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1.0 Introduction 
 
The use of hydrogen gas filled RF cavities in muon cooling channels has been proposed by Rolland 
Johnson [1].  Impressive results have been obtained toward attaining high voltage gradients and 
rapid training in preliminary tests done at the FNAL MTA facility.  However, so far it has not been 
possible to test them under conditions where they were subject to the transversal of a high intensity 
particle beam.  This note is an attempt to bring together a description of some of the pertinent 
physical processes that take place in the dilute plasma that is generated in the hydrogen gas by the 
beam.  Two effects dominate.  The first is that the free electrons generated can load down the cavity 
and transfer its energy to heating the gas.  The second is a question of what happens to the plasma in 
the longer term.  There is an enormous literature on the subject of the subject of dilute hydrogen 
plasmas and we can tap into this information in order to understand and predict the behavior of the 
cavity. 
 
Another very interesting subject is the behavior of the limiting breakdown voltage of the cavity vs. 
the gas density.  This is a subject that has an extensive literature in the case of vacuum RF cavities 
and is a subject that is still note well understood.  Since in general RF cavities are pushed to their 
limit, it is important to understand what governs the limiting voltage.  The gas filled cavity opens up 
a new way to study this limit and this note will explore the pertinent physical processes. 
 
This note is an attempt to bring together in one spot a discussion of the phenomenon and furnish a 
consistent framework for understanding and predicting the behavior of gas filled RF cavities.  It will 
be updated as we learn more.  There is also a set of Mathematica Notebooks that are available for 
the asking that will carry out some of the more complicated calculations and are consistent with the 
present literature.  The notebooks should make a common platform for performing calculations as 
the pertinent equations are clearly displayed where they can be critiqued and corrected, if necessary.  
To this end it has been necessary to search the literature for the behavior of electrons in gasses and 
in particular hydrogen.  These appear in the references, but one of the authors (AVT) has these and 
many more that can be made available by request. 
 
There is also a section on what we don’t know and what we would like to know.  These questions 
are based on the work in this note and are intended to help in the direction of the upcoming 
experiments at MTA. 
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2.0 Some Experimental Data 
 

                      
Fig. 2.1 The linearly rising part is the Paschen Region and the flat region is determined by the electrode properties. 
Ref[1]. 
 
The possibility of obtaining very high gradients is very attractive for muon cooling channels.  The 
curve above indicates that there are two regions of interest.  The first is the linear slope of break 
down voltage vs. pressure, called the Paschen region, and the second is the flat region where the 
pressure variation is flat, but the value depends on the electrode material.  The above data was taken 
in a cavity with no beam and the purpose of this note is to develop a theory of behavior of a gas 
filled cavity with an intense beam traversing it near the peak of the rf voltage. 
 

2.1 Physics of the Paschen Region 
 
Let’s first consider the linearly rising part of the curve in Fig.2.1.  The variable used is the gas 
density.  However in 1889 F. Paschen published a paper showing that a more general variable was 
E/P: 
 
Eq.2.1   Vbreakdown  = f(E/p) 
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Historically the units have been volts/cm and Torr.  The reason for this dependence is easily seen.  
If we consider decreasing the distance between molecules by ½ and increasing the field gradient E 
by two, the physics processes should all be the same as a free electron will gain the same amount of 
energy between collisions.  It is also seen from this argument that the gas density should be a better 
variable than pressure and so one will find E/n used in the literature with a unit which is called the 
“Td” where 
 
Eq.2.2    1 Td = 1 volt/cm /1017molecules/cm3. 
 
The function f is linear in the region of interest here, but at lower pressures it goes thru a minimum 
called the “Paschen Minimum” and then rises as the pressure is lowered and the mean free path 
starts to approach the dimension of the vessel.  We will confine ourselves to the high pressure side 
of this curve. 
The breakdown occurs when a free electron can gain enough energy to ionize the gas and thus 
generate more electrons which continue to form a Townsend Avalanche.  This is characterized by 
an exponential growth in the number of ions with distance: 
 
Eq.2.3   n(x) = n(0) Exp(x)   
 
and is called the First Townsend Coefficient and a measurement of it as a function of E/p is 
shown in Fig.[2.2] below.  Let’s put in some numbers.  For the linear part of the curve in Fig.2.1, we 
have 
 
 
Eq.2.4   E/p =  ( 60 104 volts/cm) / ( 800 psi / 14.7   760)  = 14.5  V/cm/mmHg 
 
This is the boundary of the breakdown region all along the linearly rising part of the curve.  Using  
E / P = 14.5,  Figure 2.2 shows that  / p is small, perhaps .001.  Note that it will go to zero when an 
electron cannot gain the 15.5 volts of energy needed to ionize the hydrogen molecule.  Using the 
value of   / p =.001, we can calculate for a pressure of 800 psi, which is on the corner of the 
Paschen region and find 
    
Eq.25    p (Torr) = .001 (800 / 14.7)  760 =  41.4 cm-1 
 
 
This will scale with pressure along the linear region of the curve.  However, Eq.2.3 does not predict 
breakdown as it just gives the gas amplification at any given E/p and for the case we just considered 
the ionization doubles every 1/41.1 cm = 0.24 mm.  So although the amplification may be very large, 
the equation does not predict breakdown.  For breakdown to occur there needs to be an additional 
feedback mechanism that causes instability and makes the current increase without bound.  This 
leads to a second equation for the current in a gap: 
 
Eq.2.6   n(x) = n(0) Exp(x) /[1 -  Exp(x)-1]]

Where  is the second Townsend Coefficient and a singularity in the denominator is clearly 
possible.  There are different sources driving   growth.  For instance, in the early measurements it 
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was found that photons emitted by recombination of the electrons could hit the cathode and produce 
photo electrons which augmented the current.  It is also possible that positive ions hitting the 
cathode can eject additional electrons, thus increasing the gap current and providing the feedback 
for breakdown.  In any case since the term multiplying   can be very large, and as a result a very 
small can produce a zero in the denominator. 
 
                        

              
Fig. 2.2.   (left)  from [2] and the ionization cross section for electrons striking a hydrogen molecule on the right[3].  
The threshold for ionization of the molecule is 15.5 eV. 
 
The motion of an electron in a dense gas is a stochastic process and so it is customary to consider 
the behavior of a “swarm” of electrons and calculate or measure the various distribution functions 
that characterize the ensemble.  If each collision of the electron with a molecule was completely 
elastic, then after the electron diffused a distance in the z direction equal to 15.5 eV / E it would 
have enough energy to ionize a molecule.  For E equal 60 MV/m this would be about 0.25 10-4 cm.  
But we saw above that the 1/e distance was about 1/40 cm. 
 
