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Summary

The study described in this report was conducted by the Pacific Northwest National Laboratory
(PNNL) to provide biologist and engineers of the U.S. Army Corps of Engineers (USACE) with general
design guidelines for using artificial lighting to enhance the passage of juvenile salmonids into the
collection channel at the Bonneville Dam second powerhouse, managed by the USACE Portland District.
The work comprised three primary objectives. The first was to review and synthesize all relevant studies
in which artificial light was evaluated in a field or laboratory setting for its potential to guide fish at
passage barriers within juvenile salmonid outmigration corridors. The second objective was to conduct a
field study at the Bonneville Dam second powerhouse to evaluate the output levels of two artificial light
sources at one orifice entrance within Gatewell 12. The third objective was to compare, in a laboratory
setting, the performance of three light sources in terms of light intensity values.

PNNL reviewed 36 sources in the published gray and peer-reviewed literature and prepared a
synopsis that includes the study objectives, species and life stage, experimental conditions, type of
lighting used, and a summary of the results. We found that artificial lighting has been used in two general
applications: 1) as a means to induce avoidance behavior by altering the fishes” swimming pathway and
2) as a guidance or attraction avenue to assist fish in locating safe passage routes. The literature review
indicated that several factors play a combined role in the fishes’ ability to safely navigate passage
barriers. These factors include genetic makeup (species and subspecies), life stage, season, time of day,
light levels, presence of predators, distance to cover, water temperature, group size, noise regime, and
water current.

Our review determined that juvenile salmonids can be attracted to illuminated regions during
nocturnal periods and can perceive light levels down to approximately 0.25 lux or 10 ft-c, equivalent to
the light produced by moonlight. At the other end of the spectrum, we found that juvenile salmonids
generally avoid or are startled when exposed to more intense light levels that correspond to daylight
conditions or near 400 lux (10™ ft-c). To guide fish through manmade structures using artificial lights
requires an understanding of the types of illumination and the nature of salmonid light perception. To
respond to a light source, the fish visual system must be able to respond to the appropriate wavelengths
that correspond to peaks in the spectral response of the photo receptors in the eye. Studies that have
examined the use of artificial light to guide salmonids safely through migration barriers such as
hydroelectric dams show measurable differences in juvenile responses to both the quantity and quality of
the light stimulus. Our literature review concluded that any fish passage guidance structure must be based
on an understanding of fish behavior and environmental and hydraulic conditions at the specific location.

Our field study at the Bonneville Dam second powerhouse (B2) found the existing lighting conditions
at the orifice tubes in the downstream migration channel to be less than ideal to illuminate the entrance of
the orifice. Based on our review of the lighting studies, a minimum luminance value of approximately
200-300 lux is needed at the orifice entrance. While some studies, in controlled laboratory experiments,
have shown that this light intensity could possibly startle test fish (if exposure is sudden), light intensity
values are expected to decrease rapidly within a short distance from the orifice. High water turbidity
present for much of the spring outmigration period in the Columbia River also would play a role in
decreasing light intensity at the orifice.



Field measurements of light intensity from light-emitting diode (LED) light bulbs at a single orifice in
Gatewell 12 were low, at approximately 0.1 lux with a water-scaled lens. Light output for a 90-W
halogen light with a water-scaled lens was 0.25 lux at the opening. When the water-scaled lens was
exchanged for a new lens, the readings increased to 0.6 lux for the LEDs and 3.25 lux for the halogen
light. For comparison, 1 lux is the amount of light produced by moonlight at high altitude, and 10 lux is
the intensity of a candle at a distance of 1 ft. The halogen lights were far more effective at producing
illumination near the orifice regions and outward to approximately 16 in. on axis with the opening, where
the values were similar to the ambient light background measurements. The LEDs were less effective at
illuminating the region; this was especially evident when the water-scaled lens was used. Both light
sources produced light levels below effective minimum luminance values noted in the literature.

The laboratory tests were conducted at the PNNL Aquatic Research Laboratory in Richland,
Washington. We measured the light output from halogen spotlights and mercury vapor lamps as well as
the LED lamps currently in use at the B2. Our results using a water-scaled glass lens showed that the
light loss for the halogen and the aqua green LED lamp was 5-6 times higher than the loss with a clean
lens. Output from a mercury vapor lamp when the water-scaled lens cap was placed at the light face was
reduced by only a factor of two. The drawback to using the mercury vapor and the halogen lamps is the
amount of heat produced by the lens (250°F for the mercury vapor and 143°F for the halogen) and the
reduced bulb life as compared to the LEDs.

Based on our study, some options for improving the lighting at the orifice entrances at the B2 include
the following:

e Incorporate a ring of LEDs that would be recessed into the orifice opening, thus eliminating the
need for the light tubes. An automated cleaning system also would be required.

¢ Incorporate the light source into the lens cap so that the cap and light housing is one waterproof
unit. This would allow for all of the light to be directed into the light tube and eliminate the
water scaling and debris-buildup issue, although water buildup still could pose a problem due to
the splashing of water upward into the light tubes. Cleaning of the light and cap assembly also
would be simplified.

e Use a white emitted light source that has a minimum luminance value of approximately
200-300 lux near the immediate orifice entrance.

e Incorporate higher-intensity LED lamps. Several manufactures have developed high-output
LEDS that have been used in a variety of applications, including automobiles, flashlights, and
residential and industrial interior and exterior lighting. These relatively new modules provide
almost 50% more light (some up to 250 lux) than a standard 5-W LED bulb. Models of the cool
white version have an expected 50,000-hour lifespan and have peak wavelengths of 440 and
550 nanometers.

To evaluate the effectiveness of any modification to the existing system, tests could be conducted in
which tagged fish are released in the gatewell with a light-on/light-off scenario and the orifice passage
efficiency evaluated. Different lighting sources could be tested to determine if white light or light emitted
within the peak action spectra of juvenile salmonids (blue-green region) is best for attracting fish near the
orifice where the flow component is sufficient for entrainment into the collection channel.
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cfs

deg
DSM

EPRI
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NTU
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PAR
PIT
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USACE
uv

Abbreviations and Acronyms
Bonneville Dam second powerhouse

candela
cubic feet per second

degree(s)
downstream migration (channel)

Electric Power Research Institute

foot, feet
foot-candle(s)

inch(es)

pound(s)
light-emitting diode

meter(s)
millimeter(s)

nanometer(s)
nephelometric turbidity unit(s)

orifice passage efficiency
photosynthetically active radiation
passive integrated transponder

Pacific Northwest National Laboratory

U.S. Army Corps of Engineers
ultraviolet

watt(s)



candela

foot-candle

Glossary of
Light Measurement Terminology

The unit of luminous intensity. One candela is defined as the luminous intensity of
1/600,000 square meter of projected area of a blackbody radiator operating at the
temperature of solidification of platinum under pressure of 101,325 newtons per square
meter.

