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Implementation of a Simple Model for Linear and Nonlinear 
Mixing at Unstable Fluid Interfaces in Hydrodynamics Codes 1 

(U) 
John D. Ramshaw 

Lawrence Livermore National Laboratory 

A simple model was recently described for predicting the time evolution of the width of the mix­
ing layer at an unstable fluid interface fJ. D. Ramshaw, Phys. Rev. E 58, 5834 (1998); ibid. 
61, 5339 (2000)]. The ordinary differential equations of this model have been heuristically 
generalized into partial differential equations suitable for implementation in multicomponent 
hydrodynamics codes. The central ingredient in this generalization is a non-diffusional ex­
pression for the species mass fluxes. These fluxes describe the relative motion of the species, 
and thereby determine the local mixing rate and spatial distribution of mixed fluid as a func­
tion of time. The generalized model has been implemented in a two-dimensional hydro­
dynamics code. The model equations and implementation procedure are summarized, and 
comparisons with experimental mixing data are presented. 

Keywords: mixing, instability, Rayleigh-Taylor, Richtmyer-Meshkov, Kelvin-Helmholtz 

Introduction 
There is considerable current interest in material interpenetration and mixing at unsta­

ble fluid interfaces, particularly those driven by the normal acceleration of adjacent fluid 
layers with different densities. Such processes occur, for example, in the implosion of inertial 
confinement fusion capsules and in certain astrophysical problems. These processes can in 
principle be computed in detail by direct numerical simulations with multidimentional hy­
drodynamics codes, and recent advances in computer technology and numerical methodology 
now make this feasible in some problems. In most practical applications, however, computer 
time and/or storage limitations still preclude a complete simulation of the very wide range 
of length and time scales involved in such instabilities. In particular, the development of 
the instabilities, at least at early times, is sensitive to the amplitude and length scales of 
the initial perturbations, which are frequently too small to resolve in a practical computing 
mesh. 

In order to simulate the effects of interfacial instabilities and material mixing with rea­
sonable accuracy on present-day computers, it is therefore necessary to develop submodels 
which capture the essential physics of these effects in a form and framework suitable for 
implementation into hydrodynamics codes. Conventional turbulence models are not well 
suited for this purpose, as they are usually developed and calibrated for single homogeneous 
materials rather than a mixture of different materials with significantly different densities. 
Multiphase turbulence models allow for the different materials but tend to be much more 
complicated, which makes them difficult to validate and implement. Ease of implementa­
tion is a major consideration, since modern hydrodynamics codes are becoming ever more 

IThis work was performed under the auspices of the U.S. Department of Energy by the University of 
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 
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sophisticated and difficult to modify. Thus there is a particular need for mixing models 
which are simple enough to be installed into existing hydrodynamics codes on a relatively 
short time scale. Such models should clearly be as simple and easy to retrofit as possible, 
but not of course so simple that they fail to capture the essential physics. Models of this 
type will necessarily be phenomenological, but they should be as fundamentally based as 
their simplicity allows. They should attempt to maximize the physics while minimizing the 
empiricism and the number of free parameters. 

These requirements imply that the model must allow for an arbitrary time-dependent 
acceleration history a(t), and it must reproduce the known linear and nonlinear growth 
behavior of the incompressible Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) insta­
bilities as special cases. Other desirable features include the ability to represent compression 
effects, shock waves, and Kelvin-Helmholtz (KH) instabilities resulting from tangential ve­
locity discontinuities. A simple model with these features has recently been constructed 
based on the general concepts of energy conservation and scale invariance (Ramshaw 1998, 
2000). This model takes the form of a second-order ordinary differential equation (ODE) (or 
two coupled first-order ODEs) for the time evolution of the penetration depth h of the light 
fluid into the heavier one (see Fig. 1). The model correctly reproduces the known linear and 
nonlinear growth behavior of the RT, RM, and KH instabilities, and gives results in good 
agreement with the experimental data of Dimonte and Schneider (1996) for four different 
time-dependent acceleration histories. It therefore seems a promising candidate to represent 
the effects of interfacial instabilities and mixing in hydrodynamics codes. 

