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ABSTRACT

The Department of Energy envisions the next generation very high-temperature gas-cooled reactor
(VHTR) as a single-purpose or dual-purpose facility that produces hydrogen and electricity. The Ministry
of Science and Technology (MOST) of the Republic of Korea also selected VHTR for the Nuclear
Hydrogen Development and Demonstration (NHDD) Project.

This research project aims at developing a user-friendly program for evaluating and optimizing cycle
efficiencies of producing hydrogen and electricity in a Very-High-Temperature Reactor (VHTR). Systems
for producing electricity and hydrogen are complex and the calculations associated with optimizing these
systems are intensive, involving a large number of operating parameter variations and many different
system configurations. This research project will produce the HyPEP computer model, which is
specifically designed to be an easy-to-use and fast running tool for evaluating nuclear hydrogen and
electricity production facilities. The model accommodates flexible system layouts and its cost models will
enable HyPEP to be well-suited for system optimization.

Specific activities of this research are designed to develop the HyPEP model into a working tool, including
(a) identifying major systems and components for modeling, (b) establishing system operating parameters
and calculation scope, (c) establishing the overall calculation scheme, (d) developing component models,
(e) developing cost and optimization models, and (f) verifying and validating the program. Once the
HyPEP model is fully developed and validated, it will be used to execute calculations on candidate system
configurations.

FY-06 report includes a description of reference designs, methods used in this study, models and
computational strategies developed for the first year effort. Results from computer codes such as HYSYS
and GASS/PASS-H used by Idaho National Laboratory and Argonne National Laboratory, respectively
will be benchmarked with HyPEP results in the following years.
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EXECUTIVE SUMMARY

The collaborators for this research project are KAERI, INL and ANL. The first project year has been used
to evaluate and select the program languages to use in developing the HyPEP computer code, to setup the
overall model/calculation requirements, to establish the hierarchical system/component modeling system,
to setup the Graphic User Interface, to setup the thermodynamic property calculation routines, and to
produce a HyPEP alpha version.

TASK 1/ALL: Identify major systems, components, and operating parameters, and establish the
calculation scope for HyPEP. The objective of this task is to define the scope of system modeling of
HyPEP by identifying and hierarchically categorizing the major systems, components and the operating
parameters of the NHDD and NGNP. The component hierarchy has been defined and the overview is
shown in Figure 1-1. The results form the basis of the plant modeling interface of HyPEP and help define
the thermal-hydraulic processes and phenomena to consider in HyPEP development. Three components
(node, link, and block) form the basic component from which all other components and systems are
derived. Each component or system is treated as an object in the program. Some properties and the
methods for the node and the link classes have been defined and implemented in the alpha version of
HyPEP.



Main System Sub System/Components Base Component

Prismatic Type VHTR T/H NODE
Reactor System Pebble Type VHTR
Gas Circulator T/H Link
Gas-Wat
Shell-Tube HX i3
Intermediate TH Block
Heat
(IHX) Gas-Molten Salt HX
Printed Circuit HX
Gas-Gas HX
Gas Turbine
Pre-Cooler
Inter-Cooler
Brayton Cycle
Compressor
Recuperator
Power Conversion Unit|
(=) Steam Turbine
Feedwater Pump
Rankine Cycle Condenser
Re-heater
Pre-heater
AC Generator
Electrolyzer
Separator
High Temperature Condenser
is System
(HTES) Gas-H20 HX
Molten Salt-H20 HX
AC-DC Converter
H2S04 Decomposition
Unit
Bunsen Reaction
Thermo-Chemical Unit
System HI Concentration/
(TCS) Decomposition Unit
Gas-Chemical HX
Molten Salt-Chemical HX

Figure 1-1. Hierarchical System/Component of HyPEP

TASK 2/KAERI : Devise the overall calculation scheme. The numerical solution scheme of HyPEP
has been formulated in this task. The outlines of the scheme is as follows:
1) The concept of the node-link-block is basic to the fluid/heat flow network scheme chosen for
development.
2) The node represents the thermal-hydraulic volume with scalar properties such as volume, mass,
molar or mass fraction of fluid specie, energy, pressure, temperature, and pressure drops.
3) The node component handles the chemical reactions via specialized components for the High
Temperature Electrolysis System and Thermo-Chemical System.
4) The link component models the flow between nodes and has such properties as mass flow rate,
pressure drop, and the scalar properties of the donor-node.
5) The block component represents the solid structures that conduct or generate heat.
6) The block component also provides models for the solid-to-fluid boundaries where convection
occurs.
The basic equations consider the transient mass and energy transport of multi-species fluid mixtures. The
equations are setup to conserve mass and energy for the nodes, and a flow relationship using the pressure
differences have been setup for the links. These equations have been discretized to evolve a general
numerical scheme for gas (or gas mixture) flow network. In the scheme the heat additions and heat
transfer through heat exchangers are handled by the blocks that represent the heat structures. General
thermo-dynamic routines based on correlations for gas and steam/water have been written for use in the
numerical scheme and these routines have been tested. In another effort, further thermodynamic property
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routines are developed based on table search with options for user added property tables. The coding of
the numerical scheme is in progress.

TASK 3/KAERI: Select modern high-level program language(s) for windows programming
environment. Four languages, Visual Basic, C#, Delphi and Fortran, have been evaluated and Delphi
program language has been selected as the main development language for the HyPEP development. The
language comparison is summarized in Table 1. In part, the selection was influenced by the possibility (or
need) to develop the HyPEP for the .NET environment. Whilst studying the program languages, it has
surfaced that the current Windows OS is to be superceded by the .NET Operating System, and this was
additionally considered in the language selection. Delphi is an object oriented version of the PASCAL
language and it has versions for the .NET as well as the win32 environment. As the HyPEP will have
strong hierarchical structure, the object oriented program language was deemed to best suit the
programming style. The multi-language development environment was also considered where the main
drive program will be written using the Delphi language, and sub-programs written in other languages
(Mainly Fortran) in order to take advantage of the large scientific libraries available in other languages.
Trial programs have been written to test the linking of the main-program and sub-program. More
specifically, the use of DLL (Dynamic Link Library) and the sub-program execution by the main-program
using the Windows API (Application Program Interface) with data exchange through input/output file
exchange.

Table 1-1. Comparison of Major Programming Languages

Features/Comments DELPHI C# Visual Basic Fortran
Base Language Pascal (o3 Basic Fortran
Win32 Version Delphi2005 C++ MS Visual Basic |Compagq, Lahey etc.
NET Version MS C#
Delphi2005 Borland C# MS Visual Basic Intel Fortran

Common Language Runtime etc.
OOPS Capability Very Good Very Good Good No
Structured Programming Good Good Good Poor
Body of ready-made scientific software Small Small Small Large
Code Reusability Good Good Fair Poor
Web Programming Capability (ASP)E?(:::(:iveX)) Good (AE::::X) Poor
Integrated Development Environment Good Good Good Good
Rapid Application Development (RAD) Good Fair Fair Poor

TASK 4/ALL: Develop component models. The development Graphical User Interface (GUI) for the
alpha version of HyPEP has been completed. A screen capture of the GUI for the HyPEP alpha version is
shown in Figure 2-1. The HyPEP alpha version is being programmed using the win32 version of the
Delphi language.
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Figure 1-2. Screen Capture of the HyPEP alpha

Various routines have been developed for the GUI and these routines include routines for component
generation and deletion, the drag-drop of components, on-screen manipulation of the components, the
automatic line generation for the link component, connection maintenance, and thermal hydraulic system
build up. The definitions for the object classes TNode and TLink (for Node and Link components) which
form the base components for the HyPEP alpha have been setup and are also being tested in the prototype
windows form.

The TNode and TLink Objects have been derived from the graphic objects of the main canvas using the
inheritance of the Object Oriented Program paradigm. In this way, the correspondence between the object
in the graphic canvas and the thermal-hydraulic component can be ensured. Preliminary component
templates have been created with a total of 32 components categorized into 9 component categories.

TASK 5/KAERI: Develop cost and Optimization Model This task is to be carried out in the year 2008.

TASK 6/ALL: Identify the program qualification methodology This task is to be carried out in the
year 2007~2008.

TASK 7/INL, ANL: System Integration: As part of system integration, INL and ANL developed high-
temperature electrolysis model and the power requirement for the HTE was calculated and implemented
into the codes being used. INL also calculated the sizing of all the heat exchangers in the coupled VHTR
and HTE. Results are presented in Appendix D in this report.

All tasks were performed on schedule and there are no concerns/issues.

Planned Activities

At the end of year 2006, it is expected that a working preliminary version (alpha version) of the HyPEP
program will be produced.
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Major R&D activities for the year 2006~2008 are as follow:

1)

2)

3)

4)

S)

6)

7)

8)

Basic Equation Setup and Numerical Solution Development: Robust numerical solution scheme
will be developed for the flexible network topology. Ancillary routines to obtain T/H properties, heat
transfer correlations, pressure drop correlations, etc. will further be developed and coded. The
numerical scheme will be coded to and produce a working code. The program coding will be based
on the object-oriented programming techniques. The verification and refinement of the numerical
scheme are planned for the third Fiscal Year.

GUI Development: GUI will be improved with trial user feedback and the bug-fixing will be carried
out. Main activity will be the further object class definitions to increase the number of components
and the component palettes. The HyPEP alpha version, planned to be completed by October 2006,
will be used to test the general behavior of the GUI and to acquire the user feedback.

Component Model Development: Component specific models will be developed for specialized
components. The models to be developed include 1) VHTR and IHX model, 2) PCU T/H Model
(Brayton Cycle), 3) HTES T/H Model, and 4) Thermo-Chemical Model (I-S Cycle). The Node, Link
and Block component will be further improved. The template for the palette, on-screen input/output
template for the component will be defined and developed.

NHDD System Model & Preliminary Calculation: With the alpha and beta versions of the HyPEP,
a simple NHDD System layout will be modeled and preliminary calculations will be carried out to
confirm integrity of the numerical scheme and the ancillary routines.

Component Sizing Model Development: Simple models will be developed to evaluate the
component sizing. As the model will basically rely on a database, main task will be the collection and
categorization of reliable database.

Cost Model Development: This model will be a very rough model. Simple model (based on
database) to calculate the overnight construction cost will be developed and an algorithm to develop
simple interest assessment will be developed and implemented.

HyPEP Verification & Validation: The HyPEP beta version, planned to be completed by October
2007, the assessments against established codes such as HYSYS , ASPEN, and GAS-PASS/H will be
carried out for the program verification and validation.

Development of System OptimizationMethod: A calculation method/procedure will be developed
for the optimization of a Nuclear Hydrogen Production Facility. The HyPEP beta version will be used
as the main tool in the method.

Results and Products

The major products of the first year of project are:

1) Document on HyPEP Introduction (due in October 2006)
2) Technical paper presentations at a number of conferences including:
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a. C.H. Oh, R. Barner, C. Davis, and S. Sherman, “Evaluation of Working Fluids in an
Indirect Combined Cycle in a Very High Temperature Gas-Cooled Reactor,” Accepted
(October 2006) for publication in Nuclear Technology in 2006.

b. C. H. Oh, C. Davis, Robert Barner, and Steven Sherman, “Design Configurations for Very
High Temperature Gas-Cooled Reactor Designed to Generate Electricity and Hydrogen,”
ICONE14-89868, the 14th International Conference on Nuclear Engineering, July 17-22,
Miami, FI., 2006.

c. C.H. Oh,R. Barner, C. Davis, and S. Sherman, “Thermal Hydraulic Analyses for Coupling
High Temperature Gas-Cooled Reactor to Hydrogen Plant,” the 13th International Heat
Transfer Conference in Sydney, Australia, August 13-18, 2006.

d. C.H. Oh, C. Davis, S. Sherman, and Robert Barner, “Thermal Hydraulic Analysis of
HTGR Coupled with Hydrogen Plant,” ANS Annual Meeting, Reno, June 4-8, 2006, pp.
621-622.

e. J. W. Park et al, “Development of Flow Net Solver for HyPEP: A Hydrogen Production
Plant Efficiency Calculation”, Proceedings of ICAPP’06, June 2006.

3) Alpha version of HyPEP code (due in October 2006).
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1. INTRODUCTION

1.1. Project Description

The Department of Energy envisions the next generation very high-temperature gas-cooled reactor
(VHTR) as a single-purpose or dual-purpose facility that produces hydrogen and electricity. The Ministry
of Science and Technology (MOST) of the Republic of Korea (ROK) also selected VHTR for the Nuclear
Hydrogen Development and Demonstration (NHDD) Project.

The objective of the FY-06 study is (1) to select a reference design that links the reactor, a power
conversion system and hydrogen process through an intermediate heat transfer loop (2) to identify key
requirements and assumptions, (3) to define methods to be used, (4) to provide ROK collaborators with
detailed models of system components such as heat exchanger and others with appropriate heat transfer
correlations for their HyPEP development.

HyPEP computer program will have the capability to model and to calculate the electrical
generation efficiencies of a Brayton or Rankine cycle, and the hydrogen production efficiencies of the
high temperature electrolysis and the S-I thermo-chemical cycles. The primary application of HyPEP will
be for the VHTR (Very High Temperature Reactor) coupled to hydrogen production plants such as
NHDD. The principal applications for HyPEP are in the scoping analyses on plant configurations, and the
optimizations on various design and operating parameters. HyPEP will be developed to run under the PC-
Windows environment and will use the Graphic User Interface (GUI) extensively to enhance user
friendliness. HyPEP will be available to support analyses for both the United States and Korean
governments.

1.2. Background

The abundant cheap fossil energy resources such as oil and coal fuelled the great technological
advances of the 19™ and 20" that have dramatically improved the quality of human life. However, the
massive use of fossil fuels has brought serious problems in pollution and global warming. In particular, if
the current rate of oil usage is continued, the oil is forecasted to be depleted in the 21 century. The
supply of high quality energy at a reasonable price is essential to maintain and improve the quality of life,
and there is an urgent need to develop energy resources to replace oil.

Hydrogen is being promoted as the future energy-carrier under the proposed “hydrogen economy”
scheme. Hydrogen is proposed to replace oil primarily in the transportation sector. Hydrogen may be
burned in an Internal Combustion Engine (ICE) or oxidized in fuel cells to provide the motive power.
Hydrogen is environmentally clean as the byproduct of hydrogen burn or oxidation is pure water.
Although hydrogen is the most abundant element in the universe, hydrogen in molecular form (H,) does
not exist in appreciable quantities on earth. Thus, it is necessary to produce molecular hydrogen from base
materials such as water or methane using energy from such primary sources as coal, solar, wind or
nuclear energy.

The Nuclear Hydrogen Initiative (NHI) calls for the demonstration of hydrogen production
technologies utilizing nuclear energy. The goal is to demonstrate hydrogen production compatible with
nuclear energy systems by way of scaled demonstrations, and then to couple a commercial-sized
demonstration plant with a Generation [V demonstration facility by approximately 2015. The process of
producing the hydrogen from water is highly energy intensive and the efficiency of the process depends
on different factors for different processes. The high temperature electrolysis and the thermo-chemical
cycles can produce hydrogen from water and these processes are being developed.



For the demonstration of hydrogen generation using nuclear power, the INL (Idaho National
Laboratory) in the US, and KAERI (Korea Atomic Energy Research Institute) in the Republic of Korea
have proposed the developments of the VHTR (Very High Temperature Reactor) and the NHDD (Nuclear
Hydrogen Development and Demonstration), respectively. The potential layouts of the VHTR and NHDD
are shown in Figure 1-1 and Figure 1-2.

Both plants use the VHTR (Very High Temperature Reactor) to supply the power, while they are
designed to use two different hydrogen production processes; the high temperature electrolysis and the I-S
thermo-chemical process. The VHTR is used because the high temperature is essential in maximizing the
hydrogen production efficiencies for both electrolysis and the thermo-chemical process.

In order to optimize the designs of such plant systems as VHTR and NHDD, it is necessary to be
able to evaluate the operating parameters and production efficiencies of various design layouts. The
presently proposed project aims to develop a computer program HyPEP to easily and quickly evaluate the
efficiencies and operating parameters.

Figure 1-1. Potential Layout of VHTR for Hydrogen Production.
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2. REFERENCE DESIGN

A reference design of a coupled nuclear reactor and hydrogen production plant has been
established to aid in the development of HyPEP. The reference design incorporates many of the systems
and components that HyPEP must eventually be able to model. The reference design is expected to be
representative of the eventual design and will be used to focus the development of HyPEP. The reference
design has not been optimized and many changes are expected between the concept described here and
any design ultimately selected for hydrogen production.

The reference design contains a high-temperature gas-cooled reactor that is used simultaneously for
the production of electricity and hydrogen. Less than 10% of the nuclear reactor’s thermal energy is
dedicated to hydrogen production, consistent with that expected in early demonstration plants, such as the
Next Generation Nuclear Plant (NGNP) (MacDonald et al. 2003). The power conversion unit (PCU)
utilizes an indirect electrical cycle based on the recommendations of the Independent Technology Review
Group (2004) for the NGNP. An intermediate heat transport loop is used to transfer heat from the nuclear
reactor to the hydrogen production plant and to provide separation between the nuclear and hydrogen
plants. Helium is used as a working fluid in both the secondary coolant system and the intermediate heat
transport loop. The hydrogen production process is based on the thermochemical sulfur-iodine cycle
described by Brown et al. (2003). A schematic of the reference design is illustrated in Figure 2-1.
Various systems are described in more detail below.

An alternative design is the high temperature electrolysis process (HTE). GA report (2002)
indicates that due to lack of thermodynamic models, GA was not able to regress the simple H,SO4/H,O
and GA did not even attempt to regress more complicated systems of HI/I,/H,O along with
H,SO4/HI/I,/H,0 in the S-I thermo chemical process.

Therefore, until the thermodynamic model is developed, the full-detailed ASPEN PLUS model on
the S-I process is not accurate when the ASPEN’s ELECNRTL thermodynamic model is used. Without
the thermodynamic model, HYSYS cannot be used for the S-I process model either. We expect to obtain
thermo-equilibrium data of the S-I process from CEA/Grenoble in France next year. Therefore, for FY-06
study, our research focus was in HTE process. A typical simplified model is shown in Figure 2-2.

The HTE process is simpler than that of S-I process. The detailed coupling of VHTR and HTE was
not included in the original proposal. In order to evaluate the potential hydrogen production performance
of large-scale HTE operations, INL has developed a detailed process flowsheet that includes all of the
components that would be present in an actual plant such as pumps, compressors, heat exchangers,
turbines, and the electrolyzer. Since the electrolyzer is not a standard HYSY'S component, a custom one-
dimensional electrolyzer model was developed and optimized for incorporation into the overall HYSYS
process flowsheet. This electrolyzer model allows for the determination of the operating voltage, gas
outlet temperatures, and electrolyzer efficiency for any specified inlet gas flow rates, current density, cell
active area, and external heat loss or gain. Then the model will be incorporated into the reference design
and the entire detailed major component sizing calculations can be performed. HYSYS calculations were
performed and some preliminary results are presented in this report.
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Figure 2-1. Schematic of the reference design of the integrated nuclear and hydrogen production plants.
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Figure 2-2. Schematic of the alternative reference design of the integrated nuclear and hydrogen
production plants.

The working fluid selection affects the cycle operating condition, the efficiency, and the size of the
unit-operation components, which will be a major factor for the system cost. Some fluids such as CO, are
not recommended for use in the direct cycle due to chemical reactions with the graphite matrix in the
VHTR core at temperatures greater than 550°C, due to heat transfer, neutronics impacts, or activation
concerns. For the indirect cycles, there exists a freedom to examine a number of working fluids. These
coolants will be examined to see if they provide improved efficiency, cost reduction or reduced
development risk when compared to a baseline cycle.

