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Abstract 

Coscheduling is essential for obtaining good performance in a time-shared symmetric multiprocessor 
(SMP) cluster environment. However, the most common technique, gang scheduling, has limitations 
such as poor scalability and vulnerability to faults mainly due to explicit synchronization between its 
components. A decentralized approach called dynamic coscheduling (DCS) has been shown to be effec­
tive for network of workstations (NOW), but this technique is not suitable for the workloads on a very 
large SMP-cluster with thousands of processors. Furthermore, its implementation can be prohibitively 
expensive for such a large-scale machine. In this paper, we propose a novel coscheduling technique 
based on the DCS approach which can achieve coscheduling on very large SMP-clusters in a scalable, 
efficient, and cost-effective way. In the proposed technique, each local scheduler achieves coschedul­
ing based upon message traffic between the components of parallel jobs. Message trapping is carried 
out at the user-level, eliminating the need for unsupported hardware or device-level programming. 
A sending process attaches its status to outgoing messages so local schedulers on remote nodes can 
make more intelligent scheduling decisions. Once scheduled, processes are guaranteed some minimum 
period of time to execute. This provides an opportunity to synchronize the parallel job's components 
across all nodes and achieve good program performance. The results from a pf~rforrnance study reveal 
that the proposed technique is a promising approach that can reduce response time significantly over 
uncoordinated time-sharing and batch scheduling. 

1 Introd uction 

The most prevailing machine architecture for large-scale parallel computers in recent years has been the 
cluster of symmetric multiprocessors (SMPs), which consists of a set of SMP machines interconnected 
by a high-speed network. Each SMP node is a shared-memory multiprocessor running its own image 
of an operating system (OS) and often constructed using commodity off-the-shelf (COTS) components 
mainly due to economic reasons [1]. Continuous decrease in the price of these commodity parts in 
conjunction with the good scalability of the cluster architecture has made it feasible to economically 
build SMP dusters that have thousands of processors and total physical memory size on the order of 
Terabytes. The most prominent example of such very large-scale SMP dusters is the Department of 
Energy (DOE) Accelerated Strategic Computing Initiative (ASCI) project [5] machines [3, 4, 6]. For 
instance, the Lawrence Livermore National Laboratory (LLNL) ASCI SKY machine is an IBM SP2 with 
5856 processors, total system memory size of 2.6 Terabytes and peak performance of 3.9 Teraflops. 

'This work was performed under the auspices of the U.S. Dppartment of Energy by University of California Lawrence 
Livermore National Laboratory under contract No. \V -7 405-Eng-48. 
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Efficiently managing jobs running on parallel machines of this size while meeting various user demands 
is a critical but challenging task. Most supercomputing centers operating SMP-clusters rely on batch 
systems such as LoadLeveler [15, 26] for job scheduling [32]. We may utilize a system efficiently using these 
batch systems, but high system utilization usually comes at the expense of poor system responsiveness 
with a workload consisting of long running jobs, as is typical of many large scale systems [11]. In a worst 
case scenario, for example, a user who wants to execute a simple debugging job that runs for only a few 
minutes may have to wait for several hours before sufficient reHources are available to initiate the job. An 
alternative scheduling technique that improves the system responsiveness while improving fairness and 
freedom from starvation is time-sharing. With time-sharing, we can create virtual machines as desired 
to provide the desired level of responsiveness. 

Due to the SMP-cluster architecture and the popularity of standardized message passing libraries such 
as MPI [20, 31]' most applications running on an SMP-cluster follow the message-passing programming 
model. An important issue in managing message-passing parallel jobs in a time-shared cluster environ­
ment is how to coschedule the processes (or tasks) of each running job. Coscheduling here refers to a 
technique that schedules the set of tasks constituting a parallel job at the same time so that they can 
run simultaneously across all nodes on which they are allocated. When a parallel job is launched on an 
SMP-cluster, a set of processes are created on the nodes allotted to the job. These processes of the job 
usually cooperate with each other by exchanging messages. In most cases, two communicating processes 
do not proceed until both processes acknowledge the completion of a message transmission. Therefore, 
the interprocess communication becomes a bottleneck which may prevent the job from making progress if 
both sending and receiving processes are not scheduled at the time of the message transmission. Without 
coscheduling, the processes constituting a parallel job suffer high communication latencies due to spin­
waiting periods and context switches. The ill effect on system performance of running multiple parallel 
jobs without coscheduling has been well documented [23]. It is very difficult to coschedule parallel jobs 
in a time-shared environment using local operating systems running independently on each node alone. 
A new execution environment is required in which parallel jobs can be coscheduled. 