However, the collisions are not completely lossless.  For instance the electron looses roughly 2 me / 
M of its energy due to the recoil off of M in completely elastic collisions.  This is the case with He 
which is monatomic with no low lying states that can be excited.  Its breakdown field is very low 
because the energy loss per collision is very small and it is easy for an electron to gain enough 
energy to cause ionization.  However, the H2 molecule has many low lying vibrational and 
rotational states in the .01 to 0.1 eV region.  The result is that the electron comes into an equilibrium 
distribution with a rather low mean energy.  It is the tail of this distribution that reaches out to 15.5 
eV and causes the avalanche to start.  If the velocity distribution doesn’t reach out to 15.5 eV, no 
avalanche will form and the swarm will just drift with a mean velocity.  This is the case for an 
electron below the E/p = 14.5 line in Fig.2.1.  Once this line is crossed, the avalanche process starts.  
This is nicely demonstrated by some simulations reported by D. V. Rose of Voss Scientific and 
shown in the LE Muon Collider Workshop at FNAL April 21-25, 2008.  Fig.2.3 below shows the 
results for the plasma density growth for a swarm in H2 at a density of .002 g/cm3 and fields of 10, 
25, and 50 MV/m  which are below avalanche level, at the Paschen Limit line, and well above this 
limit. 
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                                     Fig.2.3  Data from a simulation of D. V.  Ross.  See Ref[4]  
 
A short discussion of the swarm dynamics is in order.  An electron in H2 and an electric field E will 
make a random path thru the gas but will have an average drift in the direction of E.  Since this is a 
stochastic process, it will gain energy from the field and loose it to the gas thru inelastic collisions 
and will arrive at some equilibrium distribution.  If there is no electric field, this distribution will be 
a Gaussian with energy determined by the ambient gas temperature.  However, once a field is 
applied the electron swarm absorbs energy from the field and comes to some new distribution.  This 
distribution is dependent on the properties of the gas and the characteristics of the inelastic cross 
section variation with velocity.  This is a complicated subject, but fortunately there are only two 
features that we need.  The first was mentioned above,   / p and is shown in Fig.2.2  At a given E/P  
it gives us the distance that an electron must diffuse before it has enough energy to ionize a 
molecule.  The second information that we need is  the average velocity of the swarm in the 
direction of the field as a function of E and P and this in encoded in a parameter  called the 
mobility. 
 
Eq.2.6    v = 
 
We can make a simplified derivation of this equation.Mobility is measured by observing the drift 
velocity of swarm electrons in a field E and is normalized to the value observed for a gas pressure of 
1 Torr.  To see the physics, consider an electron moving under the effect of E and making random 
collisions with the molecules and changing direction.  It has a coherent velocity, v, in the direction 
of the field and a random motion that is characteristic of the swarm. The temperature of the swarm 
can be well above the gas temperature as explained above because of the absorption of energy from 
the field. However it will have a coherent drift given by:
 
Eq.2.7   v = ½  a t  = ½  e/m E t  = ½ e/m E <λ / Vr> 
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We start with an electron whose random velocity is Vr.  It accelerates under the action of the field in 
the z direction until it hits a molecule and is deflected its average change of velocity in the z 
direction is given by the equation above.   The distance it travels is λ and its velocity is Vr , the 
random velocity of the swarm.  The distance it travels is given by the total cross section and the gas 
density: 
 
Eq.2.8      λ  = 1 / N σ 
 
Combining with  Eq.2.7 gives 
 
Eq.2.9   v = ½ e/m  < 1 / (N σ Vr) >  E   =  µ E    
 
Notice that  µ is a function of E/P since if we double P and halve the distance between molecules 
then double E the physics should remain the same.  The mobility has been measured for electrons in 
hydrogen over a wide range pressure, density and temperature.  The following two curves show 
results that are in the range of interest here which vary from the Paschen Limit  at E/P = 14 to 
perhaps values as low as E/P = 0.1 for dense gas used in a cooling channel. 
 
 In the case of high field, the swarm random velocity of the electrons is much above that of the 
molecules.  The energy from the coherent motion in the field is fed into random motion by 
scattering.  So the electron swarm may have a mean kinetic energy of several eV.  The following 
figures give the available data on mobility of electrons in hydrogen. 
 

                   
Fig[2.4]  The curve on the left is from Pack and Phelps [5], that on the right from Bartels [6].  The region of E/P 
between 0.5 and 14 is pertinent. 
 
Note that in the range of E/P< 0.1, the drift velocity is not a simple function of only E/P.  However 
for 0.1<E/P< 10 the assumption is good to better than 30% which will satisfy our needs. Remember 
that breakdown is at an E/P of 14, but in a cooling channel, the density may be high and the 
operating point far from breakdown.  This could have two effects. The low mobility could reduce 
the rf loading by the electrons….a good effect!  The deviations at very low values of E/P are where 
the swarm energy is approaching the kinetic temperature of the gas molecules which is a region we 
do not enter as long as there is a high field in the cavity.  When the field is removed, the very small 
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mobility could impede the removal the residual ionization and decrease the recombination rate….. a 
bad effect!  We will discuss this problem later.   
 
Heylen [7] has fit the data at low density with an empirical equation that is good to 16% in the 
region 0.1 < E/P < 100.   He gives two functions one is for the mean random energy in eV for an 
electron in the swarm and the other is for the mobility.  The fits are given below along with the 
equation to calculate the drift velocity as a function of E/P and a plot (Note: there is a misprint in 
the paper.  The following equations are correct).  Roughly, the rms Єm for an AC field should be 
between the DC value and ½ that value and the drift velocity and the internal swarm rms velocity 
multiplied by 1.0 -  0.7  because the rate that electrons can gain energy from the field is different 
than the rate that they give up energy thru collisions.  If the damping rate is fast enough so that they 
are always in equilibrium over the RF cycle, then the factor ½ applies, otherwise the energy may be 
higher.  Hydrogen with it high inelastic cross section should follow the field. 
                 (a)                                    Єm = 0.357 (E/P)0.71 
 
 Eq.2.10     (b)                         µ[E / P] = 1.72 10-2 [ 1 – 2.4  10-2 (E/P)0.71 ]-1.75 (E/P)-.53 

                               
                 (c)          v[E/P] = µ[E / P]  E/P 5.93 107 cm/sec     where E/P is in V/cm/torr 
 

                                 
                                                     Fig.2.5.  Drift velocity vs E/P from Heylens fit. [7]. 
 
