
u.s. Department of Energy·
..... r- ,...-

Lawrence·
Livermore
National :
Laboratory

~" ///

-

Preprint
UCRL-]C-147395

\

Theoretical Model· and
Interpretation of X-Ray
Thomson Scattering
Measurements in Warm
Dense Matter

G. Gregori, S.H. Glenzer, O.L. Landen, R. W. Lee

This article was submitted to
13th American Physical Society Topical Conference on Atomic
Processes in Plasmas, Gatlinburg, Tennessee, April 22-25, 2002

April 3, 2002

Approved for public release; further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency. of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty! express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication ina journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doe.gov Ibridge

Available for a processing fee to U.s. Department of Energy
and its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information .

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
, Facsimile: (865) 576-5728

E-mail: reports@adonis.ostLgov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

LawrenceLivermore National Laboratory
Technical Information Department's Digital'Library

http://www.llnl.gov/tid/Library.html



Theoretical model and interpretation of x-ray Thomson scattering ~

measurements in warm dense matter

G. Gregori, S. H. Glenzer, O. L. Landen, and R. W. Lee

Lawrence Livermore National Laboratory, University of California, P.O. Box 808, CA 94551

(April 3, 2002)

Abstract

We present analytical expressions for the dynamic structure factor, or form

factor S(k,w), which is the quantity describing the inelastic x-ray cross sec-

tion from a dense plasma or a simple liquid. Our results, based on the ran-

dom phase approximation (RPA) for the treatment on the charged particle

(

coupling, can be applied to describe scattering from either weakly coupled
,

classical plasmas or degenerate electron liquids. Our form factor correctly re--

produces the Compton energy downshift and the usual Fermi-Dirac electron

velocity distribution for S(k,w) in the case of a cold degenerate plasma. The

usual concept of scattering parameter is also reinterpreted for the degenerate

case in order to include the effect of the Thomas-Fermi screening. The results

shown in this work can be applied to interpreting x-ray scattering in warm

dense plasmas occurring in inertial confinement fusion experiments or inside

the interior of planets .
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I. INTRODUCTION

Diagnostics of dense plasmas poses several difficulties as currently adopted experimental

techniques are rather limited in probing particle densities, temperatures and charge states

of warm dense matter. Optical techniques, for example, can only provide information on

,surface layers of dense plasmas since they are opaque to visible or UV light. On the other

hand, the emerging interest in understanding the properties of matter under extreme condi­

tions, as the ones achieved in inertial confinement fusion (ICF) experiments [1], necessitates

the developing of finite temperature dense matter probes. In ICF implosion experiments a

variety of plasma regimes are created, and of 'particular interest are Fermi degenerate (or

quantum) plasmas, characterized by a Fermi temperature greater than the electron kinetic

temperature. Moreover, equation of state (EOS) predictions for various degenerate plasmas

can only be resolved by accurate measurements of the chemical state of the materials. How­

ever, uncertainties in the present data and the lack of reliable independent measurements of

temperature and densily have prevented validation of current models and calculations.

We investigate the possibili~y of extending spectrally resolved Thomson scattering [2]

in the x-ray regime for the diagnostics of solid density plasmas. This method was first

discussed by Landen et at. [3] as a viable diagnostics alternative in ICF experiments. In

Ref. [3], calculations were presented for scattering parameters a = 1/kAD « 1, where AD

is the Debye length and k = ko - k1 is the difference between the wave-number of the

scattered and the incident probe radiation. In the present work, we provide a theoretical

'expression for the scattering form factor to represent x-ray Thomson scattering for arbitrary

a parameter. In addition, our treatment can b~ applied in the description of scattering from

degenerate to weakly coupled plasmas. For plasmas obeying the. classical statistics, the

electron-:electron coupling constant is defined <,i-s (see, e.g., Ichimaru [4]) r = e2 /47rf.okB Ted,

where Te is the electron temperature and d = (3/47rne )1/3 the ion-sphere radius, with ne the

electron density. In other words, r is the ratio between the potential and the kinetic energy

of the electrons. For coupling between different charged particles, we also need to account
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for the ionization state of the material. The extension of definition of the coupling constant

r to the quantum domain (i.e.) a degenerate plasma) is discussed by Liboff [5]. In this

case, quantum diffraction prevents the electrons to get arbitrarily close to each other and

r is now the ratio between the potential and the Fermi energy, EF , of the electrons. Since

Ep = n2(37r 2n e )2/3 j2me , as electron density increases, in contrast to a classical plasma, the

coupling constant decreases.

