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The objective of this project has been to develop computational methods that will
enable more effective analysis of Accelerator Driven Systems (ADS). The work
is centered at the University of Missouri at Rolla, with a subcontract at
Northwestern University, and close cooperation with the Nuclear Engineering
Division at Argonne National Laboratory. The work has fallen into three
categories. First, the treatment of the source for neutrons originating from the
spallation target which drives the neutronics calculations of the ADS. This work
was done at the University of Missouri, and carried out primarily by J. Ferrero, a
MS NE student and N. Tsoulfanidis . Second, the generalization of the nodal
variational method to treat the R-Z geometry configurations frequently needed
for scoping calculations in Accelerator Driven Systems. This work was
performed primarily by H. Zhang and E. E. Lewis at Northwestern University.
Third, the treatment of void regions within variational nodal methods as needed
to treat the accelerator beam tube. This work was centered at Argonne National
Laboratory in close collaboration with M. A. Smith (a former NEER- supported
student) of the Argonne Staff. The eventual aim of all three tasks has been to
develop a computational tool based on the Variational Nodal code VARIANT at
Argonne National Laboratory suitable for the analysis of accelerator driven
systems.

For the first task, a Monte Carlo model of an Accelerator Driven System (ADS)
has been developed using the MCNPx code. Our MCNPx model consists of the
following major components. ( see also our June 2003 report)

1. The proton accelerator tube (Fig. 1, see, App. A)
2. The target
3. Six nuclear fuel assemblies placed symmetrically around the accelerator

tube in a cylindrical geometry.(Fig.2, see, App. A)
4. A "blanket" placed between the assemblies and at the periphery of the

ADS

Three different models have been developed representing three levels of
homogenization. Model 1: Individually modeled fuel rods in each assembly. (Fig.
2) Model 2: Homogenized fuel assemblies in water. Model 3: Homogenized rings
of water and water plus nuclear fuel. Neutron fluxes have been computed for the
three models and comparisons made. In addition, the neutron fluxes were
computed for the three models with and without transuranics (TRU) in the fuel.



The results of the calculations have been presented at the ANS meeting in
November 2003 ( Ferrero-Tsoulfanidis, 2003) and also incorporated in the M.S.
Thesis of Jamie Ferrero at the University of Missouri-Rolla.

The second task, the generalization of the VARIANT code to treat R-Z geometry
has been completed. The work through the winter of 2004 is summarized in a
paper given at the 2004 PHYSOR conference in Chicago [ Zhang & Lewis,
2004A] and is included as Appendix B. A final outcome of the work is given in a
paper being submitted to Nuclear Science and Engineering [Zhang and Lewis,
2004B], and it is included as Appendix C.
Two theoretical challenges, which are not present in Cartesian or hexagonal
versions of the variational nodal method, are encountered in R-Z geometry.
First, there is an angular derivative in the gradient term, and this more closely
couples the spatial and angular approximations. Second, the necessity of
meeting the correct angular symmetry conditions along the domain centerline
requires the introduction of coupled constraints on the spatial and angular trial
functions. As a practical matter, the most time-consuming difficulties were
encountered in merging the R-Z into the VARIANT code, a code containing well
over 100,000 lines of FORTRAN. In addition to the journal article based on this
work, a detailed description of the modification and overrides made to the
standard VARIANT code is being provided to the staff at Argonne National
Laboratory so that the R-Z generalization can become part of their standard code
package.

The third task, that of finding an effective method for forming response matrices
which are both compatible with VARIANT and capable of treating void regions
has been carried out in close collaboration with M. A. Smith and other staff
members at Argonne National Laboratory. Treatment of void regions using the
even-parity based VARIANT is indeed a challenge, since the basic second-order
equations contains the total cross section in the denominator. Some success has
been achieved melding the first order form of spherical harmonics equations with
VARIANT. This has been reported at the 2004 PHYSOR conference in Chicago
[Smith, et. ai, 2004] and is included as Appendix D. Recently, a more in depth
analysis of various first-order possibilities has been undertaken and reported
[Lewis, 2004] and an improved treatment of voids proposed. This work is
included as Appendix E. Thus far only X-V geometry has been treated with
success. However, extension to R-Z geometry, once X-Y geometry is mastered
appears to be less of a challenge.

In conclusion, major advances have been made in all three aspects of the
research, and resulted in published results. Further work, however, is needed to
bring together the progress made in advanced algorithms for the treatment of
Accelerator Driven Systems.
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Figure 1. x-z view of homogenized assemblies model
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Firgure 2. x-y view of detailed model with rods present in assemblies
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The Variational Nodal Method in R-Z Geometry

Hui Zhang & E. E. Lewis'
Northwestern University, Department ofMechanical Engineering, Evanston, IL 60208 USA

The variational nodal method contained in the Argonne National Laboratory code
VARIANT is generalized to include R-Z geometry. Spherical harmonic trial functions are
used in angle, and polynomials in space. The nodal volumes correspond to toroids, with
rectangular cross sections, except along centerline where they are cylinders. The R-Z
response matrix equations are solved using the iterative methods already contained in
VARIANT. Results are given for both a one-group fixed source and a two-group
eigenvalue problem.

KEYWORDS: Boltzmann Equation, R-Z Geometry, Neutron Transport, Nodal
Method, Spherical Harmonics, Variational Method

1. Introduction

The variational nodal method has found substantial use in both diffusion theory and higher-order
spherical harmonics approximations. It has been available in both two- and three-dimensional
Cartesian and hexagonal geometries. However, the need sometimes arises for two-dimensional R-Z
geometry calculations, particularly for scoping studies. The purpose of this work is to develop an R-Z
option for the Argonne National Laboratory variational nodal code VARIANT [1, 2].

2. Theory

2.1 Variational Formulation
The variational nodal method is a primal hybrid finite element representation of the even-parity

form of the transport equation. In the hybrid formulation, the problem domain V is decomposed into
subdomains Vv (also called elements or nodes):

(1)
v

Within each node, the even-parity form of the transport equation is solved in space (r) and angle (n):

(2)

where lj/+ is the even parity flux component, a and as the total and scattering cross sections and s the

group source. The odd-parity flux lj/-, which is related to lj/+ by
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(3)

is defined only along the node interface r v as a Lagrange multiplier.

The functional for the variational nodal method is given as a superposition of nodal
contributions:

y

where

Fy ['1/, lj/-] == fdv{Jaqa-1(n. Vlj/+)2 +alj/+2]-as¢2 -2~}+ 2far fari2· nlj/+lj/- ,

(4)

(5)
v ,.

and ¢ is the scalar flux. This functional must be stationary with respect to arbitrary variations ljI+ and

ljI- about the true solutions lj/+ and lj/-. Thus, we make the replacements lj/+ ~ lj/+ +5lj1+ and

lj/- ~ lj/- + &1jJ- where 5 and & are small positive constants, and require the linear terms in 5 and & to

vanish. Setting the linear term in 5to zero yields the weak form ofEq. (2):

(6)
v

and applying the divergence theorem yields

v

v v

Clearly, Eq. (2) must be satisfied if the volume integral is to vanish for arbitrary 1jJ+, and Eq. (3) must

be met at the interface for the surface integral to vanish. The continuity conditions across nodal
interfaces may be stated as follows. Since the Lagrange multiplier lj/- and its variation ljI- are uniquely

defined at the interface, two conditions are imposed. First, the surface integral in Eg. (7) imposes
continuity on a-ln· V11/ . Second, requiring the linear term in & to vanish yields for each nodal

interface, say between nodes Vv and Vv" a condition of the form

(8)
v

since nv ==-n,I' Thus lj/+ must be continuous across the interface.

