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Abstract 

 
The development of plasma sources with densities and temperatures in the 1015-1017 cm-3 
and 1-10eV ranges which are slowly varying over several hundreds of nanoseconds 
within several cubic centimeter volumes is of interest for applications such as intense 
electron beam focusing as part of the x-ray radiography program.  In particular, 
theoretical work [1,2] suggests that replacing neutral gas in electron beam focusing cells 
with highly conductive, pre-ionized plasma increases the time-averaged e-beam intensity 
on target, resulting in brighter x-ray sources.  This LDRD project was an attempt to 
generate such a plasma source from fine metal wires.  A high voltage (20-60kV), high 
current (12-45kA) capacitive discharge was sent through a 100μm diameter aluminum 
wire forming a plasma.  The plasma’s expansion was measured in time and space using 
spectroscopic techniques.  Lineshapes and intensities from various plasma species were 
used to determine electron and ion densities and temperatures.  Electron densities from 
the mid-1015 to mid-1016 cm-3 were generated with corresponding electron temperatures 
of between 1 and 10eV.  These parameters were measured at distances of up to 1.85 cm 
from the wire surface at times in excess of 1μs from the initial wire breakdown event.  In 
addition, a hydrocarbon plasma from surface contaminants on the wire was also 
measured.  Control of these contaminants by judicious choice of wire material, size, 
and/or surface coating allows for the ability to generate plasmas with similar density and 
temperature to those given above, but with lower atomic masses.  
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I.  Introduction 
 
A series of experiments were conducted to measure the plasma parameters associated 
with the breakdown of a 100μm diameter aluminum wire by means of a capacitive 
discharge. The motivation for this work was to create a volumetric plasma source (several 
cubic centimeters) with plasma densities and temperatures in the 1015-1017 cm-3 and 1-
10eV ranges which are slowly varying over several hundreds of nanoseconds for 
applications such as intense electron beam focusing for x-ray radiography. In one 
radiographic configuration, relativistic electron beams are transported and focused inside 
neutral gas cells onto high atomic number solid targets (ex. tantalum) to produce 
bremsstrahlung x-rays for radiographic applications.  Within the gas-transport cell, 
transient ionizations have been shown computationally to limit focal intensity and 
duration [3].  Time-varying net currents affect the focus of the electron beam and result in 
focal sweeping which leads to decreased focal intensity and larger average radiation spot 
sizes.  Future x-ray source requirements require a three-fold focal intensity increase.  To 
achieve this, recent work [1,2] suggests that replacing the gas with a highly conductive, 
pre-ionized plasma (~1016 cm-3 and ~5eV) enhances the time-averaged beam intensity on 
target.  As yet, no viable source has been developed. Based on theoretical calculations for 
the ablation rates of z-pinch wire arrays [4,5], it is suggested that a properly tailored, 
over-massed wire array driven with a low current (~100kA), long pulse (~500ns) should 
produce a stable, on-axis plasma column with densities of ~1016 cm-3 for a few hundred 
nanoseconds, which is sufficient for radiographic applications.  This LDRD project was 
the first attempt to generate such a plasma source from fine metal wires and to understand 
to what degree a volumetric plasma source can be created, controlled, and maintained for 
several hundreds of nanoseconds.  For these initial studies, primarily single wire-single 
return current geometries were studied and the results are summarized here. For 
radiographic applications, it is envisioned that a few wires (~ 4-8) would be required to 
create the desired volumes. 
 
In particular, for these experiments, a high voltage (20-60kV), high current (12-45kA) 
capacitive discharge was sent through a 100μm diameter aluminum wire forming a 
plasma.  The plasma’s expansion was measured in time and space using advanced 
spectroscopic techniques.  Lineshapes and intensities from various plasma species were 
used to determine electron and ion densities and temperatures.  Electron densities and 
temperatures were measured at distances of up to 1.85 cm downstream from the wire at 
times in excess of 1μs from the initial wire breakdown.  Hydrocarbon plasmas from 
surface contaminants on the wire were also measured and characterized.   
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II. Experimental Configuration 
 
Details of the experimental configuration including the electrical circuit, wire setup, and 
diagnostics are presented. Figure 1 shows a schematic of the experimental setup. The 
electrical circuit, including capacitors, charge relays, and spark-gap switch, was 
submerged in transformer oil to ensure good electrical isolation. For these experiments, 
three 80nF capacitors were charged in parallel to positive high voltage (20-60kV) by a 
100kV Glassman High Voltage, Inc. power supply and discharged through a triggered 
Maxwell spark-gap switch to ground. The air-filled Maxwell switch was biased by a 
Maxwell Power Supply (Model 40150-J) and triggered using a Maxwell Trigger 
Amplifier (Model 4016).   
 
