown with no correction applied to account for problems near the kinematic limit.
Kinematic corrections have been applied in the right plot. The vertical scale is
identical for each set of plots.
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5.2.6 Observed m2
X distribution

In Figure 5.7 we present the observed m2
X distribution before and after we

apply the background subtraction using the mass sidebands of the ω. The events

seen above m2
X = 4 GeV2 were not seen when B̄0→ D∗+ωπ− decays were first

observed by CLEO, as they did not have a sufficient number of BB̄ decays to find

these events. Despite the success of the sideband subtraction in various control

samples, it is useful to verify that the events seen at various m2
X values correspond

to real ω → πππ0 decays. To do this, for events which pass all cuts (excluding

mω), we fit the mω distribution in bins of m2
X . We then compare the results of the

mω fits to those obtained from the m2
X distribution after performing the sideband

subtraction.

In Figure 5.8, the mπππ0 distribution is examined (for events with mES above

5.27 GeV) in different regions of m2
X . No sideband subtraction was performed.

The fitted ω → πππ0 yield within 20 MeV of the nominal ω mass is compared to

results obtained from the m2
X distributions after sideband subtraction, and these

results are shown in Tables 5.2 and 5.3. From this information we conclude that

the number of reconstructed B̄0→ D∗+ωπ− events present after the mω sideband

subtraction are correlated with real ω decays. This confirms our assumption that

the background subtraction keeps well-reconstructed signal decays while removing

the effects of all backgrounds.
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Figure 5.7: m2
X distributions for data events with mES > 5.27 GeV, and m(πππ0)

within 20 MeV of the nominal ω mass. Results are grouped according to D0 decay
mode. For each D0 mode, the top plot presents the m2

X distribution for the mω

signal (open squares) and sideband (red circles) regions. The mω sideband has
been scaled to match the expected background in the signal region, and we set β
from Equation 5.7 equal to one. The bottom plot gives the results of the sideband
subtraction.
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Figure 5.8: mπππ0 distributions for data events with mES ≥ 5.27 GeV. All D0

modes are combined in these plots. (Top left) All m2
X values, (Top right) 0 ≤ m2

X

< 2 GeV2, (Bottom left) 2 ≤ m2
X < 4 GeV2, and (Bottom right) m2

X ≥ 4 GeV2.
The signal is fit to a Voigtian, and the background is assumed to be described by
a first order polynomial.
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m2
X Range (GeV2)

D0 Decay Mode 0 ≤ m2
X < 2 2 ≤ m2

X < 4 4 ≤ m2
X All

D0 → Kπ 212 ± 25 259 ± 27 77 ± 19 549 ± 41
D0 → Kππ0 262 ± 34 337 ± 38 175 ± 33 775 ± 61
D0 → K3π 190 ± 25 214 ± 28 51 ± 23 454 ± 44
All D0 decays 664 ± 49 810 ± 54 303 ± 45 1778 ± 86

Table 5.2: m2
X results for data events in the mω signal region obtained after mω

sideband subtraction, where the parameter β from Equation 5.7 has been set to
one. These results are also shown in Figure 5.7.

m2
X Range (GeV2)

D0 Decay Mode 0 ≤ m2
X < 2 2 ≤ m2

X < 4 4 ≤ m2
X All

D0 → Kπ 216 ± 22 272 ± 25 86 ± 16 559 ± 37
D0 → Kππ0 300 ± 30 277 ± 32 179 ± 28 766 ± 53
D0 → K3π 210 ± 22 200 ± 24 68 ± 19 482 ± 38
All D0 decays 728 ± 44 745 ± 47 312 ± 38 1799 ± 87

Table 5.3: Results of the fit to themπππ0 in data for events withmES > 5.27 GeV.
The fits are shown in Figure 5.8.
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5.3 Efficiency Parameterization

In order to extract useful results from our sample of reconstructed events, we

must correct for the signal reconstruction efficiency, which is determined from

B̄0→ D∗+ωπ− Monte Carlo events. In this Section, we will define our efficiency

ε(�x), where �x describes the set of quantities that specify the kinematics of a given

B̄0→ D∗+ωπ− event.

In the absence of background, the number of events corrected for efficiency in

a given bin of m2
X is equal to

N(m2
X) =

∑
signal

1

ε(�xi)
(5.8)

where the sum is over all signal events in a given m2
X bin and �xi is the set of

kinematic quantities for the ith event in the sum.

We have demonstrated that we must perform a background subtraction using

the mω sideband. Thus, Equation 5.8 is modified as follows:

N(m2
X) =

∑
signal

1

ε(�xi)
−

(
4

7
β

) ∑
sideband

1

ε(�xj)
(5.9)

where the first sum is unchanged, while the second sum is taken over all mω

sideband events in the given bin of m2
X , and �xj represents the set of kinematic

quantities for the jth event in the sum. Note that we apply the efficiency calculated

for signal events (namely, ε(�x)) to events in the mω sideband. The factor of 4
7

is
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necessary to adjust for the relative size of the ω signal and sideband regions, and

the quantity β is again included to correct for any possible bias in the background

subtraction procedure. As before, β is ideally equal to one.

B̄0→ D∗+ωπ− is a three-body decay with two vectors in the final state, so

in principle we should parametrize the efficiency in terms of the following seven

variables:

1. EB
ω , the energy of the ω in the B̄0 rest frame;

2. EB
D∗ , the energy of the D∗ in the B̄0 rest frame;

3. cos θD∗ , where the decay angle θD∗ is the angle between the D0 and direction

opposite the flight of the B̄0 in the D∗ rest frame;

4. cos θω, where the decay angle θω is defined (in the ω rest frame) as the angle

between the vector normal to the ω decay plane and the direction opposite

the flight of the B̄0;

5. The two azimuthal angles (φD∗ and φω) that describe the orientation of the

decay planes of the D∗ and the ω with respect to the B̄0 decay plane, as

shown in Figure 5.9;

6. d, an index that indicates the D0 decay mode (Kπ, Kππ0, or K3π).
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The angles that describe B̄0→ D∗+ωπ− decay are shown in Figure 5.9. From

studies of signal Monte Carlo events, we have concluded that signal reconstruction

efficiency does not depend on the azimuthal angles φD∗ or φω. As a result, we set

ε(�x) ≡ ε(EB
ω , E

B
D∗, cos θD∗ , cos θω, d). (5.10)

The first two variables, EB
ω and EB

D∗ , are the usual Dalitz plot variables for a

three-body decay. (Note that these two variables are entirely equivalent to the

square of the D∗π and ωπ masses as a result of energy-momentum conservation.)

The two angular variables, θD∗ and θω, are necessary to account for the possible

polarization of the D∗ and the ω. Finally, we must also consider any potential

efficiency dependence on d, the decay mode of the D0. To simplify matters, we

express the efficiency as the product of three terms:

ε(EB
ω , E

B
D∗ , cos θD∗ , cos θω, d) = ε′(EB

ω , E
B
D∗ , d)×c1(EB

ω , cos θω)×c2(EB
D∗ , cos θD∗ , d)

(5.11)

This parameterization is motivated by the assumption that the D∗ and ω efficien-

cies should factorize. The first term (ε′) describes the efficiency as a function of

the two Dalitz plot variables, averaged over the D∗ and ω polarizations. The func-

tions c1 and c2 represent corrections to the unpolarized efficiency due to possible
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Figure 5.9: Graphical depiction of the angles needed to describe the kinematics
of B̄0→ D∗+ωπ− decay. The polar angles, θD∗ and θω, are measured relative to
p̂BD∗ and p̂Bω , respectively. These vectors describe the flight directions of the D∗

and ω in the rest frame of the B0. The azimuthal angles, φD∗ and φω, measured
in the plane perpendicular to the D∗ (ω) flight directions, describe the orientation
of the decay of the D∗ (ω) relative to the B decay plane.

polarization effects. These functions are defined such that

∫ 1

−1

c1(E
B
ω , cos θω) d(cos θω) = 2, (5.12)∫ 1

−1

c2(ED∗ , cos θD∗ ,mode) d(cos θD∗) = 2. (5.13)

To understand the chosen normalization, consider that if the efficiency was inde-

pendent of either θω or θD∗ , the associated c1 or c2 corrections would be identically

equal to one.
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The functions ε′, c1, and c2 are extracted from Monte Carlo and stored as two-

dimensional histograms for further use. Consequently, our results depend on the

number of simulated Monte Carlo decays that are reconstructed in each efficiency

bin. We will discuss the effect of a finite Monte Carlo sample size in Section 5.4.1.

In order to extract each efficiency component, we perform a sideband subtrac-

tion using the mass sidebands of the ω. This subtraction removes the effects of

poorly reconstructed B̄0→ D∗+ωπ− decays. We define the efficiency in terms of

the number of reconstructed signal events remaining after background subtraction.

5.3.1 Efficiency component ε′(EB
ω , E

B
D∗, d)

In order to obtain ε′(EB
ω , E

B
D∗ , d), we need to understand the reconstruction

efficiency for signal events at each point (EB
ω ,EB

D∗) in the B̄0 Dalitz plot. Taking

signal Monte Carlo events reconstructed in the (mES,mω) signal region, we pop-

ulate the Dalitz plot according to the generated (true) energies of the D∗ and ω

in the B̄0 rest frame. The mω sideband subtraction is then performed in order

to remove background from poorly reconstructed signal events. Once the recon-

structed (EB
ω ,EB

D∗) distribution has been obtained for each D0 decay mode, we

take the ratio of the reconstructed and generated distributions (separated by D0

decay, with each distribution compiled from generated energies) to obtain ε′. For

convenience later, we construct the EB
D∗ bins to match the binning of the m2

X
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distribution used in Section 5.2. In the rest frame of the B̄0,

EB
D∗ =

M2
B −m2

X +m2
D∗

2MB

(5.14)

implies that the nominal ∆m2
X = 0.25 GeV2 spacing (see Figure 5.7) would cor-

respond to a bin width of 23.7 MeV in EB
D∗ . As there are no similar restrictions

on the binning in EB
ω , we choose a bin width of 55 MeV.

The D0 → Kπ,Kππ0, K3π decays are not expected to have the same recon-

struction efficiency. Multiple effects, such as track multiplicity and π0 reconstruc-

tion, are expected to change the relative population of the Dalitz plot at a given

EB
D∗ for each D0 decay. As a result, we split the unpolarized efficiency according

to the reconstructed D0 decay mode.

In Figures 5.10-5.12 we show ε′(EB
ω , E

B
D∗ , d) obtained from simulated Monte

Carlo signal events, separated by the decay of the D0. These Figures clearly

demonstrate the efficiency variation throughout the available phase space.

Monte Carlo statistics are significant in the data-like (low-m2
X , or high EB

D∗)

region, but regions of small D∗ energy (high m2
X) tend to suffer from statisti-

cal effects brought about by low reconstruction efficiency. Because we compute

a binned efficiency correction, finite Monte Carlo sample size can diminish the

accuracy and precision of our results. This is especially true in regions where the

reconstruction efficiency is small. In order to minimize the impact of low statis-
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Figure 5.10: The ε′(EB
ω , E

B
D∗ , D0 → Kπ) distribution for B̄0→ D∗+ωπ− Monte

Carlo events.

tics, we merge the contents of several nearby bins in order to compute an average

efficiency in this region. This is done with the following requirements in mind:

• As all events in a given EB
D∗ bin can be found in one m2

X bin (by construc-

tion), most merging occurs across EB
ω bins.

• We combine bins until the error on the efficiency drops below 30% of the

value. This forces a minimum of at least 10-15 events in each (merged) bin

after background subtraction. This allows us to treat the uncertainty on

each value of ε′(�xi) as Gaussian.
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Figure 5.11: The ε(EB
ω , E

B
D∗ , D0 → Kππ0) distribution for B̄0→ D∗+ωπ− Monte

Carlo events.

If it is necessary to merge nearby bins, the relevant bins in the generated and

reconstructed histograms are combined, and an efficiency is calculated for the

merged region of ε′ space. As the binned efficiency varies slowly over the entire

(EB
ω ,EB

D∗) space, this technique reduces the impact of low-statistics bins without

diminishing the accuracy of the final result.
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Figure 5.12: The ε(EB
ω , E

B
D∗ , D0 → K3π) distribution for B̄0→ D∗+ωπ− Monte

Carlo events.

5.3.2 Efficiency correction: c1(E
B
ω , cos θω)

The (EB
ω ,EB

D∗) efficiency calculated in the Section 5.3.1 makes no assumptions

about the decay of the ω and D∗ produced in B̄0 decay. We need to include

corrections to ε′ in order to account for any reconstruction dependence on the

polarization of the vector mesons. In this section we will address the correction

due to the decay of the ω, and our treatment of the D∗ follows in Section 5.3.3.

The polarization of the ω determines the orientation of the ω decay plane with

respect to its flight direction [48]. In the rest frame of the ω, we define the normal
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to the decay plane as

n̂ω ≡ p̂π+ × p̂π− , (5.15)

where p̂π± describes the momentum direction of the π± daughter in the ω rest

frame. The decay angle θω (see Figure 5.9) describes the angle between n̂ω and

the direction opposite the flight of the B̄0 in the ω rest frame.

When we examine Monte Carlo B̄0→ D∗+ωπ− events, we notice a significant

dip in reconstruction efficiency when the decay plane of the ω is nearly coincident

with its flight direction (near cos θω = 0), as shown in Figure 5.13. Signal re-
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Figure 5.13: Efficiency of B̄0→ D∗+ωπ− reconstruction using signal Monte Carlo
as a function of the ω decay angle. For this efficiency projection plot, the signal
events were generated with a phase space model, and the D∗ and ω are unpolar-
ized. The vertical scale is arbitrary, as the distributions are normalized to equal
area.
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construction efficiency clearly depends on the orientation of the ω → πππ0 decay

plane. We address this dependence using the correction

c1(E
B
ω , cos θω) → c1(E

B
ω , | cos θω|), (5.16)

where we have taken advantage of the symmetry in cos θω (Figure 5.13) in order

to reduce the statistical uncertainty in c1.

Following the procedure outlined in Section 5.3.1, we obtain a distribution for

generated and reconstructed signal B̄0→ D∗+ωπ− decays in (EB
ω ,| cos θω|) space.

The efficiency correction is given by

c1(E
B
ω , | cos θω|) =

N(B̄0→ D∗+ωπ−) reconstructed with (EB
ω , | cos θω|)

N(B̄0→ D∗+ωπ−) generated with (EB
ω , | cos θω|)

(5.17)

for each bin of (EB
ω ,| cos θω|) space. As before, it is useful to merge bins in order

to reduce the impact of the finite Monte Carlo sample size on our results. Taking

advantage of the increased statistics available in all c1 bins (as D0 decay modes

are merged), we lower the maximum bin error to 15%.

Finally, we normalize c1(E
B
ω , cos θω) so that the correction for any fixed value

of EB
ω is unity: ∑

| cos θω |
c1(E

B
ω , cos θω) ≡ 1, (5.18)

We present the normalized correction factor, c1, in Figure 5.14.
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Figure 5.14: The c1(E
B
ω , | cos θω|) correction for B̄0→ D∗+ωπ− Monte Carlo

events.

5.3.3 Efficiency correction: c2(E
B
D∗, cos θD∗, d)

In the D∗ rest frame, the pion is produced with very low momentum (less than

40 MeV). In the event that this pion is produced against the D∗ boost, the chance

of finding the soft π in our detector would most likely drop. These expectations

are confirmed in Figure 5.15, where we see that efficiency drops significantly as

cos θD∗ → 1. In contrast to our treatment of the ω decay, the efficiency is not

symmetric as a function of cos θD∗ .
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Figure 5.15: B̄0→ D∗+ωπ− reconstruction efficiency as a function of the D∗

decay angle θD∗ . For this efficiency projection plot, the signal events were gen-
erated with a phase space model, and the D∗ and ω are unpolarized. Each D0

distribution has been normalized to equal area (i.e. the vertical scale is arbitrary).

We determine c2(E
B
D∗ , cos θD∗ , d) in a manner similar to our work with the c1

correction, and we present the results in Figures 5.16-5.18. We notice that the

drop in c2 is most pronounced at low D∗ energies, where the daughter π (produced

anti-parallel to p̂BD∗ , see Figure 5.9) has very little momentum in the laboratory

frame. As the D∗ energy increases, this effect becomes less pronounced. As the

c2 correction varies rapidly in a small section of (EB
D∗ , cos θD∗) space, we restrict

ourselves to the region of phase space where the efficiency variation is less extreme.

The ignored region is indicated on each plot. Events in the ignored region of c2

are not considered for the efficiency correction. This has no impact on our test of
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Figure 5.16: The c2(E
B
D∗ , cos θD∗ , D0 → Kπ) correction for signal B̄0→ D∗+ωπ−

Monte Carlo events. We ignore events reconstructed outside the solid black bound-
ary lines.

factorization, as the ignored events have low D∗ energy (high m2
X), and therefore

lie outside the region that can be tested using τ data. We address the impact of

this exclusion in Section 5.4.1.
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Figure 5.17: The c2(E
B
D∗ , cos θD∗ , D0 → Kππ0) correction for signal

B̄0→ D∗+ωπ− Monte Carlo events. We ignore events reconstructed outside the
solid black boundary lines.

5.3.4 Validating the efficiency parameterization

In Section 5.2 we demonstrated that the mω sideband subtraction successfully

removes all but well-reconstructed B̄0→ D∗+ωπ− decays for the observed m2
X dis-

tribution. Within statistical precision, the observed m2
X distributions for various

background samples were consistent with zero signal events (as can be seen for

events in mES sideband in data in Figure 5.4).
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Figure 5.18: The c2(E
B
D∗ , cos θD∗ , D0 → K3π) correction for signal

B̄0→ D∗+ωπ− Monte Carlo events. We ignore events reconstructed outside
the solid black boundary lines.

In this Section, we again address the m2
X distribution produced from various

background samples. In our observations of the raw distributions in Section 5.2,

we saw no evidence for bias in the mω sideband subtraction. Returning to Equa-

tion 5.9, we need to assign a value for the correction factor β. In the event that the

mω sideband subtraction is unbiased after correcting for reconstruction efficiency,

we can set β = 1.
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As an example, we present the m2
X distributions for data events reconstructed

in the mES sideband, after correcting for reconstruction efficiency, in Figure 5.19.

We expect that the mω sideband subtraction will eliminate all non-ω events in

each of the background samples, leaving us with a flat distribution consistent with

zero events. We discovered that the mω sideband-subtracted m2
X distributions for

Monte Carlo and data background samples show no significant structure, but there

is a small bias in the background-subtracted yields if we assume β = 1. It turns

out that if β = 1, on average the mω sidebands overestimate the signal yield by

2.5%. Consequently, we set β = 0.975, with an estimated uncertainty of ±0.010.

At this point, we need to test the efficiency parametrization (and background

subtraction) using samples of Monte Carlo signal events. These samples are gen-

erated with a variety of ad-hoc kinematic properties:

1. The shape of the m2
X distribution is modified to more closely resemble data.

Our signal Monte Carlo does not account for the B0 → D∗ρ′, ρ′ → ωπ

decay, which is expected (from work by CLEO) to dominate our results for

m2
X < 4 GeV2.

2. We consider different polarizations for the D∗ and the ω. This change is not

meant to anticipate any specific behavior in data. Instead, we wish to test

106



Chapter 5. Analysis of B̄0→ D∗+ωπ− Decay

0

5

10

0 2 4 6 8 10
m2

X  (GeV2)

A
rb

it
ra

ry
 U

n
it

s

mω signal region
mω sideband

m2
X  (GeV2)

A
rb

it
ra

ry
 U

n
it

s

-2

0

2

4

0 2 4 6 8 10

Figure 5.19: Efficiency-corrected m2
X distributions for B̄0→ D∗+ωπ− events with

D0 → Kπ from the mES sideband in data. In the top plot, we give the m2
X

distributions for events with reconstructed mω in the signal and sideband regions.
The distribution for events in the mω sideband region has been scaled by a factor
of 4

7
. The bottom plot gives the results of the sideband subtraction, assuming

β = 1. The vertical scale is given in arbitrary units.

our ability to recognize and reconstruct potential decay angle distributions

as they might appear in data.

