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ABSTRACT 

Recovery and comparison of toolmarks, footprint impressions, and fractured surfaces connected 
to a crime scene are of great importance in forensic science. The purpose of this project is to 
provide statistical tools for the validation of the proposition that particular manufacturing 
processes produce marks on the work-product (or tool) that are substantially different from tool 
to tool. The approach to validation involves the collection of digital images of toolmarks 
produced by various tool manufacturing methods on produced work-products and the 
development of statistical methods for data reduction and analysis of the images. 

The developed statistical methods provide a means to objectively calculate a "degree of 
association" between matches of similarIy produced toolmarks. The basis for statistical method 
development relies on "discriminating criteria" that examiners use to identify features and spatial 
relationships in their analysis of forensic samples. The developed data reduction algorithms 
utilize the same rules used by examiners for classification and association of toolmarks. 

I. INTRODUCTION 

The proposition that particular manufacbring methods produce marks on tools that are 
substantially different from tool to tool is generally accepted by the toolmark examiner 
community. This premise is based on a handful of limited studies in the literature, training, and 
years of proficiency testing and experience of toolmark examiners in making relative 
correspondences and associations of known matches and non-matches to develop a knowledge of 
uniqueness. Recently this premise was challenged in a US .  court (Ramirez vs. Stute of Florida, 
Supreme Court of Florida, Docket #SC92975, 2000) and a critical toolmark match was deemed 
inadmissible. 

The purpose of this project is to provide the statistical tools necessary for validation of the 
proposition that marks produced on tools during the manufacturing process are unique from tool 
to tool. There have been several studies that have shown the impact of various tool 
manufacturing methods on the individuality of toolmarks and striations produced on tools. 



These studies are reviewed in an article by Nichols' and have routinely shown that similar and/or 
sequentially produced tools have toolmarks that are distinctly distinguishable, The major 
shortcomings of these studies is that they concentrated on only a single manufacturing method 
(e.g., broaching) and they typically used a small number (-40) of  sample^.^*^ This project 
extends these previous studies by conducting a more comprehensive statistical study of toolmark 
variation produced by several manufacturing methods (filing, grinding, whetstoning, broaching, 
stamping, and milling). Digital image databases of toolmarks produced by the different 
manufacturing methods have been generated. Digital images of surfaces are compared using a 
statistical analysis that yields an index of the degree of similarity. 

The major innovation of this project is that the data reduction software developed provides a 
means of determining the level of difference between known matches (replicate images of the 
same surface) and known non-matches (images of different surface but same manufacturing 
process) for each manufacturing method studied. The developed statistical software is capable of 
determining the significance of a toolmark match, since the basis for development relies on 
"discriminating criteria" that examiners use to identify features and spatial relationships in their 
analysis of forensic samples. 

II. EXPERIMENTAL 

Images of samples were acquired with a Leica UFM4 UniversaI Forensic Microscope equipped 
with a comparison bridge, a Leica DC300 digital camera and a 0 . 6 3 ~  c-mount adaptor. The 
DC300 has a 3 132 x 2325 pixel CCD. Sample images were acquired at two magnifications, 15x 
and 25x, and saved as S-bit grayscale jpeg files. The same area of each sample was imaged at 
the two magnifications. The Leica UFM4 is equipped with fluorescent and incandescent lighting 
for sample illumination. Images of at least 100 of both consecutively in-house made and 
commercially made samples were acquired for each studied manufacturing process. All 100 
samples of each process, or set, were imaged, and the first 20 in each set were acquired in 
triplicate. If a sample or tool had more than one side, image sets were collected for each side, 
with three replicate images of the first 20. 

Commercial tools were acquired from local tool and equipment distributors. The tools were 
acquired in lots of 100 and represented a random generation of toolmarks, which would normally 
be encountered in a real-world situation. The following commercial tools (and the 
manufacturing process they represent) were acquired: screwdrivers (coarse grinding); cold 
chisels (coarse grinding); pliers (broaching); metal snips (fine grinding); bolt cutters (milling and 
grinding); wire cutters (filing); and wood chiseIs (whetstoning). Appropriate jigs were made to 
reproducibly present the same area of each tool to the microscope. 

Commercial tools typically are produced via several manufacturing processes before being 
distributed for sale. As such, class characteristics for certain manufacturing processes on 
commercial items may have different distinctive characteristics than on samples produced in- 
house by only one process for this project. For example, commercially produced pliers were 
initially shaped by broaching the appropriate tool steel blank. Following the broaching process, 
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the teeth on the pliers were laser-hardened followed by a thermal hardening of the entire tool. 
The hardening processes subsequently obliterated the marks produced by the broaching process. 

Consecutively made toolmark samples were fabricated in-house at the Ames Laboratory machine 
shop. The following manufacturing processes were emulated: grinding, filing, milling, and 
broaching. All of these sampIes were generated fiom tool-steel blanks, For grinding, filing, and 
milling, the marks were made on three-foot lengths of tool steel and then cut into one-inch 
pieces. Care was taken to ensure that consecutively made samples were marked accordingly 
with a number-stamp punch. For the grinding process, the grinding stone needed to be 
resurfaced after each three-foot section. The filing was done by hand using a metal file. Care 
was taken to ensure that approximately the same pressure,. angle, and direction were maintained 
during the filing process. A fly-cutter was used to generate the milling marks on the steel 
sample. The fly-cutter was angled one-half degree from normal to eliminate toe marks and set to 
a depth of 0.005 inches. Only the heel of the fly-cutter generated the milling marks. The 
velocity of the fly-cutter was 260 rpm and the steel was fed at a rate of 0.75 Epm. Broach marks 
were made in a two-inch by two-inch by half-inch piece of steel with a one and one-half inch 
hole drilled through it. A keyway broach was used to generate a 7/16-inch wide broach mark. 
Only one pass of the broach was made for each mark. The broach bushing guide was then 
rotated 180 degrees and another broach mark was made in the steel. These two marks were 
considered consecutive marks and were numbered as such. The rectangular steel piece was 
subsequently cut in half to aIlow access for visual inspection and imaging of the marks. 

. 

A fabricated indexed plate was attached to the mechanical translation microscope stages to allow 
the in-house samples to be positioned on the stages, One of the in-house samples for each of the 
processes was placed on the indexed plate and marked to identify the portion of the sample that 
was in the field-of-view of the microscope. This was done to ensure that the same portion of 
each sample was presented to the microscope. At 15x magnification the field-of-view for the 
collected image is nominally three-quarters of an inch; at 25x magnification, approximately 
0.45" of the sample is imaged. 

nx. ALGORITHM AND DATA ANALYSIS 

A. FORENSIC TOOLMARK MATCHING 

The surfaces of tools display marks that are characteristic of the methods and equipment used in 
their manufacture. While these marks may be generally similar in appearance for similar tools, 
the microscopic details of a tool's surface are assumed to be unique to that specific tool. 
Therefore, microscopic comparison of test scrape marks made by a suspect tool to scrape marks 
on a surface such as a door or window frame is an important procedure in forensic investigations. 
A tool recovered from a suspect, which can be identified as having made the toolmark found at a 
crime scene, is of great evidentiary value. 

Forensic scientists trained in identification procedures perform forensic examination of tool 
surfaces and toolmarks. Test marks made with a suspect's tool along with toolmarks from a 
crime scene are examined together under a two-stage microscope that allows independent 
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rotation and translation of each specimen, The microscope produces adjacent images of the two 
specimens separated by a vertical "hairline" across the field of view. The forensic scientist 
attempts to find a physical orientation of the test mark and the evidence mark such that the 
complex pattern of the surfaces is aligned along the hairline and the visible difference between 
the two surfaces at the hairline is minimized. In a positive identification, the hairline may almost 
disappear as details on each side are optimally aligned. 