For this study, the following working fluids will be investigated:

Helium in the primary, the secondary, and the tertiary loop.

Molten salts in the primary and the tertiary loop

COs, in the secondary and tertiary loop.

A number of the power conversion unit (PCU) will be studied to determine if the best overall

configuration can be found. The PCU configurations to be examined are a recuperated gas Brayton cycle
and recuperated combined cycle.



2.1 Primary Coolant System

The primary coolant system is assumed to consist of a nuclear reactor, an intermediate heat
exchanger, and a circulator. The nuclear reactor is assumed to be a high-temperature helium-cooled
reactor. The reactor core is assumed to contain prismatic fuel blocks similar to those in the Gas Turbine-
Modular Helium Reactor (GT-MHR) (General Atomics 1996). Because of the expected simplicity of the
HyPEP reactor model, a pebble bed reactor could be simulated by changing the pressure drop across the
core.

The assumed thermal-hydraulic parameters for the primary coolant system are described by Davis
et al. (2005) and are summarized in Table 2-1.

Table 2-1. Thermal-hydraulic parameters assumed for the primary coolant system.

Parameter Value

Coolant Helium
Pressure, MPa 7.0
Power, MW 600
Outlet temperature, °C 900
Temperature rise, °C 400
Differential pressure, MPa:

Core 0.05

THX 0.05

2.2 Secondary Coolant System

The secondary coolant system of the reference design consists of a PCU that is arranged in parallel
with a secondary heat exchanger (SHX) that directs less than 10% of the reactor power towards the
hydrogen production plant. This arrangement corresponds to Configuration 6 recommended by Davis et
al. (2005) for an indirect electrical cycle.

The PCU contains a turbine, two compressors, and an electrical generator that are located on a
single shaft. The PCU also contains a recuperator, precooler, and another cooler located between the low
pressure compressor (LPC) and the high pressure compressor (HPC). Two compressors and coolers are
used to improve the efficiency of the electrical cycle. The thermodynamic states at various locations in
the PCU were determined by Davis et al. (2005) and are summarized in Figure 2-1. The PCU heat
exchangers were not sized. Although Davis et al. made assumptions concerning their performance, the
actual geometries of the heat exchangers were not determined.

The IHX and SHX are assumed to be printed circuit heat exchangers (PCHEs) with straight semi-
circular flow channels. The flow channels are contained within plates. Half of the plates are assumed to
contain hot fluid, while the others contain cold fluid. The flow path is characterized by the diameter of
the semi-circular channels, the pitch between adjacent channels in a plate, and the thickness of the plate.
Davis et al. (2005) assumed a channel diameter of 1.5 mm and estimated the pitch-to-diameter and
thickness-to-diameter ratios based on a simplified stress analysis. Although more rigorous stress
calculations would probably result in larger ratios, these estimates are considered to be sufficiently
representative to be used in the reference design. These inputs can be easily changed in HyPEP once



better data become available. Davis et al. adjusted the width of the front face of the heat exchangers,
which were assumed to be square, and the channel length to obtain the desired pressure drop in the hot
fluid and thermal performance. The resulting geometries of the IHX and SHX are summarized in
Table 2-2. Thermodynamic states were shown previously in Figure 2-1.

Table 2-2. IHX and SHX parameters.

Parameter IHX SHX

Nominal power, MW 600 50
Differential pressure (hot / cold), MPa 0.050/0.050 0.050/0.14
Heat exchanger width, m 4.77 1.51
Flow channels:

Diameter, mm 1.5 1.5

Pitch-to-diameter ratio 1.20 1.5

Thickness-to-diameter ratio 0.57 0.78

Length 2.26 1.11

HyPEP should be flexible enough to accommodate alternate PCHE designs. Specifically, the
options to account for zigzag, rather than straight, flow channels and different numbers of hot and cold
plates should be allowed. For example, Ishizuka et al. (2005) measured pressure drop and heat transfer
data for a PCHE in which the flow channels had zigzags. The PCHE also had half as many cold plates as
hot plates. These modifications result in a more compact, and presumably cheaper, heat exchanger than
would be obtained otherwise. It is likely that the eventual design will incorporate similar modifications to
enhance the heat transfer and reduce the size of the heat exchangers.

2.3 Intermediate Heat Transport Loop

The intermediate heat transport loop transfers heat from the nuclear reactor to the hydrogen
production plant and provides physical separation between plants, which should make the nuclear plant
easier to license. Estimates for the required separation distance between the nuclear and hydrogen plants
depend on the design and safety criteria applied and vary considerably. For example, Verfondern and
Nishihara (2004) calculated 300 m for the High-Temperature Engineering Test Reactor in Japan whereas
Sochet et al. (2004) recommended 500 m for the High-Temperature Reactor. Smith et al. (2005)
recommended a separation distance of from 60 to 120 m for the NGNP and the hydrogen production
plant. A separation distance of 90 m is used for the reference design based on the value selected by Davis
et al. (2005). The separation distance primarily affects the diameters and insulation requirements of the
hot and cold legs in the heat transport loop.

Based on the analysis of Davis et al. (2005), the hot and cold legs of the intermediate loop are
assumed to be separate pipes in the reference design. To limit stresses, the working fluid is assumed to be
low-pressure helium as shown in Figure 2-1.

Table 2-3 provides parameters for the piping of the intermediate heat transport loop. These
parameters are based on the analysis of Davis et al. (2005). Thermodynamic states are presented in
Figure 2-1.



Table 2-3. Intermediate heat transport loop piping parameters.

Parameter Hot leg Cold leg
Differential pressure, MPa 0.050 0.050
Heat loss, MW 1.25 0.54
Length, m 90 90
Inner diameter, m 0.443 0.412
Pipe thickness-to-diameter ratio 0.11 0.01

Liquid salts are more efficient for transporting heat over long distances than helium and thus may
ultimately be selected as the working fluid. Therefore, HyPEP should have the capability to simulate
liquid salts as potential working fluids.

The intermediate heat transport loop is assumed to be coupled to the hydrogen production plant
through two heat exchangers as shown in Figure 2-1. The first heat exchanger preheats and partially
vaporizes the H,SO,/H,O mixture. The mixture is fully vaporized by a recuperator that is located entirely
within the hydrogen production plant. The mixture is then heated up to its maximal temperature by a
process heat exchanger (PHX) that takes heat from the intermediate heat transport loop. The
thermodynamic conditions given in Figure 2-1 on the hot side of the preheater/vaporizer and the PHX
were taken from the values given by Davis et al. (2005). The thermodynamic conditions on the cold side
of these heat exchangers were based on the values given by Brown et al. (2003).

Davis et al. (2005) assumed that the PHX was a tube-in-shell heat exchanger, with the process fluid
on the tube side. Brown et al. (2003) assumed that the PHX was a PCHE. Lillo et al. (2005) did a simple
analysis comparing the relative surface area required for the catalyst versus that required for heat transfer.
For the tube-in-shell heat exchanger, the catalytic size requirements were somewhat more limiting that the
thermal requirements. For the PCHE, the size was definitely controlled by the catalytic requirements. In
fact, for reasonable channel diameters, the PCHE was actually larger than the tube-in-shell heat
exchanger. Thus, a tube-in-shell heat exchanger was selected for the PHX in the reference design.
HyPEP needs to have the capability to model tube-in-shell heat exchangers anyway because this type of
exchanger is common in PCUs and chemical plants.

PHX parameters are summarized in Table 2-4. These parameters are based the values given by
Davis et al. (2005). Note that the specification of PHX parameters is incomplete because the PHX has not
yet been sized to meet the thermal and catalytic requirements for coupling the intermediate heat transport
loop to the hydrogen production plant.

Table 2-4. PHX parameters.

Parameter Value
Tube inner diameter, cm 1.0
Tube thickness-to-inner diameter ratio 0.15
Tube pitch-to-outer diameter ratio 1.3
Tube pitch Triangular

Parameters for the preheater/vaporizer are not yet available. For the purposes of the reference
design, any configuration that results in thermodynamic states at the inlet of the PHX and the outlet of the
preheater/vaporizer on the hot side and the inlet of the preheater/vaporizer and the outlet of the PHX on
the process side would be acceptable.



2.4 Hydrogen Production Plant

The hydrogen production process in the reference design is based on the thermochemical sulfur-
iodine cycle described by Brown et al. (2003). As illustrated in Figure 2-1, the cycle is represented by
three sections. The first section represents the Bunsen reaction, which generates sulfuric and hydroic
acids and produces oxygen. The second section receives heat from the intermediate heat transport loop to
concentrate and decompose the sulfuric acid. The third section, which receives distilled water as a
feedstock, decomposes the hydrogen iodide and produces hydrogen.

General Atomics has been working on improving the thermochemical cycle. A report describing
the improved cycle is expected in April of 2006. It is expected that the thermochemical portion of the
reference design will be revised once the new results from General Atomics are available. As indicated in
Section 2, S-I process was not simulated in FY-06 due to lack of thermo-chemical equilibrium data.

The hydrogen production process in the reference design is based on the HTE. A research program
is under way at INL to simultaneously address the research and scale-up issues associated with the
implementation of planar solid-oxide electrolysis cell technology for hydrogen production from steam. A
typical electrolyte stack is shown in Figure 2-3. A 90 % (mole fraction) of steam and 10% hydrogen is fed
into the electrolyte at 850 C. Steam is converted to hydrogen at the cathode and oxygen is produced at the
anode that is swept out by air or other sweeping gas.

L. Steam/hydrogen

nletfyms

/ 1;'1

Air flow ™
passages

End plate <

power lead

Figure 2-3. Solid-oxide electrolysis cell (Hawkes et al., 2005).

2.5 Requirements
The selection of the reference and alternative designs imposes requirements that HyPEP must

satisfy if it is to be capable of representing the combined nuclear, PCU, and hydrogen plants. These
requirements are related to the working fluids, components, and phenomena that must be modeled. The
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working fluids, components, phenomena associated with the reference design should have the highest
priority for HyPEP development. The fluids, components, and phenomena associated with the alternate
designs can be added as needed or as time becomes available.

HyPEP must be able to simulate many different fluids to represent the combined plant. For the
reference design, these fluids include helium, sulfuric acid, water, hydrogen iodine, iodine, and hydrogen.
HyPEP must be able to simulate mixtures in which the concentrations of the various components vary as
a function of position to represent the thermochemical cycle. HyPEP needs to simulate additional fluids
to represent the alternative designs. These fluids for the IHTC include supercritical carbon dioxide,
nitrogen, and liquid salts.

The reference design contains the following components: a nuclear reactor, heat exchangers,
compressors, pumps, turbines, generators, separators, scrubbers, and other specialized equipment used in
chemical plants. The reference design includes PCHE and tube-in-shell heat exchangers. Alternate heat
exchangers, such as an offset strip fin type, probably need to be considered.

HyPEP should model various phenomena associated with the components described above.
Descriptions of important phenomena that HyPEP must simulate are provided below.

Nuclear reactor: The nuclear reactor will be modeled simply as a heat source with a specified flow
and pressure drop. The effects of these parameters on the overall efficiency of the plant need to be
accounted for, but internal details, such as fuel temperature, do not need to be simulated.

Turbomachinery: The most important phenomenon associated with these components is
efficiency. In order to perform optimization studies, HyPEP should be able to determine efficiency and
head as a function of flow and temperature.

Heat exchangers: Two important parameters associated with these components are heat transfer
and pressure drop. To simulate the heat transfer, HyPEP must be able to simulate the thermal resistances
associated with convection and heat conduction. The model should be able to account for the effects of
wavy channels in the PCHE on heat transfer and pressure drop. Either laminar or turbulent flow
conditions may occur. Multi-node models are probably required to represent heat exchangers in which
phase change occurs, such as steam generators, to account for the different heat transfer regimes including
forced convection to liquid, nucleate boiling and forced convection to vapor.
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3 HyPEP Development

3.1 Introduction

The viability of hydrogen as an economical energy carrier will depend much on how economically
the hydrogen can be produced. This in turn is linked directly to the efficiency of the hydrogen production
plant. It is therefore important to accurately evaluate the efficiency of the hydrogen production facility
and the overall cost of the hydrogen production. The overall efficiency of the hydrogen production
depends not only on the efficiencies of individual components but also how the plant system is
configured.

The HyPEP (Hydrogen Production Efficiency Calculation Program) is conceived to calculate the
hydrogen production efficiencies for different hydrogen production facility layouts. Y. J. Lee et al. aim to
design HyPEP to rapidly evaluate the overall hydrogen efficiencies for plant configurations that are built
on-screen by the user.

The HyPEP will have models and components that will be sufficiently sophisticated to allow build-
up of complex plant layouts with multiple hydrogen producing systems configured in parallel or in series.
In addition, simple basic cost-analysis and the component sizing models will be incorporated to allow
rudimentary estimation of the hydrogen production cost.

The HyPEP is being developed in three stages following the normal software development stages.
There will be two major developmental versions of HyPEP before the final version is developed. The
alpha version is basically the test bed for the program developers and will be very limited in capability.
Main purpose of the alpha version is to 1) examine whether the overall program structure is indeed
workable, 2) improve and bug-fix the GUI and the T/H system build up logic of the HyPEP code, and 3)
provide the platform on which to test the numerical scheme and 4) provide the platform on which the
model developers can test their numerical models. The first alpha version of HyPEP will be developed by
the October 2006.

The full implementation of system numerical scheme will conclude the alpha version development
and the next major developmental version, the HyPEP beta version, will be released to the test users. The
beta version is expected to be released by October 2007. The main purpose of the beta version is to 1) test
numerical performance through Validation & Verification, 2) provide platform on which to incorporate
the component sizing mode and the cost analysis model.

3.2 Features and Program Layout

The final version of HyPEP will be capable of :
1) The evaluation of
m  hydrogen production efficiency of the thermo-chemical processes

m  hydrogen production efficiency of the electrolysis processes

m  clectricity generation efficiency
2) The assessment of the component sizing for major components of the plant.
3) The estimation of the plant construction cost.

The primary application area of HyPEP will be the scoping analysis for plant layout optimizations.
However, the HyPEP is not conceived to be used for applications in plant transient analyses.
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The HyPEP is being designed in such a way to allow flexible modeling of the hydrogen production
plant layouts. For the Input/Output interface, major emphases are placed on the use of the GUI (Graphic
User Interface) features to make the HyPEP a very user-friendly application program. The user will be
able to construct most of the desired simulated plant system ‘on-screen’ using the plant system canvas of
the HyPEP. For this, the GUI will provide various component/system palettes consisting of multiple
pages of basic and pre-made components or sub-systems. The conceptual schematic layout of the canvas
and the component/sub-system layout is shown in Figure 3-1.
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Figure 3-1. Basic Layout of the HyPEP Program.

With HyPEP, users are able to build the simulated plant system by dragging and dropping the
necessary components or (ready-made) sub-systems from the component palettes onto the drawing
canvas. The user then uses the link-class components to connect the components or sub-systems on the
canvas. The user can activate the on-screen pop-up menus (e.g. by right-clicking the components) to enter
the necessary inputs. All these functionalities are accomplished by extensively using the GUL

In later developmental versions, the palettes of the often used components and the ready-made
systems are to be provided to simplify the input process. The thermal hydraulic calculations will be
carried out as the inputs are completed and the major thermo-hydraulic parameters will be displayed on-
screen as they are calculated. Other T/H parameters will be displayed in output windows as well as in the
component information windows.

The resulting thermodynamic states and the consumption and the generation of the hydrogen,
electricity and the heat of each component can be accessed via right clicking the components which will

bring up the sub-windows (or menus) with relevant inputs and calculated outputs.

The HyPEP carries out the bookkeeping on the total electricity, heat and the hydrogen used and
generated in the system to estimate the overall hydrogen production efficiencies.
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3.3 Program Structure

The HyPEP is being developed with hierarchical program and the data structures. To design the
overall structures, it was necessary to first identify and hierarchically categorize the major systems,
components and the operating parameters of the foreseeable nuclear hydrogen production plant designs.
The results have been used to establish the hierarchical system/component data structure which defines
the thermal-hydraulic processes and phenomena that need to be considered in HyPEP. Thusly, the basis of
the plant modeling of HyPEP has been established and the established modeling basis has been used to
design the component/system palette.

For the nuclear hydrogen production facility, the major system components that form the top-tier
hierarchical group include Reactor System for the generation of nuclear power, Power Conversion Unit
(PCU) for the electricity generation, and the High Temperature Electrolysis System (HTES) and Thermo-
Chemical System (TCS) for the hydrogen generation.

The top-tier components contain sub-systems and/or components. The Reactor system will include
as its sub-systems and components, the pebble type VHTR, prismatic type VHTR, Intermediate Heat
Exchanger (IHX), and gas circulator. The PCU system will include the Brayton cycle, Rankine cycle, and
electricity generator. The Brayton cycle will include gas compressors, gas turbines, a recuperator and
coolers. The Rankine cycle will include steam generator, steam turbine, condenser, pump, reheating and
superheating circuits. The HTES will include heat exchangers, electrolyser, AC-DC converter, condenser,
separator, gas circulator, and water pump. For the current project, the TCS will only consider the I-S
thermo-chemical process. The I-S thermo-chemical process will include the H2SO4 decomposition unit,
Bunsen reaction unit, HI concentration/decomposition unit, gas circulator, water pump and heat
exchangers.

The hierarchical form of program/data structure is well suited to take advantages of the Object
Oriented Programming (OOP) techniques described by Bertrand Meyer, and the HyPEP will be
programmed using the OOP techniques. The OOP has the advantages in the 1) Code robustness and fault
tolerance, 2) code reusability, 3) program security, and 4) Code extensibility. In HyPEP, the components
and the sub-systems of the simulated plant system will be represented by the ‘objects’ in the program.

An object is defined via its class, which defines and determines the properties and the methods
about an object, and the objects are the individual instances of a class. For example, an object named
‘helicalHX’ can be created (or “instantiated”) from the class “THeatX.” The “THeatX” class defines what
a heat exchanger object is, that is, its data structure and all the methods (or actions, functions) that it can
perform. For HyPEP, a library of object classes matching the hierarchical data/component/system
structure will be built (or programmed) using the inheritance and the polymorphism features of the OOP.
The inheritance and the polymorphism features of the OOP will facilitate easy derivation of other object-
classes from the parent class.

The inheritance feature allows easy creation of sub-classes (or children class) of an object-class.
The polymorphism feature allows easy creation of variations of an object class.

For example, the “TPrintedCircuitHX” class can be created from the “THeatX” class using the
inheritance feature of the OOP by adding properties (data) and methods (routines) specific to printed
circuit heat exchanger to the generic a heat exchanger class “THeatX”. Whereas, the
“TPrintedCircuitHXwithSquareCrossSection” object class can be created by changing the heat transfer
coefficient calculation routine (Object’s method) of the “TPrintedCircuitHX" class to that specific to
square cross section.
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In order to effectively write and to maintain the HyPEP program, use of a modern programming
language with Object Oriented Programming (OOP) features will be pursued. The inheritance,
polymorphism, and encapsulation provided in OOP languages are well suited in modeling the hierarchical
structure of the system and component models of HyPEP.

For the Microsoft Windows® operating system, a number of excellent development environments
with modern OOP languages exists. Examples are the Microsoft Visual Studio development environment
for Visual C++ and Visual Basic, and Delphi® for the rapid application development environment.

The factors to consider in the language selection are;
1)  Windows programming capability.
2) Ease-of-use in application of windows API (Application Program Interface) functions
and procedures.
3) Rapid program development environment.
4) Code reusability.
5) Code robustness and fault tolerance.
6)  Code extensibility.
7) Amenability to interface with other program languages.

At present, it is also open to option to program the HyPEP for the .NET environment. The major
advantage of the .NET environment is that the language dependence can be largely eliminated.