As an example, we present results for longitudinally polarized D∗ decay in Fig-

ure 5.20. We find that we are able to successfully reproduce the shape of the

parent distribution in all cases. Close examination of our results points to a small

bias introduced by the efficiency correction. This bias is caused by the large, but

finite, amount of simulated Monte Carlo B̄0→ D∗+ωπ− decays used to determine
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our reconstruction efficiency. Even though the uncertainty on ε(�x) is Gaussian,

distributions such as dΓ/dm2
X are obtained by dividing the observed distribution

by the efficiency (recall Equation 5.9):

N(m2
X) =

∑
signal

1

ε(�xi)
−

(
4

7
β

) ∑
sideband

1

ε(�xj)
, (5.19)

and the factor of 1/ε(�x) does not obey Gaussian statistics.

Fortunately, this bias is bounded by the measurement uncertainty for the re-

construction efficiency. Our deviation from the true efficiency is characterized by

the statistical uncertainty on the binned efficiency. Our decision to merge groups

of low-statistics bins in our determination of the reconstruction efficiency was mo-

tivated in part by the desire to minimize the size of this bias. In the limit of

infinite Monte Carlo sample size, the bias due to this effect would vanish.

In order to quantify the bias on the nominal result due to the finite amount of

signal Monte Carlo events available, we first generate a set of 400 new ε′, c′1. and

c′2 templates based on the nominal efficiency templates. If the measured efficiency

in a given bin of the nominal template is µ±σ, the corresponding efficiencies in the

new templates are drawn from a Gaussian distribution of mean µ and standard

deviation σ. We then determine the mean number of reconstructed signal events

in data (N(m2
X), see Equation 5.19) for each of the 400 new efficiency templates.

As expected, this mean overshoots the nominal result by a few percent (δ).
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We then repeat this procedure using signal Monte Carlo. One sample is desig-

nated as the “efficiency” sample, and is used to calculate the nominal “efficiency”

as well as the 400 new “efficiency” templates. These templates are then used on

a second sample of signal Monte Carlo which acts as “data”. In this fashion, we

are able to describe the bias in terms of the quantity δ. From these signal Monte

Carlo studies, we find that after applying the efficiency correction and subtract-

ing the mω sideband, the total number of events reconstructed using signal Monte

Carlo exceeds the true value by (0.6± 0.4) · δ. We correct our final results by this

amount, which is on the order of a few percent.
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Figure 5.20: Efficiency-corrected and mω sideband subtracted distributions for
modified B̄0→ D∗+ωπ− Monte Carlo events (described in the text). (Top row)
m2
X distribution; (Middle row) cos θω distribution; (Bottom row) cos θD∗ distribu-

tion. In these plots, the D∗ is longitudinally polarized, and each column represents
a different forced behavior for the ω: (Left) transverse and (Right) longitudinal
polarization. After correcting for reconstruction efficiency and applying the mω

sideband subtraction, we compare our results (red points) to the generated distri-
bution (open blue squares) in each plot. We correct the reconstructed m2

X values
for mω sideband events as described according to Equation 5.19, where we set
β = 0.975.
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5.4 Results and Systematics

After correcting for reconstruction efficiency and applying the background sub-

traction using the mω sidebands, we are able to determine the branching fraction,

them2
X distribution, the Dalitz plot (EB

ω ,EB
D∗) distribution, the mD∗π distribution,

and the polarization of the D∗ as a function of mX for B̄0→ D∗+ωπ− decay.

We first consider the branching fraction for B̄0→ D∗+ωπ− decay, which is

determined as follows:

B(B̄0→ D∗+ωπ−) ≡
∑

m2
X
N(m2

X)

NBB̄ × εCorr × ΠBF × ∆m2
X

, (5.20)

where
∑

m2
X
N(m2

X) describes the efficiency-corrected number of events remaining

after mω sideband subtraction (see Equation 5.19), NBB̄ describes the number of

Υ(4S) → BB̄ decays present in the BABAR dataset, and

ΠBF ≡ BF (ω → πππ0)×BF (D∗ → D0 π)×BF (D0 → Kπ,Kππ0, K3π) (5.21)

represents the product of the relevant branching fractions for reconstructed events.

The quantity εCorr summarizes the cut-based corrections to the reconstructed

efficiency determined from simulated Monte Carlo decays as discussed in Sec-

tion 5.1.6.

Before we extract the branching fraction, and other results, from reconstructed

B̄0→ D∗+ωπ− events, it is useful to discuss the systematic uncertainties associated

with our analysis.
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5.4.1 Systematic uncertainties

Evaluating the systematic uncertainties that are present in measurements of

B̄0→ D∗+ωπ− events is fairly straightforward. We may group our uncertainties

into two categories:

1. Bin-by-bin uncertainties, which vary as a function of m2
X ;

2. Global uncertainties, which do not depend on the value of m2
X .

We summarize these uncertainties below.

Recall from Section 5.3 that the B̄0→ D∗+ωπ− reconstruction efficiency is

stored as a set of two-dimensional histograms. This allows us to determine the

reconstruction efficiency in a model-independent way, as we evaluate the efficiency

at each point (bin) in the kinematically allowed region. Unfortunately, we are still

sensitive to effects introduced from using a finite sample of Monte Carlo events. In

Section 5.3.4 we investigated the nature of this bias. Creating 400 new efficiency

templates, we were able to express this bias in terms of the quantity

δ =
∑
m2
X

N(m2
X) − 1

400

400∑
i=1

⎛
⎝∑

m2
X

Ni(m
2
X)

⎞
⎠ , (5.22)

where Ni(m
2
X) represents the number of events reconstructed in a given bin of

m2
X after correcting for the efficiency using the ith (of 400) efficiency template and

performing the mω sideband subtraction.
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Studies of this effect using signal Monte Carlo events imply that we need to

correct our nominal yield by (0.6±0.4)·δ. In Table 5.4 we summarize the correction

to
∑

m2
X
N(m2

X) as a function of the D0 decay mode. This correction modifies the

results obtained for the B̄0→ D∗+ωπ− branching fraction, m2
X distribution, Dalitz

plot distribution, and mD∗π distribution by a few percent (The D∗ polarization

measurement is not affected as we compute a ratio of reconstructed events). Notice

that the correction varies according to the decay of theD0, as we do not expect δ to

be constant across all D0 modes. In addition, we examine the N(m2
X) distribution

D0 Decay Mode Bias Correction ± Systematic (%)
D0 → Kπ -4.0 ± 2.7
D0 → Kππ0 -3.5 ± 2.4
D0 → K3π -4.9 ± 3.3

Table 5.4: Bias (in %) due to finite signal Monte Carlo sample size, separated
by D0 decay mode.

in each bin of m2
X in order to determine the bin-by-bin measurement uncertainty.

We take the RMS of the Ni(m
2
X) distribution (in each bin ofm2

X) as the systematic

uncertainty for the given bin. We present the results of this study in Figure 5.21.

Overall, this systematic uncertainty is small when compared to the statistical error

in each bin of m2
X .

As mentioned in Section 5.3.3, we ignore a small region of (EB
D∗ ,cos θD∗) phase

space due to low acceptance. As a result, we miss some fraction of events beyond
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m2
X = 8.0 GeV2. The fraction of events lost depends on the polarization of the

D∗ in this region and reaches nearly 50% as ΓL/Γ → 1 above m2
X = 10 GeV2.

We rescale the number of events reconstructed at high values of m2
X in order

to account for lost events. We first calculate the scale factor needed in the case
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Figure 5.21: Bin-by-bin uncertainties for them2
X distribution due to finite Monte

Carlo sample size. At left, the uncertainty on each bin represents the uncertainty
due to finite signal Monte Carlo sample size. At right, this uncertainty is combined
in quadrature with the statistical error for each bin (black). The contribution from
the Monte Carlo statistical uncertainty can be seen as the (red) extension on the
nominal statistical uncertainty. The scale of the vertical axis is arbitrary.
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of fully longitudinally or transversely polarized D∗ mesons. We take the average

of these values as our correction factor and assign an uncertainty large enough

to cover both polarization extremes. For example, for 8.0 ≤ m2
X < 9.0 GeV2, we

obtain a scale factor of 1.32 for full longitudinal polarization (to account for a loss

of 24.4% of the events) and 1.03 if ΓL = 0 (2.8% of the events lost). We then

assign a correction factor of 1.18 ± 0.15, which increases the total signal yield by

(18 ± 13)% for 8.0 ≤ m2
X < 9.0 GeV2. These results are summarized in Table 5.5.

This correction has a very small impact on both our nominal results and the total

systematic uncertainty, as there are very few events in the data found at high

values of m2
X .

m2
X Range (GeV2) ΓL = Γ ΓL = 0 Correction Factor

8.0 - 9.0 24.4 2.8 1.18 ± 0.15
9.0 - 10.0 39.2 10.4 1.38 ± 0.26
10.0 - 11.0 46.8 21.6 1.58 ± 0.30

Table 5.5: Corrections to the event yield at high m2
X . The fraction of events

lost (in %) in bins of m2
X are given assuming fully longitudinally (ΓL = Γ) or

transversely (ΓL = 0) polarized D∗ mesons. From these results, we compute a
correction factor for the signal yield in this region. The correction factor is given
in the far right column.

Several of the systematic uncertainties for the analysis of B̄0→ D∗+ωπ− events

are independent of m2
X . We list these global uncertainties below, and summarize

our findings in Table 5.7.
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• At BABAR, it is estimated that the uncertainty on the reconstruction effi-

ciency of neutral pions is 3% per π0. This amounts to a 6% systematic

uncertainty on our results for events reconstructed with D0 → Kππ0, and

3% for the other modes. Combining D0 decay modes, we assign a systematic

uncertainty of 4.3% from this source.

• The uncertainty associated with the reconstruction of charged particles at

BABAR depends on the transverse momentum of the reconstructed track. Us-

ing a variety of control samples, we estimate a 0.6% (0.8%) uncertainty for

each track with transverse momentum above (below) 200 MeV in the lab

frame. Low momentum charged pions produced in D∗ decay carry an addi-

tional uncertainty. Neglecting the soft pion (from the D∗) for the moment,

we assign a systematic uncertainty of 3.1% for D0 → Kπ,Kππ0 decays and

4.3% for D0 → K3π decays. This yields a partial tracking systematic uncer-

tainty of 3.4% for all D0 modes. After we include the additional systematic

uncertainty associated with the reconstruction of the soft pion, we obtain a

total tracking systematic uncertainty of 5.3%.

• The uncertainty associated with particle identification at BABAR is calibrated

using a sample of D∗ → D0 π,D0 → Kπ decays. We assign a systematic

uncertainty of 2% for the kaon from the D0 decay.
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• In Section 5.1.6, we found small differences in the selection efficiency between

Monte Carlo and data. We adjust the Monte Carlo efficiency to account for

this discrepancy, and assign a systematic uncertainty to our results due to

this correction. We summarized our findings in Table 5.1, which we repeat

here (Table 5.6) for convenience. The systematic uncertainty associated

with the event selection criteria are 3.7% for D0 → Kπ,K3π, and 5.0% for

D0 → Kππ0.

Variable Correction Uncertainty (%)
mω 1.032 1.0
RCLEO none 2.1
mD0 none 1.0
Rel. wgt. 0.927 (Kππ0) 3.3 (Kππ0)
δm none none
θB + F 0.945 1.9
mES none none
∆E 0.972 (Kπ), 1.020 (Kππ0), 1.019 (K3π) 2.0

Table 5.6: Summary of the cut-based corrections applied to the Monte Carlo.
Unless otherwise specified, the correction applies to all D0 decay modes.

• The uncertainties associated with the world average D∗, D0, and ω branch-

ing fractions [8] contribute 5% to our systematic uncertainty.

• There is a 1.1% uncertainty on the number of Υ(4S) → BB̄ events in the

BABAR event sample. The procedure used to determine this value is discussed

in Reference [49].
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• Using signal Monte Carlo B̄0→ D∗+ωπ− events, we examined the effect of

reconstruction resolution on the overall normalization of the m2
X distribu-

tion. Instead of using detector-derived values (m2
X , EB

ω , EB
D∗ , etc.) for each

reconstructed B̄0→ D∗+ωπ− decay, we took the true (generated) values for

these quantities. By repeating our analysis using reconstructed values, we

are able to quantify the effects of reconstruction on our results. We found

that no bias is introduced by reconstruction resolution, and we assign a 1%

systematic uncertainty to account for this effect.

• The 1% uncertainty on the quantity β in Equation 5.9 introduces an un-

certainty on
∑

m2
X
N(m2

X) of 2.6%. We add this uncertainty to the total

systematic uncertainty.

Kπ Kππ0 K3π All D0

Signal MC sample size (Bias) 2.7 2.4 3.3 2.8
π0 reconstruction 3.0 6.0 3.0 4.3
Track reconstruction 5.0 5.0 6.1 5.3
Kaon identification 2.0 2.0 2.0 2.0
Event selection 3.7 5.0 3.7 4.3
BF (D∗, D0, ω) 2.3 6.8 4.7 5.0
N(BB̄) 1.1 1.1 1.1 1.1
Reconstruction resolution 1.0 1.0 1.0 1.0
mω sideband (β) 1.6 3.1 3.2 2.6
Total 8.4 12.4 10.5 10.5

Table 5.7: Global Systematic errors (in %) for B̄0→ D∗+ωπ− reconstruction as
a function of D0 decay mode.
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5.4.2 B̄0→ D∗+ωπ− branching fraction

We correct our event yield (
∑

m2
X
N(m2

X) in Equation 5.20) to account for the

bias introduced by the efficiency correction and to replace the events lost due to

low acceptance. Combining all D0 decay modes, we find

BF (B̄0→ D∗+ωπ−) = (2.88 ± 0.21(stat.) ± 0.31(syst.)) × 10−3,

where the total systematic uncertainty of 10.8% is the sum (in quadrature) of the

10.5% global systematic uncertainty (see Table 5.7) and the systematic uncertain-

ties that vary as a function of m2
X :

• The correction due to the removal of events in (EB
D∗ , cos θD∗) space: 0.3%.

• The bin-by-bin measurement uncertainty due to Monte Carlo sample size,

estimated to be 2.4% for all D0 modes.

These results are in good agreement with previous results from CLEO, (2.9 ±

0.3(stat.) ± 0.4(syst.)) × 10−3 [25].

5.4.3 dΓ/dm2
X distribution

The differential decay rate, normalized to the semileptonic width Γ(B0 →

D∗�ν), is presented in Figure 5.22. A common scale uncertainty of 11.3% is not

shown. This uncertainty combines a 4.2% uncertainty in Γ(B0 → D∗�ν) with
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the 10.5% uncertainty from the sources listed in Table 5.7. The bulk of the

data is concentrated in a broad peak around m2
X ≈ 2 GeV2, in the region of

ρ(1450) → ωπ.

We compare our results to previous results from CLEO, and factorization

predictions using τ− → ωπ−ντ decay data, in the bottom half of Figure 5.22. We

see no evidence for a breakdown in factorization up to the τ mass.
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Figure 5.22: (a) Data m2
X (where X = ωπ) distribution normalized to the

semileptonic width Γ(B → D∗�ν). The inner error bars reflect the statistical un-
certainties on the data. The total error bars include the m2

X -dependent systematic
uncertainties. A common 11.3% scale systematic uncertainty is not shown. (b)
Same as (a) but zoomed-in on the low m2

X region, where comparisons based on
factorization and τ data can be made. Also shown here are the results from the
CLEO analysis [25].
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5.4.4 B̄0→ D∗+ωπ−Dalitz plot

With the large number of BB̄ decays available at BABAR, it is possible to

determine the Dalitz plot distribution for B̄0→ D∗+ωπ− decay. We present the

background-subtracted and efficiency-corrected Dalitz plot for all D0 decay modes

in Figure 5.23. We can clearly see an enhancement around m2
X ≈ 2 GeV2 indi-

cating the presence of ρ(1450) → ωπ as seen in Figure 5.22 and expected from

previous work by the CLEO collaboration [25]. One other notable feature of

the decay distribution is the enhancement seen for D∗π masses around 2.5 GeV

(m2
D∗π ∼ 6.3 GeV2). This enhancement could be the result of the color-suppressed

decay B0 → D̄∗∗0ω, D̄∗∗0 → D∗−π+.

5.4.5 mD∗π distribution

The spectroscopy of D∗∗ states is shown in Figure 5.24. Four D∗∗ states are

expected, three of which can decay into D∗π and thus contribute to our signal

through B0 → D̄∗∗0ω decay, followed by D̄∗∗0 → D∗−π+. The states that decay

through a D-wave are expected to be narrow. These states are well established [8]:

• D1(2420): mass = 2422 ± 2 MeV, Γ = 19 ± 4 MeV

• D∗
2(2460): mass = 2459 ± 2 MeV, Γ = 23 ± 5 MeV.
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Figure 5.23: Background-subtracted and efficiency-corrected Dalitz plot for
B̄0→ D∗+ωπ−. The relative box sizes indicate the population of the bins. Black
boxes indicate positive values, white boxes indicate negative values, which can
occur because of statistical fluctuations in the subtraction procedure.

The broad D′
1 → D∗π state was first observed by the Belle collaboration in B →

D′
1π decays, with mD′

1
= 2427 ± 36 MeV, Γ = 384+130

−105 MeV [50]. They measured

BF (B− → D′
1π

−) × BF (D′
1 → D∗+π−) = (5.0 ± 1.1) × 10−4. For comparison,

B− → D∗0π− is about one order of magnitude larger.

According to HQET, if the broad enhancement seen in Figure 5.23 is the

result of the D′
1 → D∗π−, the decay is expected to proceed only via S-wave.
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Figure 5.24: The expected spectroscopy of excited charmed mesons. Figure
taken from Reference [50].

Consequently, we expect the population of efficiency-corrected and background-

subtracted events should be uniform with respect to cos θ∗∗, where θ∗∗ is defined

in the D∗π rest frame as the angle between the D∗ and the direction opposite the

flight of the B̄0. We present a plot of the efficiency-corrected and background-

subtracted mD∗π vs. cos θ∗∗ distribution in Figure 5.25. If we omit the region

dominated by ρ(1450) → ωπ decay (cos θ∗∗ < 0.5), we see that the mD∗π ∼ 2.5

GeV enhancement appears to be relatively uniform as a function of cos θ∗∗. This

is consistent with expectations for S-wave D′
1 → D∗π− decay.
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Figure 5.25: Plot of the D∗π mass vs. cos θ∗∗ for reconstructed events in data
after efficiency correction and mω sideband subtraction. All D0 modes have been
combined in this plot. The size of the boxes in the plot indicate the absolute
deviation from zero events. Solid boxes indicate positive values, and negative
values appear as open boxes.

In Figure 5.26 we present the efficiency-corrected and background-subtracted

mD∗π distribution for events with cos θ∗∗ < 0.5. The distribution is fit to the sum

of a relativistic Breit-Wigner and a 4th order polynomial. The fitted mass and

width of the Breit-Wigner in Figure 5.26 are m = 2477±28 MeV and Γ = 266±97
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MeV, respectively. These values are consistent with the parameters of the broad

D′
1 measured by the Belle collaboration. We repeated this fit in bins of cos θ∗∗
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Figure 5.26: Background-subtracted and efficiency-corrected D∗π mass distri-
bution with cos θD∗ < 0.5. The superimposed fit is described in the text.

in order to test the D′
1 S-wave decay hypothesis, and the results are summarized

in Table 5.8. Within statistical uncertainties, we find that the amplitude of the

Breit-Wigner is consistent with expectations for S-wave D′
1 → D∗+π− decay. If

we assume that the mD∗π ∼ 2.5 GeV enhancement is due to the color-suppressed

B̄0 → D′
1ω, with S-wave D′

1 → D∗+π− decay, we may use our results to extract

the branching fraction. The branching fraction is obtained using the fit for events

with cos θ∗∗ < 0.5, and scaling our result up by a factor of 4
3

in order to cover

the entire range of cos θ∗∗. This procedure neglects interference effects between
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cos θ∗∗ mean (MeV) width (MeV) Yield
−1.0 → −0.5 2463 ± 57 331 ± 200 14391 ± 7631
−0.5 → 0 2377 ± 126 484 ± 208 14414 ± 4688

0 → 0.5 2482 ± 42 296 ± 227 23943 ± 8397
−1.0 → 0.5 2477 ± 28 266 ± 97 42826 ± 12707

Table 5.8: Results for BW+P4 fit to the mD∗π distribution for efficiency cor-
rected, background subtracted events in data. All D0 modes have been combined
for these fits. The yields are in arbitrary units.