Figures 1A and 1B depict characterizations of toolmark patterns that might be seen through the 
microscope before, and after, alignment by the forensic scientist. The two dimensional parallel 
lines shown in each figure approximate the three dimensional patterns associated with, for 
example, grinding processes. Figure 2 is an image of a laboratory specimen produced by a 
grinding process. 

For simplicity, Figure 1 depicts the marks in two colors, as dark lines of varying widths against a 
light background. In reaIity, specimen surfaces are obviously much more 'complex and appear in 
more gradually changing grayscale. A critical feature of toolmark comparisons as practiced by 
forensic scientists is that specimens must significantly correspond in pattern detail in order to be 
considered a positive identification or match. In reality, the technical complexity of a skilled 
forensic scientist's work goes far beyond the mechanical trial-and-error process described here, 
but this serves as an introduction to the digital image processing problem to be described next. 

From an algorithmic perspective, the forensic scientist's job (as described here) can be loosely 
thought of as an Optimization problem, requiring a search over: 

0 

0 

angles of rotation for each specimen, 
left-to-right translation of each specimen, and 
vertical translation of one specimen relative to the other. 

This requires as much as a 5 degrees-of-freedom comparison or optimization of the tooImark 
images. Note that if it were not important to find rotations that maximize the complexity of the 
striations running parallel to the hairline for each specimen, the dimension of the problem could 
be reduced by one by requiring only a search of rotation angle for one specimen relative to the 
other. But this could lead to identifications or "matches" of the form shown in Figure lC, in 
which the patterns correspond along the hairline, but do not offer meaningfiil evidence that the 
images are of the same surface. 

The algorithm described in this report is an attempt to mimic the comparison process used by a 
forensic scientist, when the surfaces to be compared are represented by grayscale digital images. 
Specific computer file formats vary, but for practical purposes the data recorded for a specimen 
can be regarded as a rectangular array of positive numerical values representing the intensity of 
light recorded at the corresponding image pixel locations. 
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Figure 1. Characterization of split-view comparisons of specimens. A: Split-view before alignment. B: Split-view 
after alignment. C: Disallowed "match" in which specimen detail is not aligned to either side of the hairline. 

5 



Figure 2. Digital Image of a laboratory specimen prepared using a grinding process, at 25x magnification under 
fluorescent lighting. 

B. AN ALGORITHM FOR MATCHING VIA NUMERICAL OPTMZATION 

Recall that the process of comparing two specimens was loosely described above as an 
optimization of quality of fit at the hairline separating the microscopic images of the two objects, 
with respect to the 5 quantities: 

e 

angles of rotation for each specimen, 
left-to-right translation of each specimen, 
vertical translation of one specimen relative to the other. 

However, framing the problem simply as an unstructured numerical optimization is not likely to 
be fruitfil for two reasons. First, any useful measure of match quality is likely to have many 
local maxima with respect to these five quantities, owing to the complexity of the typical pattern 
in each image. Second, the high resolution of these images suggests that a truly global search 
over all possibilities would require a number of rotatiodtransIation evaluations that for practicaj 
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purposes is impossibly large. However, note that a laboratory forensic scientist does not 
explicitly examine all possible trial matches, but relies on "experienced-based" rules based on 
the important features of this problem to form an efficient search for an optimal match. We shall 
also follow this approach in developing a numerical analogue to the comparison process used by 
the forensic scientist. The iterative numerical strategy to be developed is based on three steps, 
which we call rotation and interpolation, lag optimization, and grid augmentation, each of which 
is repeatedly used in the overall algorithm. 

1. Rotation and Interpolation 

Image rotation is motivated primarily by the requirement that the variation in the character of the 
striations on the specimen surfaces is maximized - or at least substantial - along the hairline. 
Because the direction of greatest variation may not be consistent across the entire range of the 
image, we define it locaIly. From a given point (pixel) in an image, rotation is the process of 
determining the direction (across the image) corresponding to the greatest variation in the 
striation pattern, which will be referred to as the response or recorded intensity. (The process of 
selecting the ''given point" where this is done is described in the grid augmentation step below.) 
The analysis tool we use to accomplish this is based on the geostatistical method called kriging 
(e.g. Cressie, 1993)7, originally introduced as a procedure for estimating the contours of the 
response as a function of longitude and latitude, given only response values at a distinct set of 
locations. Briefly, our use of kriging is primarily through the calculation of a set of direction- 
specific variogram hnctions using the data at pixels within the neighborhood of the selected 
point. The variogram function has distance as its argument (here measured in units of adjacent 
pixel separation), and its value is closely related to the covariance of response values observed at 
locations separated by the corresponding distance. Variograms for which the value changes 
rapidly across small increments of distance indicate a surface for which spatial correlation "dies 
quickIy" with increasing separation distance. We compute variogram estimates corresponding to 
180 equally spaced directions of separation in the neighborhood of the selected point, and note 
the direction for which this function changes most rapidly over short distances, as depicted in 
Figure 3. 

Once directions of greatest variation are determined through given points in two images, the next 
step is to compare "strips" of each image taken along these directions. The forensic scientist 
accomplishes this mechanically through physical rotation of specimens and optical comparison 
across the microscope hairline. Our analogue of this will not actually involve rotation, but rather 
construction of a linear sequence of intensity values along the determined direction in each 
image. Note that because each digital image actually consists of values at only a rectangular 
grid of pixel values in a fixed orientation with respect to the image, this requires that we 
interpolate values along the direction of interest - at what may be though of as ''pseudo-pixeli1 
values - for direct comparison. This interpolation of the image to points "between pixels" is 
based on the use of a kernel smoothing technique to estimate the set of values needed. The 
constructed linear data series is of standard length, half on each side of the point about which the 
direction of maximum variation is determined. Interpolation is done so as to construct a 
sequence of intensity values corresponding to a line segment in the direction of greatest 
variation, so that these values change "most quickly" across the striation pattern in the image. 
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Figure 3. Characterization of local direction ofgreatest variation through a given point in the image, 

The individual values in each sequence cannot simply be taken as intensity values Eom the 
image, because the "rows" and ''columnst' of pixels do not generally correspond to the direction 
of greatest variation. Instead, intensity values are estimated along the segment at intervals equal 
to the distance between pix& in the image; these mimic the intensity values we would have had 
in a segment of one llcoIurnnl' of pixels had the vertical image dimension been perfectly aligned 
with the direction of variation. So, for example, if the direction of greatest variation is 
determined to be 15 degrees relative to the "natural" x-axis of the digital image, a relatively 
narrow ''stript' is identified in the image, centered on the 15-degree segment of interest. "Slices" 
cut across this strip (at 105 degrees) contain pixels for which the intensity vaIues are relatively 
consistent (since they follow "ridges" in the image). Estimation of each intensity value along the 
segment of interest is accomplished using a nonparametric smoothing technique (specifically, 
kernel smoothing with a Gaussian kernel with a relatively narrow window). At each location, 
the smoothing hnction is applied only to actual intensity values associated with pixels found in a 
slice of the strip, centered on the point of interest. This approach minimizes the variability in the 
data used for interpolation. 
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2. Lag Optimization 

For given points in each image, once directions of maximum variation have been established, 
and linear data series of one-pixel separation constructed along these directions, the next step is 
to determine how well these two series can be aligned. This operation is analogous to the 
forensic scientist "sliding" one specimen along the hairline relative to the other, in an attempt to 
find the best alignment of striation patterns. For our purposes, we use lag correlations, often 
used in statistical time-series analysis. Recall that at this point, each image is represented by a 
linear series of interpolated values. Ordinary correlations are calculated between the two series, 
using different "lags" or offsets of one series relative to the other, to find the alignment for which 
agreement is best, ;.e. the lagged correlation is closest to +1 or -1. Because negative correlations 
may also indicate good agreement, e.g. if one image appears to be the ltnegativelt of the other due 
to differences in illumination of the two specimens during image acquisition, the largest absolute 
correlation (sign removed) is selected. This maximized absolute correlation is our measure of 
how well the two images agree (locally) along linear sections selected as described above. 