Using the equation above, we find  Єm = 0.357 (14)0.71 = 2.33 eV along the Paschen limit for 
breakdown.  This corresponds to a mean electron velocity in the swarm of 9 107 cm/sec, a value 90 
times greater than the swarm drift velocity given by Eq.2.10c and shown in Fig.2.5.  The calculation 
of the distribution function for velocity from the measured elastic and inelastic cross section has 
been attempted with some success.  The distribution is not Maxwellian in general but for hydrogen 
the deviations from this distribution are not large.  Suffice it to note that the tail of the distribution 
must extend to the ionization value for the H2 molecule at 15.37 eV. 
There is an additional interesting subject that we must address and that has to do with electrons 
injected into the gas by small sharp points on the electrode surfaces.  If we are below E/P=14, these 
electrons cannot propagate and cause breakdown but the question of what happens to them is 
interesting.  For instance, are their enough of them to load the cavity?  And if we are above E/P=14 
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how many RF cycles does it take for the disturbance to propagate across the cavity and cause an 
arc?  Is light emitted?  If so we would have a new tool, similar to the dark current emission in 
vacuum cavities that could be used to study gas filled cavity behavior. 
 

2.2 The plateau region 
 
Consider next a point at a pressure of 1000 psia in Fig.1 which is well into the plateau region.  A 
linear extrapolation of the Paschen’s Law to this density would indicate a breakdown field of about 
75 MV/m and yet break down is occurring at about 62 MV/m.  The model for this region is 
dependent on information gleaned from the study of vacuum cavities.  The assumption is made that 
the cavity surface is similar to the surface that has been studied in the vacuum case [8,9,10].  In the 
vacuum case field emission has taught us a lot about the emitters on the cavity surfaces.  We have 
not yet developed the comparable tools for the gas filled case, although if one could observe light 
from excited gas atoms before the breakdown occurs, we would have a way of extracting pre-
breakdown information.   
We will assume that the metal surface is covered by many small point like projections, called 
emitters.  The field at the tip of thee emitters is great enough so that field emission takes place and 
injects electrons into the gas.  The local field is high enough that these electrons can form an 
avalanche and increase the local charge density.  (Note:  If the field is high enough for field 
emission at the tip of the emitter, it will also be well above the avalanche limiting E/P by even as 
much as a factor of 10!)  The generated charge density and distribution must be such that as it 
moves away from the emitter it can distort the cavity E field (which is only 62MW/m) at its leading 
edge to be equal to or greater than 75 MV/m, the Paschen limit, and thus cause the avalanche to 
propagate across the cavity.  This is a complicated process and needs to be simulated.  For instance: 

1. The rf field is reversing and some of the electrons can be sucked back into the emitter, 
2. The charge density is very high and space charge effects must be important. 
3. Positive ions can hit the emitter and cause secondary emission and heating  which would be 

a positive feedback effect. 
 When the streamer does reach across the cavity, an arc ensues and discharges the cavity in a few 
cycles (see section[] discussion of the details).  In the process, some of the electrode is melted and 
thrown around which generates more emitters and after many such episodes finally comes into 
equilibrium and the cavity is said to be “trained”.  We now take a detour and explore the theory of 
field emission and some of its consequences: 

2.2.1  Field Emission 
Field emission is governed by the Fowler Nordheim equation [11]: 

Eq.2.11                         EyvBe
yt

EAj /][
2

5.1

)(



  

 
    y = .0362 E1/2 / 
   j = current density in A/cm2 
   A= 154        B= 6830 
   E is the DC field in MV/m,    is the work function in eV 
   The functions t(y) and v(y) are shown below. 
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This equation is composed of two parts.  The first part is the flux of electrons inside the metal that 
strike the surface and the second is the probability that these electrons can penetrate the barrier at 
the surface and escape.  The figure below shows the potential energy at the surface for an applied 
field of 1 GV / m. 
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The horizontal line is at 4.56 eV, the  for W

 
Fig.2.6.  The potential energy of an electron outside the surface of tungsten with an applied field of 1 GV/m.  The 
tungsten surface is at the left and the turn over in the curve is caused by the image force attracting the electron toward 
the surface. The xmax = 0.6 10-4 E-0.5  microns and Vmax= -1.2 E0.5 volts and where E is in GV/m.  The horizontal line is at 
4.56, the work function for tungsten.   
 
The reason the current changes so fast is that as the field is increased, Vmax decreases and the slope 
of the line increases.  Both effects decrease the thickness of the barrier that must be penetrated.  
Heating the metal will cause some of the electrons to have a higher energy and thus there is a 
temperature dependence of the current density.  This effect only starts to become important at 
temperatures of around 1000 K and the correct theory is given in [11] 
 
Quite often authors omit the two functions t(y) and v(y) and in the case of t(y) this is justified as it is 
close to unity and only modifies the current density by a few percent.  However v(y) multiplies the 
exponent and has a large effect, especially on the size of an emitter and will be included in what 
follows.  The two functions are shown below in Fig.2.7 and have been correctly calculated in 1953 
by Burgess and Kroemer [12].  Before this date the expressions used were incorrectly given by 
Nordheim and were used in many papers. 
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                                             Fig. 2.7 showing the functions v(y) and t(y). 
 
  We show below v(E) for tungsten: 
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                               Fig 2.8  Showing the variation of the function v with applied field for tungsten. 
 
 
First, the following curve, Fig.2.9, shows the effect of setting v and t equal to 1 for a tungsten 
electrode.  Since v[E] is less than 1, setting it to 1 in the exponent  decreases the emission by a large 
amount.  Also notice that the slope of the curve decreases at as field increases.  This provides a 
direct way of measuring the local field and current density for vacuum cavity where the logarithmic 
derivative of the dark current can be directly obtained by measuring the secondary x-ray intensity as 
a function of cavity voltage.  If in addition, the actual current can be measured it can be combined 
with the current density to obtain information about the size of the emitters.  
  



 11 

          

2000 4000 6000 8000 10 000
106

0.001

1

1000

106

Electric Field MV m

Ja
m

ps
c

m
2 

Field Emission Current Density,amps cm2

For Tungsten , wf  4.56 eV
Red set v and t 1, Green use full expression

 
                             Fig.2.9  Curves for tungsten showing the effect on current density from setting v(y)=1. 
 
Next as mentioned, the rf varies and emission occurs only at the peak.  The following set of curves 
on the next page, Fig.2.11 shows the emission for an 800 MHz cavity around the peak of the sine 
wave.  Note the enormous variation of the current density.  The Fig.2.10 below summarizes the 
results by giving the current averaged over a complete RF cycle (emission only on the positive part 
of the wave form!) and comparing with the corresponding emission from a DC field.  The ratio 
varies due to the variation of the width of the current pulse, being 8.2 at 8 GV/m and 15 at 2 GV/m.   
 