A few research efforts have been made to develop a technique with which the coscheduling can be 
achieved efficiently for SMP-dusters and networks of workstations (NOW). The simplest approach to 
coscheduling is a technique called gang scheduling [12, 13, 16, 17, 18, 19]. In gang scheduling, a matrix 
called gang matrix (or Ousterhaut matrix), which explicitly describes all scheduling information, is used. 
Each column and each row of a gang matrix represent a processor in the system and a time slice during 
which the processes in the row are scheduled to nUl, respectively. In other words, the entry in the ith 
row and jth column of the gang matrix contains the information on the process which is assigned to 
the ith processor and scheduled during the jth time slice. The coscheduling is achieved by placing all 
the processes of a job on the same row of the gang matrix. The gang matrix is usually maintained by 
a central manager running on a separate control host. Alternately, distributed database techniques may 
be used to maintain the gang matrix [18]. The gang matrix is distributed periodically or whenever there 
is a change. Each node receives a portion of the gang matrix that is pertinent to that node instead of 
the entire matrix. A small daemon process running on each node follows this well-defined schedule to 
allocate resources to processes on that node. This simple scheduling action guarantees coscheduling of 
parallel jobs due to the way the gang matrix is constructed. The gang scheduling technique is relatively 
simple to implement. A few successful gang scheduling systems have been developed and operational on 
actual production machines [16, 18]. 

However, gang scheduling has limitations, many of which stem from the support of a gang matrix 
explicitly describing scheduling activities for the entire system. First, correct coscheduling of jobs entirely 
depends on the integrity of the distributed scheduling information. If any of these schedules, which are 
transmitted through unreliable network, are lost or altered, it is highly likely that the jobs will not be 
coscheduled. Second, the gang scheduler's central manager is a single point of failure. Once the central 
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manager fails for any reason, the whole scheduling system fails. The last and the most serious drawback 
of the gang scheduling technique is its poor scalability. As the number of nodes in the system increases, 
not only the size of the gang matrix but also the number of control messages increases. These control 
messages convey various information such &<; the node status, the health of local daemons and the jobs 
running on each node, and so on. In many cases, the central manager is required to take appropriate 
actions to process the information delivered by a control message. Due to the excessive load imposed on 
the central manager, the gang scheduler does not scale well to very large system. 

Another method for achieving coscheduling is a decentralized scheme called dynamic coscheduiing 
(DCS) [2, 22, 27, 28J. In DCS, the coordinated scheduling of processes that constitute a parallel job 
is performed independently by the local scheduler, with no centralized control. Since there is no fixed 
schedule to follow in DCS, the local scheduler must rely on certain local events to determine when and 
which processes to schedule. Among various local events that a local scheduler can use to infer the status 
of processes running on other nodes, the most effective and commonly-used one is message an·ivai. The 
rationale here is that when a message is received from a remote node, it is highly likely that the sending 
process on the remote node is already scheduled. What this implies is that upon receiving a message, the 
local scheduler should schedule the receiving process immediately, if not already scheduled, to coschedule 
both the sending and receiving processes. 

A few experimental scheduling systems based on this method have been developed [2, 22, 27J. All 
of these prototypes are implemented in an NOW environment, where workstations are interconnected 
through fast switches like Myrinet [21 J. Interprocess communication is carried out using high-performance 
user-level messaging layers that support user-space to user-space communication [24, 29, 30J in these 
systems to reduce communication latency. The implementation of DeS under such special communication 
hardware and software involves programming switch firmware and network interface cards and developing 
communication libraries. 

The DCS technique can achieve effective, robust coscheduling of processes constituting a parallel job 
and overcome the drawbacks of gang scheduling. However, current DCS implementations available may 
not be suitable for a large-scale SMP-clusters. They do not address the issues related to interprocess com­
munication via shared-memory. Furthermore, the purchase, deployment, and maintenance of the special 
hardware and software for an SMP-cluster with thousands of processors is both difficult and expensive. 
Finally, fine-grain scheduling of the DCS scheme, which aims at quickly establishing coscheduling among 
communicating processes Illay work well in an NOW environment where context switches among processes 
of interactive and parallel jobs are very frequent, but it is not suitable for a large-scale SMP-cluster where 
interactive jobs are usually executed on a separate pool of reserved nodes. Frequent context switches 
among processes of parallel jobs will only hurt the performance due to increased communication latencies 
and memory management overhead, including both cache refresh and potentially paging. 

In this paper, we propose and evaluate a novel coscheduling technique for an SMP-cluster. Our goal 
in this study is i) to design a technique that overcomes the shortcoIllings of previous approaches and can 
still achieve coscheduling efficiently on a large-scale SMP-cluster, and ii) to verify its viability through 
experiments. 

Design criteria we used are as follows; 

• Good scalability. The scheduler should be easily scalable to a very large SMP-cluster. 

• Cost-effectiveness. Its implementation should not require to purchase any additional hardware or 
software. 

• Portability. The system should be portable, and hence we should not make any changes to propri­
etary software such as local operating system or device driver. 
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• Low-overhead. The design has to be simple and efficient so that only minimal run-time overhead 
occurs. 

