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ABSTRACT: The Tevatron chromaticity tracker (CT) has been successfully

commissioned and is now operational. The basic idea behind the CT is that when

the phase of the Tevatron RF is slowly modulated, the beam momentum is also

modulated. This momentum modulation is coupled transversely via chromaticity

to manifest as a phase modulation on the betatron tune. Thus by phase demodu-

lating the betatron tune, the chromaticity can be recovered. However, for the phase

demodulation to be successful, it is critical that the betatron tune be a coherent

signal that can be easily picked up by a phase detector. This is easily done because

the Tevatron has a phase locked loop (PLL) based tune tracker which coherently

excites the beam at the the betatron tune.
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INTRODUCTION

In the traditional method for measuring chromaticity, the RF frequency is changed

and the excursion of the betatron tune from its nominal position is measured from which

the chromaticity can be extracted with the formula

∆Q = −ξ
η

(
∆f
fRF

)
(1)

where ξ is the chromaticity, η is the slip factor, fRF is the nominal RF frequency, ∆f is the

change in RF frequency from fRF and ∆Q is the change in betatron tune from the nominal

betatron tune when ∆f = 0. It is obvious from (1) that if there is a way to continuously

track the tune, a slow frequency modulation of the RF will allow the continuous measure-

ment of chromaticity. In fact, this technique has been applied successfully at both RHIC

(Relativistic Heavy Ion Collider) and at the SPS (Super Protron Synchrotron),† because

both machines have phase locked loop (PLL) tune trackers which measure the betatron

tunes continuously with high precision.

We have performed the above technique at the Tevatron with our PLL tune tracker.1

The results, however, have been mixed. This technique works with uncoalesced beam,

but for coalesced beam, it always gives a smaller chromaticity value than expected.2 We

decided to pursue the phase modulation technique first proposed by D. McGinnis3 to see

if the incorrect chromaticity measurements with coalesced beam can be mitigated.‡ And if

this technique can be demonstrated to work, it can be added to the arsenal of chromaticity

measurement techniques. An advantage of the phase modulation technique is that when

the frequency of the phase modulation is chosen so that it lies outside the tune tracker

PLL loop bandwidth, the TT is not stressed because it does not “see” the modulation and

† This will also be the baseline technique for the LHC (Large Hadron Collider)
‡ In fact, this method also shows a smaller value of chromaticity for coalesced beam. We

suspect that this is due to the difference in transverse emittance between coalesced and
uncoalesced beam. This will be discussed in this paper.

2



thus will not track it. This is unlike the traditional technique where the TT tracks the

tune motion from the RF frequency changes.

In this paper, we will summarise the theory behind the phase modulation method

and discuss the problems we have found in our first attempt to implement it and how we

have solved them. We will also show the measurements with beam which demonstrates the

performance of the CT. Finally, we will show some reasons why the chromaticity measured

with the CT or with the traditional method with the TT for coalesced beam is smaller

than we expect.
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THEORY

The theory has been worked out in other papers3,4 and we will not repeat it here. We

quote the relevant formula here which relates the phase amplitude of the phase demodu-

lated signal to chromaticity for betatron mode (k,±)

Z± =
(
k ±Q0 ∓

ξ

η

)
∆φmod
h

(2)

where k ∈ N ∪ {0} is the mode number, Q0 is the fractional betatron tune, ξ is the

chromaticity, η is the slip factor, ∆φmod is the amplitude of the phase modulation applied

to the accelerating RF, h is the harmonic number and Z± ∈ R is the amplitude of the

phase demodulated signal. Solving for ξ, we have

ξ± = η

(
±k +Q0 ∓

hZ±
∆φmod

)
(3)

In particular, for the Tevatron, the CT looks at the (k,+) mode,§ i.e.

ξ+ = η

[
(k +Q0)− hZ+

∆φmod

]
(4)

Therefore, it is obvious from (4) that once we can measure the phase amplitude Z+ and

the betatron tune Q0, the chromaticity ξ is easily calculated. The parameters which are

relevant to the Tevatron and CT are shown in Table 1.

In practice, the measurement of the phase oscillation w.r.t. the betatron tune is difficult

to accomplish if the betatron tune is not coherent. In fact, early experiments performed by

D. McGinnis using this technique did not yield satisfactory results because the betatron

tune from the Schottky pickups is an incoherent signal and therefore the phase is not well

defined. It was not until the TT system became operational that this technique became

feasible because the TT excites the beam coherently. And thus the phase can be reliably

measured w.r.t. the coherently excited betatron tune.