3.4 HyPEP Overall Numerical Scheme

The thermal hydraulic formulation of the HyPEP is based on the conservation of mass and
energy equations and models for the flow network of multi-species fluid systems. The flow network is
made up of systems and components. For the hydrogen production systems, the HyPEP needs to consider
mass and energy conservation of multi-species fluid that undergo chemical reactions. In HyPEP,
simplified form of the mass and energy transport equations are applied for different chemical species.

The node-link-block comprise the basic Flow/Heat Network for HyPEP. The node is used to
represent the thermal-hydraulic volume with scalar properties such as volume, mass, molar or mass
fraction of fluid specie, energy, pressure, temperature, and pressure drops. However, the node component
is not designed to handle the chemical reactions. The chemical reactions are handled by specialized
components in HTES and TCS. The link represents the flow between nodes and has such properties as
mass flow rate, pressure drop, and scalar properties of the donor-node. Block component is used to
represent the solid structures that conduct or generate heat. Block component also provides the solid-to-
fluid boundaries where convection occurs.

The basic equations consider the steady-state mass and energy transport of reactive multi-species
fluid mixtures. The equations have been setup to conserve mass and energy. Thermo-dynamic tables for
the fluid mixtures have been setup and the procedures for calculating the properties from the correlations
have been devised. However, fast and efficient routines will be devised based on the property table search
to improve the execution time. The thermal hydraulic property calculation routines (based on correlations)
for the following fluids have been coded and tested:

1) Hydrogen
2) Water

3) Steam

4) Oxygen
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5) Carbon dioxide
6) Air
7 Nitrogen.

In addition, to allow user to add fluids, options will be provided for the user to add property tables
via external input files.

The node-link-block network scheme and the basic equation setup will be integrated to devise the
overall numerical solver. The numerical scheme will be devised to ensure conservation of the mass and
energy of the systems and components. The numeric solver will be developed principally for the steady-
state operation but with the provisions for further extension to include mild transient calculations.

The flow net of HyPEP will contain all major components associated with the hydrogen generation
facility. The user will build the electronic representation of the flow net using the Flow Net Builder which
is a part of the HyPEP GUI, which will process the user-specified component data and the boundary
conditions.

The Solution Matrix Generator, then, utilizes the electronic flow net and produces the solution
matrix which is determined by the discretized form of the flow governing equation. The temporal part of
the discretized governing equation will be able to characterize the transient behavior of the flow net.
However, for the steady-state condition, the flow net can be solved by using solely the spatial part. The
Solution Matrix Generator is able to generate both the temporal and the spatial parts from the information
of the electronic flow net. The Flow Net Solver employs solving techniques which can be categorized by:
1. the iteration of the solution matrix 2. the direct inversion of the solution matrix 3. the iteration with
minor flow modifiers. In general, the flow net can be conveniently solved by using the iterative method
when the diagonal dominance is guaranteed.

The diagonal dominance of the solution matrix, therefore, should be checked before choosing the
solution strategy. Most of flow net with simple topology will exhibit diagonal dominance. For the flow
net of complex topology, the iterative method may not be used. When the solution matrix does not show
diagonal dominance, the Solution Strategy Chooser will pick the direct inversion or the iterative method
with minor flow modifier.

After all the thermodynamic conditions are calculated, the production and the consumption in each
component for hydrogen, electricity and the heat will be evaluated to assess the plant hydrogen

production efficiency.

The discretized form of the flow-net solution scheme developed with the view to implement in
HyPEP is presented as follows:

For the FlowNet solver, following method can be adopted as the numerical scheme. For a simple
fluid connection layout basic continuity equations are set up :

f
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Mass Continuity (for node)

N/

0 ~
8_6 =2 A+ S,V G-1)
=

Energy Continuity (for node)

oph) <t~ 7
Ve T LA 8
=
oh 0 S~
or, V(pa +h8_/t)J = z A u + S,V (3-2)
Jj=1

For the consideration of the velocity the simple flow relationship is used rather than the momentum
conservation equation. This will simplify the solution method greatly as the detailed considerations of the
momentum correlations are not needed.

Flow Relationship (for link j)

B = (B B)+ AP + AR, (-3)
where
V' =volume of node (m3)
u = fluid velocity(m/ s)
p  =density (kg/m’)
P =density of donor node (kg /m’)
h  =enthalpy (Joule/ kg)
hoo= enthalpy of donor node (Joule/ kg)
A; = flow area of link (m*)
N, =Total number of links connected to a given node (N ; > 0)
S =volumetric mass generation rate (kg /nm’/s)
S, =volumetric enthapy generation rate (kg /m’/s)
fr =total flow resistance (form+ friction+drag +...)
APy ree = DrEssure source such as from pumps or circulators
AP ..~ =other pressure gain (or loss) e.g. gravity
Discretize equation (3-1) and rewrite as :
AP TR PV
~ (o1 = pi)= ;p,- A uit + SV, (3-4)
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Discretize equation (3-2) and rewrite as :

Vi n(pntl g Vl n n+ n -
Epi(hil hl) Ah( ) thAu LS (3-3)

Taylor expand p terms of P and h, and approximate to first order terms :

pin+1 _ pin +[Z_,Zjn (hin+1 _hin) (2_?) (Pn+l Pln) (3-6)

Substitute Equation (3-6) in Equation (3-4) :

Vi Op ! e n 8,0 pr < u'™ n
2 <h¢-hf>+(apj< E >} ;

where
éhinJrl — hinJrl _ hin
SP™ = P p

Substitute Equation (3-6) in Equation (3-5) :
V. +1 v, 8,0 ’ +1 ap} +1 n+l
—Lp'oh"™ +—Lh"|| — | oh' — | P |=S, V. + "h A u;
Atpl i At z[(ahjl i 8P hi' i Zp

V 6,0 n+l 810 n+l n ~n n+l
, '+ h oh'" +—Lh OP"™ =8, V. + h 4, 3-8
o At{ (ahn By ’[apj hi Zp uy G)

i

Put Equation (3-7) and (3-8) in Matrix form :

|:a11 a12:| &HH} |:S1:|+§ [Clj:|u;7+1 (3-9)
ay, Ay op™! A =] C2j !
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Equation (3-9) can be re-written as
éhm-l S N/ Cl )
A + T lum™ (3-10)
a3l ]}

Find inverse of [A] and multiplying both sides :

éhinﬂ N C "
(3] B e )]
or |:éhn+l:| |: :|+ N {|:¢1/:| n+1} (3_11)
épml 02 = ¢2/

where

AT = o, ap 0, —[AT o Sl ¢1j =[AT e Clj
A= Oy Oy ’ 0, ~l S, ’ ¢2j - G,

Collecting pressure terms only,

-

N/
B =0+ Y Ay ") (3-12)
=1

Now Equation (3-3) can be discretized and re-written as

n+l n+l n+l
uj Nn n [( from J Pto L] ) +AP from,source, j + AI)L’xtra,j:I
fT /
2 n+l n+l n n
f ~n n [(Pfrom,j jrom /) (Pto N Pto j) + (})jrom J to /) +AP from,source, j + APextra,j
r.iPiY;
_ n+l n+l
_n/(é])/rom/ _éPtOJ )+H_j
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where

y = 2
J ~n, n
TriPju;
n n
9]’ = 77/ ' [(mem,j - })t(),j) + APﬁ*om,.mun‘e,j + APextm,j]

Substitute Equation (3-12) into Equation (3-11) gives Pressure Equations for a node :

N/
P =0, + 3 { (0, (5P  — P+ 6, )]
j=1

N

J

N,
or, P =3{4,m, P —SP Y =0y + > 4,6, (3-14)
=

J=
Using Equation (3-14), setup (n x n) Pressure Matrix and solve for pressure.
then, use Equation (3-12) to calculate velocity as :

new u'" =n.(6P,  —O6F, )+, (3-15)

Srom, j 10,j

With new velocity and Equation (3-11), calculate new enthalpy :
N;
H =+ (g, u (3-16)
J=1

Now, all unknown variables have been calculated for the new time step.
Using new variables, thermal hydraulic states at the new time step can be calculated.

The time step calculations are repeated until satisfactory convergence in velocity, pressure and

enthalpy are achieved. The single fluid equations will be extended to multi-specie fluid equation by
considering the molar fractions and the partial pressures.
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4 MODELS

An appropriate level of detail is an important consideration in the development of models for
HyPEP. The code will be used to predict combined plant efficiency under two scenarios. The first is early
in the project when scoping studies among design options may be performed; the second is later in the
project when optimization of a particular design choice is performed. The quality of the prediction is
determined by three factors: the phenomena to be modeled, the quality of the models, and the degree of
spatial resolution. Engineering judgment will be used to determine the quality of prediction needed and to
estimate the model uncertainty. Methods exist to more rigorously asses the level of model detail needed
but they were developed for final safety analysis (Boyack 1990) and can require man-years of effort

4.1 Component and System Models

For HyPEP, high quality system and component models are essential. As previously stated, these
systems and components will form the basis of the hierarchical system/component palettes.

One of the major functional requirements for the HyPEP is the flexible system build up. The
HyPEP will have the capability to easily and flexibly model the plant system layout. To facilitate user
friendly and flexible plant configuration modeling, component palettes are used. The user can select
components or sub-systems from the palettes to build up the plant configuration using the
drag/drop/connect feature. The components are designed to have a hierarchical structure, for example, the
top-tier palette may contain VHTR, IHX, PCU, HTES and I-S components. These top-tier components
will each be able to contain sub-components such as circulators, heat exchangers, electrolyzer, etc.
General purpose components such as heat exchangers, nodes, links, and blocks will also be provided. The
program will employ a graphic user interface extensively to enhance the user friendliness in modeling the
system, preparing the input and to view the results. The system will be built by drag-dropping a
component from the palette to the drawing canvas and then connecting them using the link component.
Each primitive component (TNode and TLink) will have, associated with it, an on-screen input window to
configure the component in detail.

The main work is to develop detailed thermal-hydraulic models for the components and to
incorporate these into the model palette for the drag-drop-connect scheme to work. In order to realize
such scheme, the OOP language issued. It is anticipated that the inheritance and the polymorphism
features of the OOP language will greatly facilitate the creation of hierarchical component system.

A database will also be setup for the design parameters of various components and systems. For the
reactor system the publicized design or operational data of the PBMR of South Africa, HTR-10 of China,
HTTR-30 of Japan, and THTR and AVR of Germany will be good references. For the IHX, various
designs are to be considered and the design data will be referenced from manufacturer’s data sheet. For
the PCU, the design data of PBMR, HTTR-30 can be referenced. For the I-S thermo-chemical process,
the efforts of JAERI (Japan Atomic Energy Research Institute) are expected to provide relevant data. For
the high temperature electrolysis, findings of various on-going researches are expected to provide
necessary base data.

Base Components
The base components are the simplest of all components. They will include the node, link and the

heat block components. These base components will be the top-most ancestor to other ‘derived’
components.
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Node component (TNode)

A node component represents a volume of fluid having properties such as the pressure, temperature,
density, molar composition, etc. The physical dimensions of a node are defined by the volume, height,
inclination angle, the inlet ports, and the outlet ports. The node component is modeled using the TNode
class in the OOP language.

Link component (TLink)

A link component represents the flow paths. The T/H properties of the link component include the
fluid flow rates, and the pressure drop. The link component connects to the inlet or the outlet ports of the
node-type components. The physical modeling of a link component is defined by the from-node, to-node,
and the flow area. The fluid composition of the from-node and the to-node should be identical (i.e., no
chemical reaction or heat exchanges in the link component). The link component will be modeled using
the TLink class in the OOP language.

Heat block component (THeatBlock)

A heat block component represents the solid structure that thermally interacts with the fluids. The
heat exchanger tubes, reactor vessel walls, heaters, heat losses will be represented by the heat block
component. The heat block component will be modeled using the TBlock class in the OOP language.

TH System component (TSystem)

A TH System component represents the connected nodes and links that form a complete system.
The system component contains all necessary details to carry out the TH numerical calculations. There
may be more than one system in the overall plant, and any two systems may be thermally connected via
the heat block component. As an example, the primary system of a reactor system can form the first TH
system whereas the secondary system can form the second system. The two systems are connected via the
Heat Exchanger (Steam Generators in PWRs, IHX in Gas Cooled Reactors). In numerical sense, each
system forms a pressure solution matrix of size NxN where N is the total number of the node component
in any given system.

Chemical node component (TChemNode)

A chemical node component models the components where chemical reaction occurs and this
component is derived from the TNode component using the inheritance feature of the OOP. In this
component, chemical reactions are modeled. Thus, the mass and energy fractions of the fluid species are
allowed to change. This component will be used to model such component/system as the electrolyzer of
the high temperature electolysis unit, and the Bunsen reaction, H2SO4 decomposition, and the HI
decomposition units of the I-S thermo-chemical unit. In addition to the inputs required for the node
component, the chemical reactions that occur in this component need to be defined and supplied by the
user. The chemical node will be modeled using the TChemNode class created by inheritance from the
TNode class.

Reactor System Components
The reactor system components will include the specialized components for the pebble bed reactors
and the prismatic reactors.

Reactor component (TReactor)

The reactor component models the nuclear reactor. The component includes the specialized
components for the pebble bed reactors and the prismatic reactors. For the hydrogen production
efficiencies, the main differences of the reactor systems to consider are the core and vessel pressure drops.
The pebble bed reactor component and the prismatic reactor component will have empirically derived
correlations suitable to each design for estimating the core and vessel-wide pressure drops. The base
reactor component will consist of a node component to represent reactor volume, and a heat block
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component to provide the nuclear power.

Gas circulator component (TGasCirculator)

The gas circulator component is a specialized model component and will have the empirical
formulae to calculate the power requirements and the developed pumping head. User inputs will include
the efficiency of the circulator, the mass flow rates and others inputs needed for the estimation of the
sizing and the cost.

Heat Exchanger Components
Heat Exchanger (THeatX)

A wide variety of heat exchanger types can be installed in a nuclear hydrogen production system.
The THeatX component will be the base heat exchanger component and will contain the data and the
methods of a generic heat exchanger. This component will consist of two node components representing
primary and the secondary side volumes, and a heat block components. The primary and the secondary
fluids may be different. Thus, Helium-Helium, Helium-CO2, CO2-Helium, etc. heat exchangers can be
modeled.

Shell-Tube Type Heat Exchanger (TShellTubeHeatX)
This component will have thermo-dynamic empirical correlations, and the sizing and cost analysis
models suitable for the shell-tube type heat exchangers.

Plate Type Heat Exchanger (TPlateHeatX)
This component will have thermo-dynamic empirical correlations, and the sizing and cost analysis
models suitable for the plate type heat exchangers.

Printed Circuit Heat Exchanger (TPrintedCircuitHeatX)
This component will have thermo-dynamic empirical correlations, and the sizing and cost analysis
models suitable for printed circuit type heat exchangers.

Helical Heat Exchanger (THelicalHeatX)
This component will have thermo-dynamic empirical correlations, and the sizing and cost analysis
models suitable for helical tube type heat exchangers.

PCU Components

PCU components will include Brayton cycle component and the Rankine cycle component. Reheats
and the superheating circuits may be modeled using the base components of HyPEP. However, user can
design combined cycles and then save the layouts as a user-defined component. The PCU components
will calculate the electricity generation efficiencies.

Brayton Cycle (TBrayton)
This component will model the Brayton Cycle and will contain the following components :
- Gas turbine component (TBraytonGasTurbine)
- Compressor component(TBraytonCompressor)
- Pre-cooler component(TBraytonPreCooler)
- Inter-cooler component(TBraytonInterCooler)
- Recuperator component(TBraytonRecuperator)

Rankine Cycle (TRankine)
This component models the Rankine Cycle and will contain the following components :
- Steam generator component(TRankineSteamGenerator)
- Steam turbine component (TRankineSteamTurbine)
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- Condenser component(TRankineCondenser)
- Pump component(TRankinePump)

Generator (TRankineGenerator)
This component models the electricity generator.

HTES Components

HTES components will be provided to model the High Temperature Electrolysis System. The
HTES will be formed by the Electrolyzer, Separator, Condenser, AC-DC Converter, Heat Exchanger, etc.
components.

Electrolyzer (THTESEIlectrolyzer)
This component models the electrolyzer. The chemical reaction of the electrolysis will be modeled
in this component.

Separator (THTESSeparator)
This component models the separator. A model will be developed to separate the various chemicals
(hydrogen, oxygen and steam).

Condenser (THTESCondenser)
This component models the separator. A model will be developed to separate the various chemicals
(hydrogen, oxygen and steam).

AC-DC Converter (TAC_DC)
This component models the conversion of AC current into DC needed by the HTES.

Thermo-Chemical Components

Thermochemical components will include the I-S models. [-S models will consist of the H2SO4
Decomposition component, Bunsen Reaction component, HI concentration/Decomposition component,
Heat exchanger component, etc.

H2S04 Decomposition (TH2SO4Decomposition)
This component models the conversion of AC current into DC needed by the HTES.

Bunsen (T Bunsen Decomposition)
This component models the conversion of AC current into DC needed by the HTES.

H2S04 Decomposition (TH2SO4Decomposition)
This component models the conversion of AC current into DC needed by the HTES.

The details of the steam generator model for the combined cycle is summarized in Appendix A.The
details of the electrolyzer model, HTE process model that includes pressure step-up unit, pressure work-
recovery unit, boiler with non-condensable gas streams, condenser with non-condensable gas stream,
single phase heat exchanger, fluid properties, component inter-connections, and a GAS-PASS/H
simulation are listed in Appendix B.
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4.2 Component Sizing Models

Component sizing models will be developed for the important major components. For the
components with the sizing models, the components will be defined in such a way as collection and
categorization of cost models for various major components and systems. With the component cost
models incorporated, the cost model for HyPEP will be further developed to estimate the overnight cost of
the system.

The major components with component sizing models will include:
- Heat Exchanger components

- Gas circulator components

- Electrolyzer components

The method for sizing heat exchangers is given by Davis et al. (2005). Basically, the method
requires the basic geometry to be input. For a PCHE, the basic geometry includes the diameter of the
semicircular flow channel, the pitch-to-diameter of the channels, and the plate thickness. Iterations are
then performed on the size of the heat exchanger until it provides the desired amount of heat transfer and
pressure drop on one side of the heat exchanger.

Pipe components can be sized to produce the desired amount of pressure drop for the given length,
flow rate, and thermodynamic conditions in the pipe.

Turbomachinery size can be estimated from the power produced or consumed by the component.
The cost of new turbomachinery can be scaled from the cost of existing machines if the changes in power
and operating pressure and temperature are known. Dostal et al. (2004) used this method to estimate the
cost for turbomachinery in a Brayton cycle that utilized supercritical carbon dioxide. Thus, the power and
operating conditions should also provide an indication of component size.

Sizing calculations and results are shown in Appendix D.

4.3 Cost Analysis Model

In this task, models for overnight capital cost and component cost are to be developed. As the
determination of the “true cost” of a nuclear plant requires consideration of a large number of empirical
and difficult-to-establish factors, the models to be developed will be very simple models. The developed
models will essentially provide rough guidance on the economics of various plant layouts.

The cost analysis model will involve collection and categorization of cost models for various major
components and systems. With the component cost models incorporated, the cost model for HyPEP will
be further developed to estimate the overnight cost of the system.

An optimization model will also be developed. A scheme will be provided by which the
optimization can be performed by a large number of calculations by varying the parameters of interest. A
batch style calculation scheme is deemed to be best-suited for the optimization calculations, and an
automatic way to carry out the calculation will be pursued in this task.
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4.4 Thermophysical Properties
441 Water/Steam Thermodynamic Properties

The thermodynamic property calculation routines for water/steam have been developed using the
1967 IFC Formulation for Industrial Use in conformity with the 1963 International skeleton tables. In the
1967 IFC formulation, the property regions are divided into 6 sub-regions including a sub-region for the
saturation line and a sub-region near the critical point. The correlations for the specific Helmholtz
function, the specific Gibbs functions, the K-function for saturation line are provided in the formulation.
These correlations have been coded in pascal language for use in Delphi program environment which has
been selected for the HyPEP development. The routines have been packaged as a Delphi unit in which
several routines have been defined as the interface routines.

