
U.S. Department of Energy
r-- r- r--

Lawrence
Livermore
National
Laboratory

~=:::=::;~/
1\ ~ /
I~ /

Preprint
UCRL-JC -138583-REV-1

A Coscheduling Technique
for Symmetric
Multiprocessor Clusters

A.B. Yoo and M.A. Jette

This article was submitted to
15th Annual International Parallel and Distributed Processing
Symposium, San Francisco, California, April 23-27, 2001

September 18, 2000

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http:// apollo.osti.gov /bridge /

Available to the public from the
National Technical Information Service

U.s. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov /

OR

Lawrence Livermore National Laboratory
Technical Information Department's Digital Library

http://www.llnl.gov / tid/Library.html

A Coscheduling Technique for Symmetric Multiprocessor
Clusters*

Andy B. Yoo and Morris A. Jette

Lawrence Livermore National Laboratory
Livermore, CA 94551

e-mail: {yoo2 I jette1 } (Q)l1nl.gov

Abstract

Coscheduling is essential for obtaining good performance in a time-shared symmetric multiprocessor
(SMP) cluster environment. However, the most common technique, gang scheduling, has limitations
such as poor scalability and vulnerability to faults mainly due to explicit synchronization between its
components. A decentralized approach called dynamic coscheduling (DCS) has been shown to be effec­
tive for network of workstations (NOW), but this technique is not suitable for the workloads on a very
large SMP-cluster with thousands of processors. Furthermore, its implementation can be prohibitively
expensive for such a large-scale machine. In this paper, we propose a novel coscheduling technique
based on the DCS approach which can achieve coscheduling on very large SMP-clusters in a scalable,
efficient, and cost-effective way. In the proposed technique, each local scheduler achieves coschedul­
ing based upon message traffic between the components of parallel jobs. Message trapping is carried
out at the user-level, eliminating the need for unsupported hardware or device-level programming.
A sending process attaches its status to outgoing messages so local schedulers on remote nodes can
make more intelligent scheduling decisions. Once scheduled, processes are guaranteed some minimum
period of time to execute. This provides an opportunity to synchronize the parallel job's components
across all nodes and achieve good program performance. The results from a pf~rforrnance study reveal
that the proposed technique is a promising approach that can reduce response time significantly over
uncoordinated time-sharing and batch scheduling.

1 Introd uction

The most prevailing machine architecture for large-scale parallel computers in recent years has been the
cluster of symmetric multiprocessors (SMPs), which consists of a set of SMP machines interconnected
by a high-speed network. Each SMP node is a shared-memory multiprocessor running its own image
of an operating system (OS) and often constructed using commodity off-the-shelf (COTS) components
mainly due to economic reasons [1]. Continuous decrease in the price of these commodity parts in
conjunction with the good scalability of the cluster architecture has made it feasible to economically
build SMP dusters that have thousands of processors and total physical memory size on the order of
Terabytes. The most prominent example of such very large-scale SMP dusters is the Department of
Energy (DOE) Accelerated Strategic Computing Initiative (ASCI) project [5] machines [3, 4, 6]. For
instance, the Lawrence Livermore National Laboratory (LLNL) ASCI SKY machine is an IBM SP2 with
5856 processors, total system memory size of 2.6 Terabytes and peak performance of 3.9 Teraflops.

'This work was performed under the auspices of the U.S. Dppartment of Energy by University of California Lawrence
Livermore National Laboratory under contract No. \V -7 405-Eng-48.

1

Efficiently managing jobs running on parallel machines of this size while meeting various user demands
is a critical but challenging task. Most supercomputing centers operating SMP-clusters rely on batch
systems such as LoadLeveler [15, 26] for job scheduling [32]. We may utilize a system efficiently using these
batch systems, but high system utilization usually comes at the expense of poor system responsiveness
with a workload consisting of long running jobs, as is typical of many large scale systems [11]. In a worst
case scenario, for example, a user who wants to execute a simple debugging job that runs for only a few
minutes may have to wait for several hours before sufficient reHources are available to initiate the job. An
alternative scheduling technique that improves the system responsiveness while improving fairness and
freedom from starvation is time-sharing. With time-sharing, we can create virtual machines as desired
to provide the desired level of responsiveness.

Due to the SMP-cluster architecture and the popularity of standardized message passing libraries such
as MPI [20, 31]' most applications running on an SMP-cluster follow the message-passing programming
model. An important issue in managing message-passing parallel jobs in a time-shared cluster environ­
ment is how to coschedule the processes (or tasks) of each running job. Coscheduling here refers to a
technique that schedules the set of tasks constituting a parallel job at the same time so that they can
run simultaneously across all nodes on which they are allocated. When a parallel job is launched on an
SMP-cluster, a set of processes are created on the nodes allotted to the job. These processes of the job
usually cooperate with each other by exchanging messages. In most cases, two communicating processes
do not proceed until both processes acknowledge the completion of a message transmission. Therefore,
the interprocess communication becomes a bottleneck which may prevent the job from making progress if
both sending and receiving processes are not scheduled at the time of the message transmission. Without
coscheduling, the processes constituting a parallel job suffer high communication latencies due to spin­
waiting periods and context switches. The ill effect on system performance of running multiple parallel
jobs without coscheduling has been well documented [23]. It is very difficult to coschedule parallel jobs
in a time-shared environment using local operating systems running independently on each node alone.
A new execution environment is required in which parallel jobs can be coscheduled.

