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Abstract

This report describes the Licensing Support Network (LSN) Assistant—a set of tools
for categorizing e-mail messages and documents, and investigating and correcting
existing archives of categorized e-mail messages and documents. The two main tools
in the LSN Assistant are the LSN Archive Assistant (LSNAA) tool for re-
categorizing manually labeled e-mail messages and documents and the LSN Real-
time Assistant (LSNRA) tool for categorizing new e-mail messages and documents.
This report focuses on the LSNAA tool.

There are two main components of the LSNAA tool. The first is the Sandia
Categorization Framework, which is responsible for providing categorizations for
documents in an archive and storing them in an appropriate Categorization Database.
The second is the actual user interface, which primarily interacts with the



Categorization Database, providing a way for finding and correcting categorizations
errors in the database.

A procedure for applying the LSNAA tool and an example use case of the LSNAA
tool applied to a set of e-mail messages are provided. Performance results of the
categorization model designed for this example use case are presented.
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1. INTRODUCTION

The Licensing Support Network (LSN) Assistant application is a set of tools for categorizing
new e-mail and documents, and investigating and correcting existing archives of categorized e-
mail and documents. The two main tools in the LSN Assistant are the LSN Archive Assistant
(LSNAA) tool for categorizing existing e-mail and documents and the LSN Real-time Assistant
(LSNRA) tool for categorizing new e-mail and documents. This document describes the LSNAA
tool; a subsequent report will document the LSNRA tool.

There are two main components of the LSNAA tool. The first is the Sandia Categorization
Framework, which is responsible for providing categorizations for all the documents in an
archive and storing them in an appropriate Categorization Database. The second is the actual
user interface, which primarily interacts with the Categorization Database, providing a way for
finding and correcting categorizations errors in the database.

1.1. Problem Description

Sandia’s Licensing Assessment and Technical Analysis organization (06853) is responsible for
developing the LSN for Yucca Mountain as required by the Nuclear Regulatory Commission
(NRC). The LSN is a web application designed to capture all licensing-relevant documents,
including emails and any attachments thereto.

To achieve the LSN objective of capturing all licensing-relevant documents, the Lead Laboratory
(LL) relies on subject matter experts (SMEs) to first determine whether a document is “relevant”
or “not-relevant”, then to categorize the relevant ones as either “privileged” or “not privileged”.
The Department of Energy (DOE) has provided detailed guidance on how to make these
categorizations (McRae, 2005; Otis, 2003).

The document data set is substantial in size as it includes all incoming and outgoing e-mail
messages and their attachments by all individuals working in LL activities. Individuals working
on LL activities are responsible for determining the relevance and categorization of their own
incoming and outgoing email messages and attachments following the guidelines set by the
DOE. However, the individual biases of these email reviews lead to widely inconsistent
categorization decisions. Therefore, to ensure that all emails and attachments are properly and
consistently categorized, the LL. SMEs perform a final review of each email and attachment.

The LSNAA tool is intended to significantly increase the efficiency of the review and
categorization process in terms of schedule and cost. The LSNAA tool scans document sets
taken from archives and generates assessment reports for the SMEs to evaluate. Cognitive
models, referred to throughout this document as categorizers, representing the categorizations
made by real SMEs are used to prioritize a review of the document sets. Assessment reports
generated by the LSNAA tool provide real SMEs with enough “at-a-glance” data to decide to
examine a selective document set further or forego an in-depth study. The reports include the
categorizations of documents in reviewed sets according to their relevance, excluded classes, and
privilege status. The consistency and quality of the evaluation is expected to increase with the
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use of the LSNAA tool, as the categorizers are tuned to the categorizations provided by the
SME:s.

1.2 Data Requirements

In order to build an accurate document categorization system for the LSNAA tool, a
representative dataset of example document categorization must be provided. Listed below are
the data (document) requirements we used in building categorizers for use in the LSNAA tool.

Coverage — The document set as a whole must be representative of the actual documents that are
expected to be categorized by the system. In order to be accurate, the system must be trained on
documents that are similar to those it is expected to categorize.

Accuracy — Each document must have an accurate categorization assigned to it. The categorizer
can only be as accurate as the example classifications that it is provided.

Quantity — The risk of building an accurate classifier is lowered to an acceptable level if there
are at least 20,000 documents in each document class. Half of these documents will be used for
training and half will be withheld for validation. Since the classifier will be as good as the data it
is trained on, a classifier can still be built from less data, but the more example documents that
are given, the better the classifier will perform.

Distribution — The relative number of documents in each class must match the relative
distribution of documents among the class. For example if there are two classes, “relevant” and
“non-relevant”, and in general 40% of the documents are judged relevant and 60% are non-
relevant then we would want at least 20,000 “relevant” documents and 30,000 “non-relevant”
documents.

Supplemental Data — 1t is not required, but some approaches to classification can make use of
supplemental document sets in order to improve performance. It would probably be the most
helpful in the case that the requirements for the number of accurate classifications provided
cannot be met. There are several options for what could be contained in the supplemental data:

e These documents could have classifications that either have not been verified as accurate or
are known as not being completely accurate.

e These documents could be ones with classifications that are not as representative of the
whole of the documents that are expected to be classified by the system.

e These documents could be ones that are representative of the documents that are expected to
be classified by the system but do not have classifications assigned to them.

e [fprovided, it would be important to distinguish this data from the other training data.

Details — The following are the requirements for the attributes of the data provided:
e A file explaining of the origin and format of the document set along with an explanation of

each of the classes that can be assigned to a document.
e For each email-type document, the following information must be provided:
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Subject — The subject field of the email.
Date — The date and time that the email was sent.
From — The email address of the sender of the email.
To — The email addresses of the recipients of the email. (The additional Carbon-copy
(CC) and blind-carbon-copy (BCC) recipients may also be included.)
o Text— The actual text of the document
o Classification(s) — The classification(s) assigned to the document.
e For each classification for the document the following information must be provided:
o Classifier — An identifier for the classifier, such as an email address.
o Class(es) — The class(es) assigned.
o Date — The date of the classification.

O 0O 0O

1.3 Software Requirements

The goal of the LSNAA is to significantly ease and accelerate the review of documents for
licensing relevance and categorize relevant ones according to their privilege status based on
example data provided by the Lead Laboratory. A set of software requirements has been created
to address the needs of SMEs and the Lead Laboratory. Appendix A presents the complete list of
software requirements. Note that the list of requirements is for the both the LSN Archive
Assistant and Real-time Assistant applications, since they are so closely related in scope and
function.

1.4 Solution Process

For a given set of documents to be reviewed and possibly re-categorized, we have developed the
following solution process.

Assemble a small validated, labeled set of documents from the entire set.

Build a set of potential categorizers using several algorithms and the validated set.

Identifying the highest performing algorithms applied to the validated set.

Build a categorizer from the best performing algorithms.

Tune the categorizer to obtain optimum performance on the validated set.

Categorize all documents in the entire set.

Have SMEs manually review and re-categorize the documents for which the system

categorizations are ambiguous (i.e., those documents for which the system was unsure of the

categorizations).

8. Build new categorizers (as in steps 2-5) using the set of documents validated by the SMEs.

9. Categorize all documents in the entire set.

10. Determine if more work is needed to certify the current categorizations as final by assessing
any discrepancies between the current and previous system categorizations.

11. Repeat steps 7-10 until satisfied with the results of the system categorizations.

A il e

We present in this report an example of this process for the set of e-mail messages from the
TSPA group at Yucca Mountain associated with Condition Report (CR) 9601. This set of e-mail
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was identified as potentially being incorrectly categorized by some of the creators and recipients.
This was the motivation behind the development of the LSNAA tool.
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2. THE LSNAA GRAPHICAL USER INTERFACE

The LSNAA application is a graphical user interface for examining an email archive to find and
fix incorrect email categorizations. The user interface is designed to make use of automated
categorizations created using the Sandia Categorization Framework to assist the user in finding
emails that are likely to be incorrectly categorized.

2.1 Software Requirements

The LSN Assistant system, with its main user interface through the LSNAA, was created to
conform to a set of requirements that were gathered from the customer and potential users. The
requirements are listed in Appendix A.

2.2 Interface Design

From a usability perspective, the LSNAA user interface (as seen in Figure 1) is designed to be
similar to a typical email program such as Microsoft Outlook. The reason for designing the
layout of the interface in this manner is to make it consistent with the user’s normal work flow so
that it can be learned quickly. The visual layout of the application follows a three-panel
approach. It contains a panel for specifying search criteria for email, a panel that displays a list of
email, and a panel for displaying the content of a selected email.

