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Chapter I – Experimental Study of the Effect of 
Wettability Alteration to Intermediate Gas Wetting by a 

New Polymer 
 

Rajinder Kumar and Abbas Firoozabadi 
 
 

Summary 

 We have performed a number of imbibition tests with the treated and untreated 

cores in nC10, nC14, and nC16 and a natural gas condensate liquid. Imbibition testes for 

nC14 and nC16 were also carried out at elevated temperatures of 1000C and 1400C. An 

experimental polymer synthesized for the purpose of this project was used in core 

treatment. 

 Imbibition results are very promising and imply liquid condensate mobility 

enhancement in the treated core. We also performed flow tests to quantify the increase in 

well deliverability and to simulate flow under realistic field conditions. 

 

Introduction 

 In the past we have performed extensive testing of wettability alteration in 

intermediate gas wetting for polymer FC759 at temperatures of 24oC and 90oC.  The 

results were promising for the purpose of gas well deliverability improvement in gas 

condensate wells1,2. We used FC759 to lower the surface energy of various rocks. The 

model fluids nC10, and nC14 were used to represent condensate liquid, and air was used as 

the gas phase. A new (L-16349) polymer, which has been recently synthesized for the 

purpose of the project, was used in the work to be presented here.  L-16349 is a water-

soluble fluorochemical polymer, with low order, neutral PH and very low volatile organic 

compound (VOC < 9.1 g/l).  It is light yellow in appearance and density in 25% solution 

is 1.1 g/cc.  Polymer L-16349 is very safe from environmental considerations and it is 

economical for our purpose. In this work, in addition to nC10, and nC14, we used two 

other liquids nC16, and a liquid condensate in order to study the effect of wettability 

alteration with a broader range of fluids. 
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 The goal of this work is to perform an extensive set of imbibition tests with the 

experimental polymer up to a temperature of 140oC.  In fact, we have performed 

treatment of the rock up to 200oC.  These temperatures cover almost all potential 

applications of the polymer.  In this report, we present the imbibition results and results 

for flow tests using a variety of hydrocarbon liquids. We first describe the imbibition 

results at high temperature for Berea and Cha lk cores. Then we present the results of flow 

tests. 

 

Fluids and Rocks 

Fluids – We used normal decane (nC10), normal tetradecane (nC14), and normal 

hexadecane (nC16), BP condensate, water, air, and nitrogen.  The polymer used is an 

experimental surfactant synthesized for the purpose of this project by 3M.  It is dissolved 

as a solution in water with 25% concentration.  

 Normal decane (nC10) has a specific gravity of 0.72 at 24oC.  Its viscosity and 

surface tension at the same temperature are 0.92 cp and 24 dyne/cm, respectively. 

 Normal tetradecane (nC14) has a specific gravity of 0.76 at 24oC and 0.71 at 

100oC.  Its viscosity and surface tension at 24oC are 3.2 cp and 26 dyne/cm, respectively.  

The viscosity and surface tension of nC14 at 100oC are 0.65 cp and 20 dyne/cm, 

respectively. 

 Normal hexadecane (nC16) has a specific gravity of 0.77 at 24oC and 0.68 at 

140oC.  Its viscosity and surface tension at 24oC are 4.2 cp and 28 dyne/cm, respectively.  

The viscosity and surface tension at 140oC are 0.6 cp and 21 dyne/cm, respectively. 

 The condensate liquid is from a well in Texas provided by BP.  It is yellow in 

color and has a specific gravity of 0.785. 

Rocks - We used two different rocks in this work: Berea sandstone and Kansas chalk.  

Later we will discuss these two rocks. We are also using other types of rocks in this 

project. 

 

Wettability Alteration 

 Two methods are used to alter rock wettability.  The procedure for these two 

methods is discussed in the following. 
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Method 1 

1. Core was vacuumed in a container (1hr). This step is performed in order to measure the 

amount of adsorption. It will not be necessary for field conditions. 

2. Solution of L-16349 at a known concentration was introduced into the container 

containing the core (2hr). 

3. Container was placed in the oven at a temperature of 105/150 0C (3-4 hr).  In one case, 

the cores were heated to 200oC. 

4. Core was dried and amount of adsorption was determined. 

5. Core was prepared for the imbibition test. 

Method 2 

1. Core was placed in the core-holder. 

2. Core was vacuumed for about 1hr. This step is performed in order to measure the 

amount of adsorption. It will not be necessary for field application. 

3. Solution of L-16349 at a known concentration was introduced into the core holder 

from one end.  

4. Two pore volumes of solution were passed from one side and then two pore volumes 

were introduced from other side. 

5. Core holder was closed from both sides and was then placed in an oven for 3 hours at 

150oC. 

6. Core-holder was cooled to about 100oC.  This step was undertaken to avoid 

vaporization of water.  It will not be necessary for field conditions. 

7. Chemical was then displaced using water. 

8. Core was removed from the core holder and was dried to measure the amount of 

adsorption. 

9. Core was prepared for the imbibition test. 

Note that the purpose of vacuuming and drying the core in methods 1 and 2, as 

was mentioned above, is only necessary for adsorption measurement.  Displacement of 

chemical with water makes method 2 close to field conditions. In the past, some of the 

steps above were much longer. As an example, the aging step has been cut from days to 

hours1,2.  
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After the treatment process, the air-saturated core was hung under an electronic 

balance and placed in oil or in water to carry out spontaneous imbibition test and the 

change in weight of core sample vs. time was recorded (see Fig 1).  

 

Determination of Permeability 

Permeability was determined before and after the treatment of the sample. 

Nitrogen gas was used for the determination of permeability. To determine permeability a 

core wrapped with heat-shrinkable tubing was placed in a core holder. Overburden 

pressure of about 500 psi was applied on the core to avoid bypass. Pressure drop, 

upstream pressure and flow rate were then measured at several rates.  

 The following expression was used to calculate permeability3. 

 

  

 The symbols are defined in the Nomenclature. 
Flow Tests 
 Two types of flow tests were carried out on Berea cores; they are as follows. 
Two Parallel Cores 
In this test two cores were placed in parallel. Liquid is injected from one end; the other 

end was kept open to the atmosphere. This test was carried out first for the two parallel-

untreated cores of nearly similar permeability and production rate, as a function of time 

was determined. In the second stage, one of the cores was untreated while other core 

remained untreated. Production rate as a function of time was determined again. This test 

establishes the effect of treatment on the mobility of the fluids. 

Effect of Pressure Gradient on Saturation 

The test was carried out for both treated and untreated Berea. Oil at a flow rate of 4 cc/hr 

was injected in an air-saturated core and the gas injection rate was varied to provide 

pressure gradients of 0.1, 0.2 and 0.3 psi/cm. The average oil saturation vs. PV injection 

of liquid is plotted for each test.  
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Results 

 We have carried out a number of tests in studying the imbibition performance of 

Berea and chalk samples with or without wettability alteration.  Several Berea and chalk 

cores were used in these tests.  Table 1 provides the sample dimensions and properties.  

In the following, we first present results for the Berea samples and then the results for 

chalk samples. 

Berea Imbibition 

A number of tests were performed to study the effect of polymer concentration and 

temperature on the imbibition in Berea. 

Effect of Polymer Concentration – Fig. 2a shows imbibition of nC10 in untreated and 

treated Berea.  The Berea sample was treated using 3% L-16349 solution.  As Fig2a and 

Fig2b show, the imbibition rate is mainly affected in early time. Note that the duplicate 

tests show very similar imbibition performance. 

 Fig. 3 shows nC10 imbibition in the untreated and treated Berea with 6% L-16349 

solution.  As can be seen, there is a significant reduction of imbibition.  Note that the 

results for the duplicate treated samples are close. 

 Fig. 4a shows nC10 imbibition in untreated and treated Berea with 9% L-16349 

solution.  The figure shows a drastic reduction of imbibition.  Note that the duplicate 

treated samples show a similar imbibition performance.  In the remaining tests on Berea, 

we used the 9% solution for treatment of new Berea cores.  We also reused the treated 

core in a number of tests. Contact angle measurements showed that the contact angle to 

nC10 was about 45-60 degrees (see Fig. 4b). 