HEAVY FLUID 

g 

+ 
rh 

LIGHT FLUID 

Figure 1: Schematic of mixing layer. 

However, it is by no means obvious how best to incorporate ODE models of this general 
type into the partial differential equations (PDEs) of hydrodynamics. The central problem 
is that ODE models and the variables therein (like h) are global in nature, whereas the 
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PDEs of hydrodynamics are local. In particular, the description of mixing in hydrodynamics 
requires expressions for the local mass fluxes of the different materials relative to the mean 
fluid velocity. The mixing model must supply these expressions, and this requires the intro­
duction of additional ingredients and assumptions. A variety of new issues arise and must be 
addressed, and there is considerable ambiguity (or freedom!) about how to resolve them and 
proceed. Here we propose and describe a particular procedure for extending the ODE model 
into a local model for predicting local material mass fluxes in a hydrodynamics code. We do 
not claim that the present procedure is unique or even optimal, but it is straightforward, easy 
to implement, and works well in the test problems performed to date. This procedure has 
been used to incorporate the model in a relatively simple multicomponent hydrodynamics 
code (Cloutman 1990) for testing purposes. The resulting code has been used to -simulate 
a set of incompressible linear electric motor experiments (Dimonte and Schneider 1996), as 
well as a shock tube experiment performed by Zaytsev et al. (Miigler and Gauthier 1998). 
In both cases the agreement with experiment is quite satisfactory. Further development and 
testing of this model and implementation procedure in other hydrodynamics codes therefore 
seems worthwhile. 

Summary of the ODE Mix Model 
The ODE mix model used in this work is based on the general concepts of energy conser­

vation and scale invariance. The model was constructed by a heuristic procedure consisting 
of three main steps: (1) The first step is to derive a time evolution equation for the kinetic 
energy of an inhomogeneous fluid subjected to a slow uniform but anisotropic compression 
or expansion. (2) The various terms in this equation are then evaluated using the linear 
potential flow solution for two fluids separated by a sinusoidally perturbed interface with 
amplitude h and wavelength A. This ensures that we properly capture the correct linear 
stability behavior for small perturbations. (3) Finally, the formulation is extrapolated into 
the nonlinear regime by means of a wavelength renormalization hypothesis (WRH), accord­
ing to which the effective value of A becomes proportional to Ihl at late times. The WRH 
embodies the scale invariance that mixing layers are expected to exhibit in the nonlinear 
regime. The reader is referred to the literature for the derivation and further discussion. 
Here we shall simply summarize the model and a few post-publication improvements, so 
that we can concentrate on the implementation issues in subsequent sections. It should be 
noted that the general model (Ramshaw 2000) includes the effects of KH instability resulting 
from transverse shear, but these effects are neglected here for simplicity. 

The model may be expressed in the form of the following two coupled ODEs: 

h = Dnh+v (1) 

d ) 1 v0. dt (v'Xv = 27l"[a(t)Ah - clvlv] - 4DtAV (2) 

where a(t) is the acceleration normal to the interface, A is the Atwood number, Dn and D t 

are the normal and transverse expansion rates, A is a function of blhl (defined below), and 

b 

c 

1r(} 

0:(2 - (}) 
2 - 3(} 

40:(2 - 0) 

(3) 

(4) 
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where a and () are parameters in the nonlinear RT and RM growth laws hlU' = aAgt2 and 
hRM '" to. The term involving a(t) represents the growth of the instability due to buoyancy 
forces, while the term involving e represents the viscous dissipation of mixing energy to 
thermal energy. 

In this model, the effective perturbation wavelength A undergoes a transition from its 
initial value AD for Ihl « AD to the WRH value blhl when [hi » AD. This transition 
was originally effected suddenly at the point Ihl = mAo, where m '" 1/2 is set at the user's 
discretion. This is clearly unrealistic, as there is a weakly nonlinear transitional regime during 
which the instability has become nonlinear but AD remains the dominant length scale. We 
therefore now allow for a smooth transition between linear and fully nonlinear behavior over 
the range mlAo < Ihl < m2AO' This can be done by replacing e by Ie and letting 

A = (1 - I)Ao + fblhl (5) 

where f = 3x2 
- 2x3 and x = (jhl/Ao - ml)/(m2 - ml), subject to the constraint 0 ::; x ::; l. 