2.2. Cylindrical Coordinates (r, z)
The R-Z cylindrical coordinates system is shown in Figure 1, together with an angular-direction

coordinates system used to define the particle direction n. In this system, a spatial point is defined by
its (r, z) coordinate and



where
Or =(1_1-12)1/2 COSffi,

Oro =(1_1-12)1/2 sinffi,

Oz=1-1

with IJ. =cose. The Q. V may be determined by [3, 4]
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and the incremental angle is defined as dO =(4;rr l dj.idOJ.
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Fig. 1 Cylindrical Coordinates

2.3. Discretization
We begin by considering a rectangular node in r, Z bounded on left and right by 1j ~ r ~ rr and on

bottom and top by Zb ~Z ~ZI as shown in Figure 2. We expand the even-parity flux coefficients within

the node as

Here ® denotes the Kronecker product, and g(Q) is vector of even-order spherical harmonics with M
terms obey the orthonormal condition



(13)

The spatial trial functions f(r,z) are complete polynomials. They are Legendre polynomials in z and

also constructed to be orthogonal in r, so that

1 f T- dVf(r,z)f (r,z) = II'
Vv v

In R-Z geometry, v" =21r(r} -r/)(z/ -Zb) and

fdV( . ) =21rrdrrrdz( . )
I h

V

The vector ~v in Eg, (12) contains the unknown coefficients.

z

r

(14)

(15)
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Fig. 2 Element Vv with interfaces r v

Along the node interfaces, we make the expansions



and (16)

where ky(O) is vector of odd-order spherical harmonics in which the angular coordinates have been

rotated such that the polar angle, fl =O· ny' is taken with respect to the surface normal. They obey the

orthonormal conditions

and y=r,t,l,b (17)

The spatial trial functions by are set sets of orthogonal polynomials defined along the interfaces.

The source and the scalar flux may be approximated as

and

s=ws(r,z) (18)

(19)

The nodal volumes corresponding to the response matrices will be toroids with rectangular cross
sections in the r, z plane. The central nodes, however, are cylinders with three surfaces. The centerline
symmetry condition that

(20)

requires that the central nodes contain two sets of trial functions for 1// and for lfI- when spherical
harmonics are employed. Only even functions in r are included in the spatial trial function sets for the
1;0 terms, which are independent of OJ, causing the radial derivative vanishes at r = 0; only odd

functions of r are included for the OJ dependent J;m' m 7= 0 terms, causing them to vanish at the origin.

With these stipulations, the singularities that would otherwise be encountered in applying the operator
ofEq. (11) are removed. Note, also, that unlike Cartesian geometry, each response matrix in the radial
direction is unique, even though the cross sections and the widths and heights of the nodes are same.

2.4. Response Matrix Evaluation
Response matrices are obtained from the foregoing space-angle trial functions by inserting them

into Eqs. (4) and (5). This reduces the functional to the algebraic form:



(21)
v

and
(22)

The matrix Av is given as

where repeated subscripts k or k' indicates summation with k,k'=r,ffi,z, and

Vrf=8fIOr ,

Va,f=flr,

Vzf =8fI&.

The incremental spatial volume is given by dV =21fJ'drdz.

(23)

(24)

Each of the elements of Av is given in terms of integrals over known spatial or angular trial
functions:

where

gr,z =g,

g(J) =-og/8m.

The source is

v

The surface coefficients are partitioned according to the four interfaces:

The M v matrix is then given as

(25)

(26)

(27)

(28)

(29)

where

y=r,t,l,b (30)

(31 )



and

r=r,l

(32)

r=t,b

We may now obtain a set of algebraic equations by requiring the discretized functional to be
stationary. To examine arbitrary variations about the solutions, we make the replacements

~v ~~v +~v and Xv ~Xv +8iv in Eqs. (21) and (22). Requiring the linear term in 0 to vanish

yields
(33)

Requiring the linear term in & to vanish imposes continuity across nodal interfaces of the moments
defined by

(34)

We may solve Eq. (33) for ~v'

(35)

and combine the result with Eq. (34) to obtain

(36)

At this point, we have written the even-parity flux moments \jJ v at the node interface in terms of the

source and the odd-parity interface moments Xv, while imposing the continuity of both of these

moments between neighboring nodes. The final step is to transform variables such that Eq. (36) may be
written in terms of a response matrix. Introducing the partial current-like variables

(37)

into Eq. (39) and (40) then yields response matrix equation for each node:

(38)

3. Results

The R-Z formalism is being implemented as a modification of the multigroup VARIANT code
at Argonne National Laboratory, for both diffusion theory and higher-order spherical harmonics



calculations. Both fixed source and eigenvalue options are included. To test the fixed source capability
the well-known Iron-water problem [5] has been recast from X-Yto R-Z geometry, with all dimensions
and cross sections remaining the same. Figures 3 and 4 show PI and P3 results close to the vacuum
boundaries. Fine meshes with /'§ = &- = I cm, and a coarse mesh, with /'§ = &- = 3 em, are presented.
For comparison, fine mesh x-y calculations are also included. The substantial transport effects are, as
expected, present in R-Z as well as X-Y geometry.

• RZ P1 coarse mesh
--?It- RZ P1 fine mesh

• RZ P3 coarse mesh
""*"" RZ P3 fine mesh
_._.- XY P1 fine mesh
- - - XY P3 fine mesh
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Fig. 3 Flux distribution close to the vacuum boundary on the top
for the Iron-water problem

To examine spatial truncation errors, we utilize two-group eigenvalue problems. Table I
provides PI eigenvalue results using two group MOX fuel and water cross sections. The core is 40 cm
in radius and 80 cm in height surrounded by radial and axial reflectors 20 cm thick. A reflected
boundary condition is used to reduce the modeling to the upper half of the core. The eigenvalue is
tabulated vs. both hand p refinement. Aside from the coarsest nodes, the accuracy increases faster with
p refinement (i.e. increasing the polynomial order in the interface approximation) than in reducing the
mesh size in h refinement. Moreover, both CPU time and memory requirements increase substantially
with mesh size reduction, but much less so with increased polynomial order.
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~ Flat Linear QuadraticN&&

10cm
0.95450 0.95349 0.95349

(1.21xlO- I%) (1.47x 10.2%) (1.47x 10-2%)

4cm
0.95351 0.95335 0.95335

(1.68x 10.2%) (0.00%) (0.00%)

2cm
0.95339 0.95335 0.95335

(3.15x 10.3%) (0.00%) (0.00%)

lcm
0.95336 0.95335 0.95335

(1.05xlO-3%) (0.00%) (0.00%)

Table 1 Comparison of h-refinement and p-refinement
for Two-Region Eigenvalue Problem

4. Conclusions

The foregoing results demonstrate the ability of the variational nodal method to treat problems
in R-Z geometry. The curvilinear coordinate system, however, presents two challenges that are not
present in Cartesian geometry. First, the central elements must be treated specifically, and the trial
functions constrained to assure that the appropriate symmetry conditions on the angular flux are met
along the center line. Second, each radial response matrix must be calculated separately, for there is no



translational invariance in the radial direction; each radial node corresponds to a toroid with a unique
radius.
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Generalization of the Variational Nodal Method
to Spherical Harmonics Approximations in R-Z Geometry

Hui Zhang & E. E. Lewis'
Northwestern University

Department ofMechanical Engineering
Evanston, IL 60208 USA

Abstract-The variational nodal method is generalized to include R-Z geometry. Spherical
harmonic trial functions in angle are combined with orthonormal polynomials in space to
discretize the multigroup equations. The response matrices that result correspond to
nodal volumes that are toroids, with rectangular cross sections, except along centerline
where they are cylinders. The R-Z response matrix equations are implemented as
modifications to the Argonne National Laboratory code, VARIANT, and existing
iterative methods are used to obtain numerical solutions. The method is tested in t PI, P3,

and Ps approximations and results are presented for both a one-group fixed source and a
two-group eigenvalue problem.

1. Introduction

The variational nodal method has found substantial use in both diffusion theory and higher-order
spherical harmonics approximations for a variety of reactor physics problems. I

-
4 The method, as

implemented in the Argonne National Laboratory code, VARIANT,4 has been available in both two­
and three-dimensional Cartesian and hexagonal geometries. However, the need sometimes arises for
two-dimensional R-Z geometry calculations, particularly for scoping studies, where transport effects
may be significant, but where the expense of three-dimensional transport calculations is not warranted.

Two challenges not present in Cartesian co-ordinates present themselves in R-Z transport
methods:s.6 the coupling of spatial and angular trial functions through the angular derivative in the
gradient operator, and the need to impose an angular symmetry condition on the trial functions along
the centerline. Moreover the resulting response matrix domains take the form of toroids with
rectangular cross sections, except along the centerline where they are cylinders. In the following
section we employ spherical harmonics in angle and polynomial trial functions in space to obtain the R­
Z response matrices within the framework of the variational nodal method. We implement the
resulting formulation as a modification of the VARIANT code, and then in section 3 we present results
for both a fixed-source problem, which is a R-Z modification of the iron-water benchmark, and to a two
group eigenvalue problem. The paper concludes with a brief discussion.
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2. Theory

2.1 Variational Formulation
The variational nodal method is a primal hybrid finite element representation of the even-parity

form of the transport equation. In the hybrid formulation, the problem domain V is decomposed into
subdomains Vv (also called elements or nodes):

(1)
v

Within each node, the even-parity form of the within-group transport equation is solved in space (r)

and angle (n):

(2)

where ljI+ is the even parity flux component, a and as the total and scattering cross sections and s the

group source. Isotropic scattering and sources are assumed. The odd-parity flux ljI-, which is related to

ljI+ by

(3)

is defined only along the node interface rvas a Lagrange multiplier.