3. Notation 

Some notation is now necessary in order to describe these ideas precisely. In discussing the 
rotation and interpolation and lag optimization steps, we begin by assuming that "given points" 
have been selected in each image denoted as gl=(xl,yl) and B=(x~,Y~), respectively, for images 1 
and 2. Rotation determines a direction of maximum variation within a neighborhood of the 
selected point in each image; denote the direction vector as y in image 1 and 3 in image 2, 
where yl and are each of length L. Interpolation produces a sequence of image intensity 
values corresponding to "pseudo-pixeLsl' along a line determined by the selected point and 
direction vector. Denote these two sequences of vaIues as SI and s2, respectively, for the two 
images. Within a sequence, index the initial pixel, e.g. 121 in SI, with the index value 0, and 
interpolated values within the sequence with consecutive positive or negative integers 
(depending on direction). Lag optimization determines the offset or lag that maximizes the 
linear correlation coefficient for these two sequences of values. If this optimal lag associates 
( s 2 ) ~  with (sl}~, identify this as a lag-L correspondence. Mechanically, this means that the best 
transkition along the hairline shifts the second specimen a distance L relative to the first, or that 
each specimen can be shifted a distance L/2 in opposite directions, to achieve the same effect. 
Hence a symmetric "correction" for points and can be defined as: 

The rotation and interpolation and lag optimization are iteratively applied, using p,' and D' as 
new "given points" in an attempt to find even better local agreement between the images. 
Iteration stops when the lag correlation cannot be hurther increased, and the largest absolute 
correlation obtained is denoted as r'. Note that since the (real) pixel locations are a rectangular 
grid in the original (x,y) coordinate system, iterative rules such as these for selecting new 
locations wilI typically require numerical rounding to actual pixel locations. 
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4. Grid Augmentation 

The "outer loop" of the optimization consists of the rule for selecting what are referred to as 
"given points" in the text above. Initially, a. fixed, relatively sparse grid of pixels is specified in 
each image. We use a regular, uniform point grid for this purpose, but other fixed or random 
point patterns that are relatively uniformly scattered across the image might also be effective. 
The rotation and interpolation step is applied to each of these points, and lag optimization is 
applied to each pair of points, one taken from each image. So for example, if the initial grid 
consists of 25 locations in each image, 25' = 625 such comparisons will be made, each resulting 
in an adjusted pair of points and a locally optimized absolute correlation: 

We then identi@ a relatively small number of such pairs that lead to the greatest values of P'. 
Recall that the use of lag optimization is the analogue of translation of specimens along the 
directions and Q, respectively, so as to maximize agreement of the images at the hairline. 
Further improvement in the match would then need to come from what would be analogous to 
left-to-right translation of the specimens, e.g. in directions perpendicular to yl and in the 

relatively small number of pairs for which r' is largest, determine new grid points as: 
digital images. Denote these perpendicular directions as ylP and P , respectively. For the 

where A is a standard increment specified in the algorithm. The rotation and interpolation step is 
executed for each of these new points, and lag optimization is performed for a11 point pairs that 
include at least one new point. Grid augmentation continues iteratively so long as the best 
(largest) value of r' increases from step to step; the algorithm is finished when no further 
improvement is realized. 

5. Internal Calibration 

In their usual use in statistical analysis, correlation coefficients are generally computed from 
paired sequences of data for the purpose of establishing whether a direct or inverse association 
exists between the associated pair of variables. In these traditional studies, only one correlation 
coefficient is calculated. In contrast, we use a relatively complex optimization process to find 
h e a r  segments in each image (each represented by a data vector of intensity values) for which 
the correlation is most extreme. In this process, many thousands of correlations are computed, 
but only the value closest to +1 or -1 is retained. As a result, the optimized correlation found by 
our algorithm is not comparable to the values that would ordinarily be observed in simpler 
sarnpIing plans, but will be more extreme (e.g., closer to +1 or -1) even when the images do not 
match. The actual magnitude of the correlation that can be obtained, whether the images match 
or not, depends upon many factors including the genera1 characteristics of the patterns present in 
each image and the specific form of the rules used in the numerical search for an optimal match. 
In order to place the. obtained correlation value on a more meaningful scale, the last step of the 
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analysis is an internal calibration to provide an index of greater value in assessing the degree of 
agreement achieved by the matching process. This is done by generating and comparing two 
additional sets of correlation coefficients, one set representing the correspondence between 
analogous sections from the two images, relative to the initially identified areas of high 
correlation, and the other representing the correspondence that can be found between randomly 
selected sections from the two images (i.e. arbitrary comparisons of areas). These two sets of 
correlations correspond to two sets of points selected as described below, depicted in Figure 4. 

TO = 

The optimization algorithm stops, as described above, when additional iterations do not yield 
improvements, Le. more extreme values, in the optimized correlation. The correlation 
corresponds to two "strips," one taken from each image, each of which can be identified by a 
central pixeI and a direction of greatest change. If the algorithm has been successfuI in finding 
sections of the images corresponding to the same area of a physical specimen, it is easy to 
identify other pairs of nearby regions in the images that also match. To be specific, let p1 and 
denote the center points of the identified strips in the two images, and yl and Q denote the 
directions of greatest change corresponding to each of them, for which the correlation has been 
optimized. If pl and p~ actually correspond to the same (or nearly the same) point on a common 
physical surface, and 11 and 3 represent the same vector across the common physical surface, 
then new points identified as perturbations of p1 ( B) along a selected distance d in the direction 
of a selected angle 9 relative to yl ( b) should also correspond to matching (or nearly matching) 
points on the surface, For given d and 0, these new points are: 

I cos 0 -sin 9 
sin 0 cos 0 

Hence, correlations calculated in the first calibration set are computed by selecting random 
values of 8, computing the corresponding points p1* and p ~ *  (closed dots in Figure 4), and 
performing the rotation and interpolation and the lag optimization steps described above to find a 
"locally" optimized correlation. If the two images actually represent the same pattern and the 
matching algorithm has been successful in identifying corresponding points in the images, these 
new correlations representing "rigid rotations and translations" %om the identified matching 
points should also be relatively extreme (correlations very close to +1 or -1). However, if the 
optimized correlation is an anomaly, representing only a random similarity between the two 
identified strips, the new correlations should be considerably less extreme (closer to zero). For 
clarity, let n represent the number of such correlations calculated (each beginning with new 
randomly chosen values of 0 in the fixed distance d) in this group, 

The correIations in the second calibration set are computed in a similar fashion, but from 
randomly selected pairs of points rather than pairs seIected to physically correspond in the case 
of a successful match. So here, PI* and 122' are selected randomly from images 1 and 2, 



respectively (open dots in Figure 4), and the rotation and interpolation and the lag optimization 
steps are performed for this pair of points. Because no effort is made to identify physically 
corresponding locations in these pairs, the resulting correlations should represent the degree of 
“accidental” agreement that can be found by the lag optimization procedure. Because they will 
each be the most extreme value found in the process of computing correlations for many 
different lags, they will typically be more extreme than single correlations calculated from 
randomly generated data. Suppose as with the first group, n such correlations are calculated 
(each beginning with new randomly selected Q,* and ) in this group. 

If the correlations computed in the first group are to be taken as evidence for a match, they 
should overall be more extreme than those in the second group. Therefore, comparisons are 
made between all n2 pairs of correlations, one taken fiom group 1 and the other fiom group 2. 
The final index of evidence for a match is the proportion of such pairs in which the absolute 
value of the correlation from the first group is larger than the absolute value of the correlation 
from the second group. Index values near 1 indicate situations in which most of the correlations 
might represent physical matches that are more extreme than locally optimized correlations 
corresponding to randomly chosen points. Index values near 0.5 indicate little difference 
between the two groups, suggesting that while the optimized correlations may be large, they 
cannot be interpreted as evidence for a physical match. Index values substantially below 0.5 are 
not likely because they would suggest that randomly selected points display more correlation 
than those selected by the iterative procedure. 