The wire setup was mounted inside a 6 inch diameter 6-port cross vacuum chamber 
which was pumped by an Alcatel (ACT 200T) turbo pump to base pressures in the range 
10-5-10-4torr.  
 
Current was measured using an Ion Physics Corp. (Model CM-1-L) high current 
transformer. This monitor was located inside the oil tank and measured the current just 
prior to entrance into the vacuum chamber as shown in Figure 1. Voltage was measured 
with a North Star Research resistive probe (Model PVM-1). This monitor was also 
located in the oil tank and measured the voltage at the output of the gas switch. Electrical 
signals were recorded onto Tektronix 3054B fast 500MHz oscilloscopes.  Further 
processing of the electrical data was performed using commercial software such as IDL 
and Excel. Typical current and voltage waveforms for a 40kV charging voltage are 
shown in Figure 2.  The system operates as an under-damped RLC circuit with ~ 900ns 
half-period.  The peak current and average peak voltage for this case were 29kA and 
23kV, respectively. 
 
The diagnostic layout is shown in Figure 3. Two gated Photek CCD cameras were used to 
obtain two simultaneous images of the front and side views of the plasma emission light. 
These orthogonally oriented images were used to help understand the plasma’s 
volumetric expansion and uniformity. 
 
For these experiments, plasma emission light was collected using a lens/fiber system and 
transported to two spectrographic systems. One system utilized a 0.5 meter Princeton 
Instruments spectrometer (SpectraPro 2500i) and a Princeton Instruments fast-gated, 
intensified CCD camera (PI-Max ICCD 1300HB, 25mm Gen III intensifier) to collect 
time-resolved visible spectra through 5 fibers within a 11x1 fiber array at several spatial 
locations in the plasma. The second system utilized a single fiber within the 11x1 array 
coupled into a 1 meter McPherson monochomator (Model 2061) and recorded onto a 
National Security Technologies (Generation 4) streak camera. This system was capable 
of continuously recording spectra in time for 2μs at one spatial location.    
   
 



 

 11

 
Figure 1. Experimental Setup. 

 
 

For both spectroscopic measurement systems, the 200μm diameter, 11x1 fused silica 
linear fiber array was focused through a vacuum window onto the plane of the wire.  The 
individual fibers were focused to a 1.85mm diameter spot which spanned a total radial 
distance of 18.5mm from the wire surface.  As mentioned, the fiber array was split into a 
one 5x1 linear array and six individual fibers.  The 5x1 array was sent to the 0.5 meter 
spectrograph, a single fiber was sent to the 1m monochromator, and the remaining 5 
fibers were sent to individual avalanche photodetectors (APDs).  This setup provided 
both time and spatially resolved spectral measurements of the wire plasma.     
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Figure 2. Typical Current and Voltage Trace for 40kV Charging Voltage. 

 
Figure 4 shows the layout of the 11x1 fiber array along with the wire and return current. 
For each shot, gated spectra were collected at the five radial locations identified by 
yellow circles (6-10) in Figure 4.  In addition, streaked spectra were collected on the 
farthest downstream fiber labeled A1.  The remaining fibers (A2-A6) were sent into 
avalanche photodetectors (APD’s) to monitor the time evolution of the plasma light 
emission.  An unfocused photodetector viewing the entire plasma was located just outside 
the vacuum chamber.  
 
For experiments presented here, the distance between the top and bottom electrodes was 
2cm, the wire was 100μm diameter aluminum (Alfa Aesar, Purtronic), and the return 
current was positioned 5.5mm downstream of the wire (3.2mm downstream of the 
electrode holding the wire) as shown in Figure 4. The 12.7mm diameter electrodes were 
stainless steel and were completely covered with Kapton tape to prevent arcing. The wire 
was threaded through holes in the Kapton-covered stainless electrodes and made 
electrical contact by compression between the electrode and stainless steel tapered pins 
placed through slots in the sides of the rods. The return current made electrical contact 
with the stainless steel rod and ground (vacuum chamber) via two threaded metal screws. 
 