In an ideal plasma, r « 1 and the kinetic energy dominates the particle motion with

negligible inter-particle coupling, while in a strongly coupled plasma, r » 1, the electrostatic
l

(Coulomb) forces determine the nature of the particle motion. Weakly coupled plasmas lie

in the range r oS. 1. Indeed, the possibility of directly measuring temperature and ionization

state in weakly and strongly coupled plasmas is of particular relevance in EGS calculation

since current models predict different behavior in the material properties and an independent

experimental verification would be necessary to resolve the controversy. Further discussion

on the subject can be found in Landen et at. [3] and references therein.

II. THEORY

A. Basic definitions

We are interested in describing the scatteri~g from a uniform plasma containing N ions

per unit volume. If ZA is the nuclear charge of the ion, the total number of electrons per

unit volume in the system, including free and bound ones, is ZAN. Let us now assume we

probe such a system with x-ray radiation of frequency Wo such that nwo » EI, with E[ .

the ionization energy of any bound electron, i. e.) the incident frequency must b~ large co~­

pared to any natural absorption frequency of the scattering atom, which allows us to neglect

photoabsorption. During the scattering process, the incident photon transfers momentum

hk and energy hw = nwo - nWI to the electron, where WI is the frequency of the scattered

radiation. Under these conditions we can distinguish between electrons that are kinemat-
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ically free with respect to the scattering process and core electrons that are tightly bound

to the atom. If an is the orbital radius of the electron with principal quantum number n,

kinematically free electrons satisfy the relation [6,7] kan 2:. 1, while the opposite inequality

applies for core elect:rons. This condition is equivalent to assuming that liw, the energy

transferred to the electron by Compton scattering, is larger than its bound energy. In the

non-relativistic limit (liw « liwo)

k = Ikl = ~: sin (()/2) , (1)

with Ao the probe ~avelength and () the scattering angle. We denote with'Zj and Zb the'

number of kinematically free and core electrons, respectively. Clea~ly, ZA = Zf + Zb. To

avoid possible confusions, we should stress that Zf is conceptually different from the true"

-ionization state of the atom. ' It includes both the truly free (removed from the atom by

ionization) and the valence (weakly bound) electrons; thus Zf = Z + Zv, where Z is the

number of electrons removed from the atom, and, Zv is the number of valence electrons.

In the limiting case of ,a liquid metal, Z = 0, and only the valence electrons need to be

considered. '

B. Scattering cross section

Following the approach of Chihara [8,9] the scattering cross section is described in terms

of the dynamic structure factor of all the electrons in the plasma

(2)

where aT is the usual Thomson cross section and S(k, w) is the total dynamic structure

factor defined' as

(3)

with (... ) denoting a thermal average and
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ZAN

Pe(k, t) = L exp [ik· rs(t)] ,
s=1

(4)

is the Fourier transform of the total electron density distribution, with rs(t) the time depen-

dent position vector of the s-th electron. Assuming the system is isotropic, as in the case of

interest here (liquid metals or plasmas), the dynamic structure factor depends only on the

magnitude of k, not on its direction. The next step consists in separating the total density

fluctuation, Eq. (4), between the free and core electron contributions, and separating the

motion of the electrons from the motion of the ions. The details of procedure are given by

Chihara [8,9], thus obtaining for the dynamic structure:

The first term in Eq. (5) accounts for the density correlations of electrons that dynamically

follow the ion motion. This includes both the core electrons, represented by the ion form

factor fI( k), and the screening cloud of free (and valence) electrons that surround the ion,

represented by q(k). Sii(k,w) is the ion-ion density correlation function. The second term

in Eq. (5) gives the contribution in the scattering from the free electrons that do not follow

the ion motion. Here, S~e(k,w) is the high frequency part ofthe electron-electron correlation

function [10] and it reduces to the usual electron feature [11] in the case of an optical probe.