§ In earlier papers, we have mistakenly used mode (k,−).
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Table 1. Tevatron and CT Parameters

Parameter Value Description

η 0.0029 slip factor

k 448 mode number
Q0 0.55 – 0.6 fractional betatron tune

h 1113 harmonic number
∆φmod 2.8◦ – 11.2◦ amplitude of phase modulation

Ωmod 2π × 23 s−1 phase modulation frequency

Ωs 2π × (35 – 84) s−1 synchrotron frequency

ωRF 2π × (53.1× 106) s−1 RF frequency

ξ 4 – 15 Tevatron chromaticity range

RF Frequency and Betatron Tune Excursion

The maximum change in betatron tune ∆Qmax due to the phase modulation is given

by the following formula (for derivation see Ref. 4)

∆Qmax =
∣∣∣∣
∆φmod × Ωmod

ωRF

(
Q0 −

ξ

η

)∣∣∣∣ (5)

And for ∆φmod = 10◦, Q0 = 0.583 plus the numbers from Table 1, we have

1× 10−4 < ∆Qmax < 3× 10−4 4 ≤ ξ ≤ 10 (6)

When we translate these numbers to the traditional method which uses (1) for calculating

ξ, we find that with the above ∆Qmax excursion, the equivalent change in RF frequency

∆f is

(1.5 < ∆f < 4)max Hz 4 ≤ ξ ≤ 10 (7)

We can compare ∆f found above to the traditional method when done by hand which is

±40 Hz. This means that the maximum ∆f change using the CT is about 10× smaller

than the traditional method.
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PROBLEMS

Our early attempts with this method did not produce a chromaticity measurement

better than ±1 unit when we measure the horizontal chromaticity. See Figure 1. We have

traced the source of the problem to the following:

(i) The vertical tune Qv. This causes beats with Qh. See Figure 2.

(ii) The lower sideband of the betatron tune (1 − Qh) adds shoulders to the input of

the CT. See Figure 3.

(iii) The synchrotron frequency Qs which interferes with the phase demodulation.

In fact, all the above can be easily reproduced on the bench with the setup shown in

Figure 4 using the parameters shown in Table 2.

Beam Simulator

The beam simulator consists of three signal generators (See Figure 4). The HP8657A

is used to synchronise two signal generators HP8904 and HP33250A. The HP8904 OUT 1

is set to produce a carrier frequency which is at the horizontal betatron tune. The carrier

is phase modulated by both the CT RF modulation frequency which is at 23 Hz and the

synchrotron frequency which can range from 35 to 84 Hz. OUT 2 is set to produce the

vertical betatron frequency and summed with OUT 1 and sent to the input of the CT.

The HP33250A outputs a sine wave at the horizontal betatron tune which is the reference

frequency for the CT. With the settings shown in Table 2, we can reproduce the poor

tracking of uncoalesced beam shown in Figure 5.
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Figure 1 As the chromaticity is changed with a calibrated knob
CXINJ (green), CT (red) tracks those changes but with errors as large
as 1 unit of chromaticity.

Figure 2 The green trace shows Qv beating with Qh.
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Figure 3 The shoulders shown in the green trace in (a) come from
the addition of the betatron tunes Qh and (1 − Qh). (b) When a
high pass filter is used to suppress (1 − Qh) and pass only Qh, the
shoulders go away. This data comes from uncoalesced beam being
phase modulated at an amplitude of 5.6◦.
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Figure 4 We can reproduce the behaviour of the CT with ±1 unit
of error (See Figure 5) when the commutating filter is not in the
circuit.
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Table 2. Simulator Settings

HP8904 OUT 1 Settings

Channel Frequency Amplitude Mode Description

A 28.1 kHz 200 mV sine horizontal betatron freq.

B 23 Hz 5◦ phase mod. phase modulation

C 84 Hz 45◦ phase mod. synchrotron modulation

HP8904 OUT 2 Settings

D 27.3 kHz 100 mV sine vertical betatron freq.

HP33250A Settings

1 28.1 kHz 200 mVpp sine horizontal betatron freq.

as reference for CT

Commutating Filter

Our solution for increasing the accuracy of the CT is to have a narrow band filter

(NBF) which can filter out all the extraneous signals outside the betatron tune. However,

the resonance of the NBF must dynamically track the motion of the betatron tune because

it is not stationary. An NBF which can easily change its resonant frequency exists and is

called a commutating filter.