A measure of light intensity; the amount of light received by 1 square foot of a surface that
is 1 foot from a point source of light equivalent to one candle of a certain type (see
illustration).

1 meter
radius

foot

radlus

1cd 1 Im sr
isotropic

Irradiance (from http://www.intl-lighttech.com/services/light-measurement-handbook)

end foot-
candle

lumen

end lumens

End foot-candle measurements are based on the focused light beam only. The spherical
energy or surrounding light output is not captured by or reflected back to the surface of the
foot-candle light meter. End foot-candle is the focal light beam measurement from point A
to point B at a 1-foot distance.

A unit of light flow or luminous flux. The lumen rating of a lamp is a measure of the total
light output of the lamp. The most common measurement of light output (or luminous
flux) is the lumen. That is, 1000 lumens, concentrated into an areas of 1 square meter,
lights up that square meter with an illuminance of 1000 lux. The same 1000 lumens spread
out over 10 square meters produce only 100 lux.

End lumens measurements are based on a spot of light only. The spherical energy or
surrounding light output is not captured by or reflected back to the surface of the lumen
light meter. End lumens is the light measurement from point A to point B at a 1-foot
distance.

Xi



luminance

illuminance

lux

light level

efficacy of
a light
source
radiance

watt

Luminous flux (light output); the quantity of light that leaves the lamp, measured in
lumens. Lamps are rated in both initial and mean lumens:

o Initial lumens indicate how much light is produced once the lamp has stabilized; for
fluorescent and high-intensity discharge lamps, this is typically 100 hours.

e Mean lumens indicate the average light output over the lamp’s rated life, which
reflects the gradual deterioration of performance due to the rigors of continued
operation; for fluorescent lamps, this is usually determined at 40% of rated life.

The intensity or degree to which something is illuminated as measured in lux or foot-
candles.

The metric unit of measure for illuminance of a surface. One lux is equal to 1 lumen per
square meter. One lux equals 0.0929 foot-candle.

Light intensity measured on a plane at a specific location is called illuminance.
Iluminance is measured in foot-candles, which are workplane lumens per square foot.

The total light output of a light source divided by the total power input. Efficacy is
expressed in lumens per watt.

How much energy is released from a specific light source.

The unit of measuring electrical power. Wattage does not relate to the light output level.
It defines the rate of energy consumption by an electrical device when it is in operation.
The energy cost of operating an electrical device is calculated as its wattage time in hours
of use.
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Overview

The goal of the study described in this report was to provide U.S. Army Corps of Engineers (USACE)
biologists and engineers with general design guidelines for using artificial lighting to enhance the passage
of juvenile salmonids into the collection channel at the Bonneville Dam second powerhouse (B2). The
study was conducted during fall 2007 by researchers at the Pacific Northwest National Laboratory
(PNNL) for the USACE Portland District.

The specific objectives for this study were to

1. Review and synthesize existing lighting data for juvenile salmonid attraction and deterrence and how
the data are used at fish bypass facilities.

2. Evaluate current B2 orifice lighting conditions with both light-emitting diode (LED) and halogen
lighting sources.

3. Conduct laboratory tests to measure the light output of halogen spotlights and mercury vapor lamps as
well as the LED lamps currently in use at the B2 orifices.

4. Provide the USACE with recommendations as to what lighting intensity, source, and configuration
would improve fish passage at the B2 orifices.

In this report, Chapter 1 provides PNNL’s synthesis of the relevant literature related to light and fish
guidance for both field and laboratory studies. Chapter 2 presents a description of the PNNL field
measurements of light levels at one B2 orifice through which fish must pass to reach the fish collection
channel. Two light types were evaluated—LED lights and halogen spotlights. Additional measurements
with mercury lamps were made at the PNNL Aquatic Research Laboratory in Richland, Washington, to
determine baseline intensity of the current lighting. Recommendations based on the study are offered in
Chapter 3. An Appendix presents a tabulated synopsis of literature reviewed as part of this study.

Overview.1



Chapter 1

Compendium of Research on Using Artificial Light To Guide
Juvenile Salmonids — Field and Laboratory Studies

Mary Ann Simmons and Robert P. Mueller

Introduction

The objective of this task was to review the available literature on the response of juvenile salmonids
to light, specifically to lights used as guidance at hydroelectric facilities. We further focused the review
on non-strobe light sources such as incandescent and mercury vapor lights. The Appendix to this report
provides a synopsis of the literature reviewed in table format.

Reviews of the response of fish to lights have found a range of responses, from no response to
attraction and repulsion. Factors affecting the response appear to be species, age, previous light exposure,
and light source.

Table 1.1 contains a list of species studied in the reviewed sources. Two common names are listed
for Oncorhynchus nerka and O. mykiss; the first is the anadromous species, the second the freshwater
counterpart. Figure 1.1 shows the various developmental stages for anadromous Pacific salmon species.
Juvenile salmon encompass the alevin, parr, and smolt stages.

Figure 1.2 illustrates the range in the lighting spectrum; Figure 1.3 shows the color spectrum
associated with visible light. Table 1.2 includes the most common light units reported in the literature—
foot-candles (ft-c) and lux—as well as examples of the amount of visual light these represent. Another
unit of light, microeinsteins, is used to describe electromagnetic radiation and cannot be converted easily
to lux without knowing the spectral distribution of the light source.

Table 1.1. Common and scientific names for Pacific Northwest salmon and trout used in light studies

Common Name Scientific Name
Chinook Oncorhynchus tshawytscha
Sockeye/Kokanee Oncorhynchus nerka
Steelhead/Rainbow trout  Oncorhynchus mykiss
Coho Oncorhynchus kisutch
Chum Oncorhynchus keta
Pink Oncorhynchus gorbuscha
Cutthroat trout Oncorhynchus clarkii
Brook char Salvelinus fontinalis
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Yolk-sac alevin

Egg /. Figure 1.1. Life cycle of anadromous

e Pacific salmon showing major
developmental stages. Illustration ©
Vancouver Aquarium Marine Science
Centre (http://www.vanaqua.org/
salmontales/english); reproduced with
permission.
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Figure 1.2. Entire light spectrum (from The Light Measurement Handbook, http://www.intl-light.com)
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Figure 1.3. Visible color light spectrum and associated wavelengths (nanometers)
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Table 1.2. Light levels in lux and foot-candles for various levels of daylight
(http://en.wikipedia.org/wiki/Daylight)

Example Lux Foot-Candles
Starlight 0.00005 4.65E-06
Moonless overcast night sky 0.0001 9.26E-06
Moonless clear night sky 0.001 0.0000929
Quarter moon 0.01 0.000929
Full moon on a clear night 0.25 0.0232
Moonlight <1 0.0929
Sunrise or sunset on a clear day 400 37.2
Sunlight on an average day (min) 32,000 2973
Sunlight on an average day (max) 100,000 9290

Conversion: 1 foot-candle = 10.764 lux.