                  
                                 Fig.2.11  This figure compares the field emission from a DC field with that from an RF field. 
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Fig.2.12.  Field emission from an emitter in an 800 Mhz cavity around the peak of the rf cycle.  The time is in ns and the 
peak rf field at the emitter is given in GV/m.  Note the tremendous variation in j!  The top curve compares the DC and 
AC emission average current vs. field at the asperity. 
 
The next curve, Fig.2.13 compares the current density in an RF field for W, Mo, Cu and Be. 

                     
Fig.2.13.  The current density averaged over an RF cycle for the four elements W, Mo, Cu, and Be arranged according 
to increasing work function. 
 
Next, we calculate the logarithmic derivative as a function of E.  As mentioned previously, this can 
be directly measured in a vacuum cavity, but has only been indirectly inferred for the gas filled 
cavity [13].  The approach used involved measuring the number density of arc pits on the spherical 
shaped electrodes of the 800 Mhz gas filled cavity and assuming that the pit density variation was 
due to field emission, an untested assumption. The data is shown in Fig.2.14.                          
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Fig.2.14  Data from [13] .  The electrode in the cavity was spherical and hence the field varied.  The density of  pits in 
the electrode were measured as a function of local field and the function fitted with a power law.     
 
The value n observed is similar to that observed in vacuum cavities and the peak fields present in 
the two cases are similar.  Field emission has been well verified in vacuum cavities and so we will 
assume that the surface physics in the two cases at the initiation of breakdown is the same. 
Below, we show in Fig.2.13 the index for field emission from tungsten electrodes where we assume 
the log derivative has been measured to be 10.  The red line gives the value the field at the emitter 
would for the rf case and the green curve uses the correct equations for a DC field.  The resulting 
current density can then be derived from Eq.2.11 or from Fig.2.13.  Unfortunately, we only have 
indirect measurements of n for the gas filled case and we need to verify that the approach used in 
[13] represents a valid measure of n, or find a way to measure the field emission directly when high 
pressure gas is present. 
 

               
Fig.2.15.  The field index as a function of E for three different cases.  The red is the correct expression for RF fields,  
and the green is for the DC case.  The intersection of the measured n=10 curves gives the gradient at the emitter and 
then using Fig2.11, the current density can be found. 
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 Finally,  Fig.2.16 shows the variation of field index with work function.  We choose (W, 4.56 eV), 
(Mo, 4.60 eV), (Be, 4.98 eV), and (Cu, 4.65 eV) as representative elements with different work 
functions.  It is useful to note that the exponent contains so that a small percentage in the 
work function causes roughly1.5 times that caused by the same change in E. 
 

                            
Fig.2.16  The field index for W, Mo, Cu and Be is shown as an illustration of varying  
 
Finally, one can ask are emitters actually seen?  The answer is yes [14], and the following two 
figures are taken from some of the papers that have been written. 

                           
 
                              Fig.2.17  Shadow gram of an emitter on a tungsten electrode [14] 
 

                                      
 
Fig.2.18  Showing the surface of the electrode before and after break down.  The emitter was created during the break 
down process. 
 



 15 

In Fig.2.17, the surface was exposed to a field near break down for about 15 minutes.  There is 
strong evidence that even without actual breakdown that when the field is large that emitters can 
actually grow on the surface.  In the second, Fig.2.18, the shadow gram at the top shows the 
tungsten surface after being heated to high temperature which left the surface smooth and the 
bottom image shows the same region after some breakdowns had taken place.  
 

2.2.2 Emitter geometry and fields. 
                           
Clearly the emitter geometry is complex and poorly defined as can be seen in the figures above..  
However there are some cases that we can treat that will give us a feeling for the important 
parameters.  As a first approximation, suppose one has a narrow rod of height h and radius r sticking 
up on a flat surface with a uniform electric field applied.  One would guess that it would pull in field 
lines within a radius comparable to its height.  Thus, the average field at the end of the rod would be 
increased by the ratio of the two areas or by (h / r)2 and an emitter with a ratio of 10:1 can give a 
field  increase of 100.  One can actually investigate this a little farther.  Using prolate spherical 
coordinates, we can get the analytical solution for a family of pointed objects.  The shapes of these 
emitters is shown in Fig.2.19 
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Fig.2.19  This is a family of curves in prolate spheroidal coordinates that have analytical solutions for Laplace’s 
equation.  Note the different scales for height and radius.  The curve with h / r =1 is spherical boss and has a field 
concentration of 3. 
 
The speculation above that the field enhancement should go as (h / r)2  is verified by the curve in 
Fig2.20 which shows the field enhancement as a function of this variable.  It is seen that a 
coefficient of 0.5 would make the approximate quite good for h/r > 6.  Of course, we have a well 
defined shape and microscopic changes in the shape will change the local field for distances 
comparable to the roughness of the point.  In any case, 0.5 (h / r)2 gives an indication of what the 
emitter needs to look like for a given field enhancement. 
   



 16 

              

              
                          Fig.2.20  The ratio of field enhancement to (h/r)2.  The factor is approximately equal to 0.5 for h/r>6. 
  
An interesting question is how fast does the field fall off and approach the uniform applied field.  
Fig.2.21 shows an example of an emitter 1.0 micron high with an h / r = 18 that gives an 
enhancement of 126.  The uniform applied field is 62MV/m as shown by the sloping blue line and 
produces a field at the tip of 7.8 GV/m.  The red curve is the potential along the z axis as one moves 
away from the emitter tip.  The black point is where the field falls below 75 MV/m and is at 0.4 
microns or 40% of the emitter height.  The lower green curve shows 10x expanded horizontal scale 
for the potential near the tip.  We will come back to this figure later. 

                                
Fig.2.21  The end of the emitter is at x=0 and V=0. The red curve is the electric potential I volts as one moves away 
along the z axis and is due to the applied field of 62 MV/m.  The blue line gives the slope of the applied field.  The 
green curve is an expanded view of the potential with a factor of 10 on the z axis.  Refering to Fig.1, the black dot is the 
point where E = 72 MV/m, which is E/P=14 for P=1000 psi and represents the limiting field for an avalanche to form.  
The emitter is 1 micron high and has an enhancement factor of 126  
 