However, one intuitively suspects that the damping coefficient e should come into play before 
A changes much, and this can be accomplished by raising f to different powers in the two 
quantities; i.e., replacing e by jYe and letting 

(6) 

Test calculations to date have been performed with ml = 0.1, m2 = 1, Y = 0.1, and z = 2, 
but more detailed comparisons with weakly nonlinear h(t) data are needed to determine the 
values of ml and m2 and/or the form of f. 

The Treatment of Shock Waves 
This model presents two known problems when shock waves are present. The first is that 

hydrodynamics codes typically treat shock waves by shock smearing or capturing techniques, 
which artificially thicken the shock by means of a shock viscosity. This in turn artificially 
prolongs the duration of the shock, which may then become gradual rather than impulsive 
compared to the natural time scale for h to change in the mixing model. This would allow a 
significant but unphysical change in the value of h during the shock, and the shock would not 
then deposit the correct energy in the mixing layer. Fortunately, this problem can easily be 
avoided by monitoring the shock viscosity within the mixing layer to detect the presence of a 
shock, and replacing v by zero in Eq. (1) while the shock is present. This has the physically 
appropriate effect of freezing h (except for compression effects) at its value when the shock 
arrives until the shock has passed by. 

The second problem is more insidious: if a perturbed interface is subjected to a slowly 
varying a(t) < 0, h(t) will undergo stable oscillations about h = O. If a shock wave then 
strikes the mixing layer, its effect will be highly sensitive to its arrival time relative to the 
phase of the oscillations (see Fig. 2). In particular, if the shock arrives at a time when Ihl 
is very small or zero, it will have little or no effect. This behavior is actually physical for 
a single-mode perturbation in the linear regime, but will rarely occur in practical problems 
due to the inevitable presence of other modes and the fact that it is highly unlikely that all 
the associated mode amplitudes would be very small at the same time. 
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shock 

Figure 2: Sensitivity to shock arrival time during stable oscillations. 

Unfortunately, there is no obvious way to cure this problem properly without generalizing 
the model to include a true multimode capability, which would entail a great deal of addi­
tional complexity. However, the problem can be ameliorated or prevented from occurring by 
means of various simple ad hoc fixes such as the following: 

(a) Set v = 0 whenever hv < O. This completely prohibits demixing. 

(b) Replace a(t)A by max(a(t)A,O) when shocks are absent. This ignores accelerations 
in the stable direction except when shocks are present, when they cannot be ignored 
without losing the RM instability. 

(c) Greatly increase the dissipation coefficient c when hv < 0 to retard the rate of demixing. 

(d) Reverse the sign of h whenever hv < O. This completely prohibits demixing but pre­
serves the sign information contained in v and V, which seems important in problems 
with multiple or reflected shocks. 

We emphasize, however, that none of these fixes is fully satisfactory, and all of them 
produce other unphysical behavior in some situations. They should therefore be used with 
care and caution to ensure that the cure does not produce worse symptoms than the disease. 
At present we are leaning toward (d) above, which seems to do the minimum violence to the 
remaining physics, but further investigation is needed. 

Implementing ODE Mix Models in Hydrodynamics Codes 
A number of new issues must be addressed in order to implement ODE mix models of 

the present type in hydrodynamics codes. The situation is complicated by the fact that the 
variables in ODE mix models (such as h and v) are inherently global in nature, while the 
PDEs of hydrodynamics are inherently local. It is by no means obvious (at least to the 
present author) how best to convert between these two very different types of description. 
It is evidently necessary to compute and store h and v as local variables in every cell of the 
computing mesh (or at least every cell containing mixed materials) while maintaining their 
interpretation as semi-global quantities associated with a larger region containing the cell 
in question. Since h and v are not local densities of conserved quantities, they need not 
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be transported conservatively (or even differentially!), but their values must nevertheless be 
transported or propagated between cells in some sensible way consistent with their semi­
global nature. The computation of h and v also requires the quantities a(t), A, Dn , and 
Dt, so it is necessary to specify the manner in which these quantities are to be evaluated in 
terms of the hydrodynamic variables. 