 Fig. 5a shows water and nC10 imbibition in the treated Berea.  As expected, water 

imbibition is less than nC10. The measured contact angle for water was about 120-130 

degree in the treated Berea (see Fig. 5b) 

Condensate Imbibition – Fig. 6 shows the imbibition of nC10 and the condensate for the 

treated core.  The figure reveals that both nC10 and condensate have similar imbibition 

performance. This is a very important result. 

Effect of Temperature on Imbibition – The above results are all for a room temperature of 

about 24oC.  The reservoir temperatures can be considerably higher.  The candidate 

reservoirs for the treatment application are often in the 90 to 140oC range.   
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Fig.7   depicts imbibition of untreated Berea in nC10, nC14 and nC16. Imbibition of 

nC10 was carried out at room temperature. Imbibition of nC14 was carried out at 100 0C, 

and imbibition of nC16 was carried out both at room temperature and 100 0C. As can be 

observed with increase in molecular weight, the imbibition decreases. As can also be 

observed from this figure, the effect of temperature on imbibition in untreated Berea is 

substantial. A higher imbibition at higher temperature implies an increase in liquid 

wettability and may imply a decrease in contact angle.   

 Fig. 8 portrays the imbibition of nC10, nC14, and nC16 in air-saturated Berea at 

various temperatures.  The imbibition of nC 10 in the untreated Berea is at T=24oC.  The 

imbibition of nC14 in the treated Berea is at 100oC.  The imbibition of nC16 in the treated 

Berea is at 140oC.  There is even significant reduction in imbibition at 140oC in the 

treated core. The reduction at higher temperatures implies usefulness and hence 

increasing mobility even at higher temperatures.  

Fig. 9a shows imbibition of water in treated and untreated Berea.  The Berea 

sample was treated using 9% L-16349 solution.  The imbibition tests were carried out at 

24 0C, 65 0C and 80 0C. A sudden jump in the curve may be attributed to the fact that 

small bubbles cling on the surface at higher temperature. As soon as system is disturbed 

to take the reading these bubbles get detached causing sudden change in weight. As can 

be seen from the figure, with increase in temperature imbibition increases but it is 

significantly lower than imbibition of untreated Berea at room temperature. Fig 9b shows 

the contact angle with water at room temperature and at 800C. Contact angle at 24 0C is 

about 120-130 degree whereas contact angle at 80 0C is about 60-70 degree; both for 

treated core. A higher contact angle at higher temperature implies increased liquid 

wetting. 

 In addition to the tests for the Berea, we also performed imbibition in treated and 

untreated chalk samples. 

Chalk Imbibition 

In the following, test results for imbibition in untreated and treated chalk samples are 

presented. 

Effect of Polymer Concentration – Fig. 10a shows nC10 and water imbibition in untreated 

and treated chalk with 6% solution.  There is a sharp reduction in imbibition for early 
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time for nC10 but later the imbibition is strong. For water, there is substantial reduction in 

imbibition vs. time for the entire period.  Fig. 10b shows the early part of the imbibition 

performance.  The results presented for water imbibition in the treated core imply that 

water imbibition is drastically reduced with 6% solution treatment. 

 Fig. 11a depicts the imbibition of nC10, condensate and nC16 in the untreated and 

treated chalk with 9% solution.  Note that there is a sharp reduction of imbibition in the 

treated chalk for both nC10 and the condensate. In two different cases even though chalk 

was treated with 9% L-16349 solution, the amount of adsorption was 8 mg/g of rock in 

one and 5.07 mg/g of rock in the other. Fig. 11a shows the imbibition of nC10 and 

condensate in these two cases. Note that with the increase in adsorption there is a 

decrease in imbibition. Also note that imbibition for nC16 and condensate are very close. 

Fig 11b shows the contact angle with nC10, which is about 40 degrees. 

 Fig. 12 shows the imbibition of nC10 in the untreated chalk at room temperature 

and the imbibition of nC16 in the treated chalk at 140oC, as well as the imbibition of nC14 

at 1000C.  There is a sizable reduction in imbibition for the treated core at 140oC, both in 

the rate and to a lesser extent on final recovery. Note that the imbibition results for the 

duplicate tests for nC16 are very close. Imbibition of nC14 at 1000C is lower than 

imbibition of nC16 at 140 0C. Imbibition results show that there is reduction of imbibition 

even at 1000C and 140oC. 

 Fig. 13a shows the imbibition results for untreated chalk in water at 80 0C and 

treated chalk in water at room temperature. As can be observed, imbibition of treated 

chalk at 800C is reduced substantially in comparison to the unt reated chalk indicating 

effectiveness of chemical for reduction of imbibition of water even at an elevated 

temperature. Fig. 13b shows the contact angles of water at room temperature, which is 

about 110-115 degrees and at elevated temperature of 80 0C, which is about 60-65 

degrees. 

We have also treated a chalk sample with 8% solution of FC759.  The imbibition 

results are presented in Fig. 14. At adsorption of (6.8 mg/g), the imbibition in the treated 

core very effective, but it is about the same as the one with L-16349. 
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Permeability Change and Other Aspects 

 We have measured the permeability before and after treatment for some selected 

cores.  We have also measured adsorption for all the treated cores.  Table 1 provides the 

data.  For both the chalk and Berea samples there is a reduction of about 10 to 15 percent 

in permeability.  In the past we have seen an order of magnitude increase in liquid phase 

mobility after treatment1,2. Therefore, a reduction of 10 to 15 percent in absolute 

permeability may not affect the well deliverability. 

 A finding in the current work is that the treatment became more effective as the 

treatment temperature is raised.  For a few samples, we have raised the temperature to 

200oC (results not shown in Table 1).  Contact angle measurements show that the 

treatment is more effective at 200oC than at 100oC and 140oC.  The temperature of the 

reservoir will dictate the treatment temperature.  As long as the temperature is above 

90oC, treatment of the Berea and chalk should be effective.  We have tested the 

imbibition at 140oC; the evidence is that at such high temperature there is reduction of 

imbibition.  In case we need better results, we may use higher concentration of the 

polymer. 

 The polymer seems very durable based on reusing the treated cores.  We are 

currently performing some atomic force microscopy (AFM) to find the durability of the 

treatment, especially at high temperatures. 

Flow Testing 

We have carried out two types of flow testing to examine the effectiveness of chemical 

treatment in liquid and gas mobilites. In one set of tests, the liquid saturation in the core 

is measured by liquid and gas injection in which the lower liquid saturation implies 

higher liquid mobility. In the second type of testing, we carry out injection in two parallel 

cores of similar permeability one treated, and another untreated to examine the effect of 

treatment on liquid mobility. The results from these types of tests will be presented in the 

following. 

Liquid Saturation Tests: Three tests were conducted both for treated and untreated cores 

using the apparatus sketched in Fig 15. Visual core holder was used to see the flow 

pattern of the liquid. Gas and liquid are mixed in a capillary-tubing mixer and then 

injected simultaneously into an air-saturated core. Liquid flow rate was maintained at the 



9 

rate of 4 cc/hr and a pressure drop of 0.1 psi/cm, 0.2 psi/cm and 0.3 psi/cm were 

maintained by varying the gas injection rate. In the untreated core, the saturation 

increased linearly with time before breakthrough of liquid and the movement of liquid 

front was piston like (see Fig 16). The flow pattern for the treated core was not piston like 

and it was diffused; no invading oil front was observed for treated core and breakthrough 

of the oil was earlier than that of the untreated core (see Fig 17).  

Accumulated oil saturation for the untreated core was about 0.62 PV for the 

untreated core whereas for treated core residual oil saturation was about 0.47 PV, for the 

pressure gradient of 0.1 psi/cm. A lower value of the average saturation in the treated 

core indicates a high mobility. In the previous work2 accumulated oil saturation was 

observed to be about 0.30 when Berea was treated with 2% FC-722. 