Inelastic scattering by Core electrons is included in the last term of Eq. (5), which arises from

Correlation between the core electrons within an ion, Sce(k,w), modulated by the self-motion

of the ions, represented by Ss(k,w). We point out that in Eq. (5) electron-ion correlations

are implicitly accounted in the first term, since, as shown by Chihara [8], the electron-ion

response function can be written in terms of the ion-ion response function. We observe that

the total density correlation function must obey the relation [13]

S(k, -w) = exp( -nwjkBTe)S(k,w), (6)

which is a consequence of detail balance. This gives rise to asymmetry in the spectrum as

we will discuss further in the next sections.

5
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We will present simplified expressions for each term in Eq. (5). The relative importance

of each term is discussed and scattering profiles for typical conditions found in experiments

are obtained. The sensitivity to the various parameters is presented using LiH solid density

plasmas as an example. A similar method based on the measurement of frequency-integrated

(total) x-ray cross section for the diagnostics of high density plasmas was originally proposed

by Nardi and co-workers [12,14,15]. While their approach was based on the determination of

the static structure factor, we wish to determine ~he dynamic structure factor. This requires

frequency resolved measurements, standard in optical· Thomson scattering. The various

terms in Eq. (5) provide scattering signals at different frequencies. With the available x-ray

line sources, spectrometers and detectors in ICF experiments [3], we currently are able to

resolve the high frequency part of the spectrum, w ~ kVt, where Vt = (kBTe/rne )1/2 is the

electron thermal speed.

C. Ion correlations: the ion feature

We will present an analytical expression for the first term in Eq. (5). The ion-ion

correlations reflect the thermal motion of the ions and/or the ion plasma frequency, and

sincewe cannot currently experimentally access this low frequency part of the spectrum, we

can approximate Sii(k,w) = Sii(k)e5(w). We thus only need to calculate the static structure

factor for ion-ion correlations. We shall.also observe that for typical conditions in dense

plasmas for ICF experiments, the ions are always non-degenerate, since their thermal de

Broglie wavelength is much smaller than the average interparticle distance. On the other

hand, the electrons can exhibit some degree of degeneracy, and in the case of very cold and

dense plasmas, they will obey the Fermi-Dirac distribution. Under these conditions, and

within the framework of the random phase approximation (RPA), we can calculate Sii(k)

using the semi-classical approach suggested by Arkhipov and Davletov [16], which is based

on a pseudo-potential model for the interaction between charged particles to account for

quantum diffraction effects (i. e., the Pauli exclusion principle) and symmetry [17]. We shall
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stress the point that in the limit of the RPA, strong coupling effects are not accounted for,

thus limiting the model validity to plasma conditions in therange r .$ 1. Use of the RPA at

larger couplings may still provide fairly accurate results if kd ~ 1 [18,19]. In the cases studied

here, the plasma are within the range of validity. However, extensions to strong coupling

are possible in terms of a local field correction [20] of the dielectric response functions, but

they are significantly more complex and can be obtained only through the solution of the

hypernetted chain (HNC) equation [21] or molecular dynamics simulations [22]. In the limit

discussed, the resultant expressions for the various static structures are thus:

. ( ) s: Jnr ns () .Srs k, w = Urs - k T <P rs k ,
Be

(7)

where i, s=e (electrons) or i (ions), ne = Zjni = ZjN and the temperature has been assumed

equal for both ions and electrons. Symmetry in the electron-ion interactions requires Sei (k) =

Sie(k). The coefficien~s <Pr~(k) are given by

(8)

(9)

(10)

(11)