A few research efforts have been made to develop a technique with which the coscheduling can be
achieved efficiently for SMP-dusters and networks of workstations (NOW). The simplest approach to
coscheduling is a technique called gang scheduling [12, 13, 16, 17, 18, 19]. In gang scheduling, a matrix
called gang matrix (or Ousterhaut matrix), which explicitly describes all scheduling information, is used.
Each column and each row of a gang matrix represent a processor in the system and a time slice during
which the processes in the row are scheduled to nUl, respectively. In other words, the entry in the ith
row and jth column of the gang matrix contains the information on the process which is assigned to
the ith processor and scheduled during the jth time slice. The coscheduling is achieved by placing all
the processes of a job on the same row of the gang matrix. The gang matrix is usually maintained by
a central manager running on a separate control host. Alternately, distributed database techniques may
be used to maintain the gang matrix [18]. The gang matrix is distributed periodically or whenever there
is a change. Each node receives a portion of the gang matrix that is pertinent to that node instead of
the entire matrix. A small daemon process running on each node follows this well-defined schedule to
allocate resources to processes on that node. This simple scheduling action guarantees coscheduling of
parallel jobs due to the way the gang matrix is constructed. The gang scheduling technique is relatively
simple to implement. A few successful gang scheduling systems have been developed and operational on
actual production machines [16, 18].

However, gang scheduling has limitations, many of which stem from the support of a gang matrix
explicitly describing scheduling activities for the entire system. First, correct coscheduling of jobs entirely
depends on the integrity of the distributed scheduling information. If any of these schedules, which are
transmitted through unreliable network, are lost or altered, it is highly likely that the jobs will not be
coscheduled. Second, the gang scheduler's central manager is a single point of failure. Once the central

2

manager fails for any reason, the whole scheduling system fails. The last and the most serious drawback
of the gang scheduling technique is its poor scalability. As the number of nodes in the system increases,
not only the size of the gang matrix but also the number of control messages increases. These control
messages convey various information such &<; the node status, the health of local daemons and the jobs
running on each node, and so on. In many cases, the central manager is required to take appropriate
actions to process the information delivered by a control message. Due to the excessive load imposed on
the central manager, the gang scheduler does not scale well to very large system.

Another method for achieving coscheduling is a decentralized scheme called dynamic coscheduiing
(DCS) [2, 22, 27, 28J. In DCS, the coordinated scheduling of processes that constitute a parallel job
is performed independently by the local scheduler, with no centralized control. Since there is no fixed
schedule to follow in DCS, the local scheduler must rely on certain local events to determine when and
which processes to schedule. Among various local events that a local scheduler can use to infer the status
of processes running on other nodes, the most effective and commonly-used one is message an·ivai. The
rationale here is that when a message is received from a remote node, it is highly likely that the sending
process on the remote node is already scheduled. What this implies is that upon receiving a message, the
local scheduler should schedule the receiving process immediately, if not already scheduled, to coschedule
both the sending and receiving processes.

A few experimental scheduling systems based on this method have been developed [2, 22, 27J. All
of these prototypes are implemented in an NOW environment, where workstations are interconnected
through fast switches like Myrinet [21 J. Interprocess communication is carried out using high-performance
user-level messaging layers that support user-space to user-space communication [24, 29, 30J in these
systems to reduce communication latency. The implementation of DeS under such special communication
hardware and software involves programming switch firmware and network interface cards and developing
communication libraries.

The DCS technique can achieve effective, robust coscheduling of processes constituting a parallel job
and overcome the drawbacks of gang scheduling. However, current DCS implementations available may
not be suitable for a large-scale SMP-clusters. They do not address the issues related to interprocess com­
munication via shared-memory. Furthermore, the purchase, deployment, and maintenance of the special
hardware and software for an SMP-cluster with thousands of processors is both difficult and expensive.
Finally, fine-grain scheduling of the DCS scheme, which aims at quickly establishing coscheduling among
communicating processes Illay work well in an NOW environment where context switches among processes
of interactive and parallel jobs are very frequent, but it is not suitable for a large-scale SMP-cluster where
interactive jobs are usually executed on a separate pool of reserved nodes. Frequent context switches
among processes of parallel jobs will only hurt the performance due to increased communication latencies
and memory management overhead, including both cache refresh and potentially paging.

In this paper, we propose and evaluate a novel coscheduling technique for an SMP-cluster. Our goal
in this study is i) to design a technique that overcomes the shortcoIllings of previous approaches and can
still achieve coscheduling efficiently on a large-scale SMP-cluster, and ii) to verify its viability through
experiments.

Design criteria we used are as follows;

• Good scalability. The scheduler should be easily scalable to a very large SMP-cluster.

• Cost-effectiveness. Its implementation should not require to purchase any additional hardware or
software.

• Portability. The system should be portable, and hence we should not make any changes to propri­
etary software such as local operating system or device driver.

3

• Low-overhead. The design has to be simple and efficient so that only minimal run-time overhead
occurs.

To achieve these design goals, we have adopted the DCS approach, which allows us to eliminate any
form of centralized control. The primary concern of the previous DCS schemes is boosting the priority
of a receiving process as quickly as possible on a message arrival to establish immediate coscheduling.
To accomplish this, they program network devices so that an incoming message can be trapped long
before the receiving process gets scheduled. We believe that what is more important to improve overall
performance is not reacting immediately to incoming messages but keeping the communicating processes
coscheduled while they are running. In the proposed scheme, therefore, a process of a parallel job, once
scheduled, is guaranteed to remain scheduled for certain period of time assuming that other processes of
the job are either already scheduled or getting scheduled through message exchanges.

A mechanism to detect message arrivals is embedded into a message-passing library whose source
code is freely available to the public, making the design portable. On a message arrival, the receiving
process reports this to a local scheduler which makes appropriate scheduling decisions. Processes that
are not scheduled need to be run periodically to trap incoming messages. An adverse effect of this
sporadic execution of non-scheduled processes is that they may send messages triggering preemption of
other coscheduled processes. This problem is resolved by attaching the status of sending process to each
outgoing message.

We implement and evaluate the proposed coscheduling technique on a Compaq Alpha cluster testbed
at LLNL. The results from our measurements show that the proposed coscheduling technique can reduce
job response time as much as 50% over traditional time-sharing scheduling. The effect of various system
parameters on performance is also analyzed in this study.

The rest of the paper is organized as follows. Section 2 describes the proposed technique and its
implementation. Experiment results are reported in Section 3. Finally, Section 4 draws conclusions and
presents directions for future research.