The functional for the variational nodal method IS gIven as a superposition of nodal
contributions:

v

where

F v [ljI+ ,ljI-]= JdV{Jdqa-l (n.VljI+)2 +aljl+2]_asq)2 -2¢6}+2 Jtir JtKil'l1lj1+ljI-,

(4)

(5)
v v

and ¢ is the scalar flux. We require this functional to be stationary with respect to arbitrary variations
1jJ+ and 1jJ- about the true solutions ljI+ and ljI-. Thus, we make the replacements ljI+ -+ ljI+ + 81;;+ and

ljI- -+ ljI- + cljJ- where 8 and c are small positive constants, and require the linear terms in 8 and c to

vanish. Setting the linear term in 8to zero yields the weak form ofEq. (2):

(6)
v

Applying the divergence theorem then yields

2

v



y y

Clearly, Eq. (2) must be satisfied if the volume integral is to vanish for arbitrary ljJ+ . In addition, Eq.

(3) must be met at the interface for the surface integral to vanish. The continuity conditions across
nodal interfaces may be stated as follows. Since the Lagrange multiplier '1/- and its variation ljJ- are

uniquely defined at the interface, two conditions are imposed. First, the surface integral in Eq. (7)

imposes continuity on a-In·Vlf/. Second, requiring the linear term in E to vanish yields for each

nodal interface, say between nodes Vy and Vy" a condition of the form

(8)
y

since ny =-ny ,. Thus '1/+ must be continuous across the interface.

2.2. Cylindrical Coordinates (r, z)
The R-Z cylindrical coordinates system is shown in Figure 1, together with an angular-direction

coordinates system used to define the particle direction n. In this system, a spatial point is defined by

its (r, z) coordinate, while n is defined by

where
Or =(I-I..I? )1/2 cosro,

0", =(1-1..I?)1/2 sinro,

Oz=1..l

with I..l =cose. The n·Vmay be determined by 5,6

~ - a 1 a a
O·V'=O ---0 -+0 -

r Or r "'ao zOz'

and the incremental angle is defined as dO =(41rfl d fldm .

(9)

(10)

(11)

2.3. Discretization
We begin by considering a rectangular node in r, Z bounded on left and right by 'I ::; r ::; r,. and on

bottom and top by Zb ::; Z::; Zt as shown in Figure 2. We expand the even-parity flux coefficients within
the node as

3



Here ® denotes the Kronecker product, and g(O) is a vector of even-order spherical harmonics with M

terms obeying the orthonormal condition

(13)

The I spatial trial functions constituting the vecttor f(r,z) form a complete polynomial. They are

Legendre polynomials in z and also constructed to be orthogonal in r, such that

1 f T- dVf(r,z)f (r,z) =If'
Vv v

JdV( . ) =27rfdrr r: dz( . )
v

The vector ~v in Eq, (12) contains the unknown coefficients.

Along the node interfaces, we make the expansions

and

(14)

(15)

(16)

where k/O) is vector of odd-order spherical harmonics with N terms in which the angular coordinates

have been rotated such that the polar angle, Jl =O· ny, is taken with respect to the surface normal. They

obey the orthonormal conditions

fdQky (O)k~(0) =IN

and r =r,t,l,b (17)

The spatial trial functions by are set sets oforthogonal polynomials defined along the interfaces.

The source and the scalar flux may be approximated as

and

s=ws(r,z)

4

(18)

(19)



with [W]m =8ml .

The nodal volumes corresponding to the response matrices will be toroids with rectangular cross
sections in the r, z plane. The central nodes, however, are cylinders with three surfaces. The centerline
symmetry condition that the angular flux be independent of the azimuthal angle. Thus,

This symmetry condition requires that the central nodes contain two sets of trial functions for lJI+ when

spherical harmonics are employed. Therefore, for the central element we expand the even-parity flux
within the node as

where fe are the spatial trial function sets including only even functions in r for the ~o terms in gO,

which are independent of OJ, causing the radial derivative vanishes at r = 0; fO are the spatial trial
function sets including only odd functions of r for the OJ dependent ~m' m"* 0 terms in gl. Hence the

terms in fO vanish at the origin. The two spatial trial function sets fe and fO contain rand r spatial
polynomial trial functions, respectively, and meet the orthogonality condition

and

_1 jdVfO(r,z)f OT (r,z) = I " .
V J

v v

(21)

The two sets of angular trial function gO and gl consist of M O and Me terms, respectively, and obey

the orthonormal conditions

and (22)

With these stipulations, the singularities that would otherwise be encountered in applying the operator
ofEq. (11) are removed. Note, also, that unlike Cartesian geometry, each response matrix in the radial
direction is unique, even though the cross sections and the widths and heights of the nodes are same.

2.4. Response Matrix Evaluation
Response matrices are obtained from the foregoing space-angle trial functions by inserting them

into Eqs. (4) and (5). This reduces the functional to the algebraic form:

5



v

and

(23)

(24)

Each of the elements of Av is given in terms of integrals over known spatial or angular trial functions.
The matrix Av for non-central elements is given as

A y =cr~IHkk' QS> fdV(VkfXVk,fT )+(cr)M -crSywwT)QS>V)I'
y

where repeated subscripts k or k' indicates summation with k,k'=r,ffi,z, and

(25)

Vrf = Of/Or ,

VJ=f/r, (26)

Vl=Of/&z,

H kk , = fdOOkQk,gkg[" (27)

with

gr,z =g, (28)

and

gllJ =-8g/8OJ.

The incremental spatial volume is given bydV =2rrrdrdz. The matrix Av for central elements is given as

where

(29)

(30)

and
pl,1 - fdVV' feV feTkl - k I ,

p1,2 - fdVV' feV' fOTkl - k I ,

p2,1 - fdVV' fOV feTkl - k I ,

p2,2 - fdVV' f°V' fOTkl - k I .

6

(31)



The source is

The surface coefficients are partitioned according to the four interfaces:

The My matrix is then given as

For non-central elements

(32)

(33)

(34)

where

and

For central elements

where

and

D~ =2wy fdzfe (ry,z)h~ (z), y=l,r,
y

D~ =27tfdnfe(r,zy)h~(r), y=b,t,
y

D~ =2wyfdzf°(ry,z)h~(z), y=l,r,
y

D~ =27tfdnfO(r,z)h~(r), y=b,t.
y

7

r=r,t,l,b

r=r,l

r=t,b

(35)

(36)

(37)

(38)

(39)

(40)



We may now obtain a set of algebraic equations by requiring the discretized functional to be
stationary. To examine arbitrary variations about the solutions, we make the replacements

l;v ~ l;v +~v and 'Xv ~ 'Xv + 8i.v in Eqs. (23) and (24). Requiring the linear term in 5 to vanish

yields
(41)

Requiring the linear term in Ii to vanish imposes continuity across nodal interfaces of the moments
defined by

(42)

We may solve Eq. (41) for l;v'

(43)

and combine the result with Eq. (42) to obtain

(44)

At this point, we have written the even-parity flux moments "'vat the node interface in terms of the

source and the odd-parity interface moments 'Xv' while imposing the continuity of both of these

moments between neighboring nodes. The final step is to transform variables such that Eq. (36) may be
written in terms of a response matrix. Introducing the partial current-like variables

(45)

into Eq. (44) then yields response matrix equation for each node:

(46)

3. Results

The R-Z formalism presented herein has been implemented as a modification of the multigroup
VARIANT code at Argonne National Laboratory, for both diffusion theory and higher-order spherical
harmonics calculations. Both fixed source and eigenvalue options are included. To test the fixed
source capability the well-known Iron-water problem? has been recast from X-Y to R-Z geometry, with
all dimensions and cross sections remaining the same. The problem domain is composed of a source
region at the center of a water pool that is surrounded by an iron shield. With reflecting boundary
conditions at the left and bottom boundary, only one quarter of the physical domain is modeled. The
configuration is shown in Figure 3. The three compositions, the cross section data and the source
strength are given in Table 1. Figures 4 and 5 show PI, P3 and Ps results close to the vacuum
boundaries. Fine meshes with /)r = t1z = 1 em, and a coarse mesh, with /)r = t1z = 3 em, are presented.

