SLAC-PUB-10485

QUADRUPOLE ALIGNMENT AND TRAJECTORY CORREC-
TION FOR FUTURE LINEAR COLLIDERS: SLC TESTS OF A
DISPERSION-FREE STEERING ALGORITHM'

R. Assmann, T. Chen, F.J. Decker, M. Minty,
T. Raubenheimer, R. Siemann
Stanford Linear Accelerator Center, Stanford, California 94309, USA

1 Introduction

The feasibility of future linear colliders depends on achieving very tight alignment and
steering tolerances’. All proposals (NLC, JLC, CLIC, TESLA and S-BAND) currently
require a total emittance growth in the main linac of less than 30-100% [1]. This should
be compared with a 100% emittance growth in the much smaller SLC linac [2]. Major
advances in alignment and beam steering techniques beyond those used in the SLC are
necessary for the next generation of linear colliders. In this paper, we present an experi-
mental study of quadrupole alignment with a dispersion-free steering algorithm. A closely
related method (wakefield-free steering) takes into account wakefield effects [3]. However,
this method can not be studied at the SLC.

The requirements for future linear colliders lead to new and unconventional ideas
about alignment and beam steering. For example, no dipole correctors are foreseen for
the standard trajectory correction in the NLC [4]; beam steering will be done by moving
the quadrupole positions with magnet movers. This illustrates the close symbiosis between
alignment, beam steering and beam dynamics that will emerge. It is no longer possible
to consider the accelerator alignment as static with only a few surveys and realignments
per year. The alignment in future linear colliders will be a dynamic process in which the
whole linac, with thousands of beam-line elements, is aligned in a few hours or minutes,
while the required accuracy of about 5 pum for the NLC quadrupole alignment [4] is a
factor of 20 higher than in existing accelerators.

The major task in alignment and steering is the accurate determination of the optimum
beam-line position. Ideally one would like all elements to be aligned along a straight line.
However, this is not practical. Instead a “smooth curve” is acceptable as long as its
wavelength is much longer than the betatron wavelength of the accelerated beam.

Conventional alignment methods are limited in accuracy by errors in the survey and the
fiducials. Beam-based alignment methods ideally only depend upon the BPM resolution
and generally provide much better precision. Many of those techniques are described in
other contributions to this workshop. In this paper we describe our experiences with
a dispersion-free steering algorithm for linacs. This algorithm was first suggested by
Raubenheimer and Ruth in 1990 [5]. It h as been studied in simulations for NLC [5],
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TESLA [6], the S-BAND proposal [7] and CLIC [8]. The dispersion-free steering technique
can be applied to the whole linac at once and returns the alignment (or trajectory) that
minimizes the dispersive emittance growth of the beam. Thus it allows an extremely fast
alignment of the beam-line.

As we will show dispersion-free steering is only sensitive to quadrupole misalignments.
Wakefield-free steering [3] as mentioned before is a closely related technique that mini-
mizes the emittance growth caused by both dispersion and wakefields. Due to hardware
limitations (i.e. insufficient relative range of power supplies) we could not study this
method experimentally in the SLC. However, its systematics are very similar to those of
dispersion-free steering.

The studies of dispersion-free steering which are presented made extensive use of the
unique potential of the SLC as the only operating linear collider. We used it to study the
performance and problems of advanced beam-based optimization tools in a real beam-line
environment and on a large scale. We should mention that the SLC has utilized beam-
based alignment for years [9], using the difference of electron and positron trajectories.
This method, however, cannot be used in future linear colliders. The goal of our work is
to demonstrate the performance of advanced beam-based alignment techniques in linear
colliders and to anticipate possible reality-related problems. Those can then be solved in
the design state for the next generation of linear colliders.