B2 LSN Archive Assistant =
Fle  Statistics  Help
Search | Generate Report | Show Categarization:  Combinad -
Emai L
Reviewed Owner Subject Date LSHN & Prv Fed fal
e . : e
O John Doe Rieturn Receipt (Request for Initial Review | 10418/2006 233 PM
Hales 10/ /2006 | to || 0/10/2007 i a John Doe Re: Privieged Delberative Process. 10/26/2006 §:36 PM |
Seach For, ] John Doe Fw. Rev 01 11/21/2006 1157 AM ]
Searchin | Subject field and message body | u | Fur reviced draft safaly case proposal 10/20/2006 4:04 PM
O @ John Doe o nest wesk VUIZH/ 200 U4 FM
Original Categorization Fleview Categorizalion O @ JohnDoe Re: path forward 10/10/2006 810 44
Frins = - ] LohnNoa |Re Lik 10/12/2006 412 PM
e | | e a ] R John Doe FY 07 Budgel Nz | [ |
P a1 — @ .John Doe Strateny 05 809 AM vl -
{ v (L v izt
= = —~  Fw: revised draft safety case proposal Eekoaizaton T
Federal Record: v Federal Record: v
L ¥ g John Doe @ymp.gov Qiiginat
Date:  10/20/2006 4:04:35 PM
To. John Doc AM/mwDOC@CAWMS =
Relalionshin o =
—_ System:
Ll s Hosel it ¥ - Fomarded by Jane Doe/YM/RWDOE on 10/20/2006 0306 FM s
Oiigina nd System Diter: | My Revies: [
Rerview arwd System Dilfen. v
10/20/2006 1135 AM
John D System Categorzation
Too JONN UOE/STM/RWD OERCRWMS .
e Bill DosAM/RWDDE@CRWHS D g vl L
Subjeot: revited diokt salely sase propossl L alsorze
LSN: Relevant - Not Privi : ' .
Uses Flled as: Excl/Adminhgmt-1 44/DAN /& LSN Helevant: .&:f
Fedetal Fecord: 4265
attached is the tevised dralt. In addilion to your comments. | also fleshed Tasks
out the details of the plan a Bitle more. Let me know if you would Bie any Showe Ovmes Statistice
g Show Dume Statistics
Ihanks, &
Attachments: | @ Proposal 10-20:08.doc:
563 Items  Search complete: 558 emals Found

Figure 1. The LSNAA Graphical User Interface.
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Since the tool is focused on categorization, the program presents a view of the data regarding
three possible categorizations for each email:

e Original — The Original categorization is the categorization provided by the owner of the
email (the person whose inbox the email belongs to).

e Review — The Review categorization is the most recent categorization provided by a certified
LSN email reviewer.

e System — The System categorization is the most recent categorization provided by the LSN
Assistant system’s automated categorizer.

It also maintains the Current categorization, which is the Review categorization if it exists, and if
not it is the Original categorization. Typically, an email will have an Original and System
categorization, only emails that have been reviewed using the tool have a Review categorization.
The program is also implemented to handle missing Original and System categorizations.

2.2.1 Search for Information

Because the target usage of the LSNAA is in large email archives, the user interface includes a
large search panel. The search panel contains many different fields that allow a user to construct
powerful search criteria in order to find the appropriate emails. In addition to searching standard
meta-data such as the email owner and the received date, it allows for text searches of the textual
subject, body, and attachment fields of an email. The search also allows the user to select
specific categorizations from the Original, System, and Review regarding the status of whether
or not the categorization exists and if it is marked as LSN Relevant, Privileged, or Federal
Record. There is also the option to search based on differences between the Original, System,
and Review categorizations to make it easy to find divergent categorizations. All of the search
criteria are combined together in the form of a large logical “and” statement; specifying
additional criteria constrains the search. Providing such a capability allows the user to find and
review specific emails of interest from a large dataset.

2.2.2 Presentation of Information

After a search is performed, one of the main benefits of the LSNAA is in the email list panel.
The panel displays some of the meta-data of all email that satisfy the search criteria in a tabular
format. The email list can be sorted by any of the columns in the tabular format. The table
includes the typical information to identify an email through the owner name, subject text,
received date, and an icon indicating the existence of attachments. The real utility of the email
list comes in the columns displaying the categorization status of each email. Any of the Original,
Review, and System categorizations can be displayed for an email. To display a categorization,
three columns are used, one for each category: LSN Relevant, Privileged, and Federal Record. A
check box in each of these columns indicates whether the categorization has assigned the email
to each of the categories. When a categorization does not exist, no check box is displayed in any
of the three columns.

The most useful display for the categorization status is the Combined display that digests the
three different categorization types into a single display. It uses the check boxes to display the
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Current categorization (Review if it exists; otherwise Original), similar to the other
categorizations. However, it also displays a different background color for each cell to draw the
user’s eye to potentially incorrect categorizations. When the System categorization disagrees
with the Original categorization for a particular category, a shade of red is displayed in the
background of the cell to indicate the absolute value of the difference: a darker shade of red
indicates a larger certainty in the System’s categorization. In a similar fashion, green is used to
indicate that the System’s categorization agrees with the Original categorization. When the
System is unsure of the categorization, the background color is set to yellow. In addition to the
background colorings, each of the columns for the three categories can be sorted according to the
value of the difference between the Original and System categorizations. This allows a user to
sort the results of a search to prioritize the review of categorizations with a higher likelihood of
being incorrect. If a Review exists for an email, then the Review categorization is displayed in
the checkboxes with a blue background to distinguish that it has already been reviewed.

The email panel displays the content of a single selected email and contains the controls for
providing a new categorization for an email. The display of the email includes standard fields,
including the subject, from, date, to, and cc fields. It also includes a list of files that are attached
to the email, which can be opened using the application. The control for entering a categorization
allows the user to select check boxes to indicate if an email belongs to each of the LSN Relevant,
Privileged, and Federal Record categories, plus an optional comment field. There are also short-
cut buttons for filling the review fields from the Original, Review, and System categorizations, if
they exist.

One of the requirements of the LSNAA is the ability to read and categorize attachments. As part
of the email processing and automated categorization, this means that the system attempts to
extract text from attached files in known file types. The status of extraction is displayed in the
user interface both in the email list and in the email display window. The program displays a
special icon in the email list and on the email itself in the case when an email has an attachment
that text could not be extracted from in order to indicate to the user that the system could not use
that attachment in its automated categorization. This is done to inform users that the system may
not be using all available information and that a human inspection of these attachments may be
needed.

In addition to the main search and categorize functionality, the user interface also offers the
ability to look at statistics regarding the email of a user or the archive as a whole. This includes
the number of email in each category plus the number (and percentage) of email that have an
Original, System, Review, or Current categorization. This can be used to monitor the overall
quality of an email archive with respect to the number of discrepancies between the current
categorizations and the system categorizations plus the amount of the archive that has been
reviewed.

2.3 Process Pipeline
The LSNAA represents a front-end for the LSN Assistant system by interacting with an email

categorization database. This database contains all of the relevant information about an email
including its content, meta-data, attachment text, and categorizations. Because the front-end user

17



interface just handles the display of information in the database and the entry of new human
categorizations for existing email, a set of back-end tools is used to populate the rest of the
information.

This set of back-end tools provides a processing pipeline for getting an existing email archive
into the database and providing system categorizations. Figure 2 gives a conceptual presentation
of the different parts of the pipeline and the data that flows between each component.

Attachment file
Email and

Exiting Email Attachments Batch Email Attachment
Archive > Importer N Attachment text Processor

Email Content,
Attachment Text,
Original Categorization,
and Metadata

Email Content, Existing Text of All Email and Attachments
Human, and System

Cateqorizations

Email
Categorization
Database

New Human
Categorization

System Recommended
Categorization

Batch Email
Categorizer

Archive User
Interface

Figure 2. The LSNAA System.

To start the processing pipeline, an existing archive of email must be selected to be imported into
the database. In the case of the TSPA email review, the existing email data was contained in a
Lotus Notes database. To begin processing the information, the emails (and attachments) were
extracted from the Lotus Notes database. Each email was converted to an XML representation
containing the metadata plus the body of the email. Each attachment was extracted and saved in
its native format. Once the emails have been converted to this XML format, the Batch Email
Importer is able to read in the XML files and add them to the new email categorization database.
This includes processing the email metadata, body, and determining the Original categorization
of the email (if any). It also attempts to extract text from attachments that have a known set of
file types (Microsoft Office, PDF, and plain text) and inserts the extracted text into the database.
After the batch import is complete, all of the necessary information for the review and automated
categorization of the documents is contained in the database.
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To provide the System’s recommended categorizations for the email, the Batch Email
Categorizer is run against the database. This program retrieves the text of each email and its
attachments and uses its automated categorizer to create a new System categorization for each
email. These new System recommended categorizations are then recorded in the database along
with a record of the date of categorization, the version of the software used, and the version of
the categorizer used. When a new system categorizer is to be created, the Categorizer Builder
retrieves the emails that have been reviewed in the database along with their text, attachment
text, and Review categorization and passes them to the machine learning algorithms to build the
categorizer.