The Delphi interface routines are coded in ASME.pas and which is compiled to generate the
ASME.dcu which essentially act as a library which is callable from any Delphi program by including the
ASME in the unit declaration of the calling program. The list of routines available in ASME.pas are as
follows :

- procedure calc Prop (P, T, v, h, s, cp, ¢, ¢)
This routine calculates v, h, s, cp, e, ¢ for given pressure P, and temperature T.
- procedure T_sat_Prop (T, Psat, v, v, hy, hg, S, Sg, CPs, CPy, €5, €, Cr, Cg)
This routine calculates Psat, vy, Vo, hy hg, S Sg, CDs CPg €55 €4, Cj; Cq for a given temperature T.
- procedure P_sat_Prop (P, Tsat, vy, v, hy, hg, g, Sg, Cpy, €y, €5, €, Cr, Cg)
This routine calculates Tsat, v, Ve, hy hg, S Se, CPs CPg, €55 €4, Cf; Cg fOr a given pressure P.
- function SurTen (T) : real
This function returns surface tension for a given pressure P.
- function satT (P) : real
This function returns saturation temperature for a given pressure P.
- function satP (T) : real
This function returns saturation pressure for a given pressure T.
- function th_k (P, T, p) : real
This function returns thermal conductivity for given pressure P, temperature T, and density p.
- function visc (P, T, p) : real
This function returns dynamic viscosity for given pressure P, temperature T, and density p.
where
P = pressure, MPa
T = temperature, K
v = specific volume in m’/kg
p = density, kg/m’
h = specific enthalpy, J/kg
s = specific entropy, J/kg/K
cp = specific heat capacity, J/kg/K
e = expansivity
¢ = compressibility
subscript f = liquid water
subscript g = gaseous steam
subscript sat = saturation

The sub-regions of IFC formulations are as shown in Figure 4-1. As can be seen in the diagram,
there are 6 sub-regions including the saturation line and near critical point line. The IFC formulation
provides correlations for the 4 sub-regions (1 ~ 4). For the saturation line, the steam and the liquid
properties are calculated using the appropriate sub-regions for the given temperature or the pressure.
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Figure 4-1. Sub-regions on the Pressure-Temperature Diagram[4]
The saturation pressure is calculated using the K-function and the 4 canonical functions are used to
calculate the specific volume, the specific entropy, and the specific enthalpy for the 2 sub-regions. These
properties are calculated using derived functions

K-function (Reduced Saturation Pressure)
K-function gives the saturation line which lies in the boundary between sub-regions. The equation for
the K-function is as follows:

1 ;kv(l—e)v -9
O1+k(1-0)+k,(1-6)* k(1-0) +k,

B (0) = exp

where
P =reduced pressure, p/ p,,
0 = reduced temperature, T /T,

k. = correlation constants

A-function (Reduced Free Enthalpy)
A-function gives the reduced free enthalpy (Gibbs function) equation for the sub-region 1. The equation
for the A-function is as follows:
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where

1
Z=Y+(aY’-2a,0+2a,p)*
Y=1-a6-a,6°
A; = correlation constants

a, = correlation constants

B-function (Reduced Free Enthalpy)
B-function gives the reduced free enthalpy (Gibbs function) equation for the sub-region 2. The equation
for the B-function is as follows:

5
£,(6,8)=1,0In5+B,A(1-n0)+> B, 6" —(B, X" +B,X*)B

v=1
—(By X' + By X? + By X B — (B, X" + B, X ')
(B X ¥ + By X" )B* —(By X + ByX ™ + By X )B°
(leXu +B62X11)ﬂ4 (B71X24 + B72X18):B5 _ (BSIX24 + By X" )186

1+b, X" B 1+b, X" B’ 1+ (b X + by X7 )B°
10
+ ,B(ﬁj Zng%XV
B.) =
where
X =exp{b(1-6)}
ﬂL = ﬂL @)

C-function (Reduced Free Energy)
C-function gives the reduced free energy (Helmholtz function) equation for the sub-region 3. The
equation for the C-function is as follows:

28



11 6
we(0,7)=Cy + C01Z+ZCOVZH +CopIny +{C11Z+ZC1VZ” +Cy, lnl}(e_l)

v=2 v=2

7
+ {CZIZ + ZCZV;(H +CyxIn Z}(@ - 1)2

v=2
7
+ {Cn?( + ZCMZH +C;In ;(}(9 - 1)3
v=2

+(Co+Coux 2 (0-1)+Cy0mO

+ 2 i C.0>"+ Zglcw(e —1)!

v=0 y=0

D-function (Reduced Free Energy)
D-function gives the reduced free energy (Helmholtz function) equation for the sub-region 4. The
equation for the D-function is as follows:

4 4 2
w0, 0)=>.>"D, v 7" +y*> Dy 1’

1=3v=0 v=0

where
y=>1-0)/(1-6))

4.4.2 Gas Thermodynamic Properties

The thermodynamic property calculation routines for gas substances have been developed using the
“Thermodynamic Properties in SI” by W.C. Reynolds Correlations where correlations for a total of 40
substances are provided. Of the 40 substances available, helium, hydrogen (para), nitrogen, oxygen,
argon, carbon dioxide, butane, and propane have been coded in pascal language for use in Delphi program
environment.[2] The correlations are based on the PvT relationships which are different for the different
substances. The internal energy and the entropy values are derived from the PvT relations using the
following relationships:

1 oP
u= £CS(T)dT+ KF[P—T(Ejp}dp'FUO

h=u+ pv

cX(T) 1 oP
s = J;%dT—Rlnp+ f?{pR—(a—Tjjdp+so

More substances can be added by providing appropriate correlation constants. The gas mixture (e.g.
air) properties are calculated by summing (using molar fraction) constituent substance properties.

These routines are programmed as the Delphi program unit, THProps.pas (THProps.dcu). This unit
can be easily be converted to a DLL (Dynamic Link Library) if needs to be. Following interface routines
are currently programmed in the THProps unit.

- call GetProps (Substance, P, T, v, h, s, u)
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This routine calculates v, h, s,u for given pressure P, and temperature T for the named
“Subatance”.
- call AirProps (P, T, v, h, s, u)
This routine calculates v, h, s,u for given pressure P, and temperature T for air (mixture)
- function PvT_eqn (Substance, T, tho) : real
This routine returns pressure P for given temperature T and density p for the named “Substance”.
- function u_eqn (Substance, T, rho) : real
This routine returns energy u for given temperature T and density p for the named “Substance”.
- function s_eqn (Substance, T, rho) : real
This routine returns entropy s for given temperature T and density p for the named “Substance”.
- function dPdT eqn (Substance, T, rho) : real
This routine returns dP/dT for given temperature T and density p for the named “Substance”.
- function dPdRho eqn (Substance, T, rho) : real
This routine returns dP/dp for given temperature T and density p for the named “Substance”.
- function rho P T (Substance, P, T) : real;
This routine returns density, p for given temperature T and density p for the named “Substance”.
- function Rliq Eqn (Substance,T) : real;
This routine returns liquid density, p for given temperature T for the named “Substance”.
- function Psat Eqn (Substance,T) : real;
This routine returns saturation pressure Psat for given temperature T for the named “Substance”.

The substances are defined by the structured record defined as recSubstance. Figure 4-2 shows the
sample substance definition (in this case Argon).

B

Argon : recSubstance // Argon
= (subsname : 'Argon';
PvT_Index : 3;
Psat_Index : 2;
Cv0 Index : 0;
Rlig Index : 2;

// General Data
R

208.128;
M : 39.948;
Tc : 150.70;
Pc : 4.8649%¢e6;
rhoc : 513.00;
TO : 83.8;
PvTData :

(alpha : 0.0; gamma : 3.5e-6;

A :( 1.982592le-1, -8.1733119el, 1.7777470e3, -8.2406544e5, 3.1666098e7,
-4.4202671e-5, 6.216142e-2, 1.1443248, 4.7797520e-7, -1.9645227e-4,
-2.1572754e-10, 1.6544141e-7,-2.8142112e-11, 8.253205%9el1, -9.1538377e3,
-1.8340752e6, -3.3858136e-3, 1.5532886, -6.7479568el, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0,
.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0);

a :0.0; b :0.0; c_:0.0;, d :0.0;

A0 : 0.0; BO : 0.0; CO : 0.0; DO : 0.0; EO : 0.0;

Tau c : 0.0);

PsatData :
(Tp : 100.0;
F : (-5.340410, -2.371280e-1, -9.490142e-1, 1.187040, -5.889895,
5.627790, 2.674117e1, -6.661814el, 0.0, 0.0);
alpha : 0.0; gamma : 0.0; Tt : 0.0; Pt : 0.0);
CvData H

(cv ¢ 312.192; u0 : 1.4935540e5;

sO : 2.2706700e3; T1 : 0.0; T2 :0.0; beta : 0.0;

G : (0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0));
Rligbata :
(alpha : 0.0;
D : ( 5.1299940e2, 8.3581370e2, 1.1958780e3, -3.1968580e3, 4.5022760e3,
-2.0863750e3, 0.0));

)i

Figure 4-2 Sample Substance Definition File
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4.4.3 Liquid salts

Liquid salts are being considered as the working fluid in the intermediate heat transport loop (Davis
et al., 2005). The salts considered were LiF-NaF-KF (Flinak) in molar concentrations of 46.5%, 11.5%,
and 42%, respectively, and NaBF,-NaF in molar concentrations of 92% and 8%. NaBF,-NaF is
considered to be a better candidate for the intermediate heat transport loop because of its lower melting
point (385 vs. 454 °C). Thermodynamic and transport properties for these salts are described by Davis
(2005). The correlations given by Davis (2005) should be acceptable to use for implementing liquid salt
properties in HyPEP.

4.4.4 Process fluids

The hydrogen production process utilizes three separate fluid systems: H,SO4-H,O, HI-1,-H,O, and
H,SO,4-HI,-H,O (Brown et al. 2003). Thus, the primary fluids of interest are H,SO,4, H,O, HI, and .
Both liquid and vapor phases of each of the primary fluids exist at some point in the process.
Thermodynamic data are generally available for the pure fluids, although not necessarily at the
temperatures and pressures needed for the hydrogen production process. For example, Perry and Green
(1997) present thermodynamic data for H,SO, at temperatures up to 350 °C. However, the temperature of
H,SO, in the proposed hydrogen production process exceeds 800 °C. Furthermore, the thermodynamic
properties of liquid mixtures do not depend solely on the properties of the pure components and their
respective molar concentrations. Consequently, the thermodynamic properties must be determined by
measurement for each separate fluid system. Because of the lack of experimental data, Brown et al.
(2003) developed empirical models that fit the existing low-temperature data and applied the models to
predict properties at the proposed conditions for hydrogen production. Brown et al. concluded that the
model for the H,SO4-H,O system would provide a reliable description for Section 2 of the Sulfur-lodine
cycle. The model for the HI-I,-H,O system was expected to provide reasonable predictions of Section 3,
but experimental data were needed for validation. The results from the model of the H,SO,4-HI,-H,O
system were judged to require caution because of the small range of the underlying data.

At the current time, the existing models of Brown et al. (2003) are expected to provide the best
estimates of thermodynamic properties. These flowsheet models could be obtained from General
Atomics to provide thermodynamic properties for use in HyPEP. However, better properties might be
obtained from General Atomic’s improved thermodynamic models that should be available early in 2006.
The French are also expected to report basic thermodynamic data at conditions more applicable to the
hydrogen production process in 2006. Improved models could also be generated using the French data
and the regression feature of Aspen Plus.

The transport properties of dynamic viscosity and thermal conductivity are also available for the
pure fluids required in the hydrogen production process. For example, Daubert et al. (2000) present
correlations for both liquid and vapor phases of H,SO,4, H,O, HI, and I,. As was the case for the
thermodynamic properties, the combination of properties of the pure fluids to determine mixture
properties is more difficult. According to Govier and Aziz (1972), the viscosity of a miscible liquid
mixture cannot be predicted reliably. Thus, they recommend an approximate method, such as linear
weighting of the viscosities of the pure components based on the mass fraction. A similar method could
be used for the thermal conductivity. For mixtures of gases, the Wilke formula described by Bird et al.
(1960) should be sufficiently accurate.

When the gas must be treated as real the NIST database (NIST Reference 7.0) will be used. The
evaluation of properties in NIST, however, can be numerically intensive and result in long execution
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times which would not be in keeping with HyPEP objectives, i.e. to rapidly prototype different design
options. In this case a tabular approach to property evaluation can be used to speed execution (Hejzlar
2005).

4.5 High Temperature Electrolysis (HTE)

In general, for an operating electrolysis stack, there will be a temperature change associated with
the electrolysis process. For these cases, the energy equation for electrolysis process can be written as:

Q_szNz[AH?, +Hi(TP)_Hi0]_ZNi[AH; +H;‘(TR)_H1’O] (4-1)

where ( is the external heat transfer rate to or from the electrolyzer, W is the rate of electrical work
supplied to the electrolyzer, N;- is the molar flow rate of each reactant or product, AFf B is the standard-

state enthalpy of formation of each reactant or product and H (T')— His the sensible enthalpy for each

reactant or product. Applying the energy equation in this form, all reacting and non-reacting species
included in the inlet and outlet streams can be accounted for, including inert gases, inlet hydrogen
(introduced to maintain reducing conditions on the steam/hydrogen electrode), and any excess unreacted
steam. Determination of the outlet temperature from Eqn. (4-1) is an iterative process. The heat
transferred during the process must first be specified (e.g., zero for the adiabatic case). The temperature-
dependent enthalpy values of all species must be available from curve fits or some other data base. The
solution procedure begins with specification of the cathode-side inlet flow rates of steam, hydrogen, and
any inert carrier gas such as nitrogen (if applicable). The inlet flow rate of the sweep gas (e.g., air or
steam) on the anode side must also be specified. Specification of the gas flow rates allows for the
determination of the inlet mole fractions of steam, hydrogen, and oxygen that appear in the Nernst
equation. The steam mole fraction is expressed in terms of the hydrogen mole fraction as 7-yg-yo.

The current density and active cell area are then specified, yielding the total operating current. Care
must be taken to insure that the specified inlet gas flow rates and total cell current are compatible. The
minimum required inlet steam molar flow rate is the same as the steam consumption rate, given by:

I i, .
E Ncel/s = 2Fll cells — A]\/vHZ (4_2)

which is of course also equal to the hydrogen production rate.

Ni,HZO,min = A]szo =

Once the total and per-cell hydrogen production rates are known, the outlet flow rates of hydrogen
and steam on the cathode side and oxygen on the anode side can be determined. The flow rates of any
inert gases, the anode-side sweep gas, and any excess steam or hydrogen are the same at the inlet and the
outlet. Once all these flow rates are known, the summations in Eqn. (4-1) can be evaluated. The product
summation must be evaluated initially at a guessed value of the product temperature, 7.

The operating voltage corresponding to the specified current density is obtained from:

Vop =V ey + 1% ASR(T) (4-3)

Nernst
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where the stack area-specific resistance, ASR(T), must be estimated and specified as a function of
temperature. The cell-mean Nernst potential can then be obtained from an integrated Nernst equation:

— 1
VNernst = X
2F(T, - T, )(yo,OZ,A —Vio, .4 )(yo,Hz,C - yi,Hz,C)
Tp Yo,02,4 Yo.H2,C 1— —
[ | | AG(-RTH I I gy dy, dT (4-4)
T Yi,02,4 YiH2,c Hy 7 0,

where y; o, 4 1 the anode-side inlet mole fraction of oxygen, etc. Note that the upper limit of integration
on the temperature integral, 7p, is initially unknown. Once the 4ASR and the mean Nernst potential are
known, the operating voltage is obtained from Eqn. (4-3) and the electrical work term in Eqn. (4-1) is

obtained from W = —Vop[ . An algorithm then must be developed to iteratively solve for the product

temperature, 7p, in order to satisfy Eqn. (4-1). This algorithm can then be imbedded in a loop so that a
full numerical “sweep” can be performed. We have implemented this procedure in MathCad. The
MathCad model provides accurate estimates of electrolyzer operating voltage (and corresponding
electrolyzer efficiency) and outlet temperatures, for any specified electrolyzer heat loss or gain, gas flow
rates, current density, and per-cell ASR(T). This electrolyzer model was developed for incorporation into
system-level electrolysis plant models being developed using HYSYS system simulation software. With
a realistic electrolyzer model incorporated into the overall HYSY'S plant model, good estimates of overall
hydrogen-production efficiencies can be obtained over a wide range of prospective operating conditions.

The detail of mathematical derivation of Gibbs free energy of Eqn (4-4) is listed in Appendix C.
Using all equations described above, the power requirement of the HTE was calculated and preliminary
calculation and results are listed in Appendix D. Appendix D includes coupling the reference
configuration 6 and HTE with cases of a detailed HTE model and a simplified HTE block model. It also
lists heat exchanger sizing calculations and results.
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5 COMPUTATIONAL STRATEGIES

The computational strategy for the HyPEP code is being developed by KAERI under an I-NERI
agreement. The agreement is to develop the steady state solution scheme for the coupled nuclear and
chemical plant (Oh, 2005). Separately, in the U.S. there is interest outside of the I-NERI agreement in the
laying groundwork for a transient code capability. The GAS-PASS/H code (Vilim, 2004) is one potential
starting point. The code parallels HyPEP in capabilities in that it is a module-based network systems
code. Both codes allow reactor configurations to be assembled from existing plant component modules
without having to reprogram source code. A brief description of the computational scheme in GAS-
PASS/H provides perspective on how new models for the nuclear and chemical plant components are
interfaced to the code. In FY06 a GAS-PASS/H model of the HTE process described earlier in this report
was built from newly created component modules.

5.1 Network-Based Method

The GAS-PASS/H code is based on the assumption that the plant the user wishes to simulate
consists of a set of individual equipment components. Some definitions prove useful. A component is a
piece of equipment whose behavior can be represented by a set of conservation balances. A node is a
collection of structure and/or coolant material within a component and whose energy content is
represented by an average temperature. A component output state point is that node in a component
whose state variables feed into the next component downstream.

The user first creates a network diagram of his plant system which he communicates to the code
through an input deck. An example of a network diagram appears in Figure 5.1. In this figure each
component consists of one or more component nodes with each node appearing as a unique color and
labeled with an identifying integer. In Figure 5.1 the node identification number appears as a large font
integer inside the component. If the node represents a coolant volume then there is a flow channel at the
outlet of the volume. The flow channel identification number is the same as the component node number
and appears in the network diagram as an integer in smaller bold font. In Figure 5.1 the turbine
component node number is “2” shown in large font. The number of the flow channel associated with the
turbine is “2” shown in small font.

The information in the network diagram provided through the input deck is used to assemble a
sequence of calls to software modules that contain component conservation balances. When all
components in the network diagram have been cast as calls to these software modules, the numerical
solution procedure solves for the plant conditions.

Each component software module has an interface through which the component interacts with
other components according to the network diagram. This interface provides access to input and output
process variables. Input variables are the forcing functions that drive the component and are either process
variables at state points in other components that link with the component or are user supplied forcing
functions. Output variables are at the state point where the component response appears. For two linked
components, the output variables from the upstream module are the input variables for the downstream
module.