A second streak camera, also from National Security Technologies (Generation 4), was 
used to temporally image a 1.45cm cross-section of the plasma light. In this system, 
plasma light was collected by a lens onto the entrance slit of the streak camera where it 
was streaked for 2μs. For experiments presented here, the system was aligned to view the 
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edge of the return current, the wire, and part of the downstream region of the expanding 
plasma (see Figure 9).  
 
 
 

Figure 3. Diagnostic Layout. 
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Figure 4. Position and orientation of 11x1 fiber array. 
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Figure 5.  Schematic of single wire-single return setup. 

 
III. Model 
 
The basic model used to describe the wire breakdown process is that current begins to 
flow through the wire, resistively heating it and desorbing surface contaminant species.  
These species form a neutral gas cloud around the wire surface, while across the wire is a 
large potential.  At some point, ~150ns into the current rise for our experiments, the 
resistance of the wire increases to a point where the current flow can not be maintained at 
a sufficient rate.  An avalanche event occurs which rapidly breaks down the neutral gas 
forming a plasma.  The gas is quickly ionized and expands in an adiabatic fashion away 
from the wire.  In the case where a return current is positioned near the wire, additional 
JxB forces accelerate the plasma away from the wire (see Figure 5). The plasma is highly 
conductive and carries the bulk of the current for the remainder of the pulse.  This model 
has been proposed and studied by various groups over the years, and provides a good 
qualitative picture of the breakdown process [6,7,8,9,10].  The details of this model, 
including various subtleties due to different wire materials, contaminants, and current 
drive (initial energy deposition in the wire) make this a complex problem still under 
investigation [11].  For our purposes, only a basic understanding is required.  
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IV.  Results 
 
Figure 6 shows an open shutter optical image of the wire plasma.  The wire was 
positioned between two 12.7mm diameter stainless steel rod electrodes and held in place 
with a compression fit between the electrode and a tapered metal pin.  The resistance 
across the wire was measured for each shot to maintain consistency.  The wire was 20mm 
in length and positioned next to a solid metal return current rod.  The distance from the 
wire to the current return could be varied, but was held at a fixed 5.5mm for shots 
discussed here.   
 
 

 
 

Figure 6. Open shutter visible light image of wire explosion. 
 
For each shot, gated spectra were collected at five radial locations, identified by the 
yellow circles (6-10) in Figure 4.  In addition, streaked spectra were collected on the 
farthest fiber labeled A1.  The remaining fibers (A2-A6) were sent into APDs as shown 
in Figure 4.  A sample output from the APDs for a 40kV shot (shot 121) is shown in 
Figure 7.  Each photodetector (PD) label correlates with the fiber number (PD2 is from 
fiber A2). The initial spike in the waveform ~150ns correlates to the time the wire breaks 
down. Later in time, each photodetector increases amplitude as the plasma is propagated 
downstream.  Note that the plasma light at any given point in time is not uniform.  
Variations in the emission light are present in the gated images of the plasma as well as in 
the spatially resolved spectral measurements shown later in this section. 
 
Gated (3-10 ns) visible light images of the plasma evolution for different shots with 40kV 
charge voltages are shown in Figure 8 for several times (and different shots) relative to 
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the current pulse. Two ICCD cameras oriented orthogonally, imaged the plasma from the 
front, which shows the wire in front of the flat return current surface, and the side, which 
shows the side of the return current and wire. Just after the first current peak at 640ns, 
plasma has formed off the wire surface and has expanded radially. Note that the two 
brightest regions are located between the wire and return current positions on each side of 
the wire. Lower intensity light corresponds to plasma that is expanding due to JxB forces 
in the direction opposite the return current (see figure 5).  By the first current zero-current 
crossing (870ns) the plasma has expanded farther downstream, and there is evidence of a 
pinched-plasma forming downstream along the center axis. By the second peak of the 
current, this on-axis pinched plasma has become even more pronounced. Judging from 
these visible light images, and the desired plasma source performance, the plasma 
appears to be more uniform near the first current peak. High gradients dominate the 
plasma after the first current zero-crossing. A more thorough investigation of the three-
dimensional nature of the plasma is warranted.  Based on these images, the decision was 
made to focus on the plasma parameters near the first zero-crossing of the current. 
Variations in the intensity of the plasma light at different locations and at different times 
are also seen in the photodetector responses shown previously (see figure 7).  From just 
the photodetector waveforms and gated images, it is difficult to diagnose the plasma in 
terms of constituents and ablation rates since different species may be evolving from 
different areas (i.e. wire, electrodes, and kapton tape), and may be present at different 
locations in the plasma (see figure 19). To better diagnose the plasma, spectral 
measurements were performed using the two systems described earlier. 
 