The commutating filter is a series of narrow band filters whose resonances are dictated

by the switching frequency ωsw. See Figure 6. For a commutating filter which has N

identical capacitors, the resonances Ωres are at

Ωres = k
(ωsw
N

)
k ∈ Z (8)

and the bandwidth of each resonance is

fbw =
1

πNRC
(9)
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Figure 5 This shows the behaviour of the CT when tracking actual
uncoalesced beam and the simulator. The settings of the simulator
are shown in Table 2. It is clear that the CT tracks the simulator
as poorly as actual beam when the commutating filter is not in the
circuit. With the addition of the commutating filter into the circuit,
it magically cleans up the noise sources and the CT can now track to
±0.1 units of chromaticity on the bench.
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Figure 6 The commutating filter consists of a resistor R and N

capacitors C numbered from 0, 1, . . . , N − 1. The switch S rotates
at frequency ωsw and connects each capacitor C for a time period
of 2π/Nωsw. The frequency response of this commutating filter is
measured with a vector signal analyser (VSA) for R = 10 kΩ and
C = 0.1 µF.
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where R is the resistance and C is the capacitance of the filter.

Therefore, when ωsw = N × Q0ωrev, one of the resonances will lie directly on top of

the betatron tune. Thus, any signals outside the resonance will be filtered out.

When this is added to the simulator at the location shown in Figure 4, we can see

that tracking improves dramatically on the bench. See Figure 5. In fact, with the filter,

the improvement of the CT when measuring actual beam is improved just as much. See

Figure 7.

Figure 7 The data from Figure 1 is superimposed here to show the
improvement in the CT with the commutating filter when measuring
the chromaticity of the beam.
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IMPLEMENTATION

The current implementation of the CT is shown in Figure 8. At House F0, a phase

modulator is connected directly to the low level RF system so that the Tevatron RF can

be phase modulated. We have chosen the modulation frequency Ωmod of the RF to be

(2π×23) s−1. The choice is dictated by the closed loop bandwidth of the PLL tune tracker

which is about 5 Hz and the range of synchrotron frequencies of the Tevatron. See Table 1.

At House A1, our CT module picks up and processes the phase modulated betatron

signal from the Tevatron 21.4 MHz Schottky system after it has been filtered with the

commutating filter. At the heart of the CT module is the hardware phase detector (PD)

which has been implemented around an ALTERA Cyclone FPGA. See Figure 9. We have

designed the CT module to be compatible with both the modulation frequency and the

betatron frequency. In the ALTERA, there are two major blocks:

(i) A hardware PD which extracts out the sine and cosine of the phase w.r.t. betatron

tune. The inputs to the PD are the phase modulated betatron tune from the

21.4 MHz Schottky after it has been filtered with the commutating filter and the

betatron tune from the TT which is the carrier frequency. These two signals are

sampled at 250 kHz which is ∼10× higher than the betatron frequency.

(ii) A 32-bit NIOS II floating point processor running at 50 MHz. It takes the arc-

tangent of the sine and cosine of the phase from the hardware PD. This is done at

(16×23) Hz which yields an oscillating signal which contains the 23 Hz component.

The amplitude of the 23 Hz oscillation is recovered by putting it through a Sliding

Goertzel filter4 which is a clever discrete Fourier transform. In particular, we are

applying a 320 point Fourier transform. The amplitude of the 23 Hz component is

communicated back to the control system via ethernet.
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(iii) From the amplitude of the 23 Hz component, the chromaticity is calculated using

(4) by a dæmon running on the control system.

We will give detailed specifics of the implementation in the following subsections.

Hardware PD

The hardware PD performs a series of simple trigonometric manipulations to extract

out the phase component φ from the phase modulated input signal A sin(ωβt+φ) w.r.t the

unmodulated reference betatron signal B sinωβt. Both A and B are the amplitudes of the

phase modulated and reference signals respectively. See Figure 10. The key part in the

hardware PD is the Hilbert transformer. A Hilbert transformer is a type of filter which

phase shifts all signals within its operational bandwidth by exactly π/2, i.e. sin(ωt +

φ)Hilbert−→ cos(ωt + φ). In particular, our Hilbert transformer is a 51 tap finite impulse

response (FIR) filter. See Appendix II. A 51 tap FIR filter has a 25 tap delay, which is

why delays are required in the hardware PD.

When we write out the mathematics of the block diagram shown in Figure 10, we find

that the output of the hardware PD is exactly AB sinφ and AB cosφ. Note: it is necessary

that there is no DC offset in either the modulated betatron signal or the reference signal.

Any DC offset will give an undesirable oscillation at ωβ at the output.