Oil Injectivity  

 Parallel core flow test was carried out to study the effect of wettability alteration 

(see Fig 18). Oil was injected into two parallel cores before and after wettability 

alteration. Oil was injected at the rate of 240 cc/hr. As may be observed oil injectivity 

through one of the core (permeability 250 md) is substantially lower than the oil flow 

through other core (permeability 325 md) indicating mobility of oil in one of the cores is 

much lower than the other core (see Fig 19). However, after treatment of one of the core 

trend reverses, (see Fig 20), the core which was with lower production rate, now showed 

a higher production rate. Treatment of the core increases the oil mobility in the core 

thereby increasing the production in the treated core. 

 

Conclusions  

1. The new polymer, which is environmentally sound, is effective in the alteration of 

wettability. 

2. The 9% solution of polymer in water when used in the treatment, provides 

effective wettability alteration for both water, nC10, nC14, nC16 and the condensate 

liquid in both Berea and chalk. 

3. There is an increase in liquid wetting with temperature but even at a temperature 

of 1400C, there is a significant reduction of liquid wetting when treated aand 

untreated rocks are considered. 
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4. The new polymer similar to the ones that we have used in the past1,2 alters 

wettability permanently. This makes it suitable for field applications. 

 

Because of the above features, the polymer has a promise for field application. We 

are currently further testing for the field that is being considered for trial. 

 

Nomenclature  

W = mass flow rate 

 p = Pressure 

 L= Length 

 A = area 

 R = gas constant  

 z = compressibility factor 

 κ = permeability 

 β = turbulence factor 

 ρ = density 

 µ = viscosity 
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                    Untreated Berea(BB); T=240C 
 
 
 
 
 

 
 
 

 
 
 
 

                    Treated Berea (BB-6); Contact Angle: 120-130 degrees; T=240C 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
                    Treated Berea (BB-6); Contact Angle: 60-70 degrees; T=800C 

 
 

 
Fig 9b Contact angles for Air-Water-Berea system at 24 0C and at 80 0C 
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 Treated chalk (CC-7); Contact Angle: 110-115 degrees; T=240C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Treated chalk (CC-7) contact angle: 60-65 degrees; T=800C 
 
Fig 13b-Contact angle for Air-Water-Chalk system at T=24 0C and at  
80 0C 
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Chapter II - Curvature Dependence of  Surface Tension in 
Multicomponent Systems 

 
Erik Santiso and Abbas Firoozabadi  

 
 

ABSTRACT 

The effect of curvature on the surface tension of droplets and bubbles in both single and 

multicomponent systems is modeled using the basic equations from classical thermodynamics. 

The three basic expressions used in our work are the Gibbs adsorption equation for 

multicomponent systems, the relation between the surface tension at the surface of tension and 

the distance parameter δ  and the Macleod-Sugden equation for surface tension and its extension 

to multicomponent systems. The Peng-Robinson equation of state is used to describe the bulk 

phases. We also assume that the surface tension expression remains valid in terms of the 

properties of the bulk phases for both flat and curved interfaces. The results from our model 

reveal a decrease in surface tension with curvature in bubbles and a non-monotonic behavior in 

droplets for single-component systems. Our predictions are in good agreement with the literature 

results when the interface is described using the framework of the density functional theory by 

three different groups. For multicomponent systems, the results show that the surface tension in a 

bubble, although monotonic with curvature, can increase or decrease in a large bubble depending 

on the temperature and composition of the mixture.  In a droplet, the surface tension can have a 

non-monotonic behavior similar to single component systems. 
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I. INTRODUCTION 

Surface tension is a prime parameter in the basic formulation of a large number of processes 

including nucleation and cluster formation. The work of formation of a critical-size nucleus is 

proportional to the surface tension to the power three1.  The solute clustering in supersaturated 

solutions and concentration gradients in a vertical column of a supersaturated solution may also 

depend on the surface tension of nano-particles2. In addition to applications in nucleation and 

solute clustering in supersaturated solutions, there is a wide interest in the important role of 

surface tension in determining the behavior of small droplets and bubbles including oil recovery 

processes. For a long time it has been recognized that when a cluster of a new phase is small 

(that is, has a high curvature), the surface tension is size-dependent (that is, curvature 

dependent).  

 

In an early paper, Tolman derived the expression for the effect of droplet size on surface tension 

in a single-component system3,4. A key parameter in Tolman’s work is the parameter δ , the 

distance between the surface of tension and the equimolecular dividing surface. For a plane 

surface of separation, Tolman computed δ  for a variety of substances, including water3. His 

results show that the distance δ  is positive and of the order of 1 to 3.5 Å (of the order of the 

intermolecular distances in liquids) for pure substances over the range of conditions studied. 

 

Since the early work of Tolman, a large number of investigators have studied the curvature 

dependence of surface tension and nucleation theory. There is generally consensus that the 

curvature dependence of surface tension may indeed result in significant variation of the work of 

formation of the critical nucleus5 and the nucleation rate6,7.  However, there is widespread 
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confusion and controversy in the literature on the effect of curvature on the surface tension of a 

bubble and a droplet in single component systems. Defay and Prigogine9 provide results for the 

effect of curvature on the surface tension of water at 18 ºC for both bubbles and droplets. Their 

results show an increase of the surface tension with increasing curvature for a bubble whereas 

there is a decrease of surface tension with increasing curvature for a droplet (see Table 15.7 of 

Defay and Prigogine9). On the other hand, Kashchiev1 presents results for water bubbles at 583 

K and droplets at 293 K, both decreasing with increasing curvature (see Fig. 6.1 of Kashchiev1). 

Kashchiev used a positive value of δ  of 1 Å for water droplets and bubbles. Another example is 

the work of Hadjiagapiou10, which provides results from density functional theory showing an 

increase of the surface tension for a droplet with increasing curvature, followed by a decrease at 

very high curvatures. Guermeur, Biquard and Jacolin11 have also studied the effect of curvature 

on the surface tension for nitrogen bubbles and droplets. Their results show that the surface 

tension in the bubble decreases with increasing curvature.  It has a non-monotonic behavior in 

the droplet. On the other hand, as was stated earlier, many authors predict that the surface tension 

in, for example, a droplet, should decrease rapidly with the radius (see for example Lee, Gama 

and Gubbins12, and the references therein). In a different approach presented in Ref. 13, 

Schmelzer and Baidakov argue that the Gibbs method for determining the reference states for the 

description of bulk properties of the critical nucleus does not give a correct description of the 

bulk properties of the critical clusters at high supersaturation.  They postulate that at a non-

equilibrium state, the chemical potentials of the interface and the ambient phase (in their 

terminology, this is, the bulk phase other than the cluster bulk phase) are the same.  They also 

make other postulations and obtain new expressions, including a new expression for the pressure 

difference between the cluster phase and the other bulk phase given by 
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)(/2 βααβα µµρσ −+=− +Rpp  where p is the pressure, ρ  is the density, µ  is the chemical 

potential, σ  is the surface of tension, and +R  is the radius of the critical cluster (or critical 

nucleus); α  is the cluster phase, and β  is the ambient phase.  All pertain to a critical cluster.  

(We are using nomenclature from Ref. 13; later, we will use our own.)  Obviously, the 

expression for ( βα pp − ) from Ref. 13 is different from the Laplace equation given by 

)/2( +=− Rpp σβα .  When the work from Ref. 13 is used, the surface tension both for a bubble 

and for a droplet decrease with curvature and approach zero at the spinodal.  For a droplet, first 

there is a slight increase (not noticable) followed by a decrease with curvature.  The work of 

critical cluster also approaches zero at the spinodal.  We will get back to this point later. 

 

Most of the work on curvature dependence of the surface tension is limited to single components. 

Schmelzer et al.5 have developed an empirical relation for δ  in multicomponent systems for a 

droplet. In a more recent work, Baidakov, Boltashev, and Schmelzer14, use an approach based on 

Ref. 13 to study the effect of curvature on surface tension in mixtures.  The results show that 

similar to a single component system, the surface tension vanishes at the spinodal for a two-

component mixture.  In this work, we present results to show that there are differences in surface 

tension curvature dependency of pure components and multicomponent systems. 