To achieve these design goals, we have adopted the DCS approach, which allows us to eliminate any 
form of centralized control. The primary concern of the previous DCS schemes is boosting the priority 
of a receiving process as quickly as possible on a message arrival to establish immediate coscheduling. 
To accomplish this, they program network devices so that an incoming message can be trapped long 
before the receiving process gets scheduled. We believe that what is more important to improve overall 
performance is not reacting immediately to incoming messages but keeping the communicating processes 
coscheduled while they are running. In the proposed scheme, therefore, a process of a parallel job, once 
scheduled, is guaranteed to remain scheduled for certain period of time assuming that other processes of 
the job are either already scheduled or getting scheduled through message exchanges. 

A mechanism to detect message arrivals is embedded into a message-passing library whose source 
code is freely available to the public, making the design portable. On a message arrival, the receiving 
process reports this to a local scheduler which makes appropriate scheduling decisions. Processes that 
are not scheduled need to be run periodically to trap incoming messages. An adverse effect of this 
sporadic execution of non-scheduled processes is that they may send messages triggering preemption of 
other coscheduled processes. This problem is resolved by attaching the status of sending process to each 
outgoing message. 

We implement and evaluate the proposed coscheduling technique on a Compaq Alpha cluster testbed 
at LLNL. The results from our measurements show that the proposed coscheduling technique can reduce 
job response time as much as 50% over traditional time-sharing scheduling. The effect of various system 
parameters on performance is also analyzed in this study. 

The rest of the paper is organized as follows. Section 2 describes the proposed technique and its 
implementation. Experiment results are reported in Section 3. Finally, Section 4 draws conclusions and 
presents directions for future research. 

2 Design and Implementation 

2.1 Basic Design 

The proposed coscheduler for SMP-dusters is designed based on two principles. First, it is essential for 
achieving coscheduling to make correct decisions on when and which processes on each node to schedule. 
Second, it is crucial to maximize coscheduled time as a portion of scheduled time for the processes on 
each node. If preemption occurs too frequently, the parallel job's throughput will suffer from an increase 
in spin-wait time at synchronization points, cache refresh delays, and potentially paging delays. 

A key factor in scalable coscheduler design is decentralization of scheduling mechanism. An ideal 
scalable coscheduler should not employ any centralized control or data structures, but completely rely 
on autonomous local schedulers. Our coscheduling technique also follows such decentralized approach. 
Without any global information on the status of all the processes in the system, each local scheduler has 
to determine the status of remote processes and coschedule the local processes with their remote peers. 
Exchanging control messages that contain process status information among local schedulers is not a 
scalable solution. An alternative is to use certain implicit local information to infer the status of remote 
processes. Such implicit information includes response time, message arrival, and scheduling progress [2]. 

Like all the previous work [2, 22, 27, 28], our coscheduler also depends on message arrival to acquire 
status information of remote processes. The message arrival refers to the receipt of a message from a 
remote node. When a message is received, this implies the sending process is highly likely to be currently 
scheduled. Therefore, it is crucial to quickly schedule the receiving process to achieve coscheduling. 
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In order to implement this idea, we need a mechanism which detects the arrival of a message and 
reports this to the local scheduler. This message trapping mechanism is performed at user-level in our 
design to fulfill one of our design goals: cost-effectiveness. The implementation can be easily done by 
inserting a few lines of code into a small number of application program interfaces (APIs) provided by an 
open-source message-passing libraries like MPICH [14]. This code notifies the local scheduler of message 
arrival through an interprocess communication (IPC) mechanism. The user-level message trapping allows 
us to avoid the purchase of additional hardware and software and the need to do any device programming. 
In addition, the use of publicly available software makes our design more portable. 

The functions of local scheduler include maintaining information such as the process ID (pid) and the 
status of processes assigned to the node and scheduling appropriate processes for coscheduling. When a 
process is about to start or terminate execution, the process reports these events to the local scheduler 
along with its own pid. When notified of these events, the local scheduler adds/removes the pid received 
to/from the data structure it manages. Similarly, when a message arrives, the receiving process reports 
this with its pid to the local scheduler, which then responds by performing appropriate scheduling oper­
ations. Here the report of message arrival serves as a request to local scheduler to schedule the receiving 
process. 

The group of processes constituting the same parallel job on each node serve as a scheduling unit. 
That is, whenever a process is scheduled, its peer processes on the same node are also scheduled together. 
This is to establish the coscheduling more quickly. Since the peer processes of a recently scheduled 
process will be eventually scheduled via message-passing, we can reduce the time that takes to establish 
the coscheduling by scheduling the entire group of peer processes at once instead of scheduling them 
individually. More importantly, this strategy may increase the number of messages to other unscheduled 
processes on remote nodes and hence achieve the coscheduling more quickly. 