2 Design and Implementation

2.1 Basic Design

The proposed coscheduler for SMP-dusters is designed based on two principles. First, it is essential for
achieving coscheduling to make correct decisions on when and which processes on each node to schedule.
Second, it is crucial to maximize coscheduled time as a portion of scheduled time for the processes on
each node. If preemption occurs too frequently, the parallel job's throughput will suffer from an increase
in spin-wait time at synchronization points, cache refresh delays, and potentially paging delays.

A key factor in scalable coscheduler design is decentralization of scheduling mechanism. An ideal
scalable coscheduler should not employ any centralized control or data structures, but completely rely
on autonomous local schedulers. Our coscheduling technique also follows such decentralized approach.
Without any global information on the status of all the processes in the system, each local scheduler has
to determine the status of remote processes and coschedule the local processes with their remote peers.
Exchanging control messages that contain process status information among local schedulers is not a
scalable solution. An alternative is to use certain implicit local information to infer the status of remote
processes. Such implicit information includes response time, message arrival, and scheduling progress [2].

Like all the previous work [2, 22, 27, 28], our coscheduler also depends on message arrival to acquire
status information of remote processes. The message arrival refers to the receipt of a message from a
remote node. When a message is received, this implies the sending process is highly likely to be currently
scheduled. Therefore, it is crucial to quickly schedule the receiving process to achieve coscheduling.

4

In order to implement this idea, we need a mechanism which detects the arrival of a message and
reports this to the local scheduler. This message trapping mechanism is performed at user-level in our
design to fulfill one of our design goals: cost-effectiveness. The implementation can be easily done by
inserting a few lines of code into a small number of application program interfaces (APIs) provided by an
open-source message-passing libraries like MPICH [14]. This code notifies the local scheduler of message
arrival through an interprocess communication (IPC) mechanism. The user-level message trapping allows
us to avoid the purchase of additional hardware and software and the need to do any device programming.
In addition, the use of publicly available software makes our design more portable.

The functions of local scheduler include maintaining information such as the process ID (pid) and the
status of processes assigned to the node and scheduling appropriate processes for coscheduling. When a
process is about to start or terminate execution, the process reports these events to the local scheduler
along with its own pid. When notified of these events, the local scheduler adds/removes the pid received
to/from the data structure it manages. Similarly, when a message arrives, the receiving process reports
this with its pid to the local scheduler, which then responds by performing appropriate scheduling oper­
ations. Here the report of message arrival serves as a request to local scheduler to schedule the receiving
process.

The group of processes constituting the same parallel job on each node serve as a scheduling unit.
That is, whenever a process is scheduled, its peer processes on the same node are also scheduled together.
This is to establish the coscheduling more quickly. Since the peer processes of a recently scheduled
process will be eventually scheduled via message-passing, we can reduce the time that takes to establish
the coscheduling by scheduling the entire group of peer processes at once instead of scheduling them
individually. More importantly, this strategy may increase the number of messages to other unscheduled
processes on remote nodes and hence achieve the coscheduling more quickly.

In an attempt to reflect the second design principle, we ensure that all the newly scheduled processes
run for a certain period of time without being preempted. This guarantees that each parallel job, once
coscheduled, runs being coscheduled at least for the given time. We use a predetermined threshold value
for the guaranteed minimum execution time (GMET), but the value may be calculated dynamically as
well. Receiving a scheduling request from a user process, the local scheduler checks if the currently
scheduled processes have run at least for the GMET. If so, a context switch is performed. Otherwise, the
request is ignored.

While message arrivals cause user process to send scheduling requests, this can result in job starvation.
The starvation is prevented by a timer process that periodically sends a context switch request to the
local scheduler. The local scheduler, on receiving this request, performs a context switch in a similar
fashion to a scheduling request from a user process. In this case, however, the local scheduler selects a
new job to run. During a context switch, the local scheduler selects a job which hasreceived the least
CPU time as the next job to run to maintain fairness. The local scheduler keeps track of the CPU time
each job has consumed to facilitate this scheduling process. We use a time-slice on the order of seconds
in this research, adhering to the second design principle. The rationale behind such a long time-slice is
to insure the job establishes coscheduling and executes coscheduled for some minimum time.

There is a critical issue in conjunction with the user-level message trapping that needs to be addressed.
In order for a user process to trap incoming messages, the process itself has to be scheduled. Otherwise,
message arrivals will never be detected and reported to the local scheduler. The local scheduler in
our design, therefore, periodically schedules all the jobs for a very brief period of time to detect any
message arrival. A serious side effect of this simple approach is that the local scheduler may receive false
schedul'ing requests. A false scheduling request can be sent to the local scheduler when a user process
receives a message from a remote process which is scheduled for the message-trapping purpose. These
false scheduling requests may results in wrongful preemption of coscheduled processes and significant
performance degradation. We solve this problem by attaching the status of sending process to every

5

outgoing message. With the status of sending process available, the receiving process can easily decide
whether a context switch is needed or not on each message arrival. The design of the coscheduler is shown
in Fig. 1.

2.2 Implementation

The proposed coscheduler described has been implemented and evaluated on an eight-node Compaq
Alpha cluster testbed running Tru64 Unix 5.0 at LLNL. Each node has two Compaq Alpha EV6 processor
operating at 500 MHz with 1 GB of main memory. The implementation exercise has involved only minor
modifications to a user-level message-passing library and the development of two very simple daemon
processes. The implementation of the proposed coscheduler is described in detail in what follows.

2.2.1 MPICH Library

We have modified an open-source message-passing library, MPICH [14], to implement the user-level
message trapping as well as the process registry operations. The MPICH is a freely-available, high­
performance, portable implementation of the popular MPI Message Passing Interface standard. We have
chosen the MPICH library mainly due to its popularity and easy access to its source code.