The inverse of the electron and the ion Debye lengths are kDe = (nee2/tokBTe)1/2 and

km = (Zjnee2/tokBTe)1/2, respectively. In Eqs. (8-11) the thermal de Broglie wavelength
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is defined by Ars = lij(27fJ-lrskBTe)1/2 with J-lrs = mrmsj(mr + m s) the reduced mass of the

interacting pair. To complete the descri'ption of the first term of Eq. (5) we need to calculate

the screening charge and the ionic form factor. The screening charge is given by [8,16}

(12)

where £(k,O) is the electron permittivity at frequency w = 0, and Cei(k) the electron-ion

direct correlation function. Using the Ornstein-Zernike relations (13] the etectron-ion direct'

correlation is found to be

(13)

with the partial static structures given by Eq. (7). As we have mentioned, the ions behave

as classical particles, thus the use of a semiclassical approach for the electron-ion direct

correlation is justified. On the other hand,since the electrons may behave as a degenerate

quantum fluid, the electron dielectric function needs to be calculated with the full effect

of different statistics (Boltzmann or Fermi-Dirac) as we will discuss in the next section.

To calculate the ionic form factor, h(k), we follow the approach initially suggested by

Heisenberg (23] and based on the Thomas-Fermi model of the atom [24]. Using the tables

generated by Bewilogua (25J, fI(k) is obtained as a function of Zb and Zj. Even if the

calculation of the ionic form factor from the Thomas-Fermi theory is quite approximate,

it compares reasonably well with the Ha:.rtree method (24]. We also note that in the limit

k -r 0, h(k) = Zb·

D. Electron correlations: the electron feature

The free electron density-density correlation function that appears in the second term of

Eq. (5) can be 'formally obtained through the fluctuation-dissipation theorem [26J:

(14)
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where, as previously mentioned, f.(k, w) is the electron dielectric response function. In the

case of an ideal classical plasma, the plasma dielectric response is simply evaluated from

a perturba~ion expansion of the Vlasov equation [27]. The resultant form for the density

correlation function is then known as the Salpeter electron feature [28]. This approach,

however, fails when the electrons become degenerate or nearly degenerate as quantum effects

begin to dominate. Under the assumption that interparticle interactions are weak, so that

the nonlinear interaction between different density fluctuations is negligible, the dielectric

function can be derived in a rather simple way, known as the random phase approximation "

(RPA) [29,30]. In the classical limit, it reduces to the usual Vlasov equation. Clearly,'

the RPA breaks down in presence of strong coupling 'when short~range collisions dominate

the electron motion, thus its validity is typically limited by the condition r ::s 1, as we

have previously mentioned. Deviations from the RPA have been reported, for example, by

Vradis and Priftis [31] for scattering on solid beryllium at room temperature in the region

k ;::;kc '" Wp/VF, where W p is the plasma frequency and VF is the velocity at the top of

the Fermi surface. The critical wavenumber kc corresponds to the transition between the

plasmon and the quasi-particle excitation mode [30]. Scattering spectra near kc have been'

observed to exhibit fine structures not explained within the framework of the RPA [31]. At
.'

those intermediate wave-numbers short-range correlations and high-order excitations need

to be considered [32'-34].

The RPA form of the dielectric function is (see, e.g.) Landau et aI. [27])

f.(k w) = 1'-~J f(p + fik/2) - f(p - fik/2) 2d
3
p

, fif.ok2 k·p/rne-w-iv' (27rfiP'

with v -+ 0+. The electron distribution function is specified as

(15)

(16)
1

f(p) = (p2/ 2m.-J.L) 'I'
exp kBT. ' +

where p is the electron momentum and I-" the chemical potential, defined by the normalization

condition

(17)
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where we have accounted for both spin-state electrons. A useful fitting formula for the

chemical potential that interpolates between the 'classical and the quantum regions is [35]

f1 3 4 A0-b- 1 +B0-(bH)!2

kBTe = -2 1n0 +In 3JIT + 1+Ae-b '
(18)

with 0 = kBTe / Ep (Ep is the Fermi energy of the electrons), A = 0.25945, B = 0.072 and

b = 0858. In the limit Te -+ 0, which corresponds to an electron gas in the ground state, the

dielectric function takes the Lindhard form [30]. In the case of scattering from uncorrelated

cold electrons, the form of the dynamic structure follows the electron velocity distribution

function [36].