Calculating φ

Once the hardware PD provides us with AB sinφ and AB cosφ, it is obvious that

we have to take the arctangent of sinφ/ cosφ to obtain φ. However, the arctangent is a

multiple-valued function and in all standard implementations of the arctangent in C or
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Figure 8 The current implementation of the CT consists of a phase
modulator at House F0 which phase modulates the Tevatron RF. At
House A1, the betatron signal is tracked and excited by the tune
tracker PLL. The phase locked signal from the direct digital synthe-
siser (DDS) of the tune tracker PLL is used as the reference signal
for the phase detector of the CT. It is also upconverted 8× for the
commutating filter.
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FORTRAN, the arctangent of vectors like (−1, ε) and (−1,−ε) where ε� 1 return

arctan(−1, ε) = π

arctan(−1,−ε) = −π



 (10)

where arctan(x, y) is the arctangent of the vector (x, y) in the xy-plane.¶

For example, if we have ϕ oscillating about −π as follows

ϕ(t) = −π + sin 2πt (11)

then when we use the usual implementation of arctangent defined above on the vector

(cosϕ, sinϕ), we find that the result is discontinuous because of the arguments we gave

above. See Figure 11.

The solution to the problem is trivial. We simply increment a counter called the

winding number n when the vector (cosϕ, sinϕ) rotates from the third quadrant to the

fourth and decrement it when it rotates from the fourth to the third. Therefore, our

formula which includes the winding number is

atan2unwind(n, x, y) = 2nπ + arctan(x, y) (12)

When we apply atan2unwind() to the above example, we find that it exactly reproduces

ϕ(n). Again see Figure 11. A C implementation of atan2unwind() is shown in Appendix III.

Note: This algorithm is the panacea if the vector (x, y) rotates smoothly from quadrant to

quadrant. On the other hand, if (x, y) jumps from quadrant 2 to quadrant 4, atan2unwind()

will have a discontinuity.

Calculating |Z+|

φ at the output of the phase detector is a sinusoidal function in time. In fact, we can

write it as

φ(t) = Z+ sin(Ωmodt+ θ) + Φ(t) (13)

¶ The standard C arctangent implementation has its arguments flipped, i.e. atan2(y,x).
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Figure 9 The CT module lives on a NIM card. A diagram of the
essential blocks of the electronics on the card is also shown here.
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Figure 10 The hardware phase detector is implemented in an AL-
TERA FPGA. The phase modulated betatron signal A sin(ωβt + φ)
is referenced to the betatron signal B sinωβt in order to extract out
sinφ and cosφ. Note: t′ is a 25 tap delay and it is necessary to cre-
ate cosωβ(t− t′) and sinωβ(t− t′) from sinωβt because the TT only
supplies the reference sine signal. All mathematics in the FPGA are
performed in 16-bit fixed point arithmetic.

where θ is the phase w.r.t. the sampling frequency and Φ(t) contains phase oscillations

from synchrotron motion and phase noise.

The usual way to extract out Z+ is to Fourier transform φ(t) and then read off the

magnitude of the Fourier component at Ωmod. In fact, since the φ(t) data stream is flowing
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Figure 11 This graph shows the behaviour of arctan(cosϕ, sinϕ)
and atan2unwind(cosϕ, sinϕ). Clearly, arctan() shows discontinuities
at ±π, while atan2unwind() exactly matches ϕ(t).

in continuously, we will have to continously perform FFT’s. This is terribly inefficient

because an N point FFT calculates all N/2 Fourier coefficients when we are only interested

in the Fourier amplitude at Ωmod. Instead, we use a method called the Sliding Goertzel

Algorithm (SGA) which is much more efficient because for N equally spaced input samples,

the SGA only requires (N +1) multiplications and (2N −1) additions for obtaining Z+ for

the first Z+ and then 3 multiplications and 5 additions for obtaining subsequent Z+’s. In

contrast, a radix-2 FFT requires log2N + 1 multiplications and 3
2 log2N + 1

2 additions for

calculating every Z+. Therefore, for N > 4, the SGA is a more efficient algorithm than

the radix-2 FFT. For a complete derivation of the SGA, see Appendix II of Ref. 4.

Once Z+ is extracted from φ(t), ξ is calculated using (4). However, there is a limitation

which we will discuss in the next subsection.
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Limitations

The present CT implementation has the limitation that the phase detector only returns

|Z+| because we do not measure the phase relationship between the 23 Hz at the CT and

the 23 Hz from the signal generator which is injected into the phase shifter of the LLRF.