Figure 5.2 is used to illustrate how component modules are configured to model interaction

between components. In Figure 5.2 a turbine interacts with a reactor and recuperator. The user network
diagram specifies the interconnections between turbine, reactor, shaft, and recuperator modules to reflect
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this. Figure 5.2 shows the output variables associated with each module. In the figure an arrow leaving a
module represents those modules output variables while an arrow entering a module represents input
variables. From the conservation equations for the turbine the input variables to the turbine module are
the shaft speed, , and temperature, pressure, and mass flowrate, T1, P1, m1, respectively at the inlet to
the turbine. The output variables from the turbine module are temperature, pressure, and mass flowrate,
T2, P2, m2, respectively at the outlet of the turbine and mechanical power, Wt, delivered to the shaft.
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Figure 5.1 Network diagram for direct cycle plant.

5.2 Numerical Solution

The GAS-PASS/H code assumes that a plant component such as a pump or heat exchanger can be
written as a set of ordinary differential equations in the dynamic case or as algebraic equations in the
quasi-static case. The equations in a component module appear as first order time differenced equations of
the form O=f(xi+1,xi,ui) where xi+1 is a vector of the variables to be solved for at the new time, xi are the
values at the old time, and ui is a vector of forcing functions held constant between time i1 and i+1. The
equations are stored in a subroutine set aside for that component. The input deck the user assembled from
his network diagram is used by the code to determine the inter-connections among plant components and
to link modules to the numerical scheme. The user input also specifies which variables are to be treated as
unknowns to be solved for and which are to be treated as forcing functions. Two conditions must be
satisfied before a reliable solution can be returned. Model variables are either solved or are forcing
function variables and must be marked as such in the input. Second, for the complete system the total
number of unknowns solved for must equal the number of equations.
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Figure 5.2 Turbine Module Links to Other Modules

The GAS-PASS/H code uses the information in the input deck to assemble arrays that specify
which variables are to be forcing functions and which variables are to be solved for. These arrays are used
to configure a nonlinear solver that obtains the steady-state and transient solutions. The arrays and the
nonlinear solver are described below.

A variable that drives the solution and whose value or time behavior is known a priori is referred to
as forcing function. A variable whose value is dependant on forcing functions is an unknown. An array
a(nvar) of variables where nvar is the length is formed from the forcing functions and the unknowns
where each element of a is one of these variables. The value of nvar is the sum of the number of forcing
functions and the number of unknowns. The code input processor compiles arrays ibcss(nvar) and
ibctr(nvar) from the users input. Nonzero elements of ibcss identify elements of a that remain fixed in the
steady state and correspond to forcing functions. That is, if ibcss(i) #0, then the value of a(i) remains
fixed while solving for the steady state. Similarly, if ibctr(i) #0, then the value of a(i) remains fixed while
solving for the transient solution. The number of forcing functions in the steady state, nbcss, equals the
number of nonzero elements of ibcss. Similarly, the number of forcing functions in the transient, nbctr,
equals the number of nonzero elements of ibctr. Through the user input one can arrange for the value of
an unknown solved for at steady state to be used as a forcing function in the transient.

The steady-state and transient solutions are the roots of nonlinear functions of the unknowns. The
solver that finds these roots is provided with the indices of those elements of a that correspond to
unknowns. For the steady state, these indices are stored in array inds(nus) of length nus (= nvar-nbcss).
Similarly, for the transient, these indices are stored in array indt(nut) of length nut (= nvar-nbctr). Inds
and indt are compiled from ibcss and ibctr, respectively.

The values of the forcing functions that drive a component are passed to the equations in the
component module as a list of arguments. Rather than passing elements of the ¢ array in the call to the
module, the appropriate elements of a are first copied into arrays whose names are descriptive of the
process variable being passed. Pressure is passed in array P, temperature in array 7, channel flow in array
flowin, and turbomachine enthalpy change in array dh, for example. Each of these arrays has its own
indexing scheme that depends on where the variable is defined in the network diagram. Elements of array
P and T are component node quantities and thus are indexed according to the component node labeling in
the network diagram. Elements of array flowin are indexed according to the flow channel labeling in the
network diagram. Elements of the array dh are indexed according to the turbomachine labeling in the
network diagram. The first element of each of arrays P, T, flowin, and dh corresponds to element itbeg,
ipbeg, iturbeg, and iflowbeg, respectively, minus one of array a.
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The module calls that implement the network diagram form a set of nvar equations in nvar
unknowns. For variables that appear in a derivative, the value at time n+1 is treated as an unknown while
the value at time n is taken from the previous time step. A nonlinear solver is used to find the roots of this
equation set. One must ensure that the number of forcing functions provided results in the number of
unknowns equal to the number of equations.

The steady state solution is obtained as a special case of the transient solution. The Kroneker delta
premultiplies each time derivative in a component module. If the steady-state solution is sought, then the
value of the Kroneker delta is zero. In the transient its value is unity.

6 CONCLUSIONS

A reference design of a coupled nuclear reactor and hydrogen production plant has been established
to aid in the development of HyPEP. The reference design incorporates many of the systems and
components that HyPEP must eventually be able to model. The reference design contains a high-
temperature gas-cooled reactor that is used simultaneously for the production of electricity and hydrogen.
Less than 10% of the nuclear reactor’s thermal energy is dedicated to hydrogen production, consistent
with that expected in the NGNP. The PCU utilizes an indirect electrical cycle. An intermediate heat
transport loop is used to transfer heat from the nuclear reactor to the hydrogen production plant and to
provide separation between the nuclear and hydrogen plants. Helium is used as a working fluid in both
the secondary coolant system and the intermediate heat transport loop. Initial HyPEP model development
concentrated on a HTE hydrogen production process.

HyPEP is being developed with hierarchical program and the data structures and will utilize object
oriented programming techniques. The thermal hydraulic formulation of HyPEP is based on the
conservation of mass and energy equations and models for the flow network of multi-species fluid
systems. The flow network is made up of systems and components. Preliminary computational methods
have also been identified.

Required component models have been identified. Preliminary models have been identified for
steam generators and the various components needed for modeling HTE. Methods to obtain required

fluid properties for a variety of fluids, including water, various gases, and liquid salts have been
identified.
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Appendix A

Steam Generator Component Model

A steam generator component model (Oh et al. 2006) was developed for the HYSYS (Aspen
Technology 2005) process code. The following appendix describes the development and validation of the
HYSYS steam generator component model. The same model could easily be adapted for use with
HyPEP.

A combined cycle could be envisioned for the power conversion unit to be coupled to the very
high-temperature gas-cooled reactor (VHTR). In Figure A-1 the combined cycle configuration consists of
a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed
sizing and pressure drop model of a steam generator is not available in the HYSYS processes code.
Therefore a four region model was developed for implementation into HYSYS.
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Figure A-1. Simplified schematic of the combined cycle configuration.

To H2 Process

The steam generator was assumed to be a counter flow shell and tube heat exchanger with the
Brayton cycle working fluid (helium) on the shell side and the Rankine cycle working fluid (water) on the
tube side. Since the Brayton cycle working pressure, approximately 7 MPa, is lower than that for the
Rankine cycle, 15 MPa, the pressure boundary requirements on the shell will be reduced. Because the
diameter of the tubes is small, normal tube thicknesses can endure the high pressure. A shell diameter of
4.5 m, an inner and outer diameter of 6 mm and 7.3 mm for the tubes, a pitch to outer diameter ratio of
1.3 and a triangular array were assumed for the steam generator. These values are typical of existing
steam generator designs. Alloy 617 was used for the construction material of the steam generator. This
material was chosen based on the stress analysis given in Davis et al. (2005).

41



To account for the phase change in the cold side, the steam generator was divided into four heat
transfer regions: subcooled, nucleate boiling, post critical heat flux and superheated. The subcooled
region begins at the inlet to the steam generator and ends when the water reaches saturation conditions.
Here we have neglected subcooled boiling. Since this region is single phase flow, the heat transfer
coefficients were calculated using the Dittus-Boelter correlation with a leading coefficient of 0.023 for
turbulent flow (INEEL 2005),

Nu =0.023Re"® Pr™* (A1)
where

D
Nu = h%. (A2)

For laminar flow, the heat transfer coefficients were calculated from the exact solution for fully
developed flow with constant heat rate (Kayes and Crawford 1980),

Nu =4.364. (A3)

The pressure drop in the subcooled region was assumed to come from friction losses and was
calculated using the following equation:

Ap=f——, (A4)
Dhy 2p

where f'is the friction factor, L is the length, Dy, is the hydraulic diameter of the channels, p is the density,
and v is the velocity. The friction factor was determined using a correlation for turbulent and laminar
flow. For turbulent flow f was calculated using

03164

f= (AS)
and for laminar flow
64
=— A6
f R (A6)

The nucleate boiling region begins at the saturation point and ends when the fluid reaches critical
quality. The Chen correlation was used in this region to determine the convection heat transfer
coefficient. Chen assumes that the total convection coefficient in this region can be thought of as the
superposition of the convection and nucleate boiling heat transfer coefficient (Colllier and Thome 1994),

h2¢ =h.+hy. (A7)

Chen assumed that the convective component, /_, could be represented by a Dittus-Bolter type

equation.
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hc:.023[ ’W] (ﬂPJ [ / ]F, (A8)
Hy k), \ Dy

where F is an additional correction factor defined as,

R 0.8

C

F= [—2"’ ] : (A9)
Re,

Chen originally determined F empirically; however he later derived F using a Reynolds analogy as
follows,

(A10)

)0.444

F=(¢;

where ¢/§ is the two phase friction multiplier based on the pressure gradient from fluid alone. Using the

Martinelli parameter ¢/§ is defined as,

¢§=1+%+%, (A11)

where C = 20 for turbulent-turbulent flow. The Martinelli parameter is based on the fluid properties at the
saturation point and is defined as,

. 0.9 0.5 0.1
X = (;x) Pe Hr ) (A12)
* Pr Hg
The nucleate boiling component of the Chen correlation also uses fluid properties at the saturation
point and is defined as,

h,, =0.00122 (k0'7gcg‘45p°‘49)f AT Ap’7S (A13)
NB =V 0.5,,0.2970.24 024 Sa.t psc;t ’
o 'uf hfg P g

where S is the suppression factor that takes into account the difference between the wall superheat and the
mean superheat in the boundary layer. S can be calculated using (MacDonald and Buongiorno 2002),

G 1
1+2.53x10° (Re, F'*)

(Al14)

1.17 *

The Chen correlation determines the heat transfer coefficient at a point where the local quality is x.
In this analysis a value of half the critical quality was chosen to give an average heat transfer coefficient
over the entire region.
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To determine the length and volume of the nucleate boiling region of the heat exchanger, the
critical quality must be known. In order to determine the critical quality an iterative process must be
implemented. First an initial guess of the critical quality must be made; in this case 0.75 was used. Using
this initial guess the tube side heat transfer coefficient is determined along with the universal heat transfer
coefficient. Using the e-NTU method, the heat transfer area is determined. The effectiveness, €, of the
heat exchanger in this region was calculated using

=41 (A15)
qmax

where

9 max = C'min (Th,i - Tc',i) (A16)

and C,;, refers to the smaller of C,,; or C.o1q, Where

Chot = Cp,hutmhot (A17)
Ccold = cp,cold mca/d (Al 8)
The NTU value was calculated using,
1 -1
NTU = In| £ C <1 (A19)
C -1 (eC -1
&
NTU =—— C =1 (A20)
l-¢
where C,= C,in/ Cras-
Next the heat transfer area and the length were calculated,
NTU
A =T C’min (A2 1)
U
A
[ = (A22)
zd. N

where d;, is the inside diameter of the tubes and A, is the number of tubes in the heat exchanger. The
number of tubes is given by the follow formula,

2
N din,shell T

- 4p sin(%)‘

(A23)
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where d, e 1s the inner diameter of the shell and p is the pitch. The length is then inserted into the
CISE-4 correlation and a new critical quality is calculated and reiterated until it converges. The CISE-4
correlation is given by Todreas and Kazimi (1990),

= Acsspalern (A24)
lcrit + bCISE 4
1 s
Aersps = = G<G (A25)
1+1.481x10™ (1—”] G
P,
P
Aepsps = —pcy G<G* (A26)
G )
1000
04
bejsps =0.199 (% - lj G* di(jliube (A27)
3
G = 3375(1 —&j (A28)
p

where p. is the critical pressure of water.

The pressure drop calculation was obtained by multiplying the pressure drop calculated assuming
the total fluid was liquid, Ap, by a two phase friction multiplier, ¢§0 .

Ap=Ap b7, (A29)
L G°

Ap=f,— (A30)
D,, 2p,

Collier and Thome (1994) recommend the Friedel correlation for the two phase friction multiplier
for flows where

”/ <1000
Hqy

The Friedel correlation is given in Collier and Thome (1994) as,

3.244, 4,

Fr0.045We0.035 (A3 1)

2
¢ﬁ, =4+
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A =(1-x) +x° Prs (A32)
pgf‘ﬁ)
A, =X (1-x)" (A33)
0.91 0.19 N
Pe Hy Hy
2
Fr=—Y9_ (A35)
ghp
G’D
We=— (A36)
yole

In the post critical heat flux region, which ranges from dry-out to saturation, the Groeneveld
correlation was used. This is a common method used in calculating the heat transfer in the region
(MacDonald and Buongiorno 2002) and is given by the following equation,

0.989
Nuz0.00109{Reg {x+&(l—x)}} Pr,'y (A37)
Py
0.4 -1.15
y=|1-01] 222 | (10| (A38)
Pe

Again an average quality is used to give an average heat transfer coefficient over the region.

The pressure drop calculation in the post critical heat flux region was obtained using the same
Friedel correlation that was used in the nucleate boiling region.

For the superheat region the heat transfer becomes single phase and methodology from the single phase
region was used to calculate the heat transfer coefficient and the pressure drop. Average properties were

used to calculate the heat transfer coefficient and the pressure drop.

On the hot side there is no phase change and Equations Al- A3 were used to calculate the heat transfer
coefficient and Equations A4-A6 were used for the pressure drop.

The overall heat transfer coefficient in each region was calculated as (Bird et al. 1960)
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where hy is the heat transfer coefficient for the hot channels, h.,q4 is the heat transfer coefficient for the
cold channels, ke is the thermal conductivity of the metal and d;, and d,, are the inner and outer
diameters of the tubes.

Using the assumed shell diameter, tube inner and outer diameter, pitch, triangular array and
pressure drops the overall heat transfer coefficient and heat transfer area were found for each heat transfer
region. The length of each region was then obtained from the heat transfer area and the shell diameter.
The hot and cold side pressure drops were then calculated. The pressure drop was then iterated until the
input and output values converged. Once all the regions were solved the total volume and pressure drop
in the steam generator was calculated by summing the volume and pressure drops from each region.

A baseline combined cycle using helium as the Brayton cycle working fluid was modeled in
HYSYS. The four regions of the steam generator are modeled as four heat exchangers in HYSYS as seen
in Figure A2. The HYSYS model predicted a steam generator volume of 133.9 m’, length of 11.6 m and
an overall heat transfer of 457.3 MW.
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Figure A2. HYSYS model of the combined cycle with a four-region steam generator model.

To validate the HYSYS model, a RELAPS (INEEL 2005) model of the steam generator was created
and is depicted in Figure A3. The steam generator was modeled as a once through shell-in-tube vertical

heat exchanger. The water served as the cold-side coolant in the tubes and the helium served as the hot-
side fluid in the shell.
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Figure A3. RELAPS model of the steam generator.

The input parameters of the RELAP5 model were taken from the HYSYS model and are shown in
Table Al. A small error, marked by an asterisk, can be seen on the shell side. The error was due to a
pressure change that occurred as the flow moved from the time-dependent volume 230 to the single
volume 241. The input conditions were originally set for 860.65 K and 3.12 MPa, but were altered
because of physical reasons by RELAP5 to 862.46 K and 3.1395 MPa. For our purposes and also
because of the small change in temperature and pressure, this error was ignored.

Table Al. Input parameters for the RELAPS steam generator model.

Input Parameter Tubes Shell
Cold-side — H20 | Hot-side - He

RELAP Volume Number Range 130-170 230-270

Inlet Temperature (K) 332.94 862.46*

Inlet Pressure (Pa) 1.50E+07 3.1395E+06*

Mass Flow (kg/s) 140.7 202

Rod Pitch to Diameter Ratio 1 1.3

Heated Diameter (m) 6.00E-03 6.735E-03

Hydraulic Diameter (m) 6.00E-03 6.711E-03

RELAP Geometry Type 101 110

Cross Sectional Area (m®) 3.697 5.394

The heat exchanger total length was taken from the HYSYS calculation and divided into four pipes
as shown in Figure A3 and Table A2. The reason the heat exchanger was divided into four separate pipes
was to adjust the pipes for refinement in nodalization of a particular region of flow in the event it would
be needed and also to avoid the 99 node limitation per pipe of RELAPS.

Table A2. RELAPS pipe and node sizes.

PIPE No. of Nodes Pipe Length (m) Node Size (m/node)
150/256 | 20 3 0.15

152/254 | 20 3 0.15

154/256 | 30 3 0.1

146/250 | 30 2.6021 0.08674

Table A3 summarizes the results of the heat transfer and lengths for the HYSYS and RELAPS
models. The results are summarized graphically Figures A4 through A6. From Figure A4, it can be seen
that the overall heat transfer is in good agreement, with a difference of about 2.1 % between models. The
outlet temperatures and temperature drops across the steam generator also show reasonable agreement of
less than 5.1% difference as illustrated in Tables A4 and AS.
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Table A3. Regime length and heat transfer comparison.

Length Length Q Q

HYSYS | RELAP5 | HYSYS | RELAPS
Regions (m) (m) (MW) (MW)
Single-phase Liquid,
Sub Nucleate Boiling 7.955 8.8 210.9 204.84
Saturated Nucleate Boiling 2.505 0.547 117.8 78.38
Post Critical Heat Flux 0.153 1.301 23.2 114.46
Superheated Vapor 0.989 0.954 105.4 50.20
Total 11.602 11.602 4573 447.87
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Figure A4. Overall heat transfer comparison.

Table A4. Comparison of outlet temperatures.

Temperature Hot-side (K) Temperature Cold-side (K)
HYSYS 424.65 848.15
RELAPS 441.75 822.87
Difference (°) 17.1 25.28
% Difference 4.0% 3.1%

Table AS. Comparison of temperature drops.
Temperature Drops | Hot-side | Cold-side
HYSYS 436 515
RELAPS 420.7 489.92
% Difference 3.6% 5.1%

Larger differences can be seen when examining the individual components of heat transfer and
length as shown in Figures A5 and A6. In Figure A5, the heat transfer in the single phase forced
convection and sub-cooled nucleate boiling regions show results within fair agreement, less than 3 %
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difference. The other regions show greater variance. The length comparison in Figure A6 shows a fair
agreement in the single-phase forced convection/sub-cooled nucleate boiling and the superheated vapor
regions.
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Figure A5. Regime heat transfer comparison.
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Figure A6. Regime length comparison.

Looking further into the differences of the two models, we can see that the different nodalizations
and methods used in the two models affect the temperature distributions as shown in Figure A7. The
influence of the multiple nodes in RELAPS versus the single node in HYSYS is shown over the
subcooled region (for lengths less than about 8 m). The thermodynamic properties associated with the
more detailed RELAPS model more accurately represent the actual profile than the single, average value
used in HYSYS model. Figure A7 also illustrates a difference between methods in the film boiling
regime (colored in purple for the RELAP5 model). The temperature in RELAPS rises as opposed to the
temperature in HYSYS, which remains constant until the quality is one. The cause of this discrepancy is
from the two different approaches of HYSYS and RELAPS. In RELAPS, heat transfer during film
boiling is contributed directly to the vapor. The vapor heats up and then transfers heat to the liquid which
causes vaporization. HYSYS, on the other hand, directs its heat transfer solely to the liquid and therefore,
its temperature does not change until all of the liquid is converted to vapor.
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Figure A7. Comparison of cold fluid temperatures.