Figure 9 shows a visible light streak image for a 40kV shot (shot 121) for a 2μs record 
length. A pre-shot image of the wire and return current shows the orientation of the slit. 
The slit was located half-way between the upper and lower stainless steel electrodes 
holding the wire. Visible light first appears at the time the wire breaks down ~ 150ns (the 
same time light is first recorded by PD6, see figure 7). Note that during the first half-
period of the current, the plasma is expanding in both directions. The plasma is 
expanding downstream (away from the return current) during the first half-period of the 
current at a velocity of approximately 0.6 cm/μs. At the first current zero-crossing, a 
bright region forms between the wire and edge of the slit.  Included in this figure are the 
locations and timing of three of the spatially-resolved fibers (6-8) that were measured and 
discussed later. It is important to note the variation in intensity across the plasma varies in 
time as well. The Photek images (different shots) do not show light at the same location 
as in the visible light streak image and the APDs for the images shown in this report.  
Shot to shot variations in the location of the intense light regions exist.  While the three-
dimensional nature of the plasma is very complex, these diagnostics were useful in 
observing spatial phenomena in the plasma and correlating them with spectral 
measurements.  These images also provide insight into the plasma volume at different 
locations and times, which is required for unfolding the spectral data to be discussed in 
the next section.  
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Figure 7.  Output from photodetectors along with current waveform. 

 
 
 

 
 

Figure 8. Side and front views of wire plasma expansion (t = 640, 870, 1300, and 1700ns). 
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Figure 9. Visible streaked image of center cross-section of plasma. Pre-shot image shows 

orientation of slit, wire, and return current.  

Pre-shot image of wire and retum current without slit 

wire break down 
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Figure 10 shows a typical spectrum for a 100μm aluminum wire.  Aluminum, carbon, and 
hydrogen are present as neutral and low charge state ions.  The aluminum is from the 
wire material itself, while the carbon and hydrogen are present on the surface as 
hydrocarbon impurities from the wire manufacturing process [12,13].  The intensities and 
shapes of the lines are used to determine local electron temperatures and densities, as 
well as ion and neutral species densities for the expanding plasma.  The spectra in Figure 
10 was taken with a lower resolution grating to allow for a broad wavelength range, but 
subsequent shots were taken using higher resolution gratings, focusing on either the H-
alpha line (6563A), or the All III / Al II lines at 4480-4663A, combined with the C III / 
CIV lines at 4647A and 4658A.  Thus two shots were required to obtain both sets of data 
for a particular wire configuration.    
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Figure 10. Typical aluminum wire discharge plasma emission spectrum. 
 
 

A. Electron Density Measurements 
 
Lineshapes were used to determine electron densities at different regions/times within the 
expanding plasma.  In particular, the hydrogen alpha linewidth (6563Å) is subject to 
broadening due to micro electric fields created by electrons (and ions) in the vicinity of 
the hydrogen atoms [14,15].  Figure 11 illustrates this effect for fibers 6-10 collected 
750ns after the initial wire breakdown during the zero-current crossing (see Figure 2) for 
shot 115 at 40kV charging voltage.  As can be seen, the H-alpha linewidth varies across 
the different fibers, indicating regions of different electron density.  Table 1 gives the 
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FWHM values for each fiber and the corresponding electron density as determined by 
collisional-radiative calculations [16,17].   
 