In an attempt to reflect the second design principle, we ensure that all the newly scheduled processes 
run for a certain period of time without being preempted. This guarantees that each parallel job, once 
coscheduled, runs being coscheduled at least for the given time. We use a predetermined threshold value 
for the guaranteed minimum execution time (GMET), but the value may be calculated dynamically as 
well. Receiving a scheduling request from a user process, the local scheduler checks if the currently 
scheduled processes have run at least for the GMET. If so, a context switch is performed. Otherwise, the 
request is ignored. 

While message arrivals cause user process to send scheduling requests, this can result in job starvation. 
The starvation is prevented by a timer process that periodically sends a context switch request to the 
local scheduler. The local scheduler, on receiving this request, performs a context switch in a similar 
fashion to a scheduling request from a user process. In this case, however, the local scheduler selects a 
new job to run. During a context switch, the local scheduler selects a job which hasreceived the least 
CPU time as the next job to run to maintain fairness. The local scheduler keeps track of the CPU time 
each job has consumed to facilitate this scheduling process. We use a time-slice on the order of seconds 
in this research, adhering to the second design principle. The rationale behind such a long time-slice is 
to insure the job establishes coscheduling and executes coscheduled for some minimum time. 

There is a critical issue in conjunction with the user-level message trapping that needs to be addressed. 
In order for a user process to trap incoming messages, the process itself has to be scheduled. Otherwise, 
message arrivals will never be detected and reported to the local scheduler. The local scheduler in 
our design, therefore, periodically schedules all the jobs for a very brief period of time to detect any 
message arrival. A serious side effect of this simple approach is that the local scheduler may receive false 
schedul'ing requests. A false scheduling request can be sent to the local scheduler when a user process 
receives a message from a remote process which is scheduled for the message-trapping purpose. These 
false scheduling requests may results in wrongful preemption of coscheduled processes and significant 
performance degradation. We solve this problem by attaching the status of sending process to every 
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outgoing message. With the status of sending process available, the receiving process can easily decide 
whether a context switch is needed or not on each message arrival. The design of the coscheduler is shown 
in Fig. 1. 

2.2 Implementation 

The proposed coscheduler described has been implemented and evaluated on an eight-node Compaq 
Alpha cluster testbed running Tru64 Unix 5.0 at LLNL. Each node has two Compaq Alpha EV6 processor 
operating at 500 MHz with 1 GB of main memory. The implementation exercise has involved only minor 
modifications to a user-level message-passing library and the development of two very simple daemon 
processes. The implementation of the proposed coscheduler is described in detail in what follows. 

2.2.1 MPICH Library 

We have modified an open-source message-passing library, MPICH [14], to implement the user-level 
message trapping as well as the process registry operations. The MPICH is a freely-available, high­
performance, portable implementation of the popular MPI Message Passing Interface standard. We have 
chosen the MPICH library mainly due to its popularity and easy access to its source code. 

A few new functions are added to the MPICH library in this implementation. These functions notify 
the local scheduler when certain events occur through IPC. Those requests are accompanied by the pid 
of sending process. The functions are sUlIuuarized in Table. 1. 

MPLRegist.er is invoked during the initialization phase of an MPI process. The MPLRegister, when 
invoked, sends a CMDREG request to local scheduler. An MPI application id is also sent along with the 
request to not.ify the local scheduler of which MPI job the process belongs to. The local scheduler creates 
a small shared-memory region at the time a process is registered through which the process learns its 
scheduling status. Similarly, MPLTerminate is invoked during the finalization phase of the MPI process 
and sends CMDOUT request t.o the local scheduler. The terminating process is then removed from the 
list of processes assigned to the local scheduler. MPLSchedule sends CMDSCH request along with its 
pid to local scheduler in an attempt to schedule it.self. 

A few MPICH functions need to be modified as well to incorporate the capability to handle messages 
carrying process status information. These functions are net_send, net-.recv, and net-.recv_timeout. 
We have modified net-send in such a way that a single byte representing the status of sending process 
is attached to each outgoing message. The actual length of the message is increased by one byte. The 
additional byte is prefixed to the message, because the user can specify arbitrary message length at the 
receiving end. If we postfix the status information to an outgoing message, and a different message length 
is given in a receiving routine, the information can be lost or even worse, incorrect status information can 
be extracted by the receiving process. By always sending the status information before actual message 
body, we can preserve and retrieve correct. status information regardless of the message length specified 
by a user. 

With the modifications made to net-.recv and net_recv_timeout, the status information is separated 
from each incoming message and actual message is passed to whichever routine invoked these functions. 
An early scheduling decision, which is whether a context switch is needed or not, is made at this level 
using the status information received. That is, if the sending process is currently scheduled and the 
receiving process is not, a context switch is necessary. A request for context switch is sent to the local 
scheduler by calling MPLSchedule. 
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2.2.2 Class Scheduler 

In our implementation, we use the Compaq Tru64 UNIX priority boost mechanism called class sched­
uler [7] to schedule processes of a parallel job. With the class scheduler, we can define a class of system 
entities and assign certain percentage of CPU time to the class. The class scheduler ensures that access 
to the CPUs for each class does not exceed its specified limit. The entities that constitute a class can 
be users, groups, process groups, pids, or sessions. There may be a number of classes on a system. A 
database of dasses, class members, and the percentage of CPU time for the class is maintained by the 
class scheduler. The database can be modified while the class scheduler is running, and the changes take 
effect immediately. 