See Figure 8. This means that there will always be a sign ambiguity in ξ measured by the

CT. Fortunately, the Tevatron is set up to run with positive chromaticity only, and with

this knowledge, we can see that Z+ ≤ 0 and so (4) becomes

ξ+ = η

[
(k +Q0) +

h|Z+|
∆φmod

]
≥ ξmin for Z+ ≤ 0 (14)

Figure 12 When we use (14) for calculating ξ, it is always positive
because the present CT only measures |Z+| ≥ 0. The smallest value
of ξ that can be measured presently is 1.3 units.

In fact, the minimum chromaticity ξmin that can be measured by the CT is when Z+ = 0.

In particular, we can use the parameters for the Tevatron and CT from Table 1 to calculate

21



ξmin which is

ξmin = η
(
k +Q0

)
≈ 0.0029× 448.575 = 1.3 (15)

We plot the full range of ξ that can be returned by the current implementation in Figure 12.
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MEASUREMENTS

We can measure the chromaticity of uncoalesced protons with the CT as a function of

the chromaticity sextupole setting CXINJ. In the Tevatron, the term “uncoalesced protons”

means filling 30 adjacent RF buckets in the Tevatron with protons to give a total of 200×109

to 300 × 109 protons. After we have calibrated CXINJ using the traditional method by

hand, we can plot the CT measured chromaticity as a function of calibrated CXINJ settings.

See Figure 13.

We notice that the CT returns a much smaller value of chromaticity for ξh > 10. This

problem is not fully understood because the CT measures large chromaticities on the bench

using the beam simulator described in the previous subsection Beam Simulator . Computer

simulations give us some idea about why this happens but it is not a full explanation. See

the section CT Large Chromaticity Limitations below.

Chromaticity Drift At Injection

The Tevatron is a superconducting machine and so the persistent currents in its dipole

magnets depend on its ramp and squeeze history.5 These persistent currents slowly decay

away and one manifestation is a drift of the chromaticity at the injection porch. Fig-

ure 14(b) shows the evolution of ξh,v from the decay of the persistent currents at the

injection porch as a function of time. The ramp history of the Tevatron before this plot

was made is as follows: the Tevatron was left at its collision energy at 980 GeV and

squeezed for 15 minutes and then unsqueezed and ramped down to its injection energy at

150 GeV.

An interesting feature in Figure 14(a) is that ξh has some dependence on beam current.

This observation is confirmed by both hand measurements with the traditional method as
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Figure 13 The grey area is when the phase modulaton is off. After
it is turned on, the CT tracks the changes in chromaticity when the
calibrated CXINJ is changed. Notice that when ξh > 10, the CT
returns a smaller chromaticity than the actual ξh.
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well as with the CT measurements. After the third injection of beam around 2500 s, ξh

jumps from 6 units before injection to 8 units after reinjection with lower beam current.

Measurements with Coalesced Proton Bunches

Up to this point, we have been measuring chromaticity with uncoalesced protons.

We now turn our attention to coalesced bunches of protons. In the Tevatron, the term

“coalesced bunch” means one bucket is filled with 200 × 109 to 300 × 109 protons. In

our experiment, we fill the Tevatron with 4 bunches of coalesced protons which are spaced

21 buckets apart. When we measure the chromaticity of coalesced protons with the CT (or

the TT), it turns out that the CT measures a smaller value of chromaticity than what we

expect. See Figure 15. The CT measures ξh ≈ 2 and ξv ≈ 3 while the traditional method

measures ξh ≈ 4.5 and ξv ≈ 2. This implies a difference of ∆ξh = −2.5 and ∆ξv = +1

when compared to the traditional method.

Table 4. Uncoalesced and Coalesced Beam Parameters

Parameter Uncoalesced Coalesced

σx (mm) 0.88 1.50

σy (mm) 0.5 0.55

σ∆p/p 2.25× 10−4 6× 10−4

Reasons for Difference

Besides the obvious difference in bunch structure between coalesced and uncoalesced

protons which we have described earlier, there are other differences because of the way

they are formed in the Main Injector. We have summarised these differences in Table 4.
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Figure 14 The CT tracks the chromaticity drift at the injection
porch of the Tevatron after 15 min at low beta, unsqueezed and
ramped down from high energy. It is interesting to notice in (a)
that after beam is reinjected at around 2500 s, ξh jumps from 6 units
to 8 units with lower beam current. Grey area in (b) is when CT is
turned on and chromaticities is adjusted to 4 units.
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Figure 15 The CT measures ξh ≈ 2 units and ξv ≈ 3 units while
measurements by the traditional method gives ξh ≈ 4 to 5 units and
ξv = 2.3 units.