The range of the visible light spectrum perceivable by the human eye encompasses wavelengths from
380 to 770 nanometers (nm). Many species of fish have visual sensitivities into the shorter wavelengths
of the ultraviolet (UV) range starting at approximately 350 nm (Bowman et al. 1993) (Figure 1.4).
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Figure 1.4. Average action spectra of six juvenile rainbow trout in a controlled laboratory experiment
(Douglas 1983)

Our review first includes a discussion of behavior of juvenile salmonids with respect to ambient light
levels, followed by a description of studies on the physiology of the fish’s eye and the response to light
stimulus. The next two sections of this chapter discuss results of laboratory and field studies of the
response of fish to lights.
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Juvenile Salmonid Fish Behavior

The response of fish to light is dictated by a number of factors, including species, age, the light
source, and previous exposure to light. Our main focus of this review was on anadromous Pacific
salmonids that, after a varying amount of time in freshwater, migrate to the ocean and must pass around
or through numerous dams. The collective physiological changes occurring as the salmon goes from
freshwater to seawater are termed smoltification. Behaviorally, in preparation for downstream migration,
the juvenile fish must leave in-shore or bottom habitats for the open water. Photoperiod has been linked
to smoltification. The length of the photoperiod appears to influence plasma levels of thyroxine and
cortisol, hematocrit levels, condition factor (length—weight relationship) and the hepatosomatic index
(Hoffnagle and Fivizzani 1998). Both chum and coho salmon were found to prefer open water to shaded
areas after exposure to elevated thyroid levels (Iwata 1995).

The behavioral response to light (both ambient and artificial) by juvenile salmonids varies with
species and age. The alevins of Chinook salmon are initially negatively phototactic (Beauchamp et al.
1983) and migrate downward into the gravel. After yolk absorption, the fish emerge during nocturnal
periods as free-swimming fry. Juvenile steelhead are primarily bottom feeders, occur in areas with the
highest stream cover (Pauley et al. 1986), and tend to be quiescent at night (Simenstad et al. 1999).
Sockeye fry are extremely light-sensitive and remain hidden under stones and debris during the day,
emerging at dusk (Pauley et al. 1989). Pink and chum salmon show nocturnal activity and are either
negatively phototaxic (Simenstad et al. 1999) or positively phototaxic (Hoar et al. 1957), depending on
the light level. Juvenile coho salmon (74-104 mm) exhibit a strong cover-seeking reaction when exposed
to full ambient daylight, while juvenile Chinook salmon (79-115 mm) appear unresponsive to light
stimuli (Nemeth and Anderson 1992).

A multiyear monitoring study of juvenile fall Chinook salmon implanted with passive integrated
transponder (PIT) tags migrating down the Snake River found shoreline collections of fish declined
abruptly when the fish reached 60 mm fork length (Connor et al. 2003). Fish then moved offshore and
began the downstream migration. A study at McNary Dam found that nearly 80% of migrating fall
Chinook salmon smolts chose an uncovered channel versus a covered channel when presented with the
choice (Kemp et al. 2005). These results provide additional evidence for a change in behavior associated
with smoltification and subsequent downstream migration.

The diel movement and vertical distribution of migrating smolts of Chinook salmon, steelhead, and
sockeye salmon at The Dalles and McNary dams on the Columbia River were evaluated in 1960 and 1961
(Long 1968). Results showed that more fish were caught at night compared to the numbers caught in the
daytime. All catches were made at turbine intakes. In a study of residence time in the fish passage
system at McNary Dam, most fish (juvenile Chinook salmon and steelhead) passed from the gatewell to
the collection channel during the evening, regardless of the time they were released (i.e., midday vs.
evening) (Beeman and Maule 2001). Evidence suggests that migration begins as light intensity falls
below the cone threshold (Simenstad et al. 1999). At this light level, the fish is unable to maintain
position in relation to a given reference point.

Schilt (2007) reviewed fish passage and protection at hydropower dams. In the Columbia River
basin, he found juvenile salmon passage follows a diel trend, with deep passage through turbines and
spill bays occurring in late evenings and early mornings, while shallow passage through surface routes
occurs during daylight hours. He also noted that light-based behavioral guidance systems are limited
by turbidity and habituation.
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Small fish avoid lights generally because of predation (Nemeth and Anderson 1992; Tabor et al.
2004). Tabor et al. (2004) in a series of laboratory and field experiments found downstream migration by
sockeye fry was hindered by lights (maximum 10.8 lux), and the fish were then more vulnerable to
predation by sculpin.

Visual Systems

Guiding fish through manmade structures using artificial lights requires an understanding of the types
of illumination and the nature of salmonid light perception. For fish to respond to a light source, their
visual system must be able to respond to the appropriate wavelengths that correspond to peaks in the
spectral response of the photo receptors in the eye. Research suggests that the increase in the number of
cones as the eye of juvenile fish grows larger leads to greater sensitivity and improved resolution of an
image (Northmore et al. 1978; Fernald 1988). These developmental changes are important and provide
for the ability to migrate at progressively lower light intensities. In addition, the spectral response of the
eye differs within species and life stage of the fish (Fernald 1988). Studies that have examined the use of
artificial light to guide salmonids safely through migration barriers such as hydroelectric dams show
measurable differences in juvenile responses to both the quantity and quality of the light stimulus.
Juvenile salmonids have specific sensitivity in the blue and green wavelengths; most freshwater teleosts
have three cone pigments that absorb at their maximum around 455, 530, and 625 nm (Loew and Lythgoe
1978). The action spectra of juvenile rainbow trout peaks at approximately 450 nm (Figure 1.4).

The following studies examined the spectral sensitivity of Pacific salmon to visible and UV spectra.
Several studies looked at species differences, and others investigated mortality related to light exposure.

The visual system of salmonids contains both rhodopsin and porphyropsin visual pigments
(Alexander et al. 1994). Rhodopsin is associated with shorter wavelength spectral sensitivity, while
porphyropsin is associated with longer wavelengths. Retina with equal mixtures of the two pigments will
have intermediate spectral sensitivities. A study of coho salmon through the smoltification process found
the proportion of these two visual pigments shifted from a porphyropsin-dominated visual pigment in pre-
smolts to a rhodopsin-dominated retina in the smolt stage (Alexander et al. 1994). The shift in visual
pigments was hypothesized to allow the fish better visual acuity in the marine environment, which allows
for the passage of shorter wavelengths than do the freshwater habitats.