8



For comparison, fine mesh x-y calculations are also included. The substantial transport effects are, as
expected, present in R-Z as well as X-Y geometry.

To test the multigroup eigenvalue formulation and to examine spatial truncation errors, we
utilize two-region two-group eigenvalue problems. Table 2 provides PI, P3, and P5 eigenvalue results
using two group MOX fuel and water cross sections. The geometry is given in Figure 6. The core is 40
cm in radius and 80 cm in height surrounded by radial and axial reflectors 20 cm thick. A reflected
boundary condition is used to reduce the modeling to the upper half of the core. The cross section data
and neutrons per fission for the two regions and the two groups are summarized in Table I, where crt is

the microscopic total cross section, cry is the microscopic capture cross section, cr f is the microscopic

fission cross section, cr s is the microscopic scattering cross section, and v is the neutrons per fission.

The eigenvalue is tabulated vs. both h andp refinement where the eigenvalue result (K=0.954186) from
P5 with 2cm nodal grid was taken as the reference result. Aside from the coarsest nodes, the accuracy
increases faster with p refinement (i.e. increasing the polynomial order in the interface approximation)
than in reducing the mesh size in h refinement. Moreover, both CPU time and memory requirements
increase substantially with mesh size reduction, but much less so with increased polynomial order. For
comparison, a MCNP Monte Carlo calculation has been performed yielding a result of K=0.95420 ±
0.00055 at 68% confidence level. A 2cm grid TWODANT S16 calculation was also performed, yielding
K=0.95455.

4. Discussion

The foregoing results demonstrate the ability of the variational nodal method to treat problems
in R-Z geometry. The curvilinear coordinate system, however, presents two challenges that are not
present in Cartesian geometry. First, the central elements must be treated specifically, and the trial
functions constrained to assure that the appropriate symmetry conditions on the angular flux are met
along the center line. Second, each radial response matrix must be calculated separately, for there is no
translational invariance in the radial direction; each radial node corresponds to a toroid with a unique
radius.
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Table 1 Iron-water benchmark problem description

a aa S
Composition e=as/a

-1
-1 -2 -1em em em s

l:Water 3.33 3.31002 0.994 1.

2:Water 3.33 3.31002 0.994 O.

3:Iron 1.33 1.10523 0.831 O.

Table 2 Two-region two-group eigenvalue macroscopic cross sections (em-I)

Core: MOX Reflector: Water

Group 1 Group 2 Group 1 Group 2

at 0.419712 1.09019 0.424766 1.13885

a y
0.0112733 0.202758 0.000304551 0.0190731

a f
0.0068774 0.153309 0.00000 0.00000

v 2.88366 2.87399 0.00000 0.00000

a g g'=l g'=2 g'=l g'=2s,g+--g
1 0.401129 0.00000 0.373999 0.00000

2 0.000430392 0.734121 0.0504624 1.11977
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Table 3 Comparison of Eigenvalue percent error
for h- andp-refinement (Kref= 0.954186)

~r&~z Flat(%) Linear(%) Quadratic(%)

0.0335 -0.0723 -0.0723 PI

10cm 0.3016 0.0465 0.0301 P3

0.3371 0.0449 0.0492 Ps

-0.0702 -0.0870 -0.0870 PI

4cm 0.0549 -0.0015 0.0013 P3

0.1215 -0.0031 0.0025 Ps

-0.0827 -0.0870 -0.0870 PI

2cm 0.0036 0.0006 0.0012 P3

0.0077 -0.0027 0.0000 Ps

z
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A spherical harmonics method based upon the first-order transport equation is
formulated and implemented into VARIANT [1,2], a variational nodal transport
code developed at Argonne National Laboratory. The spatial domain is split into
hybrid finite elements, called nodes, where orthogonal polynomial spatial trial
functions are used within each node and spatial Lagrange multipliers are used
along the node boundaries. The internal angular approximation utilizes a complete
odd-order set of spherical harmonics. Along the nodal boundaries, even and odd­
order Rumyantsev interface conditions are combined with the spatial Lagrange
multipliers to couple the nodes together. The new method is implemented in
Cartesian x-y geometry and used to solve a fixed source benchmark problem.

KEYWORDS: neutron transport, nodal method, spherical harmonics,first­
order form, VARIANT, void node problems

1. Introduction

The variational nodal method implemented in VARIANT [1,2] cannot be applied directly to
voided nodes because of the cross section appearing in the denominator of the second-order
even-parity equation. Problems are also encountered when very low-density media occupy a
node. A potential alternative for these situations is to form the nodal response matrix using the
first-order form of the transport equation, for then the cross section no longer appears in the
denominator.

In this work a weighted residual approach is applied to the first-order form of the transport
equation assuming the presence of isotropic scattering as well as an isotropic source. To maintain
consistency, the same spatial trial functions used in VARIANT are applied both within the node
and along the interfaces. Similarly, spherical harmonic approximations are applied to the angular
variables. The result is an approximation for the angular flux within the node in terms of the
group source and the neutron flux incident on the nodal surface. Given the nodal angular flux
solution, the boundary angular flux distribution can be expressed in terms of the interface
variables used in VARIANT. This is necessary if first- and second-order methods are to be used
in conjunction with one another, which is the underlying goal of this work.

The response matrix formulation was implemented in MATRCAD [3] to examine the
properties of the response matrix and apply them to model problems of limited problem size. The
resulting response matrices were then imported into the VARIANT code where larger problems
can be solved. The solutions obtained using the new method are promising and the method
appears to be able to treat problems that have void regions.



2. Theory

The starting point for the new method is the first-order form of the transport equation with
total and isotropic scattering cross sections (T and (Ts given by Eq. (1).

n· VIf/(P,n)+~lf/(p,n)-o:,¢(P)-s(f) =0, P E V, (1)

Using nodal decomposition of the spatial domain, we obtain the general boundary condition for
each node where 11 is the outward normal.

If/(f,n)-If/,,(f,n)=O, fEf ,11·0.<0(2)

These equations are multiplied by the weight vector f(f) and integrated over the nodal spatial

domain to obtain the weighted residuals where bold faced lower and upper case symbols indicate
column vectors and matrices, respectively.

fdV f[n· V If/ + O:,If/ -o:,,¢ - sJ - f dfn· i1f[1f/ -If/,,] =° (3)
0·/i<0

Applying the divergence theorem to the streaming term and substituting the result into Eq. (3)
yields

-fdV n.Vflf/+ fdVf[o:,If/-O:,,¢-s]+ f dfn'11flf/+ f dfn'11flf/" =0. (4)
O·n>O O·n<O

The general convex surface f is replaced by a sum of flat surfaces f y each with an outward

normal 11y such that each node is consistent with that defined in the VARIANT code [2].

2.1 Spatial Discretization
The spatial component of the angular flux is approximated within the node by

If/(f,n) = f T(f)",(n) , f E V

¢(f) = fT (f) f dO ",(0.) = fT (f)",0' P E V

and the boundary condition by

If/" (P, 0.) =h~ (f)", "y (0.), P E f y ' 11y .0. <°
Inserting these approximations into Eq. (4) yields

[-0. JaV(Vf)f' + JaVu,ff' +at"O.n, }dI'ff']'1'(0)
,

= fdVO:"ffT fdO'",(n')+s-.2: n'11y fdffh~",,,r<n)
O·/ir<O Y

and

s = fdVf s.

(5)

(6)

(7)

(8)

(9)

These equations can be compacted to obtain Eq. (10), by defining the integrals of the spatial

trial functions as matrices and writing n· fdV(Vf)fT in terms of the direction cosines of n.



2.2 Spherical Harmonics Approximation
Next, y(O), a vector of orthononnal spherical hannonics of order N, is used to approximate

the angular component of the angular flux. The expansion takes the fonn

'JI(O)=yT(O)®Is'P, (11)

The identity matrices I,and Inhave the dimensions of f and y, respectively, and together they

fonn the identity, I =Is ® In. 'P is a vector of unknown coefficients for the angular flux

expansion which can be written as

'1'= IdO(y(O)®I,)'JI(O). (12)

Once 'I' has been detennined, the angular flux may be constructed within the node by
combining Eqs. (5) and (11) to obtain

If/(r, 0) =yT(O)®fT(r)'P. (13)

Inserting Eq. (11) into Eq. (10), weighting it with the vector y(0) ® I" and integrating over

angle we obtain Eq. (14).