2.2.3  Numerical example for P = 1000 psia 

 
We now consider a numerical example:  E= 62 MV/m at 1000 psia with a Paschen limit of 75 
MV/m and lets consider a 1 micron high emitter for a cavity where n=10 for a tungsten surface.  
First, n=10 for tungsten yields a field at the tip of the emitter of 7900 MV/m using the curve in Fig 
2.16.  Using this value for the field and Fig 2.13 we obtain an emitter current density of  5.4 106 
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A/cm2.  The field enhancement is 7900/62 = 127 which corresponds to an h/r ratio of  15.9 using 
Fig2.20 which yields  a radius of .063 microns.  Assuming an area equal to 10% of the cross section 
gives a prediction for the total charge injected into the gas per rf cycle of about 0.5 106 electrons.  
Fig.2.20 has been plotted for just this case and the black dot at a distance of 0.4 microns past the tip 
corresponds to the point at which the field falls below the Paschen Limit.  At this point we need a 
real simulation to follow what happens.  However, we know experimentally from Fig.2.1 that break 
down does occur.  The local field of the electrons and the positive ions that they have produced 
around the tip raises the local field above the Paschen Limit and the ionization propagates across the 
cavity. We don’t know the details and a complete simulation of the process would be very 
interesting. 
However, this is not a complete description of the breakdown process.  If the process described 
above were the whole story, it would follow that increasing the gas pressure would increase the 
Paschen limit and the limiting voltage across the cavity would increase.  This is clearly not the 
case…the maximum voltage is independent of pressure!  The crucial point is that at a gas density of 
around  0.005 grms/cm3 there is a transition to a different mechanism of breakdown that is 
independent of gas pressure but depends on the properties of the metal surface.   

2.3 What causes the plateau? 
At this point we will have to revert to what is being learned from vacuum cavities.  They have a big 
advantage in that the field emission can be measured in this case over many orders of magnitude [6]. 
If we can find a way to observe field emission in the gas filled case by seeing optical radiation with 
a phototube, this will be a great help.  Or even better would be a cavity that can be operated in both 
modes would be a great addition.  
 
As mentioned in the previous section, field emission alone cannot explain the plateau.  Two 
processes observed in the vacuum case are at least plausible culprits.  The first is that the force from 
the electric field may actually exceed the mechanical strength of the cavity material and it fractures.  
The second is thermal stress from heat cycling the material may cause fatigue failure of the material.  
There are good examples of this type of failure shown in the ANL Workshop [15]. 
 
The field necessary to actually tear off atoms from a surface has been studied in field emission 
microscopes.  An interesting paper that gives many details is by Mueller who first exploited the 
device in about 1960 [16].  The necessary field is of the order of a few volts per Angstrom and is 
given in the table below taken from [16]. 

                                                   
Table 2.1.  The field in MV/cm to remove an atom from the surface of various elements is given.  Note that the binding  
depends on the charge state of the ion.  This has been measured for a number of elements and it is known that copper is 
singly ionized and tungsten doubly ionized. 
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The fields listed are all a factor of about 5 or more above the field at the tip of an emitter which we 
know is of the order of 8 GV/m from the field emission observed in vacuum cavities.   
 
However, metals are notorious in that their tensile strength is well below that predicted from atoms 
in a perfect crystal and so we should be using the yield or the tensile strength of the material.  The 
following table gives the range of yield strength of various metals and the field that produces these 
stresses. 
 
 
               Table 2.2.  The yield strength and the corresponding electric surface field in GV/m. 
 

                             
It should be noted that there is an even wider variation in these numbers than indicated in the table 
depending on the working of the material during fabrication process.  It is interesting that Mo does 
come out highest, agreeing with measurements. 

2.3.1  Joule heating 
 
Heating of the asperities or imperfections in the surface may play a role.  There are several sources 
of heating: 

1. Joule heating of the emitter from the field emission current 
2. RF surface currents 
3. Positive ion bombardment of the emitter (not considered here.  We need a good simulation 

in order to address this question.) 
4. The final arc that discharges the cavity (see later section) 

 
It is easy to generate a criterion for a lower limit of the necessary current density.  Consider a small 
section of the conductor dV with density Rho and Heat Capacity C(T) carrying a current density j(t).  
The joule heating minus the cooling can be equated to the increase in temperature 
 
   dW =    j(t)2 / (T) dt  dV – Cooling  =  C(T) Rho dV dT 
 
The cooling can be by conduction or radiation, but to generate a limit, we will set it to zero.  We can 
then write: 
 

Eq. 2.12    
Tt

dT
T
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Since the heat capacity and conductivity are known functions of T, the right side of the equation is a 
function of T and can be used to give a lower limit on the right side to reach a given temperature.  
The Fig.2.22 shows this relationship for Tungsten, Moly, Beryllium and Copper and Table[] gives 
the minimum value for the integral of j2 dt  necessary to reach the melting temperature and also lists 
the heat of fusion..  Note that this does NOT include the heat of fusion and it neglects cooling.  It 
represents a true lower limit on the integral of  j2 dt   to reach the melting point.  Cooling by 
conduction will only increase the requirement.  A second point worth noting is that since we have 
used current density, the answer is independent of the geometry and only refers to the material at 
any given point. 
 

                      
Fig.2.22  This plot shows the integral of j2 dt necessary to reach the melting point of W, Mo, Be, and Cu under the 

assumption of no cooling.  It also does not include the transition thru fusion.  Note that copper is most resistant to 
melting due to its low conductivity. 
 
Table 2.3.  The last column gives Int[j2dt] to reach melting point.  The heat of fusion may have to 

be added . 

               
 
 

2.3.2  Does field emission melt the emitter? 
 
To answer the above question, we need to integrate j(t)2 over one rf cycle.  Note that this is different 
than the average current over an rf cycle that is shown in Fig[2.13].  The result for tungsten are 
shown below in Table 2.4 
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    Table2.4 
 

                                          
 
We note that the values are 3 orders of magnitude or more below that required for melting an 
asperity consisting of any of the four elements considered above..  The conclusion is that fusion of 
the emitter or even very strong heating is not important during the very initial phase of breakdown.  
During the arc phase, there is no doubt that the electrode material gets melted.  We return to this 
subject later. 
 

2.3.3  Do surface currents cause local heating and breakdown? 
 
It has also been suggested that joule heating from skin effect surface currents fields may play an 
important part in starting a breakdown.  However, two things are against this proposal.  First, the 
current density is too low to cause melting and second, one notes that the surface current goes to 
zero at the center of the cavity where the field is highest and most of the break downs are taking 
place.  However, it is known that at very high frequencies and fields (CLIC studies) that the local 
surface heating of the order of 100o or less can lead to fatigue, an effect in the metal that disrupt the 
surface over time and which then does lead to breakdown.  Whether or not that is present in our 
cavities needs to be investigated.   
  