B̄0 → D′
1ω and B̄0→ D∗+ωπ−. We find

BF (B̄0 → D′
1ω) × BF (D′

1 → D∗+π−) = (4.1 ± 1.2 ± 0.4 ± 1.0) × 10−4. (5.23)

In this measurement, the first uncertainty is statistical and the second uncer-

tainty (10.8%) is due to uncertainties in common with the BF (B̄0→ D∗+ωπ−)

measurement. The final uncertainty arises from the following sources:

• The uncertainty on the shape of the background in Figure 5.26. We assume

different shapes for the background and observe the change in the yield of

the Breit-Wigner. From this study, we estimate the uncertainty due to this

effect is 10%.

• The uncertainties associated with the parameters of the D′
1 resonance mea-

sured by Belle. We fit the mD∗π distribution assuming the Belle values for

the mean and width of the Breit-Wigner and vary these numbers within

their quoted uncertainties. We take the maximum deviation from our nom-

inal yield (22%) as the systematic uncertainty.
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The branching fraction in Equation 5.23 is comparable to the branching fractions

for B̄0 → D(∗)0ω [8]. We see no evidence for decays into the two narrow D∗∗

resonances at 2420 and 2460 MeV. This is in contrast to the color-favored B− →

D∗∗0π− decays, where the three D∗∗ modes contribute with comparable strengths,

and where the B− → D′
1π

− branching fraction is one order of magnitude smaller

than that of B− → D(∗)0π−.

The presence of B̄0 → D′
1ω would affect the comparison of the data with the

theoretical predictions of Fig. 5.22. As can be seen in Fig. 5.23, B̄0 → D′
1ω would

mostly contribute at high m2
X values, while the factorization test can be carried

out only where the τ data is available; i.e., for m2
X < 3 GeV2. Based on the

estimated branching fraction of B̄0 → D′
1ω, and neglecting interference effects,

the contribution of B̄0 → D′
1ω to the m2

X distribution for values below 3 GeV2

would be less than 5%.

5.4.6 D∗ polarization

If the decay B̄0→ D∗+ωπ− proceeds dominantly through B̄0 → D∗+ρ(1450)−,

with ρ(1450)− → ωπ−, a measurement of the polarization of the D∗ can provide

a further test of factorization and HQET [51]. The angular distribution in the

D∗+ → D0π+ decay can be written as a function of three complex amplitudes H0

128



Chapter 5. Analysis of B̄0→ D∗+ωπ− Decay

(longitudinal), and H+ and H− (transverse), as

dΓ

d cos θD∗
∝ 4|H0|2 cos2 θD∗ + (|H+|2 + |H−|2) sin2 θD∗ , (5.24)

where θD∗ is the decay angle of the D∗ defined earlier. The longitudinal polariza-

tion fraction

ΓL
Γ

=
|H0|2

|H0|2 + |H+|2 + |H−|2 , (5.25)

can then be extracted using Equation 5.24 from a fit to the angular distribution

in the decay of the D∗.

We divide our dataset in ranges of m2
X , and perform binned chi-squared fits to

the efficiency-corrected, background-subtracted, D∗-decay angular distributions.

In Figure 5.27, we present the results of the fit for events in the range specified by

the initial CLEO analysis: 1.1 < mX < 1.9 GeV. In these measurements, nearly

all of the systematic uncertainties discussed in Section 5.4.1 cancel. As a result,

the m2
X -dependent uncertainty due to the finite Monte Carlo sample size is the

dominant systematic uncertainty, and typically results in an uncertainty on ΓL/Γ

at the few percent level. We also include a systematic uncertainty due to the

parameter β in Equation 5.9. This uncertainty is about one order of magnitude

smaller.

The measured longitudinal polarization fractions as a function of mX are pre-

sented in Table 5.9. Near the mean of the ρ(1450) resonance (1.1 < mX < 1.9
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GeV), we find ΓL/Γ = 0.654 ± 0.042(stat.) ± 0.016(syst.). This result is in

agreement with the previous result in the same mass range from the CLEO col-

laboration, ΓL/Γ = 0.63 ± 0.09 [25]. It is also in agreement with predictions

based on HQET, factorization, and the measurement of semileptonic B-decay
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Figure 5.27: The cos θD∗ distribution for efficiency-corrected and background-
subtracted events in data with 1.1 ≤ mX < 1.9 GeV. All D0 modes have been
combined in this Figure. The full fit (adding the longitudinal and transverse
components) is represented by the solid black line. The longitudinal component of
the fit is taken as the difference between the full fit and the transverse component
(dashed blue). The scale of the vertical axis is arbitrary.
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form factors, ΓL/Γ = 0.684 ± 0.009 [28], assuming that the decay proceeds via

B̄0 → D∗+ρ(1450)−, ρ(1450)− → ωπ−. These results are shown in Fig. 5.28.

mX range (GeV) ΓL/Γ
below 1.1 0.46 ± 0.19 ± 0.06
1.1 - 1.35 0.78 ± 0.06 ± 0.02
1.35 - 1.55 0.73 ± 0.07 ± 0.02
1.55 - 1.9 0.44 ± 0.10 ± 0.04
1.9 - 2.83 0.66 ± 0.18 ± 0.08

Table 5.9: Results of the D∗ polarization measurement in bins of mX . The first
uncertainty is statistical and the second is systematic.

As m2
X increases, we see from Table 5.9 that the D∗ polarization measurement

falls off from HQET and factorization predictions for B → D∗XV decay, where

XV is a vector meson. In the m2
X region dominated by ρ(1450) → ωπ, we may

assume the decay of the B̄0 is well-described by B̄0 → D∗+ρ(1450)−, and it is

useful to test factorization in this region. Away from the ρ(1450), we would not

expect the D∗ polarization results to agree with predictions that assume a two-

body vector-vector decay of the B.
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Figure 5.28: The fraction of longitudinal polarization as a function ofm2
X , where

X is a vector meson. Shown (as a triangle) is the B̄0→ D∗+ωπ− polarization
measurement for events with 1.1 < mX < 1.9 GeV (m2

X = m2
ρ′ , where ρ′ ≡

ρ(1450)), as well as earlier measurements (indicated by open circles) of B̄0 →
D∗+ρ− [24], B̄0 → D∗+D∗− [26], and B̄0 → D∗+D∗−

s [27]. The shaded region
represents the prediction (± one standard deviation) based on factorization and
HQET, extrapolated from the semileptonic B̄0 → D∗+�−ν̄ form factor results [28].
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5.5 Conclusions

We have studied the decay B̄0→ D∗+ωπ− with a data sample that is approx-

imately 20 times than what was previously available. The results reported here

have been published in Reference [42].

We measure the branching fraction

BF (B̄0→ D∗+ωπ−) = (2.88 ± 0.21(stat.) ± 0.31(syst.)) × 10−3, (5.26)

and the invariant mass spectrum of the ωπ system is found to be in agreement with

theoretical expectations based on factorization and τ decay data. The Dalitz plot

for this mode is very non-uniform, with most of the rate at low ωπ mass. We also

find an enhancement for D∗π masses broadly distributed around 2.5 GeV. This

enhancement could be due to color-suppressed decays into the broadD′
1 resonance,

B̄0 → D′
1ω, followed by D′

1 → D∗+π−, with a branching fraction comparable to

B̄0 → D(∗)0ω.

We also measure the fraction of D∗ longitudinal polarization in this decay. In

the region of ωπ mass between 1.1 and 1.9 GeV, where one expects contributions

from B̄0 → D∗+ρ(1450)−, ρ(1450)− → ωπ−, we find ΓL/Γ = 0.654±0.042(stat.)±

0.016(syst.), in agreement with predictions based on HQET, factorization, and the

measurement of semileptonic B-decay form factors.
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5.5.1 Future prospects

The current BABAR data sample, accumulated through August 2006, contains

close to double the number of BB̄ events used in this analysis. The factorization

comparison using the m2
X distribution still requires more data between 2 to 3

GeV2 in order to effectively probe the role of perturbative QCD in factorization.

Continued analysis of this decay mode could reduce statistical uncertainties to a

point where more rigorous comparisons could be made. Additionally, the broad

enhancement seen at mD∗π ≈ 2.5 GeV could be explored in more detail, which

could lead to more information regarding excited charm mesons.
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Chapter 6

Introduction to CP Violation

A funny thing happened in 1964. At the Alternating Gradient Synchrotron

in Brookhaven, the group of Christenson, Cronin, Fitch, and Turlay observed the

decay KL → π+π− [52], which was expected to be forbidden. Awarded the Nobel

Prize for this work in 1980, Fitch notes in his Nobel lecture that

...Professor Cronin and I are being honored for a purely experimental
discovery, a discovery for which there were no precursive indications,
either theoretical or experimental. It is a discovery for which after
more than 16 years there is no satisfactory accounting. But...it touches
on our understanding of nature at its deepest level [53].

This discovery of CP violation in the kaon system, although unexpected, has been

a great benefit to physicists. This feature of Nature is needed to help explain the

dominance of matter in the universe [54], although it is worth noting that the

Standard Model mechanism for CP violation in the quark sector cannot account

for the matter-antimatter imbalance we see in the universe today [4].
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We may test the Standard Model of particle interactions by measuring the

effects of CP violation in the B meson system and comparing experimental results

to Standard Model predictions. In this Chapter, I will introduce the Standard

Model picture of CP violation and discuss the first observation of this phenomena

in the K system. I will then discuss the CP observable sin 2β and the benefits

of the B meson system. In preparing this introduction, I found the review by

Richman [14] to be particularly useful.

6.1 Terminology and First Observation of CP

Violation

Symmetries of a given physical system are of great interest in physics. As an

example, the equations of motion in a system that is spherically symmetric lead

to angular momentum conservation. In particle physics, we focus our attention

on three discrete transformations that are potential symmetries of a field theory

Lagrangian [55]:

• Charge conjugation, represented by the unitary operator C, which converts

a particle to its antiparticle;
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• Parity inversion, represented by the unitary operator P , inverts the spatial

coordinates of the system: (t, �x) → (t,−�x);

• Time inversion, which reverses the flow of time in the interaction. Repre-

sented by the operator T , it sends (t, �x) → (−t, �x).

All observations to date indicate that the operation CPT is a perfect symmetry

of Nature. All forces, with the exception of the weak interaction, are symmetric

with respect to each of the C, P , and T transformations individually. C and P

are violated by the weak interaction, but before 1964 there was no evidence that

CP was not conserved.

If we consider a particle M with four-momentum (E, �p) and helicity λ, then

under parity inversion

P |M(E, �p, λ)〉 = ηP |M(E,−�p,−λ)〉. (6.1)

As the parity transformation reverses the momentum direction without affecting

spin, the helicity λ = �s · p̂ reverses sign under parity. We require P to satisfy the

conditions P 2 = 1 and P = P−1 = P †, which forces ηP = ±1.

Parity violation in the weak interaction was first observed in the β-decay of

cobalt nuclei:

60Co → 60Ni + e− + ν̄e.
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The nuclear spins in the 60Co sample were aligned using an external magnetic field,

and an asymmetry was observed in the direction of the emitted electrons [56]. This

indicates that the electrons have a preferred emission direction, which violates

parity conservation.

Under charge conjugation, we find

C|M(E, �p, λ)〉 = ηC |M̄(E, �p, λ)〉, (6.2)

where M̄ is the antiparticle of M , and the momentum and helicity are unchanged

in the operation. Paralleling our treatment of P , C2 = 1 and C = C−1 = C†

implies

|M〉 = C2|M〉 = ηC(M)|M̄〉 = ηC(M)ηC(M̄)|M〉 (6.3)

so that ηC(M)ηC(M̄) = 1, leaving ηC(M) = eiθC , or ηC(M) = ηC(M̄) = ±1 if M

is an eigenstate of C.

It is easy to see that the weak interaction violates both parity and charge

conjugation invariance when we examine interactions involving a neutrino. Ex-

perimental evidence indicates that only left-handed neutrinos νL (or right-handed

anti-neutrinos ν̄R) participate in the weak interaction. Consequently,

Γ(π+ → µ+νL) �= Γ(π+ → µ+νR) = 0 violates P

Γ(π+ → µ+νL) �= Γ(π− → µ−ν̄L) = 0 violates C,
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where in this case ν is a muon neutrino. This result is a feature of the V − A

structure of the charged weak current, which suppresses final states with the

“wrong” helicity configuration. Parity inversion and charge conjugation convert a

left-handed neutrino into a right-handed neutrino or a left-handed anti-neutrino,

respectively. Both of these final states are forbidden, in the limit of zero neutrino

mass, by the weak interaction. However, the combined transformation CP

CP |M(E, �p, λ)〉 = ηCP |M̄(E,−�p, λ)〉, (6.4)

where ηCP = ηC ·ηP , results in the allowed configuration νL → ν̄R for the outgoing

neutrino.

In order to see that CP is not conserved by the weak interaction, let us consider

the kaon system, where CP violation was first observed. This system has a neutral

pseudoscalar meson (K0 = s̄d) which is distinct from its antiparticle (K̄0 = sd̄).

Both particles may decay to a two-pion final state (π+π− or π0π0). The 2π system

is in an eigenstate of CP with eigenvalue

ηCP (ππ) = (−1)�(ηP )2ηCη
∗
C = 1, (6.5)

where � = 0 is the orbital angular momentum of the system. Neither the K0 nor

the K̄0 mesons are eigenstates of CP :

CP |K0〉 = e2iθCP |K̄0〉 CP |K̄0〉 = e−2iθCP |K0〉. (6.6)
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If we assume that CP is conserved by the weak interaction, we can construct two

orthogonal CP eigenstates with eigenvalues ηCP = ±1:

KS ≡ |K(CP+)〉 =
1√
2
(|K0〉 + e2iθCP |K̄0〉)

KL ≡ |K(CP−)〉 =
1√
2
(|K̄0〉 − e2iθCP |K0〉) (6.7)

If CP is conserved in K0 decays, then the amplitude for K0 → ππ decay can

be described as follows:

A2π ≡ 〈2π|H|K0〉 = e2iθCP 〈2π|H|K̄0〉 ≡ e2iθCP Ā2π, (6.8)

where we have taken advantage of the fact that (CP )(CP )† = 1 by definition, and

the that the operator for a conserved quantity commutes with the Hamiltonian.

It follows that

A±
2π = 〈2π|H|K(CP±)〉

=
1√
2
(〈2π|H|K0〉 ± e2iθCP 〈2π|H|K̄0〉)

=
1√
2
(A2π ± e2iθCP Ā2π)

=
1√
2
(A2π ± e2iθCP e−2iθCPA2π)

=
1√
2
A2π(1 ± 1),
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which implies that the ηCP = −1 eigenstate (KL) cannot decay into two pions. In

reality, the long-lived KL decays into a two pion final state with branching ratios

BF (KL → π+π−) = (20.90 ± 0.25) × 10−4

BF (KL → π0π0) = (9.32 ± 0.12) × 10−4 [8],

which was the first evidence that the weak interaction violates CP conservation.

6.2 CP Violation and the CKM matrix

In the Standard Model, the charged weak current operator J µ couples the W

boson to quarks:

J µ ≡
∑
i,j

ūiγ
µ1 − γ5

2
Vijdj. (6.9)

The indices i, j run over the three quark generations, and the operators ui(di)

annihilate up(down)-type quarks or create their antiparticles. The constants Vij

are elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [57, 58].

The CKM matrix is a unitary matrix that represents a “rotation” from the

mass eigenstates (d, s, b) to a new set of weak eigenstates (d′, s′, b′):⎛
⎜⎜⎜⎜⎜⎜⎝

d′

s′

b′

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

d

s

b

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.10)
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The charged weak current then couples to the “rotated” quark states

(
u

d′

) (
c

s′

) (
t

b′

)
.

To a good approximation, the CKM matrix is diagonal, so that the transitions

d→ u, c→ s, and t→ b are dominant. However, none of the off-diagonal elements

are exactly zero. This leads to weak transitions that span quark generations and,

as it turns out, produce CP violation in the quark sector.

The CKM elements, and the fermion mass terms, appear in the Standard

Model as couplings of fermions to the Higgs field [59]. These Yukawa terms in the

Lagrangian are not required to preserve quark flavor:

LY ukawa =
∑
i,j

[
Yij(ū

i
L d̄iL)φ†ujR + Y ′

ij(ū
i
L d̄iL)φd

j
R + herm. conj.

]
, (6.11)

where the indices i, j run over the quark generations, L and R represent the left-

and right-handed components of the quark fields, and the Yukawa couplings are

given by the terms Yij and Y ′
ij.

In the Standard Model, the complex Higgs field φ acquires a vacuum expecta-

tion value from spontaneous breaking of SU(2) symmetry,

φ(x) ≡
(
φ+

φ0

)
→ 1√

2

(
0

v +H(x)

)
, (6.12)

where v is the Higgs vacuum expectation value and the field H(x) corresponds

to the Higgs boson. After spontaneous symmetry breaking of the Higgs field, the
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Lagrangian is modified:

LY ukawa =
∑
i,j

[
Yijū

i
Lu

j
R + Y ′

ijd̄
i
Ld

j
R + herm. conj.

] · 1√
2

(v +H(x)) . (6.13)

The terms proportional to v couple to the left- and right-handed components of

the quark fields, thereby introducing mass terms to the Lagrangian

mij = − v√
2
Yij and m′

ij = − v√
2
Y ′
ij.

We may determine the mass of the quarks by diagonalizing the quark mass matri-

ces mij and m′
ij . This feat may be accomplished using a set of unitary matrices.

The CKM matrix is a product of these matrices, and is unitary by construction.

By convention, we define the CKM matrix to act on the down-type quarks.

At present, the values of the CKM matrix elements can only be determined

by experiment. They must be taken as inputs to the Standard Model, as we

mentioned in Chapter 1. We might guess from Equation 6.10 that we need to

experimentally determine the values of all nine CKM elements, but these elements

can be completely determined in terms of only four real, independent parameters

in the Standard Model:

• An arbitrary n × n unitary matrix has 2n2 real parameters, but not all

of these parameters are independent. There are n constraints due to the

normalization of each column, and n(n− 1) constraints from orthogonality
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relations between each pair of columns. This leaves a total of n2 independent

real parameters.

• As physical interactions are not affected if we attach a phase factor to each

of the quark operators (u → ueiθu), not all of the n2 parameters are phys-

ically significant. In fact, 2n − 1 phases, where n is the number of quark

generations, can be absorbed by our ability to select phases for the quark

fields. As a result, there are n2 − (2n−1) = (n−1)2 independent physical

parameters in the CKM matrix for n quark generations. As n = 3 in the

Standard Model, this implies the nine CKM elements can be expressed in

terms of four independent physical (real) parameters.

The standard parameterization of the CKM matrix in the Standard Model ex-

presses the nine CKM elements in terms of three rotation angles (θ12, θ13, and

θ23) and one phase δ [60]:

Vij =

⎛
⎜⎜⎜⎜⎜⎜⎝

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.14)

where cij ≡ cos θij and sij ≡ sin θij .

In the Standard Model, CP violation in the quark sector originates from the

phase factor δ in Equation 6.14. If δ = 0, then all nine CKM elements would
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be real and CP would be conserved. In addition, with fewer than three quark

generations, the phase factor vanishes. It turns out that the Standard Model only

provides a mechanism for CP violation in the event that we have at least six

quarks.