(Note: We have quoted beam size rather than emittance because it is sigma that is directly

measured by the flying wires, optical transition radiation devices, and ionisation profile

monitors in the Tevatron.) The transverse beam size quoted in this table is when the

beam is at the Schottky detectors at A17.6 It is clear from this table that the horizontal

beam size and the momentum spread are the two major differences between coalesced and

uncoalesced beam. When we simulate the CT with the algorithm described in Appendix I

and the parameters from Table 5, we find that it is, in fact, the transverse beam size (and

surprisingly not momentum spread) that is the main cause of the discrepancy. Note: the

simulation does not include dispersion but does include momentum spread. See Figure 16.

From the simulation, we see that there is a 1 mm threshold where if the beam size is

smaller than this, the chromaticity is essentially unaffected by beam size. However, if it

is larger than 1 mm, the measured chromaticity starts decreasing. This is consistent with

the observation that the measured horizontal chromaticity of coalesced beam is smaller
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because its horizontal beam size is larger than 1 mm. In fact, we have seen this effect

in an experiment. See Figure 17(a). The chromaticity takes a step decrement after each

ping of uncoalesced beam because the emittance and thus the beam size is increased. The

horizontal betatron tune Qh also decrements after every ping, but we have checked that

this is due to drops in chromaticity because when the chromaticity is changed, Qh also

changes. See grey box in Figure 17(b). However, when Qh is changed, ξh remains constant.

This experiment shows that it is chromaticity which causes the betatron tune change and

not vice versa.

For the vertical, the discrepancy should be smaller or non-existent because the vertical

size is comparable. However, we still see a discrepancy of about 1 unit and so beam size

cannot be the entire answer.

Figure 16 In the simulation, when the beam sigma is less than
1 mm, the measured chromaticity is constant but when the beam
sigma becomes larger than 1 mm, the measured chromaticity de-
screases. Care has been taken in the simulation to ensure that the
emittance does not blow up from the TT kick and the RF modulation
and there is good S/N for extracting the chromaticity.
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Other Reasons

Since beam size does not explain all the difference in measured chromaticity between

uncoalesced and coalesced beam, we have empirical evidence that the beam distribution

changes with the RF frequency because the phase response of the beam does not behave

in the way we expect. The phase response is important1,3,4 because both the TT and the

CT look at the null of the phase response. The TT tracks the phase null, while the CT

essentially measures the distance of the phase null from its nominal position. Therefore,

by measuring the phase response for different RF frequencies, we can see why the TT and

CT measured chromaticities are smaller than we expect for coalesced beam.

For example, using coalesced beam for horizontal chromaticity ξh = 4, we expect that

the phase null should move by ±0.001 tune units for an RF frequency change ∆f = ∓40 Hz

and with the Tevatron parameters shown in Table 1. However, looking at Figure 18, we

do not see this. The intersections of the red and blue circles in the figure shows where we

expect the phase null of the response to be for ∆f = +40 Hz and −40 Hz respectively. In

fact, for ∆f = −40 Hz, the null of the phase response does not go far enough to touch the

intersection marked by the blue circle. This means that the measured chromaticity will be

smaller than what we expect.

Our suspicion that the distribution has changed comes from observing that the slope

of the phase response in Figure 18. We notice that the slope for ∆f = −40 Hz about zero

is steeper compared to the slope for ∆f = +40 Hz. This is a strong indication that there

is a transverse distribution change between these two RF frequency settings.

CT Large Chromaticity Limitation

For ξ > 10, the CT does not measure the correct value despite having a clear carrier
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Figure 17 In (a) the measured chromaticity takes a discrete step
down every time the beam is pinged. The sharp peaks (enclosed in
grey) in the Schottky power is the moment when the pinger kicks the
beam. The beam current is unaffected during this experiment. In (b),
we zoom into 3250 to 3500 s, when we change the chromaticity, the
betatron tune changes (enclosed in grey), but when the betatron tune
is changed the chromaticity remains constant (enclosed in yellow).
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Figure 18 The phase response of coalesced beam. Notice that the
null of the phase response does not move symetrically about ∆f = 0
when the RF frequency is changed from −40 Hz to +40 Hz. In fact it
does not move enough when ∆f = −40 Hz to touch the intersection
of the blue dashed line and the phase equal to zero horizontal line
marked by the blue circle.

frequency from the TT. See Figure 19. From computer simulations, we can see that large

synchrotron amplitudes interfere with the phase demodulation. However, in order to get

this interference in our simulation the beam size must be large as well. But because we do

not see a beam size increase when the chromaticity is increased when we measure it with

the flying wire system, we cannot fully explain why we have this limitation.
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Figure 19 Shown here is the horizontal Schottky spectrum with the
TT locked to the centre of the betatron tune distribution for ξh = 12.
The synchrotron lines are very distinct and large compared to the
phase modulation lines, which, in fact, can hardly be seen at all.
These large synchrotron lines interfere with the phase demodulation.