2.4 Database Interactions

From a technical perspective, the LSNAA user interface provides a front-end to a database of
email and categorizations. It allows a user to search the database for emails of interest, view the
email with their categorizations, and provide new categorizations when necessary. The
application supports two ways of connecting to an email archive database: through direct
connection to an email database or through a connection to an email archive web service, that
acts as a proxy for the database.

2.4.1 Categorization Used to Prioritize Data

A key advantage of the LSNAA application is the ability to use the categorizations generated
automatically by the LSN Assistant system to prioritize which emails to review. These System
categorizations are used in two key ways: in the search for email and in the display of search
results.

For search, the most recent System categorization for each email can be used as a search
criterion. When used in conjunction with the other search criteria, this allows a user to find
emails where the System categorization differs from the Original or Review categorizations
either in selected categories or in any category. This allows a user to limit their searches to look
at email where the System believes there is the possibility of an incorrect categorization.

Beyond the search criteria, the System categorization for each email is used in the display of the
results of an email search. The display includes both the ability to show the System’s
recommended categorization and the ability to show the discrepancy between the System’s
categorization and the Original categorization.

In addition, because the email search results allow email to be sorted by any of the columns
displayed, the emails can be sorted according to their discrepancy. This allows a user to start at
the top of the list with the email where the System categorization is the most certain in its
difference from the Original categorization. When there are limited resources available for
reviewing email, this feature allows a reviewer to focus on areas of the data where the system
identifies the greatest differences in categorizations.
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2.4.2 User Decisions and Database Updates

All user actions regarding the categorization of emails are stored in the database. This is done to
provide a history of all actions regarding an email. The display of Original, System, and Review
categorizations are a view of the data that is updated when new categorizations are entered into
the database. The Review categorization is updated when a user enters a new review for an
email. The System categorization is updated when a new version of the automated categorizer
runs against the database. This provides a full trace of the entire categorization history for an
email, including which System recommendations are associated with the different Review
categorizations.

In addition to providing a review categorization for an email, a user can also mark an email as
“Evaluated”. This “Evaluated” flag indicates that someone has looked at some aspect of the
email (usually the subject line), but has not conducted a full review, and has indicated that it does
not need to be reviewed.
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3. THE SANDIA CATEGORIZATION FRAMEWORK

The Sandia Categorization Framework (SCF) is the computation engine used in the LSNAA for
categorizing e-mail messages. It consists of several machine learning algorithms, data processing
and transformation methods, and performance evaluation routines for solving two-class (binary)
categorization problems. The LSNAA uses the SCF in the three tasks of categorizing e-mail
messages into one of two classes:

1) LSN Relevant or Not LSN Relevant
2) Federal Record or Not a Federal Record, and
3) Privileged or Not Privileged.

To complete each of these tasks, a separate categorizer is built from (training) data that is
manually labeled and then applied to a set of previously unseen (testing) data. A categorizer is a
model of the characteristics of each document class computed using the terms in the training
documents as features. Note that majority of work presented in this report was focused on the
task of categorizing messages as either "LSN Relevant" or "Not LSN Relevant", although
categorizers for each task listed above were created and tested.

Machine learning has been successfully applied to the problem of categorization of text
documents across many document domains. However, there are several issues associated with
these methods that we identify in this section and that anyone using such a system should
understand. Machine learning methods and models are functions of the training data, and thus the
performance of a categorizer depends on the reliability of the training data. Specifically, noise or
contradictions appearing in the training data translate to ambiguity and poor performance in the
categorizer models.

3.1. Determination of Methods to Include in the Framework

To determine the best methods for categorizing the e-mail, we first applied the standard machine
learning methods available in the WEKA (Witten and Frank, 2005; WEKA, 2007) machine
learning software library. This library contains a comprehensive set of the most current machine
learning algorithms freely available and are is used to benchmark new and existing algorithms in
new problem domains. The WEKA library is designed for algorithm and/or process pipeline
design; therefore, many of the algorithms are not well suited for inclusion in production
software. Thus, we used them only for prototyping algorithms for use in the SCF. The main
drawbacks of WEKA to date include limited support for sparse data structures (which are crucial
in text analysis where there may be little overlap in term usage for any given pair or collection of
documents) and inefficient algorithm implementations (e.g., much of the code is intended for
research and thus not analyzed and optimized for production). However, the use of WEKA
provided a quick way to narrow down the set of algorithms to consider for the LSNAA.

3.1.1 Data

The original set of data available for training the categorizers consisted of 9429 e-mail messages
labeled for each of the three binary classes by the originator of each message. As time was a
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limited resource for this project, we chose to use this data set for investigating the utility of
existing categorization algorithms even though we knew there were errors in the labels in the
data.

The data was split into two mutually exclusive subsets of approximately equal size: one for
building the categorizers and one for evaluating the performance of the categorizers. The subsets
were randomly chosen from a uniform distribution and resulted in a training set of 4713 training
4716 testing documents. A STANLEY (Bauer et al., 2005) model was built for the training set
using full documents (no splitting documents). The resulting model consisted of 15358 terms.
Note that the training set consists of approximately 27.5 times as many negatives as positives
with 4548 negatives and 165 positives.

3.1.2 Survey of Standard Methods

The methods surveyed in WEKA fall into one of the following categories: Bayesian, function,
lazy, decision tree, decision rule, and miscellaneous. The Bayesian categorizers use Bayes’
formula to model the probability that a given document belongs to a particular class. The lazy
categorizers consist of methods for clustering the data and using the resulting clusters to
determining the class label of a document: each cluster is associated with a document class and
the cluster to which a testing document belongs determines its class label. The function
categorizers use model regression fits to the features of the training documents in each class to
determine a function to model the separation of classes. The decision tree and rule categorizers
recursively partition the documents based on sequences of features either randomly chosen or
chosen based on how well a feature can partition a subset of the documents into partitions
containing documents of a single class. The resulting categorizers are either binary trees or a set
of disjunctive rules that are used to separate documents into classes by following the logic
represented in the tree or rule set. Finally, the set of miscellaneous categorizers consists of those
that do not fit into any one of the other categories. Note that some of the methods are hybrid
methods consisting of one or more methods combined in some specified way (such methods fall
into the meta-learner category of learners in WEKA and are often referred to as ensemble
methods).

The methods in WEKA surveyed for this work along with the performance results of each
categorizer are presented in Appendix A. In Appendix A.1, we list the methods and the specific
parameters used in building each categorizer; see WEKA (2007) for details on the WEKA
methods. The results presented in this report are for those categorizers most commonly used in
text categorization as well as those methods that performed the best in our initial investigations.
At least 2 categorizers were included from each of the main types of methods available in
WEKA.

Figure 3 presents one view of the results of the WEKA categorizers trained and tested on the
data presented in the previous section; see Appendix A.2 for the complete set of results. In the
figure, the number of false negatives is plotted against the number of false positives for each
categorizer built to find e-mail messages labeled “LSN Relevant”. Negative and positive labels
are specified relative to the class of interest in building and applying a categorizer; thus in this
case false negatives are those messages that are incorrectly labeled as negative (“Not LSN
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Relevant”) and false positives are those labeled incorrectly as positive (“LSN Relevant”). We see
from the figure that there is a general trend in the trade-offs associated with the WEKA methods:
false negatives are reduced at the cost of introducing more false positives. Thus, reducing the
number of false negatives is equivalent to reducing the number of messages in which we are
interested that we will miss (false negatives) while increasing the number of messages that will
be labeled as those of interest (false positives). We address this trade-off more in Section 4,
where we discuss the optimization of the categorizer used in the LSNAA.
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Figure 3. Rates of False Categorizations using the WEKA Categorizers.

3.2 Description of the Learning Methods

We present here the descriptions of the methods currently available in the SCF. The final set of
categorizers chosen for the SCF includes several variants of those available in WEKA that
performed the best on the data presented in the previous section and one method implemented by
our group for another software library that was not available in WEKA.

The methods in the SCF can be trained on data labeled for two classes and the resulting
categorizers generate two outputs: a categorization label and a confidence value. The label is
either positive, negative, or is empty (corresponding to an undecided label). The confidence
value is a relative measure of the confidence that the categorizer has in the corresponding label
and is a function of the amount and characteristics of the training data along with the categorizer
method parameters used to build the categorizer. Thus, confidence values have different meaning
for each categorizer method.
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3.2.1 Perceptron

For binary categorization problems where the data has a vector representation (such as the vector
space model), linear binary categorizers are natural categorization functions to learn. Such
categorization functions take the form of

f(x)=b+iwk><xk

k=1

with a threshold applied of f{x) > 0. Here, x is the data input vector (N elements), w is the so-
called weight vector (N elements), and b is a bias term. This function represents a decision space
separated by the hyperplane w with offset . The confidence value output by a linear binary
classifier is the absolute value of f(x). This means that inputs that are further away from the
decision hyperplane will have a higher confidence value.