There is some statistical theory suggesting an idealized distribution of values for this index in 
cases that are not true matches. The Mann-Whitney U-statistics (Mann and Whitney, 1947)9 is 
used as the basis of a classical nonparametric two-sample comparison procedure. The U-statistic 
for comparing the two sets of calibration values is, in fact, the same as the index defined, apart 
from the divisor n2 used to scale the index to the unit interval. Standard asymptotic arguments 
discussed, for example, by Gibbons’ imply that for large samples (large n), when the two sets of 
values are independently drawn from the same population, this index should: 

e be approximately normally distributed 
have mean OS, and 

e have standard deviation approximately (6n)-”’. 

This would imply, for example, that index values of more than 0.5 + 3(6n)-”’, or approximateIy 
0.622 for n=100, should be relatively rare unless the two sets are drawn from different 
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Figure 4. Characterization of two sets of points selected for validation. Diamonds represent points of best match. 
Closed dots represent points with the same random perturbation in each image. Open dots represent points selected 
by unrestricted sampling across each image. 
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populations (e.g. the ''match'' group is significantly larger because the match is real). The results 
of our algorithm test (Section C) indicate that this theoretical "critical value'' might be adequate 
for some kinds of surfaces, but not for others. For example, for 15X images of non-matching 
ground surfaces, more than half the calculated index values were larger than 0.8 (Figure 9). This 
indicates that the "classical" assumptions used in the asymptotic analysis of U-statistics are not 
entirely appropriate here. For example, standard theory requires that each data value be 
statistically independently sampled, but the local random perturbations we use cannot be entirely 
independent because they are selected within a limited spatial section of the image. This 
"failure" of the classical analysis is more striking for some surfaces than for others, but the 
asymptotic values it suggests still provide useful "benchmarks" for what might be expected in 
idealized circumstances. 

Algorithm Parameter 

Dimension of images 
Initial grid of points in each image 
Region of image used to calculate each 
variogram 

Dimension of strips used to construct 
linear data series for comparisons 

Radial separation of variograms 

C. ALGORITHM IMPLEMENTATION AND TESTING 

Symbol Test Value 
in Text 

Approx. 3200 by 2300 pixels 
25 in alternating rows of 4 and 3 
201 by 201 pixel block, reduced to 21 
by 2 1 pixels for calculation 
I" 
20 1 by 60 pixel block, with the long side 
parallel to the local direction of greatest 

For purposes of testing, the algorithm described above was implemented in Matlab'.'' Listings 
of the four routines are provided in the Appendix. These programs are "experimental" and have 
not been optimized with respect to execution time or memory management. Their primary 
function has been in empirical testing of the algorithm concept described herein. 

1 
Number of data vaIues in each series 
Size of "perpendicular" step [ A  

change 
20 1, corresponding to 1-pixel spacing 
Initially 50 pixels, reduced by a factor of 

Number of largest correlations used to 

Number of correlations computed in each 
expand the grid at each stage 

group in the calibration step 
Distribution of perturbation distances used 
in generating first calibration set 
Distribution of perturbation angles used in 
generating first calibration set 

2 with each augmentation 
3 

N 100 

D 

0 

Fixed value of 200 pixels 

Uniform over the complete circle 
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1. Algorithm Testing 

The potential effectiveness of the algorithm described' here has been examined in a preliminary 
experimental assessment using the library of images collected as a part of this project. The 
assessment was performed on a subset of all the images acquired during the project. This subset 
consisted of the following surface types: ground, milled, broached, filed (each produced under 
controlled conditions in our laboratory), and cold chisels (produced by a commercial 
manufacturer). The reason for using only a subset of images lies in the length of time required to 
perform a comparison on a pair of images. As mentioned earlier, the algorithm was developed in 
MatLab, which is a non-compiled language. Currently, under MatLab, performing a comparison 
of two images takes approximately 15 minutes. A more fully developed form of the current 
algorithm could be recoded in a compiled language, such as C++, for substantially faster 
execution, once various parameters within the algorithm are determined for each manufacturing 
process. 

Sets of three replicate images were used for each specimen from a collection of ten samples 
representing the same surface type. Multiple sets of replicate images for the same surface type 
allow the algorithm to be tested in a controlled study in which images of the same object should 
be classified as "matches", while images of similar objects of the same surface type should not. 
The resulting 30 images, compared two at a time, provide 30 image pairs that should match 
(those taken fiom the same replicate set) and a very large number of possible pairs that should 
not match. Again, given the time required for each digital comparison, not all pairs of images of 
different specimens were compared; instead, a subset of 27 of these pairs was assessed, based on 
the labeling of objects and replicate images of each object (see Figure 5). (While 10 
commercially produced cold chisels were examined, two surfaces were photographed of each 
tool, and in this case 60 pairs of images should match, while 54 pairs should not.) Index values 
for same-object pairs should be larger than those for different-object pairs; the degree to which 
these samples are well separated (good) or overlap (bad) is an indication of how well the 
algorithm performs. 

It should be noted that these groups of 30 and 27 comparisons should not really be interpreted as 
"independent samples" in the statistical sense, since each image is involved in more than one 
comparison. However, they should nevertheless serve as a useful preliminary assessment of the 
algorithm's potential effectiveness for separating unique patterns from class features in the four 
surface types tested. 
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Figure 5. Schematic of how groups of replicate images are used to assess the performance of the algorithm. Boxes 
represent 3 replicate images of each of 10 surfaces. Vertical arrows represent 30 comparisons between replicate 
images of a common surface. Horizontal arrows represent 27 comparisons between images of different surfaces. 

2. Results 

In discussing these results, it shouId be noted that in the development of these algorithms, we 
primarily used images of ground surfaces in the selection and optimization of various 
parameters. The algorithms are in a preliminary stage and still require further development and 
optimization for different manufacturing processes. Nevertheless, numerical validation studies 
were performed to demonstrate the validation of the toolmark uniqueness proposition. 

Results of the test comparisons are displayed in Figures 6-10. Figures 6-9 contain the index 
values resuIting fiom 30 pairs of images from the identical surfaces (which therefore should 
indicate a match) and 27 pairs of images of similar surfaces (which therefore should not indicate 
a match) for in-house produced broached, filed, milled, and ground samples. Figure 10 contains 
the index values resulting fiom 60 pairs of images fi-om identical surfaces and 54 pairs of images 
of different surfaces of the commercially produced cold chisels. Each figure presents the index 
values for one surface type at either 15x or 25x magnification. 

As described above, the index used is a scaled value of a U-statistic, and theory suggests that for 
perfectly independent data values drawn from identical distributions, the mean and standard 
deviation of the index values should be approximately 0.500 and 0.041 for the sample image sets 
used here. This distribution would result in "mean-plus-three-standard-deviations" upper value 
of 0,622, which can be used as an informa1 guide to the index size required before judging a 
comparison to be a positive match. However, the patterns displayed in the figures suggest that 
this model is not always appropriate for the values generated fiom images that do not match 
(closed dots at the bottom of each panel in Figures 6 - 10). While these samples do often have 
means and ranges simiIar to what the theory suggests, there are also cases (e.g. for ground 
surfaces) where the index values are skewed to larger values. A11 figures taken together suggest 
that a value of approximately 0.8 is effective at separating "matches" from "non-matches" in 
many cases. The following table summarizes the number of false positive and false negative 
conclusions that would be reached from these data, if 0.8 were used as a decision value. 
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I Surface type I Magnification I False Negatives I False Positives I 

Although false negatives and positives are relatively few in most situations, two exceptions are 
especially marked. A large number of fahe negative results (in fact, more than 50%) are 
observed for milled surfaces at either level of magnification, but no false positives are seen in 
these cases. A large number of false positive results, especially for the lower level of 
magnification, are observed for comparisons involving in-house produced ground surfaces; here, 
no false negative results were observed. 