Table 5. The Simulation Parameters

Parameter Value Description

η 0.0029 slip factor

Q0 0.588 fractional betatron tune

h 1113 harmonic number
Es 150 GeV energy of the synchronous particle

νs 0.00185 synchrotron tune

Qk Q0 TT kick tune

θk 10−9 – 10−6 TT kick strength chosen for no emittance growth

k3 hη/νs octupole strength

∆φmod 10◦ amplitude of phase modulation

Ωmod 2π × 23 s−1 phase modulation frequency

Np 104 – 105 number of particles

Tsim 243 simulation time in synchrotron periods
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CONCLUSION

The CT has been operational since 22 Oct 2008 and has been used in conjunction

with the traditional method for HEP (high energy physics) shot set up. The operation

of the CT has been reliable and it will replace the hand measured traditional method for

HEP tune ups soon. The problems which we have mentioned in this paper will need to be

resolved and machine studies have been requested to study the frequency response of the

beam and to get to the bottom of why the CT has these limitations.
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APPENDIX I

The formula which couples longitudinal phase modulated motion to transverse phase

modulated motion has been derived for δ-function type beams in both the longitudinal

and transverse planes by McGinnis.3 However, real beams have finite sizes and emittances

and so in order to understand this type of beam, we have derived the equations of motion

which can be used in a computer simulation.

Let us suppose that the phase of the RF is modulated by a sinusoid of the form

φmod(t) = ∆φmod sin Ωmodt (16)

and the RF is also a sinusoid

VRF = V sin
(
ωRFt+ φmod(t)

)
(17)

where ∆φmod is the peak of the phase modulation, Ωmod is the frequency of the phase

modulation, V is the peak voltage of the RF and ωRF is the frequency of the RF. Then

the longitudinal part is easily derived from Edwards7 with the inclusion of the phase

modulation terms. (These equations can be compared with those used by Huang8)

ϕn+1 = ϕn + 2πhη
(

∆p
p

)

n+1
+ ∆φmod

{
sin

[
2πνmod

n+1∑

k=1

[
1 + η

(
∆p
p

)

k

]]

− sin

[
2πνmod

n∑

k=1

[
1 + η

(
∆p
p

)

k

]]}

= ϕn + 2πhη
(

∆p
p

)

n+1
+ ∆φmod × 2 cos

(
2πνmod

{
n∑

k=1

[
1 + η

(
∆p
p

)

k

]

+1
2

[
1 + η

(
∆p
p

)

n+1

]})
sin
(

2πνmod × 1
2

[
1 + η

(
∆p
p

)

n+1

])

(
∆p
p

)

n+1
=
(

∆p
p

)

n
+

eV

β2Es
sinϕn





(18)
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where νmod = Ωmod/ωrev is the modulation tune, and ωrev is the revolution frequency of

the synchronous particle, h = ωRF/ωrev is the harmonic number, β ≈ 1 is the relativistic

beta, e is the the electron charge, Es is the energy of the synchronous particle and π

is the synchronous phase, i.e. we are above transition. Note: Technically, there is no

synchronous particle when we modulate the RF. However, what we do is to assume that

there is a reference RF system which is not modulated and then calculate phases and ∆p/p

w.r.t. the synchronous particle in this reference RF system.

The equations of motion for the transverse part at the pickup with Courant-Snyder

parameters (αp, βp) are

θn+1 = θn + 2π
{
Q0

[
1 + η

(
∆p
p

)

n

]
+ ξ

(
∆p
p

)

n

}

xn+1 = a0 cos θn+1

pn+1 = βpx
′
n + αpxn

= −a0 sin θn+1 + Θk sin 2πnQk − k3x
3
n+1





(19)

where (a0, θ0) is the polar coordinate of the particle in normalised transverse phase space

at n = 0, Q0 is the unperturbed betatron tune for the particle with zero ∆p/p. There is

a transverse kick from the TT which gives an angular kick of size Θk at the tune Qk and

from an octupole with strength k3.