A few new functions are added to the MPICH library in this implementation. These functions notify
the local scheduler when certain events occur through IPC. Those requests are accompanied by the pid
of sending process. The functions are sUlIuuarized in Table. 1.

MPLRegist.er is invoked during the initialization phase of an MPI process. The MPLRegister, when
invoked, sends a CMDREG request to local scheduler. An MPI application id is also sent along with the
request to not.ify the local scheduler of which MPI job the process belongs to. The local scheduler creates
a small shared-memory region at the time a process is registered through which the process learns its
scheduling status. Similarly, MPLTerminate is invoked during the finalization phase of the MPI process
and sends CMDOUT request t.o the local scheduler. The terminating process is then removed from the
list of processes assigned to the local scheduler. MPLSchedule sends CMDSCH request along with its
pid to local scheduler in an attempt to schedule it.self.

A few MPICH functions need to be modified as well to incorporate the capability to handle messages
carrying process status information. These functions are net_send, net-.recv, and net-.recv_timeout.
We have modified net-send in such a way that a single byte representing the status of sending process
is attached to each outgoing message. The actual length of the message is increased by one byte. The
additional byte is prefixed to the message, because the user can specify arbitrary message length at the
receiving end. If we postfix the status information to an outgoing message, and a different message length
is given in a receiving routine, the information can be lost or even worse, incorrect status information can
be extracted by the receiving process. By always sending the status information before actual message
body, we can preserve and retrieve correct. status information regardless of the message length specified
by a user.

With the modifications made to net-.recv and net_recv_timeout, the status information is separated
from each incoming message and actual message is passed to whichever routine invoked these functions.
An early scheduling decision, which is whether a context switch is needed or not, is made at this level
using the status information received. That is, if the sending process is currently scheduled and the
receiving process is not, a context switch is necessary. A request for context switch is sent to the local
scheduler by calling MPLSchedule.

6

2.2.2 Class Scheduler

In our implementation, we use the Compaq Tru64 UNIX priority boost mechanism called class sched­
uler [7] to schedule processes of a parallel job. With the class scheduler, we can define a class of system
entities and assign certain percentage of CPU time to the class. The class scheduler ensures that access
to the CPUs for each class does not exceed its specified limit. The entities that constitute a class can
be users, groups, process groups, pids, or sessions. There may be a number of classes on a system. A
database of dasses, class members, and the percentage of CPU time for the class is maintained by the
class scheduler. The database can be modified while the class scheduler is running, and the changes take
effect immediately.

The kernel has very little knowledge of class scheduling. A class, in the kernel, is an element in an
array of integers representing dock ticks. A thread that is subject to class scheduling has knowledge of its
index in the array. Each time the thread uses CPU time, the number of clock ticks used is subtracted from
the array element. When the count reaches zero the thread is either prevented from running altogether
or, optionally, receives the lowest scheduling priority possible.

When class scheduling is enabled, a daemon is started. The daemon wakes up periodically and
calculates the total number of clock ticks in the interval. Then, for each class in the database, it divides
the total by the percentage allocated to the class and places the result into an array. When finished, the
array is written to the kernel.

The class scheduler provides APIs which system developers can use to enable and disable class schedul­
ing, create and destroy a class, add and remove a class member, change the CPU percentage allotment
for a class, and so OIl. Using these APIs, we define a dass of pids for each group of processes constituting
the same MPI job. We use the application id of the MPI job as the name of the class. Processes of an
MPI job can be scheduled at the same time to the dass representing those processes. For example, if we
allocate 100% of CPU time to a class, only the processes defined in the class will receive CPU time. The
local scheduler performs a context switch by swapping the CPU percentage of two classes of processes
that are being context-switched.

It was mentioned that all the processes, whether currently scheduled or not, need to receive some CPU
time periodically to trap incoming messages at the user-level. One way of doing this is to let the local
scheduler periodically allocate 100% of CPU time to each of the classes in the system for a very short
time. This is a feasible solution, but it may burden the local scheduler as the number of jobs assigned to
the node increases. Therefore, we rely on the class scheduler to achieve the user-level message trapping.
In our implementation, 1% of CPU time is allocated to each unscheduled class so that the processes in
the class are executed for very short periods of time, and remaining CPU percentage is allocated to a
scheduled class. Therefore, if there are n classes in the system, (n -1)% of CPU time is allocated to n-1
classes, and a scheduled class receives (100 - n + 1)% of CPU time. The class scheduler is configured
to strictly adhere to these percentage allocations and time allocated to a class which is not used by that
class is not used by other job classes. Whenever a class is created or destroyed, the CPU allotment to
the scheduled class is adjusted accordingly.

2.2.3 Daemons

Two daemons are used to perform process scheduling in this implementation, a timer and a scheduler
daemon. The task of the timer daemon is to periodically send a request for context switch to scheduler
daemon to enforce time-sharing. The timer daemon simply repeats the process of sleeping for a predeter­
mined interval, which works as time-slice, followed by sending the context-switch request to the scheduler
daemon.

The scheduler daemon performs key scheduling operations such as managing process and MPI job

7

status and changing the priority of processes. The scheduler daemon is a simple server that acts upon
requests from either user process or the timer daemon. Those requests are sent to the scheduler daemon
via shared-memory IPC, since the IPC occurs only within a single node and the shared-memory provides
the fastest IPC mechanism. A shared-memory region, through which requests are sent, is created when
the scheduler daemon starts execution.

The main body of the scheduler daemon consists of a loop in which the daemon waits for a request
and then execute certain operations corresponding to the request received. There are five requests defined
for the scheduler daemon: CMDREG, CMDOUT, CMDCSW, CMDSCH, and CMDDWN.