 

The purpose of this work is to derive the expressions for the curvature dependence of the surface 

tension for bubbles and droplets in both single and multicomponent systems. The derivations are 

based on the general expressions from classical thermodynamics using the work of Gibbs. We 

use an equation of state to describe the bulk gas and liquid phase properties. Therefore, there is 

no need to make assumptions regarding compressibility and compositional effects. 
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In the following, we first derive basic thermodynamic relations for the curvature dependence of 

the surface tension using a new simple approach. Then we apply the derived expressions coupled 

with a surface tension model to obtain the basic expressions for bubbles and droplets in single-

component systems. Next, the basic expressions in multicomponent systems, also for both 

bubbles and droplets, are obtained. In the above two sections we provide numerical examples. At 

the end we make several concluding remarks. 

 

II. THERMODYNAMIC RELATIONS FOR THE CURVATURE DEPENDENCE OF 

SURFACE TENSION 

 

The two fundamental equations that form the basis of this work can be directly obtained from the 

basic postulates of thermodynamics and have been derived in Ref. 15. The first equation is the 

Gibbs adsorption equation that, for a multicomponent system with a spherical interface can be 

written as15: 

 

 da
a

dµΓdTsd
c

i

σ
ii 



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σσ σ
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 (1) 

 

In this expression, σ  is the surface tension, σs  is the entropy per unit area of the interface (the 

superscript σ  denotes a surface property) iΓ  and σµ i  are, respectively, the number of moles per 

unit area and chemical potential of component i in the interface, c is the number of components, 

a is the radius of the interface and [ ]a∂∂σ  represents the change in the surface tension when the 
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mathematical diving surface between the two phases is displaced. The particular dividing surface 

for which [ ] 0=∂∂ aσ  is called the surface of tension. Throughout this work, all properties 

referred to the surface of tension are identified with the subscript s. The second key equation 

mentioned above relates the surface tension to the radius of the interface and can be written as15: 
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Note that in the above equation, the derivative is taken along a path where the temperature and 

composition of the continuous bulk phase are held constant (we refer to the small bulk phase as 

the cluster phase in the work). The parameter δ  is the distance between two dividing surfaces: 

one is the surface of tension and the other is the dividing surface defined by: 

 

 0~
1

=Γ∑
=

c

i
ii v
α  (3) 

 

where α
iv~  is the partial molar volume of component i in the continuous bulk phase (denoted by 

the superscriptα ). Parameters and properties referred to the dividing surface defined by (3) will 

be identified by the subscript v. The parameter δ  is given by: 

 

 sv aa −=δ  (4) 
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One of the most challenging tasks in the past has been the estimation of δ . Some authors have 

made calculations to show that δ  for a flat interface is positive, some others suggest that it is 

negative, and there is a third group who estimate δ  to be zero for a flat interface. The 

implication forδ  being zero for a flat interface is that there is no adsorption at the interface. The 

δ  parameter for a flat interface may also have different signs in a bubble and in a droplet (see 

Ref. 16 and references therein).  Our goal in this work is to find a suitable approach in predicting 

this parameter. To achieve this goal, we need to find a clearer relation between δ  and other 

properties of the system. 

 

The total volume of the two-phase system based on the dividing surface defined by (3) can be 

expressed as: 
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where iN  is the number of moles of component i. We have introduced the superscript β  to 

identify the cluster phase. Using the mass balance of component i to eliminate α
viN ,  from (5) we 

obtain: 
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In (6) we have used (3) to eliminate the amounts of adsorption at the interface. The total volume 

of the two-phase system based on the surface of tension leads to: 
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In (7) As is the surface area of the interface.  Equating the right-hand sides of (6) and (7) and 

simplifying we obtain: 
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Introducing the molar concentrations ic  and rearranging we obtain: 
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The equation above provides a relationship between the sizes of the cluster calculated for the two 

dividing surfaces. It can be written in terms of the radii as: 
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Combining (4) and (10) we obtain: 
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which provides δ . For studying the curvature dependence of the surface tension, one may 

rearrange (11) to: 
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Equation (12) relates δ  to the properties of the two-bulk phases and the interface for a 

multicomponent system. For a single-component system, (12) simplifies to: 
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where ρ  is the molar density.  Tolman4 derived (13) using an integral approach; we use the 

relationships from classical thermodynamics in our derivation.  Note that one may not use (13) to 

generalize it to multicomponent mixtures without certain assumputions5. Substituting (12) into 

(2) we find an equation for the curvature dependence of the surface tension that does not include 

δ : 
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Note that in the above equation the problem has shifted from obtaining the parameter δ  to 

obtaining the amounts of adsorption of the components at the interface. To proceed further, we 

relate the surface tension to the properties of both phases to obtain the sum that includes the 

amounts of adsorption.  

 

The sum in (14) that contains the amounts of adsorption can be related to the surface tension by 

combining Gibbs adsorption equation and the chemical equilibrium conditions. Writing (1) for 

the surface of tension and replacing the surface chemical potentials by the chemical potentials in 

the bulk continuous phase we obtain: 
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The differential of the chemical potentials of the continuous bulk phase can be expressed as: 
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where x represents the mole fraction. Substituting (16) into (15) we find: 
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Which leads to: 
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Equation (18) is the sought relationship. Providing a model for the surface tension as a function 

of the properties of both phases, (14) and (18) can be combined to evaluate the curvature 

dependence of the surface tension. In the following two sections we will present the 

methodology first for single-component and then for multicomponent systems. 

 

III. SINGLE-COMPONENT SYSTEMS 

 

For a single-component system (14) simplifies to: 
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Also, (18) becomes: 
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To proceed further we desire an equation for the equilibrium surface tension. For a single-

component system, the well-known Macleod-Sugden equation for the surface tension of a flat 

interface17-19 can be used: 

 

( )VL ρρΠ −=∞
41σ  (21) 

 

In (21), ∞σ  is the surface tension of the flat interface, Π  is the parachor and the superscripts L 

and V denote liquid and vapor, respectively. Equation (21) provides the surface tension of non-

polar fluids with a remarkable accuracy over a wide range of temperature conditions20 and 

although it was introduced empirically17,18, it was later derived theoretically19.  In what follows 

we will use two different approaches: we assume that (21), 1) is valid for large values of the 

interface radius and obtain the limiting dependence of δ  for a flat interface (that is, ∞δ ); then 

assume that δ  is constant to obtain the curvature dependence of the surface tension, and 2) 

applies to a surface with a curved interface, which implies that δ  can change with curvature. 
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The assumptions have to be examined for their validity. Let us use the terms “ ∞δ  model” and 

“Π  model” to refer to the two methods. 

 

It turns out that in either approach it will be necessary to obtain δ  as a function of curvature 

assuming that (21) is valid for a curved interface. For the ∞δ  model we will take the limit as the 

interface radius tends to infinity. Thus, we will replace ∞σ  by sσ  in (21). Let us first consider a 

bubble in a continuous bulk liquid phase and replace L and V in (21) by α  and β , respectively. 