Even if we have sensible local or semi-local values for h and v, these variables are not 
themselves directly useful in hydrodynamics. The basic quantities required in a hydro­
dynamic description are the local material or species mass fluxes, which are required to 
describe the local transport of materials and predict local species concentration profiles and 
distributions. The mix model must supply these mass fluxes, and this requires further mod­
eling assumptions. These fluxes can be expressed in terms of the relative velocities between 
species, which are evidently closely related to v. However, v is a scalar while the mass fluxes 
are vectors, so it is necessary to define the direction they point in as well as their precise 
dependence on v and other variables. It is natural to identify this direction with the local 
normal to the mixing layer, which is also needed for other purposes. This normal direction 
must be defined in terms of the hydrodynamic variables and their gradients. Moreover, the 
mix model contains only two materials, light and heavy, whereas realistic problems of inter­
est often involve multiple species. It is therefore necessary to construct logic for grouping 
multiple species together into light and heavy materials, and conversely for separating the 
light and heavy mass fluxes into mass fluxes for each individual species. 

The primary effect of the mix model on the hydrodynamic equations occurs through 
the species mass fluxes, which appear in the species continuity equations. This effect is 
straightforward and is the essence of mixing. However, it is also necessary to determine the 
form of any required modifications to the other hydrodynamic equations. In particular, the 
species mass fluxes imply a corresponding additional enthalpy flux which must be accounted 
for. In addition, the relative motion of materials implies the presence of non-thermal kinetic 
energy which is not contained in the mean flow. This energy must be included in the overall 
energy balance, and its dissipation produces thermal energy which also must be accounted 
for. 

Finally, incorporation of the model in a hydrodynamics code requires consideration of 
numerical issues, including the placement of variables and the numerical scheme used to 
advance them in time. The numerical treatment is constrained by the requirement of com­
patibility with the mesh and numerical scheme used for the hydrodynamics, and hence will 
be somewhat code-specific. Fortunately, these numerical issues present no particular dif­
ficulties and are relatively straightforward compared to the more subtle conceptual issues 
discussed above. 

The above are the main issues that needed to be addressed in order to extend the original 
ODE model into a form suitable for implementation in hydrodynamics codes. The manner 
in which these issues were treated and resolved will be described in subsequent sections. It 
should be noted, however, that most of these issues do not admit of a unique resolution. We 
are constructing a model rather than a theory, and by its very nature a model represents 
a collection of uncontrolled approximations. These approximations present a variety of 
different choices, and their validity can only be assessed a posteriori. Thus we cannot, and 
do not, claim that the choices made here are unique or optimal, but it is encouraging that 
the resulting solutions agree well with experimental data in the test problems performed to 
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date. However, more extensive test calculations and implementations in other hydrodynamic 
codes will be required before a final assessment can be made. 

Two Materials vs. Multiple Species 
A general multicomponent hydrodynamics formulation must allow for an arbitrary num­

ber of species or Inaterials, whereas the mix model has only two materials, light and heavy. 
In order to employ it in more general situations, it is evidently necessary to divide the species 
into a light subset A and a heavy subset B. This may be done either globally or locally. Once 
each species has been labeled as being light or heavy, the local partial densities of the light 
and heavy materials are given by 

(7) 

where Pi is the local partial density of species i (Le., mass of species i per unit total volume). 
The local volume fraction of species i is ai = Pi/ p?, where p? is the mass density of pure 
material i (i.e., mass of species i per unit volume of species i). The local volume fractions 
of the light and heavy materials are then given by 

(8) 

The local densities of "pure" light and heavy materials may then be defined by 

P~ = PB/aB (9) 

and the local Atwood number is then given by 

o 0 
A = PB PA 

P~+P~ 
(10) 

Equation (9) breaks down in cells containing pure or nearly pure A or B, so we temporarily 
insert small virtual quantities of A or B into such cells in order to ensure that p~ and p~ 
have reasonable values everywhere. 