The CMDDWN request terminates the scheduler daemon. On receiving this request, the scheduler
daemon removes the shared-memory region created for IPC and then exits. CMDREG and CMDOUT
requests are associated with the process management operations. An MPI process sends CMDREG to
notify that the process is about to start execution. When receiving this request, the scheduler daemon
creates an entry in the process table it maintains. An entry in the process table contains information
about a process such as its pid and the MPI job that the process belongs to. The table also contains
scheduling information on the MPI job assigned to the node. Such information on an MPI job includes
the job id, the number of member processes, the time when the job was scheduled and preempted, and
a pointer to a shared-memory region from which processes of the job read the job's status. The table is
organized in such a way that there is a link between each MPI job and all the processes that constitute the
job. When an MPI job is registered for the first time, the scheduler daemon performs two things. First,
it creates an entry for the job in the process table. Next, a class is created using the job's application id
as the class name. The pid of the requesting process is added to the table and the class created. A newly
created class receives 1 % of CPU time initially. The CPU time allotment of scheduled class is adjusted
accordingly when a new class is created.

CMDOUT, a request issued upon process termination, does the reverse of CMDREG. Receiving
CMDOUT request, the scheduler daemon removes the pid of the sending process from the process table
and the corresponding class. When the last process terminates, corresponding process table entries and
class defined for the terminating job are destroyed, and the CPU time allotment of scheduled class is
adjusted.

The CMDCSW request is issued by the timer daemon. Upon receiving this request, the scheduler
daemon simply swaps the CPU time allotment of currently scheduled job with that of the next job to be
selected. The CMDSCH request also causes a context switch, but it is issued by a user process upon a
message arrival. The scheduler daemon, upon receiving this request, first determines whether the context
switch is allowed by checking if currently scheduled job has consumed at least the GMET. If so, the
requesting job is scheduled by adjusting the CPU time allotment. Otherwise, the request is discarded.

The pseudo codes for the daemons are given below.

Timer Daemon:
1. Create a pointer to a shared-memory region for IPC.
2. loop

Sleep for n seconds, where n is predetermined value for time-slice.
Send CMDCSW to scheduler daemon.

end loop

Scheduler Daemon:
1. Create a shared-memory region for IPC.
2. Initialize process table and system queue.
3. loop

8

Wait for a request.
switch (request)

case CMDDWN:
Destroy dasses, if there are any.
Remove the shared-memory region.
Exit.

case CMDREG:
if there is no entry for MPI job corresponding to the requesting process, then

Create an entry in the process table and perform initialization for the job.
Create a new class for the job and assign 1 % of CPU time to the class.
Create a shared-memory region for the communication of job status.
if there are no other job in the system, then

Schedule the newly created job.
else

Adjust the CPU time allotment of a scheduled job.
end if

end if
Add the sending process to the process table and corresponding class.

case CMDOUT:
Remove requesting process from the process table and the class the process belongs to.
if the number of processes in an MPI job corresponding to the requesting process is zero, then

Destroy the entry and the class defined for the MPI job.
if the job is currently scheduled, then

Schedule the next job in the queue, if there is one.
else

Adjust the percentage of CPU time allocated to a scheduled job.
end if

end if
case CMDCSW:

Schedule a job that has received the least CPU time by adjusting the CPU time allotment.
case CMDSCH:

if currently scheduled job, if exists, has run at least for the GMET, then
Schedule the requesting job by adjusting the CPU time allotment.

end if
end switch

3 Experimental Results

3.1 NAS Parallel Benchmarks

We have selected the NAS Parallel Benchmarks (NASPBs) [8, 9, 10, 25] to study the performance of
proposed coscheduling technique. The NASPBs are a widely-recognized suite of scientific benchmarks
developed at NASA Ames Research Center to study the performance of parallel supercomputers on
scientific applications. The benchmarks consist of eight benchmark programs, each of which focuses on
some important aspect of highly parallel supercomputing for aerophysics applications.

Most of those benchmark programs are written in Fortran. There are three standard sizes for the

9

NASPBs, known as classes A, B, and C. The nominal benchmark sizes for these classes can be found
in [25]. Class A and class C represent the smallest and the largest problem sizes, respectively. The
N ASPBs can be compiled for different number of processors as well. The eight problems consist of five
kernels and three simulated computational fluid dynamics (CFD) applications. These benchmarks are
briefly described in what follows, where five kernel benchmarks are discussed first.

Embarrassingly Parallel (EP) The first of five kernel benchmarks is an embarrassingly parallel
problem. In this benchmark, two-dimensional statistics are accumulated from a large number of Gaus­
sian pseudo-random numbers, which are generated according to a particular scheme that is well-suited
for parallel computation. This is typical of various Monte Carlo applications. This problem involves
minimal communication amongst the processes.

Multigrid (MG) The second kernel is a simplified multigrid benchmark that solves a three-dimensional
Poisson partial differential equation (PDE). This problem is simplified in the sense that it has constant
instead of variable coefficients as in a more realistic application. This code is a good test of both short
and long distance highly structured communication.

Conjugate Gradient (CG) In this benchmark, a conjugate gradient method is used to compute
an approximation to the smallest eigenvalue of a large, sparse, symmetric positive definite matrix. This
kernel is typical of unstructured grid computations in that it tests irregular long-distance communication.

FFT PDE (FT) In this benchmark a three-dimensional PDE is solved using FFTs. This kernel
performs the essence of many spectral methods. It is a good test of long-distance communication perfor­
mance.

Integer Sort (IS) This benchmark tests a sorting operation that is important in particle method
codes. This type of application is similar to particle-in-cell applications of physics, wherein particles are
assigned to cells and may drift out. The sorting operation is used to reassign particles to the appropriate
cells. This benchmark tests both integer computation speed and communication performance. This is
the only code implemented in C in NASPB.

Lower-Upper Diagonal (L U) The first of simulated CFD applications is the L U solver. It does
not perform an L U factorization, but employs a symmetric successive over-relaxation (SSOR) numerical
scheme to solve a regular-sparse, block lower and upper triangular system. The way the SSOR procedure
operates requires the use of a relatively large number of small messages.