The kernel has very little knowledge of class scheduling. A class, in the kernel, is an element in an 
array of integers representing dock ticks. A thread that is subject to class scheduling has knowledge of its 
index in the array. Each time the thread uses CPU time, the number of clock ticks used is subtracted from 
the array element. When the count reaches zero the thread is either prevented from running altogether 
or, optionally, receives the lowest scheduling priority possible. 

When class scheduling is enabled, a daemon is started. The daemon wakes up periodically and 
calculates the total number of clock ticks in the interval. Then, for each class in the database, it divides 
the total by the percentage allocated to the class and places the result into an array. When finished, the 
array is written to the kernel. 

The class scheduler provides APIs which system developers can use to enable and disable class schedul­
ing, create and destroy a class, add and remove a class member, change the CPU percentage allotment 
for a class, and so OIl. Using these APIs, we define a dass of pids for each group of processes constituting 
the same MPI job. We use the application id of the MPI job as the name of the class. Processes of an 
MPI job can be scheduled at the same time to the dass representing those processes. For example, if we 
allocate 100% of CPU time to a class, only the processes defined in the class will receive CPU time. The 
local scheduler performs a context switch by swapping the CPU percentage of two classes of processes 
that are being context-switched. 

It was mentioned that all the processes, whether currently scheduled or not, need to receive some CPU 
time periodically to trap incoming messages at the user-level. One way of doing this is to let the local 
scheduler periodically allocate 100% of CPU time to each of the classes in the system for a very short 
time. This is a feasible solution, but it may burden the local scheduler as the number of jobs assigned to 
the node increases. Therefore, we rely on the class scheduler to achieve the user-level message trapping. 
In our implementation, 1% of CPU time is allocated to each unscheduled class so that the processes in 
the class are executed for very short periods of time, and remaining CPU percentage is allocated to a 
scheduled class. Therefore, if there are n classes in the system, (n -1)% of CPU time is allocated to n-1 
classes, and a scheduled class receives (100 - n + 1)% of CPU time. The class scheduler is configured 
to strictly adhere to these percentage allocations and time allocated to a class which is not used by that 
class is not used by other job classes. Whenever a class is created or destroyed, the CPU allotment to 
the scheduled class is adjusted accordingly. 

2.2.3 Daemons 

Two daemons are used to perform process scheduling in this implementation, a timer and a scheduler 
daemon. The task of the timer daemon is to periodically send a request for context switch to scheduler 
daemon to enforce time-sharing. The timer daemon simply repeats the process of sleeping for a predeter­
mined interval, which works as time-slice, followed by sending the context-switch request to the scheduler 
daemon. 

The scheduler daemon performs key scheduling operations such as managing process and MPI job 
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status and changing the priority of processes. The scheduler daemon is a simple server that acts upon 
requests from either user process or the timer daemon. Those requests are sent to the scheduler daemon 
via shared-memory IPC, since the IPC occurs only within a single node and the shared-memory provides 
the fastest IPC mechanism. A shared-memory region, through which requests are sent, is created when 
the scheduler daemon starts execution. 

The main body of the scheduler daemon consists of a loop in which the daemon waits for a request 
and then execute certain operations corresponding to the request received. There are five requests defined 
for the scheduler daemon: CMDREG, CMDOUT, CMDCSW, CMDSCH, and CMDDWN. 

The CMDDWN request terminates the scheduler daemon. On receiving this request, the scheduler 
daemon removes the shared-memory region created for IPC and then exits. CMDREG and CMDOUT 
requests are associated with the process management operations. An MPI process sends CMDREG to 
notify that the process is about to start execution. When receiving this request, the scheduler daemon 
creates an entry in the process table it maintains. An entry in the process table contains information 
about a process such as its pid and the MPI job that the process belongs to. The table also contains 
scheduling information on the MPI job assigned to the node. Such information on an MPI job includes 
the job id, the number of member processes, the time when the job was scheduled and preempted, and 
a pointer to a shared-memory region from which processes of the job read the job's status. The table is 
organized in such a way that there is a link between each MPI job and all the processes that constitute the 
job. When an MPI job is registered for the first time, the scheduler daemon performs two things. First, 
it creates an entry for the job in the process table. Next, a class is created using the job's application id 
as the class name. The pid of the requesting process is added to the table and the class created. A newly 
created class receives 1 % of CPU time initially. The CPU time allotment of scheduled class is adjusted 
accordingly when a new class is created. 