[-I IdO 0kyyT ®Uk+In ®F, + I . I dO. O.nyyyT ®Wy - Jdo.y Jdo.'yT ®F.,]'P
k y n·ny>O (14)

= Jdo.y ®s-I I dO. O.nyY®Dy'JI,ly
y D..ny<O

Eq. (14) can be rewritten in the matrix fonn

A'I'=J0s-L J dO O.nyy(O)®DY'VA/O).
Y n.iir<o

Inverting A and solving for 'I' yields

'I'=q- LA-1 J dO O.nyy(O)®DY'VAY(O).
Y n.iiy<o

The angular flux within the node can be reconstructed using Eq. (13).

(15)

(16)

2.3 Interface Conditions

Next, "',ly (0), the vector of spatial moments of the angular flux on the node surface, must be

related to the even- and odd-parity space-angle moments employed in VARIANT. In VARIANT,
even- and odd-parity spherical hannonics expansions are used to represent the angular flux
distribution within the node volume and on its surface, respectively. These expansions can be
combined to express the space-angle distribution of the flux at the nodal surface as

If/(r, 0) = y~ (0) ® fT (r)~ +y~ (O)KyA ® hT(r)Xy' r E r y . (17)

Here, fer) and her) are the same vectors of continuous trial functions defined for rEV and

r E r, respectively. y +(0) and y_(0) are vectors of the even- and odd-parity spherical
hannonics.

In VARIANT, the odd-parity spherical hannonics are rotated to align the polar angle with the
outgoing nonnal. This allows the boundary condition implementations to be the same on all



surfaces. The square matrix K y is defined to represent the rotation from ny to the reference

direction no as shown in Eq. (19).

y_(Q) =Kyyy_(Q) (18)

K y = SdOy_(Q)y~-CQ) (19)

At this point we define the A matrix, which extracts the necessary linear combinations of the
odd-parity flux moments that must be held continuous across the nodal interfaces. In VARIANT,
two sets of angular interface functions, and thus two A, have been defined: the LI (linearly
independent) set [4] and the Rumyantsev set [5].

The hybrid nodal method, upon which VARIANT is based, requires both "I. y and (j)y to be

continuous across nodal interfaces, where (j)y is given by Eqs. (20) and (21).

1/\ =ATKTET® DT): (20)..... y y y y"

Ey = SdOQ.nyy+(Q)y~(Q) (21)

The boundary flux 'JI.1rCQ) in Eq. (16) can be expressed in terms of (j)y and "I.y as shown in Eq.

(22).

'JI.1rCQ) =y: (Q)(ATK~E~rl® Iy(j)y + y~ (Q)KyA ® Iy"l.y ny .Q< 0 (22)

Eq. (22) can be multiplied by D y and the properties of ® used to obtain
~ T ~ T T T -I T ~

Dy'JI.1rC0)=y+(O)(A KyEy) ®Dy(j)y+y-(O)KyA®Dy"l.y' (23)

Finally, Eq. (23) is substituted into Eq. (16) resulting in

'P =q - I[M;(ATK~E~rl® D/Pr +M;KrA ® Drlr J, (24)
r

where M~ =A -I f dO. O· nyy(O) ® IS~ (0) . (25)
n.iiy<o

2.4 Response Matrix Form
To obtain response matrices, continuity conditions must be imposed on the angular flux

across the interfaces. Recall that the boundary condition given by Eq. (22), which specifies the

angular distribution of the incoming flux (for fly' 0 < 0) in terms of (j)y and "I. y ' is the

approximation to Eq. (2).
The even- and odd-parity components can be treated separately, thereby obtaining Eqs. (26)

and (27) where the matrices ofEq. (28) have been used.
1/\ =ATKTET;:; ® DT'P (26)..... y y y~+ y

"I.y =(ATAt ATK~3_ ®D~'P (27)

3± = fdO y± (O)yT (0) (28)

Continuity can be imposed on Eq. (26), Eq. (27), or a linear combination of the two. Using
weights of Y2 a and b, which are free parameters, Eqs. (26) and (27) can be linearly combined as
shown in Eqs. (29) and (30).



Yz a<py +bly =I1y 'P (29)

II =[l/aATKTET';:i +b(ATA)-IATKTS J0DT (30)y /2 y y....+ Y - y

Combining Eqs. (24) and (30), Eq. (31) is obtained.
Yza<py +b'ly =I1yq - LnyM;,(ATK~,E~.rl o Dy,<f)r' - IIIyM;.K y.A0Dr,'ly' (31)

y' y'

The variable transformation implemented in VARIANT, shown here as Eq. (32), can now be
implemented in Eq. (31) to yield

j± =~<P±11 (32)

(a+b)f +(a-b)f = I1q -G+f -G-f, (33)

where the G~, matrices are given by Eq. (34).

G~. =2I1yM;.(ATK~,E~.rl 0 Dy.±I1yM;,Ky .A 0 Dr' (34)

Solving for f, the familiar response matrix equation given by Eq. (34) results, where the new

matrices are defined in Eqs. (36) and (37).
f=Rf+Bs (35)

R =[(a+b)I+G+r1
[(b-a)I-G- ] (36)

B=[(a+b)I+G+r I1A-1J0I, (37)

The following section gives a brief discussion of some numerical results obtained for two
benchmarks using the above method.

3. Modified Watanabe-Maynard

As stated earlier, the above matrix relationships have been implemented in MATHCAD and
teste~ for stability and accuracy. In all of these tests, the first-order spherical harmonics method
conserved neutrons and performed well. The response matrix formulation has been implemented
in MATHCAD first because the angular matrices are far more difficult to implement in the
existing VARIANT coding than in MATHCAD. The outer iteration solver in MATHCAD,
however, can only solve problems of limited size (~50 nodes and low order approximations). To
overcome this limitation, a patch was made for the VARIANT code, called VARIANT-F, so that
VARIANT would perform the outer iterations using the response matrices obtained in
MATHCAD.

The spherical harmonics method developed in Section 2 requires a complete odd-order
expansion of spherical harmonics within the nodal domain. Along the interface we are free to use
even- or odd-order sets of angular trial functions that obey Rumyantsev interface conditions [5]
or the LI conditions [4]. As for the free parameters a and b, no theoretical justification has yet
been established which would indicate optimum values. As a result, four different values of the
free parameters a and b were considered. Our numerical studies have indicated that only the
bounded </»y conditions (a = 2.0, b = 0.0) combined with a Rumyantsev interface trial function

set yields acceptable solutions.. The LI trial function set was eliminated because it did not result
in solutions with asymptotic convergence towards the reference solution.



Several fixed-source, two-dimensional benchmark problems were used to test the new
formulation. A simplification of a Watanabe-Maynard benchmark [6-7], shown in Fig. 1,
displayed the largest errors and is discussed here. This benchmark was primarily used to assess
the accuracy of the void treatment for the first-order formulation. The original benchmark
defined a larger source region (shaded region) and smaller source magnitude than that shown in
Fig. 1. The benchmark dimensions were simplified for this work to reduce the computational
burden in MATHCAD.

The average flux within each node was used to assess the accuracy of the method rather than
relying upon a rigorous reconstruction of the flux. All four flux traverses shown on the right
hand side of Fig. 1 were investigated, but only a subset is presented here. The reference solution
was obtained using the collision probability code DRAGON [6]. For perspective, discrete
ordinate solutions were obtained using TWODANT [8].

Figure 2 gives the void flux traverse solutions for VARIANT-F using odd-order Rumyantsev
interface conditions. Also included is a TWODANT S12 solution for comparison purposes. In
general, the low order PN solutions are very inaccurate near the source region and in the void
region. However, the VARIANT-F solutions do eventually take up the shape of the reference
DRAGON solution as the angular order is refined, but the accuracy is not very good. The
TWODANT solutions display a little different behavior than the VARIANT-F solution. Near the
source, the TWODANT solutions are very accurate, but in the void region and along the vacuum
boundary (not shown), the ray effects lead to non physical characteristics.