The detailed comparisons showed many differences in the parameters and methods used in RELAP
and HYSYS. The different methods explained many of the disagreeing results seen in the regime wide
comparisons. In the post critical heat flux region, the different correlations, Bromley and Groeneveld,
lead to different heat transfer coefficients. Similarly, the heat transfer coefficients in the saturated
nucleate boiling region were different because of the Chen correlation coefficients were determined from
different equations. The critical quality and critical heat flux were also determined from different
correlations, CISE-4 in HYSYS and the AECL lookup table in RELAPS5. Nodalization also contributed
to the differences in the regime specific comparisons because it affected the calculation of fluid
properties. HYSYS computed averaged values of fluid properties such as specific heat, viscosity, and
thermal conductivity from the input and output conditions between each flow regime. Because fluid
properties were not always linear as shown in the RELAPS results, using the average of the in and out
conditions of each regime produced large differences in the areas of large temperature changes such as in
the subcooled — single phase region and the superheated vapor region because it affected the values of
fluid properties.

Despite these differences, the overall results showed good agreement. The overall heat transfer had
only about 2.1 % difference. The outlet temperatures and temperature drops across the steam generator
also show reasonable agreement with less than 5.1% difference. To eliminate the possibility that RELAP
and HYSYS coincidentally had agreement only in the tested conditions of heat transfer of approximately
450 MW, another case was tested with a total heat transfer of 370 MW. The heat transfer was changed
by increasing the inlet temperature of the cold-side from 60° C to 200°C. The overall heat transferred
between RELAP and HYSYS models differed by less than 2% for this case. These calculations indicate
that the four-region steam general model developed for HYSYS produces reasonable overall agreement
with a much more detailed RELAPS model. Similar agreement would be expected with HyPEP.
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Appendix B

Electrolyzer Model, HTE Process Heat Model, Interconnections, and
GAS-PASS/H Simulations

HTE Model - Introduction

The choice of an appropriate level of detail is an important consideration in the development of
models. In the HYPEP code phenomena important to efficiency need to be included since the code is to
be used to study how efficiency in the combined plant trends with design variations. A list of important
phenomena includes heat recuperation, mechanical pumping power, and heat exchanger temperature drop
from hot to cold side. But capital costs also compete with efficiency in the larger task of plant economic
optimization. For example, heat exchanger surface area can be increased to improve heat recuperation but
at increased capital cost. While an economic analysis is beyond the project goal of model development it
was possible to incorporate elements of economic optimization as described below.

Many years of design experience in the chemical industry have led to simple rules for component
performance for balancing increased efficiency against increased cost. These rules are expressed in terms
of simple figures of merit that correlate with the results of more detailed economic and engineering
analyses. Examples include citing heat exchanger performance in terms of effectiveness rather than heat
transfer area. The latter requires specifying geometry and dimensions of heat transfer surfaces while the
former is based on representative values for effectiveness given in the literature. Another example is
pump and compressor performance cited in terms of characteristic curves rather than hydraulics. The
latter requires specifying geometry and dimensions of vanes and passages while the former adopts
prototypic curves from the literature. Similarly, targeting a literature-based range of desirable fluid
velocities rather than designing with respect to pressure drop is preferred since ultimately the latter
approach requires an economic optimization. The desirable fluid velocities on the other hand reflect
findings of economic analyses that went before. Adopting such rules in the early stages of this project
reduces the need for more complex component modeling, postponing it to a later stage when detailed
economic optimization and, hence, individual component design becomes more important.

The main equipment components in the high temperature steam electrolysis process are shown in
Figure B1. Liquid water enters from the left-hand side, is vaporized, and is superheated through a series
of heat exchangers. The water vapor then enters the electrolyzer. The heat is supplied by heat exchangers
coupled to a nuclear reactor and by recuperation of heat from the reaction products exiting the
electrolyzer. In practice the electrolyzer operates above atmospheric pressure. To preserve electrode life
hydrogen is also combined with the inlet vapor steam while nitrogen may be used to sweep the oxygen
produced at the anode. Figure B2 shows these gases and typical operating conditions.

Electrolyzer Model

In the electrolyzer model the oxygen stream produced at the anode is assumed to mix with a sweep
gas stream that is introduced at the anode. Presently, the sweep gas is assumed to be an arbitrary mix of
oxygen and nitrogen. The combined stream then exits the electrolyzer. The hydrogen stream produced at
the cathode is assumed to mix with a feed stream that is introduced at the cathode. The feed stream is
composed of water vapor to be electrolyzed, hydrogen gas for maintaining reducing environment, and
possibly an inert gas, presently assumed to be nitrogen. The flow of materials is shown in Figure B3.
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A. Energy Equation

An energy balance on the electrolyzer gives

Zﬁp_i H, (T,,P)= ZﬁR_i H, (T,,P)+Q+W (B1)

where

= species mole flow rate,

enthalpy per mole,

rate of heat transfer to the electrolyzer,

rate of electrical work supplied to the electrolyzer,
temperature,

= pressure,

TNIOQO T
[

and where we have used subscripts R for reactants and P for products. Expressed in terms of the
individual species shown in Figure B1 and their mass flowrates we have

mHZOmfcath thO (]:) ’P)+ mHzﬂ)fcath th (];’P) + mNzwfcath hNZ (]-z;’P)

mOz—o—anode h02 (7:) ’ P) + mN2 h (T; > P) =

—o—anode "°N,

(B2)

1

My0-i—catn tho (TaP ) My i cam hH2 (7: P ) My i cam th (ZaP )

mOzfifanade hOz (T;’P) +mN27i7¢mode th (T;’P) + Q+ w

where
m = species mass flow rate (kg/s),
h = specific enthalpy (joules/kg),
and where subscripts i and o represent inlet and outlet, respectively.

B. Species Mole and Mass Flowrates

The species mole flowrates entering and leaving the electrolyzer are related to the current density
through the relationships
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nHZO—o—cath = nHZO—i—cath - 2F

. . iA
nHz—o—cath - nHz—i—cath + 'F
. . iA
nOz—n—anode = nOz—i—anode + 4F (B3)
nN2 —o—anode nN2 —i—anode
nNz—o—cath = nNZ—i—cuth
where
i current density (amps/m?),
A = electrode surface area, (m?) and
F = Faradays constant.
The species mass flowrates and mole flowrates are related as follows: For an individual species
m,_, = Ak n,_, and m,_, = Ak n,_ , k :H20, Hg, 02, anng (B4)

where A4, is the atomic weight of species & in kg per mole and subscript o is the outlet and i is the inlet.
C. Cell Voltage and Electrical Work
The voltage drop across the electrolyzer is the sum of the electrode Nernst potential and the

resistance of the cell. In estimating the resistance, the activation and the concentration overpotentials are
lumped in with the cell internal resistance. The cell voltage is then assumed given by

Vy=Vy+ir (B5)
where

Vy = is the Nernst potential, and

r = is the area-specific cell resistance (ohms-m?).

The electrical work done in the cell is
W=V, i-4. (B6)
The active species giving rise to the Nernst potential satisfy the chemical balance equation

1
H,0(g)—> H, (g) +502 (g). (B7)

The change in Gibbs free energy for this reaction carried out at temperature T and pressure P is from the
Appendix C.
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Ju, Jo,?

AG(T,P)=A4G (T,P)+ RT In (C.13)
H,0
where f'is the molar fraction of a species and where
AG(T,P)=G, , (TP)+1/2G, ,(T,P)—=G, , o(T.P). (C.14)

where the G.; (T,P) are on a per mole basis.

The mole fractions at any point in the electrolyzer are related to the molar mass flowrates at that point
through

’;leo I;ZHZ
/ HyO—cath = - - S/ Hy-cath — . . .
Ao+ Ny +0y Rpo Ny +0y
(B8)
n, ny
fOz—anode = —2 sz —anode — —2
Ry, + 0, ny +ng,
The Appendix derives the following expression for the electrical voltage developed
fof 1 1
-1 2 P \2
Vy=—==|4G, (D) +RT In| | ==~ ( j (C.19)
2F ' H,0 P STD

where Psrp =0.101 MPa and P is the cell pressure.

In the electrolyzer there is a species concentration and temperature gradient from input to output.
In this model, however, perfect mixing of all streams at each electrode is assumed with the Nernst
potential calculated for the conditions at the exit of the cell.

HTE Process Heat Model

A key task was to identify the level of model detail consistent with project objectives. One
guideline is that the main phenomena must be captured in a way that avoids including extraneous detail.
One way to gauge the cutoff point with regard to specific detail is to determine if the predicted behavior
would be sensitive to neglecting to model the associated phenomena. If not, then individual breakout of
the phenomenon should be considered extraneous. The main application of this principle in this work
involved identifying the appropriate level of reactant and process stream representation.

A representation of the thermal processing equipment based on the HYSYS process equipment

diagrams presented by Stoots (2005) is shown in Figure B2. Operation occurs at two different pressures,
the low-side pressure of 0.1 MPa and the high-side pressure of 5.0 MPa. The process raises reactant
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streams at the same temperature and pressure (0.1 MPa, 25° C) to a new temperature and pressure (5.0
MPa, 850° C) for inlet to the electrolyzer. The process is reversed for the products that exit the
electrolyzer. The process equipment provides for pressurizing of reactants, heating of reactants by reactor
process heat, cooling of products by recuperation between reactant and product streams, and product de-
pressurization. Phase change in the reactant stream takes place in a single boiler. Similarly, phase change
in the product stream takes place in a single condenser.

In an assessment of the appropriate level of model detail for representing the important
phenomena in Figure B2 the following were considered. The main phenomena are mechanical work and
heat recuperation involving condensable and non-condensable gases. Significant model simplification
derives from noting that parallel streams (classified separately by reactants and by products) undergo the
same overall transition in pressure-temperature condition. Essentially, predicted behavior should be
insensitive to lumping of such streams with respect to heat transfer and mechanical work processes. The
lumping process is achieved by requiring parallel streams to have the same temperature and pressure at
the point where they enter a component and the point where they leave the component. As a consequence
heat transfer or mechanical work is performed for multiple streams by a single component model as
shown in Figure BS5 rather than parallel components (one for each stream) as shown in Figure B4. This
merging of streams is an abstraction that allows for simpler models and the exclusion of what for now is
considered extraneous detail until such time as detailed design of components is performed with the goal
of economic optimization.

A. Pressure Step-Up Unit

The reactant streams consist of liquid water and non-condensable gases. All streams are raised to the
same pressure adiabatically.

Al Simplified Pump Model

A pump is used to raise the pressure of the liquid water. Since liquid water is very nearly incompressible,
shaft power applied reversibly to a control volume is given by

[/Vrev = M (B9)
2,
where
m = liquid water mass flowrate,
p = density, and
P = pressure

and subscripts i and o represent inlet and outlet, respectively.
The actual shaft power, W,., is related to the pump efficiency, #, through W, = n W,.,. In practice to get

from pressure P; to P, shaft power delivered irreversibly results in an enthalpy change in the control
volume given by

w

act

= [h(T,,P,) = h(T,,P,)] (B10)

where /4 is enthalpy and 7 is temperature. Eliminating the power terms in the above three equations gives
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P, —P =pn[h(,,P)-h(T,P)] (B11)
A2 Detailed Pump Model

A more detailed representation of the pump would include pump characteristic curves. These
curves express any two of efficiency, pressure ratio, and enthalpy change in terms of mass flowrate and
shaft speed. For efficiency and pressure ratio

P - _
f=fpr(m,w) (B12)

n=1, () (319

where @ is normalized shaft speed and i is normalized mass flowrate.
The shaft work is given by Eq. (10). Additionally, from the definition of efficiency

ldeal—a’})u)_h(T;’})i)
W(T,.B,)~h(T,.P)

_ (T,

(B14)

where Tigq., is the temperature reached upon arriving at pressure P, when the shaft work is performed
reversibly. From this definition of T}z, it follows that

S(T;‘deal—o’R))_S(T;"Pi):O (BIS)

where S is entropy.

A3 Compressor Model

The compressor model for a single non-condensable gas uses the same conservation equations as
the detailed pump model. But in the case of the compressor the fluid is compressible rather than
incompressible. This is captured in the fluid properties and the characteristic curves.

A4 Compressor Model for Multiple Gas Streams

In the representation of Figure B2 there are two separate non-condensable gas streams that enter
the Pressure Step-up Unit. The cathode stream is a mixture of hydrogen and nitrogen and the anode
stream is a mixture of oxygen and nitrogen. It is assumed both streams enter and leave the Pressure Step-

Up Unit at the same temperatures and pressures.

The case of a single stream composed of a mixture of gases is treated first. Non-dimensionless
flow and shaft speed are functions are defined
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e ad @22 (B16)

(2r)P J7RT,

where

= actual shaft speed,

tip radius,

ratio of specific heats, and
gas constant

A= T8
Il

where the last two parameters are for the gas mixture. The characteristic curves relate pressure ratio and
efficiency to non-dimensional flow and speed through

P - _
I; = fp(m, @) (B17)
n=1,0m, ) . (B19

The compressor equations are

W, =m[h(T, P,)—h(T,P)) (B19)

— h(T;'dealfn an)_h(TmP,) (BZO)
h(T,,P,)~h(T,,F,)

S(ﬂdea/—o9R))_S(ﬂ’R):O . (B21)

The compressor equations are examined for the existence and uniqueness of a solution. If the variables 2 ,
o, P;, and T; are taken as boundary conditions, then there remain five variables that must be solved for:
P,, T,, Tiweao» Waer, and n. There are five equations so a unique solution exists for these boundary
conditions. This solution can be obtained as follows. Eq. (B17) and P; give P,. Eq. (B21) is then solved
for Tigearo- Eq. (B19) and (B20) are then solved for W, which is then substituted in Eq. (B19) to obtain
T,.

The above can be extended to multiple separate streams. It is assumed that each of the streams entering
the compressor is at the same temperature and pressure and that this is true for the streams exiting (as is
the case of the cathode and anode streams above). In particular the inlet streams are each at low-side
system pressure P, and the outlet streams are at high-side pressure Py,.

From a model standpoint, simplification results when a single averaged stream is used to represent the
two streams. The treatment below of the anode and cathode streams as a single stream is rigorous for the
case where the mass flowrates of the two streams vary in direct proportion to each other. That is, their
ratio is constant. Early studies will focus on quasi-static and dynamic transients where the HTE power
varies in response to change in load. The water and oxygen flowrates will vary in direct proportion to
electrolyzer power for which case the ratio of the cathode and anode streams will be constant. One sees in
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the expression for dimensionless flow that given a design for the compressor in one stream there exists a
tip diameter for the compressor in the other stream such that the two compressors have the same
dimensionless flowrate. Similarly, for dimensionless speed there exists a shaft speed for the second
compressor such that both compressors have the same dimensionless speed. We arrange for these two
conditions to be true at the full power condition. Then for load changes where the ratio of mass flowrates
is preserved, the two compressors share the same performance curves.

The combined stream equations are as follows. Define for stream j consisting of species indexed by

m; = ka—j
k

hym = ;hkmk_j (B22)

S;m; = Zsj my_;
k

where the index j has values cath and anod.

The equations for each stream then combine to give

W=D hi(P.T ), — h(P,T)m, (B23)
J
nWact:Zhj(Po’T;‘deal)mj - h/(Pz’T;)mj (B24)
J
z S (Zdeal—oopo)mj _(Sj (Tzopz)m] =0. (B25)
J
where
Woe = combined work of the compressors

and where the second equation follows when the compressors have the same dimensionless set of
characteristic curves, as when the stream flowrates are in direct proportion to each other. This set of
equations is the analog of the set for a single compressor. As in the single compressor case variables 7z ,
o, P;, and T; can be taken as boundary conditions leaving five variables that must be solved for: P,, T,
Tidear» Waer, and i and where there are five equations including the two characteristic curves.

B. Pressure-Work Recovery Unit

B.1 Turbine Model for Multiple Compressible Gas Streams

The discussion for the compressor applies equally to the turbine. The turbine equations are the
same as those for the compressor with three exceptions. The pressure ratio is given as inlet pressure
divided by outlet pressure, the efficiency is given as actual work divided by ideal work, and the terms
present in an enthalpy difference are the negative of what they are for the condenser.
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C. Boiler with Non-Condensable Gas Streams

The streams output from the Pressure Step-Up Unit in Figure B2 enter the cold side of the boiler.
The concept of mixing streams allows model simplification and is warranted given the current state of
design as described below.

C.l1 Cold Side

There are three streams that enter the cold side of boiler. The first cathode stream is composed of liquid
water and the second of oxygen and nitrogen. The anode stream is composed of oxygen and nitrogen. All
streams are assumed to be at the same temperature at the entrance. The three streams are assumed to be in
thermal equilibrium when they exit the boiler. All streams are assumed to be at the same high-side system
pressure, Py, at the inlet and outlet of the boiler.

The two cathode streams described above create a liquid phase and gas phase in the boiler. It is assumed
the two phases are in thermal equilibrium and that each phase is perfectly mixed. The liquid phase is
saturated water and the gas phase is saturated water vapor and non-condensable gases. The water vapor
partial pressure is the saturation pressure corresponding to the temperature of the saturated liquid. This
follows from the assumption of thermal equilibrium. [Dodge] The liquid water entering the boiler may be
subcooled.

The mass flowrate of cathode stream saturated vapor leaving the boiler is

P

- B H,0(2)~cath-0 < Mo_carno
mH20(g)—cuth—u - “*H,0 P z A (B26)
L k k

where the subscripts k, cath, and o represent, respectively, an index over the cathode species, cathode
stream, and boiler outlet. It is assumed that the partial pressure of the water vapor equals the saturation
vapor pressure and, hence, is given by

P, H,0(g)—cath-o — f (Tsm) (B27)

where f'is a function that gives vapor pressure as a function of saturation temperature, 7y, Similarly, the
mass flowrates of the other cathode species j leaving the boiler are

P, m
=A4. Jj—cath—o k—cath—o B28
J PL Zk: Ak ( )

m

Jj—cath—o

The partial pressures of the cathode species leaving the boiler satisfy

PL = PHZO(g)—cath—o + ZPj—cath—a . (B29)
J

The anode and cathode streams are assumed to be in thermal equilibrium entering and exiting the boiler
so an energy balance on the cold side gives
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0= mHZO(/)—cath [hHZO(I) (P.T,) - thO(g) (T..)]+ Qtp +
Z mj—cath [hj (f)j—cath—i b Tc—i) - hj (})j—cath—o > Tmt )] + (B30)
J
Z mj—anod [hj ([)j—anod—i 2 Tc—i) - hj ([)j—anad—o 2 71sat )]
J
where

T, c-1
Op

temperature of the hot side streams entering the boiler, and
rate of heat transfer from hot to cold side.

For the anode stream

P,

Jj—anod—o = Jj—anod—i (B3 1)
The cold side equations are examined for the existence and uniqueness of a solution. If the variables
m,_;, Pui, Tei, and Qy, are taken as boundary conditions, then there remain eight variables that must be

solved for P, P P, P P

H,0(g)—-cath—0 > = H,—cath—0 > = N,—cath—o0 > * O,—anod—o> =~ H,—anod—o >
are eight equations for the cold side so a solution exists for these boundary conditions. Not written are
mass balances for individual species where it is assumed that the outlet mass flowrate equals the inlet.

Py, Ty, and m H,0(g)—cath—o - There

C2 Hot Side
There is one stream, helium that enters the hot side of boiler.

The anode and cathode streams are assumed to be in thermal equilibrium entering and exiting the boiler
so an energy balance on the cold side gives

O = mHe (hHe (Th—i) - hHe (Th—o )) - Qtp (B32)
where

Th1 - temperature of the hot side streams entering the boiler, and

Tho - temperature of the hot side streams exiting the boiler.