Normal Vector and Acceleration 
The local unit vector normal to the mixing layer (region) is defined by 

n = - VaA/!VaA! (11) 

which by construction points from the light material into the heavy materiaL The local 
acceleration in the normal direction is then given by 

a(t) (1/ p)n· 'Vp (12) 

where P and p are the local mass density and pressure of the fluid. 

Mass-Weighted, Volume-Weighted, and Relative Velocities 
The local mass weighted fluid velocity u is determined by the hydrodynamic momentum 

equation. It is related to the velocities of materials A and B by 

(13) 
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Similarly, the local volume weighted fluid velocity is given by 

(14) 

and it is easy to show that 

p(uv - u) = (aAPB - aBPA)(uA - UB) = aAaB(p~ p~)(UA - UB) (15) 

Since it is U v rather than U which determines volume changes, the local expansion rates Dn 
and Dt should evidently be evaluated from U v rather than u. We therefore set 

Inspection of Fig. 1 suggests that the relative velocity should be of the form 

UA - UB = J.l{1 + r)v sign(h)n 

(16) 
(17) 

(18) 

where J.l is an as yet undetermined coefficient of order unity. However, this expression requires 
local values of v and h, which have not yet been defined. The manner in which h and v are 
determined locally will be discussed below. The spike/bubble height ratio r is given by 
(Dimonte and Schneider 2000) 

(19) 

where we have imposed a constraint to prevent the spike velocity from exceeding the free-fall 
velocity in a constant gravitational field for large density ratios. 

Mass Fluxes and Species T:ransport 
Species transport and mixing in multicomponent hydrodynamics is governed by the in­

dividual species continuity equations, which take the form 

(20) 

where J i is mass flux of species i relative to u. It is the task of the mix model to supply these 
fluxes. This will be done by expressing J i in terms of the light and heavy material mass 
fluxes J A PA(UA - u) and JB PB(UB - u) = - JA. Using Eq. (13), we readily obtain 

(21) 

To relate J i to J A,B, we simply regard materials A and B as mixtures which carry their 
constituent species along with them, so that 

(22) 

where yf and y[1 are the mass fractions of species i in materials A and B. Ordinarily a given 
species is considered either light or heavy, so that only one of yf and yp is nonzero for each 
i. Equations (21) and (22) determine the species mass fluxes in terms of the relative velocity 
given by Eq. (18). 
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The different species have different thermal energies, so a corresponding term Ei hiJi 

must also be added to the heat flux in the energy equation, where hi is the partial specific 
enthalphy of species i. This term is often referred to as the "enthalphy diffusion" term when 
the mass fluxes J i are diffusional in nature. Most turbulent mixing models indeed employ 
diffusional expressions for J i , but in the present context this seems inconsistent with the 
inertial nature of the mixing process. In contrast, the mass fluxes in the present treatment 
are inertial and reversible, which permits the description of demixing in stable accelerations. 

For the case of one-dimensional mixing of two incompressible materials with a uniform 
value of v(t), an analytical similarity solution can be derived for the volume fraction profile. 
The result is 

(23) 

The total width of the mixing layer from Q'A = 0 to Q;A = 1 is seen to be 2J.l(I+r)h. Equating 
this width to (1 +r)h (see Fig. 1) then gives J.l = 1/2, thereby roughly determining the value 
of J.l. 

The use of a constant value of J.l in Eq. (18) therefore results in a linear volume fraction 
profile in this situation, which is the simplest qualitatively reasonable possibility. However, 
this profile becomes more and more unrealistic as the Atwood number increases, as it does 
not properly reflect the asymmetry between spike and bubble penetration. Fortunately, a 
generalized similarity solution shows that other profiles can be accommodated by introducing 
an appropriate volume fraction dependence into UA ~UB. This provides a mechanism whereby 
experimentally determined volume fraction profiles can be incorporated into the model if 
desired. 