2 Principle

The dispersion D(s) in any beam line is given by

D(s) = Do~ Cls) + Db - S(s) + S(s) - ] ;(%C(t)dt —C(s)- ;(IT)S(t)dt G

where C(s) and S(s) are the cosine-like and sine-like trajectories along the path length s,
Dy and Dy are the initial dispersion and its derivative and p is the bending radius of the
trajectory due to any transverse dipole fields. In a linac nominally there are no bending
fields’so that all dispersion arises from quadrupole kicks Az-K and corrector kicks 6.
Here we neglect wakefield induced dispersion and RF-deflections. With a magnetic field
gradient G, and a beam energy of E we obtain the quadrupole strength K:
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We get a similar formula for the corrector kick §:
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In terms of dispersion a change in beam energy E is equivalent to a change in G/, or
B.. The dispersion can therefore be measured by scaling all quadrupole and corrector

‘Some proposals anticipate “soft bends” in diagnostics stations along the linac.



strengths. This is a very useful approach because magnet strengths can be manipulated
with much less systematic side effects than the overall beam energy (i.e. the beam energy
profile E(s) is not measured in the SLC).

The principle of dispersion-free steering is illustrated in Fig. 1 for a simplified case.
We assume that the BPM’s are perfectly aligned to the centers of the quadrupoles and
that there is only one misaligned quadrupole. The standard steering algorithm in the
SLC minimizes the BPM readings and ideally will bump the beam through the center of
the misaligned quadrupole (a). The resulting trajectory bump produces dispersion and
dispersive emittance growth. The scaling of quadrupole and corrector strengths scales the
bump in amplitude whilst the physical quadrupole position of course stays the same. As
a result the beam experiences an additional deflection from the misaligned quadrupole
which produces a downstream trajectory oscillation (b). From the oscillation we can
calculate the quadrupole misalignment. This might be corrected by either realigning the
guadrupole or by steering the beam off-center through the quadrupole and compensating
the error locally using a corrector (c). Both possibilities are equivalent. In either case
another scaling of quadrupoles and correctors would produce no change in trajectory. So
the solution is dispersion-free. The power of the dispersion-free steering algorithm comes
from its potential to analyze the superposition of many errors at once.

3 Setup and implementation

In the main linac of the SLC, wakefield effects are much stronger than those anticipated
for the next generation of linear colliders. The presence of electrons and positrons in
the same beam line introduces additional systematic problems which are not relevant, for
future linear colliders. Dispersion-free steering was therefore tested with a special SLC
setup:

1. A single bunch of electrons with about 1 x 10”particles per bunch. The strength
of wakefields was much reduced.

2. Beam feedback loops were switched off.

In order to measure dispersion the quadrupole and corrector strengths need to be scaled.
Hysteresis effects were minimized by cycling the magnetic fields. With the lattice scale
factor k = AK/K the following hysteresis cycle was used:

k= 1.00 — 0.90 — 0.80 — 0.70 — 1.05 — 1.00. (4)

This cycle was executed as a first step and followed throughout the experiment to eliminate
hysteresis. After the first initialization cycle so called measurement cycles were performed.
The beam trajectory was measured with an average of 20 pulses for every scaling. The first
four scalings were used for the dispersion-free steering data analysis which was performed
for both planes simultaneously.
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Figure 1: lllustration of the principle of dispersion-free steering. We assume one misaligned
guadrupole and perfect BPM’s that are fixed to the quadrupole centers. Each quadrupole has a
corrector nearby. Minimizing the BPM readings with dipole corrector kicks leads to situation (a)
where the beam is bumped through the center of the misaligned quadrupole. Scaling quadrupole
and corrector strengths by the same amount (b) has no effect for the first quadrupole with
perfect alignment. However, the “bump” is scaled and we see an extra deflection from the
misaligned quadrupole. The induced downstream trajectory oscillation is a unique signature of
the error. After realignment or correction (c) the quadrupole misalignment kick is eliminated or
compensated by a corrector kick of the same magnitude but opposite sign. For dispersion-free
steering we consider a superposition of many such errors.



Since the superposition of many errors generates the dispersion, a model for how a
deflection at any location changes the trajectory at all downstream locations is required.
Neglecting wakefield effects, the absolute reading z’ at a BPM j due to all upstream kicks
9,‘ is

L
) = Z R 0:, (5)
=1

1— ]

where the transport matrix elements R;,” from the kick i to the BPM j are given by

Ry’ = \/g: /B B sin [l — i) (6)

Here the E* are the beam energies, the ﬂ;’j are the beta functions and the ¢;] are the
betatron phase advances.