Shot 115 - Fibers 6-10: Hydrogen Alpha and C II Spectral Intensities 

0.0E+00

5.0E+17

1.0E+18

1.5E+18

2.0E+18

2.5E+18

3.0E+18

3.5E+18

652 653 654 655 656 657 658 659 660 661 662

Wavelength (nm)

Sp
ec

tr
al

 In
te

ns
ity

 (P
ho

to
ns

/s
ec

/c
m

^2
/n

m
)

Fiber 6

Fiber 7

Fiber 8

Fiber 9

Fiber 10

H-alpha 6563A

C II 6578A

C II 6583A

 
Figure 11. Hydrogen alpha and C II emission spectra. 

 
 

 
Table 1. Electron density measurements from H-alpha linewidths. 

 
Fiber  FWHM Ne (x1016 cm-3) 

6 4.1 1.5  

7 9.1  4.9 

8 7.2  3.5 

9 2.9  .86 

10 1.8  .44 

 
 

Figure 12 shows a plot of the above data along with data from two other shots at different 
current levels; 12.5, 29.0, and 45.0kA.  While shot to shot variations occur, in general, 
the observed trend is that the electron density increases off the wire surface, passes 
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through a dense region (see streaked image in Figure 9), and steadily decreases to a level 
around 5x1015cm-3 beyond ~13mm.  It is at the farther radial distances, where the plasma 
parameters become more uniform, that the current can be related to density, with higher 
current drives generating higher densities.   
 
 

Electron Density and Temperature versus Radial Distance from Wire 
Surface for Wire Plasma Shots at Zero-Current Crossing
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Figure 12. Electron density versus radial distance from wire. 

 
 

Other lines can be Stark broadened as well [14]; however, this effect is diminished in 
atoms/ions with a larger number of electrons.  For example, the Al III (4480Å) line 
(Figure 13), shows indications of Stark broadening.  At these densities, the broadening is 
minimal, just measureable above the resolution of the instrument, but nonetheless is 
present and gives an additional measurement of electron density to compare with the 
hydrogen alpha line broadening.  The calculated linewidths and densities are given in 
Table 2 and plotted in Figure 14.  The electron density from the Al III linewidths is more 
constant, increasing slightly from the wire surface, before decreasing at larger distances 
(>13mm) approaching the values calculated from the hydrogen line.  Still, the electron 
density from the Al III linewidths is a factor of 10 greater in the outer-most measured 
region.  Included in this plot is the electron temperature which will be discussed in the 
next section.    
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Shot 121 Gated Spectra - Fibers 6-10
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Figure 13. Al III 4480Å line intensity/width versus radial distance. 
 

 
Table 2. Electron density measurements from Al III linewidths. 

 
Fiber  FWHM Ne (x1016 cm-3) 

6 1.6 5.7 

7 1.8 6.4 

8 2.0 7.1 

9 2.0 7.1 

10 1.4 5.0 
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Electron Density and Temperature versus Radial Distance from Wire 
Surface for Wire Plasma Shots at Zero-Current Crossing
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Figure 14. Electron density and temperature versus radius from aluminum line ratios and widths. 

 
 
B. Electron Temperature Determinations 
 
Electron temperature measurements of the plasma were made from line ratios using both 
the same and subsequent ionization states of plasma species.  In particular, the ratio of the 
Al III 4480Å to Al III 4529Å line, and the C III 4648Å to C IV 4658Å lines were used.  
Using lines of different species in the plasma for temperature determinations allowed for 
investigations into various regions within the plasma.  For two lines of the same 
ionization state, the following relationship can be used to determine the electron 
temperature [14]:   
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where I is the measured integrated line intensity, Aki
 is the Einstein coefficient for 

spontaneous emission, λki is the transition wavelength, gk is the statistical weight of the 
upper energy level, k is the Boltzmann constant, and Ek is the value of the upper energy 
level.  The subscripts (k,i and n,m) refer to the upper and lower energy levels, 
respectively, for each transition. The transition values for the Al III lines used in this 
study are shown in Table 3. A plot of electron temperature versus radial distance for three 
shots with different current levels is shown in Figure 15.    
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 Table 3. Transition probabilities and constants for observed Al III spectral lines. 
 