The free electron density-density correlation function is then determined by the numerical

solution of the integral (15). It turns out that such an approach is also rather accurate to

describe the collective behavior of the electrons in the valence band of metals [37,38], even if

higher order correction beyond the RPA have been observed in some experiments [39,40]. In

those cases, deviations from RPA resulted from the periodic potential of the crystal structure

of the solid. In Fig. 1 we have plotted the normalized line profiles of S~e(k,w) calculated

assuming an incident x-ray radiation Ao = 0.26 nm, c?rresponding to the Ti He-a 4.75 keV

emission line, at a scattering angle () = 1600
• We observe that the RPA calculation previously

outlined automatically includes the effect of the Compton energy downshift in the scattered

spectrum. This is not true, for example, in the Salpeter approximation since momentum

transfer from the photons to the electrons is neglected there. Thus, in order to compare

with the RPA, we need to translate the entire line profile an amount that corresponds to a

shift of fi 2P /2rn e in energy. At a density of ne = 1.0 X 1029 m-3
, the Fermi temperature is

TF = 7.85 eV. We indeed see that, at temperatures lower than TF (Fig. la), when q'uantum

effects are important, the Salpeter result deviates from the RPA one. On the other hand,

at Te = 10 eV (Fig. Ib), the Salpeter formula agrees very well with the RPA. In Fig. Ib we

see that the profiles are broader than in Fig. la since the kinetic temperature is comparable

to Tp . We shall also add that the conditions reported in Fig. 1 correspond to a small-a
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scattering parameter (a = 0.331), i.e.) when collective effects are not important. This is

the region where the formula derived by Landen et al. [3] for the dynamic structure is valid

[41], and this is confirmed by the good agreement with the RPA lineshapes. At Te = 0 eV

the calculated profile of S~e(k,w) is parabolic for small a, while at Te = 10 eV (Te > TF)

the profile is gaussian. Since for small a the electrons behave as uncorrelated scatters,

the transition from a parabolic to a gaussian profile, as the electron temperature is raised,

corresponds to the transition from a Fermi to a Boltzmann statistics in the electron velocity

distribution. Dynamic structures for collective scattering (a = 0.98) are shown in Fig. 2,

which correspond to a longer probe radiation of wavelength >'0 = 0.78 nm (AI He-a 1.6 keY

emission line), all the other conditions being the same as in Fig. 1. In both Figs. 1 and 2 ,

we see the strong asymmetry in the line profiles resulting from the detail balance relation

(6). This is evident from the discontinuity (kink) in the profiles at w = o.

E. Core electron excitations

The last term in Eq. (5) corresponds to the density correlations of the tightly bound

electrons within each single ion, and it arises from electron-hole and bound ~xcitations of

the inner core electrons. The Fermi golden rule in the first order perturbation theory can be

used to calculate the spectrum resulting from electron-hole excitations [42,43]. As discussed

by Mizuno and Omura [7] inner core electrons can be excited by the probe radiation to

continuum states and the corresponding spectrum of the scattered radiation is that of a

Raman-type band. Experiments of Suzuki [44] have then confirmed the existence of such

type of excitation in the form of a weak band near the tail of the Compton band that is mainly

determined by the ~xcitations of the free electron gas. In contrast to the usual Compton

scattering, the position of the Raman band is independent on k (or the scattering angle), with

its threshold determined only by the ionization threshold of the inner K-shell of the atom.

1The correct definition of the scattering parameter will be given in section §III
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The total scattering intensity of the Raman band is proportional to Zb -1!I(k)1 2 /Zb' For

conditions typical in ICF experiments with Ti He-a 4.75 keY radiation the ionic form factor

is close to Zb, and since the Raman band has width comparable or larger than the Compton

band [45], we can regard this type of contribution as yielding only a small background. This

seems consistent with the preliminary results presented by Glenzer [46] on x-ray scattering

from moderately heated berylli,um targets. However, we need to keep in mind that, in highly

correlated electron systems with r > 1, scattering from inner core bound electrons may be

enhanced by plasma screening and collective effects [47].