Now we calculate how the dispersive kicks change the difference trajectory Az’ when
the lattice is scaled. For the scaled lattice we need to recalculate the Twiss parameters
(primed quantities). Then we have for Az’

i-1
. . 1 z‘ﬂj i
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where the R;;ﬁ are the transport matrix elements for the scaled lattice. We may neglect
effects from non-linear dispersion since we use four different lattice scalings for our anal-
ysis. Then the dispersion-free solution must be local. Dispersion bumps are not easily
possible and linear and non-linear dispersion are minimized simultaneously. For a. given
lattice scaling « the Ry, are

Ry = Ry =« \/—g—‘ B B sin [ — 9] ®)

The Twiss parameters are calculated with the longitudinal magnet positions, the magnetic
field values of the quadrupoles and the beam energy at each magnet.

The above model predicts the effect of dispersive kicks on the absolute trajectory z’
and the difference trajectories Az’(k). Alternatively, if we scale the lattice and measure
zfand Az’ (k) we can use the model to calculate corrector settings that minimize both
29 and Az?(x). With four sets of measurements in each hysteresis cycle and n BPM’s we



define the vector B of measurements as

SRR S
Az'(ky) Wa(m1)
Az'(ka) Wi (k2)
Azl(xs) Wa(ka)
.’.E2 WZ
Az*(#y) W3 (k1)
B=| Ax’(ke) | | w=| Wik | | (9)
Az?(k3) W3 (ka)
z" wn
Az"(&1) Wi(k1)
Az"(K2) W2 (x2)
L Az(k3) | L Wi(ks) |

with W as the vector of weights. The «; correspond to different lattice scale factors «. For
each of the n BPM’s we have four measured quantities. The weights are defined through
inverse measurement errors. Let’s first consider the absolute trajectory measurement xz”.
Its measurement error has a statistical contribution ¢(z?) from averaging 20 shots and a
systematic contribution o},,,;,, from the absolute BPM misalignment. The statistical error
o(z7) arises mainly from the BPM resolution and is usually well below 10 zm for the SLC.
Because the individual BPM misalignments are unknown we assume their measured RMS
Value for oy, . The weight on z7 is then

| 1
WJ = - . 1
o*zd) + ofjpm (10)

Ideally the error on the measured trajectory difference Az’ should only have the statis-
tical contributions of the two measurements. However, a dispersion measurement in the
SLC typically takes about 20 minutes and the error on Az’ becomes dominated by the
overall stability. From the observed trajectory drift and jitter we determined an additional
systematic error ogys of 20 um. The weights on Az’ are then defined by

1

WJ' ) — - : )
Alx;5) c¥(xd) + o (ad, ki) + I3ys

(11)

Equations 10 and 11 define the x*. By averaging 20 shots for each measurement the
statistical errors are small and the x’is dominated by the two terms oy, and osys. We
can write approximately
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For the SLC Thpm is about 100 ym while the effective trajectory stability osys during a
hysteresis cycle Is about 20 um. The weight on a single “dispersion” measurement is about
25 times higher than that on the absolute trajectory. Therefore minimizing the dispersion
makes optimum use of the BPM'’s and is much more efficient than solely minimizing the
absolute trajectory. This is illustrated in Fig. 2 for the simplified x’of eg. 12. One can
recognize the two extreme cases of only dispersion or only trajectory correction and the
optimum combination of both.
We next define a correlation matrix
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and solve for the vector X of corrector settings:
min [[W (B + AX) |, (14)

The solution X gives a set of corrector strengths that minimizes the trajectory and dis-
persion measurements simultaneously. Instead of solving for corrector kicks we could have
solved for quadrupole positions that minimize the absolute trajectory and the dispersion.

4 SLC experiments

The dispersion-free steering algorithm was tested in early 1995 at the SLC. An example
of trajectory and dispersion measurements after standard SLC steering is shown in Fig. 3.
As explained earlier, four measurements are used to find a set of corrector settings that
simultaneously minimizes both the absolute trajectory and the dispersion. In Fig. 4 the
trajectory and dispersion measurements are shown for the same experiment but after three
iterations of dispersion-free steering. The dispersion in this experiment was reduced by
factors between 2 and 5. Because the SLC model does not describe the reality accurately it
helped to do several iterations of dispersion-free steering. However, most of the dispersion
reduction was achieved with the first round of dispersion-free steering.