The Perceptron algorithm (Rosenblatt, 1958; Mitchell, 1997) is a well-known algorithm for
learning a binary categorization function. Although the algorithm has well understood limitations
(Minsky and Papert, 1969), such as requiring for convergence that the data be linearly separable,
in practice the Perceptron algorithm can work well for document categorization. This is because
the large number of features in the vector representation of documents makes it more likely that
the documents will be linearly separable or nearly linearly separable (Joachims, 1997). In
addition, the “kernel trick” can be applied Perceptron algorithm in order to handle data that is not
linearly separable and even be applied to data that is not in a vector representation (Shaw-Taylor
and Cristianini, 2004).

We make use of a variation of the Perceptron algorithm that includes the ability for the algorithm
to enforce a predetermined margin on the data. Enforcing a margin will typically result in a
better fit hyperplane and can be viewed as an easy way to obtain some of the beneficial
separation properties of the computationally more expensive methods employing a Support
Vector Machine (see Burges (1998) for a descriptions of those methods). Having separate
parameters for the positive and negative margins allows the algorithm to place the decision
boundary in different locations within the margin, which is useful in dealing with data where
there is a large discrepancy between the number of positive and negative examples (which is the
case for the LSN data).

3.2.2 Random Decision Tree

Tree-based methods (Breiman, et al., 1984; Quinlan, 1993) partition the feature space of the
input data and fit a simple categorization model within each partition. A decision tree is created
by splitting the training data associated with each node according to a function of a single
feature. At each leaf node of the tree, the training data is split using the feature which produces
the best partitioning with respect to some error function. A restriction in most tree-based
methods is that each feature can be used for splitting only once along each path from the root
node to a leaf node. Construction of the decision tree is complete when each leaf node is a pure
node, i.e., the node only contains data from a single category.
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Random decision trees are decision trees that choose the feature on which to split the training
data at each node from a random sample of the full set of features available. Thus, each node is
split based on the best partitioning with respect to a random subset of features and not the entire
feature set. This reduces the amount of computation required for building the decision tree, but in
general introduces more error into the categorization model. For this reason, random decision
trees are often used in ensembles (see Section 3.3.2 for more on random forests, which are
ensembles of random decision trees).

The random decision tree method in the SCF is based on the CART (Breiman, et al, 1984)
decision tree method, a tree-based method which recursively partitions the feature space into
binary partitions using the metric of information gain (Quinlan, 1986) for determining which
feature (and the particular value of that feature) to split each node on. The random subsets of
features are chosen from a uniform distribution of the available features at each set (i.e., those
features not used to split any of its parent nodes).

One general drawback of decision trees used for categorization is that the resulting models tend
to overfit the training data. That is, the models are highly specific to the training data and exhibit
poor performance when used to categorize new data. To remedy this, tree-based methods often
prune the resulting decision trees, a process of collapsing nodes based on some pruning criteria
(see Breiman et al. (1984) for details.). Currently, the decision tree methods in the SCF do not
employ pruning to address overfitting, as suggested in Banfield et al. (2007).

The confidence value output by decision trees in the SCF is either -1, +1, or o, corresponding to
a negative, positive, or undecided label. Undecided labels occur often when there are too few
features in the training data on which to split tree nodes. For large collections of textual data, this
is often not an issue since the features are often functions of the terms occurring in the data.

3.2.3 Naive Bayes

The naive Bayes classifier is one of the most straightforward and easy to implement categorizers
(Barber, 2005; Eibe and Bouckaert, 2006; Eyherandy, et al., 2003; McCallum and Nigam, 1998;
Rennie, 2001; Shen and Jiang, 2003). Naive Bayes classifiers compute a class likelihood
probability for each sample presented. The class likelihood probability is a product of the class
prior and all feature value/class conditional probabilities estimated from the training data.
(Actually for a specific sample, described by n features, for which the features take on the values
0 and 1 only, those feature/class conditional probabilities that match these values are used in the
class likelihood estimates; for more details see Appendix E). The class with the maximum
likelihood is returned as the class value for the sample presented. It will be most straightforward
to describe the binary feature case (i.e., each feature is either present or not present with respect
to a particular sample) here, so the following discussion will be restricted to the binary naive
Bayes classifier.

The binary naive Bayes classifier relies upon strong independence assumptions, which can be
wrong (i.e., naive). In this classifier, each feature/class pair is assumed to be independent from
every other feature/class pair. This assumption allows the probability of a feature obtaining a
particular value given a specific class to be estimated very simply by the frequency of occurrence
of that feature value over all training data at hand for the same class. None of the other features
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or any of the other classes needs to be considered for this specific feature/class pair. Implicit in
the assumption that all feature/class pairs are independent is the assumption that all classes are
also independent. This second assumption allows class prior probabilities to be estimated directly
from the frequency of occurrence of each class in the training data. Given these two quantities
(class prior and feature/class conditional probabilities), we can uses Bayes theorem to estimate
the class/feature conditional probability to within a constant (which is the feature probability).
Note that the feature probability is constant across all classes (i.e., independent of class) and thus
we can compare class/feature conditional probabilities to one another which cancels out the
feature probabilities. The class likelihood is estimated by multiplying together each of the
class/feature conditional probabilities for a specific class and specific feature values.

The naive Bayes classifier has the advantage that it is easy to train and efficient to use in
classification tasks. The class prior and feature/class conditional probabilities can be estimated in
one pass through the training data. In the binary naive Bayes classifier, feature/class conditionals
are estimated for the existence of the feature (i.e., the feature is present, and thus the value is 1).
The feature/class conditional for the absences of the feature is just 1 minus the feature/class
conditional for the existence of the feature. The class likelihoods are computed as a product of
the class/feature conditionals (i.e., for a particular sample, if the feature is present, use the
feature/class conditional corresponding to the existence of the feature otherwise use thee
feature/class conditional corresponding to the absence of the feature).

Because the naive Bayes classifier uses products of conditional probabilities, one disadvantage is
that a 0 probability will cause the entire product to be 0 as well. One way to address this problem
is to ensure that each conditional probability is greater than or equal to O (usually, a small
positive value is used). Because the values of the class likelihoods can be very near 0 or 1, it can
be problematic to define a confidence value for the classification produced by the naive Bayes
classifier. Computing log-likelihood instead of raw likelihood can help somewhat in these cases,
especially when there are many features (for more detail, see Appendix E). The confidence
returned by the binary naive Bayes classifier is the 1 divided by the quantity 1 plus the distance
from 0 in log-likelihood space for the classification. Note that the logarithm of probabilities will
always be less than or equal to 0, thus we use the negative of the logarithm for distance.

Another concern with the naive Bayes classifier is that it can be too naive in some cases, but
given its learning and classification speed, it is a good candidate for inclusion in an ensemble
learner.

3.2.4 Fuzzy ARTMAP

The Fuzzy ARTMAP neural network classifier operates by slicing the feature space up into
rectangles (actually in the n—dimensional feature space these are hyper-rectangles), and then it
assigns a single class (label) to each rectangle (Carpenter, et al., 1992). During classification, a
sample is given the class (label) of the closest matching rectangle. Note that these rectangles do
not need to be independent of one-another, and in fact, two particular rectangles can partially
overlap or one can be a proper subset of the other (however, it will never be the case that two
different rectangles cover the exact same feature space). Each rectangle and all samples which
are most closely matching to it (both inside the rectangle and immediately outside the rectangle)
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are assigned the same (single) class (label) during classification. This section contains a brief
algorithmic description of the Fuzzy ARTMAP neural network classifier (for a more detailed
description, see Appendix F.

Even though the methodology of Fuzzy ARTMAP sounds simplistic it does support universal
function approximation (Verzi, et al., 2003; and Verzi, 2003) as do other neural network
classifiers (Cybenko, 1989; Hartman, et al, 1990; Hornik, et al., 1990; Park and Sandberg,
1991). Classifiers that support universal function approximation have the capacity to represent
many families of interesting functions. Most of the proofs supporting universal function
approximation cover the family of continuous functions (or partially continuous functions with
specific characteristics). The Fuzzy ART and Fuzzy ARTMAP neural networks support
universal approximation of measurable functions (which is a slightly larger family than
continuous functions).

The Fuzzy ARTMAP neural network classifier is composed of two Fuzzy ART neural networks
(one each on the left and right) connected through a map field (Carpenter, et al., 1991). Each
Fuzzy ART neural network operates in an unsupervised fashion to form minimum sized
rectangles containing all data that define the clusters (mathematically the rectangle is the
minimum sized n—dimensional hyper-rectangle containing all training samples belonging to the
cluster). The map field is used to ensure that each cluster on the left is connected (or linked or
associated) with only one cluster on the right. Clusters on the left consist of rectangles covering a
portion of the domain, and clusters on the right represent patterns of classes (labels). In most
cases of classification with the Fuzzy ARTMAP, there will be a single right-side cluster for each
class (label), and this will be true here (in SCF) as well. In this way, (fully) supervised learning
can be achieved using Fuzzy ARTMAP, and classes will be partitioned independent from one
another (meaning that each left-side cluster will be linked to a single class, and all samples
belonging to this cluster will be given the same class label during classification).