Scalar Pentadiagonal (SP) and Block Tridiagonal (BT) In the SP and the BT benchmarks,
multiple independent systems of nondiagonally dominant scalar pentadiagonal equations and block tridi­
agonal equations are solved. SP and BT are representative of computations associated with the implicit
operations of CFD codes. In both benchmarks, the granularity of communications is kept large and fewer
messages are sent.

3.2 Performance Evaluation

In this research, we have conducted a performance study on an 8-node Compaq Alpha SMP cluster testbed
to evaluate the proposed coscheduler. Three workloads, each exhibiting different degree of communication
intensity, are used to evaluate the performance under various message traffic conditions. Here, the
communication intensity of a job is measured by the number of messages exchanged during the course of
execution. The first workload consists of randomly selected class A and class B NASPBs and represents
a workload with moderate message traffic, under which the communication intensity of jobs varies to a
great extent. The second workload is constructed from the three most connnunication-intense NASPBs
(L U, SP, and BT) to represent a workload with heavy message traffic. The third workload consists of

10

only the EP NASPB in which there is little communication between processes. The three workloads are
summarized in Table 2. The performance measure of interest in this study is mean job response time.

Fig. 2 compares the performance of the new coscheduling technique with that of uncoordinated time­
sharing. The time slice and GMET used in this experiment are 15 and 5 seconds, respectively. For all
three workloads, the new coscheduler shows better or comparable response time behavior compared to the
uncoordinated time-sharing. As expected, the best performance is achieved when the message traffic is
heavy (Workload 2). Here, the mean job response time is reduced by 50% when the proposed coscheduling
technique is used. The measures for mean job response time are almost identical for the Workload 3.
This is because the effect of uncoordinated scheduling of the processes constituting a parallel job on
performance is not significant when the message traffic is light. These results are a strong indication
that the proposed technique is a promising approach to coscheduling, which can efficiently improve the
performance of parallel jobs under various message traffic conditions.

Fig. 3 shows the response-time behavior of the proposed coscheduling technique and uncoordinated
time-sharing scheduling for varying degree of multiprogramming (DOM). The time-slice and the GMET
lengths are the same as in Fig. 2. The workloads used in this experiment are summarized in Table 3. We
increase the load to the system by adding a new set of randomly selected NASPBs to existing workload,
as DOM increases. In this experiment, only class A benchmarks are considered to minimize the effect of
paging overhead. As Fig. 3 indicates, the proposed coscheduling scheme obtains the best performance gain
(85 % reduction in response time) when the DOM is 2. This is because without coordinated scheduling,
processes of parallel jobs tend to block very frequently waiting for their communicating peers to be
scheduled, whereas our technique minimizes the blocking time considerably through coscheduling of the
processes. However, the performance gain decreases as the DOM increases. The reason for this is that as
the number of time-shared jobs increases, the waiting time due to blocking is compensated by increased
computation and communication interleave, while coscheduling the parallel jobs becomes increasingly
difficult. This experiment highlights the need for an additional process allocation mechanism, which can
control and limit the DOM of the system.

Fig. 4 plots the average job wait time under batch scheduling and proposed coscheduling technique
with varying time slice length and DOM. In this experiment, we submitted 100 NASPBs to the system at
once and measured the wait (or queueing) time of each job. The workload consists of 98 class A N ASPBs
and two class C NASPBs (LU). GMET is set to 2 seconds in this experiment. A separate script starts
new jobs in such a way that desired DOM is maintained. Fig. 4 shows that the proposed coscheduling
technique reduces the average job wait time by as much as 41 % over simple batch scheduling. The poor
performance of the batch scheduling is due to what is known as the 'blocking' property of the first come
first served (FCFS) scheduling discipline [33]. That is, under the FCFS policy a job has to wait until all
preceding jobs finish their execution, and therefore, its wait time is the total of the execution time of all
the preceding jobs. On the other hand, the proposed technique, with its time-sharing and coscheduling
capability, is not affected by the blocking property and hence performs very well in this experiment.
Furthermore, doser examination reveals that the average job wait time increases as the DOM increases.
As already discussed in Fig. 3, this is because it becomes increasingly difficult to establish coscheduling
as the DOM increases.

Figures 5 and 6 examine the effect of the GMET and the time-slice lengths on performance of the
proposed coscheduler, respectively. Fig. 5 shows the response-time behavior of the coscheduler for three
workloads described in Table 2 as the length of GMET varies. The time-slice length in this experiment
is set to 30 seconds. The results reveal that the GMET length does not affect the performance of the
coscheduler for workloads 1 and 3, where the communication intensity is relatively low. On the other
hand, the GMET length has significant effect on the system performance for the workload 2 in which
the communication intensity is high. If the GMET length is set too small for such a workload with high
communication intensity, coscheduling a parallel job is extremely difficult because some of the processes

11

that constitute the parallel job are highly likely to be preempted before the coscheduling is established
due to the increased message traffic. If the length of GMET is too large, the coscheduler fails to quickly
respond to incoming context-switch requests from remote processes, and this degrades the performance.
However, the performance degradation in this case is not as severe as in the previous case, since the
large GMET length still prevents excessive context-switches. This is clearly visible in Fig. 5, where the
response-time curve for the workload 2 sharply drops and then increases as the GMET length changes
from 2 through 5 seconds. For the GMET lengths greater than 5 seconds, the response-time behavior
remains almost unchanged, since most of context-switch requests are discarded with such long GMETs
and the performance is strictly governed by the length of the time slice used.

Fig. 6 plots the changes in response time as the time-slice length varies for the three workloads. The
GMET length is set to 5 seconds. As expected, the performance ofthe coscheduler is hardly affected by the
time-slice length for workload 3. However, the response time continuously increases for both workloads 1
and 2 with time-slices greater than 15 seconds. This can be explained in conjunction with the results from
the previous experiment. Since there is no global control in our design, which could schedule all processes
of a parallel job concurrently, a situation in which scheduled processes that constitute different parallel
jobs contend for scheduling of their communicating peers occurs quite frequently. If the GMET length is
set too large (as in this experiment), the context-switch requests through messages sent to remote nodes
are discarded and hence the parallel jobs eventually stall until a context-switch is initiated by one of the
timer daemons. Consequently, the waiting time of each job increases as the time-slice length increases.