An extensive study of the structure of the eye in response to different light levels was conducted by
Ali (1959). Four species of salmon (sockeye, chum, pink, and coho) were studied, from alevin through
smolt stage. Physical changes in the eye as well as schooling and feeding behavior were evaluated.
Figure 1.5 illustrates the results in relation to known light levels. In general, schooling and feeding occur
at light levels occurring at dawn and dusk that correlate to intensities of 10" for coho salmon. Times for
cones and pigment to fully adapt to light or dark conditions were between 10 and 20 minutes, depending
on species and life stage. The times for cones to fully adapt correlated well with maximum feeding rates.
The study concluded that downstream movement of juvenile salmonids occurs as a result of their eyes
being in a semi-dark adapted state for a short duration at dusk. The fish gradually lose their reference
points and swim with the current while being displaced downstream.
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Figure 1.5. Response of juvenile Pacific salmon to various light intensities and the relationship to
ambient light (Ali 1959, p. 987, Fig. 14; © Canadian Journal of Zoology; reproduced with
permission)

A study of the photic environment of Lake Cowichan in British Columbia, Canada, found changes in
both light intensity and spectral composition with depth and time of day (Novales-Flamarique et al.
1992). The spectral composition of surface layers had fairly equal proportions of UV, short, middle, and
long wavelengths. Near the bottom, middle and long wavelengths dominated the spectra. Over the day,
peaks in UV and blue light were noted prior to sunrise and immediately after sunset; the opposite
occurred for long wavelengths. Similar changes in spectral composition may be evident also in large
rivers such as the Columbia.

Parkyn and Hawryshyn (2000) found the spectral sensitivity in response to an increase in light
differed among juvenile (parr) salmonid species. Specifically, the response was dominated by L- (long or
red) and M- (medium or green) cone mechanisms in steelhead, rainbow, cutthroat trout, and brook char,
while in kokanee the M-cone mechanism dominated. There were no species differences in the response
to a decrease in light intensity. The differences noted for the light response may be linked to habitat;
species with the L- and M-cone mechanisms inhabit streams and rivers, while kokanee is a lake species.
Table 1.3 lists the maximum eye receptor cell response for rainbow trout, sockeye salmon, brown trout,
and brook trout.
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Table 1.3. Comparison of the maximum spectral sensitivity of the photopic mechanisms in salmonids
(from Bowmaker and Knuz 1987; Parkyn and Hawryshyn 2000)

Species Photopic Peak Cell Response (nm)
Rainbow trout 375, 440, 540, 580
Sockeye salmon 370, 440, 520, 590
Brown trout 355, 441, 535, 600
Brook char 370, 420, 540, 560

Novales-Flamarique (2000) examined the spectral sensitivity of sockeye salmon throughout its life
history. No differences were found in the cone mechanisms related to short-, middle — and long-
wavelength sensitivity over the life stages of these salmon. However, cones sensitive to UV wavelengths
were found to disappear at the smolt stage and reappear in the adult. 1t was hypothesized that the UV
cones improve prey contrast and that the loss of UV cones may be an accidental consequence of hormonal
changes during smoltification. Similar results were noted for rainbow trout and steelhead (Deutschlander
etal. 2001).

A test of foraging and prey-selection under polarized light by rainbow trout found prey were detected
at greater distances under polarized light compared to unpolarized lights (Novales-Flamarique and
Browman 2001). In another study, juvenile rainbow trout, steelhead, and brook trout were trained to
orient relative to the axis of polarized light (Parkyn et al. 2003); however, untrained fish showed no
orientation response.

The visual pigments and photoreceptor types in coho, chum, and Chinook salmon were examined
relative to time of year and developmental stage (Novales-Flamarique 2005; Novales-Flamarique et al.
2006). All three species had visual pigments with maximum absorbance in the UV, blue, green, and red
parts of the spectrum. However, fish in the alevin stage did not have blue visual pigments. All fish had
rod photoreceptors with visual pigment in the 504- to 531-nm range. Temperature affected the peak
absorption of the visual pigments during smoltification and appears to be linked to hormonal factors that
vary with species, developmental stage, and environmental variables (Novales-Flamarique 2005).

One study looked at visual performance and physical changes in retinal morphology in sockeye and
kokanee following exposure to strobe lights (Novales-Flamarigue et al. 2006). Overall, there were no
detectable changes after a 5-minute exposure to strobe lights; however, a 3-hour exposure resulted in
mortality. Behaviorally, fish exposed to strobe lights showed an escape response to an overhead shadow.

In the review by Simenstad et al. (1999), the amount of time required for structural changes to occur
in response to variations in light intensity varied with species and life stage. They report that 30 to
40 minutes were required for light-adapted chum and pink salmon to fully adapt to dark, while dark-
adapted fry required 20 to 25 minutes to adapt to increases in light. During these periods, visual acuity
ranged from periods of blindness to slightly diminished, depending upon the magnitude of the contrast in
light intensity.

In summary, it appears juvenile Pacific salmon are most sensitive to the blue-green spectra
characteristic of mercury vapor lights. There were few species differences in visual morphology or
spectral sensitivity. The major life-history change involves the loss of UV sensitivity during
smoltification, which returns in adult fish. Overall, juvenile salmon are able to discern the wavelengths
found in ambient light.
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Laboratory Studies

Early evaluations of the response of salmon species to light were conducted between 1959 and 1963
at the University of Washington (Fields 1966). The first tests were conducted in outdoor raceways using
several species of young of the year salmon and steelhead. Tests conducted in both daytime and
nighttime found fish preferred the darker side of the raceway. At night, fish avoided the artificially
lighted side. In a separate study, juvenile salmon and steelhead (28 to 275 mm) were placed in an
aquarium and exposed to a light gradient. All species of downstream migrating salmon were found to
prefer the darker portion of the light gradient. However, the fry of some species exposed previously to
light (e.g., hatchery Chinook salmon) were attracted to the light.

In another series of tests, fish were exposed to multiple levels of light, water depth, and velocity
(Fields 1966). The levels of illumination were 0.31 and 40 ft-c and water velocities of 0.37 and
3.90 ft/sec. Results indicated that the fish generally avoided lighted areas, and fewer fish entered the
lighted areas as the light intensity increased. However, velocity had a distinct effect on the response to
light, with more fish found in lighted areas as the velocity increased. There was a species difference;
steelhead were the most sensitive to light, and Chinook salmon the least.