First line of Equation (19)

For pedantic reasons, we will show how the betatron tune shift in the first line of (19)

has been derived. From the definition of the betatron tune Q

Q = φ̇Q/φ̇rev (20)

35



we can write down the approximations to φ̇Q and φ̇rev

φ̇Q = ωQ0

(
1 +

∆ωQ
ωQ0

)

φ̇rev = ωrev

(
1 +

∆ωrev
ωrev

)





(21)

ωQ0 is betatron frequency when the modulation is zero, ∆ωQ/ωQ0 is the relative change

in betatron frequency, and ∆ωrev/ωrev is the relative change in revolution frequency. If we

assume that ∆ωQ/ωQ0, ∆ωrev/ωrev � 1, we have

φ̇Q

φ̇rev
= Q0

(
1 +

∆ωQ
ωQ0

)(
1− ∆ωrev

ωrev

)

≈ Q0

(
1− ∆ωrev

ωrev
+

∆ωQ
ωQ0

)





(22)

because ωQ0/ωrev = Q0.

If we use the following relationships which involve ∆p/p, ∆ωrev/ω0 and ∆ωQ/ωQ0,

∆ωrev
ω0

= −η
(

∆p
p

)

∆ωQ
ωQ0

=
∆Q
Q0

= ξ

(
∆p
p

)





(23)

then (22) becomes

Q = Q0

[
1 + η

(
∆p
p

)]
+ ξ

(
∆p
p

)
(24)

which when the rhs is examined, we find that the change in betatron tune has two contri-

butions. One comes purely from momentum spread (contained in [.]) and the other from

chromaticity.
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APPENDIX II

Table 3. Hilbert Transformer Filter Coefficients

i coefficient[i] i coefficient[i]

0 0.0124427 50 −0.0124427

1 0.0000000 49 0.0000000

2 0.00900775 48 −0.00900775

3 0.0000000 47 0.0000000

4 0.0122483 46 −0.0122483

5 0.0000000 45 0.0000000

6 0.0162677 44 −0.0162677

7 0.0000000 43 0.0000000

8 0.0212626 42 −0.0212626

9 0.0000000 41 0.0000000

10 0.0275401 40 −0.0275401

11 0.0000000 39 0.0000000

12 0.0355514 38 −0.0355514

13 0.0000000 37 0.0000000

14 0.0461607 36 −0.0461607

15 0.0000000 35 0.0000000

16 0.0608791 34 −0.0608791

17 0.0000000 33 0.0000000

18 0.0831083 32 −0.0831083

19 0.0000000 31 0.0000000

20 0.121635 30 −0.121635

21 0.0000000 29 0.0000000

22 0.208752 28 −0.208752

23 0.0000000 27 0.0000000

24 0.635464 26 −0.635464

25 0.0000000
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Figure 20 The frequency response of the Hilbert transformer using
the coefficients shown in Table 3.
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APPENDIX III

The C code which implements an arctangent which knows about the winding number.

See (12).

Listing 1 C source listing for atan2unwind()

#include <math.h>

/**********************************************************************

NAME

atan2unwind() -- Unwinds the phase given by atan2().

SYNOPSIS

atan2unwind() unwinds the phase given by atan2(). The range of

atan2() is between -pi and pi and thus there is a discontinuity

when the phase goes from the 3rd to the 4th quadrant and vice

versa. Therefore, a phase unwinder is needed to smoothly change

the phase at this transition. The simplest thing to do is to

monitor the crossing between the 2nd and 3rd quadrant. If the

phase goes from 3rd to 2nd, I increment the counter n, while if

the phase goes from 2nd to 3rd I decrement the counter. For the

other quadrants, I keep the counter n unchanged. The formula for

calculating phase becomes:

2*n*M PI + atan2(y,x)

NOTE: statics are used!!!!

USAGE

Call reset atan2unwind() once before atan2unwind() is used to

reset the global variables.

reset atan2unwind() - reset the global variables.

atan2unwind(

y - y axis value of the phasor

x - x axis value of the phasor

) - returns the unwound phase

AUTHOR

C.Y. Tan

SEE ALSO
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atan2()

LOGS

**********************************************************************/

static int oldquad = 1;

static int n = 0;

static float two n pi = 0;

void reset atan2unwind()

{
oldquad = 1;

n = 0;

two n pi = 0;

}
float atan2unwind(const float y, const float x)

{
// find the quadrant where the phasor lies

int q;

if(x >= 0){
q =(y > 0)? 1:4;

} else {
q = (y > 0)? 2:3;

}
if(q != oldquad){

if(oldquad == 2 && q == 3){
n++;

two n pi = 2*n*M PI;

}
else if(oldquad == 3 && q == 2){

n--;

two n pi = 2*n*M PI;

}
}
oldquad = q;

return two n pi + atan2(y,x);

}
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