Fuzzy ARTMAP is an on-line learner, which is different from many of other classification
techniques (see Verzi (2003) for a more detailed description of the differences between on-line
and off-line learners). As an on-line learner, Fuzzy ARTMAP considers only a single training
instance at a time. An on-line learner does not know when it is done training, it only knows about
the “current” training instance (and class). Even though it is an on-line learner, Fuzzy ARTMAP
is trained using batch training (as are all of the other SCF classifiers). Thus, an external trainer
will run Fuzzy ARTMAP through the entire training set several times until it stabilizes. Each
pass through the training data is called an epoch, and stabilization is achieved when no weights
are changed during an epoch of training. When Fuzzy ARTMAP is allowed to fully stabilize, it
will create enough left-side rectangles so that each training sample is correctly classified
(assuming that the training data is self-consistent). Binary-valued Fuzzy ARTMAP is guaranteed
to stabilize in n epochs for n—dimensional feature space data (Georgiopoulos, et al., 1994).

As an on-line learner, Fuzzy ARTMAP more closely models biological learning situations
(Grossberg, 1980; Carpenter, ef al., 1992; Carpenter and Grossberg, 2003), but because of this, it
can perform less well than other classifiers that are allowed to consider all of the training data
and associated features including various statistical relationships. On-line learners are sensitive
to the order of training data (even when they are trained with batch training). This means that
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Fuzzy ARTMAP is a good candidate for inclusion in an ensemble (especially using different
orderings of the training data).

In general, Fuzzy ARTMAP is fast to train and classify samples. However, with very large
feature spaces (i.e., many feature dimensions), both the training and classification speed of Fuzzy
ARTMAP can decrease significantly. Thus, Fuzzy ARTMAP is a good candidate for ensemble
methods that use only a portion of the feature space for each of their constituents. A major
advantage of Fuzzy ARTMAP is that it serves as a biologically inspired model of human (visual)
category formation. In general, Fuzzy ARTMAP does not require any parameter tuning, but for
optimal results some parameters might need to be adjusted.

A Fuzzy ARTMAP neural network classifier might over-fit the training data when it is allowed
to fully stabilize (i.e., using batch training). However, Fuzzy ARTMAP can also be operated in
fully on-line mode (e.g., trained on-line, too) in which case it never stops learning and it can
under-fit the data or even lose track of previously learned classifications (when long-term
memory is allowed to decay). In the SCF, we train Fuzzy ARTMAP using batch training either
by itself or in ensembles.

The confidence value for a Fuzzy ARTMAP classification can be computed several different
ways. For the SCF, confidence is calculated as

1
1+ (distance from cluster centroid)

Exact boundaries between classes can be very difficult to characterize in Fuzzy ARTMAP.
3.2.5 Scaled Categorizers

The confidence value output by the different methods presented in this section can differ in
several orders of magnitude. This makes comparing or combining of the resulting categorizers
problematic. To address this issue, a scaled categorizer is included in the SCF. A scaled
categorizer is simply a categorizer whose confidence values are mapped to the range [-1, +1],
with negative (positive) values corresponding to negative (positive) labels. An exact value of o
corresponds to an undecided label. Since we are mostly concerned with binary categorization
(i.e., the output classification is one of two labels) this scaling is reasonable. A value of 1 means
that we are perfectly confident that the classification is correct, at a value of -1 we are perfectly
confident that the classification is incorrect, that is, it should be the other class (of the two
classes), and at a value of 0 we are not confident in either class as a correct classification. Note
that at the boundary between the two classes, the scale would be 0. With multi-class
categorization, we could use a scaling factor for each class or some reasonable approximation.

Perceptron categorizers are scaled by the maximum distance from linear separator over all the
training data. Decision trees need no scaling as their confidence values are already mapped to
[-1, +1]. Naive Bayes categorizers produce confidence values that are already scaled between 0
and 1, thus this value need only be multiplied by the class value (either -1 or 1). And the output
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from Fuzzy ARTMAP categorizers is also normalized between 0 and 1, thus it need only be
scaled by the class value, being either -1 or 1 for the binary categorization in SCF.

3.3 Description of the Ensemble Learning Methods

We present here the ensemble methods currently available in the SCF. Categorization ensembles
(also known as committees or meta-learners) are collections of different categorizers used to
perform task. The output of the ensemble categorizer is a weighted combination of the individual
categorizers. Categorization ensemble methods differ from one another in the individual
categorizers used in the ensemble, how they use the training data to build each individual
categorizer, and how the individual categorizers are weighted to produce a final categorization
label. The results of the survey presented in Section 3.1.2 indicate that the majority of ensemble
methods (i.e., meta-learners) performed well in labeling a high number of true positives (finding
messages of interest) and a low number of false negatives (reducing the number of messages of
interest incorrectly labeled). Thus, we included several ensemble methods in the SCF that
performed well in the initial investigation as well as a new method developed to address the
specific problem for which the LSNAA was developed.

3.3.1 Weighted Ensembles

The most basic ensemble method in the SCF consists of a collection of categorizers and is called
a weighted ensemble method. Associated with each categorizer is a weight for scaling its
confidence output score. For each message to be labeled, the ensemble output is a sum of the
outputs of each individual categorizer, scaled by its corresponding weight.

The default weighting scheme is 1/N for an ensemble of N categorizers, giving equal weight to
each categorizer. Equal weighting ensembles can be biased by categorizers with possible
confidence values that are orders of magnitude greater than those possible for all other
categorizers in the ensemble. Thus, scaled categorizers should be used with equal weighting
ensembles. When scaled categorizers and equal weighting is used, the resulting categorizer is
equivalent to the standard majority voting ensemble method (Sebastiani, 2002).

Another weighting scheme implemented uses training set error performance to weight the
ensemble members. The goal of this weighting scheme is to incorporate more of the
characteristics of the categorizers with fewer errors into the final ensemble categorizer.

The categorizer used in the LSNAA is a weighted ensemble of several different categorizers,

including ensemble categorizers. See Section 4 for more details on the particular ensemble used,
the weights associated with each individual categorizer, and the rationale behind these choices.

3.3.2 Random Forests
The random forest ensemble method (Breiman, 2001) in the SCF produces an ensemble of

random decision trees with equal weighting. The number of individual random tree categorizers
and the number of random features to use in training each individual categorizer can be
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specified. The random forests categorizers created in our study of the WEKA categorizers
performed well in labeling a high percentage of true positives and relatively few false negatives.
Other research groups have also found that random forest categorizers perform well for the
related problem of categorization of spam in e-mail messages (Koprinska, 2007).

3.3.3 Balanced Learners

A new ensemble method developed for solving the problem for which the LSNAA was
developed is called a balanced learner ensemble method. This method was developed to address
the highly skewed distribution of classes in the e-mail data. Recall that the ratio of negative to
positive instances in the training data used for the WEKA study was nearly 30 to 1 and thus
presented a challenge for categorizers to label all of the positives correctly.

The balanced learner ensemble method is based on the ensemble method presented in (Gao et al.,
2007). In that work, the class with more instances is randomly partitioned such that each
partition 1s approximately equal in size to the class with fewer instances in the training data. The
result is a collection of training sets where each set contains all of the instances of the minority
class and a random sample (with no duplicates across the entire set) of those of the majority
class. That method is available in the SCF but not implemented in the LSNAA. Our balanced
learner differs from the work of Gao, et al. as follows: 1) the majority class is sampled with
replacement; 2) skewed distributions in the classes in the balanced training sets are allowed (e.g.,
in order to approximate the original distribution but with less skew); and 3) more than
k=’_(N —-n)/ n_| individual categorizers are allowed in the ensemble, where N is the total

number of training instances and # is the number of training instances in the minority class.

The number of individual categorizers, the number of random samples taken from the instances
of the majority class for the training set of each individual categorizer (the default is the number
of instances in the minority class), and the weight associated with each individual categorizer
(the default is an equal weighting scheme) can be set for each balanced learner ensemble
categorizer.

In all of our testing, the balanced learner ensembles of categorizers from the SCF improved the
performance of those individual categorizers. We believe that this performance gain is problem
dependent and a result of the highly skewed class distribution of the data for this problem. There
is much more research to be done in understanding the extent of problems for which this method
is most applicable and how best to choose the method parameters for particular problems and
data.
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4. USING THE SCF FOR CATEGORIZING LSN E-MAIL MESSAGES

The development and evaluation of several SCF individual categorizers and ensemble
categorizers applied to two collections of e-mail data is discussed in this section. Also, the data
used for the performance evaluations, the strategies for tuning and optimizing the categorizers,
and the results of the evaluation are described. Specifically, the data was divided into two
collections: Case 1 (messages sent before October 2006) and Case 2 (messages sent after
October 2006).