Species Wavelength 
(A) 

Transition Ei (eV) – Ek (eV) Aki (sec-1) gk 

Al III 4479.89 2p64f – 
2p65g 

20.781 – 23.548   8 

Al III 4479.97 2p64f – 
2p65g 

20.781 – 23.548   10 

Al III 4528.94 2p64p – 
2p64d 

17.818 – 20.555 4.26x107 4 

Al III 4529.19 2p64p – 
2p64d 

17.818 – 20.555 2.54x108 6 

 
 

Electron Temperature Determination from Al III Line Ratios
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Figure 15. Electron temperature versus radial distance from Al III line ratios.  
 

From this plot, we see that the electron temperature ranges between 1.5-3.0eV dependent 
on location, current, and time.  For the two cases measured at the zero current-crossing 
time, the temperature near the wire is ~2.0 eV.  The temperature then decreases slightly 
before beginning to increase and separate, with the higher current shot being on average 
about 0.3 eV or 15% higher in electron temperature.  By the time of the second current 
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peak (400ns later), the temperature profile has become more uniform (pink waveform), 
and averages about 1.8 eV or 40% lower in temperature. 

In addition to the Al III line ratios, electron temperatures can be determined from 
the subsequent ionization states of an element.  The population densities of energy levels 
in subsequent ionization states of an element are related by the Saha equation [14]: 
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where z refers to the ionization state, z-1 the next lower ionization state, and n and k the 
specific quantum levels for each ionization state, respectively.  ∞E is the ionization 
energy and ∞ΔE  is a correction factor to the ionization energy which accounts for 
Coulombic interactions in the plasma.  Rearranging and substituting for the integrated 
emission line intensity (I), the following ratio is obtained [14]: 
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where n is the upper energy level of the higher ionization state and k is the upper energy 
level of the lower ionization state.  It is this ratio, which is used to determine the electron 
temperature (Te) based upon the emission intensities of two lines from subsequent 
ionization states of an element.  Knowledge of the electron density (Ne) is required and 
was obtained from Stark broadening measurements of the hydrogen alpha emission line, 
as shown in the previous section.  For the wire plasma, carbon line ratios were used to 
obtain electron temperatures in regions where carbon ions were present.  In particular, the 
C III 4647A and C IV 4658A lines were used.  These lines (given in Table 4) are 
composed of several degenerate transitions.  In practice, the relative contribution for each 
transition to the overall line profile is calculated, and the results are compared to the 
experimental lineshapes.  An example is shown in Figure 16 for two different electron 
temperatures at a constant Ne of 1x1016cm-3 (reasonable for these experiments).  
 

Table 4.Transition probabilities and constants for observed CIII and CIV spectral lines. 
 

Species Wavelength 
(A) 

Transition Ei (eV) – Ek (eV) Aki (sec-1) gk 

C III 4647.42 1s22s3s –
1s22s3p 

29.535 – 32.202 7.26x107 5 

C III 4650.25 1s22s3s –
1s22s3p 

29.535 – 32.200 7.25x107 3 

C III 4651.47 1s22s3s –
1s22s3p 

29.535 – 32.199 7.24x107 1 

C IV 4647 1s25d – 
1s26f 

55.78-58.44 1.85x108 14 
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The relative contributions of each of the CIII and CIV transitions are calculated and 
compared with the normalized experimental line profile.  As can be seen, for a given 
electron density the ratios of the CIII to CIV lines are highly temperature dependent. 
Table 5 shows the change in this ratio over a 2.0eV temperature range, assuming steady-
state conditions.   
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Figure 16. Fitting experimental profiles with C III / CIV lineshape calculations. 
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Table 5. Carbon ion line ratios versus electron temperature (Te) at constant Ne = 1x1016 cm-3.  
 

Te (eV) Ratio IC III 4648 to IC IV 4658 

4.0 345 

4.5 43.2 

5.0 8.2 

5.5 2.1 

6.0 0.5 

 
 

For the wire plasma in the outer-most region studied (18.5mm), the ratio of the CIII to 
CIV emission lines is close to unity, varying from 0.8 to 4.2 over a 500ns period during 
the rise-time of the second current peak, as shown in Figure 17.   
 

 
Figure 17. Streak spectra showing CIII to CIV line ratios at 100ns intervals from the first zero-

crossing (0.9μs) to the second current peak (1.3μs). 
 