CMDOUT, a request issued upon process termination, does the reverse of CMDREG. Receiving 
CMDOUT request, the scheduler daemon removes the pid of the sending process from the process table 
and the corresponding class. When the last process terminates, corresponding process table entries and 
class defined for the terminating job are destroyed, and the CPU time allotment of scheduled class is 
adjusted. 

The CMDCSW request is issued by the timer daemon. Upon receiving this request, the scheduler 
daemon simply swaps the CPU time allotment of currently scheduled job with that of the next job to be 
selected. The CMDSCH request also causes a context switch, but it is issued by a user process upon a 
message arrival. The scheduler daemon, upon receiving this request, first determines whether the context 
switch is allowed by checking if currently scheduled job has consumed at least the GMET. If so, the 
requesting job is scheduled by adjusting the CPU time allotment. Otherwise, the request is discarded. 

The pseudo codes for the daemons are given below. 

Timer Daemon: 
1. Create a pointer to a shared-memory region for IPC. 
2. loop 

Sleep for n seconds, where n is predetermined value for time-slice. 
Send CMDCSW to scheduler daemon. 

end loop 

Scheduler Daemon: 
1. Create a shared-memory region for IPC. 
2. Initialize process table and system queue. 
3. loop 
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Wait for a request. 
switch (request) 

case CMDDWN: 
Destroy dasses, if there are any. 
Remove the shared-memory region. 
Exit. 

case CMDREG: 
if there is no entry for MPI job corresponding to the requesting process, then 

Create an entry in the process table and perform initialization for the job. 
Create a new class for the job and assign 1 % of CPU time to the class. 
Create a shared-memory region for the communication of job status. 
if there are no other job in the system, then 

Schedule the newly created job. 
else 

Adjust the CPU time allotment of a scheduled job. 
end if 

end if 
Add the sending process to the process table and corresponding class. 

case CMDOUT: 
Remove requesting process from the process table and the class the process belongs to. 
if the number of processes in an MPI job corresponding to the requesting process is zero, then 

Destroy the entry and the class defined for the MPI job. 
if the job is currently scheduled, then 

Schedule the next job in the queue, if there is one. 
else 

Adjust the percentage of CPU time allocated to a scheduled job. 
end if 

end if 
case CMDCSW: 

Schedule a job that has received the least CPU time by adjusting the CPU time allotment. 
case CMDSCH: 

if currently scheduled job, if exists, has run at least for the GMET, then 
Schedule the requesting job by adjusting the CPU time allotment. 

end if 
end switch 

3 Experimental Results 

3.1 NAS Parallel Benchmarks 

We have selected the NAS Parallel Benchmarks (NASPBs) [8, 9, 10, 25] to study the performance of 
proposed coscheduling technique. The NASPBs are a widely-recognized suite of scientific benchmarks 
developed at NASA Ames Research Center to study the performance of parallel supercomputers on 
scientific applications. The benchmarks consist of eight benchmark programs, each of which focuses on 
some important aspect of highly parallel supercomputing for aerophysics applications. 

Most of those benchmark programs are written in Fortran. There are three standard sizes for the 
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NASPBs, known as classes A, B, and C. The nominal benchmark sizes for these classes can be found 
in [25]. Class A and class C represent the smallest and the largest problem sizes, respectively. The 
N ASPBs can be compiled for different number of processors as well. The eight problems consist of five 
kernels and three simulated computational fluid dynamics (CFD) applications. These benchmarks are 
briefly described in what follows, where five kernel benchmarks are discussed first. 

Embarrassingly Parallel (EP) The first of five kernel benchmarks is an embarrassingly parallel 
problem. In this benchmark, two-dimensional statistics are accumulated from a large number of Gaus­
sian pseudo-random numbers, which are generated according to a particular scheme that is well-suited 
for parallel computation. This is typical of various Monte Carlo applications. This problem involves 
minimal communication amongst the processes. 

Multigrid (MG) The second kernel is a simplified multigrid benchmark that solves a three-dimensional 
Poisson partial differential equation (PDE). This problem is simplified in the sense that it has constant 
instead of variable coefficients as in a more realistic application. This code is a good test of both short 
and long distance highly structured communication. 

Conjugate Gradient (CG) In this benchmark, a conjugate gradient method is used to compute 
an approximation to the smallest eigenvalue of a large, sparse, symmetric positive definite matrix. This 
kernel is typical of unstructured grid computations in that it tests irregular long-distance communication. 

FFT PDE (FT) In this benchmark a three-dimensional PDE is solved using FFTs. This kernel 
performs the essence of many spectral methods. It is a good test of long-distance communication perfor­
mance. 

Integer Sort (IS) This benchmark tests a sorting operation that is important in particle method 
codes. This type of application is similar to particle-in-cell applications of physics, wherein particles are 
assigned to cells and may drift out. The sorting operation is used to reassign particles to the appropriate 
cells. This benchmark tests both integer computation speed and communication performance. This is 
the only code implemented in C in NASPB. 