The improvement in dispersion was confirmed by switching off a number of klystrons
in the SLC. Thus the real beam energy is changed and the dispersion is independently
measured. We found the same reduction in dispersion as from scaling the lattice.
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Figure 2: Dispersion and trajectory correction in SLC are shown for different relative weightings.
The solid curve is the RMS of the absolute trajectory. The other curves show the RMS values
of the difference trajectory for 3 lattice scalings. The ratio of osys and oy, is varied such
that on the left hand side we have only dispersion correction and on the right hand side we
have only trajectory correction. For the SLC values of osys and Thpm We have some optimum
combination of both. This data is calculated from measured data. On the right hand side the
measured RMS values for pure trajectory correction are indicated.

The performance of dispersion-free steering during another experiment is shown in
Figs. 5 and 6. For each lattice scaling we define the RMS deviation from zero as the
relevant observable of trajectory or dispersion. Figures 5 and 6 show the measurements
before and after dispersion-free steering (DFS) and both the calculated and the expected
performances. Once the solution of the least-squares problem is found it can be used
within the model to predict the absolute trajectory and dispersion measurements after
correction. This we call the calculated performance. From the dominant terms oy,

and osys in the x’we obtain the finally expected performance as oy, for the absolute
trajectory and osyg for the dispersion. We expect that the calculated and expected per-
formances agree and that the measured performance agrees within small errors both with
its calculated and expected value (assuming an accurate model). Although dispersion-free
steering greatly reduced dispersion both the calculated and the measured performances
are not as good as expected. We discuss this in the next section.

The RMS of the absolute trajectory in Figs. 5 and 6 is increased by dispersion-free
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Absolute trajectory measurement (x = 1.0) and difference measurements
(k = 0.9, 0.8, 0.7) for a cycle of lattice scaling in the SLC. The measurements were performed
after standard trajectory steering in the SLC. The difference measurements are a measure of
dispersion. Here, we scaled most of the SLC linac (sectors 2 to 26) by changing the magnet
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Figure 5: Summary from another dispersion-free steering experiment. For each lattice scaling,
the RMS deviation in the horizontal plane is shown as the relevant observable. The four different
curves show 1) the measurements after standard SLC trajectory correction and before dispersion-
free steering (DFS), 2) the measurements after dispersion-free steering, 3) the calculated values
from the least-squares solution and finally 4) the expected performance (af)pm and ogys). The
absolute trajectory measurement is shown at « = 1. The lines connecting the points are to
guide the eye and do not represent a functional dependence. Note that the dispersion in linear
accelerators is not a closed solution as in storage rings and therefore is not proportional to «.
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Figure 6: The same experiment and curves as in Fig. 5 are shown but for the vertical plane.



steering. This is expected since the alignment errors are no longer “hidden” by bumping
the beam through the center of the BPM’s. They are locally compensated and therefore
become “visible” to the BPM’s (compare Fig. 1).

5 Error discussion

In the previous section we have shown the performance of dispersion-free steering in the

SLC at low current. Dispersion was greatly reduced but not down to the expected level.
There are two problems:

1. Within our model, we could not calculate a dispersion-free solution that minimizes
dispersion to its expected value of ogys.

2. The calculated performance of the dispersion-free solution was not reached during
the experiments.

While dispersion was consistently reduced by factors of 2-5 we did not observe another
factor of 4 due to those problems. We isolated two major explanations for the reduced
efficiency of dispersion-free steering.

In the setup of the least-squares problem, we assume that misalignments and reading
errors follow a Gaussian distribution. However, in reality non-Gaussian tails are observed.
In this case, a few flyers can dominate the x’of the least-squares problem and significantly
bias the solution. The x’per degree of freedom is larger than 1 and the dispersion solution
does not reach its expected value. In Fig. 4, for example, the absolute trajectory y shows
several large spikes that contribute almost 50% of the total x’. Furthermore, one can
observe corresponding spikes in the dispersion measurements Ay. Those strongly bias
the solution of the least-squares problem. The spikes in the difference measurements are
explained by non-linearities of the BPM’s. Especially BPM’s with large readings might
not operate in their linear dynamic range and tend to behave non-linearly.