There are many performance metrics used by researchers in the machine learning community for
evaluating categorizer methods; see Sebastiani (2002) for a recent survey. In this report, we
present the raw output (in Appendix B) in terms of positive categorizations ("LSN Relevant",
"Federal Record", "Privileged") and negative categorizations ("Not LSN Relevant", "Not a
Federal Record", "Not Privileged") correctly and incorrectly labeled along with accuracy,
precision, and recall, precision-recall curves (used originally for evaluating performance of
information retrieval systems but now often used for categorizer evaluation), and a metric
specifically design to highlight performance with respect to the goals of the LSNAA (relatively
high number of true positives and low number of false negatives simultaneously). These are the
tools we used in determining the "best" categorizers to be used in the LSNAA.

As each categorizer method contains user-specified several parameters, performance of the
resulting categorizers are directly dependent on the choices for these parameters. However, it is
often not clear what the best parameter choices are for a given training set, and the performance
of the categorizer on the testing data may differ from that of the performance on the training data
for a given set of parameter values. Thus, tuning and optimization of the categorizers must be
performed on a given training data set prior to use. The SCF categorizer used in the LSNAA is
an ensemble categorizer, and the choice of weighting for this ensemble is presented in this
section. Validation of the categorizer used in the LSNAA is also presented.

The solution process described in Section 1.4 includes iterate over the steps of building, testing,
and applying categorizers to data until an acceptable categorizer has been determined. For the
problem and data which motivated the development of the LSNAA, it was determined that two
iterations of these steps were adequate (as assessed by SMEs associated with the problem and
data). The following sections describe these two iterations in detail.

4.1 First Review Categorization and Performance Evaluation
4.1.1 Validation Data

A subset of 1766 e-mail messages from those used for the WEKA study and described in Section
3.1.1 was chosen for optimizing and evaluating the performance of the SCF categorizers. These
messages were then certified by a group of SMEs trained on the process and procedures for
labeling the messages with respect to the three categorizations listed at the beginning of Section
3. Each of the messages was certified by at least two experts.
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The numbers of messages for each of the three types of labels are as follows:
e Number of LSN Relevant documents: 83 (5%)

e Number of Federal Record documents: 1564 (89%)

e Number of Privileged documents: 291 (16%)

Thus, the class distribution for each type is highly skewed, but in different directions for the
“LSN Relevant”/“Privileged” messages and those labeled as a “Federal Record”. Note that this is
automatically adjusted for in the balanced learner ensemble methods, since for each categorizer
the minority and majority classes are first identified and then the training data samples are
chosen.

Note that only e-mail messages from Case 2 were validated by SMEs in the first review, and thus
are the only messages used in training and assessing performance of the categorizers.

4.1.2 Parameter Identification for Individual Categorizers in the LSNAA

Categorizer-specific parameters for individual categorizers were identified by starting with
defaults values discussed in the machine learning community and then tuned by means of a
simple local search in parameter space around those initial values. This process helped us assess
the robustness of these methods and defaults values (by identifying correlated parameters and
approximating sensitivity of the parameters near the default values). We emphasize that this
process was not a rigorous numerical optimization of the categorizer parameters for the given
training data. Such a process would require more time and effort than was available and would
not necessarily produce an optimal categorizer for all testing data to be labeled since the
relationship between the training and testing data is unknown.

Figure 4 presents the precision-recall curves of several of the categorizers used in the LSNAA.
Precision is defined as the percentage of true positives in the testing set that were categorized
correctly:

TP

precision = ————
TP + FP

and recall is defined as the percentage of the testing set categorized as positives that were true
positives:

P

recall = ————
TP + FN

where TP denotes true positives (positive data categorized as positive), FP denotes false positives
(positive data categorized as negative), and FN denotes false negatives (negative data
categorized as positive). Precision-recall curve plots are typically used to compare categorizers
with respect to the tradeoff of precision and recall. With many categorizers, however, it is
difficult to compare performance, as can be seen in Figure 4.
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Figure 4. Precision-Recall Curves of Several SCF Categorizers.

We used the precision-recall curves of the several different categorizers parameterized in several
ways to determine the set of categorizers to be used in the ensemble categorizer for the LSNAA.
Appendix D.1 presents the results of the parameter tuning for the perceptron, balanced
perceptron, random forest, balanced random forest, naive Bayes, and balanced naive Bayes
categorizers. Below are the categorizers that were chosen for the initial review based on our
desire to create an ensemble categorizer with both high recall and high precision, with high recall
taking precedence:

Perceptron Categorizer

Note: Many iterations used for greater accuracy, higher margin of positive instances results
in a categorizer which labels positive that are clearly different than the negatives.

Parameters.:
o Maximum iterations = 5000
o Margin of positive instances = 100
o Margin of negative instances =1

Balanced Perceptron Categorizer

Note: Fewer iterations and smaller margins between classes result in less accurate individual
categorizers but the balancing of training data uses these weak approximations to create a

more robust categorizer for determining true positives.

Parameters.
o Number of individual categorizers =

33

10




Majority instances = 2.5 (times the number of minority instances)
Maximum iterations = 100

Margin of positive instances = 50

Margin of negative instances 10

O 0 OO

e Balanced Random Forest Categorizer 1
Note: A large ensemble of random decision trees trained on slightly skewed training data
samples removes a lot of the noise in the features characterizing the positives and negatives.

Parameters:
o Number of individual categorizers = 200
o Majority instances = 1.5 (times the number of minority instances)
o Number of random features used per tree node = 100

e Balanced Random Forest Categorizer 2
Note: The fewer ensemble members trained on data that better reflects the skewed class
distribution of the data results in a more robust categorizer when the training and testing data
is very different.

Parameters:
o Number of individual categorizers = 10
o Majority instances = 2.5 (times the number of minority instances)
o Number of random features used per tree node = 100

e Naive Bayes Categorizer

Parameters:
o Minimum feature probability = 0.00001

4.1.3 Weight Identification for the Ensemble Categorizer in the LSNAA

An ensemble of categorizers was chosen for the LSNAA based on the performance of the
individual categorizers presented in the previous section. We chose to include categorizers that
performed well in either labeling a high number of true positives or a low number of false
negatives, or both. In this way, categorizers would be included in the final ensemble that could
collectively perform well with respect to the given tasks, and the contribution of each individual
categorizer could be controlled using the ensemble weights. The particular weights for the
ensemble members were chosen using the same process for individual categorizer parameter
identification discussed in the previous section; specifically, an ensemble categorizer with high
recall and high precision was determined to be the best categorizer.

Appendix B.2 presents a sample of the results of the simple weighting local search around the
equal weights of 1 for each ensemble member except for the naive Bayes categorizer. Due to the
amount of time required to build and test the naive Bayes categorizer, the weight was determined
once the other weights had been chosen.

Figure 4 also shows the precision-recall curves of several of the ensembles using different

weighting schemes. Note that the ensemble categorizers in general perform as well or better than
the individual categorizers, as is expected.
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The weights used for the categorizer in the LSNAA for the first review were as follows:
e Perceptron = 2.5

e BalancedPerceptron = 1.5

e BalancedRandomForestl= 5.0

¢ BalancedRandomForest2= 2.5

e NaiveBayes = 2.5

4.1.4 Performance Assessment

The validation of the SCF ensemble categorizer used in the LSNAA was performed in two steps.
The first step consisted of 10-fold cross validation, and the second of a 100-fold random
validation.

Table 1. Results of 10-Fold Cross Validation for the Ensemble Categorizer in the LSNAA.

LSNRelevant : Training

TP TN FP FN Accuracy | Precision | Recall
Average 39.960 | 762.970 91.030 5.040 0.893 0.311 0.888
STD 2.291 20.689 20.689 2.291 0.022 0.040 0.051
LSNRelevant : Testing

TP TN FP FN Accuracy | Precision | Recall
Average 31.230 | 733.590 | 110.490 10.790 0.863 0.225 0.745
STD 4.381 28.552 25.162 3.862 0.026 0.039 0.079
Privileged : Training

TP TN FP FN Accuracy | Precision | Recall
Average | 130.500 | 689.070 69.930 9.500 0.912 0.653 0.932
STD 2.684 | 10.460 10.460 2.684 0.012 0.036 0.019
Privileged : Testing

TP TN FP FN Accuracy | Precision | Recall
Average | 123.630 | 638.240 | 102.810 21.420 0.860 0.548 0.853
STD 7.534 | 20.302 14.649 4.473 0.015 0.040 0.028
FederalRecord : Training

TP TN FP FN Accuracy | Precision | Recall
Average | 800.960 | 58.920 36.080 3.040 0.956 0.957 0.996
STD 1.608 6.297 6.297 1.608 0.007 0.007 0.002
FederalRecord : Testing

TP TN FP FN Accuracy | Precision | Recall
Average | 778.160 | 27.230 74.550 6.160 0.909 0.913 0.992
STD 18.679 4.627 8.543 2.557 0.009 0.009 0.003
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Cross validation is the process of splitting the validated data into equal-size, randomly chosen
subsets (folds), and testing on each subset while training on the combination of the other subsets.
Thus, in 10-fold cross validation, the validated data is split into 10 subsets, and there are ten sets
of results, which are averaged to evaluate the overall performance. This process of validation is
an attempt to remove the bias of a particular split used in training and testing the data. Table 1
presents the average and standard deviation of the cross validation results across 10 folds for the
ensemble described in the previous section.