The void flux traverse solutions for VARIANT-F using even-order Rumyantsev interface
conditions are given in Fig. 3. Similar to the odd PN solutions, the low order approximations are
rather inaccurate near the source and void region. As the angular order is refined, clearly the
VARIANT-F solutions tend to match the reference DRAGON solution.

Void

(0,0) Reflected B.C.

(1,1)

cJ
a:i
"C..
tlIII ..... --1

~ (5,5)a:
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(10,10)
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l)t!YiS = 10.0
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Fig. 1. Modified Watanabe-Maynard Benchmark Geometry
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It is important to note that only some of the odd-order VARIANT-F solutions succeeded in
reaching the desired convergence of 10-6 on the flux while in some cases the outer iteration
procedure was stopped when the convergence error was less than 10-4 . The spectral radius of the
lower order odd PN problems was computed to be near 1.0 which makes the solution of the
system of equations difficult at best. As the angular order is increased the spectral radius does
improve and a converged solution (10-6

) was possible using P9. Unlike the odd-order VARIANT­
F solutions, there were no significant convergence problems with the even-order VARIANT-F
solutions. Only a slight degradation in the spectral radius was observed as the angular order was
increased.

At this point we can address the problem with the odd-order VARIANT-F solutions. In
Section 2, we stated that an odd-order spherical harmonics approximation within the domain, or
in Eq. (15), is necessary for the inversion in Eq. (16) regardless of the interface approximation.
For the preceding odd-order VARIANT-F solutions we have assumed that the internal odd-order
matched that of the order applied along the boundary. For the even-order VARIANT-F solutions
the internal odd-order approximation clearly had to be greater than the even-order (Pz on the
boundary requires P3 inside). The fundamental problem with the odd-order method is first seen
in Eq. (17) or its discretized form, Eq. (22).

In Eq. (22), we are linking the incoming neutron flux entering the nodal domain to a set of
spherical harmonic functions which are continuous across the nodal interface. The underlying
subtlety is that the use of continuous angular trial functions actually defines both the incoming
and outgoing angular distribution of neutrons along the boundary. For odd-order VARIANT-F
solutions this amounts to over-constraining the angular dependence of the flux since the angular
order within the domain is the same as that along the boundary. We can draw parallels to the
spatial domain to further explain this. Assuming we used a 6th order polynomial expansion of the
flux (spatial) within the domain, we obviously cannot employ a 6th order spatial approximation to
the flux along the boundary since the resulting system of equations would be rank deficient.

The success of the even-order approximation comes from the fact that it bounds the
magnitude of key higher order angular terms but does not explicitly bound all of the terms on
each surface. Additional work has been initiated to determine the proper odd-order boundary
conditions which would be compatible with the VARIANT code and not lead to the preceding
accuracy and convergence problems. These conditions would obviously have odd-order interface
conditions that are of lower order than that used internal to the node (P t along the boundary
using P3 inside, etc ... ). At this point the PI conditions have generally been found to be
convergent using any higher order angular approximation within the nodal domain.

4. Conclusions

For the Watanabe-Maynard benchmark, the first-order form using odd-order interface
conditions had substantial inaccuracies and displayed significant convergence problems
attributed to an over-constrained angular flux. With even-order interface conditions, there was
still significant error, but no convergence problems were present.

In general, the solutions obtained using VARIANT-F proved to have the correct flux shape,
but an insufficient space-angle approximation and slow convergence in the outer iterations
prevented it from obtaining accurate solutions. Overall the new method does appear to be able to
treat void regions although a higher order angular approximation is clearly necessary for
problems containing voids. From a researcher's viewpoint, it is quite gratifying to be able to



demonstrate a method capable of treating void regions that is based explicitly on the spherical
harmonics method. To our knowledge, this is the first time this has been achieved. Most
importantly, the new formulation is compatible with the existing second-order method available
in the VARIANT code.

As a final note, additional research has shown that a nodal first-order integral method
compatible with a recent second-order integral method [9] can also treat void problems. This
integral method is computationally more efficient and generally more accurate (with respect to
angular order) than the preceding first-order spherical harmonics method.

Acknowledgements

This work was supported by the u.s. Department of Energy under Contract numbers DE-FG07­
01ID1410 and W-31-109-Eng-38.

References

1) C. B. Carrico, E.E. Lewis and G. Palmiotti, "Three Dimensional Variational Nodal Transport
Methods for Cartesian, Triangular and Hexagonal Criticality Calculations," Nucl. Sci. Eng.
111, 168 (1992).

2) G. Palmiotti, E. E. Lewis & C. B. Carrico, "VARIANT: VARIational Anisotropic Nodal
Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation," Argonne
National Laboratory ANL-95/40, 1995.

3) Mathsoft, Mathcad 6.0 Professional Edition Users Manual. Mathsoft, 1995.
4) G. Palmiotti, C. B. Carrico, and E. E. Lewis, "Variational Nodal Transport Methods with

Anisotropic Scattering," Nucl. Sci. Eng. 115,233-234 (1993).
5) W. S. Yang, M. A. Smith, G. Palmiotti & E. E. Lewis, "Interface Conditions and Angular

Trial Functions in Variational Nodal Formulation for Multi-dimensional Spherical
Harmonics Method," to be submitted to Nucl. Sci. Eng. (2003).

6) G. Marleau, A. Hebert & R. Roy, "A User's Guide for DRAGON," Ecole Polytechnique de
Montreal, December 1997.

7) Y. Watanabe and C. W. Maynard, "The discrete cones method in two dimensional neutron
transport computations," University of Wisconsin. Report UWFDM-574 (1984).

8) R. E. Alcouffe, F. W. Brinkley, D. R. Marr, and R. D. O'dell, "User's Guide for
TWODANT: A Code Package for Two-Dimensional, Diffusion-Accelerated Neutral Particle
Transport," LA-10049-M, Los Alamos National Laboratory (1984).

9) M. A. Smith, G. Palmiotti, E. E. Lewis & N. Tsoulfanidis, "An Integral Form of the
Variational Nodal Method," to be published in Nucl. Sci. Eng. (2004).



Appendix E

To appear in Ann. Nucl Energy

Much Ado about Nothing: Response Matrices for Void Regions

E. E. Lewis
Department ofMechanical Engineering

Northwestern University
Evanston IL 60201 U.S.A.
e-Iewis@northwestern.edu

Abstract

Weak form Galerkin approaches are examined for obtaining response matrices for
void regions - that is regions where nothing is present. The need arises in spherical
harmonics methods based on second-order forms of the neutron transport equation; the
methods fail in voids because the cross section appearing in the equation's denominator
then vanishes. The diffusion approximation, being the lowest-order spherical harmonic
method, is first employed as a vehicle for examining response matrices derived from both
primal and dual weak forms of the mixed-first-order and second-order transport
equations. Those for which discretization results in singular matrix equations as the cross
section goes to zero are rejected. First-order- mixed formulations with modified natural
boundary conditions are shown to lead to nonsingular response matrices for voids. The
primal method is chosen as the better of the two candidates for generalization from the
diffusion to the transport equations, and the transport formulation is presented.

1. Introduction

Computational methods based on the second-order form of the transport equation have
found wide spread use in nuclear calculations, the most widely used of these, of course,
being the neutron diffusion equation. Spherical harmonics expansions in angle have been
combined with spatial finite element to treat situations where higher-order angular
approximations are needed, (deOliveira, 1986; Carrico, et. aI. 1992; Lewis et. aI. 1996).
A shortcoming of second-order transport methods, however, stems from the cross section
that appears in the denominator. The result is that the methods cannot be applied directly
to void regions - that is to regions where nothing is present.

In particular, the void region problem appears in variational nodal methods, such as
those contained in the widely-used VARrANT code (Palmiotti, et. aI., 1995). These
methods combine spherical harmonics expansions with hybrid finite elements to obtain
solutions of the second-order transport equations in response matrix form. The challenge
is thus to obtain void region response matrices that are compatible with spherical
harmonics expansions and hybrid finite elements.