As shown in Fig. 5 and Fig. 6, the GMET and the time-slice lengths can have significant effect on
performance and hence, selecting optimal values for these parameters is critical. However, such optimal
values are highly workload-dependent and therefore, careful workload analysis must be conducted. The
experiment results also suggest that in general short time-slice and long GMET lengths are favorable to
obtaining good system performance.

4 Concluding Remarks and Future Study

Efficiently coscheduling processes of message-passing parallel jobs on a time-shared duster of computers
poses great challenges. In this paper, we propose a new technique for a cluster of SMP machines, which
offers a scalable, portable, efficient, and cost-effective solution for achieving coscheduling. The proposed
technique uses message arrivals to direct the system towards coscheduling and hence requires no explicit
synchroni~ation mechanism. U lllike other coscheduling schemes based on message arrivals, however,
incoming messages are caught by user processes to avoid any need for additional hardware and software.
The status of a sending process is attached to each outgoing message so that better scheduling decisions
can be made at the receiving end. Processes are guaranteed to run at least for a certain period of time
once scheduled to ensure that each parallel job makes progress while being coscheduled. This design
principle is the key to the success of our coscheduler in obtaining high performance. Experimental results
indicate that the proposed technique is a promising and inexpensive approach to efficient coscheduling,
which can improve the performance significantly over uncoordinated time-sharing and batch scheduling.

There are two interesting directions for future research. The performance of our coscheduler is greatly
affected by the length of time-slice and GMET. The results from a preliminary analysis reveal that short
time-slice and long G MET lengths are beneficial to achieving good system performance. We plan to
conduct more rigorous study on the effect of these parameters on performance in the future study. In
addition, tests of this technique in heterogeneous computing environment could provide the ability to
execute even larger problems.

12

References

[1] T. E. Anderson, D. E. Culler, and D. A. Patterson. A Case for NOW (Networks of Workstations).
IEEE Micro, 15(1):54 64, Feb. 1995.

[2] A. C. Arpaci-Dusseau, D. E. Culler, and A. M. Mainwaring. Scheduling with Implicit Information
in Distributed Systems. In Proc. A CM SIGMETRICS 1998 Conf. on Mea8'ur'ement and Modeling of
Computer Ssystems, 1998.

[3] ASCI Blue Mountain. http://www .lanl. gOY / asci/bluemtn/bluemtn. html.

[4] ASCI Blue Pacific. http://www .Hnl. goY/platforms/bluepac.

[5] ASCI Project. http://www.Hnl.goY/asci.

[6] ASCI Red. http://www . sandia. gOY / ASCI/Red.

[7] Class Scheduler. http://www.unix.digital.com/faqs/publications/base....doc.

[8] D. H. Bailey et a1. The NAS Parallel Benchmarks. International Journal of Supercomputer Appli­
cations, 5:63 73, 1991.

[9] D. H. Bailey et a1. The NAS Parallel Benchmarks. Technical Report NASA Technical Memorandom
103863, NASA Ames Research Center, 1993.

[10] D. H. Bailey et a1. The NAS Parallel Benchmarks 2.0. Technical Report NAS-95-020, NASA Ames
Research Center, Dec. 1995.

[11] D. H. Bailey et a1. Valuation of Ultra-Scale Computing Systems: A White Paper, Dec. 1999.

[12] D . .1. Feitelson and M. Jette. Improved Utilization and Responsiveness with Gang Scheduling. In
IPPS'97 Work8hop on Job Scheduling Stmtegies for Pamllel Proce8sing, Vol. 1291 of Lecture Note8
in Computer' Science, pages 238-261. Springer-Verlag, Apr. 1997.

[13] H. Franke, P. Pattnaik, and L. Rudolph. Gang Scheduling for Highly Efficient Multiprocessors. In
Proc, Sixth Symp. on the Frontier8 of Ma8sively Pamllel Pmces8ing, Oct. 1996.

[14] W. Gropp and E. Lusk. A High-Performance, Portable Implementation of the MPI Message Passing
Interface Standard. Pamllel Computing, 22:54 64, Feb. 1995.

[15] IBM Corporation. LoadLeveler'8 U8er Gu'ide, Relea8e 2.1.

[16] .1. E. Moreira et a1. A Gang-Scheduling System for ASCI Blue-Pacific. In Proc, Di8tr'ibuted Computing
and MetacO'Tnputing (DCM) Work8hop, High-Performance Computing and NetwO'T'king '99, Apr.
1999.

[17] M. Jette. Performance Characteristics of Gang Scheduling in MultiprogralIlmed Environments. In
Pmc. Super'Computing97, Nov. 1997.

[18] M. Jette. Expanding Symmetric Multiprocessor Capability Through Gang Scheduling. In IPPS'98
Workshop OTt Job Scheduling Stmtegie8 for' Pamllel Pmce8sing, Mar. 1998.

[19] M. Jette, D. Storch, and E. Vim. Timesharing the Cray T3D. In Cmy U8er Group, pages 247-252,
Mar. 1996.

13

[20] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Intemational Journal
of Supercomputer Appl'ications, 8(3/4}:165--414, 1994.

[21] N. J. Boden et al. Myrinet: A Gigabit-per-second Local Area Network. IEEE Micro, 15(1}:29 36,
Feb. 1995.

[22] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C. R. Das. A Closer Look At Coschedllling
Approaches for a Network of Workstations. In Proc. 11th ACM Symp. of Parallel Algorithms and
Architectures, June 1999.

[23] J. K. Ousterhout. Scheduling Technique for Concurrent Systems. In Int'l Conf. on Di.~trib'llted

Computing Systems, pages 2230, 1982.

[24] S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on Workstations: Illinois Fast
Meessages (FM). In Proc. Supercomputing '95, Dec. 1995.