In order to demonstrate the importance of three quark generations with regards

to CP violation, let us return briefly to K0/K̄0 → π+π− decay. If there were only

two quark generations, then the two-generation quark mixing matrix is entirely

real and can be expressed in terms of a single rotation angle θC :⎛
⎜⎜⎝ d′

s′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ Vud Vus

Vcd Vcs

⎞
⎟⎟⎠

⎛
⎜⎜⎝ d

s

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ cos θC sin θC

− sin θC cos θC

⎞
⎟⎟⎠

⎛
⎜⎜⎝ d

s

⎞
⎟⎟⎠ . (6.15)

θC is known as the Cabibbo angle, and sin θC ≈ 0.22 [57]. Ignoring penguin decay,

the interference between K mixing and direct decay (See Feynman diagrams for

K̄0 → π+π− decay in Figure 6.1) yields decay amplitudes that are of the form

A2π ≡ A(K0 → π+π−) = c1 · V ∗
usVud + c2 ·

(
V ∗
csVcd
VcsV ∗

cd

)
VusV

∗
ud

Ā2π ≡ A(K̄0 → π+π−) = c1 · VusV ∗
ud + c2 ·

(
VcsV

∗
cd

V ∗
csVcd

)
V ∗
usVud (6.16)

where the coefficients c1 ≡ |c1|eiδ1 and c2 ≡ |c2|eiδ2 (δ1 and δ2 are commonly

called strong phases) describe various QCD effects. The strong phases (and by

extension, c1 and c2) do not change sign under CP .
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Consequently, the difference in the decay rates is proportional to

|Ā2π|2 − |A2π|2 = 4 · Im(c1c
∗
2) · Im

[
(V ∗

usVud)
2VcsV

∗
cd

V ∗
csVcd

]
. (6.17)

The unitarity of the CKM matrix requires V ∗
usVud + V ∗

csVcd = 0, and so there can

be no CP asymmetry in this decay.

π+

π−

K̄0
s u

d̄

W −

(a)

K̄0 π−

π+

s
u, c

ū, c̄

d̄

W − W +

s̄

d

W +

ū

(b)

Figure 6.1: Tree and Mixing Feynman diagrams for K̄0 → π+π− decay. In (a),
the K̄0 decays to π+π− directly. In (b), the initial K̄0 mixes, and the resulting
K0 decays to the π+π− final state. Note that only one mixing diagram is shown
as an example.

6.3 The Wolfenstein Parameterization

Before we continue, it is useful to introduce a common representation of the

CKM matrix, proposed by Wolfenstein [61], that takes advantage of the experi-

mental revelation that there is a hierarchy in the rotation angles:

sin θ12 � sin θ23 � sin θ13. (6.18)
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Expanding in terms of λ ≡ sin θ12 = sin θC , we obtain

VCKM ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1 − 1
2
λ2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

+ O(λ4), (6.19)

where the terms A, ρ, and η are real numbers that are of order unity.

The unitarity of the CKM matrix produces useful relations between the various

CKM elements. One such relation is of particular interest, where all the terms in

the sum are of order λ3:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (6.20)

This relation may be represented as a triangle in the complex plane, as shown in

Figure 6.2. In the Wolfenstein parameterization, the vertices of this “Unitarity

Triangle” are (0,0), (1,0), and (ρ,η).

The terms that produce CP violation in the Standard Model are proportional

to the quantity [59]

JCP = |Im(VijV
∗
ilV

∗
kjVkl)|, where i �= k, j �= l. (6.21)
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(ρ, η)

(0, 0) (1, 0)

α

βγ

VcdV ∗
cb|VcdV ∗
cb|

VudV ∗
ub|VcdV ∗
cb|VtdV ∗

tb|VcdV ∗
cb|

Figure 6.2: Representation in the complex plane of the triangle formed by
VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 in the Wolfenstein parameterization.

If we define the quantities z1 = VijV
∗
il and z2 = VkjV

∗
kl, then Im(z1z

∗
2) is pro-

portional to the area of a triangle with sides z1 and z2. In the Wolfenstein

parametrization, this implies

JCP ≈ A2ηλ6, (6.22)

and so CP violation in the Standard Model requires η to be nonzero.

There are five other triangles, besides the one already mentioned, that are

determined from the unitarity relations between the various rows and columns

of the CKM matrix. In fact, we may conclude from Equation 6.21 that all six

unitarity triangles have the same area. The Unitarity Triangle in Figure 6.2

receives special attention as it is the only triangle where all three sides are of
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equal order of magnitude, and as a result it should be easier to notice CP -violating

effects.

6.4 CP Violation in B0 → J/ψ KL decays

In order to test the Standard Model picture of CP violation, we need to

measure the various elements of the CKM matrix, as well as the angles α, β, and

γ of the Unitarity Triangle, with good precision. Any experimental results that

contradict Standard Model predictions will point to some new breed of physics.

In the Standard Model, CP violation naturally manifests itself if any of the

elements of the CKM matrix are complex. For a given decay, CP violation may

appear in one (or more) of the following forms [14]:

• CP Violation in decay, where the rate for a given decay process differs from

the rate for its CP -conjugate process;

• CP Violation in mixing, where the magnitude for a P 0 → P̄ 0 transition

differs from the magnitude for the conjugate P̄ 0 → P 0 transition.

• CP Violation in the interference between mixing and decay.

CP violation can only occur if more than one amplitude for a given process

is present, where the amplitudes must interfere in order to produce CP -violating
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effects. This situation is readily available in the neutral B system, provided there

exists a final state Xf that can be reached directly by B0 and B̄0 decay. In

this case, the amplitude for direct decay B0 → Xf interferes with the amplitude

for B0/B̄0 mixing followed by B̄0 → Xf decay. Consequently, the 3rd form of

CP violation listed above is a powerful probe of the Standard Model due to the

favorable rate of B0/B̄0 mixing (nearly 20% of the time, a produced B0 decays

as a B̄0 [8]), so that the interfering amplitudes are of comparable size. This is a

tremendous benefit, as the associated asymmetries can be very large.

6.4.1 B0/B̄0 mixing

The phenomenon of mixing, when a particle oscillates into its own antiparti-

cle, can readily occur in Nature as a consequence of the weak interaction. The

dominant mixing diagrams for the B0 system are shown in Figure 6.3.

(a)

B̄0

b

d̄

u, c, t ū, c̄, t̄

d

b̄

B0

W −

W +

(b)

B̄0

b

d̄

u, c, t

ū, c̄, t̄

d

b̄

B0
W − W +

Figure 6.3: Dominant Feynman diagrams responsible for B0 − B̄0 mixing. Due
to its large mass, the top quark is the major contributor to the loop.
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Let us begin with a generic linear combination of the flavor eigenstates,

ψ(t) = a(t)|B0〉 + b(t)|B̄0〉, (6.23)

which satisfies the time-dependent Schrödinger equation

H

(
a(t)

b(t)

)
=

⎛
⎜⎜⎝ H11 H12

H21 H22

⎞
⎟⎟⎠

(
a(t)

b(t)

)
= i

∂

∂t

(
a(t)

b(t)

)
. (6.24)

The Hamiltonian (H) is not Hermitian, as we have ignored the final state particles

produced in the decay of the B0/B̄0 mesons. We may express the Hamiltonian as

the sum of two Hermitian matrices, as follows:

H ≡

⎛
⎜⎜⎝ H11 H12

H21 H22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ M M12

M∗
12 M

⎞
⎟⎟⎠− 1

2

⎛
⎜⎜⎝ Γ Γ12

Γ∗
12 Γ

⎞
⎟⎟⎠

= M − i

2
Γ. (6.25)

The matrices M and Γ are referred to as the mass and decay matrices, respectively.

H11 = H22 is required by CPT invariance [62], but there are no requirements

placed on H12 and H21. The off-diagonal elements of the mass and decay matrices

are due to B0 ↔ B̄0 transitions via off-shell (virtual) or on-shell intermediate

states, respectively. B0B̄0 mixing in the Standard Model is dominated by the

virtual top quark in box diagrams (Figure 6.3), which implies that |M12| � |Γ12|

and thus H12 = M12 to a good approximation.
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The eigenstates of the Hamiltonian are of the form

|B0
±〉 =

1√|p|2 + |q|2 (p|B0〉 ± q|B̄0〉), (6.26)

and solving for the eigenvalues of the Hamiltonian in Equation 6.24, we find

(
q

p

)2

=
H21

H12
=
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

,

µ± = H11 ±
√
H12H21 ≡M± − i

2
Γ±. (6.27)

where M± = M ± Re
√
H12H21 and Γ± = Γ ∓ Im

√
H12H21 are both real.

The time evolution of the states that are produced as either a pure B0 (|B0(t)〉)

or B̄0 (|B̄0(t)〉) is given by

|B0(t)〉 = f+(t)|B0〉 +

(
q

p

)
f−(t)|B̄0〉

|B̄0(t)〉 =

(
p

q

)
f−(t)|B0〉 + f+(t)|B̄0〉, (6.28)

where

f±(t) =
1

2
(e−iM+te−Γ+t/2 ± e−iM−te−Γ−t/2). (6.29)

As time passes, particle and antiparticle states mix, so that the physical states

are neither a pure |B0〉 nor a pure |B̄0〉 according to Equation 6.28.

In the neutral B system, we may safely set the lifetime difference ∆Γ = Γ− −

Γ+ to zero. This allows us to express the functions f±(t) in terms of the mass

difference ∆md = M−−M+ (which is greater than zero by choosing M− to be the

152



Chapter 6. Introduction to CP Violation

heavier state) and M = (M+ +M−)/2:

f+(t) = e−iMte−Γt/2 cos
∆mdt

2

f−(t) = ie−iMte−Γt/2 sin
∆mdt

2
. (6.30)

The evolution of an initially pure B0 or B̄0 state over time is then given by

|B0(t)〉 = e−iMte−Γt/2

[
cos

(
∆mdt

2

)
|B0〉 + i

q

p
sin

(
∆mdt

2

)
|B̄0〉

]

|B̄0(t)〉 = e−iMte−Γt/2

[
i
p

q
sin

(
∆mdt

2

)
|B0〉 + cos

(
∆mdt

2

)
|B̄0〉

]
. (6.31)

We see from Equation 6.31 that the frequency of B0 − B̄0 oscillations is described

by ∆md · t = (∆md/Γ) · (t/τB), where τB is the lifetime of the B0. As the ratio

∆md/Γ is near unity, the B0 − B̄0 mixing rate is roughly equivalent to the B0

lifetime. As a result, it is likely that a B0/B̄0 will change into its antiparticle

before decaying.
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6.4.2 CP Violation in mixing and decay

If we consider the decay of the physical B0/B̄0 states to a common final state

(that we take to be an eigenstate of CP , with eigenvalue ηCP = ±1), we obtain

the decay amplitudes

A(B0(t) → fCP ) ≡ 〈fCP |H|B0(t)〉

= e−iMte−Γt/2

× [〈fCP |H|B0〉 cos

(
∆mdt

2

)
+

i
q

p
〈fCP |H|B̄0〉 sin

(
∆mdt

2

)
]

A(B̄0(t) → fCP ) ≡ 〈fCP |H|B̄0(t)〉

= e−iMte−Γt/2

× [i
p

q
〈fCP |H|B0〉 sin

(
∆mdt

2

)
+

〈fCP |H|B̄0〉 cos

(
∆mdt

2

)
]. (6.32)

In Equation 6.32 we see two contributing amplitudes whose interference can pro-

duce a CP asymmetry, which we can express in terms of the difference between

the B0/B̄0 → fCP decay rates. If we rewrite these equations in terms of the ratio

of amplitudes

λ =

(
q

p

)
· 〈fCP |H|B̄0〉
〈fCP |H|B0〉 , (6.33)
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then we may express the probability for an initially pure B0 state to decay to fCP

in the following way:

|〈fCP |H|B0(t)〉|2 = e−Γt|〈fCP |H|B0〉|2

× [cos2

(
∆mdt

2

)
+ |λ|2 sin2

(
∆mdt

2

)
−

2 Im λ · cos

(
∆mdt

2

)
sin

(
∆mdt

2

)
]

= e−Γt|〈fCP |H|B0〉|2 × [
1

2
(1 + |λ|2) +

1

2
(1 − |λ|2) cos (∆mdt) − Im λ · sin (∆mdt)]. (6.34)

In a similar fashion, the probability for an initially pure B̄0 state to decay to the

final state fCP is given by

|〈fCP |H|B̄0(t)〉|2 =

∣∣∣∣pq
∣∣∣∣
2

e−Γt|〈fCP |H|B0〉|2 × [
1

2
(1 + |λ|2) −

1

2
(1 − |λ|2) cos (∆mdt) + Im λ · sin (∆mdt)]. (6.35)

We can use Equations 6.34 and 6.35 to calculate the time-dependent CP asym-

metry. As Γ12 �M12, we may simplify the results of Equation 6.27:

q

p
≡

(
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

) 1
2

→
√
M∗

12

M12

, (6.36)

which implies that, to a good approximation, | q
p
| = 1. This fact simplifies our

calculation of the time-dependent CP asymmetry considerably:

ACP ≡ |〈fCP |H|B0(t)〉|2 − |〈fCP |H|B̄0(t)〉|2
|〈fCP |H|B0(t)〉|2 + |〈fCP |H|B̄0(t)〉|2

=
(1 − |λ|2) cos (∆mdt) − 2 Im λ · sin (∆mdt)

1 + |λ|2 . (6.37)
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6.4.3 B0 → J/ψ KL decay

In order to calculate the time-dependent CP asymmetry as given in Equa-

tion 6.37, we need to determine the value of λ (see Equation 6.33), which depends

on the final state fCP . For B0 → J/ψK0 decay, the tree diagram (Figure 6.4) is

expected to dominate the direct decay to the J/ψK0 final state1. This simplifies

matters, as we may write

〈fCP |H|B0〉 = |A| · ei(δS+φW )

〈fCP |H|B̄0〉 = 〈fCP |(CP )†(CP )H(CP )†(CP )|B̄0〉

= ηCP (fCP )e−2iθCP 〈fCP |(CP )H(CP )†|B0〉

= ηCP (fCP )|A| · e−2iθCP ei(δS−φW ) (6.38)

where ηCP (fCP ) is the CP eigenvalue for the final state fCP , δS is a (CP con-

serving) phase that describes strong interaction effects, and φW is the (potentially

CP -violating) weak phase associated with the dominant decay amplitude. This

phase changes sign for B0/B̄0 decay. Essentially, the amplitudes for B0 and B̄0

decay to the final state fCP are identical, differing by a phase that is a combi-

nation of the weak phase φW (that we want to extract from the measurement)

and a convention-dependent phase θCP . Standard Model calculations for the mass

1In addition, the dominant penguin diagram has the same weak phase in the Standard Model.
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B̄0

K̄0

J/ψ

b c

c̄

s

d̄

W −

Figure 6.4: Tree diagram for the decay B̄0 → J/ψK̄0.

difference ∆md [63], together with ∆md = M− −M+ = 2|M12|, imply that

M12 = a(VtbV
∗
td)

2e−2iθCP ,

M∗
12 = a(V ∗

tbVtd)
2e2iθCP (6.39)

where a is a real constant. Taking the results of Equation 6.36, we obtain

q

p
=

√
M∗

12

M12
=
V ∗
tbVtd
VtbV ∗

td

e2iθCP . (6.40)

This yields

λ =

(
q

p

)
· 〈fCP |H|B̄0〉
〈fCP |H|B0〉

= ηCP (fCP )
V ∗
tbVtd
VtbV

∗
td

e−2iφW (6.41)

so that |λ| = 1. This simplifies Equation 6.37 considerably, as the term propor-

tional to cos(∆mdt) drops out of the calculation:

ACP = Im λ · sin (∆mdt) . (6.42)
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If we consider the decay B0 → J/ψ KL, the b → cc̄s transition produces the

weak phase

e−2iφW =
VcbV

∗
cs

V ∗
cbVcs

, (6.43)

and an additional factor is introduced from K mixing in order to produce the KL:

γK =
VcsV

∗
cd

V ∗
csVcd

. (6.44)

The KL is a very nearly a CP eigenstate, with eigenvalue ηCP = −1. As a result,

ηCP (fCP = J/ψKL) = +1. This yields

λ = (+1) · V
∗
tbVtd
VtbV ∗

td

· VcbV
∗
cs

V ∗
cbVcs

· VcsV
∗
cd

V ∗
csVcd

. (6.45)

In the Wolfenstein parameterization, all the CKM elements are real, with the

exception of

Vub = |Vub|eiγ and Vtd = |Vtd|e−iβ,

where we have taken the angles from Figure 6.2. Consequently, the time-dependent

asymmetry for B0 → J/ψ KL decay reduces to

ACP (B0 → J/ψ KL) = (Im e−2iβ) · sin (∆mdt)

= sin 2β · sin (∆mdt) . (6.46)

The simplicity of this result can be seen as a stroke of luck for both experiment

and theory. Experimentally, we can examine B0 → J/ψ KL decay with good
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precision provided we have a large sample of B decays. As penguin contributions

to the direct decay to the J/ψKL final state is small, and the dominant penguin

decay has the same weak phase as the tree diagram, the end result is essentially

free of complications due to the strong interaction. This means that if we observe

an asymmetry in the decay B0 → J/ψ KL, the extraction of the quantity sin 2β is

relatively free of theoretical uncertainties. Consequently, this decay mode provides

an excellent laboratory for a direct test of the Standard Model explanation for

CP violation.

6.5 Physics at the Υ(4S) resonance

In order to provide a large sample of B mesons, the BABAR experiment spends a

majority of its running time at the Υ(4S) resonance, which has a mass just above

the BB̄ production threshold. Consequently, half of all Υ(4S) mesons decay into

a B0B̄0 pair.

The Υ(4S) is in a C = −1 state [8]. The strong decay Υ(4S) → BB̄ conserves

C, so the resulting B0B̄0 system must also have C = −1. This implies that, in

the Υ(4S) rest frame, the B0B̄0 system behaves as follows:

|ψBB̄(t1, t2)〉 =
1√
2

(|B0(t1), �p〉|B̄0(t2),−�p〉 − |B0(t2), �p〉|B̄0(t1),−�p〉
)
, (6.47)
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where t1, t2 describe time evolution for the forward and backward moving B

mesons, respectively. If we substitute the results for the time evolution of |B0(t)〉

and |B̄0(t)〉 (Equation 6.28) and for f±(t) (Equation 6.30), we obtain

|ψBB̄(t1, t2)〉 = e−iM(t1+t2)e−Γ(t1+t2) ×

[cos
∆md(t1 − t2)

2

(|B0, �p〉|B̄0,−�p〉 − |B̄0, �p〉|B0,−�p〉)
−i sin ∆md(t1 − t2)

2

(|B0, �p〉|B0,−�p〉 − |B̄0, �p〉|B̄0,−�p〉)]
As the sine term vanishes at t1 = t2, we conclude that for B0B̄0 mesons

produced in Υ(4S) decay, until one or the other B decays, one meson must be a

B0 and the other a B̄0. If we are able to determine (tag) the flavor of one meson

the instant it decays (say it decays as a B0 at time t0), then we know that at time

t0 the other meson is a pure B̄0, and from that moment it evolves as |B̄0(t− t0)〉.

In order to measure a CP asymmetry, we must therefore be able to reconstruct

the final state B0/B̄0 → J/ψKL and somehow manage to tag the flavor of the

other B as shown in Figure 6.5. If we are unable to resolve the time difference

between the decay of the BCP and Btag mesons, then the CP asymmetry

ACP (B0 → J/ψ KL) = sin 2β · sin (∆md(t1 − t2)) (6.48)

will vanish, as the asymmetry for t1 − t2 < 0 will cancel the asymmetry for

t1 − t2 > 0. For this reason, the Υ(4S) rest (CM) frame is boosted relative to the

lab frame (βγ = 0.56) so that the B mesons are moving relative to the detector.
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Υ(4S)
z

KL

�+
�−

BCP

Btag

∆z

Figure 6.5: Diagram depicting the decay Υ(4S) → B0B̄0, with the BCP meson
decaying to the final state J/ψKL (where J/ψ → �+�−), and the other B (Btag)
decaying in a way that allows us to determine its flavor. The time difference
between B decays can be extracted from the spatial separation along the beam
axis (∆z).

As a final note, we mention that it is also very important to be able to effec-

tively tag the flavor of the B mesons at time t0 (when one B decays). If we are

unable to determine the flavor of the decaying B mesons, the asymmetry again

vanishes. Great care needs to be taken to ensure that, whenever possible, we are

able to determine the flavor of the B mesons produced in Υ(4S) decays. If we are

successful, then the measurement of the CP asymmetry can give us very useful
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information about the Standard Model. This allows us to determine the time

difference ∆t in terms of the distance between the two B decay vertices.

6.6 Historical Context

The primary physics goal of the BABAR experiment is the systematic study of

CP -violating asymmetries in the decay of neutral B mesons to CP eigenstates [35].