The large number of false negatives observed for milled surfaces is probably due to the nature of 
the marks for this manufacturing process. Milled surfaces typically have long and regular 
repeating striation patterns, reflecting class characteristics. Recall that the lag optimization step 
involves a fixed linear series of pixels. Although the algorithms can be "tuned" to improve their 
effectiveness by judicious seIection of the controlling parameters, the dimension of this series of 
pixels was the same for all the processes and images analyzed. It is quite probable that size of 
the series of pixels used was unsuitable (i.e., on the order of the pattern width) in the analysis of 
this particular milling process, leading to indistinguishable or high (Le., nearly unit value) lag 
correlations for the points compared. Hence, the validation of the "highly correlated" points on 
the images leads to index values indicative of just random comparisons of image positions when 
images of the same specimen are analyzed (Figure 8). The striation patterns of ground surfaces 
are qualitatively quite different and appear more random and locally variable. We speculate that 
in order for the algorithms to work well for surfaces as different as these (Le., miIled versus 
ground), further developments are necessary to ''calibrate'' the algorithm's parameters to the 
kinds of images being compared in a given application. 
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Figure 6. Study results for broached specimens. A: Index values for comparisons made at 25x magnification. B: 
Index values for comparisons made at 15x magnification. 
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Figure 7. Study results for filed specimens. A: Index values for comparisons made at 25x magnification. B: Index 
values for comparisons made at 15x magnification. 

19 



. .. 

0 

Milled Surfaces 

sarne specimen 
o a  a30 o m  

different specimens 9 ' 7 d - q  0: 

A 
40 

25x 30 

0 c 20 

!2 I O  

b, 
3 u- 
LL 

30 

x 

ar 
3 
W 

LL 

2 20 

i!! 10 

0 

15x 

same specimen 
amacso 0 a m 8  o 08 

different specimens :-pq *: 

-10 1 I 
0.0 0.2 0.4 0.6 0.8 1 .o 

Index Values 

B 

40 I 

-10 ' I 
0.0 0.2 0.4 0.6 0.8 1 .o 

Index Values 

Figure 8. Study results for milled specimens. A: Index values for comparisons made at 25x magnification. B: 
Index values for comparisons made at 15x magnification. 
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Figure 9. Study results for ground specimens. A: Index values for comparisons made at 25x magnification. B: 
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Figure 10. Study results for commercially produced cold chisels. A: Index values for comparisons made at 25x 
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Interestingly, visual inspection of the consecutively made in-house ground sampIes indicated that 
there are areas on successive samples that do closely match. These "coincidences" could 
possibly lead to the number of false positive identifications shown in Figure 9, as well as the 
observed skewed distribution of index values. Figure 11 is an example that illustrates coincident 
areas on successively made samples. The physical distance between the areas displayed in the 
figure is approximately 1.2 cm. These coincidences likely arise due to the way the in-house 
samples were produced. These samples were produced by feeding a three-foot length of tool 
steel blank at a constant rate past a grinding wheel. Although the surface of a grinding wheel is 
friable, the wear on this machining surface is apparently slow enough that recurring patterns do 
occur under precisely controlled conditions. Similar behavior may not be likely for poorly 
controlled conditions, such as encountered during hand-held grinding. 

The difference in the index value distributions for the two examples of ground surfaces may be 
related to the nature and quality of the striations. Although in both cases the striations are 
random and locally variable, there still are qualitative differences (although slight). The 
commercially produced cold chisels exhibit striations that are somewhat deeper and wider in 
their appearance. Furthermore, there are less likely to be areas of coincidental matches among 
the chisels. This is Iikely because acquiring commercial items results in a very random sampling 
and the probability of having consecutively made items is quite low. Moreover, the way 
commercial chisels are produced is quite different than the grinding process used in-house. 
Commercial chisels are normally ground by hand using a belt grinding wheel. 

One additional point of interest is the pattern of index values seen when the algorithm mistakenly 
classifies a true match (a false negative). These relatively small index values are distributed in 
approximately the same pattern as those calculated from images that are not true matches (Le. the 
solid dots below the Iine in each plot Figures 6 - 10). Our speculation is that there are cases in 
which the heuristic search algorithm simply failed to find locations in the two images that 
correspond to the same physical point on the object. While the numerically optimized 
correlation values may still be large in these cases, those generated in the first calibration set are 
much smaller (because the match region isn't correct), and so are similar in value to the 
unrestricted random correlations calculated in the second set. Under these circumstances, we 
should expect to see iqdex values very similar to those calculated fkom images that do not really 
match. 
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Figure 11. 
illustrating "coincident" matching striated areas. 

Digital image from comparison microscope of two consecutively made-in-house ground samples 

w. CONCLUSION / FUTURE WORK 

In this report we present preliminary results demonstrating a numerical validation study of digital 
images to study the uniqueness of toolmarks from different manufacturing processes. The 
described algorithms were developed to mimic the comparison process used by a forensic 
scientist. These algorithms were applied to digital grayscale images.. The developed algorithms, 
although preliminary, lay the groundwork for a more detailed and comprehensive study. Initial 
testing on limited (in number) image databases indicate that a "degree of association" or degree 
of similarity can be obtained that is indicative for a particular manufacturing process. 

When applied to images of ground surfaces, the algorithm works quite well. However, when 
applied to images of other types of manufacturing processes, for example milling, the number of 
false negatives increase. This comes as no surprise since the algorithms were developed and 
select parameters were chosen using images of ground surfaces. It should be noted that the 
algorithms can be "tuned" for different surfaces, and further developments are necessary to 
calibrate algorithm parameters for those surfaces. 

Although the algorithm and selected parameters may be used to study images of ground surfaces, 
further refinements and testing are needed. First, the algorithm needs to be translated into a 
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compiled language, such as Cy to speed image comparison. Faster analysis will allow more 
images to be compared, leading to more refined determinations of error rates and index 
breakpoints for various surfaces. Additionally, further study is required to determine whether 
different surfaces need qualitatively different treatment (for example, milled versus ground). We 
also need to develop a better understanding of how class characteristics affect analyses and 
whether dominant class characteristics actually make effective matching findamentally more 
difficult. 
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Appendix 
(written for MatLab) 

valida tion-simple: 
function 
result=validation-simple (pict-l,gridcen-l,pict~2,gridcen-2,delta,n-check,d~st, h,n-best, width, len) 

% Here, gridcen-1 and gridcen-2 are two sets of grid centers we prelocate in images "pict-1" 
8: and "pict-2". After running "movetwo" function over pict-1 and pict-2, we get two best 
% (largest correlation) matching centers "center-1" and "center-2", in other words, center-1 

% center-2 are very similar. Is this a coincidence? This function validation is trying to 

% this question. If ldl and ld2 are the least changing direction for center-l and center-2, 
% random pick a degree theta, for a given distance "dist", we have a new center point 

% by rotating Id1 by theta anticlockwise for pict-1 and center-new-2 for pict-2. Computing the 
% correlation of center-new-1 and center-new-2. If center-1 and center-2 are similar, then this 
% new correlation should be large. Repeat the above step for n-check times, and compute the 
% average of new correlations. Next, we pick two random points, one from the inner pict-1 and 

% other from the inner pict-2, compute their correlation. Repeat this step for n-check times. 