Hoar et al. (1957) measured the attraction/avoidance response of several species of fry and smolt
salmon (pink, coho, chum, and sockeye) to changing light levels. In the tests, fish had a choice of
lighted or darkened areas within the aquarium. They were exposed to either increasing light levels (5 to
1000 ft-c) or constant illumination (500 ft-c). The changes from one light level to the next were abrupt,
and the fish remained at that level for 10 minutes before the light level was increased or decreased. Light
levels used in the exposure were generally less than maximum sunlight; values given in the report indicate
1000 ft-c corresponds to light levels between 0900 and 1000 hours (Pacific Standard Time) in May in
Fort St. John, British Columbia. In no case was the response all or none; fish would pass between the
light and dark areas of the tanks. In general, the response to light was dependent on the species and age
(fry vs. smolt) of the fish. Chum and pink salmon fry showed a preference for light, while sockeye fry
retreated to darker areas and coho fry appeared to be indifferent to moderately high light levels and
inactive at low light levels. The smolt stage of both sockeye and coho salmon was associated with an
increasing sensitivity to light.

Puckett and Anderson (1988) conducted laboratory tests on juvenile Chinook salmon (average
length = 53 mm). The fish were exposed to an adaptation light (0.1 to 1 microeinstein/m?/s) for
20 minutes, then exposed to a stimulus light; behavior was monitored for 2 minutes. The intensity of the
stimulus light varied such that the ratio of the stimulus light to the adaptation light ranged from 0.005 to
100. Water was flowing during the experiments, but no measure of velocity was given. The study found
that juvenile Chinook salmon were attracted to light, and the strength of the attraction was related to the
ratio of intensity of stimulus to adaptation light. Maximum attraction was when the ratio was 1 and light
levels were 0.5 microeinstein/m?/s (which approximates moonlight). Attraction was less as either the
stimulus light increased relative to the adaptation light or decreased relative to the adaptation light.
Puckett and Anderson noted that when the stimulus light was brighter than the adaptation light, fish were
attracted to the dim zone that bounded the intense light spot. When the ratio was 100, fish were observed
to swim to the farthest reaches of the test flume.
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The behavioral response of juvenile coho and Chinook salmon to mercury lights was evaluated under
different pre-exposure light regimes (Nemeth and Anderson 1992). In these tests, fish were adapted to
one of four conditions: normal daylight, normal nighttime, and reversed day and reversed night. For
reversed day, the test raceway was darkened during the day, while for reversed night, the raceway was
illuminated at night. Fish were then exposed for an hour to a mercury vapor light. Light intensity in the
raceway varied from 100 microeinsteins/m?/s at 1 m to near zero at 8 m; the raceway was 8.8 m long.
Under ambient light adaptation, coho salmon hid during the day and swam actively at night when exposed
to mercury lights. Under reversed adaptation, there was no clear response; approximately half of the fish
were passive, while the other half were active (dark adapted during the day) or hiding (light adapted
during the night). For Chinook salmon, there was no response to lights during the day under ambient
lighting, while at night fish first actively swam toward the lights and then away. Under reversed
adaptation, Chinook salmon swam actively when the mercury light was turned on. Mercury vapor lights
emit in the blue-green range (450-550 nm) (Pauley et al. 1986).

A floating test platform in the Yakima River was used to evaluate the response of Chinook salmon
smolts to drop lights (Amaral et al. 2001). The movement of fish with respect to the lights was video-
taped under ambient daylight and dusk conditions. At night, additional low-level lights were used to
facilitate the video recording. Test conditions involved 1- and 2-minute exposures to lights, separated by
a rest period. In addition, the lights were either on continuously during the test or turned on/off every 1 or
15 seconds. Results indicated a weak avoidance, with fish generally moving less than 0.5 m further from
the lights when they were on. The authors mentioned there was no startle response and only a few
dramatic movements in response to the lights.

Kelly and Bothwell (2002) examined the response of juvenile coho salmon to UV radiation. In the
experiments, an outdoor test enclosure was covered with two solar exclusion panels, creating a binary
choice for the fish. The panels contained filters that allowed fish to be exposed to only photosynthetically
active radiation (PAR; 400-700 nm), PAR plus UV-A (320-400 nm), PAR plus UV-A and UV-B
(280-320 nm), and 50% PAR plus UV-A and UV-B. Results showed fish had a significant preference for
the absence of UV radiation. This preference was not evident on cloudy days when solar intensity was
half that under full summer sun. The avoidance of high light environments by juvenile salmonids has
been linked to a predator avoidance response, but it also could be an avoidance of harmful UV radiation.

An experiment evaluating fish (smolts of coho, Chinook, and steelhead) response to a bypass system
found that 70% to 90% of the fish preferred the side of the model constructed of clear Plexiglas (Wert
1988). When the Plexiglas was covered with opaque plastic, fish appeared to swim randomly within the
model.

A laboratory test of juvenile salmonid response to strobe lights found that, after an initial escape
response, fish were observed to maintain position or follow the penumbra (i.e., the edge between darkness
and intense brightness of the strobe light) (Hays 1988). No light levels were given.

Douglas (1983) conducted laboratory tests on the corneas of rainbow trout that were exposed to
150-W tungsten light and a monochromatic light. He found the light output of the tungsten white light
served as a broad-based band stimulus and tended to stimulate all types of visual receptors in juvenile
rainbow trout. This study also showed that rainbow trout have the ability to distinguish color.
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Field Studies

The University of Washington conducted field studies in addition to its laboratory work (Finger and
Fields 1957; Fields et al. 1958; Fields 1966). These studies focused on using lights to guide fish
downstream. In Minter Creek, a light barrier was tested and found to stop a large part of the downstream
migration. In this situation, the lights repelled the fish; however, if the fish were exposed to lights in low-
velocity areas (0.5 ft/s), then fish were attracted to the lights, albeit dim (0.015 ft-c). Tests at White River
bypass again found fish avoided lights; the degree of avoidance was dependent on the turbidity.

However, fish were attracted to a dim light (<0.015 ft-c) in both clear and turbid conditions. Also, light
attraction was obtained if fish were allowed to adapt to the barrier lights in low-velocity areas.

The remaining studies conducted by the University of Washington (Fields 1966) were at the McNary
and The Dalles dams. Most of the fish were Chinook salmon fry and smolts. Results from McNary Dam
point to an interaction between three factors: flow velocity, light adaptation, and light intensity. In 1959,
fish avoided a 200-W lamp placed in front of an intake structure. In 1963, fish appeared to not respond to
the light (with either attraction or repulsion). The main difference between the two years was flow, with
discharge in 1959 at 1150 cfs, while in 1963, discharge was 650 cfs. Fields indicates that avoidance of
lights was associated with high velocities. He postulated that the fish’s retina does not adapt fast enough
at higher velocities, and the primary response is avoidance.