Lower-Upper Diagonal (L U) The first of simulated CFD applications is the L U solver. It does 
not perform an L U factorization, but employs a symmetric successive over-relaxation (SSOR) numerical 
scheme to solve a regular-sparse, block lower and upper triangular system. The way the SSOR procedure 
operates requires the use of a relatively large number of small messages. 

Scalar Pentadiagonal (SP) and Block Tridiagonal (BT) In the SP and the BT benchmarks, 
multiple independent systems of nondiagonally dominant scalar pentadiagonal equations and block tridi­
agonal equations are solved. SP and BT are representative of computations associated with the implicit 
operations of CFD codes. In both benchmarks, the granularity of communications is kept large and fewer 
messages are sent. 

3.2 Performance Evaluation 

In this research, we have conducted a performance study on an 8-node Compaq Alpha SMP cluster testbed 
to evaluate the proposed coscheduler. Three workloads, each exhibiting different degree of communication 
intensity, are used to evaluate the performance under various message traffic conditions. Here, the 
communication intensity of a job is measured by the number of messages exchanged during the course of 
execution. The first workload consists of randomly selected class A and class B NASPBs and represents 
a workload with moderate message traffic, under which the communication intensity of jobs varies to a 
great extent. The second workload is constructed from the three most connnunication-intense NASPBs 
(L U, SP, and BT) to represent a workload with heavy message traffic. The third workload consists of 
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only the EP NASPB in which there is little communication between processes. The three workloads are 
summarized in Table 2. The performance measure of interest in this study is mean job response time. 

Fig. 2 compares the performance of the new coscheduling technique with that of uncoordinated time­
sharing. The time slice and GMET used in this experiment are 15 and 5 seconds, respectively. For all 
three workloads, the new coscheduler shows better or comparable response time behavior compared to the 
uncoordinated time-sharing. As expected, the best performance is achieved when the message traffic is 
heavy (Workload 2). Here, the mean job response time is reduced by 50% when the proposed coscheduling 
technique is used. The measures for mean job response time are almost identical for the Workload 3. 
This is because the effect of uncoordinated scheduling of the processes constituting a parallel job on 
performance is not significant when the message traffic is light. These results are a strong indication 
that the proposed technique is a promising approach to coscheduling, which can efficiently improve the 
performance of parallel jobs under various message traffic conditions. 

Fig. 3 shows the response-time behavior of the proposed coscheduling technique and uncoordinated 
time-sharing scheduling for varying degree of multiprogramming (DOM). The time-slice and the GMET 
lengths are the same as in Fig. 2. The workloads used in this experiment are summarized in Table 3. We 
increase the load to the system by adding a new set of randomly selected NASPBs to existing workload, 
as DOM increases. In this experiment, only class A benchmarks are considered to minimize the effect of 
paging overhead. As Fig. 3 indicates, the proposed coscheduling scheme obtains the best performance gain 
(85 % reduction in response time) when the DOM is 2. This is because without coordinated scheduling, 
processes of parallel jobs tend to block very frequently waiting for their communicating peers to be 
scheduled, whereas our technique minimizes the blocking time considerably through coscheduling of the 
processes. However, the performance gain decreases as the DOM increases. The reason for this is that as 
the number of time-shared jobs increases, the waiting time due to blocking is compensated by increased 
computation and communication interleave, while coscheduling the parallel jobs becomes increasingly 
difficult. This experiment highlights the need for an additional process allocation mechanism, which can 
control and limit the DOM of the system. 

Fig. 4 plots the average job wait time under batch scheduling and proposed coscheduling technique 
with varying time slice length and DOM. In this experiment, we submitted 100 NASPBs to the system at 
once and measured the wait (or queueing) time of each job. The workload consists of 98 class A N ASPBs 
and two class C NASPBs (LU). GMET is set to 2 seconds in this experiment. A separate script starts 
new jobs in such a way that desired DOM is maintained. Fig. 4 shows that the proposed coscheduling 
technique reduces the average job wait time by as much as 41 % over simple batch scheduling. The poor 
performance of the batch scheduling is due to what is known as the 'blocking' property of the first come 
first served (FCFS) scheduling discipline [33]. That is, under the FCFS policy a job has to wait until all 
preceding jobs finish their execution, and therefore, its wait time is the total of the execution time of all 
the preceding jobs. On the other hand, the proposed technique, with its time-sharing and coscheduling 
capability, is not affected by the blocking property and hence performs very well in this experiment. 
Furthermore, doser examination reveals that the average job wait time increases as the DOM increases. 
As already discussed in Fig. 3, this is because it becomes increasingly difficult to establish coscheduling 
as the DOM increases. 