[25] S. Saini and D. H. Bailey. NAS Parallel Benchmark (Version 1.0) Results 11-96. Technical Report
NAS-96-18, NASA Ames Research Center, Nov. 1996.

[26] .1. Skovira, W. Chan, H. ZhOll, and D. Lifka. The Easy-LoadLeveler API Project. In IPPS'96 Work­
shop on Job Scheduling Strategies for Pamllel Proces8ing, Vol. 1162 of Lecture Notes in Computer
Science, pages 41 47. Springer-Verlag, Apr. 1996.

[27] P. G. Sobalvarro. Demand-based Coscheduling of Pamllel Jobs on Multiprogrammed Multiprocessors.
PhD thesis, Dept. of Electrical Engineering and Compuer Science, Massachusetts Institutute of
Technology, 1997.

[28] P. G. Sobalvarro and W. E. Weihl. Demand-based Coscheduling of Parallel Jobs on Multipr
ograllllned Multiprocessors. In Proc. IPPS'95 Workshop on Job Scheduling Strategies for Paml­
leI Processing, pages 63 75, Apr. 1995.

[29] T. von Eicken and A. Basu and V. Buch and W. Vogds. U-Nnet: A User-Level Network Interface
for Parallel and Distributed Computing. In Pmc. 15th A CM Symp. on Operating System Principles,
Dec. 1995.

[30] T. von Eicken and D. E. Culler and S. C. Goldsten and K. E. Schauser. Active Messages: A
Mechanism for Integrated Communication and Computation. In Proc. 19th Annual Int'l Symp. on
Computer' A n;hited'ILTe, Dec. 1995.

[31] The MPI Forum, May 1995. http://www.mcs.anl.gov/mpi/standard.html.

[32] Top 500 Supercomputer Sites. http://www . net lib. org/benchmark/top500. html.

[33] B. S. Yoo and C. R. Das. A Fast and Efficient Processor Management Scheme for k-ary n-cubes.
Journal of Par'allel and Distributed Computing, 55(2}:192-214, Dec. 1998.

14

User Process

Message-Passing Library

start (pid. application_id):

exit (pid):

schedule (pid):

Local Scheduler

Timer

conl~xt~switch:

User Process

Message-Passing Library

start (pili. application_ill);

exit (pid):

schedule (pid):

Local Scheduler

Figure 1: The design of proposed coscheduler.

5000.0

~ Uncoordinated Scheduling
: Coscheduling

U
4000.0

Q)

~
Q)

E
i= 3000.0
Q)
<f)
c:
0
Cl.
<f)
Q)

a: 2000.0
.0
0,
c:

'" ,_iL Q)

:2
1000.0

0.0 ~

Workload 1 Workload 2 Workload 3
Workloads

Figure 2: Comparison of mean job response time for different workloads (Time slie e
GMET = 5 seconds).

15

15 seconds and

6000.0

u
Q)

~
~ 4000.0

F
Q)
Vl
c
8.
Vl
Q)

rr:
.c
-'i 2000.0
c

'" Q)

~

0.0
2 3

_ Uncoordinated Scheduling o Goscheduling

4 5
DOM

Figure 3: Comparison of mean job response time for different degree of multiprogramming (DOM) (Time
slice = 15 seconds and GMET = 5 seconds).

hl
~

5000.0

4000.0

~ 3000.0
F

~
.g 2000.0,
ci>
~

1000.0

0.0

~
- Batch

Gosch (10,2)
Gosch (10,3)
Gosch (15,2)
Gosch (15,3)
Gosch (30,2)
Gosch (30,3)

Scheduling Policies

Figure 4: Comparison of average job wait time uuder batch and proposed coscheduling technique with
different time slice legth and DO M (Cosch (time slice, DO M)).

2000.0
'\

.-- • Workload 1
()

() o Workload 2

\/ .. "Workload 3
U
Q)

.!!!- -0
Q) 1500.0 ~)

E
i=
Q)

'" c
0 a.
'" 1000.0 Q)

a:
.0
0

----- -----, --- - .
c .--- .-
'" Q)

:::; 500.0

" • .. • • ...
0.0

0.0 5.0 10.0 15.0
GMET (Sec)

Figure 5: The effect of the GMET on performance (Time slice 30 seconds).

3000.0

.--- • Workload 1 ~/) () {) Workload 2

U
.. ... Workload 3

Q) ~-~
~ --~ Q) 2000.0 -{) <Y-
E
i=

.. //'
Q)

'" c
0 a.
'" Q)

a:
.0
0

1000.0 -,
c

'" Q)

:::; .--

.to- -- . .. • ...
0.0 ' ,

5.0 10.0 15.0 20.0 25.0
Time Slice (Sec)

Figure 6: The effect of time slice on performance (GMET 5 seconds).

17

I Function I Request Event I Local Scheduler Action

MPLRegister CMDREG Process Initialization Register requesting process
MPLTerminate CMDOUT Process Termination Remove requesting process
MPLSchedule CMDSCH Message Arrival Schedule requesting process, if allowed

Table 1: Summary of newly defined MPI functions.

Workload Benchmarks

Workload 1 bt.B.4, ep.B.S (2), ht.A.4, sp.A.9, mg.A.2, lu.B.4
Workload 2 ht.A.4 (2), lu.A.2 (2), sp.B.9, sp.A.9, sp.A.4, lu.B.2
Workload 3 ep.A.2 (2), ep.A.4 (2), ep.B.S, ep.B.4 (2), ep.A.S

Table 2: Three workloads used.

DOM Benchmarks

2 sp.A.16, sp.A.9
3 sp.A.16, sp.A.9, lu.A.S
4 sp.A.16, sp.A.9, In.A.S, cg.A.16, ft.A.S
5 sp.A.16, sp.A.9, lu.A.S, cg.A.16, ft.A.S, ep.A.S

Table 3: The workloads nsed for each DOM.

IS

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