The expression for surface tension will take the form: 

 

( )βα ρρσ −= Πs
41  (22) 

 

The droplet in a continuous bulk vapor phase will be considered later. Substituting (22) into (20) 

we obtain: 
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The second derivative in the square bracket in (23) is given by: 
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where α
TC  is the isothermal compressibility of phase α , which can be readily obtained from an 

equation of state. Next we find an expression for the first derivative in (23). From the chain rule 

we write: 
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The derivatives in (25) are taken along an equilibrium path. Therefore we can write: 
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Replacing the derivatives of the chemical potentials with respect to the pressure of their 

respective phases by the inverse of the molar densities, we obtain: 
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Combining (23), (24), (25) and (27) we get: 

 

[ ]ααββ ρρσ TTss CCΠΓ 224/3 )()(4 −=  (28) 
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Equations (22) and (28), together with an equation of state, allow the calculation of the amount 

of adsorption at the surface of tension. For the ∞δ  model, we will use (28) to obtain the limiting 

value of δ  as the radius of the interface goes to infinity. Substituting (28) into (13) and taking 

the limit as ∞→sa  we obtain: 
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Using ∞δ  as the constant value of δ  we numerically integrate (2) and calculate the variation of 

sσ  with curvature.  For the Π  model, we will substitute (28) into (19) to get: 
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Equation (30) can be integrated numerically to compute the curvature dependence of the surface 

tension. In Figure 1 we show the surface tension sσ  as a function of the radius of the surface of 

tension for a bubble of n-pentane at 310.9 K using the two models. The Peng-Robinson equation 

of state21 and the standard 4-th order Runge-Kutta method were employed for calculations in 

Figure 1 and similar calculations to be presented later. The parachor of n-pentane was taken as 

230. From this graph we note that: 1) the surface tension is constant down to nm 100≈sa , and 

2) the Π  model predicts a sharper variation of the surface tension with curvature for 

nm 10<sa ; the difference between the two models increases as the radius decreases. Figure 2 
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shows the variation of δ  with curvature as predicted by the Π  model. In this figure, it is clear 

too that there is almost no difference between the two models for sizes down to nm 10≈sa , but 

as the radius decreases further, δ  grows sharply, which accounts for the steeper variation of the 

surface tension predicted by this model at larger curvatures. This change in δ  can be explained 

by the fact that the pressure, and thus the densities, starts changing much faster at these large 

curvatures.  Ref. 22 provides results similar to Figure 2 based on the semi-empirical van der 

Waals/Cahn-Hilliard theory.  Note that δ  vs. the radius is positive in Figure 2. 

 

For a droplet in a continuous vapor phase, it is necessary to exchange the superscripts α  and β  

in (22). Repeating the procedure we used for a bubble we obtain, for the limiting value of δ  for 

a flat interface: 
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Note that the above expression for ∞δ  in a droplet is different from the expression derived in 

Ref. 16.  There is no need to assume that density or volume can be expanded linearly with 

pressure.  There is also no need for other assumptions except a need for a general expression for 

∞σ .  According to Eq. 31, even when 0=α
TC , ∞δ  may not be zero.  Substituting ∞δ  from (31) 

into (2) and integrating we obtain the variation of sσ  with curvature for the ∞δ  model. For the 

constant-Π  model, we obtain: 
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Figure 3 shows the variation of the surface tension with the radius of the surface of tension using 

the two models for a droplet of n-pentane at 310.9 K. For a droplet the difference between the 

∞δ  model and the Π  model is more pronounced: for the ∞δ  model, the surface tension 

increases monotonically with decreasing radius whereas the Π  model predicts that the surface 

tension will go through a maximum at an approximate radius of 1.1 nm and then decreases 

rapidly with decreasing radius. Hadjiagapiou10 and Guermeur et al.11 have predicted a similar 

non-monotonic behavior.  Figure 4 shows the variation of δ  with curvature as predicted by the 

Π  model, where the variation of δ  with curvature is similar to that of the bubble, being almost 

constant at small curvatures and then growing fast as the radius decreases. However, ∞δ  is 

negative for the droplet and δ  changes sign and causes the surface tension to go through a 

maximum.  A negative value for ∞δ  in a droplet has been presented in Refs. 16 and 22 using 

different approaches.  In Ref. 16, ∞δ  is approximated by 3/∞− σα
TC  based on a number of 

assumptions.  Based on another set of assumptions6 ∞∞ −≈ σδ α
TC .  Ref. 22 also discusses the 

difference between the density function (DF) approach in predicting a negative ∞δ  and the 

molecular dynamics (MD) simulations which predicts a position ∞δ  for a droplet. 

 

Note that, for a single-component system, the dividing surface defined by (3) is the same 

regardless of which phase is selected to be phase α . Thus, the absolute value of ∞δ  obtained as 

the limit for the bubble will be the same as that obtained for the droplet, only with opposite sign. 
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The change in sign is due to the fact that in the bubble the distances are measured from the gas 

side and in a droplet they are measured from the liquid side (see (29)). However, for a 

multicomponent system, this is not the case because the dividing surface defined by (3) is 

different for different choices of the phase α  since the two phases have different partial molar 

volumes (to be shown later). Thus, the limiting value ∞δ  obtained using the equations for a 

bubble may be different from that obtained with the equations for a droplet not only in sign, but 

also in magnitude. To avoid ambiguity, in the discussion for multicomponent systems we will 

use the symbols b
∞δ  for the former and d

∞δ  for the latter. 

 

The results shown above for the curvature dependency of surface tension in bubbles and droplets 

have similar trends to those of Guermeur et al.11 and Hadjiagapiou10. Figure 5 shows a 

comparison between the results of Guermeur et al. for bubbles of nitrogen at 77.3 K and the 

results for the same system obtained with our Π  model (nitrogen parachor of 52 was used in our 

calculations based on surface tension data for nitrogen). Figure 6 shows the same comparison for 

a droplet of nitrogen at the same temperature. In both figures we observe that the trends 

predicted by our model and the work of Guermeur et al. are the same, although the two models 

are very different. Guermeur et al. describe the inhomogeneous fluid in the interface using a 

stress tensor in the frame of gradient theory, and predict a sharper variation of the surface tension 

with curvature for the bubbles and a smaller variation for the droplets. Although they also obtain 

a maximum in the surface tension plot for the droplet, the maximum is at a smaller curvature and 

the corresponding surface tension is also smaller. The results for our ∞δ  model (not shown) are 

farther from their results in both cases. 
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In order to compare with Hadjiagapiou’s results, we computed the surface tension as a function 

of curvature for a droplet of Argon at a reduced temperature of 0.8 (argon parachor of 52 was 

used in our calculations). Argon was chosen for comparison because it is a substance well suited 

for Hadjiagapiou’s treatment of thermodynamic properties. The results, in terms of the reduced 

variables defined in his work, are shown in Figure 7. In this case, our Π  model predicts a 

smaller variation of the surface tension with curvature than Hadjiagapiou’s model, however our 

Π  model predicts a smaller droplet radius for the maximum surface tension. In view of the 

simplicity of our model, it is interesting to note that its predictions are close to those of 

Hadjiagapiou, which is based on density functional theory. 

 

Before proceeding to multicomponent system, we would like to point out a deficiency in regard 

to the work of critical cluster formation at the spinodal (that is, at the limit of stability).  The 

work of critical cluster formation is expected to vanish as we approach the spinodal.  In the 

classical theory of nucleation, the barrier height approaches a finite value at the spinodal, which 

is not correct23.  When one accounts for the effect of curvature on the surface tension, the work 

of critical cluster formation at the spinodal reduces, but may not vanish.  This is to be expected 

because of extremely small size of the clusters, comprised of say some 40 atoms, at the spinodal.  

Instead of using classical thermodynamics, one may use statistical or molecular thermodynamics 

for very small clusters (that is, at very high supersaturation) to account for non-classical effects23.  

In our approach, similar to Guermeur et al.11, the surface tension for a droplet is greater than the 

flat interface for large droplets but becomes smaller for smaller droplets.  For bubbles, the 

surface tension remains less than ∞σ .  These results are consistent with work of Ref. 23, that 
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classical and non-classical barrier heights cross from droplet formation but do not for bubble 

formation. 

 

Schmelzer and coworkers, in a different approach, as we stated earlier, use certain postulations 

which lead to a vanishing of the critical cluster formation at the spinodal, as well as the vanishing 

of the surface tension (Ref. 13 and references within). 

 

Figure 8 shows the plot for the work of critical cluster formation (in dimensionless units) vs. sa  

in a bubble of n-pentane at 310.9 K.  Note that as the spinodal is approached, kTW /  decreases.  

Despite a small W of about 1.5 kT, it does not vanish at the spinodal.  The droplet has also a 

similar behavior.  The work of critical cluster formation for the Argone bubble at the spinodal 

(for 8.0=rT ) is about 2.5 kT, which is not far from kT. 

 

IV. MULTICOMPONENT SYSTEMS 

 

For multicomponent systems we follow an approach similar to that of single-component systems. 