2.3.4  “Run away electrons” 
 
At the very high fields achieved in the gas filled cavity, is it possible that the burst of electrons from 
an emitter in the plateau region could actually be accelerated across the cavity. We develop here the 
criterion for this to happen: 

Eq. 2.13     rfE
dx
dE

  

Where the left side is the loss of energy in the gas and the right is the energy gain from the cavity 
field.  A curve of dE/dx for an electron in hydrogen is shown below and has been constructed from 
a simulation in G4BEAMLINE and some medical data [17].] 
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Figure2.23.  dE/dx for electrons in H2 with density normalized to 1 grm/cm3.  The Horizontal scale is in MV and the 
vertical scale is in MV/cm. 
 
Consider the Paschen region and pick fields just below the breakdown limit,  Erf  = 14 P we can 
change P to density and we can write: 
 
Eq. 2.14    Erf = 119 MV/cm x density. 
 
Using a density of 1.0, we can pick a point on Fig.2.23 where the accelerating field will be greater 
than dE/dx.  This point is when the electron energy is greater than 3.3 KV.  Above this energy the 
dE/dx loss is less than the energy gained from the field and the electron is accelerated across the 
cavity.  This trigger level of 3.3 KV is independent of density along the Paschen limit since dE/dx 
and the maximum Erf are both proportional to density.  However when the plateau region is reached 
at a density of .005, Erf  is fixed and can no longer keep up with the increase in dE/dx loss and the 
minimum E of the electron to be accelerated must increase.  It is clear that the best place to look for 
these electrons (via the  rays they produce) is at the knee of the curve.  At this point the gradient is 
0.62 MV/cm and so there is about 1.8MV across the cavity.  Any run away electrons will have to be 
at the peak of the rf and a simple integration of the energy gain minus the dEdx loss indicates the 
electrons will have an energy of the order of 1.5 MeV, maximum and their transit time is less than 
100 ps.  It would be interesting to look for these, but the chance of finding any 3 KeV electrons to 
start the process is very small unless there is some magic going on that we don’t understand.  With 
beam, there will be delta rays that satisfy the capture criterion, but their effect will be completely 
masked by the normal ionization processes. 
 
 

3.0 Description of beam transit thru cavity 
 

We consider first a closed cell cavity with parallel plates and a uniform field and the beam goes thru 
at the peak of the RF cycle as a delta function.  We will pick dE/dx for hydrogen as 4 MeV/grm/cm3 
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and use the measured value of 35 eV/ion pair to calculate the ionization density.  A cartoon is 
shown on the next page, Fig.3.1.   The green represents the region of ionization caused by the transit 
of the beam pulse and immediately after the electrons drift in the field toward the upper plate.  The 
positive ions are so massive that their mobility is very small and they essentially stay in place.  As 
the column of electrons drift upward for ¼ cycle, they leave a disc of positive ions near the lower 
plate with thickness deltaz.  They also collide with the gas ions and loose energy, making a random 
walk in the vertical direction.  The energy lost in the collision process takes energy out of the field 
in the cavity.  When the rf voltage crosses zero, we will have the situation shown in the next picture, 
Fig.3.2.  Energy has been dissipated and there is a layer of positive charge near the bottom plate 
equal to the charge of electrons collected on the upper plate of the cavity.  During the next half 
cycle the electrons drift downward leaving an area of positive charge near the top plate and again 
loosing energy.  We should also note that there is an axial magnet field of the order of 5 T that will 
confine the plasma in the radial direction.  We now need to get quantitative and calculate the 
magnitude of the ion density and mobility. 
 
Beam passing thru cavity at voltage peak and below that ¼ cycle later 
  

                                      
 
  
 
 

                                      
Fig.3.1  The top figure shows the cavity just after a delta function has passed thru at peak field.  The green represents       
ionized hydrogen left behind.  The bottom figure shows ¼ cycle later.  The electrons have drifted up leaving behind a 
layer of positive ions. 
 

The drifting of the electrons represents a current thru the cavity and the inelastic collisions transfer 
energy from the RF field to the gas molecules.  Table 3.1 uses the parameters given below the table 
to describe a typical state of the cavity after beam transit.  The cavity is assumed to be pill box . 
 
 
 
Table 3.1 
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Table 3.1 The above table is an example of the physical environment in a gas filled cavity and can give some feeling for 
the physical processes taking place.  It is important to note that it is assumed that there is no recombination of the 
electrons and that they remain free to absorb power. 
 

 
 
 
The loss to the plasma is calculated as follows: 

Eq. 3.1         dttSinEwipe
dx
dENPtSinEvdxdydttEtideltaW rfgasbeamrf ])[01)(./]/][[(][][   
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The expression under the integral uses the current derived from the velocity of the electrons and 
uses the mobility as calculated from Eq.2.10.  This loss is used in line 20 to give the Qgas which can 
be combined with the cavity Qcav using 1/Q = 1/Qcav + 1/Qgas to give the total effective Q after 
beam passage.  This assumes that the electrons remain free and do not get neutralized or  form a 
heavy negative ion.  The following curve, Fig.3.1 shows how the gas losses vary vs gas density for 
four different frequencies for a beam bunch intensity of 1011. 
 

                              
Fig.3.2  This plots the Qgas vs gas density for 1011 particles.  The length of the 400 Mhz cavity is 5 cm and the length is 
scaled inversely as the frequency.  See the following Table. 
  
The above formulation has been used to calculate the losses in a series of cavities proposed for a 
Hcc.  This channel [27] as proposed has 1011 beam particles divided into 16 bunches and the 
frequency is changed as one progressed thru the channel.  The table below for the three different 
frequency cavities is calculated assuming one bunch of 6 109 and also for a total of 1011 particles 
which is the situation at the end of the train.  The cavity gradient is 16 MV/m.  
 

                               
 
Table.3.2  Effect on beam transversal of 3 different pillbox cavities in an hcc channel.  The cavity lengths are 5, 2.5, 
1.25 cm.  Note the Qgas line.  Even at 1011 muons, the beam loading can be a serious problem unless there is some way 
to either neutralize the electrons or attach them onto a heavy ion such as SF6 . 
 
In addition to the power dissipated in the gas, the charge collected from the plasma increases the 
effective charge of the beam.  This is shown in line 16 in the above table.  The immediate effect is 
to reduce the voltage across the cavity by q/Ceffective where the capacity is calculated from: 
 
 Eq. 3.2                              2)/(2 rfeff hEedEnergyStorC     
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This beam loading, V/V, is shown in the figure below for the four different cavities in the plots 
above. 
 

                        
Fig.3.3.   Change in cavity voltage with beam passage vs. gas density for four different frequencies, 1011 particles, 
pillbox cavities operating with a gradient of 16 MV/m.  The 400 Mhz cavity is 5 cm long and the lengths are scaled 
inversely as the frequency. 
 
It is clear from the above figures that loading of the cavity from the plasma can be a serious problem 
as the beam intensity increases.  This could become prohibitive in the initial capture channel where 
there are many protons and pions in addition to the muons. See [26]. 
 