% Now, we have two times n-check correlations, the first n-check correlations, we called them 
8 rotated correlation, the second n-check correlations, called random correlations; Comparing 
% rotated correlations with random correlations, let index be the ratio of rotated correlations 
% greater than random correlations; 

% The final result will be a length fourteen vector, the first one i s  the validation index; 
B the second is the o l d  correltaion of center-1 and center-2; the third and fourth are 

% the fifth and sixth are center-2; from seventh to tenth are the average,max,min and sd of 
% the n-check rotating correlation; from eleventh to fourteenth are average,max,min and sd o f  
% the n-check random correlation. 

and 

answer 

center-new-1 

the 

center-1; 

% run movetwo over pict-1 and and pict-2; 
temp=movetwo - simpleipict - l,gridcen-l,pict-2,gridcen_2,delta,h, len,width,n-best] ; 

center_l=temp{8:9); 
Id-l=ternp(lO); 
center_2=temp(ll:12); 
ld_2=ternp(13) ; 

% compute corrlag-fliptell for center-1 and center-2; 
stripe-test=zeros(len,2}; 
nn= (len-L ) /Z+width; 
mat outer=neighbor~radius(pict~l,center~~(l,ll,center~l~l,2~,nn~; 
stripe-test( :,l)=smooth (ld-l,mat-outer,h, len,width) ; 
mat~outer=neighbor~radius(pict~2,center~2(1,1),center~2~1,2),nn); 
stripe-test(:,21=smooth[1d-2,mat_outer,h,len,width); 

temp=corrlag-fliptell(stripe-test(:,l),stripe-~est(:,Z)); 
corr-old-temp 1 1,l) ; 
flip=temp(l,41; 

% compute the results associated with rotated correlations; 
corr-rotate-new-zeros(1,n-check); 
center-new-l=zeros (1,2) ; 
center_new_Z=zeras(l,2); 
redian-ldl=[ld-l-l)*pi/l80; 
radian_ld2=lld~Z-l)*pi/l~O; 
for i=l:n-check 

theta=2*pi*rand(ll ; 
theta-new-l=radian-ldl+theta; 
center-new-1 (l,l)=center-l(l, 11 -dist*sin (theta-new-1) ; 
center~new~l(1,2)=center~l(1,2l+dist*cos~theta~new~ll; 



theta_new_Z=radian_ld2+fl ip 'pi t theta;  
center_new_2(l,l)=center_2(1,1~-dist*sin(theta_new_Z); 
center_new_2(1,2)=center_Z(1,2)+dist*cos(theta_new_Z); 
center-new-l=round(center-new-l); 
center-new-2-round(center-new-2); 

mat lOO=neighbor-radius(pict_l ,  center-new-i (1,l) ,center_new_l(1,2), 100) ; 
center-varq=fastvargram-100-t012 (rnat-100) ; 
ld-new-l=avglen-ld(center-varg); 

mat 100=neighbor~radius(pict~2,centerpew~2(1,1),center~new~~(1,21,100); 
center_varg=fastvargram_l00_to12 (mat-100) ; 
ld_new_2-avglen_ld(center~varg); 

stripe_test=zeros(len,Z); 
mat outer=neighbol-_radius(pict_l,center_new_l(l,l),center_new_l(1,2),nn); 
stripe-test (:, 1)=smooth(ld-new-l,mat_outer,h,len,w.idthl ; 
mat_outer-neighbor_rad~us(pict_2,center_new-Z(l,l),cen~er-~ew-~~l,~),nn) i 

stripe~test~:,2)=smooth(ld~new~2,mat~outer,h,len,widthl; 

temp=corrlag_flip(stripe~test(:,1),stripe_test(:,2)1; 
corr-rotate-new (1, i ) =temp L 1,1) ; 

end: 
corr-rotate-mean=mean(corr-rotate-new); 
corr-rotate-max=max(corr-rotate-new); 
corr-rotate-min=rnin{corr-rotate-new); 
corr-rotate_std=std(corr_rotate-new); 

% comDute the results associated with random correlations; 
corr_rand_new=zeros(l,n_check); 
center_rand_l=zeros(l,Z); 
center-rand-2=zeros(l,Z); 
nn_dbl=2*nn; 
stripe_test=zeros(len,2); 
n - -  row col=size(pict-l); 
n-row-n-row-col(1); 
n_col=n_row_col(2 ) ; 
for i=l:n-check 

center-rand-1 (1,l) =round(nn+ (n-row-nn-dbl) *rand(l) 
center-rand_l(1,2)=round(nn+(n_co~-nn_dbl)*rand(ll 
center-rand-2 (1,I)=round(nn+(n-row-nn-dbl) *rand(l) 
center-rand-2 (1,2)=round(nn+(n-col-nn-dbll *rand(ll 

mat~100=neighbor~radius(pict_l,center_rend~l(l,l),center~rand~l(l,Z),lOO); 
center~varg=fastvargram~lOO~to12(mat~100); 
ld-rand-l=avglen-ld(center-varg); 

mat~100=neighbor~radius(pict~Z,center~rand~2~l,l),center~rand~2(1,2),100); 
center~varg=fastvargram~lOO~tolZ(mat~100); 
Id-rand-d=avglen-ld(center-varg); 

mat~outer=neighbor~radius(pict~l,center~rand~l(l,ll,center~rand~l(1,2},nn); 
stripe-test(:,I)=smooth(ld_rand_l,mat_outer,h,len,width); 
mat_outer=neighbor_radius(pict_2,center-rand_Z(l,l.l ,center_rand_211,2l,nn); 
stripe_test(:,2)=smooth(Id~rand~2,mat~outer,h,3_en,width); 

temp=colrrlag_flip{stripe_test(:,l),stripe_test(:,21); 
corr_rand_aew(l,i)=te~p(~,l); 

end; 
corr-rand-mean=rnean(corr-rand-new); 
corr-rand-rnax-max(corr-rand-new); 
corr rand rnin=rnin(corr-rand-new); 
corrIrandIstd=s td (corr-rand-new) ; 

% compare corr-rotate-new and corr-rand-new; 
index=zeros(l); 
for i=l:n-check 

temp=corr-rotate-new(i1-corr-rand-new; 
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index=index+surn(temp>=O); 
end; 
index=index/(n-checkA21; 

result=[index,corr_old,center_l,center_2,corr_rotate_mean,corr_rotate-max, ... 
corr_rotate_min,corr_rotate_std,corr_rand_mean,corr_rand_max, ... 
corr-rand-min,corr-rand-stdl; 

movetwo-simple: 

function result want=movetwo simple(pict-l,gridcen-l,pict-2, gridcen_2,delta, h, len,width,n-best) 
% gridcen-1 is a 25 center points located in the inner pict-1 according some designs. 
% Similar for gridcen-2 in pict-2. Pair centers in gridcen-1 with those in gridcen-2, totally 
S we got 625 pairs. For these 50 centers, compute their "ld's using aveslopelen. Then apply 
% function moveone to the 625 pairs, we'll have 625 correlations; 
% For the largest three, now move t h e  corresponding centers by "delta" units along their ld's 
% to get more centers for pict-1 or pict-2; Now repeat the above step, to see if the largest 
% correlations change, if there is any improvement, repeat steps, i f  not, then step. Delta 
% decrease by half for every new step. 
% this function movetwo is to perform the above task. The result will. be the largest three 
% correlations by move the original center points along two direction, first the fast 
% changing direction( through moveone I ,  then the least changing dirction. 

numpoint=size(gridcen_l,ll; 
ldl=zeros(numpoint,l); 
ld2-zeros (numpoint, 1) ; 

for i=l:numpoint 
mat 100=neighbor radius(pict-1,gridcen-1 (i,ll ,gridcen-1 (i, 2), 100); 
center_varg=fastvargram-l00_to~2 (mat-100) ; 
Idl(i, l)=avglen-ld(center-varg); 
mat lOO=neighbor-radius (pict-2,gridcen-2 (i, 1) ,grSdcen-2 (i, 2 ) ,  100) ; 
cen~er_varg=fastvargram-l00_to12 (mat-100) ; 
ld2 (i, l)=avglen-ld(center-varg) ; 

end; 

result=zeros(numpoint*Z,l3l; 

oldcen-pictl=gridcen-1; 
oldcen-pict2:gridcen-2; 

for i=l:numpo.int 
for j-1:numpoint 

result(numpoint*(i-l)+j,:)=moveone[pict 1,pict-2,01dcen_pictl{ir:), oldcen-pictZ(j,:),.. 
ldl (r, 1) , Id2 (j ,1), len, width, h )  ; 

end; 
end; 