A study conducted at McNary Dam in 1969 (Marquette et al. 1970) evaluated the effect of light on
passage of wild or naturally migrating coho, sockeye, and Chinook salmon, and steelhead trout smolts
from gatewells through orifices into the collection channel. The effect of illumination was evaluated at
both the gatewell and orifice; the gatewells were either covered or uncovered, while test conditions near
the orifices included ambient lighting, electrical lights (150-W halogen flood lamp), and total darkness.
The testing period ranged from 24 to 48 hours. For the 24-hour tests, the lowest retention in the
gatewell—3% for sockeye, 7% for steelhead trout, 14% for coho, and 26% for Chinook salmon—was
seen when the gatewell was dark and the orifice was lighted. For longer-term tests (36—48 hours) (all
with a darkened gatewell), Chinook salmon showed a preference for a lighted orifice (~75% passage rate)
while steelhead trout and sockeye salmon showed no preference for the light condition at the orifice. The
study recommended that all orifices be illuminated continuously with electric lights to help fish locate and
pass through these structures.

Brett and MacKinnon (1953) tested the response of juvenile spring migrating salmon to a bubble
curtain and lights in a canal that connected the Puntedge River in British Columbia to a powerhouse. The
lights were three sealed-beam headlights that were either continuously on or flashing at a rate on 1/sec.
Light intensity at the water surface was 3.5 ft-c. All experiments were conducted at night. Results
indicated lights, either flashing or continuous, were effective in diverting approximately two-thirds of the
fish from one side of the canal to the other.

Congleton and Wagner (1988) evaluated the stress response (i.e., plasma cortisol levels) in relation to
light intensity (and flume design) for migrating smolts of Chinook salmon and steelhead. At night,
plasma cortisol levels were higher for both species after passing through the flumes. During the day,
Chinook salmon smolts passing though the darkened flumes had the lowest cortisol levels, lower even
than the baseline. The highest plasma cortisol levels were associated with Chinook salmon going through
uncovered corrugated flumes during the day. For steelhead tested during the day, plasma cortisol levels
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generally increased for fish passing through the flumes, regardless of the light levels in the flumes. The
light levels during holding prior to testing were not given.

Studies at Wanapum Dam in 1989 tested the effectiveness of mercury lights to improve the passage
of juvenile salmonids. The lights were installed on the pier noses and spillway gates to a depth of 3 to
6 m during the nighttime period and monitored with hydroacoustics. The study found no statistical
differences in fish passage rates with the lights on or off. The authors suggest the results should be
considered inconclusive, based on the short duration and limited illuminated region (Coutant 2001).

Discussion

Rainey (1985) reviewed various design features of juvenile bypass systems including light. He
references Fields’ results (1966) and concludes that avoidance by juvenile fish is based on visual
response, touch, or perception of a change in hydraulic condition. Juvenile salmonids normally face
upstream during outmigration, and most migration occurs at night (2000 to 2400 hours).

While the studies indicate a variable response to light, the most compelling studies by Hoar et al.
(1957), Fields (1966), and Puckett and Anderson (1988) indicate the variability in response is probably
due to light acclimation and the intensity of the light. Generally, fish appear to avoid or be startled by
sudden exposure to intense light levels. Even studies that examined fish response to flows found fish
attracted to lighted areas (Wert 1988).

Results of behavioral studies of the response to juvenile salmonids to light (non-strobe) range from no
effect to attraction. As Hoar et al. (1957) noted, the response to moderate light intensities (i.e., less than
full daylight) was never complete attraction or repulsion. Fish swam in and out of the light and,
depending on species, age, and number of fish present, spent more or less time in the light.

Finally, Schilt (2007) indicates that “...with all behavioral methods it is important to be aware that the
visual system and hearing and all of the other systems operate in concert within themselves and among
each other and responses to a sound might be affected by light level, current, or any number of other
sensory factors.” The following factors have been identified as enhancing or limiting the response to
stimuli: genetic makeup (species and subspecies), life stage, season, time of day, light levels, presence of
predators, distance to cover, temperature, group size, noise regime, and current. He cautions that the
development of an effective juvenile fish passage system must be based on an understanding of fish
behavior.
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Chapter 2

Field and Laboratory Tests of Lights and Light Intensities
with Reference to Use in Gatewell Orifice Structures at the
Bonneville Dam Second Powerhouse

Robert P. Mueller

Background

The U.S. Army Corps of Engineers (USACE) has been using lighting associated with the orifice
locations at all Columbia and Snake River projects. The basic location and lighting used varies from
project to project, and no studies have been conducted to characterize the lighting environment or
determine if the lighting systems are effective at improving fish passage. During the 2007 fish passage
season, the halogen lights along the Bonneville Dam second powerhouse (B2) were replaced with light-
emitting diodes (LEDSs) for cost savings, lower heat output, and longer bulb life. A total of two lights are
used per orifice opening. Units 15 through 18 have one orifice each, while units 11 through 14 have two
orifices for each gatewell. The lights are easily accessed within the downstream migration (DSM)
channel. The lights are operated 24 hours/day during the entire fish passage season (April 1-December 15).
During the year, project biologists observed that the new lights had a much lower intensity and expressed
concern that the lower intensity and the green hue produced by the lights may not be providing adequate
light stimulus for fish in the gatewell to move to the regions where they could then be passed downstream
via the smolt bypass system.

As downstream migrating fish encounter hydropower projects, they are initially screened from
turbines and guided upward into the gatewell near the forebay (Figure 2.1). The objective of the initial
phase of the fish collection and bypass system is to safely guide migrants via intake screen to swim into
the gatewells and then exit into the collection channel via underwater orifices. The orifices are located
near the upper portion of the water column and near the corners of each gatewell. Early work by K. L.
Liscom, Bureau of Commercial Fisheries,® showed that more fish would enter the orifices at these
locations. Once fish enter the gatewell, it is important that they do not reside in these areas for extended
periods. Studies have shown that excess residency in this area can result in a variety of stresses, including
those from delay and crowding (particularly in gatewells equipped with standard-length submersible
traveling screens) and excessive descaling and injury (in gatewells equipped with extended-length
submersible bar screens [Ferguson et al. 2005]). Assessments of orifice passage efficiency (OPE) have
been conducted at several USACE projects using fin-clipped or PIT-tagged fish, with the percentage of
fish leaving the gatewell in 24 hours constituting the OPE.

® K. L. Liscom, Development and Evaluation of an Orifice System for Removing Juvenile Salmonids from Turbine
Intake Gatewells. 1966 unpublished report, Fish Passage Research Program, Bureau of Commercial Fisheries,
Seattle. Washington.
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The regionally accepted minimum level for OPE with submersible traveling screens installed is 70%.
However, because of the increased flows and higher turbulence in gatewells associated with extended-
length bar screens, OPE levels approaching 90% are probably more appropriate for gatewells with these
guidance devices (Ferguson et al. 2005). Studies at the B2 in 2001 using PIT-tagged fish showed an OPE
of 94% to 97% for yearling Chinook salmon and near 100% for subyearling Chinook salmon (Monk et al.
2002).