Weinaugh and Katz have extended (21) to multicomponent systems24,25: 

 

( )∑
=

∞ −=
c

i

V
i

L
ii ccΠσ

1

41  (33) 

 

The above equation provides good predictions in non-polar multicomponent hydrocarbon 

mixtures18,20,21. In order to apply (33) to obtain the curvature dependence of the surface tension, 
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we will follow an approach similar to the one used in the previous section. Again, we will 

explore two options: 1) assume that (33) is valid for curved interfaces with a very large radius, 

use it to obtain the limiting value ∞δ  for the flat interface and then use ∞δ  to integrate (2), and 

2) assume that (33) is valid for a curved interface, thus allowing for δ  to vary with curvature. To 

keep the terminology used in section III, we will call the first approach the “ ∞δ  model” and the 

second the “Π  model”. 

 

Similar to a single-component system, we need to find an expression for δ  as a function of 

curvature assuming that (33) is valid for a curved interface. For the ∞δ  model we will take the 

flat interface limit in the resulting expression. Thus, we will replace ∞σ  by sσ  in (33). First we 

will consider a bubble in a continuous bulk liquid phase and replace L and V in (21) by α  and 

β , respectively. With the altered notation, (33) takes the form: 
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Substituting (34) into (18) leads to: 
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As in (23), the second derivative inside the square bracket in (35) can be readily obtained from 

an equation of state: 
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  ci ,,1 L=  (36) 

 

The first derivative, however, is more complicated to evaluate. Let us first write the differential 

of the variable β
ic  in two different ways: first as a function of the variables of phase β  and then 

as a function of the variables of phase α : 
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  c,,i L1=  (38) 

 

Considering a process at constant temperature and composition of the phase α , which are the 

conditions for which (2) holds, and equating (37) and (38) we obtain: 
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Or, in terms of derivatives with respect to αP : 
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Half of the derivatives in the right-hand side of  (40) can be directly obtained from an equation of 

state: 
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Equation (42) is obtained from the definition of βββ ρii xc =  and the Gibbs-Duhem equation in 

terms of partial molar volumes (see problem 1.5 of Chapter I in Ref. 26).  The symbol δ  in (42) 

is the Kronecker delta. Substituting (41) and (42) into (40) we obtain: 
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(43) 

And, for ci = : 
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However, from the sum condition of phase β : 
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Substituting (45) into (44) we obtain (43) with ci = . Thus, we can regard (43) as valid for all 

ci ,,1L= . In order to use (43) we need to find the derivatives of the pressure and composition of 

phase β  with respect to the pressure of phase α . We use an approach similar to the one used for 

the single-component system. Since the derivatives appearing in (43) are taken in an equilibrium 

path, we use: 

 

ciii ,,1 L== βα µµ  (46) 

 

Differentiating (46) with respect to the pressure of phase α  at constant temperature and 

composition of phase α  we obtain: 
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The derivative on the left-hand side of (47) is the partial molar volume of component i in phase 

α . For the derivative in the right hand-side, one can write: 
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The first derivative on the right-hand side is the partial molar volume of component i in phase 

β . Substituting (48) into (47) we obtain: 
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Multiplying (49) by β
jx  and taking the sum we find: 
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where v is the molar volume. From the Gibbs-Duhem equation for phase β : 
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Combining (50) and (51) provides: 
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Substituting (52) into (49) leads to: 
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Note that, although (53) is valid for ci ,,1 L= , only (c-1) of the equations are independent 

because we already used their sum to obtain (52). The first (c-1) equations in (53) can be used to 

obtain the derivatives of the compositions of phase β  with respect to the pressure of phase α , 

provided we use an equation of state to obtain the derivatives of the chemical potentials with 

respect to the compositions in phase β .  

 

Substituting (36), (43) and (52) into (35): 
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where the derivatives of the composition of phase β  are obtained by solving the system of 

equations (53). For the ∞δ  model we will substitute (54) into (12) and take the limit as ∞→sa  

to obtain: 
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(55) 

 

Note that the superscript b indicates the limiting value for the bubble, as explained at the end of 

the previous section. For this model, ∞δ  will be regarded as independent of curvature. 

Substituting (55) into (2) and integrating we can calculate the curvature dependence of the 

surface tension. For the Π  model, (54) is substituted into (14) and the resulting equation is 

integrated numerically.  

 

Figure 9 shows the variation of surface tension with the radius of the bubble in an equimolar 

liquid mixture of propane and n-octane at 300 K, using the ∞δ  and the Π  models. The 

parachors in the surface tension model are: C3, 150; nC4, 200; nC6; 300; nC8, 400. The binary 

interaction parameters in the Peng-Robinson equation of state were taken as zero. The behavior 

shown is similar to that obtained for the single-component system. The variation in surface 

tension is only important for bubble sizes of less than 10 nm. The overall change in surface 

tension in the two-component system considered is smaller than in the single-component system. 
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The variation of δ  with curvature for the Π  model is shown in Figure 10, which is consistent 

with the variation of the surface tension. 

 

The equations for a droplet in a continuous bulk vapor phase can be obtained by exchanging the 

α  and β  superscripts in (34) and repeating the above procedure. In the following equations α  

will refer to the vapor phase and β  to the liquid phase: 
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The derivatives of the composition in (56) will be found by solving the system of equations (53). 

For the limiting value of δ  in a droplet: 
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Comparison of (55) and (57) reveals the sign difference as well as the phase identity differences. 

For the ∞δ  model, we will substitute (57) into (2) and integrate to calculate the curvature 

dependence of the surface tension. For the Π  model, (56) is substituted into (14) and the result 

is integrated numerically. 
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Figure 11 shows the variation of the surface tension with the radius of the droplet in an 

equimolar gaseous mixture of propane and n-octane at 400 K. The same model as that of the 

bubble example was used. The behavior of the droplet in the multicomponent system is similar to 

that of the single-component droplet. Figure 12, showing the variation of δ  as a function of 

curvature, indicates a stronger increase of δ towards the high curvature region. 

 

Figure 14 shows the behavior of the parameter b
∞δ  (taking the liquid as the continuous bulk 

phase) as a function of temperature for an equimolar liquid mixture of propane and n-octane. The 

behavior is somewhat different from that observed in the single-component system; b
∞δ  becomes 

negative at temperatures closer to the critical point. This is an important new result, showing that 

the surface tension for the bubble can either increase or decrease with curvature depending on 

the temperature; this may be the case for a large bubble. In Figure 13 we show the effect of 

composition at different temperatures on the parameter b
∞δ . At low temperatures and pressures, 

where the system can be regarded as ideal, b
∞δ  increases monotonically with composition of 

propane, growing from the value for pure n-octane to the value for pure propane. At higher 

temperatures, the curve first decreases and then increases with composition. As the temperature 

increases towards the critical point, the curve becomes monotonically decreasing and b
∞δ  for 

higher compositions of propane becomes negative. This shows that the surface tension increase 

or decrease with curvature depends not only on the temperature but also on the composition of 

the mixture – the increase for a large bubble. As the system approaches the limit of stability (that 

is, the spinodal), the behavior changes. 
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We have carried out some calculations for ternary systems; the behavior found is similar to that 

shown in figures 9-14. Since the features are similar to what we obtained for the binaries, we 

have not included the results for the sake of brevity.  

 

V. CONCLUDING REMARKS 

A rigorous thermodynamic model is presented for the effect of curvature on the surface tension 

in bubbles and droplets for both single and multicomponent systems. The results for the nonpolar 

hydrocarbon systems that we have studied reveal that: 

 

(1) There is generally a decrease of surface tension in bubbles with increasing curvatures in 

single component systems. The distance parameter δ  for these systems is positive.  

(2) For a droplet, if the distance parameter δ  is assumed constant and equal to the value for the 

flat interface, there is an increase in the surface tension with increasing curvature in single 

component systems. The distance parameter of the flat interface is generally negative. With a 

variable distance parameter model, the behavior of the surface tension is non-monotonic; the 

surface tension increases with curvature first and then decreases. The predicted results from 

our thermodynamic model with a variable distance parameter are in qualitative agreement 

with the work of Guermeur et al.11 and the work of Hadjiagapiou10 based on density 

functional theory. It is also in line with the work of Oxtoby and Evans23. 