Computing "Local" Values of h and v 

Having defined local values for the quantities a(t), A, Dn , and D t , we are now in a 
position to advance h and v in time by means of Eqs. (1) and (2). However, this requires us 
to confront our central dilemma: by their very nature h and v are not local variables, and 
yet they must be computed locally in a hydrodynamics code. We shall attempt to evade this 
dilemma by the simple expedient of defining and computing local values of h and v within 
each cell of the computing mesh, but interpreting these values as semi-global (or semi-local) 
parameters which pertain to the part of the mixing layer in the neighborhood or vicinity of 
that cell. However, it is not sensible to compute h and v in unmixed cells containing pure 
or nearly pure A or B, so we set h = v = 0 in such cells. We consider a cell unmixed if its 
value of D:A is less than 0.01 or greater than 0.99. 

The interpretation of h and v as semi-global quantities implies that their gradients within 
the mixing layer should remain small. To ensure this, we smooth the h and v fields by an 
artificial diffusional process which tends to equalize nonzero values of h and v in neighboring 
cells. However, this process is not allowed to produce nonzero values of h or v in unmixed cells 
where h = v = 0, so it does not tend to spread out the mixing region. The expansion of the 
mixing region occurs entirely through the action of the mass fluxes, which are nondiffusional 
in character as discussed above. The smoothing of h and v therefore does not diffuse species 
or materials. 
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As the mixing layer grows, or as it moves through the mesh due to mesh motion and/or 
convection of the fluid as a whole, it is necessary to transport or propagate h and v between 
cells accordingly. Since h and v are not densities of conserved quantities, there is no need 
or incentive to transport them conservatively. Indeed, since h and v are not really local 
variables, it is even dubious to transport them in the usual local manner involving convective 
derivatives. If this were done, h and v would tend to be smeared out by numerical diffusion, 
which would reduce their amplitudes and introduce undesirable gradients in their values 
within the mixing region. We therefore use an entirely different approach based on the 
idea that h and v are inherently attached to, and hence transported along with, the mixed 
material which they produce. This idea can be implemented simply by switching on hand 
v when the mass fluxing causes a previously unmixed cell to acquire a significant amount of 
the other material. When an unmixed cell with h = v = 0 acquires a value 0.01 < ClA < 0.99, 
we therefore set h and v in that cell equal to an average of the nonzero values in neighboring 
cells. 

Energy Conservation 
The relative motion of materials implies the presence of additional kinetic energy which is 

not contained in the kinetic energy of the mean flow. This kinetic energy of mixing is closely 
analogous to the turbulent kinetic energy appearing in turbulence models. The total energy 
of the flow is of course still conserved, but now includes mixing energy as well as thermal 
and mean flow kinetic energy. A transport equation for the mean flow kinetic energy density 
~plul2 can readily be derived from the momentum equation in the usual way. When this is 
subtracted from the total energy equation, one obtains an internal energy equation which 
looks formally the same as the usual one. This is deceptive, however, because the resulting 
"internal" energy is no longer purely thermal, but now includes the kinetic energy of mixing 
as well. 

The present model therefore requires two modifications to the energy equation: (a) in­
clusion of the additional term Ei hiJ i in the heat flux as previously noted, and (b) rein­
terpretation of the internal energy as the sum of mixing and thermal energies as described 
above. Once (a) has been implemented, the "internal" energy may be computed in the usual 
way. However, (b) implies that it is then necessary to subtract out the local mixing energy 
in order to obtain the local thermal energy for use in the thermodynamic state relations. 
Unfortunately, the local mixing energy density cannot be directly evaluated in the present 
model, since h and v are not local variables. This problem is not peculiar to the present 
model, but occurs in any model in which the kinetic energy of turbulence or mixing is not 
computed and stored locally. In particular, the same situation occurs (but has rarely been 
discussed) in the original Smagorinsky /Deardorff subgrid-scale turbulence models, which do 
not compute the turbulent kinetic energy either. These models simply presume that the 
internal energy is purely thermal, and hence they implicitly assume that turbulent energy 
is negligible compared to thermal energy. This is always the case at low Mach number, but 
cannot safely be assumed at higher Mach numbers. 