[result-sort,index-sort]=sort(-result(:,l) ) ;  
result_sort-result[index_sort,:}; 

result_old_nbest=result_sart(1:n_best,:i; 

oldcengictl=result-old-nbest(:,2:4}; 
oldcengict2=result-old-nbest(:,5:7}; 

% result-old-nbest is an nbest by 13 matrix. 

corr-dif=repmat(-l,n_best,l); 
step=O; 
result-want=result_oId_nbest; 

newcen-pictl-cell (n-best, 1) ; 
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newcen-pictZ=cell (n-best, 11 ; 
nl-new=zeros(n-best, 1) ; 
n2_new=zeros (n-best, 1) ; 
ldl-new=cell (n-best, 1) ; 
ldZ_new=cell(n-best, 1) ; 
result_lnew=cell(n-best,l); 
result-new2=cellln-best,l); 
r e s u l t - n e w n e w - c e l l ( n _ b e s t , l ) ;  

n-best-dbl=Z*n-best; 

while any(corr+dif<O) 
step=step+l; 
delta=delta/(Z*(step-l)); 

% construct new points from center-3 and from center-4 
newcen-3=result-old-nbest(:,8:9); 
newcen_4=result_old_nbestL:,11:12); 

% construct new poin ts  from center-1 and center-2,each has six new center points; 
% a lso  new points newcen-3 and newcen-4,each has six new center points; . 

newcen-l1=zeros~n-best-dblr2); 
newcen-22-zeros(n-best-dbl,2); 
newcen-33=zeros(n-best-dbl,2) ; 
newcen_44=zeros(n_best_dbl.,2); 

templ=delta*sin((result_old_nbest(:,4)-1)/180*pi); 
temp2=delta*cos((result_old_nbest(:,4)-1)/180*pi); 
newcen_ll(l:n_best,l)=result_old_nbest(:,2)-templ; 
newcen_ll(l:n_best,Z)=result_old_nbest(:,3)+tempZ; 
newcen_ll((n_best+l):n_best_dbl,l)=result_old_nbest(:,2)+templ; 
newcen_ll((n_best+l):n_best_dbl,2)=result_old_nbest(:,3)-temp2; 
newcen_ll=round(newcen-ll}; 

temp2=delta*sin((result_old_nbest(:,101-1)/18O*pi); 
temp2=del~a*cos((result_old_nbest~:,l0)-1~/180*pi~; 
newcen-33 (1 : n-best, 1) =newcen-3 ( : I 1) -templ; 
newcen_33(1:n-best,2)=newcen-3(:,2)+temp2; 
newcen_33((n_best+l):n_best_dbl,1)=newcen_3(:,1)+templ; 
newcen_33((n_best+l):n_best_dbl,2l=newcen_3(:,2)-temp2; 
newcen-33=round(newcen_33); 

templ-deltaisin((result_old_nbest:(:,7)-1)/L80*pi); 
temp2=delta*cos((result_old_nbest(:,7)-1)/180*pi); 
newcen_2Z(1:n_best,l)=result_old_nbest(:,5)-templ; 
newcen_22(1:n_best,Z)=result_old_nbest I :,6)+temp2; 
newcen_2Z((n_best+l):n_best_dbl,1)=result_old_nbest(:,5~+templ; 
newcen_22((n_best+l):n_best_dbl,2)=result~old_nbest~:,61-temp2; 
newcen_2Z=round (newcen-221 ; 

templ-deltatsin((result_old_nbest(:,13)-1)/180*pi); 
temp2=deltatcos((result_old_nbest(:,13)-1)/180*pi); 
newcen-44 (l:n-best, l)=newcen-4 (: ,  1) -tempi; 
newcen_44(1:n-best,2)-newcen-4 (:,2)+tempZ; 
newcen_44((n_best+l):n_best_dbl,l)=newcen_4(:,1)+templ; 
newcen-44((n_best+l):n_best_dbl,2)=newcen_4(:,2)-temp2; 
newcen-44=round(newcen_44);  

8 combine new center for pictl and pict2; 
f o r  i=l:n-best 

newcen~pictl(i)=[newcen~3(i,:);newcen~ll([i,i+n~best],:~;newcen~33([i,i+n~bestl,:)l; 
newcengict2(i)=[newcen~4(i,:);newcen~22([i,i+n_best],:);newcen~44~[i,i-1-n~bestj,:)]; 

% unduplicate newcen-pictl and newcen-pictZ from themselves and oldcen-pictl, 
% oldcen-pict2 u s i n g  the following subfunction "unduplicate"; 
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% compute ld for newcen-pictl and newcen-pict2; 
for j=l:n-best 

Idl_new(j)=zeros(nl_new(j),1); 
for i=l:nl-new(j) 

mat lOD=neighbor-radius(pict-l,newcen-pictllj) (i,l),newcen_pictlIjI~i,21,100); 
center-varg-fastvargram_100_to12 (mat-100) ; 
ldl-new( j) (i, 1) =avglen-ld(center-varg) ; 

end; 
newcen~pict1(j}=[newcen~pictl~j),ldl~new(j)]; 

ld2_new(j)=zeros(n2_new(j),1); 
for i=l:n2_new(j) 

rnat~lOO-neighbor~radius(pict~2,newcen~pict2(jl (i,l) tnewcen_pict2{jl ( i , 2 ) , 1 0 0 ) ;  
center~varg=fastvargram~lOO~tol2(mat~100l; 
IdZ-newi j) (i,l)=avglen-ld(center-varg) ; 

end; 
newcen_pictd{jl=[newcen~pict2{j),ldZ~new{jll; 

end: 

resul t_new=resul t_old_nbest ;  
% compute new correlation by moveone for the new center points; 
for jj=l:n-best 

r e s u l t - l n e w ( j j ) = z e r o s ( n 2 _ n e w ( j j ) , l 3 ) ;  
result_new2ljj)=zeros(nl_new(jj),l3); 
result_newnewljj}=zeros(~l-new(jj)*nZ-n~w{jj),l31; 

for j=l:nz_new(jj) 
result-lnewijjl (jr:)=moveone(pict_1,pict_2,oldcen_pictl(jj,l:Z), ... 

newcen_pict2(jj] (j,~:2),oldcen~pict1(jj,3),newcen~~~c~2i~~l (jr3),len.width,h); 
end; 

for i=l:nl-new(jj) 
result_new2ljj](i,:)=moveone(pict_l,pict_2,newcen_pictlijj}(i,l:Z), . . .  

oldcen~pict2(jj,l:2),newcen_pictl(jj)(i,3),oldcen_pict2(jj,3),len,width,h); 
end; 

for i=l:nl-new(jj) 
for j=l:nZ_new(jj) 
result-newKew( j j 1 (nz-new (j j ) * {i- 

1) +j, : )=moveone (pict-l,pict_Z, newcen-pictll j j 1 {i, 1:2), . . . 
newcengictZijjl (j,l:Z},newcen_pictlljjl (i,3),newcen-pict2ljjl (j,3),len,width,h); 

end; 
end; 

result~new=[result~new;result_lnew~jj);re~ult~new~~jj];~esu~t~newnew{j~~]; 
end; 

B result~new=[result~old~nbest;result~lnew;result_new2;result~newnewl; 
ftrash,index-sort]=sort(-result_new{:,l)); 
result_new-result_new(~nde~-~o~t,:); 
result-new-nbest-result-new(l:n_best,:); 

corr~dif=result_old~nbest{:,1~-result_new_nbest~:,11; 
result-want=result-new-nbest; 

result-old-nbest=result_new-nbest; 
oldcen-pictl=result-old-nbest(:,2:4); 
oldcen-pict2=result-old_nbest(:,5:7); 

end; 

result_want=result_want(l,:); 
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function [n_new,result]=unduplicate(newcent,oldcent) 
% this subfunction is to unduplicate "newcent" from itself and from "oldcent" 
% here all "newcent" and "oldcent" are three-column matrices, the f i rs t  two 
% represent the coordinates of centers, the third the offspring. 