Bypass collection channel

Gatewell

o
Vertical barrier screen

Flow
Operating gate

Trashrack

Figure 2.1. Cross section of a typical Columbia River hydroelectric project illustrating the mechanical
bypass system

Methods

Field Study

Field measurements were made on October 31 and November 1, 2007, at the B2 in Gatewell 12A at
the south orifice. A custom-made trolley was lowered to the orifice opening via a rope and pulley system
attached to a framework that spanned the gatewell opening at the road deck. The trolley apparatus was
constructed from 1-in.-square aluminum tubing approximately 3 ft by 7 ft, with 2-in.-diameter caster
wheels attached at each end and 5-Ib lead weights at the corners to facilitate submergence (Figure 2.2).
An underwater camera with incorporated LED lights also was attached to the light sensor to verify the
sensor location at the orifice opening. All measurements were made during the daylight hours, with the
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top of the gatewell completely covered with canvas and plastic tarpaulins to eliminate ambient light and
simulate nighttime conditions. The orifice gate at the terminus of the orifice opening was closed during
the light measurements. The water turbidity was measured in nephlometric turbidity units (NTU) with a
LaMotte Model 2008 portable turbidimeter.

Figure 2.2. Support frame and weighted trolley used to deploy light sensor in Gatewell 12A

Four separate lighting conditions were evaluated. For conditions 1 and 2, the existing LED spot lamps
were tested with the water-scaled and new (clean) lens caps, respectively. For conditions 3 and 4, 90-W
halogen flood lights in the DSM channel were evaluated with the dirty and clean lens caps. All lamps
were placed in a light receptacle with a heat shield and placed 1 to 2 in. from the lens cap (Figure 2.3).

Figure 2.3. Light-emitting diode light installed above light tube at Orifice 12A South

2.3



Light Sensor

A calibrated underwater high-gain
luminance detector (International Light
[IL] Model SHDO033) was used along
with an IL Model 1700 research
radiometer/photometer. This sensor has
a broad spatial response and is capable
of detecting very low light levels. The
sensor has a spectral range of 470 to
700 nm, with peak sensitivity at
555 nm. The light detector outputs the
average light intensity in lux units. The
sensor was mounted to the trolley frame
and could be repositioned easily using a
locking slide sleeve fastened to 1-in.-
square aluminum tubing (Figure 2.4).
Calibration marks were made on the
framework to replicate sensor position
for each series of measurements.

Light Types

Two light sources were tested in the
field and in the laboratory. The LED
lamps currently in use at the B2
collection channel are manufactured by
LEDtronics, Inc. (Model R30). The
lights used previously were a standard 90-W Phillips halogen PAR flood lamp. A typical halogen light
spectrum peaks in the range of 650 to 950 nm (Figure 2.5). One LED flood lamp is installed for each
orifice tube. The specifications for each of these light sources are listed in Table 2.1.

Figure 2.4. Light sensor attached to trolley with
underwater camera for position verification

Orifice Layout

The B2 consists of eight turbine units, each with three screened gatewells open at the top and
measuring 4.1 ft wide by 23 ft long by approximately 50 ft deep (water depth). The water elevation
within the gatewell was at about 75 ft above mean sea level. There are two orifices in each gatewell at an
elevation of 65 ft mean sea level, each measuring 12.5 in. in diameter (Figure 2.6). The south orifice is
36 in. from the end wall; the north orifice is centered at 16 in. from the end wall. The orifice extends
30 in. and terminates in the dewatering channel in the DSM channel at an elevation of 67 ft mean sea
level. Each orifice has two light tubes, approximately 7 in. in diameter and 54 in. long, which are angled
upward and terminate in the DSM channel (Figure 2.7). Each light tube has a glass lens that seals the
upper end of the light tube. The exposed portion of the lens cap is subjected to the wet and damp environ-
ment of the DSM channel. This environment, in combination with the heat produced by the halogen
light, causes water scale and debris buildup on the lens, greatly diminishing the clarity of the glass.
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Figure 2.5. Halogen light spectrum

Table 2.1. Characteristics of light-emitting diode and halogen lights tested at B2 collection channel at
Bonneville Dam in 2007

Total Peak
Intensity Foot- Bulb Beam Wavelength Bulb Life
Model Emitted Color  (lumens)  Candles Angle (nm) (hr)
Light-emitting diode
R30-123-0AG-120AN Aqua green 390 2091 cd 15 deg 525 100,000
Halogen
Sylvania (90 W) White 1350 nfa 25 deg flood 710 2000-3000
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Figure 2.7. Top portion of light tubes in downstream migration channel with halogen lights installed

Results

Field Study

The water clarity was very good during the field measurement dates, with turbidity readings of 2.8
and 2.5 NTU and the Secchi disk reading of 7 ft at the Bonneville Dam forebay. Ambient light levels
were measured in the covered gatewell with the light sensor pointed upward at the water surface and at
2- to 4-ft intervals down to 12 ft. The values were found to be fairly consistent and ranged from 0.32 to
0.5 lux (Figure 2.8). When the sensor was oriented to point north across the gatewell, the readings fell to
0.08 lux at a depth of 12 ft. A separate measurement of 12.8 lux was made at the deck level under the
tarpaulins.

Orifice Lighting Characterization

Light intensity measurements for the LEDs with the sensor placed directly on axis with the orifice
opening and just off the axis were generally very low. Only a slight improvement was noted when the
dirty lenses were exchanged for the clean lenses (Figures 2.9 and 2.10). The highest value obtained with
the LEDs was 0.65 lux at a distance of 2 in. from the opening. In comparison, the halogen lights
produced the highest light level of 3.3 lux with the clean lens at the orifice opening, with a gradual loss of
intensity out to a distance of 24 in. With a dirty (water-scaled) lens, the light intensity of the halogen was
comparable to the LED light. When the sensor was 6 in. above the opening, the LED illumination output
was slightly higher than when measured directly on axis (Figure 2.10). This small increase may be the
result of light reflecting off the lower portion of the orifice and producing somewhat higher readings in
this region (Figure 2.10). A small increase was observed also for the halogens.
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Figure 2.8. Ambient light levels measured within covered Gatewell 12A at various water depths
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Figure 2.9. Light intensity measured at center of south orifice in Gatewell 12A for both light-emitting
diode and halogen lamps using the clean and dirty lens caps
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Figure 2.10. Light intensity measured 6 in. above top of south orifice in Gatewell 12A for both light-
emitting diode and halogen lamps using the clean and dirty lens caps

Additional measurements were taken with the sensor placed 12 in. from the south part of the orifice and
oriented toward the orifice opening. The illumination profile shows a general reduction in light intensity
out to at a range of 24 in. for the halogen and 18 in. for the LEDs (Figure 2.11).