Of all the possible decays, from our earlier discussions we see that B0 → J/ψK0

is a very attractive mode to study. Due to the clear J/ψ → �+�− signal and the

ability to fully reconstruct KS → π+π−, π0π0 decay, the large high-purity event

sample obtained from reconstructing B0 → J/ψKS decays is the ideal environment

for a study of sin 2β at an asymmetric B factory.

The B0 → J/ψKL decay mode is nearly as valuable as B0 → J/ψKS. For

every B0 → J/ψK0 decay at BABAR, the K0 mesons are equally split between the

KS and KL weak eigenstates. However, although the KS may be reconstructed

with high purity from its decay products, the long-lived KL tends to interact

hadronically with the detector before decaying. As a result, there is a significant

amount of background in the B0 → J/ψKL event sample relative to J/ψKS,

which reduces its effectiveness for analysis.
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As the CP eigenvalue switches sign for the J/ψKS (ηCP = −1) and J/ψKL

(ηCP = +1) final states, an analysis of B0 → J/ψ KL events, provided the impact

of background events could be understood, would be very beneficial for a CP -

asymmetry measurement. Unfortunately, before the BABAR and Belle experiments

began taking data, there were no published accounts of B0 → J/ψKL decay.

Consequently, we first needed to demonstrate that it is possible to reconstruct

B0 → J/ψ KL events at BABAR. We accomplished this feat using the first 23

million BB̄ events recorded at BABAR from 1999 to 2000 (see Chapter 7). We

then proceeded to measure sin 2β using reconstructed B0 → J/ψ KL events. In

this thesis, I will document the sin 2β analysis using the first 88 million BB̄

decays recorded at BABAR from 1999 through 2002. This analysis was published

in the summer of 2002 [64]. After this analysis was complete, others took over the

task of measuring sin 2β using B0 → J/ψ KL decays. I will briefly discuss these

measurements at the conclusion of Chapter 8, as this portion of my thesis focuses

on my involvement in the sin 2β analysis.
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Measuring the B0 → J/ψK0

Branching Fraction

The B0 → J/ψK0 branching fraction analysis was performed using 22.7 million

Υ(4S) → BB̄ decays accumulated between October 1999 and October 2000 with

the BABAR detector located at SLAC. Before the B factories began taking data,

the world average branching fraction for B0 → J/ψK0 decay [65],

BF (B0 → J/ψK0) = (8.9 ± 1.2) × 10−4

was dominated by a measurement by the CLEO collaboration in 1997 using 3.4

million Υ(4S) → BB̄ decays [66]. The data available at BABAR, after only one

year of operation, is enough to substantially improve on this result.

The documentation for this portion of the B0 → J/ψ KL analysis will proceed

as follows:

1. I will present the event selection criteria in Section 7.1.
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2. The event yield, the reconstruction efficiency, and the systematic uncertain-

ties associated with this measurement are included in Section 7.2.

3. Our results appear in Section 7.3.

7.1 B0 → J/ψ KL Event Selection

We reconstruct J/ψ mesons from pairs of oppositely charged leptons, and

combine our results with a signature in the EMC or IFR that is consistent with

a KL meson. A B0 candidate is then formed from the candidate J/ψ and KL

mesons. We document this selection below.

7.1.1 J/ψ reconstruction

We reconstruct J/ψ → e+e−, µ+µ− candidates from pairs of oppositely charged

particle tracks that are required to originate from a common point in space. The

J/ψ candidates are required to have momentum between 1.4 and 2.0 GeV, as this

requirement safely eliminates J/ψ candidates that are kinematically incompatible

with B0 → J/ψ KL decay, as shown in Figure 7.1.

In order to reduce the number of J/ψ candidates formed from random combi-

nations of charged tracks, we apply particle identification criteria on the electron
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Figure 7.1: The J/ψ CM momentum (p∗) distributions for Monte Carlo events:
B0 → J/ψ KL decays (left), and inclusive B → J/ψX Monte Carlo (right). The
lines indicate the applied cuts.

and muon candidate tracks. This criteria is described elsewhere [67], but we give

a basic summary below.

Electron candidates are primarily identified by the ratio of the energy measured

in the EMC to the track momentum, E/p. They must also have a measured

mean dE/dx in the DCH that is consistent with expectations for an electron. In

addition, the shape of the EMC shower and the Cherenkov angles observed in the

DIRC are expected to be consistent with expectations for an electron. We require

one of the electrons to pass Loose requirements, and the other electron must

pass the Very Tight selection. The requirements for each category are shown in

Table 7.1. The electron identification efficiencies vary between 88% and 98% for
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candidates with lab momentum between 0.5 and 3.0 GeV, with a pion rejection

factor of order 1000 for the Very Tight selection.

Loose Very Tight

dE/dx (measured-expected) −3 to +7 σmeas −2 to +4 σmeas

E/p 0.65 − 5.0 0.89 − 1.2
Ncrys at least 3 at least 3
LAT - 0.1 − 0.6
A42 - < 0.11
θC (measured-expected) - −3 to +3 σmeas

Efficiency (%) 97.2 88.2
π mis-ID (%) 4.8 0.1

Table 7.1: Summary of electron identification criteria. Variables used: The
energy loss measured in the DCH (dE/dx); The ratio of EMC cluster energy to
measured momentum (E/p); The number of EMC crystals used to form the cluster
(Ncrys); The lateral energy distribution [68] of the EMC cluster (LAT); One of the
Zernike moments [69] of the EMC cluster (A42); The Cherenkov angle measured in
the DIRC (θC). In some cases, the requirements are made relative to the measured
resolution of the given quantity. In addition, the fraction of electrons in inclusive
J/ψ events that pass each set of requirements is shown, along with the fraction
of pions with momentum above 1 GeV that pass the selection requirements.

Muon candidates are primarily identified by the number of interaction lengths

of material traversed from the outside radius of the DCH through the IFR iron.

This value is compared to expectations for a muon of the same momentum travel-

ing along the same path. The properties of the candidate muon signature within

the IFR, such as the average number of hits per RPC layer, are also compared

to predictions. As all muon candidates in the B0 → J/ψ KL analysis intersect

with the EMC detector volume, the measured calorimeter energy is expected to be
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consistent with a minimum ionizing particle. The muon identification efficiency

varies between 60% and 92% for candidates in the momentum range 1.1 < p < 3.0

GeV, with a pion rejection factor of order 30.

The mass distribution for J/ψ → ee, µµ candidates is shown in Figure 7.2.

We require 3.0 < mee < 3.13 GeV, and 3.06 < mµµ < 3.13 GeV. As the electron

daughters of the J/ψ may radiate Bremsstrahlung photons, we attempt to recover

missing energy by identifying neutral clusters with energy above 30 MeV near

the electron direction (within 35 mrad in polar angle, and 50 mrad in azimuth)

projected into the EMC. The asymmetric J/ψ mass window is chosen in order to

accept candidates where we fail to recover some (or all) of the Bremsstrahlung

photons emitted by the electrons.

In this analysis, we will make use of the mass sidebands of the J/ψ → �+�−

distribution in order to estimate the background component due to combinatoric

J/ψ candidates. For the J/ψ → ee mass distribution, the sideband region is

defined as 3.175 < mee < 3.5 GeV. The J/ψ → µµ sidebands are defined as

2.9 < mµµ < 3.0 GeV and 3.175 < mµµ < 3.5 GeV.

7.1.2 KL reconstruction

Identifying KL mesons is a bit of a challenge at BABAR, as the particles are

neutral and long-lived (cτ > 15 m). Consequently, a KL meson tends to interact
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Figure 7.2: mee and mµµ distributions (in GeV) for J/ψ candidates with 1.0 <
p∗ < 2.0 GeV that pass the electron and muon requirements described in the
text. A fit to the ‘Crystal Ball’ function [70], consisting of a Gaussian signal peak
matched with a power law tail, is superimposed on the histograms.

hadronically with the detector before decaying. These hadronic interactions often

leave a detectable signal in either the EMC or the IFR, but the kinetic energy is

poorly measured.

As a result, the KL selection criteria are rather minimal. A KL candidate is

identified as a reconstructed cluster in the EMC or IFR that cannot be associated

with any charged track in the event. There are additional detector-specific criteria

that we enumerate below:

• Approximately half of all KL mesons from B0 → J/ψ KL decay deposit at

least 200 MeV in the EMC. In Figure 7.3 we present the deposited energy
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distribution for KL mesons from B0 → J/ψ KL Monte Carlo. We require

KL candidates detected within the EMC to have a cluster energy between

200 MeV and 2 GeV. The clusters are also required to have a lab polar angle

such that cos θ < 0.935 in order to reduce effects caused by reconstruction

irregularities in the very forward region of the detector. This reduces the

angular acceptance by about 4% in the CM frame.

• About 60% of KL mesons from B0 → J/ψ KL leave a detectable signal in

the IFR. KL candidates in the IFR are defined as clusters with hits in two

or more RPC layers. In order to reduce beam-related backgrounds, and to

avoid regions where the charged tracking efficiency is low, we require the

polar angle of the IFR cluster to satisfy −0.75 < cos θ < 0.93 and eliminate

clusters that begin in the outer 25% of the forward IFR endcap.

Photons are the primary background forKL mesons reconstructed in the EMC.

We apply a requirement designed to reject photons from π0 decay: if a KL can-

didate that is found to be consistent with the photon hypothesis and can be

paired with another neutral cluster (with EMC energy above 30 MeV) such that

100 < m(γγ) < 150 MeV, it is rejected. The remaining background in the EMC

consists primarily of photons and overlapping EMC showers. Isolated clusters pro-
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Figure 7.3: Energy deposited in the EMC for KL candidates from Monte Carlo
B0 → J/ψ KL events.

duced from charged particles are removed by a basic clustering algorithm which

requires a minimum separation of 20 cm between clusters.

On occasion, IFR KL candidates are contaminated by charged particle tracks

where the IFR cluster was missed by the track association algorithm. We suppress

these charged clusters by rejecting KL candidates that lie within 350 mrad in

polar angle and between -750(-300) to 300(750) mrad in azimuth of the EMC

intersection point of any positively (negatively) charged particle track in the event.
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7.1.3 B0 → J/ψ KL reconstruction

We form B0 → J/ψ KL candidates from pairs of KL and J/ψ → �+�− can-

didates that pass our selection requirements. In order to improve the resolution

of our measurement, we refit the momenta of the lepton tracks so that the mass

of the J/ψ → �+�− candidate is constrained to the world average value of 3.097

GeV [65].

Using the result of the mass-constrained fit for the J/ψ candidate, we calculate

the momentum of the KL in the lab frame by using the measured KL direction

and constraining the invariant mass of the J/ψ +KL to the world average value

for the B0 meson [65]. Boosting to the Υ(4S) rest frame, we then calculate the

difference between the calculated J/ψKL candidate energy, assuming they were

produced from B0 decay, and the beam energy (recall Equation 5.3):

∆E ≡ |E∗
ψ + E∗

KL
| − 1

2

√
s, (7.1)

where
√
s/2 is the beam energy in the Υ(4S) frame. For B0 → J/ψ KL signal

events, ∆E will be equal to zero within experimental resolution. This quantity

provides a powerful kinematic criterion to reject background.

The expected momentum of the KL can also be used to reduce background

originating from random combinations of J/ψ and KL candidates. As KL energy,

and hence its momentum, is poorly measured by the BABAR detector, any event
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that contains a real KL meson will appear to violate momentum conservation. In

the plane perpendicular to the beam axis, where the total momentum is expected

to be zero, events containing a realKL may be preferentially selected by measuring

the missing transverse momentum in the event.

We require the missing transverse momentum for the event to be consistent

with the expected KL momentum for the B0 → J/ψ KL candidate. The missing

momentum is calculated from all tracks and EMC clusters (not including the KL

candidate) and projected along the direction of the KL candidate in the plane per-

pendicular to the beam axis. IFR clusters, which do not provide any momentum

information, are not used in the missing momentum calculation. The expected

transverse momentum of the KL is then subtracted from the projection.

Figure 7.4 demonstrates the potential of a cut on the projected missing mo-

mentum by comparing distributions for signal and inclusive B → J/ψX Monte

Carlo. The discriminating power of this cut is lower for the IFR as there is sig-

nificantly less background in this sample than for the EMC.

By considering only the transverse component of the missing momentum, we

minimize the impact of charged particles which escape down the beampipe, as well

as energy leakage in the EMC endcap. The effect of semileptonic decays, which

also include missing momentum due to the neutrino, is reduced by projecting

onto the direction of the KL candidate. As the missing momentum originating
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Figure 7.4: The projected missing transverse momentum (in GeV) minus the
expected value for KL mesons from B0 → J/ψ KL decay reconstructed in the
EMC or IFR. Results are shown for J/ψKL signal and inclusive J/ψX background
Monte Carlo.

from semileptonic decays is uncorrelated with the KL direction, these decays will

decrease the resolution of the measurement without introducing a bias to the

result.

We tested our ability to correctly model the missing momentum in Monte

Carlo with a study of B± → J/ψK± decay, as a relatively large and pure sample

of these events can be extracted from data. In this study, we treat the K± as a

KL: we ignore the momentum from tracking measurements and only consider the

energy of the calorimeter cluster and the initial direction of the track at the origin.

Figure 7.5 compares the projected missing transverse momentum obtained from
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data and B± → J/ψK± Monte Carlo. We see that the Monte Carlo correctly

models the missing momentum as seen in data.

Figure 7.5: Missing transverse momentum measured (in GeV) in data and Monte
Carlo from B± → J/ψK± events. For this measurement we treat the K± as a
KL, i.e. we only use the 3-direction.

A final concern is that a missing momentum requirement could bias a CP

violation measurement using B0 → J/ψ KL decays. Semileptonic B decays are

used to tag the flavor of the other B when it decays, and the neutrino produced will

result in additional missing momentum in the event. If we require large missing

momentum in the event, the probability that this event contains a semileptonic

decay would increase. Monte Carlo studies show that setting the minimum missing

transverse momentum up to -300 MeV does not bias the efficiency of the lepton

flavor tag.
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The optimal value of the missing momentum cut should maximize S/
√
S +B,

where S represents the number of reconstructed signal B0 → J/ψ KL events, and

B describes the number of expected background events (see Figure 7.6). For EMC

KL candidates, a rather broad optimum is found between -0.8 and -0.4 GeV. We

choose a cut at -0.65 GeV in order to keep signal efficiency high. We also find that

no cut value improves the selection for IFR KL candidates, and therefore this cut

is not applied to the IFR event sample.

25

26

27

28

29

30

31

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Missing pT (GeV)

S
/s

q
rt

(S
+B

)

Missing pT (GeV)

S
ig

n
al

 E
ff

ic
ie

n
cy

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Figure 7.6: Performance of the missing transverse momentum (pT ) cut measured
on a Monte Carlo sample of B0 → J/ψ KL events with inclusive B → J/ψX
background for EMC (filled circles) and IFR (open circles) KL candidates.
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In order to further reduce background, we examine the following decay angles,

which are illustrated in Figure 7.7:

• The angle (θB) formed by the J/ψKL candidate with respect to the e− beam

direction in the Υ(4S) rest frame. This angle has a 1− cos2 θB distribution

for B meson decays, while the background distribution is featureless. We

require | cos θB| < 0.9.

• The angle (θhel), measured in the J/ψ rest frame, between one of the leptons

from the J/ψ → �+�− candidate and the direction opposite the flight of the

KL. This angle has a 1−cos2 θhel distribution for B0 → J/ψ KL. We require

that | cos θhel| < 0.9.

• We found that background rejection is improved if we cut on each of these

variables simultaneously, such that | cos θB| + | cos θhel| < 1.3.

Finally, we reject events in which we can reconstruct one of the following

decays:

• B0 → J/ψKS, with KS → π+π− or π0π0;

• B0 → J/ψK∗0, with K∗0 → K±π∓ or KSπ
0;

• B± → J/ψK±;

• B± → J/ψK∗±, with K∗± → KSπ
± or K±π0.

177



Chapter 7. Measuring the B0 → J/ψK0 Branching Fraction

0

2

4

-1 0 1
0

2

4

-1 0 1 cos θhel

co
s 
θ B

0

1

0 1

0

2

4

-1 0 1
0

2

4

-1 0 1 cos θhel

co
s 
θ B

0

1

0 1

Figure 7.7: Distributions of cos θhel (left) and cos θB (middle) for signal (top) and
inclusive B → J/ψX background (bottom) Monte Carlo samples. Both quantities
are plotted together at right. The lines denote the analysis requirements. For the
single variable plots, the vertical scale is arbitrary.
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The J/ψ momentum for these decays will likely fall within the accepted range for

B0 → J/ψ KL decays, which makes it more likely that a false signal candidate

may be formed from a real J/ψ and a random EMC/IFR cluster. We reject events

if the energy-substituted mass (mES, see Equation 5.2) and ∆E (Equation 5.3)

are consistent with a B0 meson decaying according to any of the above modes.

This specific-mode rejection is nearly 100% efficient for real B0 → J/ψ KL events,

and it reduces backgrounds that contain a real J/ψ meson.

In a small fraction of events, more than one B0 → J/ψ KL candidate passes

the above requirements. We select the best candidate based on the following

algorithm:

• All candidates with ∆E > 80 MeV are discarded.

• If multiple B candidates are formed using EMC KL candidates, we select

the candidate with the highest cluster energy.

• If multiple IFR candidates are present, we select the one with the largest

number of layers hit.

• If an EMC and an IFR candidate pass all the selection criteria, we select the

EMC candidate. This takes advantage of the better angular resolution in

the EMC. We pay special attention to events where it appears that a single

KL was detected by both the EMC and the IFR. If we find an EMC and
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an IFR KL candidate such that cos θ > 0.9, where θ is the opening angle

between the candidates, we use the EMC information to obtain a better

resolution. The event is included along with other IFR candidates to take

advantage of higher signal purity in the IFR sample.

7.2 Extraction of the B0 → J/ψ KL Branching

Fraction

The B0 → J/ψ KL branching fraction is determined as follows:

BF (B0 → J/ψ KL) =
NRECO

NBB̄ × ε×BF (J/ψ → ��)
, (7.2)

where:

• NRECO is the number of signal B0 → J/ψ KL events reconstructed in data;

• The Monte Carlo acceptance is described by ε;

• NBB̄ represents the 22.72 ± 0.36 million Υ(4S) → BB̄ decays recorded at

BABAR between 1999 and 2000;

• We take the world average value for the branching fractionBF (J/ψ → ��) =

(11.81 ± 0.14)% [65].
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In the following sections we will discuss the various inputs to the B0 → J/ψ KL

branching fraction measurement.

7.2.1 Event yield

We extract the number of reconstructed B0 → J/ψ KL decays that pass our

event selection using a fit to the ∆E distribution, which is shown in Figure 7.8.
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Figure 7.8: ∆E distribution for events from data (points) and Monte Carlo
(histograms) which pass event selection criteria. We combine EMC and IFR
candidates, as well as J/ψ → ee(µµ) decays. The normalization of the Monte
Carlo samples is taken from the results of the likelihood fit.
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We extract the B0 → J/ψ KL event yield from data using a binned maximum

likelihood fit. We define the likelihood function as follows:

L(NψKL, NψX , Nnon−ψ) =

nbin∏
i=1

µdii e
−µi

di!
× e

− (Nnon−ψ−M)2

2(σ2+Nnon−ψ)√
2π(σ2 +Nnon−ψ)

, (7.3)

where:

• NψKL, NψX , andNnon−ψ describe the number of reconstructed B0 → J/ψ KL

events, inclusive B → J/ψX background, and events without a real J/ψ,

respectively, extracted from the likelihood;

• µi is the expected number of events in the ith bin of the ∆E distribution,

µi ≡ NψKLai +NψXbi +Nnon−ψci, (7.4)

where ai, bi, and ci are the fractions of B0 → J/ψ KL, B → J/ψX back-

ground, and non-J/ψ events in the ith bin, respectively;

• di represents the number of data events reconstructed in the ith bin;

• M is the expected number of non-J/ψ background events determined from

the mass sidebands of the J/ψ;

• σ is the uncertainty on the fitted value for M .