(3) In multicomponent systems the distance parameter of the flat interface for a bubble may be 

either positive or negative depending on the temperature and composition. The surface 

tension may thus increase or decrease with curvature at different conditions for a large 

bubble. 
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(4) In both a bubble and in a droplet the surface of tension decreases for a small cluster from the 

Π  model presented in the work.  This is another evidence in support of the validity of the 

results from our Π  model. 
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Figure 1 - Curvature dependence of the surface tension for a bubble of n-

pentane at 310.9 K from the ∞δ  and the Π  models. 
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Figure 2 - Curvature dependence of the parameter δ  for the Π  model in the 
n-pentane bubble example (T=310.9 K).
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Figure 3 - Curvature dependence of the surface tension for a droplet of n-
pentane at 310.9 K from the ∞δ  and the Π  models.
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Figure 4 - Curvature dependence of the parameter δ  for the Π  model in the 
n-pentane droplet example (T=310.9 K). 
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Figure 5 - Curvature dependence of the surface tension predicted by the Π  
model and the results from Ref. 11 for a nitrogen bubble at 77.3 K .
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Figure 6 - Comparison between the curvature dependence of the surface 
tension predicted by the Π  model and the results from Ref. 11 for a nitrogen 

droplet at 77.3 K . 
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Figure 7 - Curvature dependence of the surface tension predicted by the Π  
model for Argon at a reduced temperature of 0.8 and the results from Ref. 11. 

The new variables appearing in the dimensionless groups plotted are d 
(molecular diameter) and k (Boltzmann’s constant).
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Figure 8 - Work of cluster formation (critical) vs. radius of the surface of 
tension in the n-pentane bubble at T = 310.9 K. 
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Figure 9 - Curvature dependence of the surface tension for a bubble in an 
equimolar liquid mixture of propane and n-octane at 300 K from the ∞δ  and 

the Π  models. 

101 102 103 104 105 106 
1 



82 

 
 
 
 
 
 
 
 
 

1.8

2

2.2

2.4

2.6

2.8

3

3.2

a s  (nm)

δ
 (Å

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 - Curvature dependence of the parameter δ  for the Π  model in the 
binary-bubble example (equimolar liquid mixture of propane and n-octane at 

300 K). 
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Figure 11 - The parameter b
∞δ  vs. composition for a bubble in a liquid mixture 

of propane and n-octane at different temperatures.
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Figure 12 - The parameter b
∞δ  vs. temperature for a bubble in an equimolar 

mixture of propane and n-octane. 
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Figure 13 - Curvature dependence of the parameter δ  from the Π  model in 
the binary droplet example (equimolar gaseous mixture of propane and n-

octane at 400 K). 
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Figure 14 - Curvature dependence of the surface tension for a droplet in an 
equimolar gaseous mixture of propane and n-octane at 400 K from the ∞δ  and 

the Π  models. 
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Chapter III - Adsorption, Surface Energy, and Surface 
Entropy in Multicomponent Systems 

 
Erik Santiso and Abbas Firoozabadi  

 
 
Summary 
In a multicomponent two-phase mixture, the amount of adsorption at the interface (that is, the interface 
composition) plays a key role.  As an example, in a two-phase gas -liquid system, when a surfactant is 
added to a bulk liquid phase, it mostly moves to the interface between the gas and liquid bulk phases; the 
result can be a large reduction of the interfacial tension.  In a solid-liquid system, there may be a similar 
process which can result in the change of wettability.  In this study, we provide a formulation for the 
calculation of the amount of the adsorption in the gas -liquid multicomponent systems.  As a first step, the 
fluid mixture is assumed to consist of non-polar species.  This would then allow the use of the simple 
equations of state such as the Peng-Robinson EOS for the description of bulk phase properties.   
 
Introduction 
A large number of processes in petroleum reservoirs and production and in other disciplines are affected by 
the composition and the energy of the interface between the phases.  When a component is added to a phase 
in a gas-liquid system, it is often distributed in the two bulk phases and the interface.  Sometimes when a 
small amount of a component is added to a two-phase system, most of it may end up at the interface 
between the phases.  It is because of high adsorption at the interface that the surface tension can be lowered 
significantly by a small amount of a surfactant.  Another important phenomenon is the surface wetting, 
which is related to composition and surface energy.  In our work on wettability alteration (Tang and 
Firoozabadi, 2002a and b), it is because of the adsorption of polymers onto the rock substrate that the 
surface energy is lowered.  The result is change in wettability.  Our goal is to model the process of 
adsorption at the interface between gas and liquid, liquid-solid, and gas-solid systems in order to examine 
the effect of temperature among other factors. 
 
This work is our second report on interfacial thermodynamics which addresses the issues related to 
interface adsorption and interface energy.  The first report was focused on the effect of curvature on 
interfacial tension (Santiso and Firoozabadi, 2002).  In this work, we provide a formulation for the 
calculation of interface composition (or sufrace composition), as well as surface energy and entropy.  The 
objective is to estimate the amount of adsorption for all the components  in the mixture.  In our approach, 
there is no need to assign zero value of adsorption for one of the components.  The conventional approach 
in the literature is to compute the relative adsorption (Defay and Prigogine, 1966). 
 
This report is structured along the following lines.  We first provide thermodynamic relations for the 
calculation of the amount of adsorption at the interface for a gas-liquid system at equilibrium.  Several 
numerical examples provide the amount of adsorption at the interface for a binary mixture and a ternary 
mixture.  We then provide expressions for surface entropy and surface energy. 
 
Thermodynamic relations for the amounts of adsorption at the interface. 
The surface tension σ , the amount of adsorption of component i, iΓ ,  the chemical potential of component 

i at the interface σµi  for the spherical interface with radius a are related by 
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where σs  is the entropy per unit area of the interface (the superscript σ  denotes a surface property), c is 
the number of components, and ]/[ a∂∂σ  represents the change in the interfacial tension when the 
mathematical dividing surface between the two phases is displaced.  The above equation was used by 
Santiso and Firoozabadi (2002) to study the effect of curvature on σ .   
 
We can consider the flat interface just as the limit when the radius goes to infinity. If we choose the surface 
of tension as our dividing surface, (1) becomes: 
 

 ∑
=

−−=
c

i
sisiss ddTsd

1
,,
σσ µΓσ         (2) 

 
The properties referring to the surface of tension are identified with subscript s.Since the system under 
consideration is in phase equilibrium we can replace the surface chemical potentials in (2) by the chemical 
potentials of bulk phase α: 
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 The chemical potential of bulk phase α  can be written in terms of independent variables temperature T, 

pressure of phase α  , αP , and composition of component j in phase α  α
jx : 
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where α

is~  and α
iv~  are the partial molar entropy and partial molar volume, respectively. Substituting (4) 

into (3) we obtain 
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which is equation (17) in Ref. 3. There, we only developed relations involving the second term of the 
equation. However, the other two terms contain also valuable information. The first will provide an 
expression for the surface entropy and the third will provide expressions for the surface adsorptions. In 
particular, (5) implies that: 
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An expression for the surface tension allows us to calculate the derivatives in the left-hand side of (6) 
together with an equation of state for the bulk phases (note that (6) would also be valid if we replaced α  by 
β ), then (6) is a system of ( )1−c  equations with c unknowns (the amounts of adsorption). However, we 
have another equation that also comes from (5): 
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We used this equation in our previous work (Ref. 3) to obtain the size dependence of the surface tension. 
Equations (6) and (7) complete a system of c equations for the c unknown amounts of adsorption. In the 
next section, we will proceed with further formulation 
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Amounts of adsorption for a multicomponent gas-liquid system in equilibrium 
In order to solve the system of equations (6)-(7), we need an expression for the surface tension. As we have 
done in our previous work, we use the Weinaugh-Katz equation (Weinaugh and Katz, 1943) in order to 
establish the solution procedure.  
 
Let us write the Weinaugh-Katz equation as: 
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iiis cc
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41 αβΠσ         (8) 

 
Here we assign the superscript β  to the liquid phase and the superscript α  to the vapor phase. We also 
assume that the equation will be valid for a curved interface; for the flat interface we take the limit as the 
curvature tends to zero. These are the same assumptions made in our previous work. 
 