 

Based on the line ratios from the above spectrum, the electron temperature is determined 
to be decreasing in time from 5.8eV to 5.2eV.  Assuming steady-state conditions for this 
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calculation introduces an error in the Te determination.  For the CIII / CIV lines 
considered here, steady-state is reached in ~10μs.  The CIII / CIV line ratio at steady state 
is ~ 4x lower than during the experiment, causing an error in the determination of Te. 
However, this error is only 0.5eV (see Table 5), thus the temperatures obtained from the 
ratios in Table 5 need to be reduced by a factor of 0.5eV, which is done in Figure 20.   
For comparison, the Al III line ratios (Figure 18) over this same period show the 
temperature to be decreasing from 3.0eV to 2.4eV. 
 

 
Figure 18. Streak spectra showing Al III 4480Å to 4529Å line ratios at 100ns intervals from the 

first zero-crossing (0.9μs) to the second current peak (1.3μs).  
 

 
In general, there is a factor of two variation in the electron temperature between the 
carbon and aluminum line ratios, consistent with the idea of there being a lower density 
outer plasma region composed of primarily hydrocarbon plasma with a cooler, higher 
density aluminum plasma center, as illustrated in Figure 19.  Figure 20 shows the radial 
variation in electron temperature determined from carbon ion line ratios along with the 
corresponding electron densities from hydrogen line broadening.  These data were taken 
at the zero-current crossing and corresponds to the 0.9μs time in the previous figures.  As 
was the case in Figure 14, the electron density decreases at increased radius, while the 
electron temperature increases, and we again find a relatively stable region at distances 
greater than 13mm where the electron density is ~5x1015cm-3 and the electron 
temperature is ~5.3eV.     
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Figure 19. Illustration of plasma regions and spectroscopic lines of sight.   
 
 

Electron Density and Temperature versus Radial Distance from Wire 
Surface for Wire Plasma Shots at Zero-Current Crossing
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Figure 20. Electron density and temperature versus radial distance. 
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C. Absolute Line Intensities 
 
Finally, some discussion should be made regarding absolute line intensities.  All of the 
spectra shown in the previous figures were calibrated using known spectral lamp sources.  
This allowed the intensity measurements from the detectors to be converted to photon 
radiance of the source (photons/second/steradian/cm2).  Knowing this radiance, the 
number density of individual species can be determined and compared with calculated 
values based on measured electron densities and temperatures [18].  Calculations were 
performed for both hydrogen neutral and aluminum doubly ionized lines, for both steady-
state and time-dependent cases.  Further discussion regarding the details of these 
calculations will be made in a subsequent report; this report only focuses on the steady-
state calculations.  Using the electron density determined from Stark broadening of the 
hydrogen alpha line and the electron temperature obtained from carbon ion line ratios, the 
total hydrogen alpha line intensity can be calculated for a specific concentration of 
neutral hydrogen atoms.  For this calculation, steady-state is assumed and the electron 
density is set equal to the ion (proton) density (conditions similar to those in the outer-
most fiber region). There are time dependencies for the level populations and 
ionization/recombination times, and these have been calculated for the time-scales of this 
experiment (100’s of nanoseconds).  These time dependencies introduce small correction 
factors to the steady-state calculations, which will be neglected for the purpose of this 
report.  Table 6 shows the results for the case of neutral hydrogen at two temperatures 
with Ni = 1x1016 cm-3 and a plasma length of 1.5cm.  Table 7 shows the same 
calculations for a factor of three increase in total ion density.   
 
   

 
Table 6. Steady-state calculations of hydrogen alpha line intensity, Ni = 1x1016 cm-3. 

 
Te (eV) Ne        

(cm-3) 
NH       

(cm-3) 
τ Intensity 

(photons/sec/ster/cm2) 
3 9.91x1015 9x1013 .02 9.8x1017 
5 9.94x1015 6x1013 .004 3.7x1017 

 
 

 
 

Table 7. Steady-state calculations of hydrogen alpha line intensity, Ni = 3.1x1016 cm-3. 
 