The ∆E distributions for B0 → J/ψ KL signal and inclusive B → J/ψX back-

ground events are determined from Monte Carlo, and we obtain the shape of the
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∆E distribution for the non-J/ψ background by fitting the J/ψ mass sidebands

to a threshold background function [47]. The B0 → J/ψ KL event yield will be

used to determine the branching fraction, and the parameters NψX and Nnon−ψ

will be needed later to extract sin 2β.

The signal region is defined as |∆E| < 10 MeV. There are 408 data events in

this region that pass our selection requirements. Using the output of the maximum

likelihood fit, we find 194±23 B0 → J/ψ KL signal events, in addition to 200±14

B → J/ψX and 25 ± 3 non-J/ψ background events in the ∆E signal region.

7.2.2 Monte Carlo acceptance

We correct the observed signal yield to account for the reconstruction effi-

ciency, determined from B0 → J/ψ KL Monte Carlo events, in order to extract

the branching fraction. We apply small corrections to the Monte Carlo output

in order to minimize observed discrepancies with respect to data. We list these

corrections below, and summarize our work in Table 7.2:

• Studies of charged particle reconstruction at BABAR imply that the Monte

Carlo slightly overestimates charged particle reconstruction efficiency, and

studies of J/ψ → �� decays indicate that the Monte Carlo overestimates

lepton identification efficiency. We adjust the Monte Carlo to account for

these effects.
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• Fitting the J/ψ → e+e−, µ+µ− distributions in Monte Carlo and data to

the sum of a Crystal Ball [70] function and an exponential background, we

determine that the J/ψ mass windows accept a slight excess of J/ψ events

in Monte Carlo when compared to data. We correct the J/ψ reconstruction

efficiency in Monte Carlo to account for this discrepancy.

• We study the intrinsicKL selection efficiency using a sample e+e− → φγ, φ→

KSKL decays. The ratio of Monte Carlo KL efficiency in the EMC and IFR

relative to data was found to be 0.94 ± 0.09 and 1.11 ± 0.09, respectively.

We introduce a correction factor to account for this discrepancy.

• The efficiency of the π0 veto in Monte Carlo and data is tested by measuring

the neutral cluster multiplicity for B± → J/ψK± events. We find that

the Monte Carlo sample underestimates the number of EMC clusters with

energy below 100 MeV in data by 19%. This implies that Monte Carlo

simulations underestimate the number of KL candidates rejected due to the

π0 veto. We degrade the efficiency loss of the Monte Carlo for this veto

(16%) by 19% of its value (0.19× 0.16 = 0.03) in order to better reproduce

the data environment.
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• Studies of B± → J/ψK± events indicate that the Monte Carlo slightly over-

estimates the efficiency of the missing transverse momentum requirement.

We degrade the Monte Carlo efficiency for EMC KL candidates accordingly.

• Studies of B± → J/ψK± events also indicate that the central value of the

∆E distribution in Monte Carlo is shifted by 0.5 MeV relative to data.

Furthermore, the Gaussian width of the ∆E, which is dominated by the

spread in the energy of the e± beams, is underestimated by the Monte

Carlo. We introduce an additional Gaussian resolution term (with 1.4 MeV

width) to the ∆E distribution, and we adjust ∆E values in B0 → J/ψ KL

Monte Carlo by 0.5 MeV, to account for the observed differences.

• The position of the KL candidate in the detector influences the ∆E mea-

surement. Poor KL angular resolution for some signal events is responsible

for the small tail in the signal ∆E distribution which extends to large values,

as seen in Figure 7.8. We use e+e− → φγ events to test the modeling of

KL angular resolution in Monte Carlo simulation. We adjust B0 → J/ψ KL

decays in Monte Carlo to reproduce the lower KL angular resolution that is

seen in data.
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Correction EMC IFR Combined
Tracking efficiency 0.98 0.98 0.98
Lepton efficiency 0.98 0.98 0.98
J/ψ mass cut 0.99 0.99 0.99
Intrinsic KL efficiency 0.94 1.11 ± 9%
π0 veto 0.97 - ± 0.7%
Missing momentum 0.98 - ± 0.5%
∆E shift (MeV) -0.5 -0.5 -0.5
Additional ∆E spread (MeV) 1.4 1.4 1.4
KL angular resolution re-weight ∆E templates

Table 7.2: Summary of corrections made to B0 → J/ψ KL reconstruction effi-
ciency in Monte Carlo. In each case we give the numerical value of the correction
factor, with the exception of the KL angular resolution, where the shape of the
∆E templates are redetermined. The additional ∆E spread introduced to ac-
count for beam energy spread differences in Monte Carlo and data is indicated
by the width of the added Gaussian resolution term, which we give in MeV. In
cases where the correction factors differ for EMC and IFR events, we quote the
uncertainty on the combined correction, as the numerical value of the combined
correction factor is never used explicitly in our analysis.
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7.2.3 Systematic uncertainties

There is a systematic uncertainty associated with each of the corrections dis-

cussed above that are applied in order to correct the Monte Carlo acceptance.

These uncertainties are summarized in Table 7.3, along with the following addi-

tional systematic uncertainties:

• The uncertainty associated with the parametrization of the non-J/ψ back-

ground shape is obtained by varying the parameters taken from the fit to

the J/ψ mass sidebands by one standard deviation and recalculating the

signal ∆E yield.

• The uncertainty associated with the content of the inclusive B → J/ψX

background is obtained by varying the relative content of the background ac-

cording to the measured uncertainties on the known branching fractions [65].

For lesser known branching fractions, we vary their rate by conservative es-

timates. The systematic uncertainty due to this effect is dominated by the

non-resonant decay B → J/ψKπ, which is poorly measured. We vary this

branching fraction from -50 to 400% of its measured value.

• The uncertainty on the number of BB̄ pairs in data, as discussed in Refer-

ences [49, 67].
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Source Uncertainty (%)
Tracking efficiency 2.4
Lepton efficiency 1.2
J/ψ mass requirement efficiency 1.3
Intrinsic KL efficiency 9
π0 veto efficiency 0.7
Efficiency of missing pT requirement 0.5
∆E shift 1.0
Beam energy spread 3.0
KL angular resolution 4
B → J/ψX branching fractions 3.8
non-J/ψ background shape 2
Number of BB̄ events 1.6
Monte Carlo statistics 2.2
BF (J/ψ → ��) 1.2
Total systematic uncertainty 12.0
Statistical uncertainty 12.0

Table 7.3: Summary of uncertainties for the B0 → J/ψ KL branching fraction
measurement.

• The uncertainty due to fitting the ∆E distribution with templates obtained

from a finite number of Monte Carlo events. We vary the bin contents

according to Poisson statistics and observe the change in the event yield

extracted from the likelihood. Repeating this procedure 5000 times, we

take the width of the event yield distribution as the systematic uncertainty.
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7.3 Results

We obtain the following branching fraction for B0 → J/ψ KL decay:

BF (B0 → J/ψ KL) = (3.4 ± 0.4(stat.) ± 0.4(syst.)) × 10−4. (7.5)

This result is based on 408 events reconstructed using 22.7 million BB̄ events col-

lected between October 1999 and October 2000 at the BABAR detector at SLAC.

This result was consistent with the 1998 world average value with a total un-

certainty (16%) that is comparable to the 13% uncertainty on the world average

value [65].

This work was originally published in Reference [67], where the B0 → J/ψK0

branching fraction was determined by combining our results with those obtained

from B0 → J/ψKS decay, where the KS was reconstructed as a π+π− or π0π0

pair:

BF (B0 → J/ψKS)(KS → π+π−) = (4.3 ± 0.3(stat.) ± 0.3(syst.)) × 10−4

BF (B0 → J/ψKS)(KS → π0π0) = (4.8 ± 0.8(stat.) ± 0.4(syst.)) × 10−4,

Combining all BABAR results, we find

BF (B0 → J/ψK0) = (8.3 ± 0.4(stat.) ± 0.5(syst.)) × 10−4, (7.6)
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which is twice the branching fraction for B0 → J/ψKS or B0 → J/ψ KL. This

result improved on the precision of the 1998 world average value by a factor of

two.

Today, the world average value of (8.5 ± 0.5) × 10−4 [8] is dominated by the

results reported here, along with results from Belle (using 31.9 million BB̄ events

and reconstructing only B0 → J/ψKS, with KS → π+π−) in 2003 [71]:

BF (B0 → J/ψK0) = (7.9 ± 0.4(stat.) ± 0.9(syst.)) × 10−4,

and CLEO (using 9.7 million BB̄ events, reconstructing B0 → J/ψKS with KS →

π+π−, π0π0) in 2000 [72]:

BF (B0 → J/ψK0) = (9.5 ± 0.8(stat.) ± 0.6(syst.)) × 10−4.

Currently, the results reported here are the only instance of reconstructed

B0 → J/ψ KL decays used to compute the world average value for the B0 →

J/ψK0 branching fraction. Our result is comparable to those obtained using

B0 → J/ψKS decays, and therefore it plays a significant role in the determination

of the B0 → J/ψK0 branching fraction.
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Measuring sin 2β with
B0 → J/ψ KL

The measurement of the CP -violating quantity sin 2β using the B0 → J/ψ KL

decay mode was performed using roughly 88 million Υ(4S) → BB̄ decays accumu-

lated between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric

energy B Factory located at SLAC. The results reported here were published in

Reference [64]. These results update an earlier BABAR measurement that first

observed CP violation in the B0 meson system using a sample of 32 million

Υ(4S) → BB̄ decays [73].

The procedure used to extract the quantity sin 2β from a sample of neutral B

decays has been documented extensively in Reference [74], which expands on the

results first reported in Reference [73]. I will focus on the aspects of the CP vio-

lation analysis that is specific to B0 → J/ψ KL decay, which was my contribution
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to the analysis in 2002, and I will include changes that have been made relative

to the procedure found in Reference [74]. The documentation proceeds as follows:

1. There are some differences in the B0 → J/ψ KL event selection when com-

pared to the branching fraction analysis. I will discuss the changes, relative

to the selection documented Section 7.1, in Section 8.1.

2. I discuss the details involved in extracting the CP asymmetry from B de-

cays in Section 8.2. Particular attention will be paid to the specifics of the

B0 → J/ψ KL event sample.

3. Our results, including a discussion of systematic uncertainties, appear in

Section 8.3, and concluding thoughts can be found in Section 8.4.

8.1 CP Sample Selection

In Section 7.1 we presented the selection criteria for B0 → J/ψ KL events used

to extract the B0 → J/ψ KL branching fraction. This selection was designed to

optimize the quantity S2/(S+B), where S represents the number of reconstructed

signal B0 → J/ψ KL events, and B describes the expected number of background

events. Emphasis was placed on signal efficiency, in the sense that we would

avoid tighter event selection if a large signal inefficiency for a given requirement

resulted in only minimal improvement in S2/(S +B). Using this event selection,
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we measured the B0 → J/ψ KL branching fraction from a dataset containing

roughly 23 million Υ(4S) decays [67].

For the sin 2β measurement, we choose to optimize our event selection in order

to minimize the uncertainty on sin 2β, which is approximately given by [37, 75]:

σsin 2β =
σ0√

εD2 NS

√
1 +NB/NS

1 + (AB/AS)(NB/NS)

=
σ0√

εD2 NS

√
1 − FB

1 − FB(1 −AB/AS)
(8.1)

where

• εD2 describes our ability to properly determine (tag) the flavor of event:

The tagging efficiency is given by ε, and the dilution D is derived from the

mistag probability w, D = 1 − 2w;

• NS (NB) is the number of signal (background) events reconstructed before

attempting to tag the flavor of the other B meson;

• FB is the background fraction in the event sample;

• AB/AS is the ratio of the CP asymmetry in background compared to signal

events;

• σ0 ≈ 1.89 is a constant that depends on δt resolution and the value sin 2β,

although the dependence on sin 2β is weak.
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This new optimization is not far removed from our initial aim to maximize S2/(S+

B). The two are actually equivalent if (AB/AS) = 0. In the first measurement

of sin 2β using B0 → J/ψ KL decays [76], we discovered AB/AS ≈ −0.15. With

this information, and by nearly tripling our data sample, we see that our analysis

could benefit from stricter requirements on our event selection. We enumerate the

changes below.

8.1.1 Missing transverse momentum

We raised the minimum missing transverse momentum requirement (“missing

pT”) for KL candidates in the EMC and the IFR. Other than ∆E, the missing pT

requirement is the most effective variable for separating signal B0 → J/ψ KL de-

cays from background. In the branching fraction analysis, we found that S2/(S+

B) was maximized if we required missing pT above −0.65 MeV in the EMC, with

no requirement placed on IFR KL candidates. As the sin 2β analysis benefits

from increased signal purity, we now require missing pT to exceed −0.25 MeV in

the EMC, and −0.40 MeV in the IFR. The increase in signal purity in our event

sample is shown in Figure 8.1.
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Figure 8.1: Missing transverse momentum (labeled “Pt miss” and given in GeV
in the Figures) distributions for EMC and IFR KL events, in data (points) and
Monte Carlo (histograms), with |∆E| < 10 MeV. The signal B0 → J/ψ KL

(green/light), inclusive B → J/ψX background (red/medium), and non-J/ψ
background (blue/dark) contributions were normalized above the missing trans-
verse momentum cut value based on the results of the ∆E fit using the old (new)
selection requirements. The signal purity (“Fsig”) is indicated on each Figure.
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8.1.2 EMC π0 veto

Recall that in cases where the KL candidate detected in the EMC is consistent

with a photon, we veto the candidate if we also find another neutral cluster that

combines with the KL candidate to form an invariant mass compatible with a π0.

In the sin 2β analysis, we raise the minimum energy requirement for the neutral

partner cluster from 30 MeV to 100 MeV. As EMC cluster multiplicity increases

at low energy, this change reduces the number of real KL mesons that are rejected

due to unfortunate invariant mass combinations with random neutral clusters. We

demonstrate the improvement due to this selection change in Figure 8.2.

8.1.3 Fitting the ∆E distribution

Recall from Section 7.2.1 that we extract the B0 → J/ψ KL event yield using

a binned maximum likelihood fit to the ∆E distribution. The signal and inclusive

B → J/ψX background distributions are obtained from Monte Carlo, and the

shape of the non-J/ψ distribution is obtained from a fit to the mass sidebands of

the J/ψ dilepton distributions.

As expected, our event yield is strongly influenced by the ability of the Monte

Carlo to reproduce what we see in data. In Section 7.2, we discussed corrections

to signal Monte Carlo that affect the fitted B0 → J/ψ KL yield:
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Figure 8.2: The error on sin 2β (not including constant factors or flavor tagging
performance) as a function of the π0 veto for varying minimum partner energies.
The dashed red line describes the effects of removing the veto entirely, and the
blue vertical line at 100 MeV indicates the current minimum allowed energy for
the partner cluster. The previous minimum energy is the leftmost point on the
plot. In the top plot, we show the effects of the π0 veto when we require the
missing pT to exceed -0.25 GeV for EMC candidates. The missing pT cuts have
been removed in the bottom plot in order to accentuate the effects of the π0 veto
(and also demonstrate the usefulness of the missing pT requirement).
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1. We correct for the beam energy scale, and spread, based on a sample of

B± → J/ψK± decays, where the charged kaon is reconstructed as a KL.

This shifts the central value, and increases the width, of the ∆E distribution

in Monte Carlo. With increased data available, we found that the shift

in ∆E is unchanged (−0.5 MeV), but the additional Gaussian resolution

included in order to “smear” the ∆E peak was reduced from σ = 1.4 MeV

to σ = 0.85 MeV, where σ describes the width of the smearing Gaussian

distribution.

2. We adjust the KL resolution in the IFR to account for the overly opti-

mistic expectations in the Monte Carlo. Based on a study of e+e− → φγ,

φ → KSKL decays, we recompute the KL flight direction to account for

measurement differences between Monte Carlo and data. We then redeter-

mine the value of ∆E for the new KL direction. This tends to increase the

signal population in the high ∆E tail. Improvements in Monte Carlo simu-

lation made since the B0 → J/ψ KL branching fraction measurement allow

us to safely drop this correction for B0 → J/ψ KL candidates reconstructed

in the calorimeter, as we now see good agreement between Monte Carlo and

data for the EMC.
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Other corrections mentioned in Section 7.2 do not change the shape of the ∆E

distributions, and as a result they do not influence the fitted yield.

We found that by lowering the muon identification requirements, we we able

to increase the J/ψ → µ+µ− yield without significantly sacrificing purity. This

change increases the relative amount of non-J/ψ background in the muon sample

relative to electrons, and motivates us to split our sample according to lepton

type. To take advantage of the higher signal purity in the IFR sample, we also

split our results according to the detector used (i.e., EMC or IFR) to reconstruct

the KL candidate.

In order to minimize the loss of statistical precision introduced by subdividing

our dataset, the ∆E fits for the J/ψ → ee, µµ decays are done simultaneously.

For a given detector subsample, we expect that γ(�+�−), which describes the

fraction of B0 → J/ψ KL events relative to inclusive B → J/ψX background for

J/ψ → �+�− events, should not depend on lepton type. Therefore, we impose the

following requirement on the ∆E fit:

γ(e+e−)

γ(µ+µ−)
= 1.00 ± 0.05 (8.2)

where the value (and the uncertainty) is determined from studies of Monte Carlo

events. We present the results of the ∆E fits to the data in Figures 8.3 and 8.4.

The signal purity, as well as the background fraction with or without a J/ψ meson,

will be used as inputs to the fit to determine sin 2β.
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Figure 8.3: Fit of the ∆E spectrum (in MeV) for EMC KL events in data. The
blue (dark) distribution is the non-J/ψ component, which was fit to a threshold
function. The red (medium) component is inclusive B → J/ψX background from
Monte Carlo and the green (light) component shows signal B0 → J/ψ KL events,
also from Monte Carlo.
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Figure 8.4: Fit of the ∆E spectrum (in MeV) for IFR KL events in data,
allowing for KL angular resolution smearing. The blue (dark) distribution is the
non-J/ψ component, which was fit to a threshold function. The red (medium)
component is inclusive B → J/ψX background from Monte Carlo and the green
(light) component shows signal B0 → J/ψ KL events, also from Monte Carlo.
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8.2 Determining sin 2β

The Υ(4S) is an ideal environment to measure CP violation in the B meson

system, as the B0B̄0 system evolves in a coherent state until one of the B mesons

decays. If we can successfully tag the flavor of one of the B0 mesons (Btag) from its

decay products, then at moment of the Btag decay, we know the other B meson

(which we require to decay to J/ψKL) has the opposite flavor. Due to precise

vertexing measurements provided by the BABAR SVT, we can measure the proper

time interval between the decay of the Btag meson and the B0 → J/ψKL decay,

∆t = tψKL − ttag. Recall Equations 6.34 and 6.35, which describe the probability

for aB0 or B̄0 to decay to a common final state fCP (such as J/ψKL). If we require

that the B0B̄0 system must be produced by Υ(4S) decay (see Section 6.5), and

that the B mesons decay as BψKL and Btag, then the expression

Φ(tψKL , ttag) ∝ e−Γ(tψKL+ttag) ×(
1 ±

[
2 Im λ

1 + |λ|2 sin(∆md∆t) − 1 − |λ|2
1 + |λ|2 cos(∆md∆t)

])
(8.3)

describes the probability for a B0 or B̄0 to decay to the final state J/ψKL while

the other decays to a flavor-defining state. The ± sign in Equation 8.3 depends

on whether the Btag meson is identified as a B0 (+) or a B̄0 (−).

There are some steps that we can take to express Φ(tψKL , ttag) in a more

manageable form:
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• In order to obtain an expression that depends only on ∆t, we can integrate

Equation 8.3 with respect to tψKL + ttag;

• We need to account for the fact that our ability to determine the flavor of

the Btag meson is not perfect. This will affect our ability to measure any

CP asymmetry in the decay;

• We can take advantage of the Standard Model expectation that |λ| = 1 in

B decays (see Equation 6.41) to simplify Equation 8.3. This assumption is

equivalent to saying that CP violation in B0 → J/ψ KL decay is the result

of interference between mixing and decay, or that any CP asymmetry is not

the result of direct decay amplitudes only (see Section 6.4). This requires

the tree diagram for B0 → J/ψ KL decay (Figure 6.4) to dominate over

penguin contributions.