III. THE SCATTERING PARAMETER

In the traditional optical Thomson scattering,· the transition between collective and in­

dividual scattering is set by the parameter 0: = l/k>"n '" (n e /Te )1/2. It represents the ratio

of the probed density fluctuation wavelength, as defined by the experimental geometry, to

the typical screening distance of the Coulomb field. For small values of 0: the scatterers

behave essentially as free particles, while the large 0: regime reflects the collective nature of

the motion. Hence, for classical plasmas, at a given probe frequency, the frequency distri-

bution of the scattered light is described only by the ratio between the electron density and.

the electron temperature. However, in a degenerate fluid, the scattering parameter is not

properly defined, since the screening distance is not given anymore by the Debye length.

This point was discussed in Landen et at. [3], who, using ad hoc estimates, showed that in

the degenerate region the screening distance is a function of the electron density only. As a

result, the paramete; 0: remains independent of the electron temperature and, consequently,

the scattering profiles should re:r:nain approximately similar at a given electron density for

any temperature less than TF . In this section we will discuss these topics.in a more rigorous

way. As a starting point, we adopt the following definition for the scattering parameter:

1
0: = ks'

where s is the screening distance, defined through the relation [30] :

12
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(20)

with Cs the isothermal electron sound speed. For a weakly-coupled, low density plasma,

the isothermal sound speed is simply given by the thermal speed of the electrons, thus

the usual Debye length is recovered: s = AD = Jvt/wp • Conversely, in the case of a

degenerate quantum fluid, the screening distance is given by the Thomas-Fermi relation [30]

s = ATF = J2EoEF/3e2ne . In Fig. 3 we have plotted 0: = const. contours f()r a Ti He-o: 4.75

keY radiation probe at f) = 1600 scattering angle. The contours have been obtained either

by solving Eq. (20) for the sc~eening distance, or by using the limiting expression for the

screening lengths in the classical and quantum domains. We clearly see that, as the plasma

becomes degenerate (i.e.) cold and dense), the scattering parameter becomes independent

of the electron temperature. Thus, for degenerate fluids the form of the scattering profile

depends strongly on the electron density and only weakly on the electron temperature.

IV. THOMSON SCATTERING PROFILES

Based on the theory outlined in the previous sections, we are now able to calculate the full

Thomson scattering profile for x-ray probes at arbitrary scattering angle, for either classical

or quantum plasmas. The only limitation is that the degree of coupling must not be too

large to invalidate the limits of the RPA. We have obtained synthetic line profiles for the Ti

He-o: 4.75 keY radiation, probe at e= 1600 scattering angle. In addition, we have assumed

that the probe material consists of LiH (ZA = 4) at acompressed density n e = 4.0 x 1029

m-3 (TF = 19.8 eV) with Zf = 3, Zb = 1 or Zf = 3.5, Zb = 0.5 (Fig. 4). To simulate

actual experimental data, the theoretical line profile from Eq. (5) has been convoluted with

a Gaussian instrument function with 12.5 eV FWHM. From Fig. 4 we can see that synthetic

,line profiles tend to be fairly similarfor Te ;S 10 eV, while at higher electron, temperatures the

Compton peak resulting from electron correlations is heavily broadened. As we decrease the

electron temperature, the electron fluid becomes degenerate and the scattering parameter

13



stays independent on the electron temperature. Hence, in this regime, the scattering profiles

are only weakly dependent on a change in Te •

The effect of the ionization state on the .line profiles can be seen in Fig. 5. Here, we

have plotted synthetic lineshapes for different values of Zb (or ZJ) with ne = 1.0 X 1029 m-3

(TF = 7.85 eV) and Te = 1.0 eV. At the same electron temperature, the Compton peaks

shown in Fig. 5 are narrower than the ones shown in Fig. 4, since the broadening of the

profile goes as VTF r-..J n~/3. Also in Fig. 5, we clearly see large differences in the simulated

lineshapes for the various ZJ. This effect then suggests that x-ray Thomson scattering can

also be implemented as a diagnostics tool for the ionization state of solid density plasmas, in

addition to Te and n e , based on the difference in the intensity between the unshifted and the