I
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Recent work in applying spherical harmonics expansions to the first-order form of the
transport equations has given rise to void-region response matrices that appear to be
compatible with VARIANT, although a number of ambiguities remain (Smith, et. aI,
2004). Concurrently, research on mixed primal and dual forms of the transport equation
has shown that both even- and odd-order spherical harmonics expansions can be
combined with hybrid finite elements to obtain solutions to benchmark problems, albeit
not in response matrix form, and not where void regions are present (Van Criekingen,
2004; Van Criekingen, et. al. 2004). What follows draws on these two approaches to
examine in some detail the application of primal and dual mixed methods to generate
response matrices in the diffusion approximation. Both natural and modified natural
boundary conditions are used to obtain response matrices of the T, T 1

, and R classes in
the taxonomy of Lindahl and Weiss (1981). An objective of this analysis is to determine
which approached may offer the potential for creating response matrices for void regions.
It is understood that in the diffusion or Pi approximation any response matrix would be at
best highly inaccurate, and would need to be generalized to higher-order angular
approximations to be of any value in void regions. But by examining the methods in the
diffusion approximation we can determine which approaches lead to singular matrices
and abandon them, for if they are singular in the diffusion approximation they will
remain so if higher-order spherical harmonics are employed.

In the following section the various forms of the mix-coupled and second-order
diffusion equations are presented. In section 3, spatial discretization is employed to
obtain response matrices. In section 4 the response matrices are examined in the limit as
the cross section goes to zero, and the primal mixed form with modified natural boundary
conditions is chosen as a candidate for generalization to higher-order space angle
approximations. In section 5, the transport form of the primal mixed equations and the
concomitant modified natural boundary conditions are presented. The final section
contains a brief discussion.

2. Diffusion Formulations

We begin by writing the mixed-coupled diffusion (or PI) equations over a volume V
with surface r:

and
V· ] (r) +(Yr¢il) =s(r) ,

V¢(r) +3(Y](r) =0,

rEV (1)

rEV (2)

where ¢ and] are the scalar flux and current, and (Y and (Yr are the macroscopic total

and removal cross section. Our treatment is restricted of isotopic scattering and sources

where the diffusion and Pi approximations are identical. Either ] or ¢ may be

eliminated between these equations to obtain the second order even- or odd- parity forms
of the equations respectively. We obtain the weak forms of mixed and second-order
equations by first multiplying Eqs. (1) and (2) by weight functions and then integrating
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over the volume of the problem domain. Let ¢ and ] be a scalar and a vector weight

function. Then multiplying Eq. (1) by ¢ and integrating over volume, we have

(3)

Likewise, weighting Eq. (2) with] and integrated over the volume yields

(4)

2.1 Primal Equations

We obtain the primal equations by applying the divergence theorem to the first term of
Eq. (3):

(5)

Ifwe use Eq. (2) to eliminate the current from this equation we obtain the primal weak
form of the second-order diffusion approximation:

(6)

In the primal form, flux continuity across interfaces is enforced by

(7)

where rjJ and rjJ' indicate flux values on opposite sides of the interface, where n' = -n .
Equations (5), (4) and (7) constitute the primal weak form ofthe coupled first-order
equations. Equations (6) and (7) constitute the corresponding second order form.

2.2 Dual Equations

The dual forms are obtained by applying the divergence theorem to Eq. (4 ):

fdV[-{V.1)tjJ+3a].]J+ fdrn.]tjJ=O.

The second-dual form then results from utilizing Eq. (1) to eliminate tjJ from this
expression:

fdV[a;I(V'1)V,]+3a1·] -a;l(V.1)sJ+ fdrn.]rjJ=O.

The dual continuity condition is

where ] and ]' indicate current values on opposite sides of the interface.

3

(8)

(9)

(10)



If we were to present the foregoing equations in variational fonn ] and;P would

appear as Lagrange multipliers at the interfaces for primal and dual methods respectively,
and continuity conditions ofEqs (7) and (10) would result from requiring the functions to
be stationary with respect to variations in the Lagrange multipliers. Employing weighted

residuals we may thus detennine t/J at the boundaries, given J. ii at the boundary in the

primal fonnulation or conversely] . ii at the boundary given t/J at the boundaries with

the dual method. We can thus obtain what Lindahl and Weiss(1981) classified as r 1 and
T response matrices respectively. They may then be converted to the standard R matrix
fonn by changing variables from the flux and current to the partial current variables

(11)

and

(12)

By modifying the natural boundary conditions we may also obtain the R matrix fonn

directly, that is we may specify the incoming partial current J; and detennine the

outgoing partial current J: .
2.3 Modified Primal Equations

For the modified primal fonnulations, we begin by weighting Eq. (12) with ;p and

integrating over the domain surface:

(13)

we then add this expression to Eq. (5) or Eq. (6) to obtain the coupled or the second-order
primal fonnulations with incoming partial current natural boundary conditions:

(14)

(15)

where Eq. (4) remains unchanged in the coupled case. Corresponding to the continuity
conditions for the unmodified primal methods, we must construct interface continuity
conditions compatible with the modified interface conditions. Since at an interface

i1: =-n, we obtain from Eqs. (11) and (12), J: =J;,. Thus for the primal methods with

modified boundary conditions, we weight Eq. (11) with ;p to obtain

(16)
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2.4 Modified Dual Equations

For the modified dual formulations we multiply Eq. (12) by ]. Ii to obtain

(17)

Multiplying this expression by 4 and subtracting from Eqs. (8) or (9) then yields the
mixed-coupled or the second-order forms of the dual method with modified natural
boundary conditions

(18)

or

where Eq. (3) remains the same in the coupled case. For the dual method with modified

boundary conditions, we again note that J: =J~ . and weight Eq. (11) with ii· J to

obtain

2.5 Summary ofEquations

Jdrii . j (y,; ¢J +~ ii .J - J:) =0 . (20)

Before proceeding, It is useful to summarize the eight weak-form formulations that we
have presented for the diffusion equation. The summary is presented as Table 1. The
primal forms have Neumann natural boundary conditions. If the surface terms are

eliminated these correspond to ]. Ii =0 . In the inhomogeneous form we are required to
specify] . Ii . Likewise, the dual forms have Dirichlet boundary conditions,
corresponding to ¢J =0 when the surface term is eliminated. In both modified primal and

dual formulations these are replaced by Robin conditions on the partial current J;. In

primal methods trial functions for ¢J but not ] must be continuous within V, since only

flux derivatives appear. Conversely, in dual methods ] but not ¢J trial functions must

be continuous within V, since only current derivatives appear.

Since we are concerned with response matrix formulations that can treat void regions,
we eliminate the second-order methods contained in Eqs. (15) and (18), since the total
and removal cross-sections appear respectively in the denominators of the primal and
dual second-order formulations.
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3. Diffusion Response Matrices

To discretize the foregoing equations and obtain response matrices we employ
Galerkin weighting. However we employ different sets of spatial expansion functions

within the node for t/J and 1 within the node, and a second set of trial functions for

1· ii , t/J and J; on the interfaces for the primal, dual, and modified formulations

respectively. The interface expansions are also employed for the weight functions in Eqs.
(9) , (10), (19), and (20). For brevity we set the source term to zero, and limit our
treatment to two-dimensions.

We begin by approximating the flux and current within V:

and l(p) ~e(P)j .

PEV (21)

PEV (22)

Here, f+ and f+ are column vectors of known trial functions, and C/J and j are the
unknown flux and current coefficients. More specifically,

and

·T ['T .TJJ = Jx ,Jy •

(23)

(24)

The vectors f+, f x ' and f y are assumed to be polynomial trial functions that are

orthonormal over V. For Galerkin weighting, the weight functions become ¢(P) ---+ f+ (P)

and,l(p) ---+t (P) for PE V.

We approximate the interface conditions as

for the primal method and

for the dual method. The vector h consists of orthonormal polynomial trial functions
defined only on the interface; <Pr and jr are the unknown interface coefficients. For the
modified primal and dual methods the interface approximation for the partial current is

r Er (27)
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For consistent Galerkin weighting, we take the interface weight functions as

n'](r)---+h(r) , and ¢(r)---+h(r) for fEr.