Random validation is similar to cross validation except that the folds consist of approximately
equally-sized random splits of the data into training and testing data. Thus, in 100-fold random
validation, the validated data is randomly split 100 times, and there are 100 sets of results, which
are averaged to evaluate the overall performance. This process of validation is also an attempt to
remove the bias of a particular split used in training and testing the data, but allows for
replacement of the training data. Table 2 presents the average and standard deviation of the
random fold validation results across 100 folds for the ensemble described in the previous
section.

Table 2. Results of 100-Fold Random Validation for the Ensemble Categorizer in the

LSNAA.

LSNRelevant : Training

TP TN FP FN Accuracy | Precision| Recall
Average 67.500| 1414.900| 106.100 1.500 0.932 0.389 0.978
STD 1.269 5.065 5.065 1.269 0.003 0.011 0.018
LSNRelevant : Testing

TP TN FP FN Accuracy | Precision| Recall
Average 6.500| 153.300 15.000 1.800 0.905 0.315 0.802
STD 1.958 4.001 4.830 1.229 0.024 0.107 0.130
Privileged : Training

TP TN FP FN Accuracy | Precision| Recall
Average 254.300| 1294.100 36.900 4.700 0.974 0.874 0.982
STD 2.869 5.877 5.877 2.869 0.005 0.018 0.011
Privileged : Testing

TP TN FP FN Accuracy | Precision| Recall
Average 24,100/ 133.500 14.000 5.000 0.892 0.633 0.831
STD 2.998 3.923 2.867 2.449 0.024 0.067 0.074
FederalRecord : Training

TP TN FP FN Accuracy | Precision| Recall
Average 1404.400| 126.100 57.900 1.600 0.963 0.960 0.999
STD 1.350 3.510 3.510 1.350 0.003 0.002 0.001
FederalRecord : Testing

TP TN FP FN Accuracy | Precision| Recall
Average 154.700 6.200 14.000 1.700 0.911 0.917 0.989
STD 5.165 2.201 4.899 1.252 0.025 0.029 0.008
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4.2 Second Review Categorization and Performance Evaluation

The final ensemble categorizer from the first review was applied to the two collections of e-mail
messages, and then the SMEs validated a new subset from both of the Case 1 and Case 2
collections.

4.2.1 Validation Data

A subset of 34151 e-mail messages was chosen for optimizing and evaluating the performance of
the SCF categorizers in the second review. These messages were again certified by a group of
SMEs trained on the process and procedures for labeling the messages with respect to the three
categorizations listed at the beginning of Section 3. Each of the messages was certified by at
least two experts.

The numbers of messages for each of the three types of labels are as follows:
e Number of LSN Relevant documents: 7582 (22%)

e Number of Federal Record documents: 32891 (96%)

e Number of Privileged documents: 3140 (9%)

Note the class distribution for each type is skewed as in the first review. However, the amount of
skew is different. Specifically, there is significantly less skew in the distribution of "LSN
Relevant" and "Not LSN Relevant" messages. These differences highlight the need for iterating
through the steps of the solution process of determining an effective categorizer. As the set of
validated data changes, the categorizers should be updated to reflect this new information.

4.2.2 Parameter Identification for Individual Categorizers in the LSNAA

The same process for identifying effective parameters for the individual categorizers was then
applied to the validation data. The only difference was that the set of parameters searched were
not centered at the defaults suggested by the algorithm developers. The parameters were centered
around those determined to be the best parameters during the first review.

Appendix D.2 presents the results of the parameter identification studies for the second review.
Note that the individual categorizers used were slightly different than those during the parameter
identification study of the first review; they reflect the set of categorizers used in the final
ensemble categorizer of the first review.

Figure 5 presents a plot of the false negatives by the false positives for the categorizers created
during the parameter identification study. This type of plot is useful in determining rough bounds
on the performance of the individual categorizers being used. For example, Figure 5 illustrates
the trend of the categorizers and a (disconnected) lower bound of the tradeoffs between the two
types of false categorizations that should be expected using the set of parameters identified.
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Figure 5. False Categorizations of the Individual Categorizers: Second Review, Test Data.

The individual categorizer parameters chosen for the second review are as follows:

Perceptron Categorizer
Note: Many iterations used for greater accuracy, higher margin of positive instances results
in a categorizer which labels positive that are clearly different than the negatives.

Parameters:
o Maximum iterations = 3000
o Margin of positive instances = 150
o Margin of negative instances = 1

Balanced Perceptron Categorizer

Note: Fewer iterations and smaller margins between classes result in less accurate individual
categorizers but the balancing of training data uses these weak approximations to create a
more robust categorizer for determining true positives.

Parameters:
o Number of individual categorizers = 5
o Majority instances = 2.0 (times the number of minority instances)
o Maximum iterations = 500
o Margin of positive instances = 1000
o Margin of negative instances = 5
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e Balanced Random Forest Categorizer 1
Note: A large ensemble of random decision trees trained on slightly skewed training data
samples removes a lot of the noise in the features characterizing the positives and negatives.

Parameters:
o Number of individual categorizers = 100
o Majority instances = 1.0 (times the number of minority instances)
o Number of random features used per tree node = 200

e Balanced Random Forest Categorizer 2
Note: The fewer ensemble members trained on data that better reflects the skewed class
distribution of the data results in a more robust categorizer when the training and testing data
is very different.

Parameters:
o Number of individual categorizers = 10
o Majority instances = 3.0 (times the number of minority instances)
o Number of random features used per tree node = 50

e Naive Bayes Categorizer

Parameters:
o Minimum feature probability = 0.00001

4.2.3 Weight Identification for the Ensemble Categorizer in the LSNAA

The SCF code base was refactored between the first and second reviews to facilitate more
efficient identification of the ensemble weights given the individual categorizers. Specifically,
each individual categorizer was built and tested once, and then different combinations of
ensemble weights were tested. This allows for a more thorough search of potential ensemble
weights. Recall that although it is possible to perform a rigorous global optimization of the
ensemble weights, this is not advised due to problems with overfitting of the testing data. Unless
there is a guarantee that there will be no differences between the testing data used to create a
categorizer and the data to which the categorizer will eventually be applied (i.e., statistically
significant differences in the attributes of the e-mail messages), global optimization is not
recommended.

For this problem, an exhaustive search of all combinations of ensemble weights in the interval of
[0,5] in steps of 0.25 was performed. A plot of the false negatives by the false positives is shown
in Figure 6. Note that the general trend of the individual categorizers appearing in Figure 5 also
appears here in Figure 6 for the ensemble categorizers.

39



0.2

0.14+

0.12+

False Negative Rate

0.08 -

006 | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

False Positive Rate

Figure 6. False Categorizations of the Ensemble Categorizers: Second Review, Test Data.

Since the search for weights was performed on a discrete grid, further investigation into the
choice of ensemble weights was performed around those set of ensemble weights with the best
performance. The weights used for the categorizer in the LSNAA for the second review were as
follows:

e Derceptron = 2.0

e BalancedPerceptron = 4.0

e BalancedRandomForestl= 3.0

e BalancedRandomForest2= 1.25

e NaiveBayes = -1.0

These weights were chosen to reduce the false positive rate as the primary goal and the false
negative rate as the secondary goal. Note that the ensemble weight for the naive Bayes
categorizer was not part of the initial study and was only determined by further investigation.
The negative weight for the naive Bayes categorizer was unexpected, as this indicates the use of
the categorizer in the opposite way it was trained. We suspect that this behavior acts to balance
the other categorizers in the ensemble. However, testing on more general sets of data would need
to be performed to verify this claim.
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4.2.4 Performance Assessment

Validation of the ensemble categorizer used in the second review was performed in the same
manner as in the first review, and comparable results were found.