4.0 Recombination of electrons 
 
The question of recombination of the plasma has to be addressed.  If the recombination is extremely 
fast, the effects discussed above will be absent and if it is very slow, it can influence subsequent 
cycles. In addition to straight recombination, we will also consider adding a gas such as SF6 which 
can capture the electrons.  If one can quickly attach an electron onto either H or some other heavy 
molecule, then the cavity loading calculated above will not happen.  We still have to face the 
question of what happens ultimately to the mixture of heavy charged ions, but initially, we have 
solved the cavity loading by the nailing down the electrons. 
 For a two body process, the recombination rate is defined by the equation 
 
Eq. 4.1   dn1 / dt = R n2 n1    

 
where n1 and n2 are the concentrations of the two species participating in the reaction.  Note that if  
n2  = n1, as is the case for hydrogen ion recombination, the equation can be integrated: 
 
Eq. 4.2                                     n1(t) =  n1(0) / ( 1 + n1(0) R t)   
 
This is not exponential but a time scale for the initial disappearance rate of the process is Rn1.  It has 
a  1/t tail and ions can last for very long times.  On the other hand if n2 represents some species that 
eats electrons and if n2 >>n1 then the decay is exponential with a rate given by r n2.  If electrons are 
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to disappear in the order of a nanosecond, then for a density of 1014
 - 1015,which is in the range of 

interest, the recombination rate must be of the order of 10-5 or even greater.  This implies a large 
cross section for electron attachment of the order of 10-16 cm2 or greater. 
 
It is useful to digress and discuss how r is determined.  First it is specific to the interaction type, 
such as recombination, ionization, excitation, momentum loss, etc.  We define two related quantities 
that will be useful.  Consider particle moving thru the plasma and striking particle type 2 and 
making collisions of type x with a cross section x  
 
    dN1 = x N2 dz            divide by dt to get 
Eq. 4.3 
    dN1/dt = x = <x V1>N2  = Rx N2 
 
 Where Rx is the rate and N1 is the number of interactions of type “x” the incident particle has in 
going a distance dz thru type N2 .  Note that V1 is the velocity of the incident particle.  If we are 
considering electrons as the incident particle then it is not the swarm drift velocity, but rather the 
internal velocity within the swarm.  See Eq. 2.10a. If it is collisions between molecules or ions, then 
it is the temperature of the gas that determines the velocity. The second variable, x, is the “collision 
frequency” for reaction type “x”.  The collision frequency for “momentum loss” is used in the 
literature to calculate the plasma losses in a RF cavity filled with plasma [18].  The quantity          
<x V1> requires the velocity distribution function in order to be evaluated but can also be estimated 
from information on the cross section.  Some cross section curves are given below. 

                       
Fig.4.1.  Comparisons of various cross sections for e + H2  as well as some atomic values.  See Ref.[19].  Note that the 
peak cross section for ionization is about 10-16cm2 but drops very rapidly to the threshold at 15.3 eV. {19} 
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 We will now show an example for the beam-cavity case shown in Table 3.1.  The following Fig. 
4.2 shows a preliminary result of some rate calculations using the information available in the 
literature. 

                
Fig. 4.2.  The beam-cavity initial condition is shown in the box at the top and the red line shows the predicted path for 
the evolution of the H2

+ ion. 
 
The beam produces ions in the H2 gas that are 95% H2

+ and about 5% H+, and an electron density of 
1014 electrons/cm3 which is equal to the sum of the two species.  The state of the electron gas can be 
calculated using the tools we have developed for calculating mobility plus the cross section data in 
Fig. 4.1.  The first question concerns the relaxation time of the swarm.  If it is very small compared 
to the RF period, the temperature of the swarm will follow from eq.2.10 and will move up and down 
at twice the RF frequency.  We will show that this is the case: 
 
                           From Table 3.1 
 
          rms internal swarm velocity = 2.6 107 cm/sec;  internal swarm energy = 0.2 eV;                                                           
                       e , density 1.03 1014 /cm3  ;  H2 , 4.8 1021 /cm3  
 
From Fig. 4.1 we see that the elastic cross section dominates and is 10-15 cm2 at an energy of 0.2 eV. 
Thus the collisions/sec = 2.6 107 4.8 1021 10-15 = 1.25 1014.  The swarm energy is 200 mV and in the 
average collision, 2 me / M  of this energy is lost.  So dE/dt = 1.25 1014 E/1800 or a time constant of 
about 14 ps.  This is a rough calculation but shows the method.  If one is more careful and includes 
the rotational states, their population at room temperature and the energy loss in excitation, the 
relaxation time is about 3 ps.  This is an important result as it means that the mobility and hence the 
velocity follow from Eq. 3.9 using the instantaneous value of the RF voltage.  It also means that any 
interactions involving the electrons with other molecules must be averaged over the RF cycle 
properly.  This is not a trivial point as some of the molecular cross sections vary over large ranges 
between thermal energies and 1 or 2 eV.  
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The main chain of the subsequent interaction between the H2
+ ions, the H2 molecules of the gas and 

the electrons is shown by the red line.  Most cross sections are of the order of 10-16 – 10-15 cm2 and 
since the density of the hydrogen molecules is almost 107 times that of the electrons, the ions react 
with the ions and the chain of hydrogen clusters is set up:  H2

+  ,  H3
+  ,  H5

+  ,……H11
+

 !  The 
reaction rate for 
 
Eq. 4.4   H2

+  + H2   H3
+  +  H  

 
is estimated from the measurements in Ref. [20,21].  It has a large cross section for dissociation 
with electrons, but this cross section may be suppressed at high pressure [22].  If this is the case, 
then the H3

+ will be absorbed in the following three body reaction. 
 
Eq. 4.5   H3

+  +  H2  + H2   H5
+  + H2 

 
These clusters have been observed up to H11

+ with decreasing Q value [23].  They represent the 
positive ion population that is available to eat the electrons.  The measured cross section for 
dissociation into all neutrals have been measured for n=3 and n=5 at low pressure [24] and give 
neutralization times of the order of  1 microsecond or less as shown in Fig 4.2.  At this point we 
seem to be in unknown territory as there has been no work done at high pressure since the main 
drive is from the fusion and astrophysics communities.  
 