C3 Interface

The temperatures and the heat transferred are related by

(Th—u B T'sat )_ (Th—i B T;at )
In(7,_, - T, ., )T, —T,,))

Qtp = (UA )cond (B3 3)

where UA is the product of the overall heat transfer coefficient and the heat transfer area. The superheat
and two-phase regions have been lumped as a single region so the value for U4 must reflect this.

In the early stages of design it is more appropriate to work with heat exchanger effectiveness, &,
rather than overall heat transfer coefficient, UA. A value for UA is typically meaningful only when
generated in an economic analysis performed late in a design study. Heat exchanger effectiveness on the
other hand is dimensionless and values that reflect chemical industry practices which takes in economics
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are given in the literature. Heat exchanger effectiveness is the actual heat transferred to the
thermodynamically maximum for infinite heat transfer area. The heat exchanger effectiveness then is

T —-T
e=hi " tho (B34)
T,.-T

sat

When a solution is sought with heat exchanger effectiveness used in place of UA, then Eq. (B34) replaces
Eq. (B33).

D. Condenser with Non-Condensable Gas Streams

The streams output from the Pressure Work-Recovery Unit in Figure B2 enter the condenser. The
concept of mixing streams again allows model simplification and is warranted for reasons that parallel
those for the boiler. It is assumed that the water entering the condenser is superheated, and that there is
perfect mixing of the water in the condenser.

D.1 Hot Side

There are two streams that enter the hot side of the condenser. The cathode stream is composed of
water vapor, oxygen, and nitrogen and the anode stream is composed of oxygen and nitrogen. Both
streams are assumed to be at the same temperature and pressure. The streams are assumed to be in
thermal equilibrium when they exit the condenser. It is assumed that the temperature of the streams is
reduced sufficiently that there is condensation of water vapor. Both streams are assumed to be at the same
low-side system pressure, Py, at the inlet and outlet of the condenser.

The mass flowrate of cathode stream saturated vapor leaving the condenser is

P m
. _ H,0(g)—cath—o k—cath—o

My.0(g)-cath-o = “AH,0 P z P (B35)
L k k

where the subscripts k, cath, and o represent, respectively, an index over the cathode species, cathode
stream, and condenser outlet. It is assumed that the partial pressure of the water vapor equals the
saturation vapor pressure and, hence, is given by

P, H,0(g)—cath-o — f (Tsa;) (B36)

where fis a function that gives vapor pressure as a function of saturation temperature, 7y, Similarly, the
mass flowrates of the other cathode species leaving the condenser are

. P’—ca -0 m - —
) — Aj Jj—cath Z k—cath—o (B37)

L

J—cath—o

The mass flowrate of the saturated liquid leaving the condenser satisfies the mass balance

My 0(g)-cath-i = M0 -cati-o T M H,0(g)-cath—o - (B38)
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The partial pressures of the cathode species entering the condenser satisfy

P =P H,0(g)~cath—i T z ])j—cath—i . (B39)
J

The anode and cathode streams are assumed to be in thermal equilibrium entering and exiting the
condenser so an energy balance on the hot side gives

0= M y,0(g)—cath-i thO(g) (PHZO(g)—cath—i’ T,.)- Qtp -

[mHZO(Z) cath—o hH20<1)( T.) +mH20(é) cath-o Hzo(é,)( T )1+

Z mj—cath [h/ (Pj—cath—i H Th—i) - h_/‘ (Pj—cath—o > % sat )] + (B40)
J
z mj—anod [hj (f)j—anod—i s 7Wh—i) - hj (f)j—anod—u ’ Tivat )]
J

where

T
Op

temperature of the hot side streams entering the condenser, and
rate of heat transfer from hot to cold side.

For the anode stream

P P

Jj—anod—o = Jj—anod—i

(B41)

The hot side equations are examined for the existence and uniqueness of a solution. If the variables m,_;,
Pi1, Th, and Qy, are taken as boundary conditions, then there remain nine variables that must be solved
for P, P P, P P,

H,0(g)—cath—o > H,—cath—o > N,—cath—o > 0,—anod—o > H,—anod—o > PL’ Tmt > mHzO(l)—cath—o ’ and
My 0(g)-cain-o - LhETE are nine equations for the hot side so a solution exists for these boundary conditions.

Not written are mass balances for species other than water. For these the outlet mass flowrate equals the
inlet.

D.2 Cold Side
There are three streams that enter the cold side of condenser. The first cathode stream is composed
of liquid water and the second of oxygen and nitrogen. The anode stream is composed of oxygen and
nitrogen. Both streams are assumed to be at the same temperature and pressure. The streams are assumed
to be in thermal equilibrium when they exit the condenser. Both streams are assumed to be at the same

low-side system pressure, P;, at the inlet and outlet of the condenser.

The partial pressures of the gas species j entering and exiting the condenser satisfy

= Z })j—cath (B42)
J
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PL = Z Pj—anad

J

The mass flowrates of the gas species are related to partial pressures in the cathode stream by

P- .
i = A, -’;”’h D m’;ﬂ“”? (B43)
L k k

and the anode stream by

P, m
— A ] J—anod k—anod . B44
5 ; n (B44)

mj—anud

The anode and cathode streams are assumed to be in thermal equilibrium entering and exiting the
condenser so an energy balance on the cold side gives

0= mHzO(I)—cath (hHZO(l) (7..)- thO(l) (T.,)+ Q;p -
Z n'/lj—cath [hj (f)jfcath 4 Tc—i) - hj (‘f)j—cath ’ ‘Tc—o )] + (B45)
J

Z mj—anod [hj (Pj—anad > Tc—i) - hj (Pj—anod H 71‘—0 )]
J
where

T.. - temperature of the cold side streams entering the condenser, and
T.., - temperature of the cold side streams exiting the condenser.

The cold side equations are examined for the existence and uniqueness of a solution. If the variables
My 0>My _can sMo, —anoa» PL» Tea, and Qy, are taken as boundary conditions, then there remain seven
variables that must be solved for PNz_cath, PNZ_wwd , PHz_cath, Poz_am)d, My _catn> TN, —camn> and T,

There are seven equations for the hot side so a solution exists for these boundary conditions. Not written
are mass balances for species. For these the outlet mass flowrate equals the inlet.

D.3  Interface

The temperatures and the heat transferred are related by

(]—'c—o ~ Lsar )_(Tc—i _Tsat )
ln((Tc—o - Tmt ) /( Tc—i - Tvat ))

Qtp = (UA)cond (B46)

where UA is the product of the overall heat transfer coefficient and the heat transfer area. The superheat
and two-phase regions have been lumped as a single region so the value for U4 must reflect this.

Alternatively, working in terms of heat exchanger effectiveness
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Tr.,6-T

E = —_co ol e-i . B47
7;at - Tc—i ( )

When a solution is sought with heat exchanger effectiveness specified in place of UA, then Eq. (B47)
should be used in place of Eq. (B46).

E. Single-Phase Heat Exchanger

It is assumed that there is no phase change and each species is conserved.
E.l Hot Side

The mass flowrate for species / in stream j in the heat exchanger is
m =4+ ) —- (B48)

or for the mole flowrates

n,
B =—=F (B49)
! nt()t

where /; is an index over all species / in stream j .

The partial pressures of each of the species / in stream j in the heat exchanger satisfy

P,=>R . (BS0)
k

The streams are assumed to be in thermal equilibrium entering and exiting the heat exchanger so an
energy balance on the hot side gives

0= ~0+3 Yy U (B,.T,.)~ by (B .T,.,)] (B51)
J ok

where j is the stream, k is an index over the species, and k; represents species k in stream j

Ty - temperature of the hot side streams at the inlet to the heat exchanger and
Tho - temperature of the hot side streams at the outlet of the heat exchanger.

E2 Cold Side

The first two equations for the hot side apply equally to the cold side. An energy balance gives

0=0+ Z ka, [hk, (Pk/ T.) - hk/ (ij T,,)] (B52)
ik
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E.3 Interface

The temperatures and the heat transferred are related by

Q =AU (Tho_Tci)_(Thi_Tcu) (B53)
v ln((Tho - Tci ) /(Thi - Tco )

where AU is the overall heat transfer coefficient and subscripts 4, ¢, ki, ho, ci, and co represent hot side,
cold side, hot inlet, hot outlet, cold inlet, and cold outlet, respectively. This equation assumes constant
specific heat along the length of the heat exchanger. When the specific heat does not vary significantly
over the temperature range a good approximation is

> U (P T,) = b (P, T,,)]

c, = - (B54)
(Tc—i - Tc—o) ka
i
where k has the values # and ¢ for hot and cold, respectively .
The effectiveness is then
T, —-T T —-T.
&= ch hi ho — cc co ci . (B55)
Cmin Thi - Tci cmin Thi - Tci

where c is the product of the specific heat and the mass flowrate and c¢,,;, is the smaller of ¢, and c..

F. Fluid Properties

Fluid properties are needed for enthalpy and entropy as a function of pressure and temperature for
water, hydrogen, oxygen, and nitrogen. The enthalpy of subcooled and superheated water and the
saturation temperature as a function of pressure are taken from polynomials in [The SAS4A/SASSYS,
1996]. The enthalpy of hydrogen, oxygen, and nitrogen are taken from polynomials in [Zehe, 2002]. The
entropy of water, hydrogen, oxygen, and nitrogen are also taken from [Zehe, 2002].

Presently the polynomials are evaluated directly. In the case where a needed property appears implicitly
in a polynomial expression, Newton’s method is used to find the root of the expression. The GAS-
PASS/H code also has the capability for table lookup of properties. Tables of the above properties were
generated. They will be used should property evaluation be a limiting factor in achieving fast run times.
This will likely be the case in transient rather than steady-state simulation.

INTERCONNECTIONS AMONG COMPONENTS
The component models described in the previous section are linked together to obtain a
representation of the HTE plant. The model descriptions however are in terms of generic input and output

variables specific to the type of component and not specialized to the integration of the component in the
HTE plant. This section describes the relationships that connect components in the plant.
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A. Mass and Mole Flowrates of Individual Species in Reactant and Product Streams

The interconnection of components in the steady state is physically in terms of a reactant stream
and a product stream. The reactant stream is defined to be the collection of all physical streams that enter
the electrolyzer. The product stream is similarly those streams that exit the electrolyzer. The electrolyzer
separates these streams and species balances between the input and output of the electrolyzer bridge these
two streams. The species flowrates in any component in the reactant or product streams is linked to its
neighbors in the code by continuity of species. Thus, in the steady state all components in the reactant
(product) stream will have the same species flowrates.

The code provides for up to a possible four species in the reactant and in the product stream. Since
the HTE process tends to be conceptualized in terms of mole fractions, the input deck is cast in terms
individual specie mole fractions for water, hydrogen, and oxygen plus a total species mass flowrate. But
the conservation equations for each component in these streams are in terms of individual species mass
flowrates and not mole flowrates. The relationship between input deck variables (i.e. three species mole
fractions and total stream mass flowrate) and a component’s species mass flowrates is as follows.

The mole flowrate of species k at the outlet of a component is given by

_ mtvt—o fk—tut—u

ﬁk* ot-0 O 4, ° k= HZO: HZ ’ 02: and N24 (B56)
“ ZA/ fl'*mf*()
J

where 4; is the atomic weight of species j in kg, subscript to-o refers to all occurrences at the component
output, and where the summation is over all species in the reactant (or product) stream. Here f; appears in
the input deck and is defined as the mole fraction of species £

n
_ "Yk—tot-o . _ .
fk—tot—o - . ’ ntotfo - : :nj—zat—o . (B57)
J

fot—o

where the summation is over all species in the reactant (or product) stream. The total mass flowrate
appears in the input deck for each component and is related to mole quantities as follows

mtot—o = ZA] };Zj—tot—ok = ’;ltot—u ZA] fj—tut—o (B58)
J J

For individual species
mk—tot—o = Ak l;lk—tot—o ’ k= H,0, H;, O, and N, (B59)

B. Reactant Stream Into Electrolyzer

The code input assumes the electrolyzer communicates with the other components through a
reactant stream at its input and a product stream at its output. But the model for the electrolyzer has been
developed in terms of electrode stream mole fractions rather than component stream mole fractions. A
means is needed then to convert from electrode mole fractions to component stream mole fractions.

The species mole flowrates into the electrolyzer model are related to the reactant stream species mass
flowrates by
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ﬁHZO—cath—i = mHZO—mt—R / AHZO (B60)
ﬁHz—cazh—i = erzosz /AH2 (B61)

’;lOz—anud—i = mOz—tut—R /A02 (B62)

where the left-hand side is the mole flowrate in to the cathode by species while the right-hand side gives
the total mass flowrate by species in the reactant stream. The subscripts cath, i, tot, and R represent
cathode, input, total, and reactant stream, respectively. Note that water, hydrogen, and oxygen each
appear at only one electrode. Nitrogen is a special case since it can appear at both the cathode and anode.

A parameter fy,..i 15 defined as the fraction by mole of the total nitrogen in the reactant stream that enters
the cathode. Thus, at the inlet to the cathode

’;ZNZ —cath—i — ,;ZNZ—tot—R sz —split = mNZ—tot—R sz—split /ANZ (B63)
while at the inlet to the anode
ﬁNz —anod—i — ﬁNfszR -7 Nrspliz) = n‘/lsztot—R (I-f N, ﬁs‘plit)/ AN2 . (B64)

The species mass flowrates into the electrolyzer model are related to the reactant stream species
mass flowrates by multiplying the above five equations through by atomic weight

My 0-can-i = Mu,0-101-R (B65)
mHz—cath—i = mHz—tot—R
mOz—anod—i = mOz—tot—R

mNZ—cath—i = mNZ—tot—R sz—split

mNz—annd—i = mNz—mt—R (1 - sz—split) .

C. Electrolyzer Output Into Product Stream

The species mole flowrates in the product stream are related to the species mole flowrates exiting
the electrolyzer through

Pr,0-t00-p = P H,0-cath—o (B66)
nHZ—tot—P = nHz—cath—o

nOz —tot-P — nOZ —anod—o
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nNz—mt—P = nNz—cath—o + nNz—am)d—o

The subscripts o and P represent output and product, respectively. Again note that water, hydrogen, and
oxygen each appear at only one electrode and nitrogen is a special case since it can appear at both the
cathode and anode

The mole fractions of species in the combined product stream that exits the electrolyzer are related to the
individual electrode streams. The water mole fraction in the product stream is

ﬁH O-cath—o
fr0-0p = (B67)

elect—o

where the numerator is the mole flowrate of water vapor exiting the electrolyzer and the denominator is
the sum of mole flowrates over all species and is given by

nelecl—o = nHzO—cath—o + nHz—cath—o + nNz—cath—o + nOz—anod—o + nszannd—o : (B68)
Similarly,

_ nH2 —cath—o

sz—tot—P - (B69)

n

elect—o

_ nOZ—cath—o
f O,—tot-P — .
n

elect—o

nNz —cath—o + nNz —anod—o

f N,—tot—P — 3
n

elect—o

GAS-PASS/H SIMULATION

The component models described above have been implemented in the GAS-PASS/H code as
Fortran subroutines, an input deck has been assembled for a representative HTE plant, comparison of
some models with work by others has been performed, and simulations have begun.

Results from the electrolyzer model have been compared against the 1-D model of Stoots (2005).
The main difference between the model described in Appendix B and that of Stoots is the assumed
distribution of temperature and species concentration in the electrolyzer. In Appendix B a perfectly mixed
or uniform distribution is assumed whereas Stoots allows for some spatial dependence. The two models
were compared to determine the relative error in operating voltage for different current densities. When
the boundary conditions including current density are the same between the two models the error in
electrical power consumption is equal to the error in operating voltage. Table B1 shows this error as a
function of current density. The calculated electrical power for the two models differs by less than 5
percent.
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A GAS-PASS/H input deck was prepared for the HTE plant configuration shown in Figure B5. The
conditions simulated are a 50 MWt reactor heat load and an electrolyzer output of 95 percent hydrogen
and 5 percent steam by mole fraction. The water feed by mole fraction is 95 percent water and 5 percent
hydrogen at room temperature. The electrolyzer operates at 5 MPa and has an inlet temperature of 850 C.
Estimates for the process conditions for initializing the simulation were obtained by solving four heat
balances equations. This yielded a water feed flowrate of 21.5 kg/s and powers for heat exchangers SHX1
and SHX2 that supply reactor power of 45 and 5 MWt, respectively. The high temperature recuperator
power is 30 MWt.

H,/0;(g)

Cell —— Hy/0:(g)

HX HX Generator

Figure B1 Simple Schematic of HTE Process Heat Equipment
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ILO(), IT; and H,O(g)/H; and O, /N; @ 1050°C 5 MPa
0,/N, @ 0.1 MPa
H,0O(g)/H,; and
0,/N: @ 5 MPa
Pump: HO (1) o (iﬂ;l-‘hlasc N ;
Condenser Boiler e L0
AN L Cell
Oa(g)/N,
TLO(1), IT; and
05, N
@ 21 C. 0.1 MPa
391°C He @ $50°C
+«— sHX1I @#—— | —— SsHX2 —
0.1 MPa
Turbine
Figure B2 Lumped Representation of Multiple Material and Energy Streams.
Sweep Stream: O, and N, (Air) Product Stream: O, and N,
|- »
Ll »
Cathode
1+
o* -
.
) Anode
Feed Stream: H,, H,0, and N,
» > >
AY
\\\ Product Stream: H,, H,0 and N,
\ ,V
\ . e
Maintains reducing environment .7
For recycle

Figure B3 Schematic of Electrolyzer
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Figure B4 HTE Process Diagram Before Lumping of Components
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H0 (), Ha, N,

0,3, N

Turbine

H:0 (¢), H, N, |[18 H;0 (2), H, Ny
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2 HO0 (D)
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Cathode 11

Anode [ |

02, Ny

Compressor

<200
o H0(g), Ho, N>

O, N,

A

SHX1 SHX2

Figure BS GAS-PASS/H HTE Process Network Diagram for Lumped Components

Table B1 Comparison of Results from 1-D Electrolyzer Models. Simplified model on right assumes a
uniform distribution for temperature and species concentration between inlet and outlet. Error in
calculated electrical power input to the cell is equal to the error in the operating voltage which is shown in
the right-most column.

Vo
Non-Uniform Temp/Concentration Profile [Stoots] | Uniform Temperature/Concentration [Vilim] Err’;r

Case | ma/lcm2 | Eo E_corr | V_ner | Vop <T> T_exit | Eo E_corr | V_ner | Vop <T> (%)
1 0 0.982 | 0.138 | 0.8396 | 0.8396 | 1073 1073 0.977 |-0.138 | 0.839 | 0.839 | 1073 0
2 15 0.85 0.861 1061 1051 0.983 | -0.124 | 0.859 | 0.87 1051.5 | 1
3 78 0.991 | 0.108 | 0.88 0.937 | 1027.6 | 982 1.006 | -0.085 0915 | 0.97 | 992 3
4 156 0.909 | 1.018 | 1004 934 1.01 -0.055 0.954 1.064 | 9584 | 4.5
5 234 0.925 | 1.089 | 997 921 1.009 | -0.0033 | 0.976 1.14 | 9606 | 4.7
6 313 0.997 | 0.0627 | 0.934 | 1.153 | 1005 937 1.0006 | -0.014 | 0.986 1.205 | 9909 | 4.5
7 391 0.939 | 1.212 | 1026 979 0.985 | 0.0068 | 0.9916 | 1.265 | 1046 4.4
8 469 0.982 | 0.042 | 0.939 | 1.268 | 1059 1044.5 | 0.962 0.033 0.995 1.323 | 1126 4.3
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Appendix C

Gibbs Free Energy Change for a Reaction of Gases

The Gibbs free energy for a substance is defined on a single mole basis as

G=H-TS

(C1)
=U+PV-T8S

where H is enthalpy, S is entropy, U is internal energy and V is volume. The total differential is then

dG =dU +VdP + PdV —TdS —SdT . (C2)

But for temperature constant, dT = 0, and for reversible heat flow to the substance,
dQ = S dT where Q is heat flow, we have

dG =dU +VdP + PdV —dQ . (C3)
But the change in internal energy is dU = -P dV + dQ so that
dG =VdP. (C4)

If the substance is taken from pressure Py to a pressure P while maintaining constant temperature T, then
the change in Gibbs free energy is from Eq. (A.4) and the ideal gas law

AG(T,P)=RT In P/ P, (C5)
where the subscript R on the left hand side of the equation denotes pressure Px.