The problem of overpopulated tails can be avoided by cutting the tails such that they
do not affect the data analysis any more. For this purpose we introduced a 2.5 sigma
cut for y and 3.0 sigma cuts for the Ay. Those cuts eliminate some measurements from
the least-squares fit. We still find a solution at the affected quadrupoles and BPM’s that
however is unconstrained. Figure 7 shows the calculated dispersion-free solution with and
without a cut on the tails. The analysis was done for the measurements that are shown in
Fig. 4. In this case the cuts eliminated 5 of the 276 BPM’s from the data analysis. As a
result the x?/DOF went down from 3.7 to 1.2 and the calculated dispersion is reduced to
the expected value of osys = 20pm. In future experiments we expect that this improved
solution will help to reduce the measured dispersion beyond what was observed up to
now.

Now we consider the second problem. If our model would accurately describe the
reality we would expect complete agreement between the calculated and measured per-
formances. However, the model we use does not include unknown linac imperfections.
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Figure 7: The calculated dispersion-free steering performance for the measurements in Fig. 4 is
shown with and without a 2.5 sigma cut for y and 3.0 sigma cuts for the Ay. The cuts eliminate 5
of the 276 BPM’s from the data analysis. As a result the x?/DOF is reduced from 3.7 to 1.2
and the calculated dispersion is reduced to its expected value of ogys=20um.

The effects of RF deflections and wakefield kicks due to misaligned RF structures are es-
timated to be roughly about 10 times smaller than those of quadrupole kicks. We do not
expect to be limited from this at the moment. More serious are energy errors in the SLC
that can cause large phase advance errors. In order to evaluate the validity of the model
we used, we compared it with betatron oscillations in the SLC. A large disagreement, was
found and soon explained by essentially one back-phased klystron. The first klystron in
sector 3 of the SLC was actually deaccelerating the beam and induced a large relative
energy error. This changed the phase advance along the linac by up to 180°. This error
was not present during most of our experiments. However, later it was shown from the
data of a diagnostic pulse [10] that all our experiments were affected by large unexpected
phase advance errors in the SLC optics. They reduced the measured efficiency of the
dispersion-free steering algorithm. The monitoring of the SLC optics will help in future
experiments to avoid those errors.

6 Conclusion

The dispersion-free steering algorithm that has been suggested for future linear colliders
was tested successfully in the SLC at low current. The dispersion was reduced by factors
of 2~5 as was shown with two independent methods (lattice scaling and energy changes).

Unexpected limitations in the performance of the dispersion-free steering algorithm
were observed and explained by two main effects. First, large misalignments and non-
linearities in the BPM readings dominated the x’and biassed the dispersion-free solution.
This problem can be avoided by cutting the overpopulated non-Gaussian tails of the mea-



surements, thus allowing large misalignments at single quadrupoles without biassing the
X’. Second, errors in the SLC optics reduced the efficiency of the calculated dispersion-free
solution. In linear accelerators, significant phase advance errors can easily be accumulated
over its length. The monitoring of the optics with a diagnostic pulse could provide a more
realistic optics model. Both limiting effects were previously not addressed in simulations.
With the suggested improvements in the dispersion-free steering algorithm we expect to
find a significantly improved performance of the method in future experiments at the
SLC.

Finally, whether dispersion-free steering and the related algorithm of wakefield-free
steering will be applied in the next linear collider will mainly depend on the time scales
involved. Dispersion-free and wakefield-free steering allow a fast alignment of the linac in
less than roughly 10 minutes. However, both methods are more sensitive to systematic
errors than are local beam-based alignment methods that measure the relative alignment
of each quadrupole versus BPM separately [11, 12]. Those local methods in turn are
significantly slower. The stability of quadrupole and BPM alignment will in the end
decide what method can be used with the highest efficiency.
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