Compton shifted peaks. This possibility was initially suggested by Landen et al. [3] since

current optical techniques cannot directly measure the number of free electrons in dense

plasmas. On the other hand, the ratio of the scattered intensities between the shifted and

the unshifted peaks is only sensitive to ZJ which is not the same as Z, the true ionization

state of the material. Since ZJ 2: Z, the measure of ZJ will thus only provide an upper

bound to Z, unless the number of valence electrons can be determined by other techniques.

The ratio Ie ( k) j Ii (k) between the scattered intensity in the electron feature and in the ion

feature is plotted in Fig. 6, where

(21)

and,

(22)

FroIl). Fig. 6 we see that the ratio Ie(k)j Ii(k) is weakly dependent on ne, but strongly

on Te • This suggests, ~hat if the electron and the ion components can be isolated in an
I

experiment, then ZJ can be determined rather accurately, without any rigorous assumption

on the electron density.

14



v. SUMMARY AND CONCLUDING REMARKS

In this paper we have presented analytical expressions for the inelastic x-ray form factor

that can be easily applied to interpreting scattering experiments in solid and supe~-solid

,

density degenerate-to-hot plasmas. We have shown that x-ray Thomson scattering can be

used as an effective diagnostic technique in plasmas produced under extreme conditions

as the ones occurring in ICF experiments or to simulate conditions found in the interiors

of planets, where the presently available diagnostics are not able, for example, to directly

measure the electron temperature, ioniza~ion state, or electron conductivity.

Our calculation method is limited by the constraints of the RPA to coupling constants

that are not too large. Extensions of the proposed approach to strongly coupled plasmas

could be viable if local field corrections to the dielectric function are implemented, for exam-

pIe, by using the formalism initially developed by Hubbard [48]. Similarly, core electron~hole

excitations, which have been neglected in the present work, could be important under differ­

ent plasma conditions or scattering angles [44]. A different approach has been followed by

Nardi [14] who has calculated the ionic form factor from the radial distribution function of

the elect:r;ons around the atomic nucleus derived from one-component plasma (OCP) simula­

tions. On the other hand, solutions of the HNC equation or molecular dynamics simulations

are required to obtain the radial distribution function, thus limiting the practical use of the

method if we want to effectively extract measurement values from experimental data.
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FIGURES

FIG. 1. Free electron dynamic structure S~e(k,w) for ne = 1.0 X 1029 m-3 at Te = 1 eV (a) and

Te = 10 eV (b). The probe radiation is .Ao = 0.26 nm and scattering angle () = 160° (a = 0,33).

FIG. 2. Free electron dynamic structure S~e(k,w) for n e = 1.0 X 1029 m-3 at Te = 1 eV (a) and

Te = 10 eV (b). The probe radiation is .Ao = 0.78 nm and scattering angle () = 160° (a = 0.98).

FIG. 3. Electron density-temperature contours plot at constant a for a probe radiation

.Ao = 0.26 nm and scattering angle () = 160°. Open circles are derived from the solution of

Eq. (20); solid lines are calculated from the limiting expressions for the screening length (see text).

FIG. 4. Synthetic dynamic structure S(k,w) calculated for ZA = 4 and ne = 4.0 X 1029 m-3

(TF = 19.8 eV). The probeTadiation is.Ao = 0.26 nm and scattering angle () = 160°. Zj = 3 (a)

and Zj = 3.5 (b).

FIG. 5. Synthetic dynamic structure S(k,w) calculated for ZA = 4 and n e = 1.0 X 1029 m-3

(TF = 7.85 eV) and Te = 1.0 eV. The probe radiation is .Ao = 0.26 nm and scattering angle

() = 160°.

FIG. 6. Ratio between the scattered intensity in the electron feature, Ie (k), and in the ion

feature, Ii(k). ZA = 4, the probe radiation is .Ao = 0.26 nm and scattering angle () = 160°.
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