Even though the local kinetic energy of mixing cannot be directly evaluated in the present 
model, it can nevertheless be approximated in the following manner. The approximation is 
based on the fact that in contrast to h and v, the material velocities UA and UB really are 
local variables, so the material kinetic energy densities QA = ~PAluAI2 and QB ~PBluBI2 
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can be evaluated locally. One might at first think that the mixing energy density is simply 
QA + QB - ~pluI2, but this would be wrong because it neglects the contributions of the 
small-scale secondary flows which contribute to the mixing energy but not to UA and UB. 

These contributions cannot be evaluated exactly, but their effect may be approximated by 
inserting a correction factor based on the relative magnitudes of the normal and transverse 
contributions to the kinetic energy tensor in the linearized potential flow solution (Ramshaw 
2000). However, this solution was obtained in a frame moving with U v rather than u, so this 
difference must also be accounted for. The net result is the following approximate expression 
for the local mixing energy per unit volume Q, 

fL2(1 + r)2v2 
2 

Q = 2p [(aAPB - aBPA) + 2PAPB] (24) 

The local thermal energy density can then be approximately evaluated simply by subtracting 
Q from the local internal energy density computed from the energy equation. 

Numerical Scheme 
The time advancement of h and v requires an approximate solution of Eqs. (1) and 

(2) in each mixed cell. This is done by means of the same scheme originally used for the 
previous incompressible model (Ramshaw 1998), augmented by a suitable treatment of the 
compression terms. We evaluate h in the compression term in Eq. (1) as either hn or hn+1 

according as Dn > ° or Dn < 0, respectively. Similarly, we evaluate v in the compression 
term in Eq. (2) as either vn+1 or vn according as Dt > ° or D t < 0, respectively. This 
treatment preserves the essential physical property that these terms cannot change the sign 
of h or v, no matter how large the time step becomes. 

It is also necessary to specify the placement of the variables in the computing mesh so 
that the spatial differencing may be defined. This will of course depend on the type of 
mesh and the placement of the hydrodynamic variables therein, so no general procedure 
can be given. In most hydrodynamics codes, thermodynamic variables such as pressure and 
densities are located at cell centers, and a spatial difference approximation to Eq. (20) is 
obtained by integrating over the volume of a typical cell and using the divergence theorem 
to convert volume integrals to surface integrals. When this is the case, the mass fluxes J A 

and Ji are required on cell faces. Regardless of where h and v are located, some averaging or 
interpolation is required to obtain them and/or the other quantities at places where they are 
not fundamentally defined. At present we simply locate h and v at cell centers. Quantities 
required to compute cell face values of J A and J i from Eqs. (18), (21) and (22) are obtained 
by averaging or interpolation from the adjacent cell centered quantities, except that we use 
whichever of the two adjacent values of v is larger in magnitude in Eq. (18). This is done 
to ensure that the relative velocity has its full value even on faces where one of the adjacent 
cells is unmixed and consequently has v O. 

Pilot Implementation and Test Calculations 
The present model has been implemented in the COYOTE code (Cloutman 1990) for test­

ing purposes. COYOTE is a rectangular-mesh Eulerian code for computing multicomponent 
hydrodynamics problems in two space dimensions. Test calculations have been performed 
corresponding to the experimental data of Dimonte and Schneider (1996) on the growth 
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of a mixing layer between two incompressible fluids subjected to four different acceleration 
histories. All calculations were performed with the fixed parameter values et = 0.06, () = 0.3, 
and J-l = 0.5. The bubble penetration depth h was defined as the distance from the original 
unperturbed interface to the point where etA = 0.07. It is convenient to plot h vs. the in­
terface displacement z defined by d2z/dt2 = a(t). Comparisons between the computed and 
measured values of h(z) are shown in Fig. 3. The agreement is seen to be quite satisfactory. 
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Figure 3: Comparison of computed and measured bubble penetration depths for four different 
acceleration histories. 