Substituting these approximations and weight functions into the pairs of equations
given in Table 1 for each of the coupled first-order forms, we obtain:

Primal:

[
-0-,1 Bp ][cP] _ [M p ].
B~ 30-1 j - - 0 Jr

Modified Primal:

[
-Wp -o-rl Bp ][cP] =[-2Mp ]._

BT 30-1' 0 Jr
p J

Dual:

[
o-r

l
Bd ][cP] [0]

B~ -30-1 j =- M
d

cPr

Modified Dual

[
o-rl Bd ][cP] [ 0 ]._
B~ -W

d
-30-1 j = 4M

d
Jr

The matrices are given by

(28A)

(28B)

(28C)

(28D)

Bp = fdV(VfJ·e

M p = fdrf+hT

W = II f drf fT
p 72 + +

Likewise, the discretization results in the continuity conditions listed in Table 1 require
continuity of the following interface moments:

Primal:

Dual:

Modified (Primal or Dual) .+ I/MT ,/, I/MT •Jr=74 p'i'+72 dJ

7
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We may combine Eqs. (28) and (29) to yield

Primal:

Modified Primal:

Dual:

Modified Dual:

cPr =-Kpir (30A)

i~ =Kmpi~ (30B)

ir =-KdcPr (30C)

i~ =Kmdi~ (30D)

The matrices are defined by

The unmodified primal and dual formulations correspond respectively to the T 1 and T
formulations in the taxonomy of Lindahl and Weiss (1981), whereas both the modified
primal and modified dual methods are already in the standard R form:

The T and T 1 forms may be transformed to R form simply by letting

.± 1/'/" + II·Jr =74'11r -/2Jr

to yield

and

4. Diffusion Response Matrices in Void Regions

(31)

(32)

(33)

(34)

For plane and x-y geometries the primal second-order method may be combined with
the lowest order trial functions (i. e. with ¢(P) quadratic in Vand n· J(P) constant on

each surface of r) to obtain analytic expressions for the response matrix (Lewis and
Palmiotti, 1998). In the limit as (J ---., 0 , the cross section cancels between numerator and
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denominator, yielding diffusion response matrices for void regions. In plane geometry
the response matrix takes the form

(35)

and one obtains the expected values for the transmission and reflection of t=1.0 and r
=0.0. In x-y geometry, where the response matrix for a square has the form

R=

r d t d

d r d t

t d r d

d t d r

(36)

one obtains t=1I2, d=I/2 and r=-1I2. Thus while neutron conservation is maintained, a
nonphysical value of-112 is obtained for the reflection. This is not surprising, since one
cannot expect to treat void streaming accurately with the diffusion approximation. The
possibility remains open for obtaining more accurate results with the use of higher-order
space-angle approximations. Unfortunately, obtaining analytical solutions that then can
be taken to the limit as (J ~ 0 becomes an insurmountable hurdle. Thus for practical
application we must rely on coupled methods, for which (J does not appear in the
denominator. Examining Eqs. (28), however, we see that as (J ~ 0 the diagonal blocks
of the unmodified primal and dual methods vanish, yielding singular coefficient matrices.
Thus we eliminate the unmodified methods from further consideration.

To proceed, we attempt to obtain void region response matrices using modified primal
and dual methods. To accomplish this, restrictions must be applied to the polynomial
orders of the trial function in order to avoid obtaining rank deficient coefficient matrices
(Carrico, et. aI., 1994; Van Criekingen, 2004). The interface trial function h must be of
lower order than the interior trial functions. We take h to be piecewise constant with one
unique value on each of the two or four surfaces of r. In the primal method, f+ must be

one order higher than f x and f y ; conversely in the dual method the order of f x and f y

must be higher than of f+. The following trial and weight functions meet these
conditions:

One Dimension (-1 :S;x:S; +1)

Primal:

Dual:

r: =[1,~x, (vis"/2)(3x
2 -1)J, r: =[1,~x]

r: =[1,~xJ, r: =[1, ~x, (vis"/2)(3x2 -1)]

(37)

(38)

Two dimensions ( -1 :S;x:S;+1, -1 :S;y:S;+1 )
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Primal: r: =[1, v'3"x, v'3"y, (J5/2)(3x 2 -1),3xy, (J5/2)(3/-1) ] (39)

Dual: r: =[1, v'3"x, v'3"y ] (40)

When these trial functions are substituted into the forgoing expressions both modified
primal and dual methods yield results that are identical to those obtained analytically
from the second-order primal method. Thus both modified methods are candidates for
use in treating voids using higher-order spherical harmonics expansions. Here the
modified primal approach is chosen and presented in the following section. An apparent
drawback to the corresponding dual approach is briefly discussed in section 6.

5. Transport Formulation

Beginning with the within-group transport equation with isotropic scattering

(41)

we may divide the angular flux into even and odd angular parity components

(42)

The even- and odd- parity components of Eq. (41) are then the coupled equations:

(43)

and

(44)

which reduce to Eqs. (1) and (2) when the diffusion approximation is applied. We obtain

the weak form by multiplying Eq. (43) by an even-parity weight function, Ij/+ , and

integrating over space and angle:

(45)

Applying the divergence theorem then yields
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We next assume that the incoming angular flux that is known on the boundary; we may
thus write

r E r, ii . d < 0 (47)

where we use the subscript to denote that IfIr is known on the boundary r. Modified
natural conditions are specified by first forming weighted residuals

2ftir f dO. O·'lIj/(IfI+ +1fI- -lfIr) =0.
,,·{)<o

Using angular parity arguments, we may rewrite this expression as

(48)

ftir fdo. O·nrj/lfI- = ftir fdo. !O.n!rj/lfI+ +2 ftir JdO. O.nrj/lflr· (49)
"·{;kO

Combining Eqs. (46) and (49), we then have

fdV fdo.[-(O.Vrj/)IfI- +arj/lfI+ -~(as¢+s)J

+ ftir fdo. IO.nl~+IfI+ +2 Jtir f dO. O.n~+lfIr =0
;'.{kO

(50)

Finally, the weak form ofEq. (44) is obtained by weighting by the odd-parity function
rfr- and integrating over space and angle:

(51)

Suppose that from Eqs. (50) and (51) we can solve for 1fI+ and 1fI- , given sand IfIr for
the incoming angles. Analogous to Eq. (48), we can construct the outgoing flux
distribution, IfIr, from

or equivalently

2ftir f dO. O.n~+(IfI+ +1fI- -lfIr) =0,
;,.Q,o

(52)

Jtir Jdo. IO.nl~+IfI+ + ftir fdo. O·n~+IfI- -2 ftir f dO. O.n~+lfIr =0. (53)
;,.Q,o

Note that in the diffusion approximation where~+(r,O)-)¢(P) & 1fI+(r,O)-)¢(p) ,and

with] = fdOOIfl- ,Eq. (48) reduces to
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'(54)

the definition of the incoming partial current, J;. Likewise, for rj/(r,O)~¢ (r) and,

'1/(r, 0) ~¢i.l), Eq. (53) reduces to

far ¢[~¢+~r1.] - ,LdO i'l. r1 \fir ] =0, (55)

which is just the definition of the outgoing partial current J;. Thus the modified primal

diffusion formulation given by Eqs. (4), (14) and (16) may be replaced by Eqs. (50), (51)
and (53) if higher-order spherical harmonics expansions are needed.

6. Discussion

Based on the forgoing analysis of the diffusion approximation, the modified primal
mixed method set fourth in section 5 appears to offer an attractive path toward obtaining
response matrices for void regions. Moreover, it seems likely that modified primal
method may be implemented by making somewhat minor changes to the coding of Smith,
et. al. (2004). That said, it remains true that quite high-order spherical harmonics
expansions will be required to obtain reasonable accuracy, since neutron distributions in
void regions are frequently highly peaked in angle

As an alternative to the modified primal method set fourth in section 5, a modified
dual formulation of the transport equation may also be considered. If we were to go
through the parallel procedure for the dual formulation, in which the divergence theorem
is applied to Eq. (51) instead ofEq. (45), reducing the results to the diffusion
approximation would not have yielded partial currents. In the plane geometry, for
example, the transport case reduces not to the result given in the previous sections but to
continuity of the quantities Yt</J±9!JJ rather than the partial currents .r required to
conserve neutron balance. Why weak formulation and reduction to diffusion theory are
reversible for the modified primal but not the modified dual method deserves further
investigation. The difference seems likely to stem from the subtleties of mixed-hybrid
continuity requirements studied by Van Criekingen (2004).
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TABLE 1.
Summary of Weak Form Diffusion Formulations

Primal Equations
first-order coupled:
second-order:
modified first-order coupled
modified second-order

Dual Equations
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Eqs. (5), (4), and (7)
Eqs. (6), and (7)
Eqs. (14), (4), and (16)
Eqs. (15), and (16)



first-order coupled:
second-order:
modified first-order coupled
modified second-order

14

Eqs. (8), (3) and (10)
Eqs. (9), and (10)
Eqs. (18), (3), and (20)
Eqs. (19), and (20)