Figures 5 and 6 examine the effect of the GMET and the time-slice lengths on performance of the 
proposed coscheduler, respectively. Fig. 5 shows the response-time behavior of the coscheduler for three 
workloads described in Table 2 as the length of GMET varies. The time-slice length in this experiment 
is set to 30 seconds. The results reveal that the GMET length does not affect the performance of the 
coscheduler for workloads 1 and 3, where the communication intensity is relatively low. On the other 
hand, the GMET length has significant effect on the system performance for the workload 2 in which 
the communication intensity is high. If the GMET length is set too small for such a workload with high 
communication intensity, coscheduling a parallel job is extremely difficult because some of the processes 
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that constitute the parallel job are highly likely to be preempted before the coscheduling is established 
due to the increased message traffic. If the length of GMET is too large, the coscheduler fails to quickly 
respond to incoming context-switch requests from remote processes, and this degrades the performance. 
However, the performance degradation in this case is not as severe as in the previous case, since the 
large GMET length still prevents excessive context-switches. This is clearly visible in Fig. 5, where the 
response-time curve for the workload 2 sharply drops and then increases as the GMET length changes 
from 2 through 5 seconds. For the GMET lengths greater than 5 seconds, the response-time behavior 
remains almost unchanged, since most of context-switch requests are discarded with such long GMETs 
and the performance is strictly governed by the length of the time slice used. 

Fig. 6 plots the changes in response time as the time-slice length varies for the three workloads. The 
GMET length is set to 5 seconds. As expected, the performance ofthe coscheduler is hardly affected by the 
time-slice length for workload 3. However, the response time continuously increases for both workloads 1 
and 2 with time-slices greater than 15 seconds. This can be explained in conjunction with the results from 
the previous experiment. Since there is no global control in our design, which could schedule all processes 
of a parallel job concurrently, a situation in which scheduled processes that constitute different parallel 
jobs contend for scheduling of their communicating peers occurs quite frequently. If the GMET length is 
set too large (as in this experiment), the context-switch requests through messages sent to remote nodes 
are discarded and hence the parallel jobs eventually stall until a context-switch is initiated by one of the 
timer daemons. Consequently, the waiting time of each job increases as the time-slice length increases. 

As shown in Fig. 5 and Fig. 6, the GMET and the time-slice lengths can have significant effect on 
performance and hence, selecting optimal values for these parameters is critical. However, such optimal 
values are highly workload-dependent and therefore, careful workload analysis must be conducted. The 
experiment results also suggest that in general short time-slice and long GMET lengths are favorable to 
obtaining good system performance. 

4 Concluding Remarks and Future Study 

Efficiently coscheduling processes of message-passing parallel jobs on a time-shared duster of computers 
poses great challenges. In this paper, we propose a new technique for a cluster of SMP machines, which 
offers a scalable, portable, efficient, and cost-effective solution for achieving coscheduling. The proposed 
technique uses message arrivals to direct the system towards coscheduling and hence requires no explicit 
synchroni~ation mechanism. U lllike other coscheduling schemes based on message arrivals, however, 
incoming messages are caught by user processes to avoid any need for additional hardware and software. 
The status of a sending process is attached to each outgoing message so that better scheduling decisions 
can be made at the receiving end. Processes are guaranteed to run at least for a certain period of time 
once scheduled to ensure that each parallel job makes progress while being coscheduled. This design 
principle is the key to the success of our coscheduler in obtaining high performance. Experimental results 
indicate that the proposed technique is a promising and inexpensive approach to efficient coscheduling, 
which can improve the performance significantly over uncoordinated time-sharing and batch scheduling. 

There are two interesting directions for future research. The performance of our coscheduler is greatly 
affected by the length of time-slice and GMET. The results from a preliminary analysis reveal that short 
time-slice and long G MET lengths are beneficial to achieving good system performance. We plan to 
conduct more rigorous study on the effect of these parameters on performance in the future study. In 
addition, tests of this technique in heterogeneous computing environment could provide the ability to 
execute even larger problems. 
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Figure 1: The design of proposed coscheduler. 
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I Function I Request Event I Local Scheduler Action 

MPLRegister CMDREG Process Initialization Register requesting process 
MPLTerminate CMDOUT Process Termination Remove requesting process 
MPLSchedule CMDSCH Message Arrival Schedule requesting process, if allowed 

Table 1: Summary of newly defined MPI functions. 

Workload Benchmarks 

Workload 1 bt.B.4, ep.B.S (2), ht.A.4, sp.A.9, mg.A.2, lu.B.4 
Workload 2 ht.A.4 (2), lu.A.2 (2), sp.B.9, sp.A.9, sp.A.4, lu.B.2 
Workload 3 ep.A.2 (2), ep.A.4 (2), ep.B.S, ep.B.4 (2), ep.A.S 

Table 2: Three workloads used. 

DOM Benchmarks 

2 sp.A.16, sp.A.9 
3 sp.A.16, sp.A.9, lu.A.S 
4 sp.A.16, sp.A.9, In.A.S, cg.A.16, ft.A.S 
5 sp.A.16, sp.A.9, lu.A.S, cg.A.16, ft.A.S, ep.A.S 

Table 3: The workloads nsed for each DOM. 
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