The Weinaugh-Katz equation will provide the left-hand side terms in equations (6)-(7). From equation (6)-
(7) we have: 
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which is (54) in Santiso and Firoozabadi (2002). The derivatives of the compositions of phase β  with 
respect to the pressure of phase α  are obtained by solving the system of equations: 
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The above equation is the same as (53) in Santiso and Firoozabadi (2002). Now we need the derivatives of 
the surface tension with respect to the compositions of phase α  from equation (6). The procedure to obtain 
these derivatives is similar to the one we used for the derivative with respect to the pressure, but it is 
somewhat more involved. We start by differentiating (8) with respect to the composition of component j in 
phase α  and combine the result with (6): 
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The first derivative in the square bracket can be readily obtained from an equation of state: 
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where ijδ  is the Kronecker delta.  

 
 



91 

 
The second derivative is, however, more complicated. In order to get an expression for it, we first write the 
differential of the concentrations in phase β  as a function of the properties of both phase α  and phase β : 
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Considering now a process where the temperature, the pressure of phase α  and the compositions of all 
components in phase α  except for components j and c are held constant and equating (13) and (14) we 
obtain: 
 

ααβαα
α

β

β

β

α

β

cjkjcjk xPTjxT

i

xPTj

i

x

P

P

c

x

c

,, ,,,,, ≠≠















∂

∂














∂

∂
=















∂

∂
 

 ∑
−

=
≠≠















∂

∂















∂

∂
+

1

1 ,,,, ,,

c

k xPTj

k

xPTk

i

cjmckm
x

x

x

c

ααββ
α

β

β

β
ci ,,1 L=  and 1,,1 −= cj L  (15) 

     
 
There are four types of derivatives in the right-hand side of (15). The first one can be directly obtained 
from an equation of state: 
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where TC  is the isothermal compressibility. The third set of derivatives in (15) is similar to the one in (12): 
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Now we need expressions for the second and the fourth set of derivatives in (15). These can be obtained 
from the chemical equilibrium condition: 
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The left-hand side in (18) can be directly obtained from an equation of state. In order to calculate the right-
hand side, we follow a procedure similar to that of equations (13)-(15) for the chemical potentials of phase 
β , obtaining: 
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  ci ,,1 L=  and 1,,1 −= cj L  
 
The first derivative on the right-hand side of (19) is the partial molar volume of component i in phase β .  
Substituting (19) into (18) we obtain: 
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 ci ,,1 L= ; 1,,1 −= cj L  
 

Multiplying (20) by β
ix  and summing over ci ,,1 L=  we get: 
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From the Gibbs-Duhem equation for phase β  we have: 
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Substituting (22) into (21) we obtain: 
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This is the second derivative in the right-hand side of (15). Substituting (23) into (20) we obtain: 
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              ci ,,1 L= ; cj ,,1L=   (24) 
      
 
Equations (24), for each value of 1,,1 −= cj L , are a system of c equations that can be used to obtain the 
derivatives of the composition of all components in phase β  with respect to the composition of component 

j of phase α . Note that one of these c equations is dependent because we used their sum to obtain the 
derivative of the pressure in (23). These systems of equations provide us with the last set of derivatives in 
(18), thus completing the information needed to calculate the derivatives of the surface tension with respect 
to the compositions. Substituting (16), (17), (23) into (15) we obtain: 
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It is necessary to use the sum condition of phase β  to obtain the equation for ci = . Finally, substituting 

(12) and (25) into (11): 
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Equations (9) and (26) can be combined with (10)  and (24) to provide a system of equations for the 
amounts of adsorption at the interface.  
 
Figures 1 to 8 present the results for the amount of adsorption at the interface for the system propane-
normal octane at various temperatures and composition of the liquid phase.  These calculations are made 
for a flat interface.  The same type of calculations can be performed for a curved interface. 
 
Figures 1 to 7 reveal that propane (that is, the lighter component)is selectively adsorbed at the interface 
except at high concentrations of propane in the bulk liquid phase.  It is also interesting to note that for the 
temperatures considered, there is at least one extremum in the amount of adsorption with a secondary 
extremum when the temperature approaches the critical temp erature of propane from below (see Fig. 4).  
Fig. 8 shows that the temperature variation may not have strong effect on adsorption when the liquid 
composition is fixed to be equimolar value. 
  
Fig. 9 shows the adsorption at the interface vs. normal fraction of C1 and C3 in the ternary mixture of 
C1/C3/nC8 at 250 K.  Note that methane adsorption is positive for the whole range of composition.  Propane 
exhibits both positive and negative adsorption, and a clear increasing and decreasing trend.  The adsorption 
of n-octane is negative and its behavior is in the opposite direction to propane. 
 
 
Surface entropy and surface energy 
So far, we considered the consequence of looking closely at the second and third terms of equation (5). Let 
us look now at the first one. The process will be pretty much the same as we have used for the other two. 
From equation (5) we can directly infer that: 
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This can again be combined with an equation for the surface tension to obtain the surface entropy. 
 
In order to illustrate the use and the results that can be obtained from (27), we use again equation (8). 
Differentiating (8) with respect to temperature keeping constant the pressure and composition of phase α  
leads to: 
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The second derivative term in the brackets can be readily obtained from an equation of state: 
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where κ  is the isobaric expansion coefficient. To obtain the first derivative in (28) we need to use equation 
(13) to obtain: 
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The first derivative on the right-hand side of (30) is similar to the one in (29): 
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The derivatives of the concentration with respect to pressure in phase β  can be obtained from (16), and the 
derivatives of the concentration with respect to mole  fractions can be obtained from (17). 
 
We need an expression for the two remaining derivatives; we differentiate the chemical equilibrium 
condition with respect to the temperature: 
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The left-hand side is the partial molar entropy of component i in phase α; αα
ααµ ixpi sT
j

~)/(
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=∂∂ . For the 

right-hand side we repeat the procedure used for the concentrations in equation (30) to get: 
 

∑
−

=
≠















∂

∂















∂

∂
+













∂
∂















∂

∂
+














∂

∂
=














∂

∂ 1

1
,,,,,,,

,

c

j
xPTj

i

xP

j

xPxT

i

xP

i

xP

i

cjkk
jjjj

xT

x

T
P

PTT
ββααααβββαα

β

βββ

β

βββ µµµµ
 

         ci ,,1 L=   (33) 
 
Substituting (33) into (32) and recognizing the partial molar entropies and volumes we get: 
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Multiplying (34) by β
ix  and summing over ci ,,1 L= : 
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The last term vanishes due to the Gibbs-Duhem equation for phase β . Thus, we obtain: 
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Substituting (36) into (34) and rearranging leads to: 
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Equations (37) form a system of c equations (one of which is dependent) that can be solved to obtain the 
( )1−c  derivatives of the composition of phase β  with respect to temperature. The last one can be obtained 
from the sum condition. Substituting (16), (17), (31), (36) into (30) leads to: 
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And finally, substituting (29) and (37) into (28): 
 

 ∑ ∑
= =






















∂

∂
+














+−+−=








∂

∂ c

i xP

i
c

i
iiiiis

xP

s

k
i

T

x
sxscc

T
1 ,1

43

,

~4
αα

αα

β
βαβββββββ ρβρκΠσ

σ
 

   ( )









+














∂

∂
−+ ∑

−

=

αα
β

ββββ κρ
αα

i

c

j xP

j
jci c

T

x
vvc

k

1

1 ,

~~       (39) 

 
Equation (39), combined with (27), can be used to obtain the surface entropy. The surface energy can then 
be readily obtained from: 
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Conclusions 
We have derived the expression for the calculation of adsorption at the gas -liquid interface in 
multicomponent systems.  The expressions for the interface entropy and energy are also derived for gas -
liquid systems for multicomponents. 
 
Numerical results show that the adsorption of one of the components in a binary mixture can increase and 
then decrease when the concentration of the same component increases.  Numerical results for the same 
binary mixtures reveal that these may be two extremums of adsorption when the concentration of the same 
component is varied. 
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