The Gibbs free energy of reactant i at temperature 7 and pressure P; is 1) the Gibbs free energy at
temperature T and reference pressure Py of the individual elements making up the reactant (taken as zero)
plus the change in the Gibbs free energy in forming the reactant from these elements at this condition (the
term inside the first summation on the right-hand side below) plus the change in the Gibbs free energy in
taking the reactant from pressure Py to P; (the term inside the second summation on the right-hand side
below). The Gibbs free energy for all the reactants is then

Y, G(T,P)= Y AG, (T,F)+ X 1,AG, (T,R) (C6)

REAC REAC REAC
where 7; is the number of moles of species i of the reactants and the Gibbs free energy on the right-hand

side is on a per mole basis. A similar expression can be written for the products. The change in Gibbs free
energy for the reaction conducted at pressure P is then the difference in these two expressions
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AG(T,P) = Y p,[AG, (T,P) +AG, (T.P)]-

PROD

Z r; I:AGf*i (T’PR) + AGR—;‘(T’Pi)]

REAC
where p; is the number of moles of species i of the products.

Now define

AG(T.P)= Y p,AG, (T.P)~ 3 1r,AG, ,(T.F,) .

PROD REAC

Upon substituting Egs. (C5) and (C8) into Eq. (C7)

[1@®/P)"
AG(T,P)=A4G ,(T,P,)+ RT In £

[1®/P)

REAC

Al Non-Standard Pressure

(C7)

(C8)

(C9)

In Eq. (C9) set the reference pressure, Pg, to the pressure of the reaction, P. The resulting partial
pressure ratio for species i is from Dalton’s Law equal to the mole fraction, f;. Substituting this into Eq.

(C9) gives

H](;Pi
AG(T,P)=AG ,(T,P)+ RT In %2

[1/

REAC

A2 Standard Pressure

Consider the special case of Eq. (C9) where P =
AG (T, Py)= 4 Gfo (T). In this case Eq. (C9) can be rewritten as either

AG(T,P)=AG,’(T) + RT In| 222

or

Hff”( P J

AG(T,P)=AG,"(T)+ RT In| 222> | T
‘ Porp

[/

L REAC

(C10)

so that

(C11)

where P is the reaction pressure and this second equation follows from application of Dalton’s Law.
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A.3 Electrolysis of Water

For the reaction
1
H,0(g)—>H, (g)+502 (g) (C12)

at temperature 7 and pressure P, the change in Gibbs free energy is from Eq. (C10)

1
2
AG(T,P)=4G (T,P)+ RT In M (C13)
H,0
where from Eq. (C8)
4G (T,P)= AG/,;HZ(T,P) +1/2 Afooz(T,P) - AG/szo(T»P) . (C14)

If electrical work is performed by the species in the course of the reaction, then a voltage is developed. To
find this voltage note that

dG =dH — TdS — SdT

(C15)
=dU +VdP + PdV — TdS — SdT

But the change in internal energy equals the heat added to the system minus the work done by the system
dU =dQ — PdV —dWw, . (C16)

where W, is electrical work done by the system. If the heat is added reversibly so
dQ = T dS and temperature and pressure are maintained constant, then Eq. (C15) and (C16) yield

dG=—dw,=-V, dg (C17)

where dg is the charge transferred and Vy is the voltage. Thus, for the reaction given by Eq. (C12) whose
Gibbs free energy change is given by Eq. (C10), Eq. (C17) yields

1
_ 2
v, = —; AG(T,P)+RT In T Jo2

2 H,0

(C18)

where the charge transferred in the reaction of Eq. (C12) is 2F where F is Faraday’s constant. Here P and
T are the pressure and temperature of the reaction. Alternatively, from Eq. (C11)

1
_ ) 2
v, = ﬁ AG,’(T)+ RT In Ju, o, ( P J (C19)

H,0 P, STD

where PSTD =0.101 MPa
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Appendix D

Coupling Results from HYSYS Simulations for Benchmarking with
HyPEP

PLANT CONFIGURATION

The baseline plant configuration was based on configuration 6 from Davis et al. (2005). Figure
X.0.1 illustrates the configuration of the plant. In this configuration the an indirect cycle was used with
the reactor coupled to the secondary side by means of an intermediate heat exchanger (IHX) as
recommended by the Independent Technology Review Group (2004). The reactor was assumed to
produce 600 MW of thermal power with a 900 °C outlet temperature with a nominal pressure of 7MPa
and use helium coolant on the primary side. The nominal rise in fluid temperature across the core was
assumed to be 400 °C, based on the point design (MacDonald et al. 2003). The reactor pressure drop and
the primary side pressure drop of the IHX are assumed to be 50kPa.

The power conversion unit (PCU) consists of a recuperated Brayton cycle. Referring to Figure D1,
the fluid exits the IHX and the flow is split with most of the flow entering the PCU. The rest of the flow,
approximately 10%, goes to the HTLHX. Upon entering the PCU the fluid enters the turbine for
expansion. After leaving the turbine the fluid passes through the hot side of the recuperator and is further
cooled by a precooler before entering the low pressure compressor. The fluid is the cooled aging by an
intercooler before entering the high pressure compressor. The fluid leaves the high pressure compressor
and enters the cold side of the recuperator before combining with the fluid from the HTLHX and
returning to the IHX.

The reactor was coupled to the hydrogen processing facility by means of an intermediate heat
transport loop (IHTL). The IHTL was placed in parallel with the PCU as seen in Figure D1. It was
assumed that SOMW of thermal power are transported to the IHTL. A circulator is needed in the
secondary side account for pressure losses in the heat transport loop heat exchanger (HTLHX).
Estimations of the required separation distance between the nuclear and hydrogen process plant vary
considerable. For example, Sochet et al. (2004) recommended 500 m for the High-Temperature Reactor
while Smith et al. (2005) recommended a separation distance of from 60 to 120 m for the NGNP and the
hydrogen production plant. For this analysis, a nominal value of 90 m was used. The working fluid in
the loop is assumed to be helium.

The coupling of the IHTL to the hydrogen processing facility was accomplished by means of three
process heat exchangers (PHX). Figure D2 details the configuration of the 3 PHX’s in the IHTL. Two
heat exchangers in parallel are followed by one heat exchanger in series. This configuration was chosen
to deliver high inlet temperatures on the hot side of the first two heat exchangers where high cold side
outlet temperatures are needed for the hydrogen production facility. The third heat exchanger however,
does not require high cold side outlet temperatures and the hot side inlet temperature from the outlet of
the prior heat exchangers is sufficient for heating the cold side fluid.
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HYSYS High Temperature Electrolysis

The hydrogen plant was modeled as a high temperature electrolysis plant was coupled to the reactor
by means of the intermediate heat transport loop (IHTL). The baseline HTE model used here was adapted
from the work done by Stoots et al. (2005). A model of the HTE operations was developed that includes
all of the components that are actually present in a HTE plant including pumps, compressors, heat
exchangers, expanders and the electrolyzer. A one dimensional electrolyzer model was developed for the
HYSYS modeling code. A comparison of this model with a fully 3-D computational fluid dynamic
model and experimental results was done by O’Brian et al. (2005).

On Figure D3, the process water enters on the left. The water is then pumped up to the operating
pressure of 5 MPa. The efficiency of the pumps and circulators is assumed to be 75%. This water is then
combined with water condensate returned from the hydrogen/water product stream. This stream then
enters the low temperature recuperator (HX1). The pressure drop through the heat exchangers is assumed
to be 20 kPa. From there the steam is further heated by PHX 3. Upon leaving PHX 3 the steam is mixed
with hydrogen from the product stream by a recirculator which works to overcome the pressure drops in
the system. A mole fraction of 90% water and 10% hydrogen is maintained in this model. This hydrogen
helps to maintain reducing conditions at the electrolysis stack to prevent oxidation. The mixed stream
then enters the high temperature recuperator (HX2) which takes advantage of the high temperature outlet
from the electrolysis stack. The hydrogen/water stream is then heated to the operating temperature for the
electrolysis stack, in this case 827 °C, in PHX 1.

The electrolyzer has another inlet stream which contains the sweep gas. This is used to sweep away
the oxygen from the electrolysis process. A steam sweep gas is used in this model and enters the plant in
the middle-bottom of Figure D3. It is first pumped up to operating pressure and then heated in the sweep
recuperator using the hot sweep outlet from the electrolyzer. Before it enters the electrolysis stack it is
heated to the operating temperature of 827 °C in PHX 2.

Upon leaving the electrolyzer, the product stream is 90% (mole fraction) hydrogen and 10% (mole
fraction) water. This then passes through the high and low temperature recuperators. The steam
condensate is then separated from the hydrogen and recycled back into the system. After leaving the
electrolyzer, the sweep gas enters the sweep recuperator (HX3) to preheat the sweep inlet. The sweep
outlet contains approximately 55% water (mole fraction) and 45% oxygen. It is then partially separated
before entering an expander to recuperate some of the power. The expander has an efficiency of 80%.
Finally the sweep stream is further separated and high purity oxygen and water are produced at the top
and the bottom of the separator, respectively.

The model developed by Stoots et al. (2005) was originally envisioned for a 300 MW HTE plant.
However, under the assumption of ~50 MW process heat, a 300 MW plant was not possible. Therefore
the plant was scaled down to meet the needs of that assumption. To do this the balance of plant must still
work and key working condition such as stream compositions, and electrolyzer inlet temperature must
remain constant. This was accomplished by reducing the mass flow of the inlet process stream and the
sweep stream while keeping the compositions and temperatures constant. The electrical power to the
electrolyzer was reduced from 292 MW to 234.4 MW and 198.8 MW for the helium and molten salt
IHTL working fluids, respectively. This was done to account for the smaller mass flow rate and to keep
an outlet composition of 90% hydrogen and 10% water.
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Figure D3: Schematic of HTE process

Simplified HTE Model

The dynamic behavior of the HTE facility must be modeled to study certain issues when it is
coupled to the VHTR. To do this a simplified version of the model developed earlier was created. In this
model only the phenomena important for predicting efficiency have been included, such as heat
exchangers, pumping equipment and the electrolysis cell. Unnecessary components such as the separator
columns have been removed. Since only the energy and mass balances need to be determined it is
possible to combine the streams when modeling shaft work and heat exchanger energy balances. Figure
D4 depicts the simplified block model where the mass and energy balance of the sweep gas and main
feedwater streams have been combined. The streams are pumped up to operating pressures before
entering the first set of heat exchangers. They are then heated by PHX 2 & 3 before the H, is introduced
into the stream from the hydrogen product stream. The main and H, stream are then further heated in
recuperator 2 and PHX 1 before entering the electrolyzer. The sweep stream is not heated in this step to
be consistent with the HYSYS model and enters the electrolyzer. The streams then exit the electrolysis
cell and pass through the hot side of the recuperators. The product streams then exit the final recuperator.
The simplified model does not include further separation processes of the sweep and H, product streams.

A comparison of the two models shows excellent agreement of the energy and mass balances.
Using the inlet conditions, obtained either from the entire balance of plant model or conditions set in the
HTE facility for the, simplified model supplied in Table D1, the energy and mass balance for each
component was compared with value obtained from the more complex model. Table D2 AND D3
summarize the energy balance for the heat exchangers, shaft work for the pumping and circulation
equipment, and the energy and mass balance for the electrolyzer, respectively.
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Table D1: Energy balance for heat exchangers.
Heat Exchanger Energy Full Model (kW) Simplified Model (kW)
Recup. 1 & 3 5.167 x 10° 5.167 x 10°
Recup. 2 1.527 x 10° 1.525 x 10°
PHX 1 4471 x 10" 4.471x 10°
PHX 2 & 3 1.031 x 10 1.038 x 10°*
Table D2: Shaft work for pumping and circulation equipment.
Pumping and Circ Equip. Full Model (kW) Simplified Model (kW)
Main, Sweep and H,0 Recirc 176.1 175.7
Pumps
H, Recirc 6.34 6.35
Table D3: Electrolysis cell energy and mass balance.
Electrolysis Cell Full Model Simplified Model
Total Energy (Electrical Work 5 5
| Heat addition) 2.344 x 10° (kW) 2.344 x 10° (kW)
H,0 inlet/out mass flow 28.9 (kg/s) 28.9 (kg/s)
H, inlet/out mass flow 0.235 (kg/s) 0.235 (kg/s)
0, inlet/out mass flow 14.9 (kg/s) 14.9 (kg/s)
Plant Efficiency

The overall plant efficiency including the PCU and HTE was calculated using HYSYS.

The efficiency of the overall cycle was calculated as follows

_ ZWT _ZWC — ZWCIR + ZWHZ — QEL + QHZ
noverall - Q
th

(D1)

where 2 Wr is the total turbine workload, X W¢ is the total compressor workload, Wcrr is the circulator
workload in the primary and secondary side, [1Wy; is the workload in the HTSE plant, Qg is the power
supplied to the electrolyzer, Qy, is the lower heating value of the produced hydrogen and Qy, is the reactor

thermal power.
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The polytropic efficiency of the turbomachinery was used for efficiency calculation rather than the
isentropic efficiency. The polytropic efficiencies for the turbines and the compressors were assumed to
be 92% and 90%, respectively. These values are representative of expected efficiency that will be
available for the NGNP project. The efficiency of the pumps and circulator components in the HTE
facility are assumed to be 75%, and 80% efficiency is assumed for the expander. For expansion the
efficiency is calculated from

(D2)

b

1, P,

(&)
7:) ex P(),ex Cp "
0,in 0,in

where T, is the stagnation temperature, P, is the stagnation pressure, R is the gas constant, C, is the
specific heat, n,. is the polytropic efficiency and the subscripts in and ex refer to the inlet and outlet
conditions. For compression, the efficiency is calculated as

Doer _ ( B }{CR”IJ ‘ (D3)

1, P

0,in 0,in

A model to solve for the effectiveness € of a heat exchanger is not defined in HYSYS and had to be
developed. The effectiveness of a heat exchanger is defined as the ratio of the actual heat transfer rate to
the maximum heat transfer rate. The spreadsheet function was used and the following equations were
input:

e=—9_ (D4)
qmax

qmax = Cmim (Th,i - Tc,i) (DS)
Where C,;, refers to the smaller of Cy; or Cegi.

Chot = Cp,holmhot (D6)

Ccold = cp,cold mcold (D7)

Figure D5 shows the HYSYS simulation model of the overall plant using the baseline PCU an HTE
configurations. The excess electrical power generated by the PCU that was not used in the electrolysis
process was 32.2 MW. In previous calculations pressure drop values were assumed to be 50kPa in the hot
and cold side of the recuperator Davis et. al, 2005). A detailed calculation of the pressure drop values
determined the hot side pressure drop in the recuperator to be 100kPa and the cold side to be 30kPa. This
decreased the overall cycle efficiency by approximately 0.8% for the original value of 49.61% report by
Davis et. al (2005) to a more accurate 48.84%. Further, a full scale model of the HTE facility was
included into the model. Previously, 50% efficiency was assumed for the process heat from the PHX for
the HTE plant, and the electrical power need to power the electrolysis cell was ignored. In this study a
more accurate model takes into account the use of the electrical energy produced by the PCU to run the
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electrolysis cell and a detailed plant model and efficiency calculation are included. This further reduced
the final overall plant efficiency to 44.06% using Eq. X.3.1. The plant was also modeled with CO, and an
80% nitrogen, 20% helium mixture (by weight) working fluids in the PCU. CO, gave an overall
efficiency of 40.02%, while the nitrogen helium mixture gave an efficiency of 43.61%. The excess
electrical power generated by the PCU that was not used to power the electrolysis cell was 38.68MW,
16.37MW and 35.96MW for the helium, CO, and nitrogen-helium mixture working fluids, respectively.

Figure D5: HYSYS simulation of overall plant including PCU and HTE

Heat Exchanger Sizing

Once the cycle efficiencies had been calculated, sizing data of the heat exchangers was estimated.
For single phase heat exchangers the method given by Davis et al. (2005) was used. For heat exchangers
containing two-phase heat transfer the UA value of the heat exchanger was calculated. The UA value
elucidates to the overall size of the heat exchanger.

To determine the relative sizes of the single-phase heat exchangers, the UA values (overall heat
transfer coefficient times the heat transfer area) of the heat exchangers were calculated by HYSYS. The
U values were calculated, the heat transfer areas were determined, and the heat exchanger volume was
calculated.

The IHX, HTLHX, and recuperator were assumed to be printed circuit heat exchangers (PCHE) as
designed by Heatric (www.heatric.com). PCHE are composed of channels chemically etched into plates.
The plates are then stacked and diffusion bonded together and headers are attached to form the heat
exchanger. For this study Alloy 617 was used as the construction material for the heat exchangers. The
thermal conductivity was assumed to be constant over the length of the heat exchangers and was obtained
from www.specialmetals.com. The heat exchangers are assumed to be in counter flow to reduce the
required surface area. The width and height of the heat exchangers were assumed to be equal. The flow
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channels are assumed to be semicircular with a diameter of 1.5 mm, which is a representative value.
From the stress analysis by Davis et al. the pitch to diameter ratio was taken as 1.2 and the plate thickness
to diameter ratio was taken as .57 for the IHX, assuming a maximum hot side pressure of 7 MPa and a
minimum cold side pressure of 5 MPa. For the HTLHX and the recuperator the pitch to diameter ratio
assumed as 1.7 and the plate thickness to diameter ratio was assumed as 1.19, assuming a maximum
pressure of 7 MPa on one side and a minimum of 2 MPa on the other.

The PHX’s are assumed to be tube-in-shell heat exchangers. First, the tube inner diameter is
assumed. The tube thickness is then calculated from the tube thickness to diameter ratio of .15 according
to the stress analysis in Davis et al. (2005). The pitch-to-outer-diameter ratio of the tubes was set to 1.3, a
typical value for tube bundles.

The sizing data of the heat exchangers in the plant is summarized in Table D4. The volume of the
single-phase heat exchanger was calculated along with the UA value. For the more complex two-phase
heat exchangers only the UA was calculated. However comparing the UA values and volumes of the
single-phase heat exchangers in Table D4 shows the correlation between the two values. For example the
IHX volume and UA values were found to be approximately one order of magnitude higher than those for
the HTLHX. The PHX and HTE recuperator sizes do not change for the varying working fluids modeled
in the PCU.

Fluid Heat Exchanger UA (kW/K) U(W/m*-K) Volume (m°)
He THX 538 x 10° 812.8 52.9
HTLHX 1.52 x 10° 1058.0 2.53
Recuperator 2.55x 10° 956.6 62.9
CO, THX 5.18x 10* 609.1 67.9
HTLHX 1.48 x 10 329.9 2.34
Recuperator 1.21 x 10° 850.8 86.2
N,-He THX 5.18x 10* 896.3 46.17
HTLHX 1.52 x 10° 1089.0 1.91
Recuperator 2.38x 10° 909.1 61.84
PHX 1 2.62x 10° -- N/A
PHX 2 1.06 x 10° 48.6 3.64
PHX 3 6.03 179.0 056
HTE recup. 1 5.85x 107 -- N/A
HTE recup. 2 4.01x10° -- N/A
HTE recup. 3 2.70x 10° -- N/A

Table D4: Sizing data for plant heat exchangers
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