We may therefore describe the decay to the J/ψKL final state as follows:

φ±(∆t;w, sin 2β) ∝ e−Γ|∆t|[1 ∓D sin 2β × sin(∆md∆t)] (8.4)

where the fraction of mistagged B decays (w) dampens the amplitude of the

oscillation by a dilution factor D = (1 − 2w).

The results of Equation 8.4 still assume that the measured value of ∆t is known

precisely. In order to account for the finite resolution of the detector, we must
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convolve the time-dependent distributions φ± with a time resolution function,

such that

F±(∆t;w, sin 2β, â) = φ±(∆ttrue;w, sin 2β) ⊗R(δt; â), (8.5)

where δt ≡ ∆t − ∆ttrue describes the difference between the measured and true

proper time intervals, and â represents the set of parameters that describe the

time resolution function R. Figure 8.5 illustrates the impact of typical mistag

and ∆t resolution effects on the ∆t distributions for flavor-tagged B decays.
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B
− 0 tags
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∆t (ps)
-5 0 5

Figure 8.5: Expected ∆t distributions for events tagged as a B0 or a B̄0 with (a)
perfect tagging and ∆t resolution, and (b) typical mistag rates and ∆t resolution.
Nonzero mistag rates decrease the amplitude, and less than perfect time resolution
smears out the peaks of the ∆t distributions.

204



Chapter 8. Measuring sin 2β with B0 → J/ψ KL

With this information, we may construct the CP -violating observable using

Equation 6.37:

ACP =
F+(∆t) − F−(∆t)

F+(∆t) + F−(∆t)
. (8.6)

If we assume that the penguin contribution to the decay amplitude is negligible

and neglect resolution effects, this quantity is proportional to sin 2β,

ACP ∝ −ηCPD · sin 2β sin(∆md∆t), (8.7)

where ηCP = +1 for B0 → J/ψ KL decays. Due to common Btag notation, the

sign of the asymmetry in Equation 8.7 is flipped with respect to Equation 6.37.

If we neglect background events, the value of sin 2β can be extracted from a

sample of flavor-tagged decays by maximizing the likelihood function

lnLCP =
∑

Tag.Cat.

⎛
⎝ ∑
B0tag

lnF+ +
∑
B̄0tag

lnF−

⎞
⎠ , (8.8)

where the outer summation is over each of the different tagging categories, which

we will discuss in Section 8.2.1, and the inner summations are over the B0/B̄0

tagged events within a given tagging category. In reality, we must also include

terms in the likelihood to account for the considerable backgrounds that are

present in our reconstructed B0 → J/ψ KL event sample.

In addition to Equation 8.8, there is another likelihood function that is used to

determine the B0 − B̄0 oscillation frequency ∆md. For this measurement, one of

the neutral B mesons (Bflav) produced in Υ(4S) decay is fully reconstructed into
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a decay mode such that the flavor of the B can be determined without ambiguity

from its decay products:

Υ(4S) → BtagBflav, Bflav → D(∗)−(π/ρ/a1)
+, J/ψK∗0(K∗0 → K+π−).

We then tag the flavor of the Btag using its decay products (see Section 8.2.1).

The probability for B0 − B̄0 mixing can then be determined from Equa-

tions 6.28 and 6.30:

Prob(B0B̄0 → (B0B0 or B̄0B̄0), B0B̄0) ∝ e−Γ∆t (1 ∓ cos(∆md∆t)) , (8.9)

where τB0 = 1/Γ is the B0 lifetime. The −(+) sign corresponds to mixed (un-

mixed) events, where we say mixing has occurred if the flavor of the Bflav and Btag

mesons are equal.

In the limit of perfect ∆t resolution and flavor tagging, the mixing asymmetry

as a function of ∆t,

Amixing =
Nunmix(∆t) −Nmix(∆t)

Nunmix(∆t) −Nmix(∆t)
, (8.10)

would describe a cosine function with unit amplitude. Similar to our results

in Equation 8.7, imperfect ∆t resolution and flavor tagging reduces the observed

mixing asymmetry as a function of ∆t. Neglecting contributions from background

events, the probability density functions (PDFs) for mixed and unmixed events

can be written as

M±(∆t;w, â) = e−Γ|∆t|(1 ±D · cos (∆md∆t)) ⊗R(δt; â), (8.11)
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where R is the same resolution function that was introduced in Equation 8.5.

The full B mixing likelihood function, ignoring background contributions, can

be written as

lnLmix =
∑

Tag.Cat.

( ∑
unmixed

lnM+ +
∑
mixed

lnM−

)
, (8.12)

which parallels our treatment of LCP . This likelihood term is combined with LCP

in order to simultaneously extract the value of sin 2β and ∆md, in addition to the

mistag parameters (w) and the ∆t resolution function parameters (â). We must

also include additional terms in the likelihood in order to account for backgrounds

and their time dependence.

It should be clear at this point that the sin 2β analysis is the product of many

complicated ingredients. In the following sections, I will describe the various

inputs to the likelihood function used to determine sin 2β.

8.2.1 B flavor tagging

After we reconstruct a B → fCP or Bflav decay in the BABAR detector, we

examine the remaining tracks with the hope that we can identify the flavor of the

recoiling Btag meson. We use four different tagging categories in this analysis in

order to determine the Btag flavor:
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1. For the Lepton category, a B0 (b̄d) meson is tagged according to the charge

of the lepton produced in semileptonic decay, b̄→ c̄�+ν.

2. In a similar fashion, the charge of the kaon produced from the b → c →

s transition tags the flavor of the initial b quark. For the two Kaon tag

categories, we exploit the charge correlation between the b quark and the

kaon(s) produced in B decay. When available, we also utilize the charge

of the low-momentum charged pion produced from D∗± decay. If the soft

pion is found traveling in roughly the same direction as the kaon, and has

the opposite charge of the kaon, we can use the soft pion information to

reduce the mistag rate for the Kaon tag. These event are placed in the Kaon

I tag category, which is set aside for kaon-tagged events with lower mistag

rates. If no soft pion is found, events with a kaon tag may be placed in the

Kaon I or Kaon II category, depending on the estimated mistag probability.

Events with a soft pion that have no identified kaon are placed in the Kaon

II category. In the event that the kaon from the decay of the charm meson

is found for an event that already has a lepton tag, the charge of the kaon

is used as additional tagging information for the Lepton tag category. This

information reduces the probability that the flavor of the b quark will be

misidentified.
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Lepton Kaon I Kaon II Inclusive

Nsig 2979 ± 57 5450 ± 83 6489 ± 92 6535 ± 94
NBG 491 ± 28 4745 ± 78 7677 ± 99 7599 ± 99
Purity (%) 0.956 ± 0.005 0.862 ± 0.005 0.826 ± 0.005 0.823 ± 0.005

Table 8.1: Results of the mES fits shown in Figure 8.6, where Nsig and NBG

represents the number of signal and background events reconstructed with mES >
5.2 GeV. The purity is computed for events in the signal region (mES > 5.27 GeV)
only.

3. The final tagging category contains all remaining events that have some

available tagging information, but for whatever reason they do not belong

in any of the other three tagging categories. These include events with a

high-momentum particle that has not been identified as a lepton (such as

B0 → D∗−π+) as well as semileptonic decays where the electron/muon did

not meet the lepton identification criteria. In this case, the charge of the

high-momentum particle can be correlated to the flavor of the b quark. As

might be expected, the power of this inclusive category is small relative to

the other three.

Each of the above categories are mutually exclusive, and they accumulate events

based on the output of a neural network which combines the outputs of the various

physics-based criteria for each category. The estimates of the tagging efficiencies

and the mistag probabilities are obtained from the Bflav sample, in which neutral

B mesons are reconstructed with high purity (see Figure 8.6 and Table 8.1). As
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Figure 8.6: Fits to the mES distribution for events in the Bflav sample in data
for each tagging category. (Recall from Equation 5.2 that mES =

√
E∗

beam − �p∗B.)
Events are fit to the sum of a Gaussian function and a threshold background
function, and the signal region is defined as mES > 5.27 GeV, and the bin width
in each plot is set to 2.5 GeV.
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the Bflav can be uniquely determined from its decay products, we may attempt

to determine the flavor of the Bflav using the recoiling Btag meson in order to

estimate the mistag probability for each tagging category.

We summarize the performance of each tagging category in Table 8.2. The

figure of merit for tagging power is the effective tagging efficiency Qi ≡
∑

i εiD2
i ,

where εi describes the tagging efficiency for a given tagging category i. The average

mistag fractions w and the differences ∆w ≡ w(B0) − w(B̄0) for each tagging

category are used as inputs to the maximum likelihood fit used to determine

sin 2β.

Category ε (%) w (%) ∆w (%) Q (%)
Lepton 9.1 ± 0.2 3.3 ± 0.6 -1.5 ± 1.1 7.9 ± 0.3
Kaon I 16.7 ± 0.2 10.0 ± 0.7 -1.3 ± 1.1 10.7 ± 0.4
Kaon II 19.8 ± 0.3 20.9 ± 0.8 -4.4 ± 1.2 6.7 ± 0.4
Inclusive 20.0 ± 0.3 31.5 ± 0.9 -2.4 ± 1.3 2.7 ± 0.3
All 65.6 ± 0.5 28.1 ± 0.7

Table 8.2: Efficiencies εi, average mistag fractions wi, mistag fraction differences
∆wi = wi(B

0) −wi(B̄0), and Q extracted for each tagging category i from the B
samples used to extract sin 2β (see Reference [64]).

8.2.2 Time difference

From Equation 8.7 we see that measuring sin 2β depends on our ability to

measure the proper time difference (∆t) between the B0 → J/ψ KL decay and

the decay of the Btag meson. Neglecting the momentum of the B mesons in the
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Υ(4S) frame, we may express ∆t in terms of the separation along the beam axis

between the reconstructed B (in our case, either a B0 → J/ψ KL or a Bflav meson)

and the Btag meson:

∆z = βγc∆t, (8.13)

where βγ = 0.56 is the average Υ(4S) boost factor. When we account for the 340

MeV momentum of the B mesons in the Υ(4S) frame, the resulting corrections

improve the resolution on ∆t by about 5%.

From Figure 8.5 we see that our measurement of the asymmetry ACP depends

on the ∆t resolution. As we have already reconstructed one decay vertex as

a Bflav meson or B0 → J/ψ KL, the remaining tracks in the event are used to

determine the Btag vertex. These tracks are required to originate from a single

point, where we include information from the fully-reconstructed B candidate (its

three-momentum and decay vertex), the average position of the interaction point,

and the average Υ(4S) boost factor in order to improve the result of the geometric

fit. In order to reduce the bias introduced from long-lived particles, we form the

Btag candidate using KS and Λ0 candidates in place of their daughters.
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The ∆t resolution function is expressed in terms of δt ≡ ∆t − ∆ttrue as the

sum of three Gaussian distributions:

R(δt, â) =
fcore

Scoreσ∆t

√
2π

· exp(−(δt − bcoreσ∆t)
2

2(Scoreσ∆t)2
) +

ftail

Stailσ∆t

√
2π

· exp(−(δt − btailσ∆t)
2

2(Stailσ∆t)2
) + (8.14)

fout

σout

√
2π

· exp(− δ2
t

2σ2
out

),

where the majority of the data is described by the narrowest (core) Gaussian. The

width of the the core and tail Gaussians is equal to the the measurement uncer-

tainty of the vertex fit (σ∆t) multiplied by scale factors Score and Stail, respectively.

We also allow the core and tail Gaussian distributions to have a nonzero mean in

order to account for the lifetimes of charmed mesons used to form the Btag vertex.

The final Gaussian distribution describes the small fraction of events that have

poor ∆t resolution (outliers).

For the CP measurement, the we require |∆t| < 20 psec, with an uncertainty

on ∆t below 2.4 psec. About 95% of the events satisfy this requirement, and the

RMS resolution on ∆t for 99.7% of these events is 1.1 psec. The ∆t resolution

function parameters are input to the maximum likelihood fit used to determine

sin 2β, although only eight parameters are free in the fit: the scale factor of the

core Gaussian (Score), four individual core bias scale factors (bicore) for each of the
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tagging categories, a common tail bias btail, and the tail (ftail) and outlier (fout)

fractions. We fix Stail = 3.0 and σout = 8 psec in the fit.

8.2.3 Sample composition

It is difficult to forget that a significant fraction of the B0 → J/ψ KL event

sample contains background. Our current definition of the likelihood LCP (Equa-

tion 8.8) ignores any contributions from background events. We must carefully

determine the properties of the B0 → J/ψ KL event sample, and include the ef-

fects of background events in the F± PDFs (Equation 8.5), in order to be able

to extract any CP asymmetry from our data sample. In this Section, and Sec-

tion 8.2.4, we will focus on the important features of the B0 → J/ψ KL event

sample, and in Section 8.2.5 we will discuss our modifications to F± and LCP .

Figures 8.3 and 8.4 demonstrate that more than 90% of the events that pass

our selection requirements contain a real J/ψ. In Table 8.3 we list the fraction

of B → J/ψX Monte Carlo events with |∆E| < 10 MeV that pass our selection,

separated according to tagging category. In Section 7.1.3 we discussed our concern

that the missing pT requirement would bias our results for events with a lepton tag,

as the neutrino from semileptonic B decay degrades the resolution of the missing

pT measurement. This effect degrades signal efficiency for lepton-tagged events,

but it does not significantly alter the background efficiency (see Table 8.4). We
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Category Efficiency (%)
Signal, Lepton, EMC 60.2 ± 1.3
Signal, Non-lepton, EMC 71.3 ± 0.6
Signal, Lepton, IFR 70.1 ± 1.6
Signal, Non-lepton, IFR 81.4 ± 0.6

B → J/ψX BG, Lepton, EMC 23 ± 5
B → J/ψX BG, Non-lepton, EMC 22 ± 2
B → J/ψX BG, Lepton, IFR 46 ± 13
B → J/ψX BG, Non-lepton, IFR 45 ± 6

Table 8.4: Efficiency of the missing pT requirement for signal and B → J/ψX
background for lepton and non-lepton tagged events in Monte Carlo.

see this effect in Table 8.3, as the fraction of signal events is lower in lepton-tagged

events with respect to the other tagging categories.

Background events that pass our event selection requirements, but do not

contain a real J/ψ → �+�− decay, are modelled using a sample of events taken

from the sidebands of the J/ψ dilepton mass distribution:

• For J/ψ → e+e−, 3.175 < mee < 3.50 GeV;

• For J/ψ → µ+µ−, 3.175 < mµµ < 3.50 and 2.90 < mµµ < 3.00 GeV.

The ∆t distribution for J/ψ-sideband events are fit to the sum of three Gaussians

(see Equation 8.15), as shown in Figure 8.7. The ∆t resolution function param-

eters obtained from the fit are presented in Table 8.5. The resolution function

parameters (with the exception of σout) and the lifetime were free in the fit. The
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values in Table 8.5 are fixed inputs to the maximum likelihood function used to

extract sin 2β.
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Figure 8.7: Fit of the ∆t distribution for data events in the J/ψ mass sidebands.

Parameter value
Core Gaussian σ scale factor 1.16 ± 0.07
Core Gaussian bias −0.04 ± 0.05
Tail Gaussian σ scale factor 2.65 ± 0.40
Tail Gaussian bias −0.91 ± 0.39
Fraction in tail 0.18 ± 0.06
Fraction in σ = 8 psec Gaussian (outlier) 0.02 ± 0.006
Fraction with no lifetime 0.61 ± 0.07
Lifetime (Γnon) (1.13 ± 0.13) psec

Table 8.5: Results of an unbinned likelihood fit to the ∆t distribution in Fig-
ure 8.7 for data events in the J/ψ mass sidebands.
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We again find that the lepton tag efficiency is significantly lower for data events

in the J/ψ mass sidebands than for events in the Bflav sample. In this case, the

results reflect the small chance of finding three high momentum leptons, two to

reconstruct the J/ψ and one to tag the event, in B decays involving charmonium.

In our analysis of the B0 → J/ψ KL branching fraction, we determined that a

minimum missing transverse momentum requirement above -300 MeV could bias

lepton-tagged events; we exceed this value in the CP analysis. In order to account

for the drop in the lepton tag efficiency for signal and non-J/ψ background events,

we separate our results for the Lepton tag category from the results for the other

tagging categories.

8.2.4 Input parameters from ∆E distributions

Figures 8.3 and 8.4 present the fits to the ∆E distributions for all reconstructed

B0 → J/ψ KL events. We use a subset of these events, where we are able to tag

the flavor of the B, to determine sin 2β. As a result, we take the signal and

background fractions extracted from our fit to the ∆E distribution for all flavor-

tagged B0 → J/ψ KL events as inputs to the maximum likelihood function LCP ,

which we will discuss in Section 8.2.5.

We present the results of the fit for all flavor-tagged events in Tables 8.6

and 8.7. Recall from Section 8.1.3 that we fit J/ψ → e+e− and J/ψ → µ+µ−
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events simultaneously, and we fit the EMC and IFR samples separately. The

various B → J/ψX backgrounds (see Table 8.3) are normalized to the inclusive

J/ψ fraction extracted from the ∆E fit. We adjust all fractions to account for the

lepton flavor tag efficiency differences discussed in Section 8.2.3.

∆E Fit J/ψ → ee ∆E Fit J/ψ → µµ
Events Fraction Events Fraction

Signal 122 ± 13 49.8 ± 3.6% 164 ± 17 47.4 ± 3.4%
J/ψX 101 ± 10 41.4 ± 3.7% 135 ± 12 39.1 ± 3.4%
non-J/ψ 22 ± 3 8.8 ± 1.2% 47 ± 3 13.5 ± 1.2%

Table 8.6: Results of binned maximum likelihood ∆E fit for all flavor tagged
B0 → J/ψ KL events where the KL is reconstructed in the EMC. The fractions
and yields are given for events with |∆E| < 10 MeV.

∆E Fit J/ψ → ee ∆E Fit J/ψ → µµ
Events Fraction Events Fraction

Signal 134 ± 16 65.2 ± 5.1% 142 ± 17 64.2 ± 5.1%
J/ψX 60 ± 10 29.3 ± 5.2% 64 ± 11 28.9 ± 5.1%
non-J/ψ 11 ± 2 5.5 ± 1.0% 15 ± 2 6.9 ± 1.0%

Table 8.7: Results of binned maximum likelihood ∆E fit for all flavor tagged
B0 → J/ψ KL events where the KL is reconstructed in the IFR. The fractions
and yields are given for events with |∆E| < 10 MeV.

In order to distinguish between signal and background on an event-by-event

basis in the maximum likelihood fit to extract sin 2β, we model the EMC and IFR

∆E distributions for the B0 → J/ψ KL event sample using a series of probability

density functions:
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• B0 → J/ψ KL signal events are fit to the sum of two Gaussian distributions

and a threshold function in the region −20 < ∆E < 80 MeV.

• B → J/ψKS events, which have opposite CP relative to signal events, are

fit to the sum of a Gaussian distribution and a threshold function in the

region −20 < ∆E < 80 MeV.

• The remaining inclusive B → J/ψX background is fit to a 4th order poly-

nomial for |∆E| < 20 MeV.

• The shape of the non-J/ψ background is determined using a threshold func-

tion in the range −20 < ∆E < 80 MeV.

In each case, the form of the PDFs are chosen in order to successfully model the

event behavior in the signal region (|∆E| < 10 MeV). We extract the PDF pa-

rameters from fits to ∆E distributions for Monte Carlo and J/ψ sideband events,

which are shown in Figures 8.8 and 8.9. A total of eight PDFs are used as inputs

to the sin 2β fit, four for events with the KL reconstructed in the EMC, and four

for IFRKL reconstruction, although the parameters of the threshold function used

for the non-J/ψ events are common to both the EMC and IFR PDFs. The rela-

tive fractions of signal and inclusive J/ψ background are fixed to the results from

the binned maximum likelihood fit to the ∆E distribution, given in Tables 8.6

and 8.7.
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Figure 8.8: Fits of the EMC-KL ∆E distributions for the probability density
functions used in the sin 2β fit. The fit functions are described in the text.
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Figure 8.9: Fits of the IFR-KL ∆E distributions for the probability density
functions used in the sin 2β fit. The fit functions are described in the text.
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8.2.5 The likelihood function LCP

We extract sin 2β from a flavor-tagged sample of reconstructed B0 → J/ψ KL

decays using an unbinned maximum-likelihood technique (Equation 8.8) based on

the probability density functions F± described in Equation 8.5. Up to this point,

our definition of the likelihood has neglected to include the effects of background

events. In reality, a sizable fraction of our event sample consists of background

from B → J/ψX decays as well as events with a misreconstructed J/ψ → ��

candidate. Some of these backgrounds, such as B → J/ψKS and B → J/ψK∗0,

have non-zero CP asymmetry, which we summarize in Table 8.8. In Sections 8.2.3

and 8.2.4 we discussed the properties of events reconstructed as B0 → J/ψ KL.