Te (eV) Ne        
(cm-3) 

NH      
(cm-3) 

τ Intensity 
(photons/sec/ster/cm2) 

3 3.06x1016 4x1014 .2 8.9x1018 
5 3.08x1016 2x1014 .03 3.5x1018 
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Comparing this to the intensities measured for shot 115 at the relevant temperatures and 
densities, we see that an order of magnitude increase in intensity (highlighted) gives a 
factor of 6.7 increase in neutral hydrogen density.  Total line intensities for hydrogen 
from the experimental data range from 5.4x1017 to 2.7x1018 photons/sec/ster/cm2, and 
thus fall within this region, giving neutral hydrogen densities of between 2x1014 cm-3 and 
6x1013 cm-3.  Further computations are being carried out to improve the precision of these 
values; however, it is clear that most of the hydrogen is ionized and the overall neutral 
population is low.         

 
Similar calculations were performed for the Al III line intensities at 4480Å.  Table 8 
shows the results of one such calculation, with an electron density of 3x1016 cm-3 and a 
total aluminum fraction of 10% (similar to that expected in the outer fiber regions).  From 
these calculations, we see that the Al III species densities are in the low 1014 cm-3 ranges.   
 
 

Table 8. Steady-state calculations of Al III (4480Å) line intensity, Ni = 3x1016 cm-3. 
 

Te (eV) Ne        
(cm-3) 

NAl III    
(cm-3) 

τ Intensity 
(photons/sec/ster/cm2) 

3 3.0x1016 3.0x1014 .96 1.2x1019 
5 3.0x1016 1.3x1014 .07 2.4x1018 

 
 
 
  
IV.  Conclusions 
 
A series of experiments were conducted to investigate plasma formation and propagation 
from exploding wires.  A high voltage, capacitive discharge was driven through a 100μm 
diameter aluminum wire to form a plasma.  The plasma was composed of hydrocarbon 
and pure metal species of low charge states (singly and doubly ionized).  Electron 
temperatures and densities were measured using spectroscopic techniques, such as line 
broadening and intensity ratios.  Both temporal and spatial measurements were taken 
which showed variations in density and temperature profiles within the plasma and 
between constituent species.  Hydrogen and carbon were shown to expand at a greater 
rate (5.2 cm/μs and 4.4 cm/μs, respectively) and with a higher electron temperature and 
lower density than aluminum Al III species (2.6 cm/μs).  Density and temperatures 
variations were observed extending radially from the wire surface.  At large radial 
distances (>13mm) these variations decreased and the plasma parameters became more 
stable.  It is this outer region which is of interest to the radiography program, since larger 
plasma volumes (a few cm3) are desired for applications such as intense electron beam 
propagation and focusing.  These experiments were taken utilizing a single wire with a 
single return current post positioned a few millimeters away from the wire.  Such a 
configuration allowed for additional JxB forces to accelerate ions in the plasma away 
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from the wire.  This acceleration was observed in both the optical images and measured 
line spectra.  Some control over the plasma parameters (Ne, Te) was observed with 
changes in current drive and geometry.  It is expected that similar control can be achieved 
through manipulation of the wire material and thickness.  While this research focused on 
aluminum wire and aluminum plasmas, early on it became evident that hydrocarbon 
plasmas of significant densities were formed as well.  These plasmas, originating from 
surface contaminants on the wire, expand more quickly and cover a greater volume than 
the aluminum plasma on the same timescale.  The hydrogen and carbon species are low 
mass and their atomic physics is well understood, making them useful both as a practical 
source and for plasma modeling.  This opens up the possibility of using alternative 
materials and/or thicknesses of wire to obtain greater hydrocarbon species with less metal 
material.  In particular, earlier experiments conducted at the University of Michigan [13] 
on a single wire setup at lower currents showed that a hydrocarbon plasma (with similar 
parameters to those reported here) could be generated from a tungsten wire without 
vaporizing the wire, thus eliminating altogether the metal species from the plasma.  
Similarly, a larger diameter wire could be used providing more surface area for 
contaminants.  Overall, these experiments demonstrated that a plasma can be formed with 
slowly varying parameters (over 100’s of nanoseconds) over relatively large distances of 
interest for electron beam transport.  More work is needed to fully understand the 
dynamics of the plasma and issues regarding spatial variations and shot reproducibility.  
Nevertheless, we were successful at creating a plasma in the 1016 cm-3 density regime 
with electron temperatures of a few eV which was original stated purpose of this work. 
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