To assess the performance beyond the validation tests, the SMEs were presented with the results
of the categorizations for the set of validated data. Figures 7 and 8 present the results of the
categorizations for the Case 1 and Case 2 collections, respectively, as they were presented to the
SMEs. The top plot in each figure shows a histogram of all the categorizations for the validated
data. The bottom two plots in the figures show histograms of the false positives and false
negatives for each validated data set. Note that in both figures the false categorizations are
clustered around zero (0), indicating that the ensemble categorizer has no clear indication of the
correct categorization. As the goal of LSNAA is to generate a prioritized list of likely candidates
for a particular categorizations (as opposed to a list of categorizations that will be used for
decision making directly), these results are very promising. The outcome if that SMEs or users
need focus most of their effort on where the categorizer is most confused (near 0). This result is
to be expected as a system categorizer should be identifying those parts of the data that are the
most ambiguous in terms of categorization, which is what is happening in this case with the false
categorizations clustered around zero.
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Figure 8. False Categorizations of the Ensemble Categorizers: Second Review, Case 2
Data.
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5. FUTURE DIRECTIONS

In this section, ideas that have been identified for exploration in future versions of the LSN
Assistant set of tools are presented.

5.1. Data Processing

E-mail messages often lack formal grammatical structure, contain sentences that are not fully
formed, and contain many spelling errors. Such document characteristics present challenges for
analyzing collections of documents. Below are several ideas that have shown promise for several
text analysis projects in the machine learning research community.

5.1.1 Latent Semantic Analysis

Deerwester, et al. (1990) developed Latent Semantic Analysis (LSA) to help improve
information retrieval systems by statistically correlating terms and documents, removing "noise",
and reducing the dimension of features used to characterize each document of collections of
unstructured text documents. We performed a preliminary investigation into using LSA to create
the vector version of the document for the LSNAA; however, we found that it tended to reduce
categorization performance at the various dimensions tested. One challenge in employing LSA is
choosing how much feature dimension reduction and/or noise reduction should be performed for
effective analysis (e.g. categorization for our problem). Choices are often based on heuristics and
can be dramatically different for various data sets and algorithms. Thus, work on developing
recommendations for the task of e-mail categorization or more generally, for automatically
tuning the parameters for a given problem and data set should be explored to facilitate use of
LSA in automatic categorizations systems. It may also be worthwhile investigating using the
vectors generated from LSA as additional features rather than as a reduced set of features for this
problem.

5.1.2 Natural Language Processing

Currently, the features used to characterize documents for use with the SCF categorizers are
based on terms appearing in the documents. More sophisticated statistical natural language
processing (NLP) techniques exist (Manning and Schiitz, 1999) for extracting richer sets of
features from documents than simply the list of terms appearing in a document. Specifically,
several methods for noun phrase (i.e., named entity) extraction have been developed, and the
extracted phrases could be used as more discriminating document features than individual terms
alone. Along the same lines, language modeling using n-grams (sequences or windows of »
consecutive terms) may also help to determine richer feature sets for use in creating categorizers.
Other NLP techniques that should be explored include noun and verb phrase detection (i.e.
chunking) and part of speech detection.

5.1.3 Feature Extraction and Selection

There are several other existing methods for generating features for documents than those
currently used in the SCF (via STANLEY). Other methods that have been used in categorization
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research include term extraction (e.g., LSA or term clustering) and term selection (e.g., based on
document frequency, random selection, information theoretic metrics, etc.). The goal of these
methods is to produce a reduced feature set to facilitate both computational efficiency and
identification of the most important discriminating features of individual documents. One
downside to most of these approaches is that the reduced space does not preserve the sparsity
patterns of the original document term features. It is not clear what the impact of discarding such
information has on the overall performance of categorizers. Thus, such methods should be
studies more in the context of e-mail categorization particularly. See Sebastiani (2002) for more
details of such approaches.

5.2. Categorization

Further work can also be done on the categorization algorithms themselves, particularly in
utilizing more of the data through semi-supervised learning and automating more of the
development process by automatically tuning categorization parameters and ensemble weights.

5.2.1 Semi-Supervised Learning

Algorithms for creating categorizers typically benefit from having access to large sets of training
data. That is, the more data a categorizer is trained on, the more likely it will correctly categorize
a typical document example. However, the creation and maintenance of large sets of training
data is constrained by the time availability of SMEs associated with the problem and data of
interest. Methods of semi-supervised learning (Chapelle, et al., 2006) overcome this constraint
by combining relatively small sets of validated training data and statistical techniques to increase
the size of data used to train categorizers. This approach has shown promise for general data
categorization, and may prove helpful for the problem of e-mail categorization.

5.2.2 Automatic Categorization Parameter and Ensemble Weight Tuning

One of the most time consuming steps in the current solution process from Section 1.4 is the
building and testing of categorizers. Specifically, the tuning of the individual categorizer
parameters and the weights used in the ensemble categorizer are labor-intensive, manual
processes. Although some automation has been developed for creating and a large number of
categorizers and sets of ensemble weights, the current approach requires detailed knowledge of
the categorizers. Automated methods of determining such parameters and weights for a given
problem and/or data set include ridge regression, lasso regression, and global direct search
(Hastie, et al., 2001). Such methods would allow for generation of more optimal categorizers and
could generate useful statistics for analyzing the performance of the categorizers (including
robustness/sensitivity and feasibility statistics).

Another potential benefit of incorporating automatic parameter and weight tuning into the SCF is
support for performance tuning based on a complicated set of metrics. For example, in the
application presented in this report, the goal was to generate categorizers biased toward the
highest number of true positives and the least number of false negatives. By incorporating
automatic methods for parameter and weight tuning, it should be straightforward to handle such
metrics.
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5.3 The LSN Real-Time Assistant

Although this report focuses on the LSNAA, the SCF and most of the other framework for
processing data, testing categorizers, and applying categorizers to e-mail messages will be used
in the LSN Real-Time Assistant (LSNRA) tool. However, the process of data processing, and
categorizer creation and testing for the LSNRA includes a different set of requirements.
Specifically, the issues of automation of all solution steps, efficient data and categorizer
updating, and combining categorization rules with categorizations must all be addressed.

Scheduling of updates during system low-usage times, combined with online learning algorithms
should facilitate efficient data and categorizer updates. Online learning algorithms create a
categorizer in a single pass of the data, and thus facilitate addition of new (or updated) data more
readily than batch learning algorithms, which must have access to all of the training data in order
to build a categorizer. Currently, with the exception of the Perceptron categorizer, the SCF is
comprised of batch learning methods. Those batch methods would have to load all existing data
each time the training data is update and a categorizer is built, whereas the online learning
methods need only update the existing categorizer using any previously unused training data.

Using a set of pre-defined categorization rules may help improve the performance of the SCF
categorizers. Specifically, rules based on specific keywords (e.g., "DRAFT" "Calendar Request",
"Training Requirement", etc.) may help identify specific categorizations of automatically
generated e-mail messages or messages that are use only according to a particular institutional
policy.
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6. CONCLUSIONS

The Licensing Support Network (LSN) Assistant is a system for categorizing e-mail messages
and documents and investigating and correcting existing document archives. The two main tools
in the LSN Assistant, the LSN Archive Assistant (LSNAA) tool for categorizing existing e-mail
and documents and the LSN Real-time Assistant (LSNRA) tool for categorizing, were
introduced, with the details of the LSNAA provided. The Sandia Categorization Framework
(SCF), the categorizer engine behind the LSN Assistant tools was described in detail as well.

The design and implementation of the LSNAA database, system architecture, and graphical user
interfaced (GUI) were described. This process was aimed at both satisfying the system
requirements (Appendix A) and the addressing the suggestions of the SMEs and customers as the
system tools were developed and deployed. Note that the LSN Assistant tools should be regarded
as works in progress, with development active on the system architecture, the SCF, and the LSN
Assistant application GUIs.

The problem of categorization of text documents in general and e-mail messages in particular is
an active area of research, and the processes and results presented in this report were specifically
designed and tuned for the particular problem and data associated with LSN e-mail messages. As
noted throughout this report, the particular instances of categorizers used in the LSNAA are
dependent on the training data, and thus are not useful for solving general text categorization
problems. However, the steps and recommendations for processing data and creating, tuning, and
testing categorizers presented in this report are applicable to solving text categorization problems
in general. The specific examples and categorizers described in this report should serve to
demonstrate choices made along the entire process and the implications of those choices with
respect to performance and output of a categorizer.

As in most research associated with machine learning and the problem of data categorization,
quantifying the confidence in the categorizers created is crucial in determining the general
usefulness and applicability of the categorizers. The importance of the parameter and ensemble
weight tuning, along with the categorizer validation (Section 4) presented in this report should
not be underestimated. The use of categorizers for decision making is problematic due to the
dependence on the particular data used for training. We have shown that using the methods
presented in this report, a prioritization of categorizations and identification of regions of
categorization ambiguity (Section 4.2.4) can be used to assist in challenging and complex large-
scale decision making processes.
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