templ-newcent(1,:); 
temp2=newcent(Z:end,:); 
result=templ; 
n2-size (tsmp2,l) ; 
while n2>=1 

temp-temp2 ( : ,1:2) -repmat (temp1 ( :  ,1:2), n2, 1) ; 
index= [ temp-=O) ; 
index=sum [index, 2) ; 
temp=tempZ(find(index), : ) ;  
if isempty(temp) 

else 
break 

templ=temp(l,:l; 
result=[result;templ]; 
tempZ=temp(Z:end,:); 
n2=size{temp2,11 ; 

end; 
end; 

n-new=s~ze(result,l); 
n-old=size(oldcent,l); 

temp=result; 
for i=l.:n-old 

index=((temp(:,l:2)-repma~(oldcent(i,l:Z),n-new,~})-~O); 
index-sum (index, 2) ; 
temp-temp(fi.nd(index),:); 
n-new=size(temp,l) ; 

end; 

result=temp; 

moveone: 

function result-moveone (pict-l,pict-2, center-1, center-2, ldl, ld2, l e n ,  width, h) 
% this function moveone is to compute the max ima l  correlation by moving 
?i centers by h a l f  lag. 

halEleo=(len-l)/Z; 
n=halflen+width; 

stripe-test=zeros [len, 2) ; 
mat n=neighbor-radius(pict-l,center-l(l,l) ,center-l. [ 1 ,2 )  n )  ; 
stripe-test(: ,l)=smaoth(ldl,mat-n,h,len,width) ; 
rnat4n=neighbor-radius[pict-2,center_2 (i,l) ,center-2 (1,2) ,n) ; 
stripe-test ( :  ,Z)=smooth(ldZ,rnat-n,h,len,width) ; 

templ~corrlag_flip(stripe_test(:,l),stripe_test(:,2)); 
corr-l=templ. (1) ; 
lag=templ(2: 3 )  ; 

center_311,1)=center_1(1,l)-.S*Lag 
center-3{1,2)=center~l(l,2)-.!3*lag 
center-3=round{center-3); 
center-4 {l,l)=center_Z(l, 1)-.5*lag 
center-4 (1,2i=center-Z(1,2)-.5*lag 
center-4=round(center-4); 

3 1  



...... , ,. ".I., . . 

% compute Id's and stripes for new center-3 and center-4; 
mat 100=neighbor-radius(pict_l,center_3[1,11 ,center-3(1,2), 100) ; 
cenfer-varg=fastvargram-l00-t012 (mat-100) ; 
ld3=avglen_ld(center_varg); 
mat n=neighbor_radius(pict_l,center_3(l,l),center-3(1,2),n); 
stripe-test{:, l]-smooth(ld3,rnat-n,h,len,width); 

mat-100=neighbor-radius(pict_2,center_4 11,lI ,center-4(1,2),100); 
center~varg=fastvargram~lOO~to121mat~10O); 
ld4=avglen~ld(center_vargl; 
mat-n=neighbor-radius(pict-2,center-4 (1,l) ,center-4 (1,2) ,n); 
stripe-test(:,2)=smooth(ld4,mat_n,h,len,width); 

% compute the maximal correlation f o r  center-3 and center-4 
temp2=corrlag_flip(stripe~test(:,l),stripe-te~tl:,~)); 
corr_Z=temp2(1); 
Lag=tempt (2 : 3 1 ; 

corr-dif=corr-l-corr-2; 
corr-want=corr-1; 
center-3-want=center_1(1:21; 
center-4_want=center-211:21; 
Id3_want=ldl; 
Id4_want=ldZ; 

stripe_test=zeros(len,2); 
while corr-dif<O 

center-3-want=center-3; 
center-4-want=center-4; 
ld3_want=ld3; 
ld4_want=ld4; 
corr-want=corr-2; 

center-3 (1,lI =center_3_want(l,l) -.5*lag (1) *cos ( (ld3-1)/180*pi) ; 
center~3(1,2)-center~3~want(l,2)-.5*lag(~)*sin( (ld3-1)/18O*pi); 
center-3=round(cen~er-3); 
center~4(1,1l=center_4_wantil,l~-.5*lag(2)~cos((~d4-~)/l.~O*p~); 
center-4 (1,2l=center-4-want(l.,2)-.5*lag{2) *sin( (ld4-1) /18O*pi); 
center-4=round(center-4); 

% compute Id's and stripes f o r  new center-3 and center-4; 
mat~100=neighbor~radius(pict_l,center_3(~,l),center~3~1,2~,100); 
center~varg=fastvargrari~lOO~to~Z(mat~100l; 
ld3=avglen- ld(center_varg) ;  
mat n=neighbor-radius(pict_l,center_3(l,li,center-3(~,2),n); 
stripe-test ( : ,1) =smooth (ld3,mat-n, h, len, width) ; 

mat-lOO=neighbor-radius (pict-2,center-4 (l,l},center-4 (1,21,100); 
cen te r~va rg=fas tva rg ram_100_ to12~mat~100) ;  
ld4=avglen-ld[center_varg);  
mat-n=neighbor-radius (pict_Z,center-4 [I, 1) ,center-4 (1,Z) ,n) ; 
stripe-test(: ,2)=smooth(ld4,mat-n,h,len,widthl; 

temp2=corrlag_Elip(stripe_test(:,l),stripe-test(:,2}); 
corr_Z=temp2 (1 ) ; 
lag=temp2 (2 : 3 )  ; 

corr-dif=corr-want-corr-2; 
end; 
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..... ....... ..... ..... ......... ..... 

fastvariogram - 1 0 0  - to12: 

function result=fastvargram-lOO-tolZ(neighbor) 
% t h i s  funcion give a variogram of the neighbor by using the already computed 
% "distanq~_lOO_tol2" and "pair-lOO-tol2". This computation will be very fast,that's 
% why it is c a l l e d  "fastvargram". The "result" will be 24 by 2 by 180 array. 

% load distangl.mat; 
global distanql_lOO-tolZ; 
global pair-lOO-to12; 
global pair_100_to12_noempty_subandsizei 

r e s u l t = z e r o s  (20,2,l80) ; 

result(:,l,:l=distangL-100_to12; 

for i=1:2310 
% temp=pair-lOO_to12-noempty-sub(i,:); 
% z = n e i g h b o r ( p a i r ~ 1 0 0 ~ t o l2tpair~lOO~tol2~noemp~y~~uband~~ze(~,l), ... 

0 pair-lOO-tol2_noernpty-subandsize(i,2))); 
$resu l t  (temp(1) , 2, temq(2) )=sum( ( 2  (:, 1) - 2  ( :  , 2 )  ) .*2) /size(z, 1) ; 
% r e s u l ~ ( p a i r ~ 1 0 0 ~ t o 1 2 _ n o e m p t y _ s u b ~ i , 1 ~ , 2 , p a i r ~ 1 0 0 _ t o 1 2 _ n o e m p t y _ s u b ~ ~ , ~ ~ ~ = s u ~ ~ ~ ~ ~ : ~ l ~ -  

result(pair~100_~o12~noempty_subandsize(i,1),2,pair~100_to12~noempty_subandsize~i,2))= ... 
z l :  ,2) ) . * 2 )  /size(z, 1) ; 

sum(diff(neighbor(pair_100_to12(pair~lOO_tol2_noempty~subandsize~i,ll, ... 
p a i r ~ 1 0 0 _ t o 1 2 ~ n o e m p t y _ s u b a n d s i z e ~ i , 2 ~ 1 ~ , 1 , 2 ~ . * 2 ~ / p a i r _ 1 0 0 ~ t o 1 2 ~ n o ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ d s ~ ~ e ~ ~ ~ 3 1 ~  

end; 
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