Laboratory Tests

Laboratory tests were conducted to determine the intensity of the halogen, aqua green LED lamp, and
a mercury vapor lamp with a clean clear glass lens and a water-scaled lens retrieved from the dam and
used for the entire fish passage season (Figure 2.12). In addition to the halogen and LED flood lamp, a
100-W mercury vapor bulb was tested. The bulb was powered using an external ballast. Measurements
were taken in a darkened laboratory space on a bench top with the sensor placed on axis with the light at
54 in. The in-water measurements were taken using a small raceway in which the light was placed 30 in.
above the water surface with the sensor placed at a depth of 15 in. using clear water.

The results show a substantial decrease in the output of the lamps when the water-scaled orifice tube
lens cover was positioned at the light face (Table 2.2). The light loss was consistent for the LED and
halogen lights, with a decrease in light intensity of 5 to 6 times. The light loss for the mercury lamp was
only 2 times. Temperatures were taken at the face of each lamp to determine heat output. The resulting
values were 143°F for the halogen, 74°F for the LED, and 250°F for the mercury vapor bulb.
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Figure 2.11. Light intensity with light sensor 12 in. from south end of orifice, sensor pointed toward
north (toward orifice)

Table 2.2. Laboratory tests using three light sources in air and with light sensor in water using clean and
water-scaled lens at light face (all values in lux)

In Air (54-in. spacing)
Water-Scaled

Light Source Clean Lens Cover Lens Cover Light Loss Factor
90-W halogen 1811 365 5x
Aqua green LED 347 59 6X
100-W mercury vapor 670 334 2X

Lamp over Water (45-in. spacing with sensor 15 in. below water)
Water-Scaled

Clean Lens Cover Lens Cover Light Loss Factor
90-W halogen 2200 430 5.1x
Aqua green LED 550 86 6.3x
100-W mercury vapor 699 370 1.9x
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Discussion

Based on the field measurements at
a single orifice in Gatewell 12, the
existing light output from the LEDs in
the immediate vicinity of the orifice
opening was low, at approximately
0.1 lux with the dirty lens. Light output
for the halogen light with the dirty lens
was 0.25 lux at the opening. When the
water-scaled lenses were exchanged for
the clean ones, the readings rose to
0.6 lux for the LEDs and 3.25 lux for
the halogen. For comparison, 1 lux is
the amount of light produced by moon-
light at high altitude, and 10 lux is the
intensity of a candle at a distance of
1 ft. The halogen lights were far more
effective at producing illumination near
the orifice regions and outward to
approximately 16 in. on axis with the
opening where the values were similar
to background measurements (ambient
light). The LEDs were far less effective at producing an illuminated region; this was especially evident
when the water-scaled lens was used. When the sensor was positioned 12 in. from one end of the orifice,
light intensity for the halogen with the clean clear lens decreased by approximately a factor of 4, from
1.5 (on axis) to 0.35 lux at 7 in. from the opening.

Figure 2.12. Water-scaled orifice tube lens cover (left);
mercury vapor bulb with heat shield (right)

Water turbidity will influence to a large degree the illumination capability of any artificial light
source. Water turbidities during the bulk of the smolt outmigration in the spring would be expected to be
3-5 ft as measured with a Secchi disk. During the summer and fall, the water clarity generally improves
to 6-7 ft. During the field tests at the B2 for this evaluation, the Secchi disk value was 7 ft. Generally,
light at the longer wavelengths (red regions) would be better suited to penetrate the water than the shorter
wavelengths, and white light produced by the halogen lamp would also be well suited for more turbid
conditions.

The laboratory tests with the water-scaled lenses showed that the light loss for the halogen and the
LEDs was 5-6 times in air and with the sensor placed in water. Output from the mercury vapor lamp
when the water-scaled lens cap was placed at the light face was reduced by only a factor of two. The
drawback to using the mercury vapor and the halogen is the amount of heat produced by the lens (250°F
for the mercury vapor and 143°F for the halogen) and the reduced bulb life as compared to the LEDs.

2.11



References

Ferguson JW, GM Matthews, RL McComas, RF Absolon, DA Brege, MH Gessel, and LG Gilbreath.
2005. Passage of Adult and Juvenile Salmonids through Federal Columbia River Power System Dams.
NOAA Technical Memorandum NMFS-NWFSC-64, National Oceanic and Atmospheric Administration,
U.S. Department of Commerce, Washington, D.C.

Monk BM, RF Absolon, BP Sandford, and JW Ferguson. 2002. Evaluation of Intake Modifications at
Bonneville Dam Second Powerhouse, 2001. Fish Ecology Division, Northwest Fisheries Science Center,
Seattle, Washington.

2.12



Chapter 3

Recommendations

Based on the information obtained from the literature search, juvenile salmonids can be attracted to
illuminated regions during the nocturnal periods and can perceive light levels down to approximately
0.25 lux or 107 ft-c, which equates to the light produced by moonlight. At the other end of the spectrum,
previous researchers found that juvenile salmonids generally avoid or are startled when exposed to more
intense light levels that correspond to daylight conditions or near 400 lux (10™° ft-c). The existing
conditions for lighting placed above the orifice tubes in the DSM channel have proved to be less than
ideal for light to penetrate the light tube and illuminate the orifice region. Based on the review of
previous studies, a minimum luminance value of approximately 200-300 lux should be produced at the
immediate orifice entrance. While some studies have shown that this light intensity could possibly startle
test fish (when suddenly exposed) in controlled laboratory experiments, the values are expected to
become less intense within a short distance from the orifice. Also, the expected higher water turbidity
during the bulk of the spring outmigration would limit the light intensity.

Based on our study, some options for improving the lighting at the orifice entrances at the B2 include
the following:

1. Incorporate a ring of LEDs that would be recessed into the orifice opening, thus eliminating the need
for the light tubes. An automated cleaning system would also be required.

2. Incorporate the light source into the lens cap so that the cap and light housing is one waterproof unit.
This would allow for all of the light to be directed into the light tube and eliminate the water scaling
and debris-buildup issue, although water buildup could still pose a problem due to the splashing of
water upward into the light tubes. Cleaning of the light and cap assembly also would be simplified.

3. Incorporate higher-intensity LED lamps. Several manufactures have developed high output LEDS
which have been used in a variety of applications including automotive, flashlights, interior and
exterior lighting and many industrial applications. These relatively new modules provide almost 50%
more light (some up to 250 lux) than a standard 5-W LED bulb. The cool white version have an
expected 50,000-hour lifespan and have peak wavelengths of 440 and 550 nm.

To evaluate the effectiveness of any modification to the existing system, tests could be conducted in
which tagged fish are released in the gatewell with a light on/off scenario and the OPE evaluated.
Different lighting could be used to test to determine if white light or light emitted within the peak action
spectra of juvenile salmonids (blue-green region) is best for attracting fish near the orifice where the flow
component is sufficient for entrainment into the collection channel.

3.1



Appendix

Synopsis of Literature Reviewed
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