The time evolution of the computed volume fraction profiles for the "constant" acceler­
ation case is shown in Fig. 4. As expected from the similarity solution, the profiles are seen 
to be nearly linear except for the rounding of the corners by the numerics. 

We also performed a RM simulation corresponding to a shock tube experiment by Zaytsev 
(Miigler and Gauthier 1998), in which a Mach 3.5 shock wave impinges on a perturbed 
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volume fraction profiles for Dimonte-Schneider case 1 
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Figure 4: Volume fraction of light material vs. normal distance y at t 10, 20, 30, 40, and 
50 ms. 

interface between Kr and Xe. The initial perturbation is sinusoidal with amplitude ho = 0.5 
cm and wavelength AO = 3.6 em. The mixing layer width is defined, both experimentally 
and computationally, as the distance between the points at which aA 0.05 and 0.95. 
The calculation was performed using the same values of at (), and J-L as before, and the 
parameters defining the weakly nonlinear transitional regime parameters were arbitrarily 
taken to be ml 0.1, m2 = 1, Y = 0.1, and z 2. Figure 5 compares the computed and 
measured mixing layer widths, and the agreement is again quite satisfactory. 

Unresolved Issues and Missing Physics 
Although the model now contains many of the ingredients needed to perform nontrivial 

simulations of practical problems, it still requires further development and improvement in 
several areas, including the following: 

• The present model is limited to single-mode perturbations in the linear regime. The 
generalization to allow for multimode perturbations and mode coupling would be highly 
desirable. In particular, this would remove the model's most serious deficiency in deal-
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Figure 5: Comparison of computed  and  measured  mixing layer width in Zaytsev shock tube. 

ing  with shock waves. Unfortunately, it is not clear how to accomplish this generaliza- 
tion without a substantial increase in complexity. 

e When A@) < 0 the model  properly  predicts dernixing (reseparation) of the two fluids, 
but at a rate which is expected to  be  too fast (Ramshaw 1998). Modifications to 
reduce the  rate of demixing  should be developed and  validated by comparisons  with 
experimental data on  demixing rates. 

e In its present  form, the model neglects  surface  tension and assumes the two fluids are 
immiscible. It therefore  does  not allow for molecular diffusion and does not  compute 
the  transition from reversible inertial to irreversible diffusive mixing. Removal of this 
restriction will probably  require the  introduction of additional variables to represent 
information  about  the  spectrum of length scales and  the  rate at which molecular mixing 
occurs. 

In some  problems the accelerating  interface is simultaneously  ablating,  and  this will 
affect the  instability growth in ways that  the model cannot  currently  represent. 
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As discussed above, the model in its present form produces  linear  or  nearly  linear vol- 
ume fraction profiles. Such profiles are  not realistic at large Atwood number, where 
the spike-bubble  assymmetry becomes pronounced. The generalization of Eq- (18) to 
accommodate  more  general volume fraction profiles therefore  requires further consid- 
eration. 

Concluding Remarks 
We have described a heuristic  procedure for generalizing a simple ODE mix  model into 

a form  suitable for implementation  in  hydrodynamics codes. This  procedure was used to 
implement  the model in  the COYOTE code for development and  testing purposes.  Test cal- 
culations  and  comparisons  with  experimental data were performed for incompressible  linear 
electric  motor  experiments and a shock tube experiment,  and in all cases good  agreement 
with  the  data was obtained using a single set of model  parameters. 

Although  implementation  details  are  inevitably code-specific to some degree, the imple- 
mentation  procedure that we have described is sufficiently general that it should be equally 
applicable to a variety of other hydrodynamics codes and numerical schemes. In particular, 
the basic  procedure is equally  applicable  in  Lagrangian,  Eulerian,  or ALE codes in one, two, 
or three space  dimensions. It would be relatively  straightforward to implement  this model 
in other  hydrodynamics codes by essentialIy the  same procedure, and  this will indeed be 
required to address a wider range of problems and assess the overall utility of the model. 
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