In this Section, we will put our discussion in the proper context, as we will modify

the likelihood function to include the effects of background.

In order to address the complications introduced by background events, we

need to modify the F± PDFs in the following way:

F±,i = f signal
i,k (∆E)F±(∆t;w, sin 2β, â)

+
∑

α = J/ψX

fαi,k(∆E)F±(∆t;w, sin 2β, â) (8.15)

+ f
non−J/ψ
i,k (∆E)Fnon

± (∆t; b̂).

Each event is classified according to its tagging category (i), its flavor tag value

(±), and the KL reconstruction category (k, either EMC or IFR). The major con-
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tributors to the B → J/ψX background (see Table 8.3), as well as the unitemized

B → J/ψX events, are included in the sum over α. The relative fractions of

signal, B → J/ψX, and non-J/ψ events (f signal
i,k , fαi,k, and f

non−J/ψ
i,k , respectively)

are determined from the binned maximum likelihood fits to the ∆E distributions

discussed in Section 8.1.3 and are different for lepton versus non-lepton tagging

categories. Based on studies of Monte Carlo events, we use the same resolution

function parameters (â) to describe both signal and B → J/ψX background

events. The non-J/ψ background PDF Fnon
± is computed as the sum of prompt

(f0) and lifetime continuum background components,

Fnon
± = f0 · 1

2
δ(∆t) ⊗R(δt; b̂) + (1 − f0) · Γnon

4
e−|∆t|/τ ⊗R(δt; b̂), (8.16)

where the resolution function parameters b̂ and the effective decay width Γnon are

fixed to the values from Table 8.5, and τ is taken as the B0 lifetime.

Event type Effective CP
B0 → J/ψK∗0, K∗0 → KLπ

0 −0.68 ± 0.07
B0 → J/ψKS −1
B0 → χc1KL +1
Other B → J/ψX (EMC) 0.21+0.12

−0.06

Other B → J/ψX (IFR) 0.24+0.14
−0.06

non-J/ψ 0 ± 0.25

Table 8.8: Expected CP content for B0 → J/ψ KL background events. The CP
content for B0 → J/ψK∗0 was taken from Reference [77], and the CP content for
the non-itemized B → J/ψX were determined from Monte Carlo samples, where
we require |∆E| < 10 MeV. The quoted errors are conservative estimates used to
determine the systematic uncertainty on sin 2β due to backgrounds.
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As we mentioned in Section 8.2, the nominal fit to extract sin 2β from re-

constructed B0 → J/ψ KL events includes the likelihood term Lmix for the Bflav

sample that describes B0 − B̄0 mixing. This term is also modified to account for

the effects of background events, as documented in Reference [74].

A total of 33 parameters are allowed to float in the maximum likelihood fit to

the B0 → J/ψ KL and Bflav samples to determine the value of sin 2β:

• The value of sin 2β itself.

• Eight parameters which describe the average mistag fraction wi and the the

differences ∆wi = wi(B
0)−wi(B̄0) for each tagging category i. In addition,

there are eight parameters that account for wi and ∆wi in background.

• Eight parameters define the signal ∆t resolution, discussed in Section 8.2.2.

For background B → J/ψX events, we allow the quantities Score, fcore,

and bcore to float in the fit. The remaining ∆t resolution parameters for

B → J/ψX background are assumed to agree with signal values.

• Four parameters quantify the fraction of background events with zero life-

time in each tagging category in the Bflav sample. One additional parameter

is used to determine the lifetime of the non-prompt background events.

In addition, there are several parameters that are fixed in the fit:
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• The relative fractions of B0 → J/ψ KL signal, and B → J/ψX and non-

J/ψ backgrounds in the ∆E signal region as a function of tagging cate-

gory (lepton or non-lepton), KL reconstruction mode (EMC/IFR), and the

J/ψ → �+�− reconstruction type (� = e, µ). These fractions were deter-

mined from the results of the fit given in Tables 8.6 and 8.7, and the relative

amounts of the B → J/ψX backgrounds are obtained from Monte Carlo

studies (see Table 8.3). A total of 56 parameters, which specify the relative

fractions of B0 → J/ψ KL signal and six background modes (B → χcKL,

J/ψKS, J/ψK
∗0, as well as prompt and non-prompt non-J/ψ background

and the sum of the remaining B → J/ψX modes) for the eight reconstruc-

tion categories, are used in the fit.

• The parameters that describe the shape of the signal and background ∆E

PDFs (see Figures 8.8 and 8.9) are fixed in the sin 2β fit. In either the EMC

or the IFR, eight parameters describe the B0 → J/ψ KL signal shape, five

parameters describe the B → J/ψKS distribution, and four parameters

model the B → J/ψX distribution. The two parameters used to describe

the non-J/ψ background are common to both EMC and IFR events. This

yields a total of 36 unique shape parameters that are inputs to the fit.
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• The ∆t resolution function parameters (b̂) for the non-J/ψ background

events, given in Table 8.5.

• The CP content of the background is also included in the fit. We fix the

effective CP of B → J/ψK∗0 events to −0.68 ± 0.07 from a recent BABAR

study [77]. Studies of B → J/ψX events in Monte Carlo estimates the

CP content of the background at 0.21(0.24) in the EMC(IFR) sample. We

assume the CP content of the non-J/ψ background is zero.

• We fix the lifetime of the B0 and the mass difference ∆md to the 2002 PDG

values: τB0 = 1.542 psec, ∆md = 0.489 psec−1 [78].

8.3 sin 2β Fit Results and Systematics

The value of sin 2β obtained from the fit to the B0 → J/ψ KL and Bflav sam-

ples is

sin 2β = 0.723 ± 0.158, (8.17)

where the quoted (statistical) uncertainty does not yet include systematic uncer-

tainties. In Table 8.9 we include the results of the sin 2β fit in various subsets of

the data.
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Sample Tagged Yields Purity sin 2β
J/ψKL 561 ± 32 55.2 0.723 ± 0.158
Lepton 91 ± 11 63.9 0.233 ± 0.291
Kaon I 147 ± 15 54.7 0.959 ± 0.248
Kaon II 142 ± 15 48.4 0.643 ± 0.360
Inclusive 174 ± 17 56.0 1.593 ± 0.530
B0-tagged events 296 ± 22 54.7 0.858 ± 0.224
B̄0-tagged events 258 ± 21 54.6 0.624 ± 0.224
EMC J/ψ → e+e− 122 ± 13 49.8 1.121 ± 0.364
IFR J/ψ → e+e− 134 ± 16 65.2 0.422 ± 0.299
EMC J/ψ → µ+µ− 164 ± 17 47.4 0.742 ± 0.371
IFR J/ψ → µ+µ− 142 ± 17 64.2 0.772 ± 0.270

Table 8.9: Result of fitting the B0 → J/ψ KL and Bflav samples for the CP -
violating parameter sin 2β in the full J/ψKL flavor-tagged sample and in various
subsamples. The yields are given for tagged events, which are obtained by a
likelihood fit and are therefore free of background. In the fits to only B0- or
B̄0-tagged events, each ∆wi parameter was its fitted value.

8.3.1 Systematic uncertainties

Most of the systematic uncertainties associated with the extraction of the CP

asymmetry using B0 → J/ψ KL events are due to the unique properties associated

with B0 → J/ψ KL decay. We enumerate these sources of systematic uncertainty

below, where we also discuss the uncertainties associated with the Bflav sample.

We summarize our findings in Table 8.10.

1. In order to determine the systematic uncertainty due to the sample composi-

tion extracted from the ∆E fit, we vary the signal and background fractions

using a set of Gaussian random numbers, where the width of the Gaussian
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distribution is taken from the measured uncertainty on the sample composi-

tion. The covariance matrix from the ∆E fit is used so that we may account

for the correlations between the signal and background fractions. The width

of the resultant sin 2β distribution is taken as the systematic uncertainty.

2. We vary the B → J/ψK∗, J/ψKLπ, B0 → J/ψK0, χc1KL, and the non-

itemized B → J/ψX branching fractions in the inclusive B → J/ψX Monte

Carlo event sample by either their measured uncertainties or conservative es-

timates. In each case, we recompute the sample composition and determine

the deviation from the nominal result for sin 2β. The systematic uncertainty

from this source is taken as the sum in quadrature of each deviation.

3. Referring to Table 8.8, we measured the CP content of the non-itemized

B → J/ψX background events in Monte Carlo to be 0.21+0.12
−0.06 in the EMC,

and 0.24+0.14
−0.06 in the IFR. The asymmetric uncertainty is the result of con-

servatively varying the B → J/ψX branching fractions. For B0 → J/ψK∗0

events, we take the effective CP derived from Reference [77], and for non-

J/ψ events we assume a net CP of zero and conservatively vary this value

by ±0.25. We take the deviation from the nominal sin 2β value as our sys-

tematic uncertainty.
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4. In Section 8.1.3 we discussed various corrections to the Monte Carlo that

alter the shape of the ∆E distributions. In order to gauge our sensitivity to

the shape of the ∆E PDFs, we alternately introduced a Gaussian smear of

0.85 ± 0.45 MeV and a shift of −0.5 ± 0.25 MeV. We take the deviation in

the value of sin 2β with respect to the nominal result as a systematic.

5. Comparing ∆E fits to B0 → J/ψ KL events reconstructed in Monte Carlo

and data, we find the ratio of EMC events to IFR events is 1.29 ± 0.03 in

Monte Carlo and 0.95 ± 0.07 in data. This implies that the Monte Carlo

does not accurately model the KL reconstruction efficiency in the detector.

To correct for this effect, events in Monte Carlo with a real KL are weighted

by a factor of 0.74 in the EMC. This changes the shape of the B → J/ψX

background PDF, as a significant fraction of the EMC background is due to

photons that mimic KL mesons. We recompute the sample composition, and

take the resulting deviation from the nominal sin 2β value as our systematic

uncertainty.

6. As we mention in Section 8.1.3, based on studies of e+e− → φγ events,

we randomly smear the KL angular position in the IFR to correct for the

overly optimistic resolution in Monte Carlo events. The nominal value of

sin 2β extracted from the maximum likelihood fit includes this smearing.

230



Chapter 8. Measuring sin 2β with B0 → J/ψ KL

We remove this correction, and take the deviation from the nominal sin 2β

as the systematic uncertainty.

7. We examine the effects of our treatment of lepton-tagged events (recall that

signal efficiency drops for these events) by using an average efficiency for

all tagging categories. We take the deviation from the nominal value as the

systematic uncertainty.

8. In order to test our sensitivity to signal ∆t resolution function parameters,

we compute sin 2β for different fixed values determined from various Monte

Carlo samples. We take the average deviation in sin 2β from the nominal

result as the systematic uncertainty for this effect.

9. For the non-J/ψ background, we vary the ∆t resolution function parameters

given in Table 8.5 and take the maximum change in sin 2β as the systematic

uncertainty.

10. We also examine the impact the fixed resolution function parameters (the

width and bias of the outlier Gaussian, as well as the scale factor of the tail

Gaussian, see Section 8.2.2) have on the value of sin 2β. We vary the width

of the outlier Gaussian between 4 and 12 psec (nominally 8 psec), and the

outlier bias between −2 and +2 psec (nominally, we assume no bias). We
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also vary the tail scale factor (nominally 3) between 2 and 5. The change in

sin 2β relative to the nominal value is taken as the systematic uncertainty.

11. We also recompute sin 2β, where we compute separate ∆t resolution function

parameters for each tagging category. The overall change in sin 2β is taken

as the systematic uncertainty.

12. In the nominal fit, we assume that the ∆t resolution is the same for correctly

and incorrectly tagged events. We test this assumption using signal Monte

Carlo, where we split the sample according to the quality of the tag and fit

each sample with it own resolution function. Although no significant differ-

ence is seen between the two fits, we take the uncertainty on the difference

as a systematic uncertainty.

13. To determine the influence the mistag parameters have on the value of sin 2β,

we fix the ∆t parameters and recompute sin 2β using mistag parameters

obtained from the Bflav and B0 → fCP Monte Carlo samples. We take the

uncertainty on our results as the systematic uncertainty.

14. The probability that an event found in Bflav sample is a real B is a function

of its mES value, as events in the mES signal region are modelled by the

sum of a Gaussian and a threshold background function. First, we vary

the Bflav signal probabilities by their measured uncertainties, and observe
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the change in sin 2β. After this test, we vary the endpoint of the threshold

background function by ±2 MeV and observe the effect on sin 2β. The sum

in quadrature of the deviations due to each effect is taken as the systematic

uncertainty due to the uncertainty in the composition of the Bflav sample.

15. Nominally, we assume that the background in the Bflav sample has no mixing

component, but as a systematic check we assume all non-prompt background

mixes with frequency ∆md.

16. For the Bflav sample, we ignore the possibility of doubly Cabibbo-suppressed

b → u transitions. In other words, we assume decays such as B̄0 → D+π−

only occur as a result of the favored b→ c transition. As a systematic check,

we include the effects of the b → u transitions and observe the variation in

the value of sin 2β as a function of the strong phase difference between B0

and B̄0 decays. The relative strong phases for the suppressed Bflav and Btag

decays cannot be determined experimentally, and so we take the maximum

variation in sin 2β as our systematic uncertainty.

17. We allow the B0 lifetime and mixing frequency to vary within measured

errors according to the 2002 PDG [78]. We compare the results for sin 2β to

the nominal value, and take this difference as the systematic uncertainty.
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18. Various detector effects, such as the uncertainty on the boost, beam spot

position, and the alignment of the SVT, contribute an addition ±0.014 to

the total systematic uncertainty.

19. Finally, studies of Monte Carlo event samples indicate that there is a small

bias in the likelihood extraction of sin 2β. The value for sin 2β quoted in

Equation 8.17, as well as those in Table 8.9, have already been corrected by

−0.014 in order to account for this bias. We assign a systematic uncertainty

of ±0.010 to this correction.
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Source δ(sin 2β)
1. ∆E sample composition ±0.051
2. B → J/ψX branching fractions ±0.051
3. CP content of background ±0.022
4. ∆E shift, smear −0.016
5. KL re-weighting in the EMC +0.006
6. IFR KL angular resolution +0.020
7. Lepton tag correction ±0.023
8. Signal ∆t resolution ±0.002
9. Non-J/ψ ∆t resolution ±0.003
10. Fixed ∆t resolution parameters ±0.009
11. Tag-dependent ∆t resolution function ±0.013
12. ∆t resolution based on tag quality ±0.001
13. Mistag parameters ±0.012
14. Bflav sample PDF variation ±0.004
15. Bflav background mixing ±0.003
16. Doubly Cabibbo-suppressed decays ±0.008
17. B0 lifetime and mixing frequency ±0.004
18. Detector effects ±0.014
19. Monte Carlo correction (Bias) −0.014 ± 0.010
Total systematic uncertainty ±0.086
Total statistical uncertainty ±0.158

Table 8.10: Summary of contributions to the systematic uncertainty on sin 2β
for B0 → J/ψ KL decay. The number next to each source corresponds to the
numbering in the text.
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8.4 Conclusions

We measure the CP -violating quantity sin 2β using 88 million Υ(4S) → BB̄

decays recorded at the BABAR detector at SLAC between 1999 and 2002. Recon-

structing B0 → J/ψ KL events in this data sample, we obtain

sin 2β = 0.723 ± 0.158(stat.) ± 0.086(syst.), (8.18)

which is consistent with Standard Model expectations.

This result was initially included in Reference [64], where the CP asymmetry

in B0 → J/ψ KL events was combined with several decay modes with ηCP = −1:

B0 → J/ψKS, ψ(2S)KS, χc1KS, ηcKS, and J/ψK∗0, K∗0 → KSπ
0. The results

are summarized in Table 8.11, where you can see that the statistical precision of

the B0 → J/ψ KL measurement exceeds all but J/ψKS, KS → π+π−. The fit to

Sample sin 2β
J/ψKL (ηCP = +1) 0.72 ± 0.16
J/ψKS (KS → π+π−) 0.82 ± 0.08
J/ψKS (KS → π0π0) 0.39 ± 0.24
ψ(2S)KS (KS → π+π−) 0.69 ± 0.24
χc1KS 1.01 ± 0.40
ηcKS 0.59 ± 0.32
J/ψK∗0 (K∗0 → KSπ

0) 0.22 ± 0.52
Full CP sample 0.74 ± 0.07

Table 8.11: Result of fitting for CP asymmetries in various BABAR data samples.
The quoted uncertainty on the results is statistical only.
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Figure 8.10: a) Number of ηCP = −1 candidates (J/ψKS, ψ(2S)KS, χc1KS,
and ηcKS) in the signal region with a B0 tag (NB0) and with a B̄0 tag (NB̄0), and
b) the raw asymmetry (NB0 − NB̄0)/(NB0 + NB̄0) as functions of ∆t. The solid
(dashed) curves represent the fit projection in ∆t for B0 (B̄0) tags. The shaded
regions represent the background contributions. Figures c) and d) contain the
corresponding information for the J/ψKL mode (ηCP = +1).

the full CP and Bflav samples yields

sin 2β = 0.741 ± 0.067(stat.) ± 0.034(syst.), (8.19)

where the B0 → J/ψ KL results contribute ±0.015 to the total systematic error.

In Figure 8.10 we present the flavor-tagged ∆t distributions and the raw CP

asymmetry for B0 → J/ψ KL and ηCP = −1 events in data.
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8.4.1 Impact on the Unitarity Triangle

The results for sin 2β are used (along with other analysis results) to constrain

the (ρ,η) vertex of the Unitarity Triangle (Figure 6.2). In the summer of 2002,

the CKMfitter Group [79] compiled available results from BABAR and elsewhere in

order to show the various experimental constraints on CP violation in the quark

sector according to the Standard Model. The results are shown in Figure 8.11.

In this case the vertex of the Unitarity Triangle, (ρ̄, η̄), incorporates higher order

corrections to the Wolfenstein parameterization [80]:

ρ̄ = ρ

(
1 − λ2

2

)
η̄ = η

(
1 − λ2

2

)
,

so that Vtd = Aλ3(1 − ρ̄ − iη̄) is correct to O(λ5). In 2002, experimental results

implied that within ±1σ errors,

ρ̄ = 0.125 to 0.306, and η̄ = 0.287 to 0.402.
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Figure 8.12: sin 2β results at BABAR as a function of the number of BB̄ decays
used. All results have been published [76, 73, 64, 84], with the exception of the
preliminary results using 347.5 million BB̄ decays [85].

8.4.2 Progress beyond the 2002 results

A summary of the BABAR sin 2β results is shown in Figure 8.12 as a function

of the number of BB̄ decays used in each analysis. In the years following the

sin 2β analysis documented here, the B factories have accumulated a vast number

of additional BB̄ decays. The most recent (preliminary) results from BABAR [85]

report the value of sin 2β obtained from a study of nearly 350 million Υ(4S) → BB̄
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decays:

sin 2β = 0.710 ± 0.034(stat.) ± 0.019(syst.), (8.20)

with |λ| deviating from unity by about 2σ (any deviation from unity would be an

indication that CP Violation in these modes is not strictly the result of interfer-

ence between mixing and decay).

The most recent results from the CKMfitter Group have been compiled using

experimental results presented at the 2006 winter conferences, and are shown in

Figure 8.13. They conclude

ρ̄ = 0.197+0.026
−0.030 and η̄ = 0.339+0.019

−0.018

within ±1σ errors.

The study of sin 2β in B decays to charmonium final states has been an ex-

cellent test of Standard Model predictions. Vast amounts of data have allowed

us to measure this quantity to a precision of less than 5% in the past year. This

already serves as an excellent constraint on the Standard Model, and further data

will only increase our understanding of CP violation in the quark sector.
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