4.1.  Use of an electronegative gas. 
 
The discussion above has centered on neutralizing the electrons by capture on positively charged 
hydrogen ions.  There is a second way to reduce the electron loading and that is to capture the 
electrons on an electronegative gas such as SF6.  The mobility of the ions is so small that the 
induced RF current is a negligible load.  The radiation length of SF6 is 28.87 grms/cm3. If we 
degrade the radiation length of hydrogen by 1% , the molecular ratio is 6.5 10-5.  The recombination 
rate for SF6 has been measured for electrons and gas at 300 K and is 2.7 10-7  [22] and falls with 
increasing electron temperature.  Now for the example we are using (Table 4.1) the electron 
temperature is much higher than 300 K at peak voltage, but as the voltage cycles thru zero, the 
electron temperature drops as we have seen above.  If we take the recombination rate equal to 10-7 
the electron capture time is of the order of 0.1 ns which essentially removes them from play. SF6 has 
some disadvantages in that its reaction products are very corrosive and it freezes at LN2 
temperatures.  Better gases need to be found!  
 
 
 

4.3  What happens to the ions? 

 
We need to answer the question of how long does it take to clear the residual ions after the beam has 
passed thru the cavity.  The total number of ion pairs formed during the passage of 1011 muons thru 
2.5 cm of H2 with a density .016 grms/cm3 is 85 micro coulombs.  To sweep this total charge out in 
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1 ms would take a current of 85 ma, but this is not reasonable considering the low mobility of the 
heavy ions. Consider a DC sweep field strength of 1000 V/cm and a volume of plasma near the 
center of the cavity.  The field lines must terminate on charges and the charge required is equal to 
 0 E = 5.5 108 ions/cm2.  This is much smaller than the density present so the field only penetrates a 
very small distance and slowly peels of the outer layer of ions.  Furthermore the mobility is much 
smaller than the electrons and so their velocity is low limiting the current to small values.  If the 
plasma is H+ and e , the rate of sweeping is still limited by the velocity of the hydrogen ion as the 
plasma wants to stay neutral.   
  This is a problem that at present we don’t have a good way of measuring.  If nothing else works, 
one could consider circulating the gas fast enough to remove the ions between pulses.  This is a 
subject for more work! 
 

5.0 The Discharge 
 
When the discharge finally occurs, the cavity is discharged in a very short time.  There is no 
question that copper is melted or vaporized and form additional emitters on the surface.  With a 
little analysis, we can learn something about the conditions during this phase, although one would 
rather that such discharges could be prevented! 
For this analysis, we use a simplified circuit of the cavity.  The coupling to the drive is weak enough 
so that during the actual discharge we can neglect its effect.  For longer times it does have an effect 
and may even re-strike the arc.  Consider the following diagram of the pillbox shaped test cavity: 
                                               

                                
Figure 5.1  Assumed equivalent circuit of the cavity with a spark in it. 
 
The value for L was obtained by the total energy stored in the cavity as calculated by Mohammad 
Alsharo'a [25] and equating that to ½ LI2.  C was then chosen to make the resonant frequency correct.  R 
is given by the measured Q, but once the arc starts there is a parallel circuit with Ls and r that represent 
the spark channel.  The Ls depends primarily on the radius of the arc and its length and the value of r is 
dependant on the very hot plasma in the arc. 
 

Eq. 5.1                                        hrrhLogLs oo
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Where Ls is the inductance of the spark channel, r1 is the cavity radius, r2 is the channel radius, and 
h is the length of the spark.  L is 24.2 nh, C is 1.61 pf and we will neglect R as the cavity Q is large.  
The figure below shows the spark channel inductance vs its radius in microns. 
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Figure 5.2  Red is the spark channel inductance vs. its radius in microns and the blue is the cavity inductance. 
 
It’s clear from the above figure that as the channel inductance can influence the resonant frequency 
of the discharging cavity and the Q will give some indication of the resistance.  This is a 
complicated dynamic process as the channel is compressed by the large self magnetic field (pinch) 
and at the same time has a high pressure due to the heating of the plasma.  We solve the above 
circuit and realize that we will only get some kind of average value for radius.  The Laplace 
Transform for the circuit is given by: 
 

Eq. 5.2                                   
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Where we have used x as the ratio of Ls / L. If we apply a delta function, Qo of current to this Z, it 
charges the C to a voltage Qo/C  and we arrange Qo to give the initial voltage across the cavity 
when the breakdown starts.  The curves on the next page show the voltage across the cavity for 
various size damping resistors for a nominal value of the spark radius of                                  
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Figure 5.3  Cavity voltage waveforms for different values of the spark channel resistance.  The spark inductance is fixed 
at 1.5 times the cavity inductance.   The initial voltage is 2 106 volts. 
 
                

   
 
Figure 5.4  Spark channel current for various values of the channel resistance.  The inductance is fixed at 1.5 times the 
cavity inductance.  The initial voltage is 2 106 volts. 
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As the spark forms, its radius changes and hence its inductance.  This will show up as a change in 
the cavity resonant frequency.  We can show the relation between the damping time and the 
resonant frequency in the following 
 

 
 
  Figure 5.5  Cavity  resonant frequency vs. damping time for different values of r and  x=Ls/Lc.  Events have been 
observed in the shaded area. 
 
One can understand the above diagram in the following way.  When r, the spark channel resistance 
is very low, the channel inductance is placed in parallel with the cavity inductance and the 
frequency is increased.  This is the situation in the upper right portion of the diagram.  On the other 
hand when r is large, the current is limited and the inductance cannot shift the frequency which is 
the case in the lower portion.  Yonehara has made a measurements looking for the frequency shift 
and measuring the damping time.  Events have been observed in the shaded area which imply spark 
channels that have a radius of the order of 1 and resistances of the order of a few 100 ohms. 
 

6.0  Some things we would like to know 
 

1. In the plateau region what is the mechanism that initiates the breakdown.  Is it a fracture of 
the asperity?  Is it rapid heating due to positive ion bombardment?  Or something else? 

2. Can we see light being emitted before the spark?  Do H2
+ and H+ get eaten by H2  molecules 

and turned into H3
+ which decays to all neutrals. 

3. How many RF cycles does it take the streamer to cause break down and what is the H ion 
chemistry in the streamer path. 

4. How long do the positive and negative ions hang around and do they help initiate breakdown 
at later times with succeeding pulses?  Can we sweep them out and does it matter? 

5. Can we find electronegative gases that don’t freeze out and don’t form nasty byproducts? 
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6. The collision frequency is much higher than the cyclotron frequency which means in 
principle that the gas filled cavities are immune to the effect of a magnetic field.  Is this 
really true with beam or is there something we have missed? 

7. Are there gases that will keep the electron temperature low and thus the mobility low.  This 
may be a solution that is different than the one using electronegative gases. 

8. This is a good start! 
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Figure A.1  Drawing of the test cell. 
 
               

             
Figure A.2 Cavity magnetic field along mid-plane.  The distance is in meters.  Ref.[25] 
 
 
 
 
 
 
 




